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ABSTRACT:  Knowledge of the fines content is necessary for all soil classification systems and an important 

factor in the evaluation of soil strength in liquefaction and seismic settlement analysis. This paper presents the 

application of cone penetration test, CPT data for estimating the soil fines content. The correlation can be used 

either as a first estimate of fines content (for example in the offshore environment) or to provide statistical 

information on the variation of fines content within a given area of interest (e.g. for a regional liquefaction study). 

The paper shows how field and laboratory test data were used with a neural network to correlate the CPT results 

and the fines content. Data from five site investigation locations across Northern Croatia were utilised. 

Verification of the approach is performed using field and lab test data from the Veliki vrh landslide.  

 

RÉSUMÉ:  La connaissance de la teneur en fines est nécessaire pour tous les systèmes de classification des sols 

et constitue un facteur important dans l'évaluation de la résistance des sols lors de l'analyse de la liquéfaction et 

du tassement sismique. Cet article présente l'application du test de pénétration au cône et des données CPT pour 

l'estimation de la teneur en particules fines du sol. La corrélation peut être utilisée soit comme première estimation 

de la teneur en fines (par exemple dans l’environnement offshore), soit pour fournir des informations statistiques 

sur la variation de la teneur en fines dans une zone d’intérêt donnée (par exemple, pour une étude régionale sur 

la liquéfaction). Le document montre comment les données de tests sur le terrain et en laboratoire ont été utilisées 

avec un réseau de neurones pour corréler les résultats du CPT et le contenu en fines. Les données provenant de 

cinq sites de recherche sur le nord de la Croatie ont été utilisées. La vérification de l'approche est effectuée à 

l'aide des données de test de terrain et de laboratoire du glissement de terrain Veliki vrh..  
 

Keywords: CPT; fines content; correlation; neural network 
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1  INTRODUCTION 

The Cone Penetration Test, CPT is a simple, fast 

and cost-effective in-situ test that provides 

continuous data over the depth of penetration of 

an instrumented cone into the subsurface. The 

CPT penetrates at a constant rate, with a 

continuous measurement of the cone resistance at 

the cone head (qc), sleeve friction (fs) and the pore 

pressure (u2) which represents a sum of the in-situ 

equilibrium pore pressure (u0) and the excess 

pore pressure (u). Using the three measured 

parameters (qc, fs and u2), procedures have been 

established for determining the soil profile, soil 

identification and classification and the 

determination of mechanical, flow and 

consolidation characteristics of the soil. Many 

correlations (Robertson, 2009; Mayne, 2014; 

Librić et al., 2017, Kovačević et al., 2018) have 

been developed over recent years indirectly 

relating CPTs to various geotechnical 

parameters. 

This paper investigates the use of both 

statistical regression and a machine learning 

technique, artificial neural networks (ANN), for 

developing CPT based correlations between the 

soil beviour type index (Ic) and fines content (FC) 

as a percentage of fine particles in the soil. 

Knowledge of the fines content is necessary for 

all soil classification systems and an important 

factor in the evaluation of soil strength in 

liquefaction and seismic settlement analysis.  

The soil behviour index Ic, is determined directly 

from CPT measurements as: 

 

𝐼𝑐 = √(3.47 − 𝑙𝑜𝑔𝑄𝑡𝑛)2 + (𝑙𝑜𝑔𝐹𝑟 + 1.22)2 (1) 

 
where Qtn and Fr are normalised cone resistance 

and normalised friction ratio, calculated as:  

 

𝑄𝑡𝑛 =
𝑞𝑡−𝑣0

𝑝𝑎
 (

𝑝𝑎

𝑣0
′ )

𝑛
 (2) 

 

𝐹𝑟 =
𝑓𝑠

𝑞𝑡−𝑣0
100% (3) 

 

where: v0 is total vertical stress in the ground, 

v0
′ ' is effective vertical stress in the ground, pa is 

atmospheric pressure (100 kPa) and n is stress 

exponent dependent on soil type and stress level, 

with possible values between 0 and 1 and 

calculated as:  

𝑛 = 0.381𝐼𝑐 + 0.05 (
𝑣0

′

𝑝𝑎
) − 0.15 (4) 

The soil behaviour type index Ic as defined in 

Equation (1) represents a series of radii of 

concentric circles in the soil classification charts, 

which present soil types according to the 

correlation of normalised cone resistance Qtn and 

normalised friction ratio Fr. Contours of identical 

Ic in the Qtn - Fr chart represent limits between 

different soil types. Jefferies and Davis (1993) 

suggest using Ic to modify the empirical 

correlations that vary depending on soil type. 

