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Acceleration of Deep Convolutional Neural
Networks using Adaptive Filter Pruning

Pravendra Singh ∗, Vinay Kumar Verma, Piyush Rai, and Vinay P. Namboodiri

Abstract—While convolutional neural networks (CNNs) have
achieved remarkable performance on various supervised and
unsupervised learning tasks, they typically consist of a massive
number of parameters. This results in significant memory re-
quirements as well as a computational burden. Consequently,
there is a growing need for filter-level pruning approaches for
compressing CNN based models that not only reduce the total
number of parameters but reduce the overall computation as
well. We present a new min-max framework for the filter-level
pruning of CNNs. Our framework jointly prunes and fine-tunes
CNN model parameters, with an adaptive pruning rate, while
maintaining the model’s predictive performance. Our framework
consists of two modules: (1) An adaptive filter pruning (AFP)
module, which minimizes the number of filters in the model; and
(2) A pruning rate controller (PRC) module, which maximizes the
accuracy during pruning. In addition, we also introduce orthog-
onality regularization in training of CNNs to reduce redundancy
across filters of a particular layer. In the proposed approach, we
prune the least important filters and, at the same time, reduce the
redundancy level in the model by using orthogonality constraints
during training. Moreover, unlike most previous approaches, our
approach allows directly specifying the desired error tolerance
instead of the pruning level. We perform extensive experiments
for object classification (LeNet, VGG, MobileNet, and ResNet)
and object detection (SSD, and Faster-RCNN) over benchmarked
datasets such as MNIST, CIFAR, GTSDB, ImageNet, and MS-
COCO. We also present several ablation studies to validate the
proposed approach. Our compressed models can be deployed at
run-time, without requiring any special libraries or hardware.
Our approach reduces the number of parameters of VGG-16
by an impressive factor of 17.5X, and the number of FLOPS
by 6.43X, with no loss of accuracy, significantly outperforming
other state-of-the-art filter pruning methods.

Index Terms—Deep convolutional neural network acceleration,
Pruning, Model compression, Efficient computation.

I. INTRODUCTION

DEEP convolutional neural networks (CNN) have been
used extensively for object recognition and various other

computer vision tasks. After the early works based on standard
forms of deep convolutional neural networks [1], [2], recent
works have proposed and investigated various architectural
changes [3]–[5] to improve the performance of CNNs. Al-
though these changes, such as adding more layers to the CNN
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or increasing number of convolutional filters per layer, have
led to impressive performance gains, they have also resulted in
a substantial increase in the number of parameters, as well as
the computational cost. The increase in model size and com-
putations have made it infeasible to deploy these models on
embedded and mobile devices for real-world applications. To
address this, recent efforts have focused on several approaches
for compressing CNNs, such as using binary or quantized [6]
weights. However, these require specialized hardware.

The approaches based on pruning of unimportant/redundant
weights [7]–[10] give limited speedup. As most of the CNN
parameters reside in the fully connected layers, a high com-
pression rate with respect to the number of network parameters
can be achieved by simply pruning redundant neurons from
the fully connected layers. However, this does not typically
result in any significant reduction in computations (FLOPs
based speedup), as most of the computations are performed
in convolutional layers. For example, in the case of VGG-16,
the fully connected layers contain 90% of total parameters
but account for only 1% of computations, which means that
convolutional layers despite having about 10% of the total
parameters are responsible for 99% of computations. This has
led to a considerable recent interest in convolutional layer
filter pruning approaches. However, most existing pruning
approaches [7], [8] result in irregular sparsity in the convolu-
tional filters, which requires software specifically designed for
sparse tensors to achieve speedups in practice [7]. In contrast,
some other filter pruning approaches [11]–[13] are designed
to directly reduce the feature map width by removing specific
convolutional filters via `2 or `1 regularization on the filters,
and effectively reducing the computation, memory, and the
number of model parameters. These methods result in models
that can be directly used without requiring any sparse libraries
or special hardware.

In this work, we propose a novel filter pruning formulation.
Our formulation is based on a simple min-max game between
two modules to achieve an adaptive maximum pruning with
minimal accuracy drop. We show that our approach results
in substantially improved performance as compared to other
recently proposed filter pruning strategies while being highly
stable and efficient to train. We refer to the two modules of our
framework as an Adaptive Filter Pruning (AFP) and Pruning
Rate Controller (PRC). The AFP is responsible for pruning
the convolutional filter, while the PRC is responsible for
maintaining accuracy. In this way, we are iteratively pruning
the least important filters from the deep CNNs. We also
enforce orthogonality of weights (orthogonality regularization)
in training deep convolutional neural networks to reduce
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redundancy across filters.
Unlike most previous approaches, our approach does not

require any external fine-tuning. In each epoch, it performs
an adaptive fine-tuning to recover from the accuracy loss
caused by the previous epoch’s pruning. By external fine-
tuning, we refer to dedicated epochs of fine-tuning for the
final compressed model. Our approach jointly prunes and fine-
tunes the CNN model parameters, with an adaptive pruning
rate, while maintaining the model’s predictive performance.
Therefore, in a given epoch, we can recover from the accuracy
drop suffered due to the previous epoch’s pruning, making the
model ready to prune filters in the current epoch. Therefore,
our approach does internal fine-tuning in the same epoch.
Moreover, while previous approaches need to pre-specify a
pruning level for each layer, our approach is more flexible in
the sense that it directly specifies an error tolerance level and,
based on that, decides which filters to prune, and from which
layer(s).

Through an extensive set of experiments and ablation stud-
ies on several benchmarks, we show that the proposed ap-
proach provides state-of-the-art filter pruning, and significantly
outperforms existing methods. In particular, our approach
significantly reduces the computations, memory requirements,
model size, and the number of parameters. Our approach
reduces the number of parameters of VGG-16 by an impressive
factor of 17.5X, and the number of FLOPS by 6.43X, with no
loss of accuracy.

