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Abstract—Integrated full electric propulsion (IFEP) systems 

eliminate the direct mechanical coupling between the prime 

mover and the propeller, enabling easier connection of multiple 

prime movers and allowing more equitable and fuel-efficient 

engine loading. These features are important in both cruise ship 

and naval warship design. Propulsion and ship service systems 

require different electrical ratings. The general solution is to use 

multiple electrical machine sets. To approach the most compact 

design and maximise the weight reduction, a dual wound 

machine is considered in this paper. It has dual two-layer 

windings which share the same slots and uses one prime mover, 

to produce two independent power supplies. This paper designs 

a dual wound machine with no electromagnetic coupling due to 

the airgap fields, by algebraically analyzing the harmonic 

distribution. Further verification of the nil electro-magnetic 

coupling due to both the airgap and slot leakage fluxes is 

provided by 2D finite element modeling. Both loaded and 

unloaded conditions are considered. 

 
Keywords—Dual wound machine, Electric ship, Harmonic 

decoupling, Independent power supplies. 

I.   INTRODUCTION 

Traditional large cruise ships and naval warships contain a 

set of diesel generators for ship service systems, and separate 

prime overs for propulsion [1], [2]. Electric propulsion has 

emerged as the most efficient arrangement for several vessel 

types [3], [4], and the number of electrically propelled ships 

has grown rapidly over the last ten years [5]. Compared with 

direct-drive diesel systems, electric propulsion has great 

potential to reduce fuel consumption, enhance dynamic 

performance and increase the system reliability [6]-[8]. 

Integrated full electric propulsion (IFEP) systems remove the 

direct mechanical coupling between the prime mover and 

propeller, and build all-electric networks, which can support 

both the ship services and propulsion segments [9]. IFEP 

benefits the ship structure by: 

1. The arrangement of engines on the ship becomes more 

flexible because the connection between the diesel machines 

and the propulsion is eliminated. 

2. All engines providing electrical power helps to decrease 

the total number of engines, which contributes to the 

reduction of the weight and volume for the ship, as well as 

the noise and vibration. 

3. Independent engine groups and propulsion machines can 

use more commercial solutions for maintenance and to 

decrease capital costs. 

Based on the IFEP system, this paper proposes the design 

of a dual wound machine providing the power for both ship 

                                                           
1Dept. of Electronics & Electrical Engineering, University of Bath. 
2Dept. of Mechanical Engineering, University of Bath. 
3BMT Defence & Security UK Ltd. 

services and the propulsion segment simultaneously. Some 

studies of dual wound machine generators have been 

performed in [10]-[12]. Compared with the general IFEP 

system, a dual wound machine only requires one prime 

mover (diesel engine) with less volume and mass than two 

separate diesel engines to the same total power rating, saving 

space on the ship [13]. With only one electric machine, there 

is no integration problem between generators. The two 

outputs of the dual wound machine are from two windings on 

the stator, which share the same slots but can be windings of 

different forms. However the stator winding arrangements 

must eliminate the electromagnetic coupling between them to 

avoid cross-coupling between the supplies. In addition, each 

of the two rotor windings needed should couple with only the 

stator winding for which it is intended.  There are different 

winding strategies applied to dual wound machines [14], [15]. 

In addition, the harmonic analysis of the windings has been 

studied in [16]-[18]. Dual wound machines are shown to have 

great potential to provide better power quality [15], better 

torque quality [19] and reduce the losses [20]. 

This paper designs a model 2 and 6-pole dual wound 

machine with 5 kW output using an existing machine frame. 

An analytical harmonic calculation is presented which shows 

that there is no electromagnetic coupling due to the airgap 

fields. The magnetic flux density distribution and operational 

performance are also analyzed by 2D finite element 

modelling in COMSOL. This further verifies that there is no 

electro-magnetic coupling between the two sets of stator 

windings due to both air gap and slot leakage fluxes. This 

paper is structured as follows: Section II introduces the dual 

wound machine topology and dimension using an existing 

machine frame; Section III shows the rotor winding 

distributions and the magnetic flux density in the air gap; 

Section IV presents the stator electro-magnetic decoupling 

and winding harmonic analysis; Section V demonstrates the 

load operation and further demonstrates the independence of 

the two power supplies. 

