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ABSTRACT: Capacitive deionization (CDI) has received wide attention as an emerging water 10 

treatment technology due to its low energy consumption, low cost and high efficiency. However, the 11 

conventional carbon electrode materials for CDI have low densities, which occupy large volumes and 12 

are disadvantageous for use in limited space (e.g., in household or on offshore platforms). In order to 13 

miniaturize the CDI device, it is quite urgent to develop high volumetric adsorption capacity (VAC) 14 

electrode materials. To overcome this issue, we rationally designed and originally developed high VAC 15 

MoS2-graphene hybrid electrodes for CDI. It is interesting that MoS2-graphene hybrid electrode has a 16 

much higher NaCl volumetric adsorption capacity of 14.3 mg/cm3 with a gravimetric adsorption 17 

capacity of 19.4 mg/g. It has been demonstrated that the adsorption capacity is significantly enhanced 18 

due to the rapid ion transport of MoS2 and high electrical conductivity of graphene. In-situ Raman 19 

spectra and high-angle annular dark-field scanning transmission electron microscopy tests 20 

demonstrated a favorable Faradaic reaction, which was crucial to enhancing the NaCl volumetric 21 

adsorption capacity of MoS2-graphene hybrid electrode. This work opens a new avenue for 22 
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miniaturizing future CDI devices. 23 

 INTRODUCTION 24 

With the growth of population and the development of industry, human beings consume a large amount 25 

of fresh water resources.1 The widespread water scarcity and water contamination problems are 26 

seriously increasing across the world, threatening human health and ecological integrity.2-5 In coastal 27 

areas, desalination of saline water is an important way to obtain fresh water.6 Conventional desalination 28 

methods include reverse osmosis thermal distillation and electrodialysis.7-9 They have demonstrated a 29 

variety of disadvantages in practical applications, such as high energy consumptions and high 30 

economic costs.10  31 

As an emerging water treatment technology, capacitive deionization (CDI) has gained increasing 32 

attention due to its prominent advantages, such as high efficiency, low cost, low energy consumption 33 

and easy operations and ease of maintenance.11-13 The principle of CDI is analogous to that of the 34 

electrical double-layer capacitor:14 When exposed to an external electric field, the charged ions in the 35 

feed water move towards the oppositely charged electrode by electrostatic attraction and are adsorbed 36 

and/or trapped on the surface of electrodes accompanied by simultaneous energy storage, thus the 37 

deionized water is produced in the outlet. When the electric field is reversed or the electrodes were 38 

short-circuited, the ions adsorbed in the electrodes are released, accompanied by the release of energy 39 

stored in the electrodes, therefore the electrodes are regenerated. Various CDI models and techniques, 40 

such as flow electrode capacitive deionization, membrane capacitive deionization, faradaic CDI and 41 

hybrid CDI have attracted increasing attention in the last decade.9,15-17 42 

Electrode materials are vital for the CDI performance. Key features of an excellent electrode 43 

material include high electrical conductivity, high adsorption capacity, reasonable pore structure, high 44 
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chemical and mechanical stability, environmentally friendly, and favorable water wettability.18 45 

Traditional electrode materials used in CDI, including activated carbon (AC), porous carbon, carbon 46 

fibers, carbon cloths, carbon nanotubes and graphene have been extensively studied due to their high 47 

chemical stability, high electrical conductivity and high adsorption capacity.19 In recent years, some 48 

materials with pseudocapacitance such as TiO2, MnO2, MoS2，some molybdate and phosphate 49 

attracted a lot of attentions.20-22 Despite great efforts have been devoted to preparing novel CDI 50 

electrode materials,23-25 most of current studies are focused on the enhancement of the gravimetric 51 

adsorption capacity (GAC, mg/g) while little attention has been paid to the enhancement of the 52 

volumetric adsorption capacity (VAC, mg/cm3). Traditional carbonaceous electrodes are relatively low 53 

in density, such as only 0.4-0.6 g/cm3 for activated carbon and 1-2 g/cm3 for multiwall carbon 54 

nanotubes.26 The utilization of low density materials leads to its low VAC, which is unfavorable when 55 

the CDI devices are used in a limited space (e.g., in household or on offshore oil/gas platforms).27 56 

