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Abstract 11 

A novel strategy that combines separate probabilistic models developed by other 12 

researchers into a unified model for generating schedules of active occupancy, domestic 13 

hot water (DHW) use, and non-HVAC electricity use in multiple residences with a 10-14 

minute resolution for every day of the year is described. A variety of new model functions 15 

are introduced in order to generate stochastic predictions for each of numerous residences 16 

at once, to enforce appropriate variability of behaviors between dwellings and to ensure 17 

that domestic hot water and electricity use are coincident with occupancy. The separate 18 

models used in this paper were previously developed for the US and the UK; in the unified 19 

model, scaling factors were added to these models to adjust the predictions so as to better 20 

agree with national aggregated data for Canada. The unified model was validated with 21 

measurements of domestic hot water use and electricity consumption from the 40 22 

residential units of a social housing building in Quebec City, Canada. The behavior of 23 

occupants in the case study building was simulated 100 times in order to validate the 24 

outputs of the unified model. Goodness-of-fit tests applied to each of these simulations 25 

showed that the fit between simulated and measured dwelling-per-dwelling distributions 26 

was acceptable for 97% of the DHW consumption profiles and for 92% of the electricity 27 

consumption profiles. However, there remain discrepancies between simulations and 28 

measurements, such as an overestimation of the DHW and electricity consumption in the 29 

morning.  30 
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 34 

1. Introduction 35 

Up to 40% of the global energy demand comes from buildings [1], in part as a result of 36 

inefficient design, construction and operational practices. Although low energy design and 37 

construction approaches have achieved some success, it is known that poor operational 38 

practices could compromise design performance targets by a factor of at least two [2]. 39 

Reduction of energy consumption therefore needs to come not only from using improved 40 

design and construction technologies, but also from recognizing the impact of occupant 41 

behavior [3][4]. Yet, despite detailed investigations of occupant behavior and its impact on 42 

energy demand [5]–[7], variations in occupant behavior are scarcely considered in practice 43 

in building modeling. 44 

 45 

Many user behaviors affect building energy performance, including: the number of active 46 

occupants present, the use of electrical appliances, the use of domestic hot water (DHW) 47 

appliances, the use of lighting, the control of the heating cooling and ventilation systems, 48 

the control of window openings, and the control of blinds. At present, the industry normally 49 

uses static schedules (i.e. typical daily schedules that are repeated over the years) to 50 

represent these actions in energy simulations. Although these deterministic schedules still 51 

have their place in building simulation depending on the application (the final report of the 52 

EBC Annex 66 of the IEA has a chapter on the importance of fit-for-purpose in occupant 53 

behavior simulation [8]), they have their shortcomings. With such an approach the amount 54 

of heat, DHW and electricity used in a specific building at a given time is fixed and 55 

corresponds to an “average” expected behavior [8][9]. In reality, different individuals have 56 

different preferences and hence adopt different behaviors. Consequently, any particular 57 

building may have a range of possible energy consumption levels instead of the single 58 

value obtained with static schedules. Hence, it is not surprising that great differences are 59 

often observed between the predicted energy consumption of a building and its actual 60 
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energy consumption. This so-called “energy gap” is most frequently due to occupant 61 

behavior [11]. 62 

 63 

Another way to depict occupant behavior in building simulations that has the potential of 64 

fixing this issue is the use of  probabilistic models [12]–[15]. Since these models are based 65 

on probabilities instead of a purely deterministic approach, they allow the representation 66 

of more diverse occupant behaviors. These stochastic models allow new ways of 67 

performing building designs. For example, Ramallo-González et al. initiated the concept 68 

of robust optimization of low-energy buildings [16]. These variations lead to different 69 

levels and patterns of energy end uses and thus can capture the wide range of possible 70 

annual energy consumption of a building.  71 

 72 

Most existing probabilistic occupant behavior models were built upon country dependent 73 

data [17]–[19]. Since occupant behavior depends on socio-economic and psychological 74 

factors, cultural differences can lead to different occupant behaviors, implying that 75 

occupants in different countries might act differently [12][19][20]. Consequently, most 76 

existing probabilistic occupant behavior models cannot be employed straightforwardly all 77 

around the world. One solution to this problem would be to replicate in each country the 78 

extensive monitoring process required for the development of these models in order to 79 

obtain country-specific calibrated models. Sometimes, the required data is readily available 80 

in databases [22], but this is not the case for most countries such as Canada. Despite the 81 

evident reliability and precision provided by extensive field surveys, it should be 82 

recognized that this approach is also quite cumbersome since surveys are very time-83 

consuming and expensive to perform. Nevertheless, even when precise occupant behavior 84 

pattern is unknown, probabilistic models can offer the advantage of generating a range of 85 

plausible profiles to be considered for design or other purposes. 86 

 87 

Another important limitation is that most probabilistic occupant behavior models found in 88 

the literature have been developed independently, and focus on individual issues (i.e.: 89 

either occupancy, or DHW use, or window openings). Consequently, a building 90 

professional may use one model to predict the occupancy in a building, then use a different 91 
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model to predict the use of DHW. It would be substantially easier for users to employ one 92 

unified model instead of relying on multiple unique models with varying methodologies 93 

and differing nomenclatures. 94 

 95 

This study investigates the potential and limits of a unified model that predicts the number 96 

of occupants, domestic hot water (DHW) use, and non-HVAC electricity use in multiple 97 

residences with a 10-minute resolution for every day of the year. Section 2 details the 98 

methodology employed to build the “integrated occupant behavior”. Recognized 99 

probabilistic occupant behavior models were merged together. These original models were 100 

developed independently using data from the US, Canada and the UK. In addition to 101 

developing a unified method, this study introduces scaling factors to adjust the predictions 102 

so as to better agree with national aggregated data for Canada, and measured data from a 103 

social housing building in Quebec City. The model developed in this study could be used 104 

for other scenarios, but would need to use appropriate inputs. The model was implemented 105 

in MATLAB [23] and was primarily developed with the idea of representing occupant 106 

behavior in energy simulations of multi-residential buildings at the predesign or design 107 

stage, which dictated the required level of details and accuracy. The model could also be 108 

used for other applications, such as for predictive control or demand-side management. For 109 

example, a methodology to size the DHW system in an apartment building was developed 110 

based on an occupant behavior model in [24]. Section 3 discusses the limits of the approach 111 

that was used and the validity and precision of the model, by comparing its outputs with 112 

measurements obtained from a multi-residential building in Quebec City, Canada. Both 113 

aggregated and disaggregated demands were analyzed (Sections 3.1 and 3.2). The effects 114 

of the modifications brought to the existing occupant behavior models on the accuracy of 115 

the unified model were then thoroughly studied (Section 3.3).  116 

 117 

2. Occupant behavior model 118 

This section presents the methodology used to develop the unified probabilistic occupant 119 

behavior model that is described and validated in this paper. The model predicts three 120 

behaviors: the number of active occupants in each of multiple residences, the DHW 121 

consumption in each residence, and the non-HVAC electricity consumption in each 122 
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residence. The model extends from work documented in a previous conference paper [25]. 123 

Each of the predicted behaviors interacts with each other to ensure that the generated 124 

outputs are consistent. The flowchart in Fig. 1 exhibits the relationships between these 125 

behaviors. The number of dwellings and the number of days must first be specified. Other 126 

important parameters that can drive variability of energy consumption such as energy price, 127 

socioeconomical status and appliance ownership are already considered by the model with 128 

the use of probability functions that compute the type of occupants in each simulated 129 

dwelling, so the users of the unified occupant behavior model do not need to provide such 130 

information. The origin of these probability functions are discussed later in the paper. By 131 

adapting these inputs, the model could also be useful for other scenarios not tested in this 132 

study. The blue boxes in Fig. 1 represent the internal parameters within the model that have 133 

to be changed so to adapt the model for a specific country. 134 

 135 

 136 

Figure 1: Architecture of the occupant behavior model showing the relationship between all components. 137 
Green boxes refer to inputs that have to be provided by the model user. Blue boxes are the building/country 138 

specific data whereas yellow boxes are the outputs of the model. 139 

 140 

2.1 Active occupancy model 141 
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The initial step of the model is to find when occupants are active in their home. For its 142 

simplicity, the stochastic daily occupancy profiles generator developed by Richardson et 143 

al. [17] was chosen to serve as the basis for the active occupancy model. Active occupants 144 

are defined here as occupants that are physically present and not sleeping. Richardson’s 145 

model employs a first-order Markov-chain Monte Carlo method [26]. The number of active 146 

occupants at a given time step depends only on the number of active occupants at the 147 

preceding time step, the day of the week, and the hour of the day. Richardson’s model uses 148 

a 10-minute resolution, meaning that there are 144 time steps in a day. The probability of 149 

changing from one state (i.e., number of active occupants) to another is different for each 150 

of these time steps. These probabilities are logged in “transition probability matrices” that 151 

are based on a survey of 20,000 weekly UK household journals [27].  152 

 153 

Three additions to Richardson’s model were incorporated. First, the possibility of allowing 154 

the model to choose the household size of each simulated dwelling was included. In 155 