Our key contributions are as follows:
• Simplicity and efficiency of the approach, which is based

on a simple yet principled min-max iterative two-player
game.

• Unlike earlier pruning approaches, our pruning technique
has an adaptive pruning rate. The PRC module controls
the pruning rate dynamically while considering layer
importance. The PRC module also ensures that the com-
pressed model will not go beyond the error tolerance limit
(iterative pruning bounds accuracy drop).

• We prune the least important filters and, at the same time,
reduce the redundancy level in the deep model by using
orthogonality constraints during training.

• The proposed approach has been evaluated for various
popular models (LeNet, VGG, MobileNet, ResNet, SSD,
and Faster-RCNN) over benchmarked datasets (MNIST,
CIFAR, GTSDB, ImageNet, and MS-COCO).

II. RELATED WORK

Among one of the earliest efforts on compressing CNNs
by pruning unimportant/redundant weights, [6], [14] includes
binarizing/quantizing the network weights, which reduces
the computation time as well as storage requirement. The
disadvantage of this approach is that it requires specialized
hardware to run the deployed model. Transfer learning-based
methods have also been used for model compression. One such
approach is by [15], [16], which transfers/distills the knowl-
edge of a massive-sized network to a much smaller network.
Another popular approach is to use a sparsity constraints on
the neuron’s weights. These approaches [8], [17] learn sparse

network weights, where most of the weights are zero, and
consequently can lead to very small model sizes. However,
despite the sparsity of the weights, the pruned models are
still not computationally efficient at runtime. Moreover, these
models require special library/hardware for sparse matrix
multiplication because activation/feature maps are still dense,
which hinders practical utility.

A very initial approach proposed an interesting method [18]
that prunes exactly one node by solving a system of linear
equations in each pruning iteration. However, such methods
are practically impossible to apply on the deep CNNs as the
computations would be infeasible. More recently, the work
in [19] proposes a scaling factor to scale the outputs of
various structures for model compression. Further, the method
in [20] uses normalized cross-correlation between all filter
pairs to enforce the diversity between filters. We differ from
this approach [20] as we have used the spectral norm in
orthogonality constraint to enforce diversity between filters.
This is known to be more optimal [21]. In our work, we use
this more optimal orthogonality constraint and pose it in a play
and prune architecture to obtain a more diverse set of filters.

The work in [22] proposes a structured sparsity learn-
ing(SSL) approach to regularize the structures of deep CNNs
to reduce computation cost. This approach introduces struc-
tured sparsity in the model by group Lasso regularization
during the training. Similarly, the work in [23] propose a
Bayesian model that considers the computational structure of
deep CNNs and provides structured sparsity. This approach
injects noise to the outputs of the neurons while keeping the
weights unregularized by removing neurons with a low SNR
from the computation graph. The work in [24] uses a sparse
variational dropout technique to sparsify deep CNNs.

Most of the popular approaches that focus on model com-
pression are based on sparsifying the fully connected layers
since, typically, about 90% of the network parameters are in
the fully connected layers. However, note that the bulk of
the computations take place in the convolutional layers, and
consequently, these approaches do not result in computational
acceleration. Only a few recent works have had the same focus
as our work, i.e., on filter pruning [11]–[13], [25], [26], that
can be practically useful. In [12], the authors proposed filter
pruning by ranking filters based on their sum of absolute
weights. They assumed that if the sum of absolute weights
is sufficiently small, the corresponding activation map will be
weak.

The work in [26] suggests an iterative approach to transfer
the representational capacity of its convolutional layers to a
fraction of the filters and then prune the redundant ones fol-
lowed by a re-training step to restore the accuracy. Similarly,
[27] use a different approach to rank the filter importance,
based on the entropy measures. The assumption is that high
entropy filters are more important. Alternatively, [25] uses a
data-driven approach to calculate filter importance, which is
based on the average percentage of zeros in the corresponding
activation map. Less important filters have more number of
zeros in their activation map. Recently, [28] proposed improv-
ing run time by using a Taylor approximation. This approach
estimates the change in cost by pruning the filters. Another
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work [11] uses pruning of filters based on the next layer
statistics. Their approach is based on checking the activation
map of the next layer to prune the convolution filters from the
current layer. In a recent work [13] used a similar approach
as in [11] but used lasso regression.

Runtime Neural Pruning (RNP) [29] proposes a framework
that prunes the deep CNNs dynamically at the runtime by
performing pruning in a bottom-up, layer-by-layer manner.
SFP [30] enables the pruned filters to be updated when training
the deep CNNs after pruning. Neuron Importance Score Prop-
agation (NISP) [31] calculates the importance scores of final
responses to every neuron in the deep CNNs. The deep model
is pruned by removing neurons with the least importance,
followed by re-training steps to recover accuracy drop.

Unlike the aforementioned pruning approaches, our pruning
approach has an adaptive pruning rate. The PRC module
controls the pruning rate dynamically while considering layer
importance. We prune the least important filters and, at the
same time, reduce the redundancy level in the model by adding
orthogonality constraints during training.

III. PROPOSED APPROACH

We assume we have a CNN modelM with K convolutional
layer. Layer i is denoted as Li and consists of ni filters denoted
as FLi = {f1.f2. . . . , fni}. We assume that the unpruned
model M has the accuracy of E and, post-pruning, the error
tolerance limit is ε.

A. Overview

Our deep model compression framework is modeled as a
min-max game between two modules, Adaptive Filter Pruning
(AFP) and Pruning Rate Controller (PRC). The objective of
the AFP is to iteratively minimize the number of filters in the
model, while PRC iteratively tries to maximize the accuracy
with the set of filters retained by AFP. The AFP will prune
the filter only when the accuracy drop is within the tolerance
limit (ε). If accuracy drop is more than ε then pruning stops,
and the PRC tries to recover the accuracy by fine-tuning the
model. If PRC’s fine-tuning is unable to bring the error within
the tolerance level ε, the AFP will not prune the filter from
the model and game converges.

