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Abstract—Based on hierarchical Multilayer Extreme Learning
Machine (ML-ELM) and Fuzzy Logic theory (FL), in this paper
a Multilayer Fuzzy Extreme Learning Machine (ML-FELM) has
been developed with an application to active classification and
transport of objects using an indoors Unmanned Aerial Vehicle
(UAV). The learning approach that follows the proposed ML-
FELM is a forward two-step hierarchical methodology. First, by
stacking a number of Fuzzy Autoencoders (FAEs), input data
is projected into a feature representation space. Each FAE is
functionally equivalent to a Mamdani Fuzzy Logic System of
type-1 (T1 FLS). Finally, in the second stage, features achieved
by stacking a number of FAEs are classified by using a Fuzzy
ELM (FELM) based on T1 FLS theory and ELM. To evaluate the
effectiveness of the proposed ML-FELM, a number of other ex-
isting machine learning approaches were employed for the active
classification and transport of four different geometrical objects.
To further ensure the efficiency of the ML-ELM, a number of
popular benchmark data sets for classification problems are also
suggested. Based on our experimental results and compared to
other deep learning strategies, the ML-FELM not only represents
a fast machine learning approach, but also produces a high model
accuracy for image classification.

Index Terms—Multilayer Learning, Extreme Learning Ma-
chine, Fuzzy Logic, Image processing, Neural Networks.

I. INTRODUCTION

Multilayer Extreme Learning Machine (ML-ELM) is an
emerging field in computational intelligence that is gaining
more and more in popularity. This is mainly due to its ability
to provide a high trade-off between accuracy and model
simplicity in comparison to deep learning methods [1]–[11].
This popularity is also accredited to the ability of ML-ELM
to achieve a high feature representation while maintaining a
low computational cost for its parameter identification and
good generalisation properties. Strictly speaking, compared to
deep learning based on Gradient Descent methods, ML-ELM
does not require a greedy layer-wise training. The training
of ML-ELM usually involves a hierarchical methodology that
consist of two different levels where each hidden layer can
be considered as an independent module. At first level, an
unsupervised multilayer feature encoding is carried out by
stacking a number of ELM-based autoencoders, followed by
an ELM for supervised feature classification. In other words,

ML-ELM decomposes input data representation into multiple
layers where outputs of previous layers are used as the input of
the current one [1], [12]. That is, the parameters of each hidden
layer are randomly generated and need not to be tuned while
a feature mapping is generated [12]. As detailed in [13]–[20],
the basic learning block of ELM aims at determining the op-
timal output weights of Single-Layer-Feedforward-Networks
(SLFNs) in which the number of hidden nodes is randomly
selected. Thus, the universal approximation capability of ML-
ELM has been extended to other Machine Learning (ML)
approaches and SLFNs such as kernel learning [5], RBF
networks [2], convolutional neural networks [6] and ridge
regression [6], [7] with a large number of applications to the
solution of real-world problems in the field of regression and
classification.

In this paper, a Multilayer Fuzzy Extreme Learning Machine
(ML-FELM) that is based on hierarchical ML-ELM and
fuzzy logic of type-1 is suggested for active classification
and transport of objects using an Unmanned Aerial Vehicle
(UAV). The proposed ML-FELM can be viewed as a ML
Fuzzy Logic System (ML-FLS) of either Mamdani or Takagi-
Sugeno-Kan (TSK). At first level, representation learning is
achieved by transforming the input data into a new feature
space. This is done, by stacking a number of ELM-based
Fuzzy Autoencoders (FAEs), followed by a FELM-based
classifier for feature classification. To evaluate the performance
of the proposed ML-FELM, two different types of experiments
are carried out. First a number of data sets about classification
problems is used to measure the efficiency of the ML-FELM
with respect to other ML-ELMs. Finally, a second experiment
where the ML-FELM is implemented to guide a UAV to
recognise and transport a number of four different objects is
performed.

This paper is organised as follows: Section II briefly reviews
the theory of ELM and ML-ELM as well as Fuzzy ELM.
In section II, the proposed ML-FELM is described, while
section IV, the methods and robotic platform used for active
classification and transport of objects is explained. Section
V presents the corresponding results and section VI draws
conclusions.