Richardson’s model, the user must provide the household size. In the present model, the 156 

household size can be generated randomly based on a probability distribution of the given 157 

country (in our case from Canadian household statistics [28]). Note that this step is not 158 

mandatory if one already knows the household size of the dwellings.  159 

 160 

The second adjustment modifies Richardson’s model to fill in unknown parameters for one 161 

country using data from a different country. Researchers have developed occupancy 162 

models that are similar to Richardson’s in the US [29], Spain [30] and Sweden [31]. The 163 

center for Time Use Research in Oxford have uploaded data files that contain time use 164 

information from dozens of countries [22]. However, for some of these countries (Canada 165 

being one of them), the available time use information provides the number of minutes 166 

spent by citizens on various activities, but not the starting time of these activities. It is thus 167 

impossible with that data to find precisely at what time occupants were actively at home, 168 

preventing the replication of Richardson’s methodology to create occupancy simulator for 169 

those countries. However, it is possible to compute the aggregated daily amount of time 170 

during which a person is actively at home. Knowing this data for two countries, it is 171 

possible to calculate a scale factor to adapt an occupancy model developed in one country 172 
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so as to represent occupancy in a different country. Referring to the case of the UK, time-173 

use survey overviews say that British citizens spend on average 1,003 minutes per day in 174 

their home and sleep for 476 minutes, meaning that they are active in their dwellings for 175 

527 minutes per day [27]. In Canada, these numbers are 990 minutes at home and 498 176 

minutes of sleep; consequently for this study 492 minutes of active occupancy was used. 177 

[32]. Therefore, Canadians spent on aggregate 35 fewer minutes per day awake at home 178 

than British – an average reduction of 6.6% of active occupancy. For this scaling approach 179 

to be appropriate, one has to assume that the lifestyle in the two countries considered is not 180 

too dissimilar.  181 

 182 

Any time a random number is drawn to find the number of active occupants for the next 183 

time step, the number is multiplied by a scale factor that ensures that occupancy respects 184 

national aggregated data. The model was run 1,000 times after the application of this scale 185 

factor for a household during a weekday and a weekend day. This number of simulations 186 

was chosen based on the work of McKenna et al., who showed with a similar model that 187 

negligible variations of aggregated results are found after 1,000 simulations [33]. It showed 188 

that active occupancy lasts for 473.0 minutes during weekdays, 539.2 minutes during 189 

weekend and thus as expected 492.0 minutes per day on average. The main effect that this 190 

change had on the aggregated occupancy daily schedules was to reduce slightly the 191 

probability of occupants being active throughout the day. Therefore, this scaling 192 

methodology relies on the assumption that apart from the total time of active occupancy, 193 

people from the two countries that are compared are likely to follow similar occupancy 194 

patterns (i.e. waking up at the same time of the day and likewise for going to work, coming 195 

back home and going to sleep). It is clear that the assumption that the occupancy pattern in 196 

a country can serve as the basis for developing the occupancy pattern in another country 197 

might not be true if the two countries are too dissimilar. Evidently, when one would already 198 

have access to TUS data or to a specific occupancy model for the country of interest, it 199 

would be preferable to refer to this data. However, when such detailed information in 200 

unavailable, the proposed methodology could be considered, and in that case, the scaling 201 

is a simple and convenient way to adapt the occupancy profiles with the available 202 

information. 203 
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 204 

The final modification accounts for diversity in occupancy patterns between different 205 

households. Families have different needs and live through different situations, meaning 206 

that some households have individuals at home more often than other households. To 207 

reproduce this “dwelling-to-dwelling” variability, the model employs a probability 208 

distribution to assign an average daily occupancy duration to each dwelling. This 209 

methodology does not necessarily cover all possible occupancy patterns, but it captures a 210 

more realistic diversity of occupied hours per dwelling. The chosen probability distribution 211 

assumes that the average amount of time spent at home for a dwelling follows a normal 212 

distribution since no indication were found as to what distribution law should be used. The 213 

mean of the distribution is set to one so that its introduction in the model will not affect the 214 

aggregated occupancy. The standard deviation was computed with results from Aerts et 215 

al., who found that people who are mostly absent from home spend approximately 240 216 

minutes per day at home while those mostly at home stay there 720 minutes when they 217 

clustered households in seven distinct groups according to their occupancy profiles [34]. 218 

This work was made in Belgium, where the average active occupancy is 493 minutes per 219 

day [34]. The standard deviation of 114 minutes was chosen for the normal distribution of 220 

occupied daily hours per dwelling so that the range of values agrees with Aerts’ data. This 221 

standard deviation is equal to 23% of the mean value. Therefore, for every household, the 222 

scale factor in the model is multiplied by a random parameter which follows a normal 223 

distribution with a mean value of 1   and a standard deviation of 0.23  .  224 

 225 
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 226 

Figure 2: Distribution of the average daily amount of time of active occupancy per person in 1,000 227 
simulated dwellings according to different models. The average daily amount of time of active occupancy 228 

should be between 240 and 720 minutes. 229 

 230 

The methodology was used to obtain annual profiles for 1,000 dwellings. Their total time 231 

of active occupancy was then separated into distinct bins of 100 minutes per day per person. 232 

Fig. 2 shows the resulting distribution and compares it to the one obtained by repeating this 233 

process for two other simulation strategies that do not employ a distribution to infer 234 

“dwelling-to-dwelling” diversity: (i) simulating one weekday and one weekend day for a 235 

dwelling and replicating them over a year (use the obtained weekday schedule for 261 days 236 

and the weekend one for the remained 104 days) and (ii) simulating 365 days (use a 237 

different simulated schedule day after day) without inducing diversity between the 238 

households. Strategy (i) should yield “dwelling-to-dwelling” variability in occupancy 239 

patterns, but practically no “day-to-day” variability since the same days are repeated over 240 

and over again. For strategy (ii), it is the opposite – occupancy schedules are different day 241 

after day, but all households should have similar aggregated occupancy behaviors since no 242 

diversity was enforced. This is shown in Fig. 2 where the latter option leads to a very 243 

narrow distribution that is not close to the target “dwelling-to-dwelling” diversity (240 to 244 

720 minutes of active occupancy) found from Aerts’ study. The “simulating two days” 245 

solution tends on the other hand to overrate the diversity of occupancy as a non-negligible 246 
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proportion (10.7%) of the dwellings are outside the target “dwelling-to-dwelling” diversity. 247 

This option yields a standard deviation of 148 minutes per day, which overestimates the 248 

target of 114 minutes by 29.8%. The average value obtained from multiple draws is quite 249 

variable for small numbers of draws but will converge towards a specific value for a large 250 

number of draws. This explained why the “simulating 365 days” strategy greatly 251 

underestimates the diversity of occupied hours whereas the “repeating 2 days over a year” 252 

strategy overcompensate. These results are based on the assumption that the probability 253 

distribution used in the model to enforce diversity in occupancy patterns is accurate.  254 

 255 

2.2 Domestic Hot Water (DHW) model 256 

Few probabilistic DHW models that generate volumetric consumption are available in the 257 

literature [17][34][35]. Most of the DHW models are integrated in thermal domestic 258 

demand models that compute the thermal demand for DHW. These models use a range of 259 

methods such as non-homogeneous Markov chains [32][36][37], time-series [39], 260 

probability density functions [15] or neural network [40] to predict the heat demand due to 261 

the consumption of water.  262 

 263 

A popular and easy-to-use model is the yearly DHW event schedule generator developed 264 

by Hendron et al. [18], [41]. This model generates an annual volumetric DHW profile for 265 

a single dwelling by dividing DHW consumption into five types of water appliances 266 