Robertson (2009) points  that this is an extremely 

powerful concept, proposing that Ic be used for 

creating statistical correlations whenever 

possible.  

One of the advantages of using the behaviour 

index Ic is that it is not highly sensitive sleeve 

friction fs measurements that tend to high higher 

variability than qc. , Rather its value is largely 

dependent on the value of the corrected tip 

resistance qt, which has a significantly higher 

measuring precision. It can be shown that 

changing the sleeve friction fs by ±50% in general 

results in a change in the soil behaviour type 

index Ic by less than ±10%. For soft soils 

belonging to the bottom part of the Qtn - Fr chart, 

Ic is practically insensitive to changes in fs 

(Robertson, 2009). 

The research sites considered in this paper are 

geographically distributed over the area of  

northern Croatia. A summary database of 216 

pairs of laboratory testing and CPT results was 

created. Verification of new correlations and 

developed neural network using the database for 

northern Croatia was carried out on the example 

of Veliki vrh landslide located in the same region 

and which was not used in the initial development 

of the models.  
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2 EXISTING CORRELATIONS  

Several correlation exist between soil behaviour 

type index (Ic) and percentage of fines content 

(FC). In order to evaluate the soil liquefaction 

potential Robertson and Wride (1998) proposed 

the following correlation: 

 

Ic  1.26,  𝐹𝐶 = 0  (5a) 
 
1.26  Ic  3.50,  𝐹𝐶 = 1.75𝐼𝑐

3.25 + 3.7  (5b) 
 

Ic > 3.50,  𝐹𝐶 = 100  (5c) 
 

1.64  Ic  2.36 and Fr < 0.5,  𝐹𝐶 = 5  (5d) 
 

For the same purpose Idriss & Boulanger (2008) 

proposed the correlation: 

 

𝐹𝐶 = 2.80𝐼𝑐
2.60  (6) 

 

They concluded that general correlations 

between Ic and FC developed across a broad 

range of sites and geologic settings are poor and 

have large scatter. They suggest that this 

variability can be greatly reduced by collecting, 

and calibrating against, site-specific data.  

 

In order to develop the correlation beetwen Ic 

and FC for site-specific data, Yi (2014) used 124 

samples of laboratory measured fines contents 

from a total of 11 sites located near the southern 

edge of the San Bernardino Valley in Southern 

California. All of these sites geologically consist 

of very young to young sandy, late Holocene age 

alluvial deposits with low plasticity. They 

suggested the following relationship: 

 

Ic  1.31,  𝐹𝐶 = 0  (7a) 
   

1.31  Ic < 2.50, 

𝐹𝐶 = 42.0𝐼𝑐 − 55 + 10𝑠𝑖𝑛 ((
𝐼𝑐−2.5

1.19
) )  (7b) 

 

2.50  Ic  3.10,  𝐹𝐶 = 83.3𝐼𝑐 − 158.3  (7c) 
 

Ic > 3.10,  𝐹𝐶 = 100  (7d) 
 
1.31  Ic  2.36 and Fr < 0.6,  𝐹𝐶 = 5𝐹𝑟  (7e) 
 
For the purpose of developing probabilistic 

CPT based soil classification models, Cetin and 

Ozan (2009) used 484 pairs of CPT / laboratory 

results from seven different databases located 

around the world. They develop the following 

correlation: 

 

𝐹𝐶 =
𝑅−238.50

1.75
100  (8) 

 
where R is a parameter similar to Ic:  

 

𝑅 = √(𝑙𝑜𝑔𝑞𝑡,1,𝑛𝑒𝑡 − 233.52)
2

+ (𝑙𝑜𝑔𝐹𝑟 + 55.42)2  (9) 

 

where qt,1,net is the normalized net cone tip 

resistance and is defined as: 

  

𝑞𝑡,1,𝑛𝑒𝑡 =
𝑞𝑡−𝑣0

(
𝑣0

′

𝑝𝑎
)

𝑐   (10) 

 

and c is stress exponent dependent on soil type 

and stress level, with possible values between 

0.25 and 1 and calculated as: 

  

𝑐 =
𝑅−272.38

2.81
   (11) 

3 ARTIFICIAL NEURAL NETWORKS  

Artificial neural networks are a form of 

computational intelligence (Rosenblatt, 1958) 

developed to mimic how the human brain 

interprets information and solves problems. 

