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Abstract

This study presents a probabilistic analyses of suction bucket installation 

in cohesionless soils. The spatial variability of soil properties is quantified 

using a representative survey dataset from practice. Vertical random field 

modelling is used to model cone resistance variability and probability den-

sity functions are fitted using drained parameter estimates. Conventional 

installation analysis methods are adapted for layered soil deposits. The ef-

fect of varying permeability is included through the incorporation of a finite 

element seepage model. Parametric uncertainties are considered through a 

Monte Carlo analysis and the results are interrogated through a variety of fea-

sibility and sensitivity studies. Performing such an analysis allows a designer 

to gain insights into governing failure mechanisms and objectively quantify 

the impact of uncertainty regarding parameter estimates.

Keywords: Suction buckets, Geotechnical installation, Uncertainty 

analysis, Spatial variability
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1. Introduction

Offshore wind developments are moving to deeper waters, as suitable

near-shore sites become increasingly difficult to find. In addition environmen-

tal regulations regarding installation noise are becoming more strict. Suction

buckets provide a quieter, rapid installation alternative to piled foundations

and are comparatively simple to decommission [1]. They can be used as a

foundation or anchoring system for either bottom-founded or floating wind

turbines [2]. According to the latest WindEurope report [3], suction buckets

comprise a very small percentage of offshore wind foundations in European

developments at this moment, with piling still the preferred option. Unfortu-

nately, this means there is little practical guidance or precedence on suction

bucket installation. Assessment of the feasibility of suction bucket installa-

tion is hindered as a consequence.

A suction bucket foundation consists of an upside down bucket which

is installed through the generation of reduced pressure within the buckets

enclosed area [4]. Characterising in-situ soil properties and how they vary

across a site is of critical importance when assessing the feasibility of suction

buckets [1]. Parameter variability is of particular importance when assessing

in-situ soil strength and permeability. Unfortunately, permeability is noto-

riously difficult to measure accurately but of paramount importance to the

successful installation of suction buckets [5]. This paper provides insight into

the impact of uncertainties on the installation design.
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Engineers have a number of competing strategies for considering uncer-

tainty: 1). ignoring it altogether - a surprisingly common but dangerous

practice, 2). being conservative - a practice which generally results in a safe

but overly expensive design. The primary drawback being that without ex-

plicitly considering variability it is impossible to determine how conservative

one is being. 3). the observational method, which involves changing the de-

sign during construction or operation to accommodate observed behaviour

and correct for it. While this approach is quite successful in its own right it

has a number of drawbacks, mainly changing costs and construction times.

4). Quantify uncertainties, using reliability-based design methods [6]. While

the first three can only give an impression of certainty the latter can ex-

plicitly account for uncertainties and give a true measure of conservatism [7].

Reliability-based design methods were originally developed to model low rate

of occurrence and high risk problems such as those encountered in nuclear

design [6]. To accurately apply these methods in the geotechnical domain,

realistic descriptions of measurement errors, model errors and the spatial

variability of soil properties are required [8]. Unfortunately, these are diffi-

cult to obtain due to the limited availability of measurements and the large

inherent uncertainty in geotechnical parameter estimation approaches [9].

Nevertheless, these methods have been successfully applied in the fields of

levee design, slope stability, bearing- and lateral pile capacity among others

[8], [10], [11], [12], [13]. To date however, there are few practical examples of

reliability being applied to quantify uncertainty in the installation of offshore

foundations [14]. Reliability based approaches are ideal for the consideration

of installation studies given the costs and risks involved.
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This study demonstrates how reliability methods can be used to investi-

gate the impact material uncertainty has on the installation of suction buck-

ets in cohesionless soils. Qualitative reliability analyses, that focus on events 

and failure mechanisms which could arise during installation, are performed. 

Two design methods for suction bucket installation are analysed and adapted 

for layered soils with varying permeabilities. Spatial variability of parame-

ters is objectively quantified in order to apply reliability-based design to 

suction bucket installation design methods. A representative geotechnical 

survey from an offshore wind farm is used to obtain the variability estimates. 

Quantified parametric uncertainties are implemented in the adapted design 

methods using a Monte Carlo simulation. The results are used to assess 

the impact of parametric variability in a series of feasibility and sensitivity 

studies.

2. Analysing suction bucket installation

Before performing a quantitative reliability assessment, qualitative relia-

bility methods are considered to account for and relate failure events (that are 

not directly accounted for) to traditional design methods. Figure 2 displays 

the followed procedure during the analysis.

2.1. Overview of suction bucket installation

The installation of suction buckets has a number of phases. In the initial 

phase the suction bucket penetrates into the seabed under its own weight. 

Before breaching further into the seabed the bucket must first penetrate 

through the scour protection layer previously placed at the site [15], [16]. 

When the soil resistance equalises with the submerged weight on the bucket,
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Figure 1: Methods (with Sections) forming the reliability analysis performed in this study

water is pumped out of the bucket cavity. This generates a pressure differ-

ential (s) within the bucket cavity relative to the surrounding water pressure 

(Figure 5). This under pressure results in a net downward driving force (in 

addition to the self weight) and causes seepage flow into the bucket as water 

pressure attempts to equilibrate. The seepage flow reduces the soil’s effective 

stress profile along the inside and under the bottom annulus of the bucket. 

