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Abstract 

Reactions of dimeric -diketiminato (BDI) magnesium and calcium hydrides with 

[(BDI)Mg]+[Al{OC(CF3)3}4]
 provide ionic multimetallic hydride derivatives, which have been 

characterized by single crystal X-ray diffraction analysis. The wholly magnesium-centered species 

comprises a cation in which two [(BDI)Mg]+ units are connected by a single 2-bridging hydride. In 

contrast, the greater lability of the calcium-containing system is underscored by the isolation of a cyclic 

heterotrimetallic species in which a CaH2 moiety is coordinated by a molecule of benzene and an aryl 

substituent of a [{(BDI)Mg}2H]+ cation. The homometallic dimagnesium species displays a greater 

facility toward reaction with diphenylacetylene than neutral [(BDI)MgH]2, albeit the resultant 

crystallographically characterized vinyldimagnesium cation equilibrates into a complex mixture of 

neutral and ionic species in solution. An initial assessment of both systems for the hydrosilylation of 1-

hexene and diphenylacetylene evidences an inferior catalytic performance to [(BDI)MgH]2 in isolation.  

 

Introduction 

The chemistry of molecular saline hydrides has advanced significantly during the past decade.1 Whereas 

the synthesis and structures of the first strontium and barium hydrides have only recently been 

established,2-6 a wide range of lighter magnesium and calcium species are now available for study such 

that a diverse and unique reaction chemistry is also starting to emerge.2, 7-35 The exploitation of -

diketiminate (BDI) derivatives such as compounds 1 – 4 (Chart 1) has been central to these latter 

advances, allowing the development of a wide range of novel stoichiometric and catalytic processes.36-

39 The dimeric magnesium hydride (1) in particular has enabled a plethora of hydrosilylation and 

hydroboration chemistries. This reactivity, however, has been largely restricted to the reduction of 

heteroatom-containing C=E (e.g. E = O,40, 41 NR42-45) and CE (E = O,46, 47 N48, 49) multiple bonds and, 

although the transition metal promoted addition of alkenes to MgH2 has been described,50-54 definitive 

examples of the hydromagnesiation of less polarized carbon-carbon multiple bonds are more limited. 

The terminal Mg-H bonds of compounds 5 and 6 have been reported by the groups of Okuda and Parkin, 

respectively, to react with styrene.32, 35 Both of these reactions take place at room temperature and within 

minutes to yield either selective formation of the magnesium 1-phenylethyl (for 5) or a mixture of the 

1-phenylethyl and 2-phenylethyl (for 6) derivatives. We have very recently observed that the dimeric 

BDI derivative 1 reacts similarly with a significant range of terminal n-alkenes, to provide access to the 
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corresponding halide-free magnesium organometallics.55 Although this insertion reactivity also 

provided a basis for the catalytic hydrosilylation of a range of alkene substrates with PhSiH3, much of 

this chemistry was notably slow and many of the reactions required several days heating at 60 - 80 C 

to achieve high (>90%) conversions. 

 

Chart 1: Previously reported magnesium and calcium compounds relevant to this study. 

 

In related research, we have observed that the ability of BDI-supported magnesium and calcium hydride 

derivatives to effect the catalytic hydroboration of CO2 and related heterocumulenes may be improved 

through the introduction of the Lewis acid, B(C6F5)3.
56, 57 Although the catalytic action of the fluorinated 

borane could not be deduced with any degree of certainty, it was shown that compounds 7 and 8, 

containing the [HB(C6F5)3]
 anion, played a key role during catalytic turnover. The group of Okuda has 

also presented evidence that cationic Mg and Ca hydride species supported by tri- and tetra-aza 

macrocyclic ligands may display enhanced reactivity toward multiply bonded small molecules.13-15, 34 

During a similar timeframe we have reported that use of the weakly coordinating anion, 

[Al{OC(CF3)3}4]
, allows the isolation of [(BDI)Ae]+ cations, which are sufficiently electrophilic to 

permit the crystallization of charge separated alkaline earth 6- adducts of benzene (e.g. 9; Ae = Mg: 