Interconnected neural elements share information 

in order to establish how different variables 

within a system interact, in order to emulate its 

behaviour. As new information becomes 

available the system is able to reinterpret its 

learned behaviour and update as appropriate. 

Neural networks are commonly used for 

regression, classification and prediction tasks. 
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Every neuron is connected to every other neuron 

and each connection receives a weighting. These 

weightings control how sensitive the system 

response is to a variable.  

When there are a number of known  sets of 

inputs and outputs these weightings can be 

optimised to map the system inputs onto the 

system outputs.  

Technically any function can be used for this 

process however if backpropagation is going to 

be used the function should be continuously 

differentiable. This study used the Bayesian 

Regularisation backpropagation algorithm for 

training. This is known as neural network training 

and needs to be carried out before the neural 

network can be used for regression, classification 

or prediction. Training continues until all data has 

been exhausted or predictions match outputs 

within a certain preordained tolerance. 

Typically neural networks are organised into 

an input layer – where the inputs are feed into the 

system, a hidden layer(s) – where the weightings 

between the different parameters are generated 

and an output layer where the system output is 

generated, see Figure 1. While the number of 

input and output nodes is dictated by the 

underlying engineering problem in question. The 

number of hidden neurons needed is much more  

subjective and should be specifically investigated 

for a given problem. This study uses three hidden 

layers. 

If there are more hidden neurons than 

appropriate then the system will be slow to 

converge and will risk being overtrained, while if 

the converse is true the network will be too 

general to consistently deal with unseen datasets.  

This study utilises a multilayer feed-forward 

neural network in conjunction with a sigmoid 

activation function for hidden neurons and a 

linear activation function for output neurons. A 

feed-forward neural network, means that 

information isn‘t recursive instead it can only 

move in one direction from input to hidden to  

output. 

 
Figure 1. General schematic of a feed-forward 

artificial neural network  

 

When training is completed the ANN needs to be 

validated to ensure the system is performing as 

expected, this should be carried out with a new 

dataset the ANN has not previously been exposed 

to during training. During validation the model is 

only given access to inputs. If the ANN behaves 

as expected and predicts the outputs correctly 

following this, then it can be said to model the 

system accurately. Provided enough input and 

output data has been provided during training, an 

ANN model should be able to determine the 

significance each individual parameter has on the 

outcome. 

The ANN described in this study takes 

normalised cone resistance Qtn and normalised 

friction ratio Fr as inputs, and uses them to predict 

fines content FC as an output.  

4 DESCRIPTION OF TEST SITES  

Data from five test sites located in Northern 

Croatia were used to train, validate and test the 

model. In total 216 pairs of CPT/ Laboratory test 

pairs were collated from the test sites. Data from 

a sixth site Veliki vrh was used as a validation 

dataset. A short overview of each test site is given 

below. 

Outputs

Inputs

Output layer

Hidden layer

Input layer
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4.1 Biđ-Bosut Irrigation canal 

Construction of the 14 km long irrigation canal in 

Biđ-Bosut Field, is the 1st phase in the 

construction of the multi-purpose Danube-Sava 

canal. The geotechnical investigation performed 

between chainage km 0+600 to km 4+800 

included: 15 No. co-located boreholes and CPT 

tests, Each probe was taken to a depth of 12 m 

deep, with an average distance between 

investigation points of 300m. At each location  

soil samples were taken for classification testing 

and 75 pairs of laboratory testing and CPT results 

were available . 

4.2 Ilok port  

The town of Ilok is located on the Rhine-Main-

Danuber river system, which connects the North 

and Black Seas. The work described herein was 

performed as part of the Danube-Sava canal 

project that would connect the Danube and the 

Adriatic regions. The geotechnical investigation 

comprised a total of 9 boreholes, made, with 

continuous coring to the maximum depth of 30 

m, dynamic (SPT) and static (CPTU) testing, 

geophysical testing using seismic refraction, 

multichannel analysis of surface waves 

(MASW), seismic static cone penetration test 

(SCPT), together with laboratory tests. The 

database consists of 36 pairs of laboratory testing 

and CPT results.  