Thereby reducing the soils resistance to suction bucket installation [4], [17]. 

Installation is considered to be successful if the bucket reaches its target depth 

without refusal or structural damage.

Between placing the suction bucket on the filter layer and reaching target 

depth, different events can occur which can lead to installation failure. Some 

of the phenomena causing failure can be mitigated through the application 

of contingency measures. Prior to examining quantitative design methods, 

the whole installation process is qualitatively inspected by means of event 

tree (subsection 2.2) and fault tree analyses (subsection 2.3).
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2.2. Event tree analysis

An event tree is a method of mapping all possible scenarios between the

initiating event (placement of the bucket on the filter layer) and all possi-

ble outcomes (installation success/failure) using Boolean logic to determine

subsequent consequences [6], [18]. An objective analysis of the impact of

hazards and the effectiveness of contingency measures is possible with an

event tree, provided that all probabilities inside the tree are unconditional

and mutually exclusive [7]. Figure 2 presents a general event tree of suction

bucket installation.

Figure 2: General event tree for geotechnical installation of suction buckets

Specific causes of premature refusal can be (partially) mitigated by the

application of contingency measures. For example, if the suction bucket

does not achieve sufficient initial penetration, local piping may occur and

jeopardise the attainment of the target penetration depth. In such a case

one can consider the application of ballast to increase the downward force. If

successful, this measure can lead to penetration to a depth where the suction

process can begin. If not, premature refusal is the consequence. Including

all individual contingencies leads to a very large event tree. Contingencies

can be organised into sub-event trees per installation phase to prevent this.
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However, many contingencies (e.g. jetting, crane actions and cyclic pump-

ing) cannot yet be quantified as their likelihood of occurrence is low and 

accurate design methods are absent. Two contingencies are included in this 

study. Ballast material can be applied if insufficient initial self weight pen-

etration occurs. Back-fill material (grout) can be used at refusal to fill the 

gap between the target and final penetration depth [15]. If a contingency 

can be applied successfully, it will lead to a reduction in the probability of 

failure of installation.

2.3. Fault tree analysis

Fault trees can be used to map conditions that need to be met for failure 

to occur [6]. If the probability of occurrence of each mechanism is known 

the probability of failure of the entire system can be analyzed. The fault 

tree presented in Figure 3 was developed for application in this study. Un-

fortunately, mutual exclusivity of failure mechanisms is hard to realise since 

several mechanisms can occur simultaneously, while the correlation of fail-

ure mechanisms is difficult to determine due to the non-alignment of design 

methods.

Installation of the suction bucket fails when penetration to target depth 

becomes impossible due to structural failure (buckling), pumping system 

failure (cavitation) or the exceedance of some geotechnical limit state (eg. 

piping or soil plug heave) [19]. These limitations are combined into a critical 

suction profile which can be regarded as the maximum allowable under pres-

sure inside the bucket cavity at each penetration depth. A range of possible 

failure mechanisms have been identified in previous case studies [4], [15]. Al-
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though many failure mechanisms can already be predicted, it remains hard

to take phenomena caused by the filter layer or laminar layers into account

accurately.

Figure 3: Fault tree for installation of suction buckets in this study

2.4. Deterministic installation design methods

Understanding how soil resistance develops during penetration forms the 

basis of suction bucket installation design [4]. Two main methods are avail-

able to perform such a study: the empirical CPT-based method (Cone Pen-

etration Test) [20], [21] and the theoretical approach by Houlsby & Byrne 

[16]. Both methods are based on open-ended pile design and compute the 

soil resistance as the sum of skirt friction and the end-bearing capacity [16]

(Figure 4). Both design methods consist of an assessment of two installation 

phases: self weight and suction-assisted penetration. The self weight pen-

etration depth is computed by balancing the sum of end-bearing resistance 

(Rb) and skirt friction (Ri∨o), with the submerged weight on the bucket (V ′). 

In the second phase, the combined effects of the submerged bucket weight and 

the applied differential pressure (s) is equilibrated with the total soil re-
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sistance accounting for any reduction caused by the applied under pressure. 

This vertical balance is solved for the required suction (s) at each penetration 

depth (h).

Figure 4: Installation forces during installation of buckets in cohesionless soils

2.4.1. CPT-based method

Conventional CPT-based design correlates the cone resistance obtained 

in a cone penetration test (qc) to the skirt friction and end-bearing via two 

empirical factors. A shaft friction factor (kf ) between 0.001 and 0.003 and 

an end-bearing factor (kp) between 0.3 and 0.6 is recommended in the liter-

ature [20], [21]. Specific methods correlating these empirical factors to soil 

properties are absent. The initial self weight penetration phase is modelled 

using Equation 1. The effect of under pressure (s) during phase 2 is then 

incorporated in the following manner. The effect of under pressure on the 

outer skirt is ignored. A linear reduction in value of inner skirt friction and 

end-bearing from initial values towards zero is assumed as under pressure
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increases. Both resistance components become zero when the applied under 

pressure (s) is equal to the soil suction limit (sc) (Equation 2) [21]. Erosion of 

the inner plug commences at this soil suction limit (Section 2.4.3). Empirical 

formulations for hydraulic failure of the soil plug (sc) have been developed 

for soils of uniform permeability [19]. A thorough description of this design 

method is available in [21].

