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Vinylidene Homologation of Boronic Esters and its Application to 

the Synthesis of the Proposed Structure of Machillene 

James M. Fordham,[a] Matthew N. Grayson*[b] and Varinder K. Aggarwal*[a] 

 

Abstract: Alkenyl boronic esters are important reagents in organic 

synthesis. Herein, we report that these valuable products can be 

accessed by the homologation of boronic esters with lithiated 

epoxysilanes. Aliphatic and electron-rich aromatic boronic esters 

provided vinylidene boronic esters in moderate to high yields, while 

electron-deficient aromatic and vinyl boronic esters were found to give 

the corresponding vinyl silane products. Through DFT calculations, 

this divergence in mechanistic pathway has been rationalized by 

considering the stabilization of negative charge in the C-Si and C-B 

bond breaking transition states. This vinylidene homologation was 

used in a short six step stereoselective synthesis of the proposed 

structure of machillene, however, synthetic and reported data were 

found to be inconsistent.  

Vinyl boronic esters are versatile intermediates in organic 

chemistry, participating in a range of transformations including 

cross-coupling,[1] oxidation,[2] homologation[3] and many others.[4]  

Due to their synthetic utility, new methodologies that expand the 

range of accessible vinyl boronic esters are highly desirable, 

especially those that enable the introduction of sp3-rich motifs. 

Many precursors have been used to prepare vinyl boronic esters 

including alkynes,[5] vinyl halides,[6] alkenes,[7] carboxylic acids,[8] 

aldehydes,[9] ketones[10] and, recently, boronic esters themselves. 

Through modification of their conjunctive cross-coupling 

methodology,[11] Morken and co-workers were able to achieve the 

vinylidenation of organoboronic esters 1 to prepare a range of 1,1-

disubstituted vinyl boronic esters 3 (Figure 1).[12] As sp3-rich 

organoboronic esters are readily available,[13-15] vinylidene 

homologations have the potential to greatly expand the range of 

available vinyl boronic esters. Furthermore, we envisaged a 

process wherein iterative homologation of a boronic ester could 

be interrupted by a vinylidenation protocol to create more diverse 

polyketide-type structures.[16]  

Inspired by our previous work on the reaction of lithiated 

epoxides with boronic esters,[17] we set out to exploit the reaction 

of lithiated epoxysilane 4 with boronic esters 1 in a novel 

vinylidene homologation (Figure 1). We postulated that after 

formation of a boron-ate complex, 1,2-metallate rearrangement 

would occur to give β-alkoxy-α-silyl boronic ester intermediate 5, 

which could undergo a Peterson-type elimination[18] to give vinyl 

boronic ester 3. If successful, this method would serve as a 

transition-metal free alternative to the procedure of Morken. 

Based on previous reports,[19] we anticipated that the desired 

Peterson elimination pathway would be favoured over the 

alternative boron-Wittig reaction (forming vinyl silane 6),[20] 

although the mechanistic rationale for this outcome remained 

unclear. 

 

Figure 1. Vinylidene homologation of boronic esters. 

Encouraged by this precedent, we reacted phenethyl boronic 

ester 1a with lithiated epoxysilane 4a (Table 1).[21] After stirring at 

40 °C for 1 h, 11B NMR analysis of the reaction mixture indicated 

that full 1,2-migration had occurred and, after chromatographic 

purification, vinyl boronic ester 3a was obtained as the exclusive 

product in 77% yield (see S.I. for optimisation). The methodology 

was found to be compatible with more sterically hindered 

secondary and tertiary boronic esters (products 3b and 3c), 

although the latter case required higher stoichiometry of 4 for 

optimum yield. Boronic esters containing base and nucleophile-

sensitive groups were also employed and the corresponding 

homologated products 3d and 3e were obtained in 49% and 38% 

yield, respectively. We were eager to investigate more elaborate 

and pharmaceutically relevant boronic esters. Thus, cyclobutyl 

and azetidinyl substrates were subjected to the vinylidenation 

reaction and gave the corresponding products 3f and 3g in 72% 

and 55% yield, respectively, the former being obtained with 

complete diastereospecificity (d.s.). The sensitive vinyl 

cyclopropyl boronic ester 3h was isolated in 51% yield (75% NMR 

yield). Sterically hindered menthyl and cholesteryl-derived 

boronic esters gave vinylidene products 3i and 3j in lower yield 

(32% and 46%, respectively) with a small amount of over-

homologation apparent. A polyketide-type substrate was also 

subjected to the reaction conditions, giving the desired product 3k 
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in 47% yield. This substrate is notable considering the potential 

for β-elimination via intermediate 8, which was not observed 

under our reaction conditions.[22] As lithiated epoxysilanes are 

configurationally stable at low temperature,[21] we expected that a 

trans-substituted epoxysilane would furnish the trisubstituted (E)-

olefin with high selectivity via intermediate 5iii (Table 1B). Indeed, 

epoxysilanes 7b and 7c,[23] gave the corresponding products 3l 

and 3m in 30% and 73% yield respectively and as a single isomer. 