II. BACKGROUND THEORY

A. Extreme Learning Machine (ELM)

According to ELM theory, SLFNs with M hidden nodes
whose parameters are randomly selected (including biases)
can approximate (learn) ′P ′ distinct samples (xp, tp) with
zero means

∑M
p=1 ‖ yp − tp ‖= 0, in which xp =

[xp1, . . . , xpN ]T ∈ RN and tp = [tp1, . . . , tpÑ ]T ∈ RÑ . Thus,
a generalised model for SLFNs with M hidden nodes and
activation g(x) function can be defined: [13], [14]:

M∑
k=1

βkgk(xp) =

M∑
k=1

βkg(wk · xp + bk) = yp (1)

where wk = [wk1, . . . , wkN ]T is the weight vector connect-
ing the kth hidden node and the input nodes, and βp =
[βp1, . . . , βpÑ ]T is the weight vector connecting the kth
hidden node to the nth output. A compact representation is:

H(w1, . . . , wM , b1 . . . , bM , x1, . . . , xP )

=

g(w1 · x1 + b1) · · · g(wM · x1 + bM )
...

...
...

g(w1 · xP + b1) · · · g(wM · xP + bM )


P×M

β = (β1, . . . , βM )M×Ñ ; T = (t1, . . . , tP )P×Ñ (2)

Where H is the hidden layer output matrix of an SLFN with
respect to the inputs xp. The minimum norm least-squares
solution of the linear system Hβ = T is unique and can be
achieved by calculating the pseudo-inverse H† as β̂ = H†T.
In many real-world applications, M � P [14]. Hence, H is
a non-square matrix, such that one specific value for ŵk, b̂k
and β̂k need to be found as follows:

||H(ŵ1, . . . , ŵM , b̂1, . . . , b̂M )β̂ − T|| =
min

wk,bk,β
||H(ŵ1, . . . , ŵM , b̂1, . . . , b̂M )β̂ − T|| (3)

B. Fuzzy Extreme Learning Machine (FELM)

As pointed out in [15], [21], a Fuzzy Inference System (FIS)
can be interpreted as an SLFN if for a given number of distinct
training samples (xp, tp) ELM can be directly applied. In other
words, the parameters of the Membership Functions (MFs,
ck, ak) are randomly generated, and based on this, ELM is
applied to determine the consequent parameters βk. A model
of an FIS with M fuzzy rules is given by:

yp(xp) =

M∑
k=1

βkG(xp, ck, ak) = tp, p = 1, . . . , P (4)

in which, xp = [xp1, . . . , xpN ] ∈ RN and tp =

[tp1, . . . , tpÑ ] ∈ RÑ . In general, an FIS can be defined by
a number of fuzzy rules Rk of the form [22], [23]

Rk : IF xp1 is A1k AND xp2 is A2k AND . . .

IF xN is ANk THEN (y1 is βk1) . . . (yÑ is βkÑ ) (5)

where, Ask(s = 1, . . . , N, k = 1, . . . ,M) are the fuzzy sets
that correspond to the sth input variable xps in the kth rule,
where Ñ is the dimension of the pth output vector yp =
[y1, . . . , yÑ ]. When an FIS employs a TSK inference engine,
βkl (k = 1, . . . ,M, l = 1, . . . , Ñ) is a linear combination
of input variables, i.e. βkl = qkj,0 + qkj,0x1 + . . . qkj,NxN ,
otherwise if the FIS is of Mamdani type, βkl is a crisp value.
In Fuzzy Logic System theory (FLS), the degree to which
any given input xps satisfies the quantifier Ask is specified by
its Membership Function (MF) µAks

(cks, ak), where usually
a non-constant piece-wise continuous MF is used [24]. By
using the symbol ⊗ for the representation of fuzzy logic AND
operations, the firing strength of each kth fuzzy rule is

Rk(xp; ck, ak) = µAk1
(xp1, ck1, ak)

⊗ µAk2
(xp2; ck2, ak)⊗ . . .⊗ µAkN

(xpN ; ckN , ak) (6)