Therefore, enhancing the VAC of the CDI electrodes is a major objective for future CDI development. 57 

MoS2 is one of the most interesting two-dimensional layered materials, in which two layers of sulfur 58 

atoms are sandwiched by a layer of molybdenum atoms. Each three-layer structure is connected by a 59 

weak Van Der Waals force, which gives MoS2 a variety of fascinating properties such as large surface 60 

area, high density and fast ionic conductivity.28 Specifically, the density of MoS2 is around 4-5 g/cm3, 61 

which is much higher than that of carbon materials.29 Combining the high electrical conductivity of 62 

graphene with the high density of MoS2 may result in a highly conductive and compact electrode 63 

material for CDI. 64 

Herein, we rationally designed and originally developed a novel hybrid MoS2-graphene electrode 65 

for CDI applications (Figure 1a and 1b). The MoS2-graphene electrode showed a high NaCl adsorption 66 
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capacity (VACNaCl) as well as a high NaCl adsorption capacity (GACNaCl), as a result of the high 67 

electrical conductivity of graphene and the rapid ion transport of MoS2. This study reveals a new 68 

avenue for miniaturizing future CDI devices. 69 

 EXPERIMENT 70 

Preparation. Graphene oxide (GO, 99.5%, Graphene-king Company, Shanghai, China), ammonium 71 

molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) and thiourea were purchased from Aladdin (Shanghai, 72 

China). All the chemicals were analytically pure and not purified further. MoS2-graphene hybrid 73 

electrodes were synthesized through a simple in-situ growth strategy (Figure 1b). Typically, 1.12 g 74 

thiourea and 40 mg graphene oxide (dispersed in DI water, 2 mg/mL) were dissolved in 75 mL water 75 

under vigorous stirring to make a homogenous mixture. Then 4 g (NH4)6Mo7O24·4H2O was added into 76 

the mixture under stirring for 30 min followed by transferring into the 100 mL Teflon-lined stainless 77 

autoclave and hydrothermally treated at 170 oC for 12 h. Afterward, the sediment was separated by 78 

suction filtration and washed by absolute ethanol and DI water followed by drying at 60 oC at ambient 79 

air. At last, the resultant powder was calcined at 600 oC with a ramping rate of 5 oC /min under a 80 

flowing argon atmosphere. Samples with graphene oxide additive amount of 0, 40, 60, 80, 100 and 81 

200 mg were named by MoS2, MG-0.8, MG-1.2, MG-1.6, MG-1.9 and MG-3.8, respectively. 82 

Characterization. Scanning electron microscope (SEM, Hitachi S-4800) and transmission 83 

electron microscope (TEM, JEM 2100) were used to observe the morphological and structural 84 

properties of the samples. The phase compositions were determined using the X-ray diffractometer 85 

(XRD, Cu Kɑ, 40 kV, 20 mA). Raman spectroscopy were investigated by a spectrometer with a 633 86 

nm Ar+ laser and in-situ Raman spectra of whole cyclic voltammetry (CV) cycle between 0.5 V and -87 

0.5 V were conducted on a Raman spectrometer (HORIBA scientific, LabRAM HR Evolution, France) 88 
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with a 633 nm laser. Nitrogen isothermal adsorption-desorption curves were investigated (Autosorb-89 

IQ2, America). The specific surface area and the pore size distribution were determined by the 90 

Brunauer–Emmett–Teller (BET) method and the Barrett–Joyner–Halenda (BJH) and density 91 

Functional Theory (DFT) model, respectively. Water wettability was evaluated by drop shape analysis 92 

using Kruss, DSA100 instrument. Electrochemical performance was evaluated through an 93 

electrochemical workstation (CHI 660D, Chenhua, Shanghai). The working electrode was fabricated 94 

through mixing of polytetrafluoroethylene (PTFE) aqueous dispersion and active material with a ratio 95 

of 1: 9 in weight and shaped into 1 cm square film. The CV and galvanostatic charge-discharge (GCD) 96 

curves and electrochemical impedance spectroscopy (EIS) were measured in a 0.5 M NaCl solution 97 

with a three-electrode system. The calomel electrode and graphite film serve as reference electrode 98 

and counter electrode, respectively. The capacitance is calculated by the equation (1) 99 