Let us denote the AFP by P and the PRC by C. Our
objective function can be defined as follows:

max
#w
C

(
min

#w=
∑K

i=1 ni

P (FL1 , FL2 , . . . FLK )

)
(1)

As shown in the above objective, the AFP (P) minimizes the
number of filters in the network, and the PRC (C) optimizes
the accuracy given that the number of filters. Here #w is the
number of remaining filters after pruning by AFP.

An especially appealing aspect of our approach is that the
pruning rates in each iteration are decided adaptively based
on the performance of the model. After each pruning step,
the controller C checks the accuracy drop (see Fig. 1). If
the accuracy drop is more than ε, then the pruning rate is
reset to zero, and the controller C tries to recover the system
performance (further details of this part are provided in the

Fig. 1. The figure shows the complete architecture. Here AFP minimizes the
number of filter in model while PRC maximizes the accuracy during pruning.
Here λt,Wt and Ft are the regularization parameter, weight-threshold and
remaining filters in the model respectively at tth pruning iteration.

section on PRC). Eq. 1 converges when C(#w) performance
drop is more than the tolerance limit, and it is unable to recover
it. In such a case, we rollback the current pruning and restore
the previous model. At this point, we conclude that this is an
optimal model that has the maximal filter pruning within ε
accuracy drop.

B. Convolutional Filter Partitioning

The pruning module P first needs to identify a candidate
set of filters to be pruned. For this, we use a filter partitioning
scheme in each epoch. Suppose the entire set of filters of the
model M is partitioned into two sets, one of which contains
the important filters while the other contains the unimportant
filters. Let U and I be the set of unimportant and important
filters, respectively, where

M = U ∪ I and U ∩ I = ∅ (2)

U = {UL1
, UL2

, . . . , ULK
} and I = {IL1

, IL2
, . . . , ILK

}

Here ULi
and ILi

are set of unimportant and important filters,
respectively, in layer Li. ULi

, selected as follows:

ULi
= σ

top α%
(sort({|f1|, |f2|, . . . , |fni

|})) (3)

Eq. 3 sorts the set in increasing order of |fj |, σ is the select
operator and selects the α% filters with least importance. The
remaining filters on Li belongs to set ILi . Here |fj | is the sum
of absolute values of weights in convolutional filter fj and can
be seen as the filter importance. A small sum of absolute values
of filter coefficients implies less importance. Our approach to
calculate filter importance uses their `1 norm (Eq. 3), which
has been well-analyzed and used in prior works [12], [26],
[30]. Our approach isn’t however tied to this criterion, and
other criteria can be used, too. We are using this criterion
because of its simplicity.

C. Weight Threshold Initialization

After obtaining the two sets of filters U and I, directly
removing U may result in a sharp and potentially irrecoverable
accuracy drop. Therefore we treat U as a candidate set of filters
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Fig. 2. Histogram of the sum of absolute value of convolutional filters for
CONV5 1 in VGG-16 on CIFAR-10. Where left plot is for original filters and
the right plot shows the sum of the absolute value of filters after optimization.

to be pruned, of which a subset will be pruned eventually. To
this end, we optimize the original cost function for the CNN,
subject to a group sparse penalty on the set of filters in U ,
as shown in Eq. 4. Let C(Θ) be the original cost function,
with Θ being original model parameters. The new objective
function can be defined as:

Θ = arg min
Θ

(C(Θ) + λA||U||1) (4)

Here λA is the `1 regularization constant. This optimization
penalizes U such that |fj | (sum of absolute weights of co-
efficients in each filter fj) tends to zero, where fj ∈ ULi

∀i ∈ {1, 2, . . . ,K}. This optimization also helps to transfer
the information from U to the rest of the model. If a filter
fj has approximately zero sum of absolute weights then it
is deemed safe to be pruned. However, reaching a close-
to-zero sum of absolute weights for the whole filter may
require several epochs. We therefore choose an adaptive
weight threshold (Wγi ) for each layer Li, such that removing
∀fj ∈ ULis.t.|fj | ≤ Wγi results in negligible (close to 0)
accuracy drop.

We calculate the initial weight threshold (Wγi ) for Li as
follows: optimize Eq. 4 for one epoch with λA = λ, where λ
is the initial regularization constant, which creates two clusters
of filters (if we take the sum of the absolute value of filters)
as shown in Fig. 2. On the left cluster (right plot) using the
binary search find the maximum threshold Wγi for Li such
that accuracy drop is nearly zero.

D. Adaptive Filter Pruning (AFP)

The objective of the AFP module is to minimize the
number of filters in the model. Initially, based on the sparsity
hyperparameter λ, we calculate the weight thresholds W. Now
instead of using the constant pruning rate, we change the
pruning rate adaptively given by the pruning rate controller
(PRC; described in the next section) in each epoch. This
adaptive strategy helps to discard the filter in a balanced way,
such that we can recover from the accuracy drop. In each
epoch, from the current model, we select α% of the filter of
lowest importance from each layer, partition them into U and
I, and perform optimization using Eq. 4, where λA is given
by PRC. The optimization in Eq. 4 transfers the knowledge
of unimportant filters into the rest of the network. Therefore
some filter from the U can be safely discarded. This removal
of the filter from the model is done based on the threshold
(WA) given by the PRC module. Now, from each layer, the

filters below the adaptive threshold WA are discarded. In each
epoch, the weight thresholds and regularization constant is
updated dynamically by the PRC module, and a subset of U
is pruned. Hence, in the same epoch, we can recover from the
accuracy drop from the previous epoch’s pruning, making the
model ready to prune filters in the current epoch.