Each fuzzy rule RK can be normalised as

G(xp; cks, ck) = Rk(xp; ck, ak)

/ M∑
k=1

Rk(xp; ck, ak) (7)

Similar to [15], G is called fuzzy basis function. Thus, for
each pth input-output, Eq. (4) can be defined as

yp = βkR
i(xp; ck, ak)

/ M∑
k=1

βkR
i(xp; ck, ak) (8)

Consequent parameters are the linear combination of inputs
βk = xTp,eqk, while for a Mamdani fuzzy model, xp,e = 1,
and qk = βk = [βk1, . . . , βkÑ ]T , where qk is a weight vector
of crips values. For a TSK fuzzy model xp,e = [1 xTp ]T is the
extended version of xp.

qk =

 qk1,0 . . . qkÑ,0
...

...
qk1,N . . . qkÑ,N


(N+1)×Ñ

(9)

Therefore, Eq. (5) becomes

yp(xp) =

M∑
k=1

xTp,eqkG(xp, ck, ak) (10)

Where HQ = T is a compact representation for Eq. (12), in
which, Q = (q1, . . . ,qM )T is the matrix of coefficients qkj,s.

C. Interval Type-2 Fuzzy Extreme Learning Machine for Clas-
sification (IT2-FELM)

Most of the proposed neural fuzzy network systems of the
interval type-2 and based on ELM theory have been partic-
ularly applied to solve regression problems [25]. Such sys-
tems usually employed Multiple-Input-Single-Output (MISO)
neural structures with a Karnik-Mendel type-reduction layer
[23], [26]. In [25], A Multi-Input-Multi-Output (MIMO) fuzzy
network based on the functional equivalence between the
Radial Basis Function Neural Network (RBFNN) and IT2 FL
was suggested to the solution of classification problems [19].
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According to [25], given an input vector xp =
[x1, . . . , xN ]T , each corresponding fuzzy rule Rj in an
MIMO IT2 is described by a multi-variable Gaussian MF
µRi(xp, ysp) = µRj [x1, . . . , xn, y

s
p], s = 1, . . . , Ñ , where the

input vector xp ∈ X1× . . . XN and the implication engine is:

µRj (xp, ysp) = µAj→Gj =
[
TNk1µF j

k
(xk) ? µGj(y)

]
(11)

= [f j(~xp), f j(~xp)] (12)

where ? is the minimum t − norm that represents the
shortest Euclidean distance to the input vector xp. F j :=
[f j(~xp), f j(~xp)] is the lower and upper membership function
(LMF, UMF) respectively. Each MF in the MIMO IT2-
RBFNN may be interval Gaussian MF with an uncertain width
σj = [σ1

j , σ
2
j ] and fixed center (mean) µkj as shown in Fig. 1:

F j :=


f j(xp) = exp

− N∑
k=1

(
xk − µkj

2σ2
j

)2


f j(xp) = exp

− N∑
k=1

(
xk − µkj

2σ1
j

)2
 (13)

In this paper, an IT2-RBFNN of Mamdani having a product
inference rule and a singleton output space is implemented. To
reduce the associated computational load that usually implies
the implementation of karnik-Mendel algorithms, a close-form
Nie-Tan method is implemented as a direct defuzzification
process that employs the vertical representation of the Foot-
print Of Uncertainty (FOU). As illustrated in Fig. 2, an IT2-
RBFNN using a Nie-Tan direct-defuzzification as the output
layer can be viewed as an Interval Type-2 Fuzzy Extreme
Learning Machine (IT2-FELM) that does not require a sorting
process. The application of a Nie-Tan layer represents a zero
Taylor series approximation of Karnik-Mendel+defuzzification
method [21]. Moreover, a Nie-Tan operator is equivalent to an
exhaustive and accurate type-reduction for both discrete and
continuous IT2 Fuzzy Sets (FSs) [21].
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Fig. 2: Interval Type-2 Fuzzy Extreme Learning Machine using a NieTan
algorithm for classification problems [27].