V ′ = πDikf

∫ h

0
qc(z)dz + πDokf

∫ h

0
qc(z)dz + (πDt)kp(h)qc(h) (1)

V ′ + s
(
πD2

i

4

)
= πDokf

∫ h
0
qc(z)dz+

[
1− s

sc(h)

] [
πDikf

∫ h
0
qc(z)dz + (πDt)kp(h)qc(h)

] (2)

2.4.2. Houldsby & Byrne method

The Houlsby & Byrne method is based on the classical bearing capacity

approach. The skirt friction is computed as a product of local horizontal

effective stress (σ′h) (calculated through the ratio of horizontal over vertical

stresses, K) and the interface friction angle (δ). End-bearing is computed

through end-bearing factors Nq and Nγ (Equation 3). The effective vertical

stresses are enhanced by frictional forces further up the skirt and therefore

develop differently on the inside (σ′vi) and the outside (σ′vo) of the skirt [16].

Linear development of under pressure between an applied suction (s) and a

times the applied suction (as) at the skirt tip is assumed on the inside of the

suction bucket. While outside, a linear under pressure dissipation from (as)

at the skirt tip to zero at the seabed interface is assumed, see Equation 4.
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The factor a was determined from finite element studies in soils of uniform 

permeability allowing for a fixed value of loosening the inner soil plug [16]. 

Interested readers are referred to [16] for a more thorough explanation.

V ′ =

∫ h

o

[σ′vo(K tan δ)o + σ′vi(K tan δ)i] dz +

[
σ′v(h)Nq + γ′

t

2
Nγ

]
(πDt) (3)

V ′ + s
(
πD2

i

4

)
= {[σ′v − (1− a(h)) s]Nq + γ′tNγ}(πDt)+

∫ h
o
{(σ′vo − as)(K tan δ)o + [σ′vi − (1− a)s] (K tan δ)i}dz

(4)

2.4.3. Critical suction

After calculating the required suction, the critical suction level (the suc-

tion at which inner erosion starts to occur) is determined. Inner erosion of 

soil starts when the exit hydraulic gradient (i) (Figure 5) adjacent to the in-

ner skirt exceeds some critical value imposed by gravitational forces (ic) [19]. 

This is computed with the effective soil unit weight (γ′) and the unit weight 

of water (γw). The exit hydraulic gradient is a function of the seepage length 

(ls). Using the results of an axisymmetric finite-element seepage model and 

the relationship described by Equation 5 several empirical soil suction limit 

formulations (sc) were developed [19]. However, work by Panagoulias et. al.

(2017) suggests that these limits are too conservative [22]. Local exceedance of 

the critical gradient does not necessarily lead to definitive refusal since global 

stability might still be preserved. This matter is further discussed, for instance 

in [19] and [22].

i =
s

γwls
, ic =

γ′

γw
, sc = lsγ

′ (5)
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2.4.4. Adaptations to existing design methods

All methods discussed were developed for soils that have uniform perme-

ability with depth. Under uniform soil conditions, the change in effective 

stress brought about by the developed underpressure would be consistent 

across the site. However, when permeability varies across a site this is no 

longer the case and significant variation in effective stress reduction occurs. In 

practice there are questions over the suitability of the original methods as 

permeability variation and progressive soil plug loosening are to be expected 

[5], [23]. In this study two adaptations are made to the existing axisymmet-ric 

finite-element seepage models [19]. Firstly, progressive soil plug loosening is 

applied for the cohesionless layers where seepage occurs. The inner soil plug 

permeability (ki) is multiplied with a factor (kr) with respect to the outer 

permeability (ko). Plug loosening increases with penetration depth (h) 

according to Equation 6 as proposed by Harireche et al. [23]. In this paper the 

same loosening relationship has been applied to all layers of non-cohesive 

material. Secondly, different layer elements are incorporated into the model 

thereby allowing for changes in permeability with depth.

kr =
ki
ko

= 1.4 + 3
h

D
(6)

Figure 5 shows the impact of these adaptations on the developed under 

pressures by comparing two case studies. The left-hand side plot shows a case 

of constant permeability with no plug loosening. While the right-hand side 

plot includes a thin less permeable (80% permeability reduction) soil layer at a 

depth of 1 to 2 m and incorporates the effects of plug loosening (kr = 3.2). The 

under pressures are normalized with respect to the applied under
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pressure in the suction bucket cavity. Figure 5 shows the normalized under 

pressures for the two cases. Reducing the permeability causes a decrease in 

hydraulic head along the inner skirt wall and tip and consequently an increase 

in soil effective stress. Conventional design methods would under-estimate the 

encountered resistance in such a case. This could lead to premature refusal 

during installation. Plug loosening increases permeability along the wall and 

thereby decreases soil resistance. Both effects need to be accounted for more 

accurate installation design.

Figure 5: Impact of permeability variation and plug loosening on the seepage model output

Integrating the adapted seepage model with existing installation design 

methods makes them suitable for application in layered soils of varying per-

meability. As a consequence, model uncertainty reduces. The skirt friction 

and end-bearing resistance variation in both methods is carried out propor-

tionate to the change of enhanced vertical effective stresses (σ′vi and σ′vo) by the 

applied under pressure (s) [16]. The hydraulic head difference over the bucket 

wall always scales linearly with the applied under pressure. This
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means that a seepage analysis needs to be performed once per penetration 

depth and installation design becomes an iterative procedure, see Figure 6 

and Appendix Appendix B.1.