The objective of the AFP module can be defined as:

Θ′ = σ
#w∈Θ′

[
P

(
arg min

Θ′

(
C(Θ′) + λA

K∑
i=1

||U||1

))]
(5)

Here Θ′ is the collection of remaining filters after pruning,
and σ is the select operator. #w is the collection of all
the filters from each layer Li that has a sum of absolute
value greater than the Wγi . From Eq.-5, it is clear that it
minimizes the number of the filters based on Wγi ∈WA,∀i ∈
{1, 2, . . . ,K}.

E. Pruning Rate Controller (PRC)

Let W = [Wγ1 ,Wγ2 , . . . ,WγK ] denote the initial weight
thresholds for the K layers (described in Weight Threshold
Initialization section). Now the adaptive thresholds WA are
calculated as follows:

WA = δw × Tr ×W (6)

Tr =

{
C(#w)− (E − ε) : C(#w)− (E − ε) > 0

0 : Otherwise
(7)

where C(#w) is the accuracy with #w remaining filters, E
is the accuracy of the unpruned network, and the number
C(#w)− (E − ε) denotes how far we are from tolerance error
level ε. Here, δw is a constant used to accelerate or decrease
the pruning rate. The regularization constant λA in Eq. 4 also
adapted based on the model performance after pruning and its
updates are given as follows

λA =

{
(C(#w)− (E − ε))× λ : C(#w)− (E − ε) > 0

0 : Otherwise
(8)

Form Eq. 8 it is clear that we set the regularizer constant to
zero if our pruned model performance is below the tolerance
limit. Otherwise, it is proportional to the accuracy above the
tolerance limit. λ is the initial regularization constant.

The PRC module essentially controls the rate at which the
filters will get pruned. In our experiments, we found that if
the pruning rate is high, there is a sharp drop in accuracy
after pruning, which may or may not be recoverable. Therefore
pruning saturates early, and we are unable to get the high
pruning rate. Also, if the pruning rate is too slow, the model
may get pruned very rarely and spends most of its time in fine-
tuning. We, therefore, use a pruning strategy that adapts the
pruning rate dynamically. In the pruning process, if in some
epoch, the system performance is below the tolerance limit,
we reset the pruning rate to zero. Therefore the optimization
will focus only on the accuracy gain until the accuracy is
recovered to be again within the tolerance level ε. Note that the
adaptive pruning rate depends on model performance. When
the model performance is within ε, the pruning depends on
how far we are from ε. From Eq 6, it is clear that the WA
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depends on the performance of the system over the #w filters
in the model. In this way, by controlling the pruning rate, we
maintain a balance between filter pruning and accuracy. This
module tries to maximize accuracy by reducing the pruning
rate. The objective function of PRC can be defined as:

max
Θ′
C (Θ′, D) (9)

Here C calculates the performance, i.e., accuracy. It is the
function of all the convolutional filters Θ′ that remain after
pruning, and D is the validation set used to compute the model
accuracy.

In addition to dynamically controlling the pruning rate, the
PRC offers several other benefits, discussed next.

1) Iterative Pruning Bounds Accuracy Drop: Eq. 7 and
Eq. 8 ensure that the compressed model will not go beyond
the error tolerance limit, which is controlled by the PRC.
Experimentally we found that, in a non-iterative one round
pruning, if the model suffers from a high accuracy drop during
pruning, then pruning saturates early, and fine-tuning will not
recover accuracy drop properly. We have shown an ablation
study that shows the effectiveness of iterative pruning over the
single round pruning to justify this fact.

2) Pruning Cost: The cost/effort involved in pruning is
mostly neglected in most of the existing filter pruning methods.
Moreover, most of the methods perform pruning and fine-
tuning separately. In contrast, we jointly prune and fine-
tune the CNN model parameters, with an adaptive pruning
rate, while maintaining the model’s predictive performance.
Therefore, in a given epoch, we can recover from the accuracy
drop suffered due to the previous epoch’s pruning and making
the model ready to prune filters in the current epoch.

In addition, the adaptive pruning rate has the following other
cost/effort advantages over fixed pruning rate:
• If the pruning rate is too high, then it will result in sharp

accuracy drop after pruning, which may require several
epochs to recover. It may also be possible that the accu-
racy drop is irrecoverable. In such a case, most methods
rollback the current state (extra overhead) and again start
from the previous state. Hence more epochs (high pruning
cost) are required to get the final compressed model.

• If the pruning rate is too low, the model may get pruned
very slowly, therefore, again high pruning cost.

In our approach, an adaptive pruning rate is controlled by
PRC (Eq. 6,7,8). On ImageNet, we get compressed model
ResNet-50 PP-2 after 62 epochs (without any rollback). The
experimental section shows more details.

3) Layer Importance: Most previous methods [12], [13],
[26], [30], [31] use user-specified desired model compression
rate but finding optimal compression rate is not so easy and
involves many trials. In CNNs, some layers are relatively
less important, and therefore we can prune many more filters
from such layers. In contrast, if we prune a large number
of filters from important layers, then this might result in an
irrecoverable loss in accuracy. Our approach is more flexible
since it directly specifies an error tolerance level ε and, based
on that, adaptively decides which filters to prune, and from
which layer(s), using Eq. 6 to determine layer-specific pruning
rates.

IV. ORTHOGONALITY CONSTRAINT IN PRUNING

In our proposed pruning approach described in the previous
section, we prune the less important filters from the model.
These discarded filters do not have any significant contribution
to the model. Let us consider a possibility where two filters
are important and, therefore, not discarded in the pruning
process. However, they might share a high degree of similar
information (high correlation). Therefore, redundancy may
also be possible in a compressed model.