II.   DUAL WOUND MACHINE TOPOLOGY 

The model dual wound machine designed in this paper is 

based on an existing machine frame at the University of Bath. 

Table I presents its dimension. 
TABLE I MACHINE DIMENSION 

Item Stator Rotor 

Number of slots 36 24 

Diameter 190.5 mm 186.5 mm 

Axial length 123.6 mm 139.5 mm 

Slot opening 2.7 mm 3.5 mm 

Airgap 2 mm 

Stator outer diameter 295 mm 
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III.   AIR GAP FLUX DENSITY PRODUCED BY THE ROTOR 

WINDINGS 

The excitation magnetic flux density in the air gap is 

produced by the windings in the rotor slots. In order to 

generate a good approximation to a sinusoidal magnetic field, 

concentric windings are used. The coils are series connected 

and due to the different number of conductors in each slot, 

the winding produces the required reasonable approximation 

to a sinusoidal air gap flux distribution. Since the rotor has 24 

slots, the 2-pole winding needs a pole pitch of 12 slots and 

the 6-pole 4 slots. The coil distributions are shown in Fig. 1, 

which shows the 2-pole distribution (one coil set out of two) 

at Fig. 1(a) and the six-pole distribution (two coil sets out of 

six) at Fig. 1(b). Each of these coil sequences are repeated. 

 
(a) 2-pole rotor winding diagram (one coil set of two) 

 
(b) 6-pole rotor winding diagram (two coil sets of six) 

Fig. 1.  Rotor winding diagram 

Table II and Table III show the magnetic field harmonic 

distribution of the 2-pole and 6-pole rotor windings. They 

show that there are no common harmonics between the two 

windings, which means they have no mutual coupling. This is 

important since it implies that when changing the dc current 

level in one winding transient emfs will not be induced in the 

other. The calculations are performed using the method given 

in [16]. It should be noted that the calculated range was up to 

the 35th harmonic.  
TABLE II 2-POLE ROTOR MAGNETIC FIELD HARMONICS DISTRIBUTION 

Harmonics Magnetic field (T) 

1 0.603 

23 0.026 

25 0.024 

  
TABLE III 6-POLE ROTOR MAGNETIC FIELD HARMONICS DISTRIBUTION 

Harmonics Magnetic field (T) 

3 0.536 

21 0.077 

27 0.060 

  
Each rotor coil produces a square wave of flux density, so 

that when all the coil contributions are added together the 

approximate sinusoidal magnetic flux density distribution is 

as shown in Fig. 2. Given that the number of slots per pole is 

larger the 2-pole rotor magnetic field in the air gap (Fig.2(a)) 

is smoother than 6-pole winding (Fig. 2(b)). The ripples 

appearing in the waves are caused by the slotting. 

The rotor winding distributions could start at any phase 

position with respect to each other. The best position can be 

taken as that which produces the smallest total field. A study 

was performed to minimize the total field produced when 

both windings are excited. This involved changing the 

relative position of the windings by one slot at a time Fig. 3 

shows the total field at the best position when the 2-pole and 

6-pole windings are aligned. The he finite element modelling 

in this paper is based on this aligned position.  

 
(a) 2-pole rotor magnetic flux density 

 
(b) 6-pole rotor magnetic flux density 

Fig. 2.  Rotor magnetic flux density distribution in the air gap 

 
Fig. 3.  2-pole and 6-pole magnetic flux density when it is aligned 

IV.   WINDING HARMONICS & ELECTRO-MAGNETIC COUPLING 

The stator windings produce induced emf from the 

magnetic flux density provided by the rotor windings. The 

frequency of the output voltage is proportional to pole 

number so the 6-pole winding produces 3 times the frequency 

of the 2-pole. The 2-pole and 6-pole windings share the same 

36 slots on the stator frame as shown in Fig. 4, each pole 

winding occupies two layers, one above the other, so there 

are four layers in total. The arrangement aims to maximise 

the induced voltage and minimise the space harmonic from 

the windings whilst ensuring that there is no electromagnetic 

coupling between them. 

Fig.4. shows the chosen solution. The 2-pole and 6-pole 



  

windings are both short-pitched the 2-pole has pitch angle of 

120° and the 6-pole 150°. 