Figure 6: Iterative procedure due to integrating FEM seepage analysis into design methods

3. Quantifying parametric uncertainties

This study uses a vertical random field model to describe cone resistance

(qc) variability with depth. Fitted probability density functions are used to

model the variability of all other parameters. The accuracy of both of these

approaches is sensitive to both soil type and layering [24]. Therefore, several

approaches are considered to ensure representative layers are identified.

3.1. Layer and soil type identification

The presence of soil layers which have different properties (strength, stiff-

ness, permeability etc.) and exhibit different behavior under stress can have a

large impact on the installation of suction buckets. Accurate layer identifica-

tion is therefore a necessity. This study employs four distinct identification

methods simultaneously: borehole logs, the soil behaviour type index, the

statistical moving window method and Bartlett profiling.
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Borehole logs contain the subjective interpretation made during visual 

examination of the samples on site (e.g. sub angular coarse grained sand). 

Often these logs contain additional information on the geological history of 

the deposit [25]. Borehole logs are valuable for identifying small layers or 

lenses which might not be captured by a cone penetration test. The soil be-

haviour type index (Ic) is computed after normalising the cone tip resistance 

(qc) and the shaft friction (fs) with effective stress (Qt, Fr) (Equation 7 and 8). 

It can be used to give a first indication of the soil type based on an 

interpretation of the Robertson classification chart [26].

Ic =
[

(3.47− logQt)
2 + (logFr + 1.22)2

]0.5
(7)

Qt =
qt − σv0
σ′v0

, Fr =

[
fs

qt − σv0

]
100% (8)

Both the statistical moving window method [27] and Bartlett profiling

[28] utilise a moving window to examine the average soil variance over the

cone resistance profile. The moving window method computes the coefficient

of variation (COV) of the cone resistance in each window. The objective of

this method is to identify homogeneous soil units from such a profile. Bartlett

profiling computes a statistical value (Bstat) per depth based on comparing

the standard deviation of both halves of the sampling window (σb1, σb2),

see Equations 9 and 10. Peaks within the profile indicate a change in soil

behavior. The width of the peaks and troughs in both moving window meth-

ods, depend on the standard deviation of the cone resistance, the number of

measurements (mb) and the chosen window width.
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Bstat =
2.30259(mb − 1)

Cb

[
2 log

(σ2
b1 + σ2

b2

2

)
−
(

log(σ2
b1) + log(σ2

b2)
)]

(9)

Cb = 1 +
1

2(mb − 1)
(10)

None of the four methods mentioned fully correspond to one another. The 

accuracy of the borehole log depends on the loggers experience. Neither 

of the moving window methods has an objective threshold to distinguish layer 

boundaries. As a consequence distinct peaks and troughs in the profile must be 

used. Furthermore, both moving window methods are sensitive to the choice 

of window width. Figure 7 shows that enlarging the window results in a 

significant decrease of distinct peaks, while decreasing the window width will 

result in more peaks indicating layer boundaries, some of which may not exist. 

Both moving window methods are challenging to apply at shallow depths, 

since the magnitude and variation of the cone resistance are typically low. 

While the soil behavior type index (Ic) does have objective identification 

thresholds, it can fail to capture a change in the gradient of the cone resistance 

trendline. This can result in an overestimation of the of cone resistance 

variation when constructing a random field model (Section 3.2).
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Figure 7: Comparison of layer identification by the four methods applied in this study
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None of the four identification methods are without flaws. To verify the 

layer identification process the CPT data from each layer with correspond-ing 

second moments (standard deviations) can be depicted on a Robertson 

classification chart. This allows for further optimisation of layer boundaries by 

selecting boundary locations which minimise second moments. It can also be 

used to merge two identified layers which turn out to have very similar 

characteristics. This avoids overcomplicating the analysis of installation per-

formance. Figure 8 shows the second moment plot for the layers identified in 

Figure 7. At this location eleven layers of different behaviour were identified 

by means of all four methods described. Figure 8 shows a distinct difference in 

both the mean and its variation for all neighbouring layers.

Figure 8: Second moment classification chart for validation of layer identification [26]
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3.2. Random field modelling of cone resistance

A random field model can be constructed for any stochastic process which

can be described by a trend and a variation with zero mean about that

trend [29]. The vertical variability of the cone resistance within each layer

is described by its own random field, see Figure 9. Two prerequisites should

be satisfied in order to ensure applicability [24]:

1. Soil layers used should be physically homogeneous in their behavior;

2. The variations of soil properties about their respective trendlines should

be weakly stationary.

Proper layer identification as elaborated on in Subsection 3.1 can assure 

meeting the prerequisite on physical homogeneity. Weakly stationary varia-

tion along the trendline indicates that there is no trendline incorporated in 

the variation profile which therefore means variation is independent of its lo-

cation within the layer. Besides checking that the variability oscillates about 

a zero mean when detrended, no generally applicable objective methods are 

currently available for the assessment of weak stationarity [28].