Table 1. Vinylidene homologation of aliphatic boronic esters. 

 

Yields are of isolated products. Diastereomeric ratios were determined by 1H 

NMR analysis of the isolated products. a Reaction performed using 2.5–3.0 

equiv of lithiated epoxide, see SI for details. b Yield in parentheses was 

determined by 1H NMR using CH2Br2 as an internal standard. Cy: cyclohexyl; 

TMS = trimethylsilyl; TES: triethylsilyl; TBS: tert-butyldimethylsilyl; iBu: isobutyl; 

nOe = nuclear Overhauser effect. 

 

The reaction conditions were then applied to sp2-hybridised 

boronic esters, which required longer reaction times due to the 

reduced migratory aptitude of vinyl and aryl groups (Table 2).[24] 

While the electron rich, p-methoxyphenyl boronic ester 1n gave 

the vinyl boron product 3n in 79% yield, indolyl boronic ester 1o 

gave a mixture of vinyl boronic ester 3o and vinyl silane 6o in 31% 

and 28% yield, respectively. This divergence in elimination 

pathway was even more pronounced for electron deficient aryl 

systems. For example, p-chlorophenyl boronic ester 1p gave vinyl 

silane 6p as the major product and, in the most extreme case, p-

trifluoromethylphenyl boronic ester 1q gave exclusively vinyl 

silane 6q in 55% yield. Vinyl boronic ester starting materials also 

gave vinyl silane products 6r and 6s instead of the corresponding 

vinyl boronic esters. 

Table 2. Vinylidene homologation of sp2-hybridised boronic esters. 

 
 

DFT calculations were performed to better understand the 

factors that determined the outcome of the elimination pathway. 

All calculations were performed with Gaussian 16[25] at the 

B3LYP-D3(BJ)/6-311G(d,p)−IEFPCM(n-pentane)//B3LYP/6-

31G(d) level of theory (see S.I. for computational details). 

Previous computational studies of organic reactions with similar 

methods provided results in accord with experiment.[26-28]  

The thermodynamically favoured product was calculated to be 

the vinyl silane by over 3 kcal mol-1 for sp3- and sp2-hybridised 

boronic ester substituents (Table S12). To gain insight into the 

origins of product selectivity, C-Si and C-B bond breaking 

transition states (TSs) 9a and 9b were located and their relative 

energies determined (Table 3). For aliphatic substrates, the R 

group was modelled as a methyl substituent to reduce the number 

of possible conformations. In this case, the C-Si bond breaking 

TS was favoured by over 9 kcal mol-1 relative to the C-B bond 

breaking TS (entry 1), indicating a strong preference for the vinyl 

boronic ester product, as observed. For substrate 1n, with a p-

methoxyphenyl substituent, the C-Si bond breaking TS was 

favoured by 1.2 kcal mol-1 (entry 2), whilst for indolyl substrate 1o 

the TSs were separated by only 0.2 kcal mol-1 (entry 3). On the 

other hand, for p-trifluoromethylphenyl substrate 1q, the C-B bond 

breaking TS was favoured by 1.4 kcal mol-1 (entry 4), and in the 

case of styrenyl boronic ester 1s, this increased to 5.6 kcal mol-1 

(entry 5). These calculated TS energies are in good agreement 

with the experimentally observed product distributions. The 

results can be understood by considering how the developing 

negative charge on carbon is stabilized in the TS of the C-Si and 

C-B bond breaking step.[29-30] Evidently, the charge is better 

stabilized by the electron deficient boron than by silicon, leading 

to the vinyl boronic ester products. Indeed, our calculations show 
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that boron is better able to stabilize negative charge than silicon 

by 9.1 kcal mol-1 (Table S10). However, for substrates that already 

bear anion stabilizing groups, elimination takes place 

preferentially at the more Lewis acidic boron atom, leading to the 

vinyl silane products. 

Table 3. Comparison of C-Si and C-B bond breaking TSs for vinylidenation of 

MeBpin (1t), 1n, 1o, 1q and 1r.  B3LYP-D3(BJ)/6-311G(d,p)−IEFPCM(n-

pentane)//B3LYP/6-31G(d) 

 
a Aliphatic boronic esters gave exclusively the vinyl boronic ester products. The 
C-Si and C-B bond breaking TSs for 9t (R = Me) are shown. 