𝐶 =
∫ 𝐼𝑑𝑉

2𝑚𝜐∆𝑉
          (1) 100 

Where C is the capacitance (F/g), I is the response current density (A), m is the mass of active material 101 

(g), υ is the scanning rate (V/s), and ∆V is the applied voltage window during the cyclic voltammetry 102 

test (V). The proportion of contribution of capacitive charge and the diffusion-controlled charge were 103 

calculated according to the equation (2).30 104 

𝑖(𝑉) = 𝑘1𝑣 + 𝑘2𝑣
0.5          (2) 105 

Where the i is the current (A), the v is the scanning rate (mV/s), k1 and k2 are constant values at a fixed 106 

potential. k1v is related to the capacitive current raised from electrical double layer (EDL) and k2v
0.5 is 107 

related to diffusion-controlled charge. 108 

Batch-Mode CDI Experiments. The electrode for batch-mode CDI experiments was 109 

fabricated through adequate mixing of the PTFE, conductive carbon black and as-prepared active 110 
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material with a ratio of 1:1:8 in weight, then was shaped into 65 mm square film and casted onto the 111 

graphite film current collector. An asymmetric electrode system was assembled using as-prepared 112 

electrode and graphite film (GF) as the working electrode and the counter electrode (GF‖MG-1.6 113 

electrode pairs), respectively. The other asymmetric electrode was assembled using as-prepared 114 

electrode and graphite film loaded with activated carbon as the working electrode and the counter 115 

electrode (AC‖MG-1.6 electrode pairs), respectively. The homemade device (Figure 1a) was used to 116 

examine the salt adsorption performance as demonstrated in previous work by our group.31,12 The two 117 

CDI electrodes was separated by placing a spacer between them. A 50 mL NaCl solution was driven 118 

cyclically through the electrodes via a peristaltic pump. A conductivity meter (SevenMulti, METTLER 119 

TOLEDO, America) was used to monitor the conductivity of the NaCl solution online. When it is 120 

necessary to compare the variations of solution conductivity in different batch-mode test, the initial 121 

solution conductivity is normalized just for comparative purposes to eliminate the system error. In this 122 

work, graphite film loaded with as-prepared material was used as cathode, graphite film or graphite 123 

film loaded with activated carbon was used as anode. The GAC was calculated in theory by the 124 

equation (3): 125 

𝐺𝐴𝐶 = 𝐺𝐴𝐶𝑇 − 𝐺𝐴𝐶𝑁𝐴          (3) 126 

Where the GAC is gravimetric adsorption capacity (mg/g), the GACT is the total GAC obtained by 127 

CDI tests of the whole electrodes (mg/g), the GACNA is the premeasured GAC of non-active materials 128 

(mg/g). For CDI test with GF‖MG-1.6 electrode pairs, Na+ ions gravimetric adsorption capacity 129 

(GACNa) was used to evaluate the ability of deionization of active materials, which was calculated by 130 

the equation (4) as follow. 131 

𝐺𝐴𝐶𝑁𝑎 =
0.394(CNA−𝐶𝑇)V

M
           (4) 132 
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Where 0.394 is the mass fraction of sodium in NaCl, CNA is the NaCl aqueous solution concentration 133 

during the desalination test of non-active material (mg/L) (Figure S1), CT is the NaCl aqueous solution 134 

concentration during the desalination test of the as-prepared electrodes (mg/L), M is the quality of as-135 

prepared electrode material (g) and V is volume of NaCl solution (L). The thickness of active material 136 

film is calculated by follow equation (5): 137 

𝑇𝑎𝑓 = 𝑇𝑡 − 𝑇𝑐𝑐          (5) 138 

Where Taf is active material film thickness (μm), Tt is average total thickness (μm), Tcc is average 139 

current collector (graphite film) thickness (μm). Both the Tcc and Tt are measured by micrometer 140 

(Figure S3). The Na+ volumetric adsorption capacity (VACNa) was calculated by the equation (6): 141 