Each layer in a random field model requires a trendline describing the 

mean (µ) and a standard deviation (σ), a scale of fluctuation (δv) combined 

with a corresponding theoretical autocorrelation function, R(τ) describing the 

variation [28]. The latter describes the spatial correlation of variation within 

the profile [29]. To obtain this for a given layer at a location the following 

procedure is applied [30]. First, empirical autocorrelation func-tions are 

determined for all variability profiles obtained from different CPT’s
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Figure 9: Example of vertical CPT random field modelling in this study

within the same soil layer according to Equation 11. The mean empirical

autocorrelation is then calculated and theoretical autocorrelation models are

fitted to it using a least squares approach (Table 3.2). The best fitting theo-

retical model is selected with its corresponding scale of fluctuation (δV ) and

is used for all further simulations, see Figure 10 and Appendix B.2.

Three criteria are considered to match soil layers from different CPTs

in order to ensure that the correct data is used for determining the mean

empirical auto-correlation:

1. The layers should have a similar soil behavior type index (∆Ic < 5%);

2. The layers should belong to the same geological deposit;

3. The layers should overlap in depth.
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Applying these criteria allows for the generation of theoretical auto-

correlation functions which are based on the empirically fitted curves rep-

resentative of the site at large, see Figure 10.

ρ(τj) =
1

σ2(n− j)

n−j∑
i=1

(Xi − µ)(Xi+j − µ) (11)

Model Equation Scale of fluct.

Single exponential R(τ) = exp(-λ |τ |) δv = 2 / λ

Binary noise R(τ) = 1- c|τ | (if |τ | =1/c) δv = 1 / c

Cosine exponential R(|τ |) = exp(-b|τ |) cos(bτ) δv = 1 / b

Second-order Markov R(|τ |) = (1 + d|τ |) exp(-d|τ |) δv = 4 / d

Squared exponential R(|τ |) = exp[-(α τ)2] δv =
√
π / a

Table 1: Theoretical autocorrelation models common in geotechnical data analysis [28]

Figure 10: Fitting auto-correlation model to differently sized but matching soil units
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Many current vertical random field studies consider few soil layers and 

model large outliers as cone resistance variation [31], [32]. This is feasible 

for very homogeneous soils over depth and closely spaced cone penetration 

tests. Offshore cone penetration tests are typically positioned further apart. 

Additionally, the presence of thin laminar layers can severely impact layer 

permeabilities and can have serious consequence on the installation design of 

suction buckets and therefore should not be ignored. These arguments 

emphasize the need for one random field per soil layer with corresponding 

trendlines and variance description (as in Figure 9).

Negative cone resistances are a physical impossibility and therefore must 

not be simulated [10]. To prevent this, simulated Gaussian processes are 

transformed into the log-normal domain. Caution should be exercised at 

locations where the fitted linear trendline values are close to zero or negative. 

This can happen if the trendline for the uppermost layer is not constrained to 

the positive domain. In such cases it will be difficult to avoid simulating 

negative cone resistances. The trendline should always be corrected to only 

contain small near-zero positive values to avoid this.

3.3. Continuous probability density functions (PDF)

Parameter estimates are obtained from the results of laboratory or field 

tests via direct measurement or correlation (Table 3.3). The required pa-

rameters are treated as random variables as they can have different values 

under different conditions which have a different probability of occurrence 

[33]. The probability of occurrence is described by a continuous PDF. Dif-

ferent soil types form under different conditions and can have a difference in

22



geotechnical properties as a consequence. Therefore parameter estimates are 

grouped per soil type. Histograms are plotted for different parameter group-

ings and soil types to ensure that the resulting continuous distributions are 

uni-modal. Discrete variability is then quantified using both histograms and 

fitted empirical Cumulative Density Functions (CDFs). Figure 11 shows the 

calculated permeability CDF for the different soil types. The result is as 

expected since finer soils have a lower permeability. As previously discussed, 

Gaussian distributions are not suitable for modelling parameters which can-

not have values in the negative domain. Several PDFs are fitted and assessed 

for each parameter.

Variable Symbol Type Used

Soil unit weight γ′ Measurements -

Relative density RD Correlation Jamiolkowski [34]

Angle of internal friction φ Correlation Andersen [35]

Permeability k Correlation Kozeny-Carman [36]

Interface friction angle δ Estimate δ = φ - 5o [37]

Stress ratio K Estimate K = 1-2 [38]

Table 2: Parameter estimation methods applied on the case study dataset

All probable distributions are fitted using the maximum likelihood esti-

mator to determine shape and location factors. Two ’goodness of fit tests’

are applied to objectively assess the accuracy of the fit. The Pearson χ2 test

compares the shape of the continuous PDF to its normalised histogram. The

weighted error is checked against a predetermined threshold based on the

number of estimates and the χ2 distribution [39]. The Kolmogorov-Smirnov
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Figure 11: Different empirical cumulative density functions of estimated permeability

Function Variables Domain Remark

Gaussian distribution φ, γ′ All Common

Log-normal distribution k, φ, γ′ Positive Common

Weibull k, φ Positive Common

Beta k, φ Positive Flexible shape

Exponential k Positive Decaying, starts at 0

Uniform distribution K All Discontinuous

Table 3: Probable continuous probability density functions selected for fitting procedure

test determines the maximum error between the empirical and continuous 

CDF. It compares this to a threshold which depends on the number of param-

eter estimates [40]. The score of both tests is normalised by their respective 

threshold and averaged afterwards. The fitted continuous distribution which 

scores best on average is used to describe the variability of a parameter in a 

given soil type. A minimum of 30 samples is set as the lowest threshold for 

Pearson’s χ2 ’goodness of fit’ test. Otherwise the mean value is used as a 

deterministic estimate. Figure 12 shows the procedure for modelling the 

variability of the permeability of medium to fine sands based on 51 estimates. 