 

Finally, we sought to apply our chemistry in natural product 

synthesis. We were attracted to machillene (10a), a bis-steryl 

epoxide isolated from the stem wood of machilus zuihoensis 

(Figure 2A), because it showed significant anticancer activity.[31] 

Furthermore, the relative configuration of the molecule remained 

unknown, apart from the epoxide groups, which were assigned as 

trans from analysis of the coupling constants (J = 2.4 Hz). From 

the reported data, it was apparent that the molecule was neither 

C2-symmetric (1H and 13C NMR data) nor meso ([α]23
D = + 22.2°), 

allowing us to eliminate six of the possible eight diastereoisomers. 

Based on chemical shift differences between the methylene 

protons, Breit assigned the methyl substituents of 10a as having 

an anti-relationship (∆δ = 0 ppm observed, ∆δ > 0.5 ppm for the 

syn isomer).[32] Compound 10b was therefore identified as the 

most likely structure of the natural product and we set out to 

confirm its structure through synthesis. Our retrosynthetic 

analysis began with sequential epoxidation reactions from 

tetraene 11. We envisaged the carbon skeleton would be 

constructed through a bidirectional approach from methylene 

diboron (14), comprised of homologations with lithiated TIB ester 

13[33] and lithiated epoxysilane 4a, followed by a Pd-catalysed 

allylic cross-coupling reaction. If successful, the route would give 

access to machillene in just 6 steps from commercially available 

diboron 14, and without the need for protecting groups. 

Our synthesis began with homologation of 14 with lithiated 

species 13, giving bis-boronic ester 15 in 83% yield, and as a 

single diastereoisomer (Figure 2B). The vinylidene homologation 

reaction gave bis-vinyl boronic ester 16 in 58% yield together with 

mono-vinyl boronic ester 17 in 9% yield. The next step involved a 

Pd-catalysed allylic cross-coupling reaction between 16 and 

allylic acetate 12. To our knowledge there is just a single report 

that describes the coupling of a vinyl boronic ester with an allylic 

acetate, however these conditions (PdCl2/TFP, KF, MeOH, rt) led 

to a low yield of 11 with significant decomposition.[34] We therefore 

investigated alternative conditions and found that using 

Pd(dppf)Cl2 and K3PO4 in dioxane/water gave tetraene 11 in 69% 

yield together with migratory insertion product 18 (see S.I. for a 

mechanistic proposal).[35] 

The end game was particularly challenging and required (i) 

selective reaction of the styrene over the 1,1-disubstituted alkene 

(ii) reagent-controlled diastereoselective epoxidation (iii) isolation 

of the monoepoxide from the statistical mixture of SM, mono- and 

di-epoxides that would be expected. Following this reaction, a 

second epoxidation of the monoepoxide with the enantiomeric 

epoxidation reagent should occur on the remaining styrene with 

the correct stereochemical outcome. Our initial attempts were 

based around the Shi epoxidation but no conversion to the 

desired mono-epoxide 19 was observed and instead starting 

material was recovered.[36] We then explored the Sharpless 

dihydroxylation,[37] a reaction where styrenes are known to be 

more reactive than 1,1-disubstituted alkenes.[38] To our delight, 

the reaction provided diol 20 in 34% yield, with excellent 

diastereoselectivity, and with no evidence of reaction at the 1,1-

disubstituted double bond. Starting material 11 was recovered 

(37%) and the C2-symmetric bis-dihydroxylation product 21 was 

obtained in 13% yield. After a second dihydroxylation reaction 

using the pseudo-enantiomeric reagent and subsequent ring-

closing,[39] the target molecule was obtained. 

Unfortunately, upon comparison of the reported NMR data 

with that of our synthetic sample, significant differences were 

observed. The considerable deviations (see S.I. for tabulated 

data) led us to the conclusion that the issue was not related to 

stereochemistry, but instead was likely due to a misassignment in 

the connectivity of the molecule. Further efforts to elucidate the 

structure of machillene are currently underway in our laboratory 

using a combination of computational and synthetic methods. 

In summary, we have developed a new protocol for the vinylidene 

homologation of boronic esters that provides access to a diverse 

range of 1,1-disubstituted and trisubstituted vinyl boronic esters. 

Computational studies have revealed that both the Peterson and 

boron-Wittig pathways are feasible but the Peterson pathway is 

favoured because boron can better stabilize the negative charge 

developing on the α-carbon in the transition-state of the 

elimination step. The methodology was used in a short, 

stereoselective synthesis of machillene but, upon comparing the 

reported and synthetic NMR data, it was clear that the structure 

of the natural product had been mis-assigned. 
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Figure 2. A) Structure determination and retrosynthesis of machillene. B) Total synthesis of the proposed structure of machillene.  
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