4.3 Krsišće landslide  

Krsišće landslide is located on the southern 

slopes of the Medvednica mountain, in the 

Markuševec area, at an altitude of approximately 

300 meters. The investigation described herein 

relates to a potentially unstable section located to 

the west of, the Krišišće road,. A total of 5 

boreholes were made, with continuous coring to 

the maximum depth of 8 m, dynamic (SPT) and 

static (CPTU) testing, together with laboratory 

tests. The database consists of 20 pairs of 

laboratory testing and CPT results. 

4.4 Mirogoj landslide 

The Mirogoj landslide is located on the southern 

slopes of the Medvednica mountain, at the 

Mirogoj cemetery. The incline of the part of the 

slope where the landslide initiated is between 20° 

and 25°. As part of the conducted geotechnical 

investigation work, a total of 5 boreholes were 

made, with continuous coring to the maximum 

depth of 8 m, dynamic (SPT) and static (CPTU) 

testing, together with laboratory tests. The 

database consists of 25 pairs of laboratory testing 

and CPT results.  

4.5 Krematorij landslide 

The Krematorij landslide is located east of the 

Kameniti stol street, in the Gornji grad - 

Medveščak area, on the southern, more indented 

slopes of the Medvednica mountain. The incline 

of the part of the slope where instabilities or 

landslides have been identified is between 10° 

and 30°. As part of the conducted geotechnical 

investigation work, a total of 5 boreholes were 

made, with continuous coring to the maximum 

depth of 12 m, dynamic (SPT) and static (CPTU) 

testing, together with laboratory tests. The 

database consists of 60 pairs of laboratory testing 

and CPT results. 

4.6 Verification site: Veliki vrh landslide 

The Veliki vrh landslide is located on southern 

slopes of Medvednica mountain, in the area 

between Čućerje and Vugrovec, at an altitude 

between 205 and 225 metres. To the southeast of 

the Veliki vrh street (house no. 242), an unstable 

slope was noticed some time ago. Newer research 

has shown that a new part of the unstable slope 

had appeared next to and below house no. 242 of 

the Veliki vrh street. As part of the conducted 

research work, a total of 4 boreholes were made, 

with continuous coring to the maximum depth of 

12 m, dynamic (SPT) and static (CPTU) testing, 

together with laboratory tests. The database 

consists of 19 pairs of laboratory testing and CPT 

results. 
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5 NEW CORRELATION  

Using the data obtained from the five test sites, 

this paper proposes a model similar in 

formulation to that proposed by Robertson and 

Wride (1998). The best fit relationship found in 

this study is compared to Robertson and Wride’s 

relationship in Figure 2. Both equations  have 

very similar regression values when applied to 

the dataset, however, as can be seen from Figure 

2 Robertson and Wride’s equation significantly 

underpredicts fines content magnitude but 

captures the relative increase reasonably well. 

The relationship from this paper effectively 

increases the magnitude of Robertson and Wrides 

relationship to more closely approximate reality. 

 

1.40Ic 3.42, 𝐹𝐶 = 17.45𝐼𝑐
1.662 − 35.42 (12) 

 

 
Figure 2. The statistical correlation developed in this 

study, with Robertson and Wride (1998)  for 

comparison  

6 ANN RESULTS AND DISCUSSION  

The model development dataset which comprised 

of cone resistance Qtn and normalised friction 

ratio Fr as inputs and fines content FC as an 

output was split randomly into the following 

proportions 70% for training, 15% for testing, 

and 15% for validation. For training, the ANN 

had access to both inputs and outputs allowing it 

to learn the sensitivity of each variable and 

understand each parameters effect on the system 

response. The next 15% was used as a test set, 

during the testing process only the inputs were 

supplied to the model. At the end of the testing 

phase, the neural network performed a system 

recalibration on itself so that system inputs could 

be more accurately mapped onto system outputs 

based on the test results. Following completion of 

the testing phase the final 15%, or the validation 

set, was sent to the neural network. Only inputs 

are sent in the validation phase, thus allowing the 

direct comparison of outputs from the validation 

set to actual measured values. Provided a good 

correlation has been achieved the neural 

weightings are saved and the entire data set is 

subsequently inputted blind. The resultant 

outputs are compared to actual outputs, see 

Figure 3.  