10; Ca) and toluene.58 Harder and co-workers’ observations of closely related systems, in which 

identical [(BDI)Ae]+ cations are combined with [B(C6F5)4]
, have led them to deduce that the Lewis 
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acidity of the resultant Mg and Ca centers is competitive with that of B(C6F5)3.
59-62 Prompted by these 

observations plus the augmented reactivity of 7 and 8, we, therefore, speculated that -diketiminato 

magnesium and calcium hydride derivatives could be to be similarly activated toward a broader palette 

of polarized insertion reactivity through the introduction of a Lewis acidic [(BDI)Mg]+ co-catalyst. In 

this contribution, we describe the successful characterization of the resultant ionic hydride species and 

provide an initial assessment of their utility as catalysts for the hydrosilylation of C-C multiple bonds. 

 

Experimental Section 

General considerations and starting materials 

All manipulations were carried out using standard Schlenk line and glovebox techniques under an inert 

atmosphere of argon. NMR experiments were conducted in J. Young tap NMR tubes prepared and 

sealed in a Glovebox. NMR spectra were recorded on a Bruker AV300 spectrometer operating at 300.2 

MHz (1H) or an Agilent ProPulse spectrometer operating at 500 MHz (1H) and 470 MHz (19F). The 

spectra were referenced relative to residual protio solvent resonances. C6D6 was purchased from Sigma-

Aldrich Corp., dried over a potassium mirror before distilling under argon and storing over molecular 

sieves in the glovebox. Triphenylcarbenium tetrakis(perfluoro-tert-butoxy)aluminate 

([Ph3C][Al(OC(CF3)3)4]) was purchased from Ionic Liquids Technologies GmbH and phenylsilane 

(97%) from Sigma-Aldrich Corp., both of which were used without further purification. 

Diphenylacetylene (98%) was purchased from Sigma-Aldrich Corp., recrystallized from ethanol and 

dried under high vacuum. 1-Hexene (97%) was purchased from Sigma-Aldrich Corp., dried over 

calcium hydride and distilled under argon before use. [(BDI)MgH]2
 (1), [(BDI)CaH]2 (2) and 

[(BDI)Mg(C6D6)][Al{OC(CF3)3}4] (9) (BDI = HC{(Me)CN(Dipp)}2; Dipp = 2,6-i-Pr2C6H3)
 were 

synthesized by literature procedures.18, 23, 58 Microanalysis was performed by Mr. S. Boyer of London 

Metropolitan Enterprises. 

 

Synthesis of compound 11 

[(BDI)Mg(C6D6)][Al{OC(CF3)3}4] (9) (90 mg, 0.060 mmol) and [(BDI)MgH]2 (1) (25 mg, 0.030 

mmol) were dissolved in C6D6 (0.5 mL) in a sealed J. Young NMR tube, with the appearance of two 

immiscible phases. The resulting mixture was vigorously shaken for one minute and left overnight at 

room temperature. Colorless crystals of 11 suitable for X-ray analysis were formed by slow diffusion 

of hexane into the reaction mixture (87 mg, 78%). 1H NMR (500 MHz, C6D6, 298K): δ 7.32 (m, 2H, m-

CH Dipp), 7.06 (t, 3JHH = 7.7 Hz, 4H, p-CH Dipp), 7.00 (m, 2H, m-CH Dipp), 6.92 (d, 3JHH = 7.7 Hz, 

4H, m-CH Dipp), 4.76 (s, 2H, CH{C(CH3)NDipp}2), 2.59 (sept, 3JHH = 6.9 Hz, 8H, CH(CH3)2), 1.35 (s, 

12H, CH{C(CH3)NDipp}2), 0.99 (d, 3JHH = 6.9 Hz, 24H, CH(CH3)2), 0.61 ppm (d, 3JHH = 6.9 Hz, 24H, 

CH(CH3)2). 
19F{1H} NMR (470 MHz, C6D6, 298K): δ 74.83 ppm (s). Elemental analysis (%). Found: 

C 46.87, H 4.52, N 3.02. Calculated for C74H83N4Mg2AlF36O4: C 47.99, H 4.52, N 3.03. 
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Synthesis of compound 12  