The output of a IT2-FELM with a NT layer having an
uncertain [σ1j , σ2j ] and fixed center is formulated as follows:

T = HNTW (14)

where HNT is the matrix for IT2 firing strengths, and β is the
weight vector in the output layer. Each input in HNT is defined
by the IT2 MF ϕ(µ, σ1j , σ2j , xp) = f j + f j/

∑M
j=1 f j +∑M

j=1 f j . where µj = (µ1j , . . . , µNj) and W and T are

W = (w1 . . . wM )M×Ñ and T = (t1 . . . tP )P×Ñ (15)

D. Multilayer Extreme Learning Machine (ML-ELM)

Multilayer Extreme Learning Machine (ML-ELM) was ini-
tially suggested in [1] as an alternative the reduce the compu-
tational load that frequently results from the iterative nature of
Back Propagation (BP) learning algorithms that are commonly
employed to train Multilayer Neural Networks (ML-NNs) [?],
[2], [3]. The main advantage of an ML-ELM is the integration
of a single learning mechanism that involves several layers
for representational learning, followed by a final layer of
ELM classification [1]. The basic building block ML-ELM
is an ELM-based Autoencoder (ELM-AE, See Fig. 8) that is
stacked to build a multilayer structure (deep structure) while
performing layer by layer unsupervised learning for feature
representation where fine iterative tuning is not required [28].
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Fig. 3: Architecture of the ith ELM-AE used as the basic building block of
a ML-ELM (Taken from [12]).
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An ML-ELM is a neural structure that consists of a num-
ber of L hidden layers, where for a given input X(i) =

[x(i)
1 , . . . , x(i)

N ], k = 1, . . . , N , the ith data transformation
Γ(i) = [γ

(i)
1 , . . . , γ

(i)
N ] is computed using Eq. (1), and γ(i) is

the transformation vector that corresponds to the input vector
x(i)k [5], [12].

H(i)Γ(i) = X(i) (16)

in which, H(i) is the output matrix of the ith hidden layer w.r.t
the input X(i). Data transformation is achieved by projecting
X(i) along the decoder stage weights at each ELM-AE. That
means, at the encoder stage, each ELM-AE generates a number
of orthogonal random parameters, e.g. random input weights
and random biases in hidden nodes for additive nodes [20],
[28]. Thus, orthogonal random hidden parameters of each
ELM-AE are computed using Eq. 2.

h(xk) = g(xkA + b) = [h1(xk), . . . , hMi
(xk)] (17)

in which, H(i) = [h(x1), . . . ,h(xN )]T , ATA = I and bTb =
1. Hence, the ith transformation term Γ(i) is calculated as:

Γ(i) = (H(i))T
(

I
C

+ H(i)(H(i))T
)−1

X(i) (18)

Final representation Xfinal is defined as

Xfinal = g(X(i)(Γ(i))) (19)

If layer Mi = Mi+1, then g can be chosen as a linear function,
otherwise g is chosen as nonlinear piecewise function (RBFs
or sigmoids). In [12], Xfinal was used as the hidden layer output
to compute the output weight vector β as [1], [12].

Xfinalβ = T (20)

by adding a regularisation factor C and using the pseudoin-
verse of the final transformation, Xfinal as the firing strength
matrix, the term β is computed as shown in Eq. 6.

β = Xfinal
(

1

C
+ X(Xfinal)

)−1
T (21)

Unlike the hierarchical ML ELM [1], the methodology re-
viewed in this section directly uses the final data representation
Xfinal as hidden layer to calculate the weight vector β.