𝑉𝐴𝐶𝑁𝑎 =
𝐺𝐴𝐶𝑁𝑎×𝑀

𝑇𝑎𝑓×𝑎
          (6) 142 

Where a is the area of active electrode film on the current collector (cm2), respectively. For the CDI 143 

test with AC‖MG-1.6 electrode pairs, the GACNaCl was calculated by the equation (7) as follow. 144 

𝐺𝐴𝐶𝑁𝑎𝐶𝑙 =
(CNA−𝐶𝑇)V

𝑚𝑡
          (7) 145 

Where mt is the quality of total mass both cathode and anode electrode material (g). The NaCl VACNaCl 146 

was calculated by the equation (8): 147 

𝑉𝐴𝐶𝑁𝑎𝐶𝑙 =
𝐺𝐴𝐶𝑁𝑎𝐶𝑙×𝑚𝑡

𝑎𝑇𝑎𝑓+𝑏𝑇𝐴𝐶
         (8) 148 

Where b is activated carbon film area (cm2), TAC is activated carbon film thickness (cm). The TAC was 149 

calculated adopted similar method with Taf. Average Na+ adsorption rate (ASARNa) (mg/cm3/min) was 150 

calculated by equation (9): 151 

𝐴𝑆𝐴𝑅𝑁𝑎 =
0.394𝑉 ∫ (𝐶𝑁𝐴(𝑡)−𝐶𝑇(𝑡))𝑑𝑡

𝑡
0

𝑇𝑎𝑓×𝑎×𝑡
         (9) 152 

Where CNA(t) and CT(t) is instant concentration of the NaCl aqueous solution during the deionization 153 

(mg/L), t is the time of deionization (min). During the regeneration of the electrode, the external 154 
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direct voltage was removed and the work electrode was directly connected with the counter electrode 155 

by a copper wire. 156 

 The regeneration tests were conducted at a flow rate of 60 mL/min and a direct voltage of 1.2 V. 157 

The initial conductivity of the NaCl solution was 200 µS/cm. When the electrodes were regenerated, 158 

they were connected by wire directly to release the adsorbed ions. 159 

 RESULTS AND DISCUSSION 160 

Structure and Composition Analysis. The morphologies of the obtained materials were 161 

demonstrated by TEM and SEM images. Figure 1c-d show the SEM images of the MG-1.6. There are 162 

a large number of MoS2 pleats on the surface of the particles and these protrusions are uniform and 163 

interlaced in a flaky shape, which is advantageous for increasing the specific surface area. According 164 

to the TEM (Figure 1e-1f) and HRTEM (Figure 1g) images of MG-1.6, it can be clearly observed that 165 

a large number of MoS2 sheets are homogenously distributed on the surface of the graphene, which is 166 

conducive to increase the conductivity of electrode. The lattice spacing was calculated to be 0.68 nm 167 

(Figure 1g), corresponding to the (002) lattice plane of the hexagonal MoS2.
32 The thickness of the 168 

MoS2 layer of MG-1.6 is calculated to be 9 nm corresponding to layers number of 14, which contributes 169 

to increase conductivity of the MoS2-graphene hybrid electrode. It was found that as the additive 170 

amount of graphene oxide increases, the agglomeration of the sheet-like MoS2 on graphene is 171 

alleviated and the sheet becomes smaller with a better dispersion (Figure S2). When the additive 172 

amount of graphene oxide is more than 1.9 wt%, the MoS2 sheets cannot be clearly distinguished 173 

(Figure S2f). This result is possibly due to the fact that graphene provides nucleation sites for the 174 

formation of MoS2,
33,34 and an increase in the amount of graphene makes the nucleation rate surpass 175 

the growth rate, resulting in a reduction in the size of MoS2 sheets. However, too small MoS2 crystals 176 
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are not beneficial to preventing graphene stacking. Conversely, the highly agglomerated MoS2 is 177 

unfavorable for mass transfer, because the number of adsorption sites is limited. 178 