In a sealed J. Young NMR tube, [(BDI)Mg(C6D6)][Al{OC(CF3)3}4] (9) (90 mg, 0.060 mmol) and 

[(BDI)CaH]2 (2) (28 mg, 0.030 mmol) were dissolved in C6D6 (0.5 mL), with the appearance of two 

immiscible phases. The resulting mixture was vigorously shaken for one minute and left overnight at 

room temperature. Colorless crystals of 12 along with crystals of [(BDI)Ca(C6D6)][Al(OC(CF3)3)4] (10) 

suitable for X-ray analysis were formed by slow diffusion of hexane into the reaction mixture. 1H NMR 

(500 MHz, C6D6, 298K): δ 7.14 – 6.99 (12H, CH Dipp), 4.85 (s, 1H, CH{C(Me)NDipp}2), 4.78 (s, 1H, 

CH{C(Me)NDipp}2), 3.82 (s, 2H, CaH2), 3.17 (sept, 3JHH = 6.9 Hz, 4H, CH(CH3)2), 2.96 (sept, 3JHH = 

6.9 Hz, 4H, CH(CH3)2), 1.62 (s, 6H, CH{C(CH3)NDipp}2), 1.53 (s, 6H, CH{C(CH3)NDipp}2), 1.13 (d, 

3JHH = 6.9 Hz, 12H, CH(CH3)2), 1.12 (d, 3JHH = 6.9 Hz, 12H, CH(CH3)2), 1.01 (d, 3JHH = 6.9 Hz, 12H, 

CH(CH3)2), 1.00 ppm (d, 3JHH = 6.9 Hz, 12H, CH(CH3)2). 19F{1H} NMR (470 MHz, C6D6, 298K): δ 

74.81 ppm (s). The formation of the by-products [(BDI)MgH]2, [(BDI)2Ca] was also observed by 1H 

NMR spectroscopy (see Figure S5). 

 

Synthesis of compound 13  

Compound 11 (30 mg, 0.016 mmol) and diphenylacetylene (2.9 mg, 0.016 mmol) were dissolved in 

C6D6 (0.5 mL) in a sealed J. Young NMR tube, with the appearance of two immiscible phases. The 

resulting mixture was vigorously shaken for one minute and left overnight at room temperature. 

Colorless crystals of 13 suitable for X-ray analysis were formed by slow diffusion of hexane into the 

reaction mixture. 1H NMR (500 MHz, C6D6, 298K): δ 4.89 (s, 1H, CH{C(CH3)NDipp}2), 4.71 (broad 

s, 0.5H, CH{C(CH3)NDipp}2), 4.68 (s, 1H, PhCH), 2.68 (sept, 3JHH = 6.9 Hz, 4H, CH(CH3)2), 2.50 

(broad, 3JHH = 6.9 Hz, 2H, CH(CH3)2), 1.46 (s, 6H, CH{C(CH3)NDipp}2), 1.09 (d, 3JHH = 6.9 Hz, 12H, 

CH(CH3)2), 0.91 (broad, 6H, CH(CH3)2), 0.71 (d, 3JHH = 6.9 Hz, 12H, CH(CH3)2), 0.53 ppm (broad, 

6H, CH(CH3)2). 
19F{1H} NMR (470 MHz, C6D6, 298K): δ 74.81 ppm (s). 

 

General method for catalytic hydrosilylation mediated by 11 and 12 

In a J. Young NMR tube, compound 11 or 12 (generated in situ) (10 mol%), substrate (1-hexene or 

diphenylacetylene, 0.048 mmol) and phenylsilane (0.072 mmol) were dissolved in C6D6 (0.4 mL) and 

the resulting solutions heated at 60, 80 or 100 ºC. The reactions were monitored by 1H NMR 

spectroscopy with their progress evidenced by the consumption of substrate resonances alongside the 

emergence of the respective SiH2 resonances of the n-hexyl- and 1,2-diphenylvinylsilane products. 