 
Figure 3. ANN predicted fines content five test sites 

used in model development  
 

A regression coefficient of 0.9468 was achieved 

for the entire dataset, with a correlation 

coefficient of 0.973. As can be seen from Figure 

3, there is very little data scatter, and importantly 

no extreme outliers. Therefore while a 

misclassification could occur, an extreme 
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difference between predicted fines content and 

measured fines content is unlikely. 

 To ensure the model was working correctly input 

data from an additional site within the same 

geographic region, Veliki vrh was supplied to the 

model. This data which can be seen in Table 1, 

consisted of 19 pairs of CPT and laboratory unit 

weight and fines content results.  

 
Table 1. Fines content, unit weight and CPT results 

from Veliki vrh 

No 
z  

[m] 

qt  

[MPa] 
fs  

[kPa] 

t 

[kN/m3] 

FC  

[%] 

1 2.20 1.63 116.00 19.05 65.72 

2 2.80 0.74 62.00 18.20 84.15 

3 3.30 0.60 38.00 17.61 83.25 

4 5.00 3.38 172.00 19.72 59.72 

5 2.10 1.55 93.00 18.84 61.83 

6 2.80 0.79 72.00 18.72 85.16 

7 3.60 0.62 55.00 18.52 89.25 

8 4.40 1.29 69.00 18.76 79.22 

9 5.60 1.12 90.00 18.73 90.25 

10 6.60 1.51 101.00 18.90 83.88 

11 7.20 1.58 96.00 18.90 81.00 

12 1.60 0.81 54.00 17.43 68.12 

13 2.20 0.62 26.00 17.18 71.45 

14 3.80 4.69 188.00 20.46 46.02 

15 5.80 2.24 104.00 18.62 65.58 

16 1.80 2.04 122.00 19.11 49.32 

17 2.20 1.99 84.00 18.79 48.25 

18 3.10 4.99 193.00 19.27 44.15 

19 3.70 6.59 203.00 19.99 37.26 

 

An extremely good R2 of 0.9732 was obtained for 

this external verification with a correlation 

coefficient of 0.9865. The predicted fines content 

versus measured fines content is shown in Figure 

4. The statistical approach proposed earlier in 

Equation 14 performed equally well on the 

unseen dataset, Veliki vrh, achieving an R2 of 

0.9765. Both are shown in Figure 4, giving very 

similar results. 

 

 
Figure 4. Predicted fines content for Veliki Vri using 

closed loop ANN and regression approach  

7 CONCLUSION  

This paper presents two approaches, regression 

and neural network, for automatically calculating 

fines content using CPT measurements as inputs. 

Both approaches could easily be performed 

automatically onsite as the CPT is ongoing, thus 

allowing for an extremely fast interpretation of 

fines content. This would reduce the quantity of 

laboratory tests needed per site thus saving time 

and money. An additional benefit of such an 

approach is that any laboratory tests that are 

carried out can then combined with their 

respective CPT soundings become additional 

data entries for both the regression and ANN 

models, thus improving their future accuracy. In 

this way, the models can continue to evolve over 

time, gradually increasing in both accuracy and 

precision. 

The approaches were developed using 216 

pairs of CPT/laboratory fines content tests from 

five different locations across Northern Croatia. 

An entirely separate sixth site Veliki vri was used 

as an external verification measure for the saved 

neural networks. The models performed 
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extremely well on both the initial dataset and the 

subsequent verification dataset.  

Unfortunately, ANN-based models have some 

drawbacks, of particular concern is the black box 

nature of the results, which makes proof of 

concept hard to verify, while also making their 

standalone implementation a risky process for the 

engineer involved. The authors think that much 

of this can be mitigated by testing a small number 

of samples from every site in the laboratory for 

local verification. Thus allowing the training 

database to continue to grow in size over time 

making incorrect classifications less likely to 

occur. Over time reducing the cost, time, and 

labour involved. 

This study confirms the functional link 

between CPT results, and soil fines content. .The 

developed neural network and regression models 

performed admirably for a wide range of soil 

types closely predicting fines content between 3 

and 99 %. The close prediction between the 

neural networks and the regression model is a 

testament to the accuracy of power regression 

models for predicting soil unit weights and 

further validates their use in everyday design 

situations, given their simplicity and 

transparency. 
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