(shower, bath, sink, clothes washer and dishwasher). Each appliance has a daily probability 267 

density function (PDF) that determines the probability that the appliance is involved in a 268 

hot water event at each hour. These PDFs were computed with datasets coming from two 269 

monitoring studies in the United States [41]. When the model predicts a hot water event, 270 

the volumetric consumption is calculated by multiplying the duration of the event with the 271 

flowrate at which water is consumed. These two variables are randomly chosen according 272 

to different PDFs that are specific to the five hot water appliances. This model is based on 273 

data coming from one country and, like Richardson’s occupancy model, might not 274 

adequately represent the DHW demand patterns in other countries.  275 

 276 
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Six modifications were implemented to adapt Hendron’s model for the model described in 277 

this paper. First, a linear interpolation was made to adjust the hourly resolution of the start-278 

time PDFs from hourly resolution to the 10-minute resolution used in the model. Second, 279 

a calibration scalar was added to account for the household size. There should be more hot 280 

water events in dwellings that have large household size and vice versa. As suggested by 281 

other studies [42]–[44], a linear scaling with a slope of 35 litres per person, divided within 282 

the five appliances, is used for this calibration. This slope is equal to the value used by the 283 

Canadian building simulation software HOT2000 [45].  284 

 285 

 286 

Figure 3: Modification made to the probability density function of a shower event to account for active 287 
occupancy.  288 

 289 

The third modification links DHW consumption to occupancy. The shower, bath and sinks 290 

cannot use DHW when there are no occupants active in the building. In addition, there 291 

should be more DHW consumption when there are many active occupants in the dwelling. 292 

Therefore, for all time steps, the PDFs are multiplied by the projected number of active 293 

occupants to increase the probability curves in time steps with high occupancy. The area 294 

under the curve of the new PDFs must be equal to the initial ones to ensure that the daily 295 

total DHW use is unaffected by this change. The modified functions are thus multiplied by 296 
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a correction factor that is equal to the ratio between these two areas. Fig. 3 offers a graphical 297 

example of this procedure for the probability of using the shower during a single day. The 298 

aggregation achieved by simulating 1,000 different days is shown in Fig. 4. If active 299 

occupancy (blue curve) had no influence, the probability curve before the fitting with 300 

occupancy (black curve) would perfectly be superimposed with the aggregated function 301 

generated after the fitting (red curve). The morning peak in the aggregated PDF happens 302 

an hour later than in the previous function, probably due to the British origins of the 303 

occupancy model versus Hendron’s model which was developed for the USA. In the 304 

evening, since it is the peak period for active occupancy, there is an increase in the 305 

probability of a shower event. The integration of the black and red curves provides identical 306 

values, demonstrating that this treatment is only affecting the timing of events and not the 307 

overall quantity of events. 308 

 309 

 310 

Figure 4: Aggregated start-time probability density function for the shower before and after accounting for 311 
active occupancy. 312 

 313 

The fourth adjustment scales Hendron’s model from American to Canadian data (see Table 314 

A2). A scale factor reduces the PDFs that are used for the duration of hot water events 315 

since Americans and Canadians have slightly different DHW consumption levels. The fifth 316 
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modification is another scale factor that decreases the flowrate to account for low-flow 317 

devices (showerheads, dishwashers, washing machines and sinks) that are getting more 318 

widespread. A reduction factor of 20% was selected based on an analysis of retrofits in 319 

[46]. This factor is applied to all appliances except for the bath. 320 

 321 

The sixth and final change to Hendron’s model was the consideration of diversity in the 322 

level of consumption between dwellings. To do so, a scalar is drawn from a “diversity” 323 

PDF that is based on a monitoring study [42]. This study provides the distribution of daily 324 

DHW consumption of 119 households, ranging from an average of 12.5 L/day to 612.5 325 

L/day with a mean value of 172.0 L/day. Part of that variability is due to the number of 326 

occupants forming these households, but the study also gives the distribution of occupancy 327 

in the monitored dwellings in addition of a best fit equation to find the average daily DHW 328 

consumption in L/day from the household size: 329 

 DHWV 39 #Occ 17    (1)  

where #Occ is the number of occupants living in the dwelling. By combining this best fit 330 

equation with the occupancy distribution, it is possible to find what the distribution of 331 

DHW consumption would be if every occupant asked for the same volume of water. Fig. 332 

5 compares this “household size based” distribution with the one actually measured in the 333 

119 homes. It is clear that the measured distribution is larger than the one predicted strictly 334 

with the household sizes – more dwellings have an average consumption below 100 L/day 335 

and above 300 L/day. This is suspected since people have different habits and some use 336 

more DHW than others. A random parameter has to be applied to Eq. (1) to simulate this 337 

aspect. Different distributions were tested and it was found that the log-normal distribution 338 

with a mean of 0   and a standard deviation of 0.35   provided the best fit between 339 

the generated DHW consumption distribution and the one measured in the study. The 340 

average output of a log-normal distribution with 0   is 1 so this introduced parameter 341 

does not change the predicted aggregated volume of water. Therefore, in the model, each 342 

dwelling received a ‘diversity’ parameter from this distribution which is multiplied by the 343 

duration of hot water events to calibrate the total volume consumed by the household. This 344 

modification changes the average volume of water used per event, but not the number of 345 
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events itself, i.e. heavy DHW users are considered in the model as people taking long 346 

showers, not as people taking many showers. The frequency of hot water events is already 347 

linked with the number of occupants living in the dwelling.  348 

 349 

 350 

Figure 5: Comparison of the measured density of average daily DHW consumption with the one generated 351 
by only considering household sizes. 352 

 353 

2.3 Electricity model 354 

Several residential electricity consumption models have been created by previous 355 

researchers to predict the intensity and timing of demand and peaks and various 356 

methodologies have been proposed. For instance, Chitnis and Hunt developed a model that 357 

uses financial aspects (price of electricity, household income, appliance ownership…) as 358 

independent variables to help predict residential electricity consumption [47]. Harris and 359 

Liu included weather data (temperature, precipitation…) in their electricity consumption 360 

[48]. The type of occupants (age, gender, education) is considered in the model created by 361 

Fischer et al. [49]. “Economic” models often run into the problem of combining aggregated 362 

economic data with disaggregated load profile data, hence the recent gain in popularity of 363 

“non-economic” models that prefer to use time-use surveys as their basis [36][47]–[49]. 364 

Two of these time-use surveys based models are the ones developed by Richardson [19] 365 

and Armstrong [53], which were both taken in this paper to simulate the electricity 366 
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consumption. Since it is already connected with the active occupancy model, Richardson’s 367 

was taken to generate schedules for the use of electric appliances, as these schedules greatly 368 

depends on active occupancy. As for Armstrong’s model, it was employed for the usage of 369 

the lighting systems. Armstrong’s model has the advantage (in the context of this paper) of 370 

being based on Canadian lifestyle.  371 

 372 

Like his occupancy model, Richardson’s electricity use model relies on the Markov-Chain 373 

technique. This technique is an efficient way to model the use of electrical appliances as 374 

these appliances have two possible states (on/off). Consequently, their popularity in 375 

electricity forecasting models is not surprising [11], [27], [51]. In time-use based electricity 376 

models, Markov chains create daily schedules of activities in a building by identifying the 377 

times at which occupants switch from one activity (e.g.: cooking, laundry, watching TV) 378 

to another. The probability density functions for transition between different activities were 379 

computed from time-use survey data, as in his active occupancy model. Every individual 380 

appliance is linked to an activity so that its likelihood of being used increases once the 381 

corresponding activity is ongoing in the generated activity schedule. Contrary to Hendron’s 382 

DHW model, when an appliance is seen as being activated, it is used for a constant duration 383 

with a specific power consumption since no data could be found on the variability of the 384 

duration of use of the electrical appliances considered in the model. Future iterations of the 385 

model could include this detail.  386 

 387 

Once again, Richardson developed a model that is based on measured household electricity 388 

use in the UK and aggregated electricity use data from Canada was used to scale 389 