The log-normal distribution showed the best fit.
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Figure 12: Fitted continuous distributions for permeability of medium to fine sands

4. Quantitative reliability analysis

In this section, the quantified parametric uncertainties from Section 3

will be implemented into the developed design methods for different failure

mechanisms and contingencies (Section 2). The results provide insight into

the impact of uncertainties on installation design.

4.1. Monte Carlo simulation

Almost every design problem can be simplified into a combination of a

load (S) and a resistance (R). Feasibility can likewise be expressed by the

limit state (G = R - S). A limit state (G < 0) value below zero corresponds to

a failure scenario, while (G > 0) represents a safe design. [6]. In this study,

the resistance is represented by the critical suction profile (sc) and the load

by the required suction profile (sr). Both the empirical CPT-based method

and the theoretical approach of the Houlsby & Byrne method are used to de-

termine required suction profiles. Each quantifiable failure mechanism (e.g.
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buckling, cavitation or inner erosion) is expressed as the maximum allowable 

underpressure at that depth. This forms a limit state over depth which may 

not be exceeded by the applied underpressure.

The original limit state formulation is not usable for continuous processes 

like suction bucket installation, as failure could occur at any depth. Therefore 

the smallest absolute difference does not necessarily represent the point most 

likely to fail. The relative magnitude dictates the reliability instead. The limit 

state is normalised by the critical suction profile to find the point which is 

relatively closest to failure (Equation 12).

G = sc − sr → G = 1− sr
(12)

sc

The probability of failure can be assessed in a quantitative reliability 

analysis. Suction bucket installation is a multi-dimensional problem due to 

its many input parameters. This hinders application of direct integration or 

first order reliability methods [41]. Regular Monte-Carlo simulation is the 

most suitable method for these types of problems; as it allows for the di-

rect input of advanced probabilistic distribution types and is accurate when 

sampled extensively. Parameters are randomly sampled from their represen-

tative distributions to construct design profiles. The number of iterations 

which fail divided by the total amount of iterations carried out represents the 

probability of failure (Figure 13 and Appendix B.3).
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Figure 13: Monte Carlo simulation for probability of buckling failure at one location

One drawback of Monte-Carlo simulation is that the time taken to assess

low probability events can become significant, particularly when a high degree

of accuracy is required. Optimised methods for faster computation (e.g.

Markov Chain Monte Carlo, Importance Sampling etc.) do exist and are

applied in literature [42]. However, when used in combination with random

field models and a depth dependent limit state (e.g. composed critical suction

profiles) any time savings are lost.
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4.2. Feasibility assessment

The probabilities of failure due to buckling, exceeding soil suction limits 

and cavitation are assessed using Monte-Carlo simulations of 5,000 iterations. 

An example for a bucket with a diameter (D) of 10 m, final penetration depth 

(h) of 5.5 and wall thickness (t) of 45 mm is presented in Figure 13. In this case 

the CPT-based method (adapted for layers of varying permeability) is 

applied. The effect of contingency measures such as the application of ballast 

and backfill material are included where appropriate to reduce probabilities of 

failure accordingly (Section 2.2). The observed failure probabilities are high. 

The large model uncertainty contributes to this as: 1). The soil suction lim-

its are believed to be too conservative and the impact of many contingency 

measures cannot be quantified [22]. 2). The error in CPT results can be 

quite high, as CPT cones sample a relatively small area compared to that of 

the suction bucket. Therefore, they register the significance of occluded peb-

bles etc. as more important than they actually are when scaled up. 3). The 

model error in measuring permeability and soil friction angles is significant, 

particularly given the scale of magnitude of the change these parameters 

undergo during loading. Aside from model error, the lack of sufficient sur-vey 

data to accurately model horizontal variability adds uncertainty to the 

analysis. Lateral variability of soil strength and permeability cannot be in-

cluded, which eliminates the opportunity of including some aspects relevant 

to suction bucket installation (e.g. preferential flow and horizontal strength 

variation) [15].
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The importance of a quantitative reliability analysis becomes clear when 

one compares the results to that of conventional design methods. In current 

driveability practice, it is common to construct lower and upper bounds us-

ing a standard safety factor (γ=1.25) [43]. Taking 95% reliability intervals, 

as recommended by Eurocode 7 for underpressure at each depth, the output of 

the Monte-Carlo simulation could be used instead of a conventional design 

approach. In the left plot of Figure 14 a deterministic estimate and the out-

come of all iterations in the Monte Carlo simulation are presented. These are 

then translated to a lower and upper bound using the conventional method (γ 

= 1.25) and 95% reliability intervals in the right plot (Appendix B.3). As the 

bandwidth of the conventional method is consistently lower than that of the 

reliability based approach, it would appear that the selected safety factor is 

non-conservative with respect to the quantified uncertainties and carries a 

greater failure probability.