 The phase properties of different samples were examined by XRD (Figure 2a). The obvious 179 

diffraction peaks located at 13.7°, 33.6° and 59.9° correspond to the (002), (100) and (008) planes of 180 

hexagonal MoS2 (JCPDS, No. 37-1492), respectively, indicating good crystalline nature of MoS2. That 181 

is favorable to the chemical stability of electrode. Actually, the peaks located at 26°, 37.0° and 53.5° 182 

in the Figure 2a are corresponding to (011), (020) and (022) planes of MoO2 (JCPDS 65-5787).35 MoO2 183 

is produced because the (NH4)6Mo7O24·4H2O is excessive and the thiourea is insufficient. The 184 

excessive molybdate ions were transformed into MoO2. As the electrical resistivity of MoO2 (10-5 Ω 185 

cm-1) is much lower than that of MoS2 (~1 Ω cm-1), therefore MoO2 is beneficial for conductivity of 186 

the as-prepared materials.36,37 187 

The specific surface areas calculated from N2 adsorption-desorption isotherms (left of Figure 2b) 188 

for MG-0.8, MG-1.2, MG-1.6, MG-1.9, MG-3.8 are 27.2, 28.9, 37.9, 35.3 and 34.2 m2/g, respectively. 189 

The results implied that the content of graphene affects the specific surface area significantly. Low 190 

content of graphene makes MoS2 agglomerated and excessive graphene makes itself stacked. The 191 

hysteresis curves include a hysteresis loop at a high-pressure stage, and the area of the hysteresis loop 192 

is related to the pore volume.38 According to the pore size distribution profiles (right of Figure 2b and 193 

Figure S4), MG-1.6 has the large portions of mesopores, indicating their superior mass transfer 194 

capacities. Moreover, the good hydrophilicity of MG-1.6 has been demonstrated (Figure S5), which 195 

favors the CDI process for the practical applications. 196 

 The Raman spectra were conducted to examine the structure and topology of the MoS2-graphene 197 

and the layer number (Figure 2c and 2d). The peaks located at 378 cm-1 and 405 cm-1 are corresponding 198 
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to E1
2g and A1g peaks, respectively.20 E1

2g peak is assigned to the in-plane displacement in Mo and S 199 

atoms and A1g is assigned to the out-plane symmetric displacement of S atom along the c-axis.39 As 200 

shown in Figure 2d, a slight blue-shift of A1g is found, indicating the layer number of MoS2 201 

decreasing,40,41 which accounts the effect of inhibition on layer number of MoS2 by graphene. The 202 

peak located at around 1360 cm-1 and 1580 cm-1 are corresponding to the D and G peaks of graphene 203 

(Figure 2c), which arise from the sp3-hybridized carbon and the sp2-hybridized carbon.42 The 204 

increasing intensity of D and G peaks indicates the increase of graphene content, moreover, the D peak 205 

is larger than G peak demonstrating the small degree of graphitization. 206 

 Electrochemical Performance. The GCD test was implemented to examine the capacitance 207 

of the as-prepared samples (Figure 3a). The results show that MG-1.6 has the longest discharge time 208 

at 0.2 A/g, implying that it possesses the largest capacitance among all the electrodes. The sample MG-209 

1.6 was tested at different current densities (Figure S6a). The result shows that it keeps a long discharge 210 

time of 150 s at a large current density of 1.0 A/g. The extent of IR drop is positively related to the 211 

inner electrical resistance of the electrodes.12,43 The IR drop of MG-1.6 displays the smallest IR drop 212 

(the inset of Figure 3a), indicating that it has the smallest inner electrical resistance. The result is due 213 

to the preferable distribution of MoS2 particles of MG-1.6 on the graphene, ensuring a high electrical 214 

conductivity and a small internal resistance. The IR drops at different current densities are shown in 215 

Figure S6b. The result confirms that the IR drop increases linearly with the increase of current density, 216 

which is attributed to the inadequate discharge in the EDL at the onset of discharge. A superior charge-217 

discharge performance and a good cyclic stability of 10 000 cycles are obtained for MG-1.6 electrode 218 