To address this issue, we enforce orthogonality across filters
to encourage filter diversity. To this end, we augment our
pruning method with Orthogonality Constraint (OC) to ensure
filter diversity. We add an orthogonality regularization during
training time to make filters orthogonal/uncorrelated, which
results in improved performance of the deep CNNs. Orthog-
onality Constraint (OC) can be applied on the convolutional
layers as well as fully connected layers.

The deep model has a set of convolutional layers, followed
by fully connected layers. We have to apply orthogonality con-
straint in each layer (fully connected as well as convolutional
layers). Let us assume that the deep model contains K convo-
lutional layers and FC fully connected layers. The weights in
ith fully-connected layer can be denoted as Xi ∈ Rmi×ni .
The weights in jth convolutional layer can be denoted as
Xj ∈ Rw×h×i×o, where w, h, i, and o are filter width, filter
height, number of input and output channels respectively. We
can reshape Xj into a matrix form X ′j ∈ Rm′×n′

, where
m′ = w × h× i and n′ = o.

Using the above notation, we can define orthogonality
constraint for the convolutional layers, as shown below:

Oc = δ

K∑
j=1

σ
(
X ′jX

′T
j − I

)
(10)

Similarly, orthogonality constraint for the fully connected
layers can be given as:

Of = δ

FC∑
i=1

σ
(
XiX

T
i − I

)
(11)

In the above, σ(Mt) denotes the spectral norm of Mt,
i.e., the largest singular value of Mt and δ is the weight
given to orthogonality constraint [21]. Therefore, the overall
orthogonality-based regularization term is given by

O = Oc +Of (12)

This regularizer O (Eq. 12) is added to Eq. 4, and Eq. 5 to
ensure filter diversity. The orthogonality constraint reduces re-
dundancy across filters which results in improved performance
as shown in experimental section.

V. EXPERIMENTS AND RESULTS

To show the effectiveness of the proposed approach, we
have conducted extensive experiments on small as well as
large datasets (MNIST [32], GTSDB [33], CIFAR-10 [34],
ILSVRC-2012 [35], and MS-COCO [36]). Our approach
yields state-of-art results on LeNet [1], VGG [3], MobileNet



6 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

TABLE I
PRUNING RESULTS FOR THE LENET-5 ARCHITECTURE ON MNIST.

Method Filter Error% FLOPs Pruned Flop %
SSL-2 [22] 5,19 0.80 5.97× 105 86.42
SSL-3 [22] 3,12 1.00 2.89× 105 93.42
SBP [23] – 0.86 – 90.47
SparseVD [24] – 0.75 – 54.34
PP-1 (Ours) 4,5 0.95 1.95× 105 95.56
PP-OC-1 (Ours) 4,5 0.80 1.95× 105 95.56

TABLE II
LAYER-WISE PRUNING RESULTS AND PRUNED MODELS (PP-1,

AND PP-2) STATISTICS FOR VGG-16 ON CIFAR-10.

Baseline PP-1 PP-2
Input Size 32×32×3 32×32×3 32×32×3

Layers

CONV1 1 64 18 18
CONV1 2 64 48 48
CONV2 1 128 65 65
CONV2 2 128 65 65
CONV3 1 256 104 96
CONV3 2 256 112 112
CONV3 3 256 114 110
CONV4 1 512 207 186
CONV4 2 512 163 79
CONV4 3 512 79 79
CONV5 1 512 74 74
CONV5 2 512 48 48
CONV5 3 512 60 60

FC6 512 512 512
FC7 10 10 10

Total parameters 15.0M 1.13M (13.3×) 0.86M (17.5×)
Model Size 60.0 MB 4.6 MB (13.0×) 3.5 MB (17.1×)
Accuracy 93.49 93.46 93.35
FLOPs 313.7M 54.0M (5.8×) 48.8M (6.43×)

[37], SSD [38], Faster RCNN [39], and ResNet [5] respec-
tively. For all our experiments, we set λ = 0.0005 (set initially
but later adapted), δw = 1 and α = 10%. We follow the same
parameter settings and training schedule as [12], [13], [30].
We also report an ablation study for various values of α. We
perform experiments without/with Orthogonality Constraint
(OC) and observe that adding Orthogonality Constraint (OC)
in the training process improves the CNNs performance. We
use the same settings and setups as described in [21] for
Orthogonality Constraint (OC).

A. LeNet-5 on MNIST

MNIST (Modified National Institute of Standards and Tech-
nology) is a handwritten digits dataset. It contains 60,000
training images and 10,000 test images. Our LeNet-5 architec-
ture contains two convolutional layers and two fully connected
layers. The complete architecture is 20-50-800-500. We trained
LeNet-5 on MNIST from scratch and achieved 0.83% error
rate.

We achieve a higher FLOPs compression rate as compared
to the previous approaches (Table I). In prior work, SSL-
3 [22] reports an error of 1.0% on 93.42% FLOPs pruning
while we achieve 95.56% FLOPs pruning with 0.80% error
(PP-OC-1). Table I shows a detailed comparison with previ-
ous approaches. PP-1 denotes the compressed model without
using Orthogonality Constraint (OC). PP-OC-1 denotes the
compressed model when using Orthogonality Constraint (OC)
in the pruning process. PP-OC-1 shows better performance as
compare to PP-1 because the former promotes filter diversity.

TABLE III
COMPARISON OF PRUNING VGG-16 ON CIFAR-10 (THE BASELINE

ACCURACY IS 93.49%).