Richardson’s model to fit with Canadian lifestyle so the predictions of the model could be 390 

validated with the data available for this specific work. Table A1 lists the aggregated 391 

amount of time that a Canadian spends on cooking, on watching TV and on household 392 

work [32]. Differences are observable between this data and the ones found in time-use 393 

surveys made in the UK [27]. The activity probabilities were multiplied by a scale factor 394 

to ensure that the aggregated results are identical to the left column of Table A1.  395 

 396 
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Table A3 contains the list of appliances that are considered in the model shown in this 397 

paper.  Out of the 33 electrical appliances that are considered in Richardson’s model, some 398 

were taken off. Chest freezer, Fridge freezer and Upright freezer were merged in one single 399 

appliance named Freezer. Likewise, Tumble dryer and Washer dryer became Dryer. 400 

Answer machine, Cassette Player, Clock, VCR/DVD player, Cordless telephone, Fax and 401 

Printer were eliminated as they either are devices that are rarely seen in dwellings today 402 

or that consume a negligible amount of energy. Small cooking (group) was divided in 403 

multiple end-uses: Toaster, Exhaust fan and Coffee Maker. Moreover, all appliances 404 

related to electric domestic water or space heating were not considered since this model is 405 

about the non-HVAC electricity consumption of residential buildings. Two additional 406 

devices were introduced: Laptop computer and Hair dryer. 407 

 408 

The activity None in Table A3 means that the appliances do not require active occupancy 409 

to be operating. For devices that are associated with Occupant, there has to be at least one 410 

active occupant in the dwelling for them to be turned on. The Clothes washer and 411 

Dishwasher appliances are simulated differently since they are linked to Domestic Hot 412 

Water. The DHW part of the model directly identifies time steps in which these appliances 413 

are used, so there is no need for calibration scalars. The rest of the activities are the ones 414 

considered by Richardson and are simulated with the activity probabilities matrix: 415 

Watching TV, Cooking, Laundry, Washing/Dressing, Iron and House cleaning. The 416 

probabilities of use provided in Table A3 describe the likelihood that an appliance is 417 

operating once its corresponding activity is enabled in the activity schedule. For example, 418 

when the Cooking activity is happening, there is a probability of 17.2% that the hot plate 419 

is used by the occupants. For their calculations, the total number of hours of operation per 420 

year has to be computed: 421 

 
i off,i

i

on,i off ,i

1000E 8760P
D for i 1,2...,m

P P


 


 

(2)  

where iE  is the aggregated energy consumption in kWh measured in Canadian homes 422 

found in Table A3 for appliance i, on,iP , its power consumption when operating and off ,iP , 423 

the standby consumption. Inserting proper numerical values in Eq. (2) gives, for example, 424 
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a use of 168.3 hours per year for the hot plate. Knowing this duration, it is possible to find 425 

the annual number of events: 426 

 
i

i

i

60D
M for i 1,2...,m 


 

(3)  

where i  is the event length in minutes. Continuing with the example of the hot plate, 427 

which was attributed an event length of 16 minutes, the model must produce an average of 428 

631 events per year. To obtain the probability that people use the hot plate when cooking, 429 

the total number of time steps in which the Cooking activity is activated is needed:  430 

 
j

j

365 2.4
N for j 1,2..., n

t

 
 


 (4)  

Here, j  represents the daily aggregated amount of time spent on activity j and t  the 431 

model time step. j  is multiplied by 2.4 because according to the household size 432 

distribution, the mean household size is 2.4 occupants per dwelling. For the Cooking 433 

activity, Canadians cook 42 minutes per day, meaning that in the average dwelling, there 434 

is cooking for 100.8 minutes per day (36,792 minutes per year). With a time step of 10 435 

minutes, this translates for the model into 3,679.2 time steps in which Cooking should be 436 

enabled. The probability that the hot plate is operating when cooking is merely the ratio 437 

between the targeted amount of hot plate events and the number of Cooking time steps: 438 

 

i
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if j on

NP

0 if j off




 
 

 (5)  

Hence, a probability of use of 631 / 3679.2 = 17.2% for the hot plate. The same procedure 439 

was repeated for all appliances to get the parameters displayed in Table A3. 440 

 441 

As previously mentioned, Armstrong’s electricity model, which is based on probability 442 

density functions, was used to simulate the consumption of the lighting systems. Each 443 

season has its own daily probability curve to calculate the odds of a lighting event 444 

happening. Use of lighting greatly depends on multiple building aspects, such as its 445 

localization and orientation, its window-to-wall ratio or the shading of the surrounding 446 



18 

buildings. For the sake of simplicity, these aspects are not considered in these PDFs. The 447 

variability of lighting appliance use introduced by these aspects is assumed by Armstrong 448 

to be included in the probabilistic aspect of the model. When a lighting event occurs, the 449 

power consumption varies between 60 and 410 W and the duration of the event is selected 450 

between 5 and 120 minutes. These two parameters are selected based on a uniform random 451 

distribution. The modification made to Armstrong’s model was to adapt the PDFs so they 452 

fit with occupancy profiles. The treatment applied to Hendron’s model to account for 453 

occupancy was repeated for the probability curves of lighting events.     454 

 455 

For each dwelling, a scale factor was applied to the ‘probability of use’ parameters for 456 

electrical appliances. This factor was defined as the product between three sub-factors: one 457 

that is due to household size #Occs , another for the type of consumer consumers  and a final one 458 

to consider the type of building buildings : 459 

 dwelling #Occ consumer buildings s s s    
(6)  

The ‘number of occupants’ sub-factor (S#Occ) was estimated with data taken from Statistics 460 

Canada suggesting that the relation between electricity consumption and household size 461 

has a slope of approximately 3.75 kWh/day per occupant [55]. As for the ‘type of 462 

consumer’ sub-factor (Sconsumer), according to Armstrong the mean daily electricity use for   463 

detached houses in Canada ranges from 13.2 to 35.6 kWh/day. Unfortunately, since studies 464 

on the diversity of electricity consumption between different people are rare, it was not 465 

possible to isolate the variations of consumption that are due to the household size. 466 

Applying the methodology used to determine diversity in active occupancy, the range 467 

delimited by 13.2 and 35.6 kWh/day corresponds to a normal law with a mean value of 468 

24.5 kWh/day and a standard deviation of 5.6 kWh/day. The standard deviation is equal to 469 

22.9% of the mean value, and therefore for each dwelling a normal distribution with 1   470 

and 0.229   drives the value of the ‘type of consumer’ sub-factor. Once again, the 471 

distribution’s unitary mean value ensures that this sub-factor does not affect aggregated 472 

results. A minimum of zero is set for this parameter so there cannot be negative 473 

consumption. Since this prescribed minimum is more than three standard deviations away 474 

from the mean, the distribution is not visibly truncated and the effect of this constraint on 475 



19 

the mean output is negligible. The ‘type of building’ parameter is there to adapt the energy 476 

demand for apartments. All data related to electricity used so far were representative of 477 

consumption in detached single houses. Since the electricity consumption is quite larger in 478 

detached houses than in apartments (mostly due to a larger floor area and a larger set of 479 

electrical appliances), an adjustment is necessary to simulate consumption in apartments. 480 

In [56], which presents the overall energy consumption of 8,230,596 detached houses and 481 

2,059,428 apartments in Canada, the average non-HVAC electricity consumption of an 482 

apartment is approximately 57% of the one of a detached house. If one wants to simulate 483 

detached house, the ‘type of building’ sub-factor should be set to 1, but it needs to be 0.57 484 

for apartment units. 485 

   486 

3. Comparison of the model with in situ measurements 487 

The model was compared with measurements taken in a recently constructed multi-488 

residential social housing building in Quebec City, Canada. Data measured in this building 489 

include DHW volumetric demand for each of the 40 dwellings along with the electricity 490 

consumption of eight apartments. These quantities were measured every 10 minutes. In 491 

addition to the real-time measurement of electricity for some of the dwellings, the 492 

electricity consumption of the remaining 32 dwellings was recorded every month by 493 

electricity meters. Since heat needed for space heating and DHW is provided to the building 494 

by radiators using hot water from a district heating system, the electricity consumption was 495 

used for non-HVAC purposes. Electricity used by the fans of the ventilation system were 496 

measured at the building level, but not at the dwelling level so it was not included in the 497 

electricity consumption of an apartment. The monitoring duration considered for the 498 

validation is a full year (from January 1st 2016 to January 1st 2017). This dataset was 499 

independent from the model – it was not used in the making of the model and therefore can 500 

be used for independent validation. In practice the occupant behavior model could be used 501 

before the construction of the building (e.g., for energy simulations or sizing equipment) 502 

and therefore, it would not be possible to adjust the model to fit in situ measurements.  503 