(Figure 3d). 219 

 The CV test for exploring the electrochemical behavior in a 0.5 M NaCl solution shows the 220 
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rectangular-like closed curve of MG-1.6 (Figure S6c), suggesting good capacitor characteristics.44 As 221 

calculated from the area of the rectangular curves, the capacitances of MG-1.6 is 146.1 F/g at a 222 

scanning rate of 5 mV/s, which is higher than other contrast samples (Figure S6d), implying 223 

remarkable adsorption capacity. The capacitances of MG-1.6 at different scanning rates are shown in 224 

Figure S6e. The MG-1.6 still has a capacitance of 47.9 F/g even at a high scan rate of 50 mV/s, which 225 

is due to the good electrical conductivity of MG-1.6. Two redox peaks at 1 mV/s (Figure S6f) 226 

demonstrates the existence of a redox process. The proportion of contribution of capacitive charge and 227 

the diffusion-controlled charge were calculated according to the equation (2). CV curves at 0.2 mV/s 228 

and 0.5 mV/s have been measured, respectively. Based-on the equation (2), at a given potential P, two 229 

known different current values i1 and i2 are obtained at two scanning rates v1 (0.2 mV/s) and v2 (0.5 230 

mV/s), thus obtaining a binary equations as follow. 231 

𝑖1(𝑃) = 0.2k1 + √0.2k2         (10) 232 

𝑖2(𝑃) = 0.5k1 + √0.5k2         (11) 233 

k1 and k2 at P potential can be obtained by solving the above binary equations consisting equation 234 

(10) and (11). A CV cycle contains a series of potential values, so a series of k1 and k2 values can be 235 

obtained. For the same material, k1 and k2 are fixed at a given potential. Therefore, at the scanning rate 236 

of 0.2 mV/s, the current derived from electric double-layer capacitor can be obtained by the equation 237 

(12). 238 

𝑖𝐸𝐷𝐿𝐶(𝑉) = 0.2 × 𝑘1        (12) 239 

Where iEDLC is the current derived from electric double-layer capacitor. These iEDLC points can be 240 

linked to form a closed CV curve, which is the shaded part in Figure 3b. The area of shaded part as a 241 

percentage of the area of the measured CV curve is the percentage of the contribution of the electric 242 
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double layer capacitor. The rest is the diffusion-controlled charge contribution. The shadow area is 243 

corresponding to the capacitive current at 0.2 mV/s (Figure 3b), which takes a proportion of 72.7%. 244 

The result demonstrates that capacitive charge contributes 72.7% of the capacity and the diffusion-245 

controlled charge contributes 27.3% of capacity. 246 

The EIS test for examining the resistance of the as-prepared samples (Figure 3c) shows that each 247 

curve has a similar shape which consists of a pressed and rotated semi-circle and a slope line. The 248 

pressed and rotated semi-circle is related with the interface resistance between the surface of electrode 249 

and the electrolyte bulk. The slope line correlates to the ion diffusion on the surface of electrode.45,46 250 

It was found that MG-1.6 has relatively small diameter of semicircle, revealing small charge transfer 251 

resistance. The result may be attributed to the high conductivity of MG-1.6 arising from the 252 

homogenous distribution of MoS2 particles on the surface of graphene. The slope line correlates with 253 

the capacitor characteristics and a greater slope of the line means more capacitor characteristics. The 254 

inset of Figure 3c shows a relative larger slope line of MG-1.6, suggesting better capacitor 255 

characteristics. 256 

CDI Performance. Figure 4a shows the Ragone plots of average salt adsorption rate (ASARNa) 257 

versus (vs.) VACNa of different samples. The result displays that MG-1.6 made the largest decrease of 258 

normalized solution conductivity (Figure S8a) and had the largest VACNa up to 6.0 mg/cm3 and it 259 

maintained a high salt adsorption rate even at the high VACNa stage, which is attributed to the improved 260 

microstructure of graphene on MoS2. Compared to activated carbon, MG-1.6 can save 54% volume at 261 

the same adsorption capacity (Table S1). Figure 4b shows the plots of GAC vs. deionization time, and 262 