It is worth noting that since the 2 and 6-pole fields rotate 

at the same speed as the rotor, the relative position between 

the air gap fluxes of the 2-pole and 6-pole windings, which 

depends on the power factor of the loads, is therefore 

constant. The stator windings used the same aligned position 

as the rotor windings assuming that the load power factor is 

the same. Further study could be done if the two load power 

factors are known. 
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Fig. 4.  Stator winding distribution 

The dual wound machine is expected to generate 

independent supplies. The flux density can only couple with 

the windings that have the same pole number. At the same 

time, the current in a winding can only produce fluxes 

corresponding to its winding harmonics. It therefore follows 

that to avoid electromagnetic coupling between the windings 

there should be no common winding harmonics  

Table IV and Table V show the winding harmonics of 2-

pole stator winding and 6-pole stator winding. It can be seen 

that there are no common harmonics between the two 

windings, fulfilling the condition for no mutual coupling, and 

ensuring that the two outputs are independent. The 

calculations are performed using the method given in [16]. 

Using this technique, the windings are represented by 

harmonic, equivalent, positive negative and zero winding 

sequence sets which when supplied from 3 phase currents 

produce forward backward and stationary fields. It is also 

important that a rotor winding couples only with its 

corresponding stator winding. And it can be seen from Table 

II and Table V, Table III and Table IV, there are no rotor 

harmonics that couple with the inappropriate stator winding. 
TABLE IV 2-POLE STATOR WINDING HARMONICS DISTRIBUTION 

Harmonics PPS NPS ZPS 

1 0.83 0.00 0.00 

5 0.00 0.17 0.00 

7 0.13 0.00 0.00 

11 0.00 0.09 0.00 

13 0.08 0.00 0.00 

17 0.00 0.07 0.00 

19 0.07 0.00 0.00 

23 0.00 0.08 0.00 

25 0.09 0.00 0.00 

29 0.00 0.13 0.00 

31 0.17 0.00 0.00 

35 0.00 0.83 0.00 

  
*PPS – Positive phase sequence 
NPS – Negative phase sequence 
ZPS – Zero phase sequence 

TABLE V 6-POLE STATOR WINDING HARMONICS DISTRIBUTION 

Harmonics PPS NPS ZPS 

3 0.93 0.00 0.00 

9 0.00 0.00 0.50 

15 0.00 0.07 0.00 

21 0.07 0.00 0.00 

27 0.00 0.00 0.50 

33 0.00 0.93 0.00 

 
 

A 2D finite element simulation using COMSOL has been 

performed to verify the above results for both the airgap 

fluxes considered by the harmonic analysis and the slot 

leakage fluxes. Fig. 5 and Fig. 6 present the condition when 

only the 2-pole rotor winding is excited. Fig. 5 shows the 

magnetic flux density and magnetic vector potential 

distributions. Under this condition, the 2-pole stator winding 

generates induced voltage as shown in Fig. 6(a) while the 6-

pole stator winding has zero voltage as presented in Fig. 6(b). 

It is worth mentioning that the end winding resistance and 

reactances are not considered in this paper (requiring a 3D 

model) but will be included in the future work. 

 
Fig. 5.  2-pole magnetic field distribution 

 
(a) 2-pole stator voltage with 2-pole excitation 

 
(b) 6-pole stator voltage with 2-pole excitation 

Fig. 6.  2-pole and 6-pole stator voltage with 2-pole excitation 

Fig. 7 and Fig. 8 present the simulation results when only 

the 6-pole rotor winding excited. Fig. 7 presents the 6-pole 

magnetic flux and magnetic vector potential distributions. It 

is clear that 2-pole winding has no induced emf, while the 6-

pole winding produces sinusoidal induced emf only when 6-

pole rotor winding is excited. 

When both windings are excited, the combined magnetic 

flux density and magnetic vector potential distributions are 

shown in Fig. 9. Fig. 10 clearly indicates that the induced 

voltage is independently generated in the 2-pole and 6-pole 



  

windings. It is to be concluded that the excitation of 6-pole 

rotor winding has a negligible impact on 2-pole stator 

winding, and vice versa. 