 504 

The total population of the building during the monitoring period was 90 people (an 505 

average of 2.25 occupants per household). According to the household size distribution 506 
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used in the model, this number was lower than average, but not abnormally low (22nd 507 

percentile of possible building population). For both DHW and electricity consumption, 508 

the objective of the work presented here was to achieve a model that accurately depicts 509 

stochasticity in occupant behavior while still offering satisfying aggregated results. 510 

Therefore, the validation of the model is divided in two parts. The first part checked the 511 

aggregated patterns, where the whole building consumption ass compared to aggregated 512 

results from the model. The other part of the validation will study diversity in consumption 513 

between individual households. Because no data were taken for active occupancy in the 514 

real building, this part of the model could not be directly validated. However, due to its 515 

link with the other two simulated behaviors, adequate consumption representation 516 

indirectly revealed whether the occupancy is appropriately simulated. Furthermore, it had 517 

already been shown in Fig. 2 that the active occupancy model generates satisfying results 518 

regarding aggregated national statistics.  519 

 520 

3.1 Aggregated demand 521 

Consecutive simulations of the same building can provide different results due to the 522 

stochastic nature of the model. To quantify the different possible levels of DHW and 523 

electricity consumption of the building, multiple simulations were performed and 524 

compared with the monitored building to obtain various overall annual profiles. The 525 

number of simulated dwellings was set to 40, the number of days to 365 and the household 526 

size distribution is identical to the one found in the real building (i.e. each simulation had 527 

a population of 90 people). The evolution of the distribution of building consumption is 528 

presented in Table 1 as a function of the number of simulations performed. The non-zero 529 

standard deviation (which refers to the deviation found from the distribution of average 530 

DHW consumption of each building simulation) demonstrates that the total DHW and 531 

electricity consumption of the building cannot be precisely known before operation due to 532 

the occupant behavior, even if the impact of every household is smoothened over 40 533 

dwellings. After 100 simulations (translating into a total of 4,000 simulated dwellings), the 534 

average daily DHW use and electricity demand are respectively 134.8 litres per dwelling 535 

and 13.86 kWh per dwelling. A consumption level of 134.8 litres corresponds to a 536 

reduction of 40% from the value provided by National Resources Canada in 2012 (225 537 
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litres; see Table A2) for the average hot water consumption in a Canadian dwelling [57]. 538 

This significant drop between the model and the expected value can be explained by the 539 

small number of occupants in the building and by the installation of water saving devices. 540 

In another recent monitoring study in Canada, an average demand of 172 litres per day was 541 

measured over a sample of 119 homes that had a mean household size of 3.83 people [42]. 542 

Therefore, it is not aberrant that the level of consumption in the model is lower than the 543 

value reported by National Resources Canada. In fact, in the case study building, the 544 

average daily consumption of hot water during the monitoring period was 131.2 litres per 545 

apartment. In Fig. 6a, the distribution of the DHW consumption in the building obtained 546 

with the 100 simulated profiles is illustrated. Since the amount of DHW use in the 547 

validation data falls into the distribution generated by the model, it appears that the model 548 

is in agreement with the case study building for the total amount of hot water use. 549 

 550 

Table 1: Variability of the DHW consumption and electricity use profiles as a function of the number of 551 
profiles generated 552 

Number of 

profiles generated 

Domestic hot water  

L

day dwelling

 
 

 

 

Electricity  

kWh

day dwelling

 
 

 

 

 Average 
Standard 

deviation 
Average 

Standard 

deviation 

1 135.1 - 13.71 - 

5 134.4 6.1 14.37 0.80 

10 136.0 5.4 14.17 0.66 

25 135.5 5.7 13.93 0.67 

50 135.2 6.8 13.87 0.62 

75 134.6 6.7 13.89 0.57 

100 134.9 7.0 13.86 0.54 

 553 

The distribution of electricity demand computed by the model is also shown (Fig. 6b). The 554 

average electricity consumption for a dwelling in the monitored building is 14.81 kWh per 555 

day. This figure shows that the measured electricity consumption falls within the values 556 

given by the model, with a tendency to be closer to high values.  557 

 558 
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Figure 7 compares the simulated mean daily DHW and electricity profiles throughout the 559 

year for all dwellings generated in the 100 simulations with the average profiles found in 560 

the validation data. The shaded area around the simulation curves provide the variations 561 

seen between all simulations – the area is bounded by the 5th and 95th percentiles observed 562 

from the 100 aggregated simulated profiles at every hour of the day. Consumption of hot 563 

water and electricity during the night is lower in the model than in the measurements, but 564 

the model overrates the morning peak from 7AM to 10AM – it is the only period of the 565 

day where the measured curve is out of the range generated by the simulations. After 566 

10AM, the aggregated patterns provided by the model closely follow the ones of the case 567 

study building. Nonetheless, measured and simulated profiles have similar general 568 

behaviors: low-consumption in the early hours, followed by an increase in the morning to 569 

a level of consumption that is mostly constant until the evening peak happens. The only 570 

large difference between simulations and measurements is the morning DHW 571 

consumption. Simulations predict a peak with a consumption rate of nearly 12 litres per 572 

hour that is not happening in the monitored building. It can be argued that the occupants 573 

living in the case study building do not follow a “typical” daily DHW schedule as morning 574 

peaks are seen in most DHW monitoring studies [43]. For instance, in the previously 575 

mentioned monitoring study made in Canada [42], the consumption of hot water between 576 

6AM and 10AM represents 28.3% of the total daily DHW demand whereas in the building 577 

used in this paper, this value goes down to 18.8%. In the simulated profiles produced by 578 

the model, 23.5% of the DHW consumption is made in that morning period. A possible 579 

explanation to this unusual behavior in the monitored building is that due to a high 580 

proportion of children, baths are more often taken in the evening instead of in the morning. 581 

Another reason for the differences might be that the modeling of active occupancy is not 582 

“perfect”. Since the occupancy in the simulations is based on British schedules, there could 583 

be some errors in the representation of Canadian occupancy patterns. For example, the 584 

increase of consumption in the morning happening approximately one hour earlier in the 585 

validation data versus in the simulations can be due to Canadians waking up on average an 586 

hour earlier than British, but at this point no clear report in literature was found to confirm 587 

this assumption. A similar observation can be made for electricity – the simulation results 588 

predict more consumption between 7AM to 9AM than what is seen. Again, the metered 589 
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profile slightly differs from what is seen in other electricity monitoring analyses, with a 590 

proportion of 6.1% of electricity being consumed between 7AM to 9AM. Two different 591 

samples of houses in Canada (one of 29 households in Nova Scotia and the other of 22 592 

households in Ottawa) have a proportion of approximately 8.0% and 8.3% of electricity 593 

consumed during this period of the morning [58]. Larger samples in Europe have also 594 

yielded a fraction around 8% [56][57]. The model predicts on average that 8.4% of the 595 

electricity is used between 7AM to 9AM. Since the metered data comes from a social 596 

housing building, socioeconomic factors might also explain why the DHW use has no 597 

morning peak, but a more balanced consumption during the day with occupants adapting 598 

different schedules. However, since this study used data from a single building, it is not 599 

currently possible to assess whether this discrepancy is really caused by the social housing 600 

aspect of the building or by other factors. The shape of the measured electricity 601 

consumption profile is similar to the one simulated for the weekend (the models predicts 602 

that to 7AM to 9AM period is responsible for 6.7% of electricity use during the weekend).  603 

 604 
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 605 

Figure 6: Distribution of the a) average DHW and b) electricity daily consumption per dwelling obtained 606 
after 100 simulations. Shaded bar represents the cluster in which the monitored building falls into. 607 

 608 

Notwithstanding this difference in the morning, peak heights are roughly the same in the 609 

simulated and measured datasets. Regression coefficients between the measured and 610 

generated time series are R2 = 0.855 for DHW and R2 = 0.890 for electricity consumption. 611 