Method Error(%) Params Pruned(%) Pruned FLOPs(%)
Li-pruned [12] 6.60 64.0 34.20
SBP [23] 7.50 – 56.52
AFP-E [26] 7.06 93.3 79.69
AFP-F [26] 7.13 93.5 81.39
PP-1 (Ours) 6.54 92.5 82.8
PP-OC-1 (Ours) 6.40 92.5 82.8
PP-2 (Ours) 6.65 94.3 84.5
PP-OC-2 (Ours) 6.57 94.3 84.5

B. VGG-16 on CIFAR-10

We experimented with VGG-16 architecture on the CIFAR-
10 dataset. We follow the same parameter settings and training
schedule as [12]. Input size is 32 × 32 × 3 for VGG-16 on
CIFAR-10. It contains one fully connected layer of size 512
after convolutional layers, and the rest of the architecture is
same as [3].

We collected α = 10% filters from all convolutional layers
to make U in each epoch. For weight threshold initialization,
we optimize Eq. 4, as described in the proposed approach.
This optimization partition the filters into two clusters. Please
refer to Fig. 2 to see the behavior of the optimization. This
polarization helps to easily decide the filters to be pruned from
the U because now the separation between U (left cluster)
and I (right cluster) is relatively high. Please note that we
applied `1-regularization only on α% filters, but the behavior
(sum of absolute weights) of the remaining (100−α%) filters
are also changed to adapt the representational capacity of its
convolutional layers.

From Fig. 2, it is clear that for left cluster |fi| ∈ [1, 21] while
for the right cluster |fi| ≥ 95. Because of this polarization,
we can safely remove the subset of filters from U below the
threshold given by PRC. Our first pruned model is VGG-16
PP-1. Table II shows the layer-wise pruning statistics for PP-
1 (first pruned model), and PP-2 (second pruned model). We
compare our results with the recent works on filter pruning.
Our approach consistently performs better as compared to Li-
pruned [12], SBP [23], AFP [26] as shown in Table III. PP-
OC-2 shows better performance as compare to PP-2 because
of the presence of filter diversity.

C. Ablation Study for VGG-16 on CIFAR-10

This section shows a detailed analysis of the effect on the
different components in the proposed approach.

1) Ablation Study on the hyper-parameter α: We did an
ablation study on the hyper-parameter α, i.e., how many filters
are selected for partitioned U . We experimented with α =
5, 10, 20, 30%. We found that if we take the lower value, it
will not degrade the performance (Table IV) but takes more
epochs to prune. While if we take high α (say 30%) value,
it starts degrading the performance of the model early, hence
we are unable to get high pruning rate. In our case, we find
α = 10% is a moderate value, and at this rate, we can achieve
a high pruning rate. This rate we set across all architecture
like LeNet, VGG, ResNet, and MobileNet.
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TABLE IV
ABLATION STUDY OVER THE α VALUES. EXPERIMENTALLY WE FOUND

THAT α = 10 IS THE MOST SUITABLE.

Alpha value Error(%) Parameters FLOPs
5 6.54 1.12× 106 5.3× 107

10 6.54 1.13× 106 5.4× 107

20 6.56 1.15× 106 5.5× 107

30 6.61 1.27× 106 6.1× 107

Fig. 3. (a) Left figure shows the effectiveness of iterative pruning (b) Right
figure shows effect of layer importance on error for the same FLOPs pruning
(84.5%)

2) Pruning iterations Vs Error: In Fig. 3 (left), we have
shown that if we do the pruning in 1 shot, it has significant
accuracy drop (8.03%) as compared to PP-2 on the same
FLOPs pruning (84.5%). While if we prune the model iter-
atively, we have less error rate for the same FLOPs pruning.
Therefore, if we do pruning manually without using PRC
(pruning iterations: 1, 2, 4, 8), the error rate is always worse
than our pruned model PP-2 which uses PRC.

3) Filter importance Vs. Layer importance: Most of the
previous approach [12], [26], [31] focus on the How to prune
(filter importance/ranking), while it is also important for the
better pruning rate to decide Where to prune. Our approach
also decides the where to prune by considering layer impor-
tance. In the Fig. 3 (right), we are showing the ablation on our
approach’s capability to decide the importance of the layers.
In Fig. 3 (right), we are showing the error rate on the similar
FLOPs pruning without/with considering layer importance for
the four compressed model search (S1,S2,S3,S4) with our
approach (PP-2) using same filter importance criteria. The
compressed models (S1,S2,S3,S4) do not use PRC, which is
why to have error more than our compressed model PP-2.

4) Training compressed model with randomly initialized
weights: In this, we are analyzing the effect of fine-tuning
on the compressed model rather than training from scratch.
We train two compressed models VGG-16 PP-1 and VGG-
16 PP-2 from scratch with the same architecture as in Table-
II. Unfortunately, the errors are 7.23%, 7.36% respectively,
which are much worse than our pruned models as shown in
Table-V. Similar observation on CIFAR-10 is also observed
in [12]. Hence instead of fine-tuning the compressed model,
if we directly perform training on the compressed model with
randomly initialized weights (training from scratch), then the
model may suffer from accuracy drop as shown in Table-V.
The key reason behind this can be the involvement of a highly
non-convex optimization problem, for which a certain degree

TABLE V
TABLE SHOWS THE PARAMETERS PRUNED (PP), AND FLOPS PRUNED
(FP) RESULTS FOR VGG-16 ON THE CIFAR-10 IN DIFFERENT SETUPS.

Model Error% Method PP(%) FP(%)
Baseline 6.51 – – –

PP-1 (ours) 6.54 pretrained model used 92.5 82.8
PP-2 (ours) 6.65 pretrained model used 94.3 84.5

PP-1 7.23 training from scratch 92.5 82.8
PP-2 7.36 training from scratch 94.3 84.5

TABLE VI
TABLE SHOWS THE PARAMETERS PRUNED (PP), AND FLOPS PRUNED

(FP) RESULTS FOR VGG-16 ON THE CIFAR-10 UNDER DIFFERENT
REGULARIZATIONS.