 
Fig. 7.  6-pole magnetic field distribution 

 
(a) 2-pole stator voltage with 6-pole excitation 

 
(b) 6-pole stator voltage with 6-pole excitation 

Fig. 8.  2-pole and 6-pole stator voltage with 6-pole excitation 

 
Fig. 9.  2-pole and 6-pole magnetic field distribution 

 
(a) 2-pole stator voltage with 2-pole and 6-pole excitation 

 
(b) 6-pole stator voltage with 2-pole and 6-pole excitation 

Fig. 10.  2-pole and 6-pole stator voltage with 2-pole and 6-pole excitation 

V.   MODELLING PERFORMANCE WITH RESISTIVE LOAD 

To simulate the load operation performance and further 

demonstrate the fully decoupled winding properties, a 

resistive load study has been carried out. This simulation 

aims to verify that the 2-pole and 6-pole windings are able to 

operate independently regardless of the other winding, when 

both 2-pole and 6-pole rotor windings are energized. The 

power rating of the 2-pole machine is designed to be 3 kW. 

The phase voltage and current are assumed to be 240 Vrms 

and 4 Arms. The load resistance for the 2-pole machine is 

therefore 60 Ω. For the 6-pole machine, the power rating is 

designed to be 2 kW. The phase voltage and current are 

assumed to be 240 Vrms and 3 Arms so that the load resistance 

for the 6-pole machine is 80Ω. Fig. 11 presents the terminal 

voltage and current for both windings when the 2-pole stator 

winding feeds a 60 Ω resistive load and 6-pole stator winding 

is on open circuit. It can be observed that the 2-pole winding 

works under rated condition while 6-pole winding produces 

induced voltage but has no current. 

 
(a) 2-pole stator terminal voltage with 2-pole loaded 



  

 
(b) 2-pole stator terminal current with 2-pole loaded 

 
(c) 6-pole stator terminal voltage with 2-pole loaded 

 
(d) 6-pole stator terminal current for 2-pole loaded 

Fig. 11.  Terminal voltage & current with 2-pole loaded 

Fig. 12 shows the 2-pole winding on open circuit and 6-

pole winding with a resistive load of 80 Ω. Combined with 

the 2-pole loaded result in Fig. 11, it is confirmed that the 2-

pole and 6-pole windings will work separately under their 

respective rated conditions. 

 
(a) 2-pole stator terminal voltage with 6-pole loaded 

 
(b) 2-pole stator terminal current with 6-pole loaded 

 
(c) 6-pole stator terminal voltage with 6-pole loaded 

 
(d) 6-pole stator terminal current with 6-pole loaded 

Fig. 12.  Terminal voltage & current with 6-pole loaded 

For both 2-pole winding with 60 Ω resistive load and 6-

pole winding with 80 Ω resistive load, the terminal voltage 

and current are shown in Fig. 13. Compared to each winding 

working separately, the stator voltage and current with dual 

load are still similar to the results with the single load 

conditions, which illustrates that the 2-pole generator does 

not affect 6-pole generator and vice versa. 

 
(a) 2-pole stator terminal voltage with 2-pole and 6-pole loaded 

 
(b) 2-pole stator terminal current with 2-pole and 6-pole loaded 

 
(c) 6-pole stator terminal voltage with 2-pole and 6-pole loaded 



  

 
(d) 6-pole stator terminal current with 2-pole and 6-pole loaded 

Fig. 13.  Terminal voltage & current with 2-pole and 6-pole loaded 

The simulation results in this section show the rated 

operation conditions when either and both windings are 

loaded. The 2-pole winding has 354 Vpeak, 5.9 Apeak and 3 kW 

rated power. The 6-pole winding has 340 Vpeak, 4.2 Apeak and 

2 kW rated power. Once the dual wound machine is 

integrated into an overall electric ship system, the propulsion 

segment will feed power electronic converters to implement 

the propeller drive systems. The ship service systems may 

rectify the power into DC networks. The generator designed 

in this paper ensures the important condition that the two 

systems can operate independently. Conclusion 

This paper demonstrates a dual wound machine with 2 and 

6-pole windings, which can generate two independent power 

supplies for an IFEP ship system. Analytical calculations and 

2D FEA COMSOL simulation are both applied to investigate 

the generator performance. Based on the harmonic analysis 

and finite element modelling results, the two outputs are fully 

electromagnetically decoupled. Further practical experiments 

will be performed using the model machine and the design 

described in this paper. 
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