Moreover, the differences seen between the measured and simulated DHW use profiles do 612 

not lead to errors for the sizing of the hot water system [24]. It can thus be concluded that 613 

the aggregated daily behavior of the model fits reasonably well with the measurements. If 614 

the goal was to represent more closely the case study building, one would need to scale 615 

down the probability of DHW and electricity demand events in the morning.  616 
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 617 

 618 

Figure 7: Average daily (weekdays and weekend days combined)  a) DHW and b) electricity use by 619 
simulated and measured dwellings over a year from 100 simulations. Shaded areas represent the range 620 

prescribed by the 5th and 95th percentiles obtained from the 100 simulated profiles.  621 

 622 

3.2 Disaggregated demand 623 

The variability in consumption between different dwellings generated by the model is 624 

examined in contrast with the one observed in the real building. Among the 100 simulated 625 

building profiles, the one that produced the level of DHW consumption and electricity that 626 

were the closest to the real building was selected and is analyzed here. The measured 627 

standard deviation of daily consumption between the 40 dwellings is 95.2 litres for hot 628 

water and 5.93 kWh for electricity. In the selected simulated profiles, these values 629 
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respectively are 42.5 litres and 6.60 kWh, meaning that although the variability for 630 

electricity consumption is accurate, the model is conservative in terms of variability among 631 

households for domestic hot water. Further work to obtain more data about this variability 632 

would be helpful to get an improved representation. The goodness-of-fit between the 633 

observed distribution and the one predicted by the model was assessed with Mann-Whitney 634 

test.  The computed p-values are 53.52 10  for the hot water distribution and 0.357 for 635 

electricity use. At a significance level of 95%, these values mean that the model fits with 636 

observed data for electricity consumption, but not for DHW. This is confirmed by Fig. 8 637 

which displays separately the consumption of every measured and simulated dwelling. In 638 

the case of DHW (Fig. 8a), contrarily to the simulation results, there are several very-heavy 639 

users in the building as well as low-consumption occupants. 640 

 641 
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 642 

Figure 8: Average daily a) DHW and b) electricity profiles from 100 simulations compared to the one 643 
measured from the case study building. 644 

 645 

To identify the reason behind this disparity, the DHW consumption of dwellings was 646 

plotted in Fig. 9 by separating them according to their household sizes. Fig. 9 also offers 647 

best fit lines computed from linear regression for the estimation of DHW demand with the 648 

household size. The diversity of consumption around the linear regressions is slightly 649 

underestimated by the model. The larger diversity in the measured data appears to be 650 
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mostly caused by the larger impact of household size on hot water use. A comparison of 651 

the linear regression equation reveals that the household size has twice as big an influence 652 

in the monitored data (slope of 55 litres per person) than in the simulations (27 litres per 653 

person). Consequently, there is an important difference in consumption between dwellings 654 

with low and high household sizes, explaining the larger variability. The test was re-run 655 

with a slope of 55 litres per person prescribed in the model. This modification significantly 656 

increased the goodness-of-fit between the distribution seen in the monitored building and 657 

the one predicted by the model. The new p-value of 0.331, indicating that both distributions 658 

fit at a significance level of 95%. Black bars in Fig 8a represent the interhousehold 659 

distribution obtained with the new slope – it can be seen that it follows the measured 660 

distribution more closely than the simulated distribution generated with the previous slope. 661 

A slope of 55 litres per occupant is larger than those found elsewhere. Studies have reported 662 

a slope of 26 L/person in the UK [43] and of 35 [45] and 39 L/person [42] in surveys made 663 

in Canada. The presence of numerous families with young children might once again be 664 

responsible for this difference. Larger households are those with young children, who 665 

consume more hot water, hence the increase of the slope. The slope used in the model can 666 

easily be readjusted by users.  667 

 668 
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 669 

Figure 9: Consumption of DHW as a function of household size according to a) measurements and b) 670 
simulations. 671 

 672 

Fig. 10a offers a visual depiction of how all simulated DHW consumption profiles 673 

compared with measured data. The first column on the left that is separated from the others 674 

is the measured profile, from the lowest-consuming dwelling to the highest. The other 675 

columns represent the 100 profiles generated from simulation, after the change of the 676 

DHW-per-occupant slope, and ranked by total DHW consumption. Note that for the sake 677 

of visibility, the colorbar is topped at 300 L per day. Fig. 10b presents the inverse 678 

cumulative distribution function of daily DHW demand from metered data (blue curve) 679 

and simulations (shaded areas). The black shaded area is the variations seen from the 5th 680 
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and 95th percentiles observed from the 100 simulated profiles before the change of the slope 681 

and the red one is obtained after the change, showing that the change of slope was 682 

beneficial. When expressed on a per capita basis, simulated daily DHW consumption vary 683 

from ~31 L per day per person to ~114 L per day per person, from low-use to high-use 684 

consumers. This result is coherent with literature, e.g. ASHRAE handbook [61]. 685 

 686 

Figs. 10c and 10d are respectively the electricity consumption equivalent of Figs. 10a and 687 

10b. Again, a maximum value of 30 kWh is used in Fig. 10c to improve visibility of the 688 

variations. Fig. 10d reveals that the 100 simulated profiles all match fairly well with the 689 

measured building profile, except for a slight divergence for the low-consuming 690 

households (those set in the lowest 10%). 691 

 692 

  693 

 694 

Figure 10: a) Average dwelling daily DHW consumption for all measured and simulated profiles (x-axis: 695 
the 100 profiles, y-axis: the 40 dwellings). b) Inverse cumulative probability function of the DHW 696 

consumption of a dwelling from measurements and simulations. c) Average dwelling daily electricity 697 
consumption for all measured and simulated profiles (x-axis: the 100 profiles, y-axis: the 40 dwellings). d) 698 
Inverse cumulative probability function of the DHW consumption of a dwelling from measurements and 699 

simulations. 700 

 701 
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Mann-Whitney goodness-of-fit tests yields acceptable fit at a significance level of 95% for 702 

97 of the 100 slope-adjusted DHW profiles (from 3 out of 100 with an unadjusted slope) 703 

and 92 of the 100 electricity profiles. 704 

 705 

Patterns of residential energy consumption exhibit some stochastic variation in multiple 706 

dimensions. In addition to modeling diversity in consumption among buildings, day-to-day 707 

variations must also be modelled for each dwelling. People do not consume the same 708 

quantity of energy day after day. Figs. 11 and 12 exhibits the day-to-day variability of the 709 

measured and simulated dwellings. Centerlines in the boxes represent the median day of 710 

consumption, edges of the boxes the first and third quartiles and the whiskers show the 711 

position of the 5th and 95th percentiles. Note that for electricity, Fig. 12 could only be 712 

generated for the eight dwellings whose electricity consumption is measured as daily 713 

consumption for the other apartments is unavailable. For both DHW and electricity, the 714 

model generated day-to-day variability that is nearly constant for all dwellings as shown 715 

by the similar length of the boxes and whiskers in Figs. 11 and 12. A different pattern is 716 

seen for the measured data, in which day-to-day variability is fluctuating from a dwelling 717 

to another. Some households consume a very consistent volume of DHW day after day and 718 

others do not. For example, in the case of electricity demand, dwellings #3 and #4 have a 719 

nearly identical median day, but the narrower box evidences that the consumption in 720 

dwelling #3 is much more consistent than in dwelling #4.  721 

 722 

The average day-to-day standard deviation for DHW is 65.9 litres in the validation data 723 

and 57.9 litres in the simulation profile; while for electricity, these values are 6.13 and 4.48 724 

kWh respectively. Therefore, it appears that the model generates less day-to-day variation 725 

for electricity and hot water use than occurs in reality. No factor was introduced in the 726 

model to force diversity of consumption between different days for a single dwelling. This 727 

diversity is driven by the probabilistic nature of the occupant behavior model. It appears 728 

that this is not sufficient and that another factor would be valuable to enhance the day-to-729 

day variability of a simulated dwelling. Such factor could be drawn from a PDF and could 730 

vary every day.  731 

 732 
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 733 

 734 

Figure 11: Measured and simulated day-to-day variability of DHW consumption. 735 

 736 

 737 

Figure 12: Measured and simulated day-to-day variability of electricity consumption. 738 
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 739 