Model Error% Method PP(%) FP(%)
PP-1 (ours) 6.54 `1 regularization 92.5 82.8
PP-2 (ours) 6.65 `1 regularization 94.3 84.5

PP-1 6.55 `2 regularization 92.5 82.8
PP-2 6.63 `2 regularization 94.3 84.5

TABLE VII
COMPARISON OF PRUNING RESNET-56 ON CIFAR-10 (THE BASELINE

ACCURACY IS 93.1%).

Method Error(%) Pruned FLOPs(%)
Li-B [12] 6.94 27.6
NISP [31] 6.99 43.6
CP [13] 8.20 50.0
SFP [30] 6.65 52.6
AFP-G [26] 7.06 60.9
PP-1 (Ours) 6.91 68.4
PP-OC-1 (Ours) 6.85 68.4

of parameter redundancy is required during training. But after
training, we can remove these redundant parameters without
much effect on the performance of the model.

5) Use of `2 regularization in place of `1 regularization in
Eq. 4 and Eq. 5: The performance of `1 regularization and
`2 regularization is similar as shown in Table VI. Note that
we have applied regularization only on U part, and we are
pruning the whole convolutional filter from the model. The
role of regularization in our approach is to reduce the sum of
absolute weights of filters belonging to U part. Therefore `1
regularization or `2 regularization can be used to reduce the
sum of absolute weights of filters belonging to U part.

D. ResNet-56 on CIFAR-10
We follow the same parameter settings and training schedule

as [12], [30]. Our approach significantly outperforms various
state-of-the-art approaches for ResNet-56 on CIFAR-10. The
results are shown in Table VII. We achieve a high pruning
68.4% with the 6.85% error rate, while AFP-G [26] has the
error rate of 7.06% with 60.9% pruning.

E. MobileNet on CIFAR-10
We train MobileNetV2 [37] on the CIFAR-10 dataset and

achieve 91% accuracy because of three downsample layers,
leading to 4 × 4 feature maps before the last avg pooling.
Therefore, we changed the number of downsampling layers
from three to two and achieved 94.5% accuracy. We use the
publicly available code1 for these experiments, which uses two

1https://github.com/tinyalpha/mobileNet-v2 cifar10
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TABLE VIII
PRUNING RESULTS FOR MOBILENET ON CIFAR-10 DATASET.

Method Error(%) Pruned FLOPs(%)
Baseline [37] 5.5 –
PP-1 (Ours) 5.7 43.6
PP-OC-1 (Ours) 5.5 43.6

TABLE IX
COMPARISON OF PRUNING VGG-16 ON IMAGENET (THE BASELINE

ACCURACY IS 90.1%).

Method Top-5 Accu.(%) Pruned FLOPs(%)
RNP (3X) [29] 87.57 66.67
ThiNet-70 [11] 89.53 69.04
DDSSS [19] 88.20 75.24
SLAF [20] 89.38 77.85
CP [13] 88.20 80.00
PP-1 (Ours) 89.81 80.20
PP-OC-1 (Ours) 90.01 80.20

TABLE X
COMPARISON OF PRUNING RESNET-50 ON IMAGENET (THE BASELINE

ACCURACY IS 92.2%).

Method Top-5 Accu.(%) Parameters Pruned FLOPs(%)
ThiNet [11] 90.7 16.94M 36.9
SFP [30] 92.0 – 41.8
PP-1 (Ours) 92.0 15.7M 44.1
PP-OC-1 (Ours) 92.1 15.7M 44.1
CP [13] 90.8 ∼ 18M 50.0
PP-2 (Ours) 91.4 13.7M 52.2
PP-OC-2 (Ours) 92.0 13.7M 52.2

downsampled layers.
MobileNet [37], [40] is a highly compact model. Therefore,

accelerating an already compact model is a challenging task.
We take the original MobileNetV2 model as the baseline.
We prune 43.6% FLOPs in MobileNet with no loss in ac-
curacy. Experimental results show that we can accelerate
MobileNetV2 using the proposed approach. The results are
shown in the table-VIII.

F. VGG-16 On ILSVRC-2012

To show the effectiveness of our proposed approach, we also
experimented with the large-scale dataset ILSVRC-2012 [35].
It contains 1000 classes with 1.5 million images. To make our
validation set, randomly 10 images (from the training set) are
selected from each class. This is used by PRC to calculate
the validation accuracy drop for adjusting the pruning rate.
In this experiment, α is the same as the previous experiment.
We follow the same setup and settings as [13]. The baseline2

accuracy is 90.1%.
Our large-scale experiment for VGG-16 [3] on the ImageNet

[35] shows the state-of-art result over the other approaches for
model compression. Channel-pruning (CP) [13] has the 80.0%
model FLOPs compression with the top-5 accuracy 88.2%,
while we have same FLOPs pruning (80.2%) with the top-5
accuracy 90.01%. Refer to table-IX for the detail comparison
results. Our compressed model (PP-1) is obtained after 38
epochs. PP-OC-1 denotes the compressed model with using
Orthogonality Constraint (OC) in the pruning process.

2http://www.vlfeat.org/matconvnet/pretrained/

Fig. 4. Our ResNet pruning strategy, where we pruned first two convolutional
layers in each block.

Fig. 5. Speedup corresponding to CPU (i7-4770 CPU@3.40GHz) and GPU
(GTX-1080) over the different batch size for VGG-16 on CIFAR-10.

G. ResNet-50 ON ILSVRC-2012

In ResNet, there exist restrictions on the few layers due to
its identity mapping (skip connection). Since for output =
f(x)+x we need to sum two vector, therefore we need x and
f(x) should have same dimension. Hence we cannot change
the output dimension freely. Hence two convolutional layers
can be pruned for each block (see Fig. 4). Unlike the previous
work [11], where they explicitly set p = q, we have not im-
posed any such restriction, which results in more compression
with better accuracy. We prune ResNet-50 from block 2a to
5c continuously as described in the proposed approach. If the
filter is pruned, then the corresponding channels in the batch-
normalization layer and all dependencies to that filter are also
removed. We follow the same settings as [13]. The baseline3

accuracy is 92.2%.
Our results on ResNet are shown in Table X. We are itera-

tively pruning convolutional filters in each epoch as described
earlier. PP-1 is obtained after 34 epochs. Similarly, PP-2 is
obtained after 62 epochs. We have experimentally shown that
our approach reduces FLOPs and Parameters without any
significant drop in accuracy.