Figure 14: Comparison of deterministic design with a safety factor to a reliability interval
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4.3. Sensitivity analyses

Failure mechanisms develop when an unfavorable load resistance envelope

occurs at a location. The sampled parameters and limit state profiles of a

Monte-Carlo simulation can be used to assess the origin of generated fail-

ure situations. Failure is observed when simulated soil resistances are high.

When a high soil resistance is observed the angle of internal friction (φ) and

the ratio of horizontal stress (K) are high too. The probability of failure is

therefore very sensitive to any change in these parameters.

The influence of parameter estimates as well as the incorporation of vari-

ability can be determined with a quantitative reliability analysis. Figure 15

illustrates this using the Houlsby & Byrne design method. In the left plot

the median profiles of all samples with particular stress ratios (high and low)

are plotted. These are extracted from the bulk of iteration results during

a Monte Carlo analysis. One can see that the stress ratio (K) estimate has

a large impact on the outcome profile. This is unfortunate given the great

difficulty in accurately estimating this parameter in cohesionless soils [17].

However, it also shows the power of reliability analyses in influencing decision

makers to perform more field tests.

The right graph of Figure 15 gives an example of the impact of parametric

variability on the results. Two 95% confidence intervals are plotted showing

the results of two Monte-Carlo analyses. The first Monte-Carlo analysis was

executed with varying permeability estimates sampled from the previously

determined distributions. The second analysis was executed using the ex-
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Figure 15: Influence of stress ratio estimate and permeability variation on design outcomes

pected values from the same distributions. One can see that incorporating

the variation of permeability has significant impact on the upper bound of

the confidence interval, naturally having this much uncertainty in your un-

derpressure development will led to a less reliable installation. Combined

with the fact that it can be used to assess and simulate governing failure

mechanisms one can state that incorporating permeability variation is re-

quired.

Figure 16 shows simulated failures and corresponding histograms of sam-

pled permeabilities. The low sampled permeability in layer three indicates

that the governing failure mechanism is seepage blocking. This low perme-

ability layer prevents the generation of underpressures beneath it and there-

fore fails to reduce soil resistance which can cause premature refusal. Slight

deviations towards higher permeability in lower layers are present too and
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indicate the occurrence of stucking. In such cases high permeability layers

hinder the generation of sufficient underpressure. As a consequence the soil

resistance is insufficiently reduced to allow for further penetration [15]. Un-

derstanding governing failure mechanisms can help in planning contingencies

as well as setting the scope for future site investigations.

Figure 16: Parametric study leading to identification of governing failure mechanisms
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5. Conclusion and discussion

This study objectively quantified variability of geotechnical parameters 

and incorporated it into two existing design methods for suction bucket in-

stallation. The impact of considering permeability variations within layers 

and between layers was shown to be highly significant and should be con-

sidered in practice. The existing installation design methods were adapted to 

integrate a finite-element seepage model and progressive plug loosening, thus 

making them suitable for application in layered soils of varying per-meability. 

As a consequence, model uncertainty reduced. Application of reliability-based 

design led to an improved understanding of the expected failure mechanisms 

through investigating model sensitivities. Additionally, it provides a basis for 

accurately determining conservatism, thereby reducing the chance of 

unexpected failure.

Suction bucket installation design research typically uses ideal data-sets 

with homogeneous soil conditions. This study showcases the steps necessary 

to adapt these methods for non-homogeneous sites such as those commonly 

found in practice. In such conditions, layer and soil type identification are 

essential in order to avoid over- or underestimation of the soil resistance 

during installation. Integrating these features into installation design ac-

counts for several unfavourable effects (e.g. seepage blocking and stucking), 

which would otherwise not be considered. This helps to more accurately 

predict the occurrence of premature refusal and increases the safety margin in 

installation design. Four layer identification methods were presented and 

contrasted in this research. It was found they were seldom in complete agree-
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ment, but were best utilised in combination with each other. It was shown 

that a statistical sound application of vertical random field modelling of the 

cone resistance requires a more extensive check on its prerequisites (homo-

geneity and stationarity). Due to the shallow embedment depth of suction 

buckets, assuming homogeneity or stationarity without checking can lead to 

substantial over- or under estimation of the cone resistance and hence the re-

sistance calculated in suction bucket design. Each layer needs to be properly 

identified and assigned its own random field. This is challenging in practice 

since the accuracy of a vertical random field is hard to assess without many 

closely spaced CPTs. Probability density functions provide an excellent tool 

for modelling the variability of soil parameter estimates. Using ’goodness of 

fit’ tests such as the Pearson χ2 and the Kolmogorov-Smirnov test is recom-

mended since they objectively assess distribution fit and suitability.

Integrating Monte Carlo simulation outputs into the developed fault tree 

resulted in high estimates of the probability of installation failure. The high 

failure probability can partly be attributed to conservatism in the compu-

tation of the limit state (critical suction). Currently, soil limits are set at 

under-pressure values which are computed based on the onset of erosion. 