Figure 13: Simulated and measured daily schedule of a) DWH use during the highest day of consumption 740 
b) electricity use during the highest day of consumption and c) electricity use during the lowest day of 741 
consumption for a selected dwelling. Minimal DHW use during the lowest day of consumption is not 742 

shown since it yielded zero consumption for both simulations and measurements. 743 

 744 

Figure 13 illustrates the consumption schedules during individual days for one selected 745 

dwelling. The dwelling was randomly selected from the simulation profiles and then it was 746 
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paired with a dwelling from the monitored building that yielded a similar level of 747 

consumption. Fig. 13a presents the maximum day of DHW consumption (a total volume 748 

of 370.0 litres was consumed during that day in measurements, 399.3 in simulations), Fig. 749 

13b the maximum day for electricity consumption (32.3 kWh in measurements, 32.4 in 750 

simulations) and Fig. 13c the minimum day for electricity consumption (2.2 kWh in 751 

measurements, 3.0 in simulations). The day that had the lowest use of DHW is not 752 

displayed since in both the model and validation datasets this day had zero consumption of 753 

hot water. The purpose of Fig. 13 is merely to show the profile trends – a perfect match 754 

between the curves is not expected. The DHW curves have a similar behavior: zero 755 

consumption for most of the days along with ten to twenty spontaneous short consumption 756 

events. Peaks of consumption related to an occurring event have comparable magnitude. 757 

The peak heights are also similar for electricity consumption. Curves for this part of the 758 

model show that electricity use oscillates when the dwelling is in “standby mode”. When 759 

occupants are truly using electrical appliances, the power demand increases greatly. A 760 

zoom on Fig. 13c exposes that the standby power is smaller in the model (41 W) than it 761 

was in the monitored dwelling (60 W). This gives a reason for the underestimation of 762 

consumption during the night in the aggregated profile (see Fig. 7) since an 763 

underestimation of 19 W throughout the day translates into an energy consumption of 0.46 764 

kWh/day per dwelling. Looking back at Fig. 6, considering such an offset would move the 765 

measured electricity use closer to the average calculated from the simulations. This offset 766 

could be explained by the choice of electrical appliances in the dwellings. Nevertheless, 767 

extreme days yield similar total amount of energy use between the simulated and the 768 

measured apartment. The overall trends were adequately reproduced, demonstrating the 769 

capacity of the model to generate realistic daily profiles. 770 

 771 

Overall, there is a good fit in terms of aggregated and disaggregated patterns between the 772 

profiles that are generated by the model and the measurements made in a real building. 773 

Yet, there remains discrepancies that suggest that more data has to be collected for further 774 

improving the model. For example, a ‘day-to-day variability’ factor which control the 775 

consumption level of every day could be useful for the model, but no study on the day-to-776 

day variability in consumption can be found in literature and thus it is not possible to obtain 777 
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an appropriate PDF from which this factor could be drawn. Additionally, one could 778 

question the relevance of adding such a factor as it would slow down the computations 779 

without necessary adding information that is important for building design. Another way 780 

of improving the model could be the characterisation of different user types via a 781 

differentiation of behavior. The model could assign to each dwelling the type of DHW 782 

users (morning versus evening users) that live in it and then adjust hot water events PDFs 783 

accordingly. To do so, one needs to know the proportion of people that consume more 784 

water in the morning, which is very difficult to quantify.  785 

 786 

3.3 Effects of changes on accuracy of model predictions 787 

To create a unified probabilistic model for the simulation of occupant behavior in 788 

residential buildings, several changes were applied to already existing models as described 789 

before. This section verifies how each of these changes influences the accuracy of the 790 

simulations. Three indicators were chosen to assess the performance of the occupant 791 

behavior model. First, the relative difference of overall consumption between the case 792 

study building and the average obtained from 100 simulations of the building was 793 

computed:  794 
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where Qm is the average daily measured quantity, Qi is the average daily simulated quantity 795 

for the ith generated profile and n is the number of simulated building profiles (n = 100 796 

here). The second performance indicator is related to the timings of consumption and looks 797 

at the average daily schedule of consumption: 798 
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where 
j,mq is the average measured rate of consumption for the jth time step of the day and 799 

ijq the average simulated rate of consumption obtained from the ith generated profile. The 800 

144 value in Eq. (8) comes from the fact that there are 144 time steps during a day when 801 
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using a 10-min frequency. The average rate of consumption are divided by the average 802 

daily consumption in order to ensure that changes in overall consumption (which are 803 

already measured by the first indicator) do not also influence the second performance 804 

index. The final indicator is the discrepancy between the measured and simulated 805 

coefficient of dwelling-to-dwelling variation: 806 
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The coefficient of dwelling-to-dwelling variation is defined as the standard deviation of 807 

the overall consumption of dwellings in a building divided by the average consumption of 808 

the building. Once again, dividing the standard deviation by the average consumption 809 

ensures that discrepancy in overall consumption will not be reflected in this indicator. The 810 

three performance indices were computed after each change was cumulatively applied to 811 

the occupant behavior model for both DHW and electricity consumption. The computed 812 

indices are presented in Table 2. The blue cases in Table 2 were implemented before this 813 

validation test to represent where changes are expected to have an effect on the model, e.g. 814 

the first change (scaling for apartment or detached houses) is only expected to influence 815 

the overall consumption of electricity predicted by the model.  816 

 817 

All three indicators are error functions, so low values for the indicators indicate better 818 

performance. The figures in Table 2 demonstrate that the changes applied were greatly 819 

beneficial for the prediction of DHW and electricity use in terms of overall consumption 820 

in the building and of dwelling-to-dwelling variability. For the DHW section, adjusting the 821 

daily hot water use from 27 to 55 L per occupant as done during the validation reduced the 822 

underestimation of dwelling-to-dwelling variability from 37.2 to 9.4%. Although an 823 

underestimation of 37.2% as initially obtained after applying the “type of consumer” 824 

parameter appears unsatisfactory, the introduced parameter still significantly reduced the 825 

error on the dwelling-to-dwelling variability as it was set at an underestimation of 83.9% 826 

in the original model. The introduced modifications did not have a high impact on the 827 

timings of the hot water consumption, merely reducing schedI from 30.4 to 24.2% for DHW 828 

and from 18.6 to 15.1% for electricity. This is explained by the fact that the changes 829 
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brought to the occupancy part of the model had no significant impacts on the simulation, 830 

with the three performance indices staying nearly unchanged before and after the 831 

introduction of those changes. It appears that the two scale factors related to occupancy 832 

were not able to correct the fact the schedules obtained from British lifestyle was used to 833 

simulate the behavior of Canadians. The fact that a social housing building was used for 834 

the validation may also explain this lack of improvement as occupancy behavior in a 835 

dwelling might change according the socioeconomical status of its occupants. More data 836 

on active occupancy and activity schedule need to be available if one wants to improve the 837 

prediction of the scheduling of hot water and electricity events in the occupant behavior 838 

model. 839 
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Table 2. Performance of DHW and electricity prediction after applying various changes applied to already existing occupant behavior models. 