Figure 4c shows the plots of VACNa vs. deionization time. It is found that GACNa of MG-1.6 reached 263 

to 8.1 mg/g, and still kept a relatively high deionization rate at the high VACNa stage. The high GACNa 264 
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and VACNa should be attributed to the good ions transfer channel of MG-1.6 resulting from the large 265 

fraction of mesopores. GACNa and deionization rate can be facilitated by favorable pore size 266 

distribution. Mesopore is very beneficial to decrease transfer resistance and provides superior ions 267 

transfer channel, so that the consumed ions can be replenished quickly from bulk solution, thus very 268 

favorable for enhancing deionization capacity. To compared with some reported literatures in the same 269 

calculation method, a batch-mode CDI test using the AC‖MG-1.6 electrode pairs were carried out 270 

(Figure S7a and S7b). The calculation methods of VACNaCl and GACNaCl have taken into account the 271 

effect of current collectors and both the cathode and anode electrode materials mass. The VACNaCl and 272 

GACNaCl were calculated to 14.3 mg/cm3 and 19.4 mg/g, respectively. Compared to the reported 273 

literatures, the VACNaCl reaches high level and GACNaCl is also slightly superior (Figure 4d and S7c, 274 

Table 1 and S2).25,47-55 The GACNa and ASARNa at different flow rates were studied (Figure S8b and 275 

S8c) and the results show negligible difference among the applied flow rates, implying no obvious 276 

impact on GACNa and ASARNa and exhibits good stability under different flow rates. Performance of 277 

MG-1.6 at different direct voltages was investigated (Figure S9a, S9b and S9c) and a high VACNa was 278 

acquired at 1.2 V. The effect of the initial concentration of NaCl solution on GACNa, VACNa, and 279 

ASARNa was studied (Figure S10a, S10b and S10c) and the result shows that both GACNa and VACNa 280 

increases with the rising initial concentration. The pH value change was investigated during the 281 

desalination and regeneration (Figure S11a and S11b). The change of pH may be due to the 282 

decomposition of local water.56 MG-1.6 also display good performance to remove the heavy metal ions. 283 

At low concentration of 0.31 mmol/L Cu2+ aqueous solution, the removal rate of Cu2+ by MG-1.6 284 

reached to 92.3% (Figure S12a). While, at low concentration of 0.48 mmol/L Pb2+ aqueous solution, 285 

the removal rate of Pb2+ by MG-1.6 reached to 91.3% (Figure S12b). A good regeneration ability of 286 
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MG-1.6 was examined in 100 mg/L NaCl aqueous solution at 1.2 V and 60 mL/min and showed good 287 

regeneration stability up to 50 CDI cycles (Figure S13). These results are because of good chemical 288 

stability and capacitor characteristics of MG-1.6. 289 

In-situ Raman spectra were conducted for exploring the mechanism of Na-ions storage of MoS2 290 

(Figure S14). The results show the ratio of characteristic peaks, E1
2g/A1g, of 2H MoS2 decreased with 291 

potential decrease from 0 V to -0.5 V at the start stage and increase during the potential increased from 292 

-0.5 V to 0.5 V, then decrease during the potential decrease from 0.5 V to 0 V at the end of the whole 293 

CV cycle (Figure 5a, Table S3). This result is related with Na+ insertion reaction in the interlayers of 294 

MoS2 as follow.  295 

𝑁𝑎+ + 𝑥𝑒− +𝑀𝑜𝑆2 → 𝑁𝑎𝑥𝑀𝑜𝑆2        (13) 296 

Because Raman peak A1g is sensitive to interlayer electron density. The binding to electrons during 297 

the faradaic reaction (13) lead to increasing the interlayer electron density of MoS2, resulting in a 298 

decrease in A1g strength and an increase in E1
2g/A1g.