III. PROPOSED MULTILAYER FUZZY EXTREME LEARNING
MACHINE (ML-FELM)

Similar to ML-ELM, the proposed ML-FELM is based on
a hierarchical learning scheme that involves two independent
learning mechanisms. First, a number of ELM-based fuzzy
autoencoders (FAE for short) is applied to extract a high
level of features, followed by an independent ELM-based
classifier/regressor that uses the final data transformation ΓM

as its input vector. The basic building block of the ML-FELM
is based on the FELM described in Fig. 2(a) and suggested
in [29]. According to Fig. 1(a), given a number of data
samples (xp, tp), where xp = [xp1, . . . , xpN ], k = 1, . . . N ,
the MF of each jth fuzzy rule is calculated by the sum-product
composition which is given by:

Rj(xp; cj , σj) =

Li∏
j=1

µk,ij (xpk); p = 1, . . . , P (22)

where Li is the number of fuzzy rules, cj = [cj1, . . . , cjN ]
and σj = [σj1, . . . , σjN ]. In this paper, a Mamdani inference
implication is employed. That means, the output weights used
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at each ith data transformation are single crisp values. Each
MF is a Gaussian function computed as follows:

µk,ij (xk) = exp

(
− (xpk − cjk)2

σ2
jk

)
(23)

where the output of each FAE is a weighted average:

ypk(xp) =

∑Li

j=1R
j(xp; cj , σj)γ

(i)
jp∑Li

j=1R
j(xp; cj , σj)

(24)

in which, γ(i)p = [γ
(i)
j1 , . . . , γ

(i)
jP ]. Thus, the ith data represen-

tation matrix Γ(i) = [γ
(i)
1 , . . . , γ

(i)
P ] for the input xp is:

H(i)Γ(i) = X(i) (25)

where each H(i) is defined as:

H(µk,i1 , . . . , µk,iLi
, σ1 . . . , σLi , x1, . . . , xP )

=

h11 · · · h1Li

...
...

...
hP1 · · · hPLi


P×Li

each hpi = Rj(xp; cj , σj)/
∑Li

j=1R
j(xp; cj , σj). Therefore,

Γ(i) is calculated as follows:

Γ(i) = (H(i))T
(

I
Cfinal

+ H(i)(H(i))T
)−1

X(i) (26)

Similar to ML-ELM, the final representation is given by
Xfinal = g(X(i)(Γ(i))). if Li = Li+1 for all i, the activation
function g is chosen as a linear piecewise function, otherwise

as a nonlinear piecewise function. Finally, Xfinal is fed into an
FELM classifier to calculate the output weight vector β.

Hfinalβ = T (27)

and β is calculated by Eq. (30)

β = (Hfinal)†T = Hfinal
(

1

Cfinal
+ Hfinal(Hfinal)T

)−1
T (28)

IV. METHODS

A. Robotic Platform

In this work, a UAV Bebop2 was used to collect im-
ages and run all the experiments (See Fig. 5(a)). The UAV
transmits the live video stream of its front facing camera
and pose information to a central computer over WiFi. As
shown in Fig. 5(a-d), a robotic arm was also constructed
to collect and transport four different objects. The output
of the proposed ML-FELM is used to control the posi-
tion of the UAV and the robotic arm. The UAV transmits
images to a central computer where active object classi-
fication and the associated methodology used to plan the
UAV trajectory to transport each object are carried out.

Image Segmentation 
and filtering

Image Segmentation 
and filtering

Original image Image after segmentation
 and filtering

Fig. 6: Image preprocessing.
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As illustrated in Fig. 5, in order to control the robotic arm,
a microcontroller Arduino one connected through Bluetooth
and was employed to open-close the final gripper of the robotic
arm. To implement the ML-FELM, control commands to guide
the position of the UAV, the processing of each image and the
communication between the central computer and the robotic
arm, the Robotic Operating System (ROS) middleware using
Ubuntu was used.

B. Data Collection and Preprocessing

To train the proposed ML-FELM, different data sets were
collected using the on board camera of the UAV Bebop2 (Fig.
5(a)) at different angles and positions. A final data set of 36386
images were collected with a resolution of 856 × 480 pixels
corresponding to four different objects, i.e. box (9114 images),
circle (9042 images), an irregular shape (9050 images) and a
triangle (9180 images) as shown in Fig. 5(b). As illustrated
in Fig. 6, each image collected by the onboard camera was
preprocessed to remove out the background. This process was
carried out using two OPEN-CV built-in functions. First an
HSV filter to specifically select a color was applied to segment
each object. Secondly, a blurring kernel filter is implemented
to obtain the final image to be classified.