# 
Section of 

the model 
Change 

DHW Electricity 

 consI %   schedI %   dwellingsI %   consI %   schedI %   dwellingsI %  

0  - 72.5 30.4 -83.9 -41.4 18.6 -73.6 

1 

Electricity 

Scale for type of dwelling 72.6 30.6 -83.7 -66.6 18.5 -74.7 

2 
Scale for electricity appliances (UK to 

Canada) 
72.5 30.6 -83.9 -14.4 15.5 -74.7 

3 Scale for occupant activities (UK to Canada) 72.4 30.5 -83.8 -7.6 16.7 -72.4 

4 Electricity/Household size slope 72.6 30.7 -83.8 -8.4 16.8 -26.1 

5 Add the “Type of consumer” parameter 72.4 30.6 -83.8 -8.4 16.8 -7.1 

6 

DHW 

Link DHW with occupancy 24.1 24.4 -92.1 -7.9 16.8 -6.7 

7 
Scale for hot water appliances (USA to 

Canada) 
22.4 23.9 -92.3 -8.9 16.8 -7.4 

8 Scale for low-flow devices 3.2 23.6 -92.7 -8.3 16.8 -6.8 

9 Add the “Type of consumer” parameter 2.9 23.5 -37.2 -7.8 16.8 -7.9 

10 
Adjusted the slope from 27 to 55 

L/(day*person) 
2.6 23.4 -9.4 -8.2 16.8 -7.3 

11 
Occupancy 

Scale for active occupancy (UK to Canada) 2.2 23.9 -9.1 -5.9 15.6 -5.2 

12 Add the “Type of occupant” parameter 2.7 24.2 -9.5 -6.4 15.1 -2.0 
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4. Conclusions 

A strategy to create a unified probabilistic occupant behavior model for Canadian multi-

residential buildings was proposed and tested. This strategy merges multiple recognized 

models built in different parts of the world. Since occupants in different countries could 

have different behaviors, scaling is necessary to adapt already existing models to specific 

locations worldwide. This was possible since Canada, US and UK share similar occupant 

behavior patterns. Modifications were also necessary to make sure that the outputs from 

the occupant behaviors models were coherent. In this paper, this idea has been shown to be 

possible for Canadian lifestyle. The scaling was based on national aggregated statistics 

about time-use, DHW demand and electricity consumption of Canadians. These data are 

more accessible in most countries than the large datasets required to build a new occupant 

behavior model. Therefore, it appears easier to scale a model from one country to another 

than to create a completely new model. The behaviors considered in the developed model 

are occupancy, domestic hot water use and consumption of electricity. The model has a 

time resolution of 10 minutes. Four already existing models were merged and scaled in this 

new model: Richardson’s active occupancy and domestic electricity use models, 

Hendron’s DHW profile generator and Armstrong’s model for the simulation of stochastic 

lighting loads in dwellings. It was found that additional scale factors are needed to ensure 

that there is a significant diversity in consumption between different dwellings and that the 

level of consumption is coherent with the household size of the dwellings.  

 

The model predictions were validated with measured data from a multi-residential building 

in Canada. The validation section of this work shows that the aggregated simulation and 

measurement results agree with one another better than previous models. Even though 

every building has unique differences that are difficult to predict without very detailed 

knowledge about the residents’ behavior, the remaining discrepancies were relatively small 

and could be explained by a lack of data (e.g. data concerning the DHW consumption of 

young families). Despite minor differences, the total consumption of the building falls into 

the range predicted by the model, and the average daily profiles have similar patterns. Most 

of the differences between the model and measurements might be explained by the large 



40 

number of young families in the real building. The difference in consumption between the 

dwellings is well replicated for electricity but not for DHW, for which it underestimated. 

Further analyses have shown that this underestimation is mainly caused by the 

misrepresentation of the relation between DHW consumption and household sizes. 

Household size is more important for DHW demand than usual in the monitored building, 

again likely due to the numerous young families. As for the day-to-day diversity of 

consumption for an apartment, while its representation was adequate for DHW 

consumption, the diversity for electricity demand is too narrow when compared with 

validation data. An additional scale factor that infers different levels of consumption for 

each day could fix this shortcoming. This could be important in certain applications; for 

example, in evaluating the instantaneous pairing of PV systems with buildingelectricity 

demand. New studies on the variations of electricity consumption between different days 

for one household would be necessary to implement such a factor and is recommended for 

further work. Nevertheless, the newly developed model was shown to offer better 

performance than the original models for the simulation of DHW and electricity 

consumption in a multi-residential building in Canada.  

 

The model was developed with the objective of being coupled with building simulation 

software. The model could also be used in several disciplines such as sociology, 

psychology, grid design, urban logistics and many others. With respect to energy 

assessment models, the generated profiles could directly provide occupancy, DHW and 

electricity use time series to the building numerical model, which is crucial for the 

calculations of internal gains and of the overall energy demand of the building. To estimate 

internal gains generated by the occupants themselves or for performing calculations of air 

quality and contaminants diffusion, it would be beneficial to know when they are sleeping 

in the building. The model currently does not discern between being away from the 

building and being in the building, but sleeping. Therefore, a possible improvement would 

of a third state (sleeping) in the occupancy model. Also, socioeconomic factors were not 

directly considered in the version of the model presented in this paper. In preconstruction 

simulations, it could be difficult to know the household composition of a dwelling. Instead 

of weighting the model for age, gender, salary and other social parameters, it was thus 
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decided to use scale factors drawn from probability density functions created to simulate 

the variability in consumption related to those parameters. Considering socioeconomic 

factors (age, salary, energy price, education…) could increase the accuracy of the model, 

in particular when one wants to simulate a specific and existing building for which this 

information is available. For instance, the energy consumption in the case study building 

was more balanced than predictions from the unified model during the day with no peak of 

consumption during the morning. This discrepancy might be explained by the young 

population of the building and/or by its social housing aspect. However, considering these 

factors would require significantly more data as the observations made in this paper are 

derived from a single case study building. More monitoring studies on occupant behavior 

in different types of residential buildings are needed to further increase our understanding 

on this topic. 

 

The existing base models used to create the united model presented in this paper were 

developed in Canada, United Kingdom and United States. Although differences in 

occupant behavior are observed between these countries, one could argue that their 

socioeconomical environment are similar, which eased the process to adapt the models for 

Canada. The methodology would need to be tested with countries where residents have 

substantially different domestic hot water use or electricity consumption patterns. For 

example, these differences might come from work schedules (e.g., variation of the number 

of hours spent at work vs at home in different countries), energy price (e.g., the energy 

price structure in a country might influence the way people consume energy), climate (e.g., 

number of hours spent inside versus outside, use of artificial vs natural lighting, etc.), and 

so on. The extent to which the approach used in the paper could be extended to countries 

with very different occupation behaviors is yet an open question. To minimize bias in the 

scheduling of occupancy and of energy events, using occupancy data or models from a 

specific country will always be preferable than using scaled data from another country, but 

when this option is unavailable, the scale strategy seems to provide satisfying results for 

the generation of realistic energy use profiles.  
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Table A1. Daily amount of time spent on various household activities for the average person [26], [31]. 

Activities Canadian data [min] British data [min] 

Active occupancy  492 527 

Cooking 42 37 

Watching TV 126 85 

Household work 73 57 

 

 

 

 

 

 

Table A2. Aggregated daily DHW use per dwelling for five water appliances [17], [54], [60]. 

Hot water appliances Canadian data [L/day] American data [L/day] 

Shower 59 73 

Bath 40 18 

Sink 81 65 

Clothes washer 36 24 

Dishwasher 9 15 

Total consumption 225 195 
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Table A3. Specifications used by the model for each appliance to compute their operating schedule and energy consumption [18], [50]. 

Appliance Activity 
Operating 

Power [W] 

Standby 

power [W] 

Event 

length 

[min] 

Probability of 

use 

Annual 

consumption in 

Canada 

[kWh/year] 

Annual 

consumption in 

the UK 

[kWh/year] 

Refrigerator None 265 0 20 0.1902 801 87 

Freezer None 263 0 20 0.1916 614 277 

Desktop computer Occupant 250 5 300 0.0023 749 247 

Laptop computer Occupant 130 0 300 0.0016 156 - 

Stereo Occupant 120 9 60 0.07858 153 80 

Coffee maker Occupant 900 0 3 0.1330 130 - 

Kettle Occupant 1500 1 3 0.1662 225 157 

Lighting [141 m2] Occupant - 0 - - 2030 715 

Dishwasher DHW 467 0 35 - 94 91 

Clothes washer DHW 505 1 30 - 99 149 

TV 1 Watching TV 100 3 73 0.0631 99 236 

TV 2 Watching TV 100 3 73 0.0635 99 140 

TV receiver box Watching TV 40 2 73 0.1104 63 128 

Exhaust fan Cooking 250 0 30 0.2035 90 - 

Hot plate Cooking 1250 1 16 0.1715 219 128 

Microwave Cooking 1500 2 30 0.0658 197 66 

Toaster Cooking 1200 0 3 0.2598 58 - 

Range Cooking 1600 3 43 0.1950 770 145 

Dryer Laundry 4115 1 45 0.8892 1284 80 
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Hair dryer Wash/Dress 1000 0 5 0.2042 60 - 

Iron Iron 1000 0 30 0.4675 72 16 

Vacuum cleaner House cleaning 800 0 20 0.1964 96 69 

 