 

Results and Discussion 

Synthesis of multimetallic magnesium and calcium hydride cations. In common with our previous 

observations of the physical behavior of BDI-supported alkaline earth derivatives of the 

[Al{OC(CF3)3}4]
 anion,58 addition of two molar equivalents of the ionic magnesium species (9) to 
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compound 1 in benzene resulted in the immediate formation of a two phase system comprising an upper, 

more mobile solution and an oily lower phase, characteristic of liquid clathrate formation (Figure S3).63, 

64 Although the initial 1H NMR spectrum of this reaction mixture was broad and uninformative, 

colorless crystals of the ionic dimagnesium hydride derivative (11) were grown by slow diffusion of n-

hexane into the reaction mixture at room temperature (Scheme 1).  

 

 

Scheme 1: Synthesis of compounds 11 and 12. 

 

Subsequent preparation of a more dilute sample of compound 11 in C6D6 enabled the acquisition of 

NMR data consistent with the formation of a single new BDI ligand environment. The resultant 1H and 

19F spectra did not allow definitive identification of the desired hydride species, however, analysis in 

the solid state by single crystal X-ray diffraction confirmed the identity of compound 11 as a charge-

separated ion pair. Although the [Al{OC(CF3)3}4]
 anion was significantly disordered, the cationic 

component was unambiguously identified to comprise two [(BDI)Mg]+ units connected by a single 2-

bridging hydride, which was located and refined without restraints (Figure 1a). 
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Figure 1: (a) ORTEP representation of the cationic component of compound 11 (30% probability 

ellipsoids). Hydrogen atoms apart from H1, H29A-C and H46A-C are removed for clarity. Selected 

bond lengths (Å) and angles (): Mg1-N1 1.985(3), Mg1-N2 1.982(3), Mg2-N3 1.984(3), Mg2-N4 

1.978(2), N1-Mg1-Mg2 119.00(9), N3-Mg2-N4 97.24(11); (b) space filling representation of 

compound 11. 

 

Both magnesium centers of the cationic component of compound 11 display distorted trigonal planar 

geometries defined by the bidentate BDI ligands and the bridging hydride. The coordination spheres of 

Mg1 and Mg2 are augmented, respectively, by close contacts with the C29- and C46-containing methyl 

groups of the 2,6-di-iso-propylphenyl substituents. The formal positive charge borne by the 

dimagnesium unit is reflected in the Mg-N contacts [ca. 1.98 Å], which are comparable to those 

observed in the monometallic cation, compound 9 [1.981(3), 1.971(3) Å],58 and are significantly 

foreshortened relative to the analogous distances in the similarly dimeric but charge neutral 2-H2-

bridged compound 1 [2.064(2), 2.065(2) Å].9 Although the effectively linear Mg-H-Mg (3.56) linkage 

of 11 enforces a significant elongation of the Mg···Mg separation [3.5719(14) Å] in comparison to that 

of compound 1 [2.890(2) Å], the high degree of steric protection provided to the magnesium-to-hydride 

bonds by the interdigitated BDI aryl substituents (dihedral angle subtended by the least-squares planes 

defined by the (BDI)Mg heterocycles = 47.27) is clearly apparent from inspection of a space-filling 

model of the bimetallic cation (Figure 1b).  

 In an attempt to extend this synthetic protocol to the formation of heterobimetallic species, a 

further reaction was carried out in C6D6 between compound 9 and the solvent-free calcium hydride 

[(BDI)CaH]2 (2) (Scheme 1). While this procedure also provided a two phase system, slow diffusion of 

n-hexane again yielded a crop of colorless crystals, which was identified as a mixture of a new 

compound (12) and the previously reported ionic calcium species, [(BDI)Ca(C6D6)]
+ [Al{OC(CF3)3}4]

 

(10). Although this latter compound was readily identified by comparison with the previously reported 
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unit cell parameters, its presence hampered the isolation of an analytically pure bulk sample of 

compound 12. Analysis by X-ray diffraction after mechanical separation of single crystals, however, 

enabled the identification of compound 12 as a further ionic aluminate derivative comprising a cyclic 

heterotrimetallic [{(BDI)Mg}2Ca(C6D6)H3]
+ cation (Figure 2a). Although several bimetallic hydride 

derivatives containing either sodium or potassium with magnesium have been described previously,25, 

27, 65, 66 compound 12 appears to provide the first example of a well-defined molecular hydride containing 

two dissimilar group 2 elements. The cyclic {Mg2CaH3} core of the cation is constructed about a unique 