57,58  299 

In order to more clearly prove the phase transformation from 2H MoS2 to 1T MoS2, HAADF-STEM 300 

was conducted to observe the atom array. A mixed phase in the area was founded indicating the co-301 

existence of 2H and 1T MoS2 after 50 CDI cycles (Figure 5c). Before CDI cycles of the regeneration 302 

test, the as-prepared electrode was characterized by Raman spectra and no peaks of 1T MoS2 was 303 

found (Figure 5b). However, after 50 CDI cycles, the characteristic peaks of 1T MoS2 were found at 304 

150 and 233 cm-1 corresponding to the known J1 and J2 peaks.59-61 Therefore, an inference that the 2H 305 

MoS2 partly transferred to 1T MoS2 is reasonable (Figure 5d). For NaCl removal using AC‖MG-1.6 306 

electrode pairs, the whole deionization process is described below. Firstly, Na+ migrates to polarized 307 

cathode under electrostatic force and adsorbed on the surface of the electrode. Then, some Na+ ions 308 
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were embedded in the interlayer of MoS2, and Faradaic reaction (13) occurs and MoS2 changed from 309 

2H phase to 1T phase. Simultaneously, Cl- ions were adsorbed into the electrical double layers between 310 

the carbon surface and the bulk NaCl solution. The final material saturates sodium. In the regeneration 311 

stage, Na+ and Cl- ions adsorbed in the surface electric double-layer are first released. Then, the Na+ 312 

ions embedded in the MoS2 layer reacts (14) inversely, and some MoS2 transforms into 2H phase, 313 

while others remain 1T phase. As for the reasons of partial phase transition, more in-depth study is 314 

needed. For CDI, we first use HAADF-STEM to study the phase composition in hybrid MoS2-315 

graphene CDI electrodes. The high VACNaCl electrodes prepared in this study present a promising 316 

approach to miniaturizing CDI devices for future applications. 317 
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 500 

Figure 1. (a) Schematic illustration of CDI device; (b) Schematic illustration of preparation of MoS2-graphene 501 

hybrids; (c and d) SEM images of MG-1.6; (e and f) TEM images of MG-1.6; (g) HRTEM image of MG-1.6. 502 

  503 
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 504 

Figure 2. (a) XRD patterns, (b) N2 adsorption-desorption isotherms (left) and BJH pore size distribution profiles 505 

(right), (c) full Raman spectra and (d) local-magnified Raman spectra of different samples.  506 
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 507 

Figure 3. (a) GCD curves at a current density of 0.2 A/g (the inset is IR drop of different samples); (b) CV curves at 508 

a scanning rate of 0.2 mV/s (the shadow is the calculated capacitive charge); (c) EIS curves of different samples (the 509 

inset is the full EIS); and (d) Long GCD cycles  of MG-1.6 at a current density of 5 A/g.  510 
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 511 

Figure 4. (a) Ragone curves of different samples in a 500 mg/L NaCl aqueous solution at 1.2 V and 60 mL/min; (b) 512 

Plots of GACNa vs. deionization time of different samples in a 500 mg/L NaCl aqueous solution at 1.2 V and 60 513 

mL/min; (c) Plots of VACNa vs. deionization time of different samples in a 500 mg/L NaCl aqueous solution at 1.2 V 514 

and 60 mL/min; and (d) Comparison of VACNaCl and GACNaCl between the reported materials and material of this 515 

work.  516 
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 517 

Figure 5. (a) In-situ Raman spectra peak ratio of E1
2g/A1g of MG-1.6 during a CV cycle range from -0.5 V to 0.5 V ; 518 

(b) Raman spectra of MG-1.6 before and after 50 cycles; (c) HAADF-STEM images of MG-1.6 after 50 CDI cycles 519 

(the left image corresponding to 1T MoS2, the right image corresponding to 2H MoS2); and (d) Schematic illustration 520 

of sodiation and desodiation of 2H MoS2. 521 

522 
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Table 1. Comparison of between reported CDI electrodes and this work. 523 

Materials GAC NaCl (mg/g) VACNaCl (mg/cm3) Reference 

MoS2-graphene 19.4 14.3 This work 

Carbon aerogel ~7 1.43 47 

Hollow Carbon sphere 2.3 0.64 48 

Mesoporous carbon 14.7 3.56 49 

Activated carbon 11 6.26 50 

reduced GO/TiO2 9.1 4.47 51 

TiO2/Carbon 17.4 11.47 52 

Carbon nanotube@MnO2 29.77 2.57 53 

MnOx nanofiber 27.8 1.87 54 

MoS2/Carbon nanotube 10 18 55 

Exfoliated MoS2 8.81 16.51 25 
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