C. Methodology for Active Classification and Transport of
Objects using the ML-FELM

As described in Fig. 7, the classification and transport of
each object is divided into two main stages. First, the UAV
hovers in front of a random object while actively collecting
and processing a predefined number of images (See Fig. 6).
Each preprocessed image is fed into the ML-FELM, and
its classification outcome is stored. The probability of each
classification is obtained as the number of times the output of
the ML-FELM (YML−FELM ) is an object oi divided by the
total number of images used to identify an object .

P (c|oj) =
number of times YML−FELM is oi

number of collected images
(29)

where j = 1, . . . , C, such as C is the number of object
classes, and c the current class. Thus, the classification of
the current object is obtained with the current maximum a
posterior (MAP) estimate as:

ĉ = arg max
c

P (c|oi) (30)

If the value of ĉ is higher than a predefined threshold, then this
information is used to guide the drone to identify the container
that corresponds to the classified object. On the contrary,
this process is repeated until the value of ĉ is satisfied. In
order to determine which is the correct container, four objects
with the same shape that those objects that are recognised
and transported by the UAV are place at the top of each
container (See Fig. 7). In other words, the output of the
ML-FELM is actively used to control not only the current
position of the UAV, but also the gripper opening and closing.
In a like-manner to the first stage, a number of predefined
images are collected from the label of each container, and then
preprocessed to feed the ML-FELM. A new value of ĉ is then
computed and used to guide the UAV to the goal destination,
where the robotic arm drops the selected object.

V. RESULTS

In order to evaluate the accuracy of the proposed ML-
FELM, in this section two different experiments are suggested.
First a number of four popular benchmark data sets about clas-
sification problems are suggested. Secondly, the experimental
results for active classification and transport of objects using
a UAV are presented and compared to other ML approaches.

A. Benchmark data sets for classification Problems

As described in Table I, in this section four classification
problems are used to evaluate the ML-FELM. For the cross-
validation purposes, ten random experiments are conducted,
where for training and testing two subsets are created corre-
spondingly as indicated in Table I.



TABLE I: SPECIFICATION OF BENCHMARK CLASSIFICATION PROBLEMS.

Datasets # Attributes # Classes # Observations

Training Testing

Australian 14 2 345 345

Samitage 36 6 4,400 2,035

Abalone 8 2 2,000 2,177

Letter Recognition 16 26 10,000 10,000

TABLE II: PERFORMANCE COMPARISON FOR REAL-WORLD BENCHMARK
CLASSIFICATION PROBLEMS.

Data Models Training Testing #
Sets (%) Time (%) hidden units

Mean SD Sec Mean SD

A
us

tr
al

ia
n ML-FELM 83.48 0.283 3.07 87.94 0.002 [10, 10, 50]

ML-ELM 84.41 0.201 2.97 87.82 0.002 [10, 10, 50]

ML-KELM 86.88 0.303 6.21 87.12 0.001 345

FELM 85.22 0.120 2.11 86.08 0.094 540

Sa
tim

ag
e

ML-FELM 91.04 0.243 28.3 90.19 0.033 [40, 850]

ML-ELM 90.89 0.009 15.0 91.90 0.019 [50, 800]

ML-KELM 92.04 0.045 29.2 93.28 19.81 4400

FELM 93.19 0.012 15.2 89.41 0.01 500

A
ba

lo
ne

ML-FELM 58.99 0.23 4.12 57.20 0.09 [70, 70, 150]

ML-ELM 59.10 0.25 1.19 56.79 0.12 [70, 70, 150]

ML-KELM 58.80 0.54 2.54 57.62 0.05 2,000

FELM 58.11 0.67 0.01 55.86 0.61 25

L
et

te
r

R
ec

og
ni

tio
n

ML-FELM 97.89 0.230 409 93.12 0.24 [210, 210, 1900]

ML-ELM 96.01 0.190 62.3 93.42 0.66 [210, 210, 1900]