H. Practical Speedup

The practical speedup is sometimes very different by the
result reported in terms of FLOPs prune percentage. The
practical speedup depends on the many other factors, for

3https://github.com/KaimingHe/deep-residual-networks
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TABLE XI
CLASS WISE AP FOR SSD512-ORIGINAL AND SSD512-PRUNED MODEL ON GTSDB DATASET.

Model AP Size Parametersprohibitory mandatory danger mAP
SSD512-Original 96.8 86.9 87.1 90.3 98.7 MB 24.7M
SSD512-Pruned 97.5 87.6 88.0 91.0 2.9 MB (34.0×) 0.73M (3.0%)

TABLE XII
GENERALIZATION RESULTS ON MS-COCO. PRUNED RESNET-50 (PP-2)

USED AS A BASE MODEL FOR FASTER-RCNN.

Model data Avg. Precision, IoU:
0.5:0.95 0.5 0.75

F-RCNN original trainval35K 30.3 51.3 31.8
F-RCNN pruned trainval35K 30.3 51.1 31.7

example, intermediate layers bottleneck, availability of data
(batch size), and the number of CPU/GPU cores available.

For VGG-16 architecture with the 512 batch size, we have
4.02X practical GPU speedup, while the theoretical speedup
is 6.43X (Fig. 5). This gap is very close on the CPU, and our
approach gives the 6.24X practical CPU speedup compared to
6.43X theoretical (Fig. 5).

I. Generalization Ability

We also conduct experiments on object detection network
to show the generalization ability of compressed models
produced by our approach. We select two most popular object
detector SSD [38] on GTSDB dataset and Faster RCNN [39]
on MS-COCO [36] dataset. In SSD experiment, we get ∼34×
compression in terms of model parameters with significant
improvement in AP. We use ResNet-50 as a base network in
Faster RCNN implementation.

1) SSD-512 on German traffic detection benchmarks: In
this section, we test the generalization ability of our pruned
model (VGG-16 PP-2), which is pruned on CIFAR-10. In the
first experiment, we trained original SSD-512 (Single Shot
MultiBox Detector) on German traffic detection benchmarks
(GTSDB) [33] dataset. For this experiment, ImageNet pre-
trained base network (VGG-16) is used. In the second ex-
periment, we substitute the base network of SSD-512 with
our pruned VGG-16 PP-2 model. SSD detects objects in real-
time at multiple scales from multiple layers. Usually, initial
layers detect the smaller object, and last layers detect the
bigger object. After training, we notice that the model is over-
fitted. Object sizes in the GTSDB dataset are very small.
Hence, SSD‘s later layer feature maps are unable to capture the
objects, which result in over-fitting in the model by later layers.
Therefore our pruned SSD-512 model detects the object from
the first detection (CONV4 3) layer. We remove all layers
after CONV4 3 in the pruned SSD-512 model. We achieve
a significant mAP improvement and ∼34× compression in
model size after removing later detection layers. Table XI
shows the detailed experimental results.

2) Faster RCNN on COCO: The experiments are performed
on COCO detection datasets with 80 object categories [36].
Here all 80k train images and a 35k val images are used
for training (trainval35K) [41]. We are reporting the detection

accuracies over the 5k unused val images (minival). In this
first, we trained Faster-RCNN with the ImageNet pre-trained
ResNet-50 base model. The results are shown in table-XII.

In this experiment, we used our pruned ResNet-50 model
(PP-2) as given in Table-X as a base network in Faster-RCNN.
We found that the pruned model shows similar performances
in all cases. In the Faster-RCNN implementation, we use ROI
Align and use stride 1 for the last block of the convolutional
layer (layer4) in the base network. We have used a publicly
available code4 for Faster R-CNN with ResNet-50 as a base
network. In Faster-RCNN, we change the base model with our
pruned ResNet-50 (PP-2) model to get the compressed Faster
R-CNN. From our results, we show that the Faster-RCNN
based on ResNet-50 gives similar results with our pruned
ResNet-50 model. Therefore, our pruned ResNet-50 model
retains its feature representation capacity even after pruning.

VI. CONCLUSION

We proposed an Adaptive Filter Pruning framework to ac-
celerate Deep Convolutional Neural Networks. Our approach
follows a min-max game between two modules (AFP and
PRC). Since our approach can prune the entire convolution
filter, there is a significant reduction in FLOPs and the num-
ber of model parameters. Unlike earlier pruning approaches,
our pruning technique has an adaptive pruning rate. The
PRC module controls the pruning rate dynamically while
considering layer importance. The PRC module also ensures
that the compressed model will not go beyond the error
tolerance limit. Our framework prunes the least important
filters and, at the same time, reduces the redundancy level in
the model by using orthogonality constraints during training.
Our approach does not require any special hardware/software
support, is generic, and practically usable. We have performed
extensive evaluations of our approach for various popular
models (LeNet, VGG, MobileNet, ResNet, SSD, and Faster-
RCNN) over benchmarked datasets (MNIST, CIFAR, GTSDB,
ImageNet, and MS-COCO). Our approach can also be used in
conjunction with pruning methods such as binary/quantized
weights, weight pruning, etc. These can directly be applied
to the pruned model given by our method to get further
speedups and model compression. The experimental results
show that our proposed framework achieves state-of-art results
on standard architectures and generalizes well for the object
detection task.
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