However, the onset of erosion is not necessarily synonymous with installa-

tion failure. Future model tests should give more insight into the geometric 

extent of critical gradients at failure.
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The reliability study as well as the installation design method can be 

improved by assessing other design aspects as well. For example at this point, 

it is not possible to calculate the influence of a filter layer on the pen-etration 

process. Furthermore, the CPT-based method can be improved by developing 

an estimation method for the empirical coefficients based on back-calculation 

using measured field data of similarly shaped foundations. This study shows 

that 95 % reliability intervals can be used to verify adaptations made to 

installation design or parameter estimates. If the bandwidth of an improved 

method consistently decreases towards the measured output during 

installation one can verify whether the adaptations made can be considered an 

improvement. Mutual exclusivity of failure mechanisms is hard to realise since 

several failure mechanisms can occur simultaneously while at present their 

correlation is difficult to determine due to the non-alignment of design 

methods. Better design method alignment would allow this to be accounted 

for within a risk based framework.

In practice, variability of soil properties is difficult to determine without 

extensive site investigation. Without knowing the horizontal variability of soil 

properties it is impossible to quantify preferential flow or spatially average soil 

strength across the diameter of a bucket. Both are likely to significantly 

change design outcomes and their probability of failures. In practice multiple 

buckets are often installed as the foundation for a jacket structure, which 

supports the wind turbine. There is a need to investigate interaction effects 

and develop more accurate modelling of horizontal variability, in order to 

assess the feasibility of such structures holistically as a system.
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Appendix A. Notations

Bstat Bartlett statistical value

D Diameter

Di Inner diameter

Do Outer diameter

fs Shaft friction (CPT)

Fr Normalized shaft friction

G Limit state

h Penetration depth

i Exit hydraulic gradient

Ic Soil behaviour type index

k Permeability

kf Shaft friction factor

kp End-bearing factor

kr Permeability ratio

K Stress ratio

ls Seepage length

L Skirt length

mb Measurements per window

Nq Bearing capacity constant

Nγ Bearing capacity constant

qc Cone resistance

qt Corrected cone resistance

Qt Normalized cone resistance

R Resistance

Rb End-bearing resistance

Ri Inner skirt resistance

Ro Outer skirt resistance

RD Relative density

R(τ) Theoretical autocorrelation function

s Pressure differential

sr Required suction/underpressure

sc Critical suction

S Solicitation

t Wall thickness

V’ Submerged weight on bucket

z Depth

γ Safety factor

γ’ Effective soil unit weight

γw Volumetric weight water

δ Interface friction angle

δv Vertical scale of fluctuation

µ Mean

ρ(τj) Empirical autocorrelation function

σ Standard deviation

σv’ Vertical effective stress

σvi’ Inner vertical effective stress

σvo’ Outer vertical effective stress

τ Separation distance

φ Angle of internal friction
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Appendix B. Pseudocode

Appendix B.1. Adapted installation design method for layered soils

Algorithm 1 can be used in combination with CPT-based design [21] as

well as the Houlsby & Byrne method [16] (Section 2).

Data: Soil parameters for identified layers at each depth

Result: Required underpressure and critical suction

for every penetration depth do

Compute total soil resistance;

if total soil resistance ≥ effective submerged weight then

Save self weight penetration depth;

end

for every penetration depth ≥ self weight penetration depth do

Perform seepage analysis;

Determine critical suction;

Compute change in soil resistance by applied underpressure

according to effective stress reduction;

while reduced soil resistance ≤ driving forces do

Raise or lower applied underpressure

end

if required underpressure ≤ critical suction then

Further suction-assisted penetration feasible;

else

Premature refusal;

end

Algorithm 1: Installation design for layered soils of varying permeability
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Appendix B.2. Parameter estimation vertical random field cone resistance

Reference is made to [32], [29], [30] for generating the random fields.

Data: Multiple CPTs within one survey dataset

Result: Parameters estimation for a random field model of the cone

resistance for one (CPT) location in the survey data set

for every CPT in dataset do

Compute soil behavior type index (Ic);

Compute moving window methods;

Find closest borehole log;

Manually identify soil layers;

Verification with second moment Robertson chart

end

for every layer at location do

Determine trendline and standard deviation;

Compute empirical autocorrelation function;

for every layer in every other CPT do

if layers overlap in depth then

else if layers from same geological deposit then

else if ∆ Ic between layers ≤ 5% then

Add empirical autocorrelation function;

end

Average all added empirical autocorrelation functions;

Fit theoretical autocorrelation models and scale of fluctuation;

end

Algorithm 2: Parameter estimation vertical random fields cone resistance
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Appendix B.3. Monte-Carlo simulation

Data: Identified soil layers, random field parameters for cone

resistance profile simulation (Appendix B.2), probability

density functions soil parameters, suction bucket dimensions

Result: Probability of failure, 95% reliability intervals

Determine geometric parameters;

Determine amount of iterations (N);

for every iteration do

for every identified layer at the location do

Simulate random field of the cone resistance;

Simulate soil parameters from probability density functions;

end

Perform adapted installation design method(s) (Appendix B.1);

Save required underpressure and critical suction profile;

Normalize limit state with respect to critical suction;

if Limit state ≤ 0 then

Failure observed (Nf + 1);

end

Compute probability of failure (Nf/N);

for every depth do

Determine empirical cumulative density function required and

underpressure and critical suction;

Determine 95% reliability intervals from empirical cumulative

density function;

end
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