ML-KELM 95.01 0.290 101 94.49 0.19 10,000

FELM 95.81 0.01 19.2 92.88 0.09 2,000

The average classification accuracy of ML-FELM, ML-
ELM, ML-KELM and FELM is compared in Table I as
well as the number of fuzzy rules (hidden units for the
case of fuzzy approaches) per each problem. For all ML
structures, a two-layer feature extraction is applied, followed
by a classification FELM as shown in the last column of
Table I. The number of outputs for each FELM is equal
to the number of classes of each data set. From our ex-
periments, it was found the optimum value for Ci for
the Australian, Satimage, Abalone and Letter Recognition
data are [1−2, 104, 108], [1−2, 103, 950], [0.9, 2.4, 103] and
[10−3, 102, 9.8] respectively. As can be noted from Table I,
although the associated computational load of ML-FELM is
higher for the treatment of large data sets, its model accuracy
is comparable and in some cases higher than that obtained by a
ML-ELM and ML-KELM. Especially ML-FELM outperforms
its single-hidden-layer counterpart the FELM.

TABLE III: PERFORMANCE COMPARISON FOR OBJECT CLASSIFICATION.

Models Training Testing # hidden units

Mean (%) Time Mean (%)

ML-FELM 97.47 78.42s 97.30 [1740, 1600, 1600]

ML-ELM 95.32 45.12s 94.16 [1740, 1600, 1600]

ML-FELM-II 98.22 134.10s 97.80 [1740, 1600, 1600]

ML-KELM 94.51 62.18s 93.50 [25470, 25470, 25470]

CNN 99.97 2200.28s 99.12 -

B. Active Classification and transport of objects

This section is dedicated to describe the experimental setup
and results obtained for the classification and transport of four
different objects using the UAV and ML-FELM. For cross-
validation purposes, the object data set was split into two sub-
sets, i.e. 70% for training and 30% for testing. In order to com-
pare the accuracy of the ML-FELM, a ML-ELM, ML-KELM,
and a Convolutional Neural Network (CNN) with a structure
that consists of convolution(48× 48× 32)-pooling(24× 24×
32)-convolution(22 × 22 × 32)-convolution(20 × 20 × 64)-
pooling(10 × 10 × 64)-classifier(64000 − 500 − 4). A third
ML structure that consists of two FAEs + IT2-FELM which
is used as a feature representation classifier is also imple-
mented as a comparison method and that is called ML-FELM-
II. It was found that a value for Ci = [13, 17, 149] and
Ci = [12, 114, 140] provides the highest trade-off between
model simplicity and testing accuracy for the ML-FELM
and ML-ELM respectively. As described in Table II. the
optimal configuration for each ML-ELM approach follows the
arragenment [AE1/FAE1,AE2/FAE2, ELM/FELM classifier]
where each input represents the number of hidden units used
by each model. As can be noted from Table III, although the
best accuracy is achieved by the CNN, this is compensated
by the learning time and model simplicity of the ML-FELM
which is much smaller. According to the experiment results,
adding an IT2-FELM enhances he model accuracy of a ML
structure that includes two FAEs (or ML-FELM-II) as shown
in the results presented in TABLE III.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a ML-FELM that is based on the concept
of Multilayer ELM and T1 FLS theory is suggested for active
object classification and their transport. The learning approach
of the ML-FELM involves two main steps, first a number
of Fuzzy Autoencoders are stacked in order to achieve a
high feature representation of the input data. Secondly, a
FELM of Mamdani type is used for feature classification. In
order to evaluate the efficiency of the proposed ML-FELM,
two different experiments were suggested. First, a number of
popular data sets about classification problems are used to
compare the performance of the ML-FELM with respect to
other existing ML-ELM methods. Secondly, an image data set
is collected to train the ML-FELM whose optimised model is
used in real time experimets to classify and transport a number
of four different objects. According to our experiments, the
ML-FELM is a fuzzy ML technique that provides a similar
trade-off between model simplicity and model accuracy for
solving classification problems and feature representation.

Future work involves the development of new online learn-
ing techniques for ML-FELM methods, as well as the ap-
plication of evolutionary computation. This also includes the
development of new Fuzzy Autoencoders able to provide a
high level of feature representations in the field of image
processing and classification.
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Fig. 8: Confusion matrix for the average training and testing accuracy.
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