-Mg-H-Mg interaction and two further 2-H bridges, which connect the CaH2 component with both 

magnesium centers of a [{(BDI)Mg}2H]+ moiety. Although the BDI ligand of the cationic starting 

material 11 is retained at both Mg1 and Mg2, the coordination sphere of Ca1 is completed through 6-

interactions with both the C47-C52-containing Dipp substituent of the Mg2-bound BDI ligand and a -

coordinated molecule of benzene solvent. The Ca-C distances to this latter ligand [range; 2.870(6) – 

2.926(5) Å] are comparable to those observed in compound 10 [2.932(5) – 2.935(5) Å]. In this earlier 

case, -back-donation from the benzene HOMO into an empty 3d orbital of the calcium center was 

computed to provide a modicum (ca. 8.5%) of the ligand to metal binding.58 Although we have not 

carried out similar calculations in the current work, and the issue of nd orbital participation in main 

group species has long been a bone of contention,67, 68 the similarity of the Ca-C distances lead us to 

tentatively suggest that a similar bonding situation may prevail in compound 12. 

 

Figure 2: ORTEP representations (25% probability ellipsoids) of (a) the cationic component of 

compound 12 and (b) the Mg1A-containing cationic component of compound 13. Hydrogen atoms apart 

from the bridging hydrides (H1-H3) of 12 and H37A of 13 are removed for clarity. Selected bond 

lengths (Å) and angles (): (12) Mg1-N1 2.059(3), Mg1-N2 2.054(3), Mg2-N3 2.026(3), Mg2-N4 

2.064(3), Ca1-C47 2.930(4), Ca1-C48 2.852(4), Ca1-C49 2.862(4), Ca1-C50 2.959(5), Ca1-C51 

3.028(5), Ca1-C52 3.032(5), Ca1 C59 2.908(5) Ca1-C60 2.892(6), Ca1-C61 2.870(6), Ca1-C62 

2.880(5), Ca1-C63 2.890(5), Ca1-C64 2.926(5), N2-Mg1-N1 93.99(13), N3-Mg2-N4 94.45(14); (13) 

Mg1-N1A 1.973(4), Mg1A-N2A 1.979(4), Mg1A-C30A 2.099(5), Mg2A-N3A 2.013(3), Mg2A-N4A 



-8- 

 

1.990(4), Mg2A-C31A 2.677(4), Mg2A-C32A 2.632(4), Mg2A-C33A 2.595(4), Mg2A-C34A 

2.556(5), Mg2A-C35A 2.532(5), Mg2A-C36A 2.561(4), C30A-C37A 1.353(6), N1B-Mg1B-N2B 

97.08(15), N1B-Mg1B-C32B 129.37(16), N2B-Mg1B-C32B 133.20(17), N4B-Mg2B-N3B 97.10(15). 

 

Although detailed solution studies of the isolated mixture of crystalline compounds from this reaction 

were again hampered by phase separation into a liquid clathrate system, the resultant 1H NMR spectrum 

in C6D6 provided tentative evidence for the retention of the asymmetric solid-state structure of 12. In 

common with our previous observations,58 no resonances attributable to the BDI ligand of the co-

crystallized product 10 could be definitively identified by 1H NMR spectroscopy. In contrast, two BDI 

ligand environments were clearly apparent from the observation of two discriminated 1H BDI methine 

resonances at  4.79 and 4.85 ppm, which appeared alongside a further 2H singlet signal at  3.83 ppm 

ascribed to the two calcium-bound hydride ligands. 

In common with previously reported calcium hydrides and other heteroleptic BDI derivatives 

of calcium,17, 18, 69 the absence of the bidentate ligand from Ca1 in the structure of 12 indicates that the 

species formed by the combination of compounds 2 and 9 in benzene are prey to facile solution 

equilibration. This deduction was supported by further solution study of the reaction between 

compounds 2 and 9 after 24 hours, at which point 1H NMR spectroscopy provided evidence of the 

formation of a mixture of products (Figure S5), including compounds 12, 1 and the known homoleptic 

calcium -diketiminate, [(BDI)2Ca].70 While the observation of this latter species indicates the likely 

fate of the BDI ligand lost during the production of compound 12, the generation of compounds 1 and 

10 is consistent with the greater relative affinity of the Mg and Ca centers toward hydride and arene 

binding, respectively. 

 

Reactivity of compound 11 with diphenylacetylene. Having confirmed the viability of this synthetic 

route to multimetallic hydride cations, we turned our attention to their stoichiometric and catalytic 

reactivity with unsaturated C=C and CC bonded substrates. An initial reaction performed between 

compound 11 and diphenylacetylene in C6D6 at room temperature again resulted in the formation of 

two immiscible liquid phases. Analysis of this system by 1H NMR spectroscopy provided evidence for 

the consumption of the acetylene starting material to afford a new species (13) comprising a 1,2-

diphenylvinyl anion, characterized by the emergence of a sharp singlet resonance at  4.68 ppm. 

Although interpretation of the relative signal intensities was unreliable due to liquid clathrate formation, 

two further BDI methine resonances at  4.89 and 4.71 ppm were also tentatively identified to arise 

from 13. Notably, and in common with several of the upfield multiplet and doublet resonances arising 

from the BDI iso-propyl substituents, the latter of these signals was significantly broadened while clear 

evidence for the continued presence of unreacted 11 was provided by the persistence of its BDI methine 

signal at  4.76 ppm. Despite the apparent complexity of this system, slow diffusion of hexane into the 
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reaction mixture provided a small crop of colorless single crystals of compound 13 suitable for X-ray 

diffraction analysis. The results of this analysis revealed the formation of a further charge separated 

species, the asymmetric unit of which comprised two aluminate anions and two bimetallic -

diketiminato (E)-1,2-diphenylvinylmagnesium cations (Figure 2b), the formal product of reductive CC 

insertion into a Mg-H bond of the bimetallic cation of compound 11. Although both anions were again 

heavily disordered, disorder in the cations was confined to one isopropyl group in each case. As both 

cations are largely similar, only the Mg1A/2A-containing component will be discussed herein. The 

reaction between 13 and diphenylacetylene results in syn addition of the Mg-H bond to provide an 

otherwise unperturbed vinyl anion [C30A-C37A 1.353(6) Å], which displays conventional 1-binding 

of the three-coordinate Mg1A center [Mg1A-C30A 2.099(5) Å]. In contrast, Mg2A interacts in a 6-

fashion with the 1-phenyl (C31A-C36A) substituent of the vinyl substituent. The resultant Mg-C 

distances [range, 2.532(5) - 2.677(4) Å] are reminiscent of the magnesium-to-benzene bonds observed 

in the cationic [(BDI)Mg(C6D6)]+ component of compound 9 [2.507(6) - 2.611(6) Å].58 These 

observations lead us to suggest that the bimetallic component of compound 13 is best viewed as a 6-

adduct of a [(BDI)Mg]+ cation and the neutral -diketiminato (E)-(1,2-diphenylvinyl)magnesium 

species, [(BDI)Mg{(E)-CPh=C(H)Ph}] (14),55 and that the assembly of compound 13 is primarily a 

solid state phenomenon. This latter deduction was supported by a further reaction of compound 11 and 

diphenylacetylene from which the upper, more mobile and solvent-rich phase was decanted after 

separation into the two liquid phases. Subsequent removal of volatiles provided a solid material that 

yielded a 1H NMR spectrum, the major component of which could be assigned to [(BDI)Mg{(E)-

CPh=C(H)Ph}] (14).55 High conversions of this latter compound by the direct reaction of compound 1 

and diphenylacetylene were only achieved after long reaction times (>5 days) and at elevated 

temperature (80 C).55 The less energetic conditions required for the reaction between 11 and 

diphenylacetylene imply, therefore, that the insertion process is facilitated by its cationic constitution, 

albeit the resultant species is labile in benzene solution towards the partitioning of [(BDI)Mg(C6D6)]
+ 

[Al{OC(CF3)3}4]
 (9) into the more viscous liquid clathrate phase (Scheme 2). 

 

Scheme 2: Synthesis of compound 13 and its clathrate-induced equilibration to compounds 9 and 14 in 

C6D6 solution. 
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Catalytic hydrosilylation of diphenylacetylene and 1-hexene mediated by compounds 11 and 12. 

With these observations in hand, we assayed the ability of compounds 11 and 12 to effect the catalytic 

hydrosilylation of diphenylacetylene and 1-hexene with PhSiH3. We have recently reported that both 

of these reactions may be successfully catalyzed by 1 to >95% conversions into the hexyl- and 1,2-

diphenylvinylsilane products at temperatures >60 C, albeit reaction times of ca. one month were 

required for high conversion of diphenylacetylene. For comparative purposes, those data are repeated 

in Table 1,55 which also summarizes the outcome of analogous reactions performed with similar 10 

mol% catalytic loadings of compounds 11 and 12. Reactions were performed in C6D6 and were 

monitored by 1H NMR spectroscopy by the consumption of substrate resonances alongside the 

emergence of the respective SiH2 resonances of the hexyl- and vinylsilane products. 

 

Table 1: Catalytic hydrosilylation of 1-hexene and diphenylacetylene mediated by 1, 11 and 12 (10%, 

C6D6). 

Entry Substrate Product Catalyst 
T 

ºC 

t 
(days) 

% 
Conv. 

1   

1 
60 7 97 

80 4 99 

11 100 

3 23 

4 26 

7 29 

14 30 

2  
 

1 80 30 95 

11 100 3 0 

3   
1 80 4 99 

12 80 3 12 

4  
 

1 
60 14 16 

80 30 95 

12 40 5 71 

 

Examination of entries 1 and 2 in Table 1 confirms that compound 11 is significantly outperformed by 

compound 1, even with the application of a more elevated temperature. The catalytic activity of 11 for 

the hydrosilylation of 1-hexene was also observed to decrease with continued heating until any 

discernible evidence of continued catalysis had ceased after 14 days at 100 ºC (entry 1 and Figure S11). 

Similarly, although compound 13 was observed to form during the early stages of the reaction with 

diphenylacetylene, no evidence for onward catalysis or consumption of the silane reagent was observed 

(entry 2 and Figure S12). The reactivity of compound 12 for the conversion of 1-hexene was also 

disappointing and, although the mode of conversion is obscure, any catalysis was effectively limited to 

a single turnover (entry 3), possibly through catalyst depletion by redistribution to form [(BDI)2Ca] (see 

Figures S13 and S14). In a similar manner, although the hydrosilylation of diphenylacetylene was 

catalyzed by 12 under milder conditions (40 ºC) than those required by compound 1 (entry 4), 
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conversion to the vinylsilane was limited to 71% and ceased completely after 5 days due to the 

formation of [(BDI)2Ca] (see Figure S15).  

 

Conclusion 

Reactions of -diketiminato magnesium and calcium hydrides with a -diketiminato magnesium cation 

paired with the weakly coordinating anion, [Al{OC(CF3)3}4]
, provide access to ionic multimetallic 

hydride derivatives. Although their solution characterization was hampered by phase separation typical 

of liquid clathrate formation, the solid-state structures of both resultant species have been identified by 

single crystal X-ray diffraction analysis. The greater lability of the calcium derivative is underscored 

by the isolation of a trimetallic species in which the dihydrido heavier alkaline earth center is 

coordinated by an aryl substituent of a magnesium-coordinated BDI ligand and a molecule of benzene. 

The homometallic dimagnesium species displays a greater facility toward reaction with 

diphenylacetylene than neutral [(BDI)MgH]2, albeit the resultant isolable ionic vinyldimagnesium 

complex equilibrates into a complex mixture of neutral and ionic species, which are again partitioned 

between two liquid/solution phases. While this enhanced polarized insertion reactivity might suggest 

that these compounds should also display improved performance in catalysis, this is not borne out by 

an initial assessment of their use for the hydrosilylation of 1-hexene and diphenylacetylene. Although 

the reasons for this latter observation could not be completely deduced, we suggest that any observable 

catalysis is likely to be a result of solution dissociation into neutral species and that onward silane 

metathesis is actually perturbed by the charged constitution of the multimetallic hydride species.  
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