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Abstract 21 
 22 
Exploring individual responses to exercise training is a growing area of interest. Understanding 23 
reasons behind true observed inter-individual responses may help personalise exercise training 24 
to maximise the benefits received. While numerous factors have been explored, an often 25 

underappreciated consideration in the sport and exercise science field is the influence intra-26 
individual variation, both in a single measurement and in response to an intervention, may have 27 
on training outcomes. Several study designs and statistical approaches are available to 28 
incorporate intra-individual variation into interventions and accordingly provide information 29 
on whether ‘true’ inter-individual responses are present or if they are an artefact of intra-30 

individual variation. However, such approaches are sparingly applied. Moreover, intra-31 

individual variation may also be important when true inter-individual response differences are 32 

present. In this perspective piece, the concept of intra-individual variation is described before 33 
briefly summarising study designs and statistical practices to account for intra-individual 34 
variation. We then outline two examples of physiological practices (stratified randomisation  35 
and prescribing exercise programmes upon training parameters) to demonstrate why sport and 36 
exercise scientists should acknowledge intra-individual variation  prior to the implementation 37 

of an intervention, which potentially offers an additional explanation behind observed true 38 
inter-individual responses to training. Repeated testing pre-implementation of exercise training 39 
would conceptually provide more confident estimates of training parameters, which if utilised 40 
in a study design will help attenuate biases that may dictate inter-individual differences. 41 

Moreover, the incorporation of intra-individual differences will facilitate insights into 42 

alternative factors that may predict and/or explain true observed individual responses to an 43 
exercise training programme.  44 
 45 



1. Introduction  46 
 47 
Observations of inter-individual variability and ‘non-responders’ to physical activity and 48 
exercise training have been frequently acknowledged (Mann et al., 2014; Bouchard and 49 
Rankinen, 2001). While evidence refuting claims of non-response to both aerobic and 50 

resistance exercise exist (Montero and Lundby, 2017; Bonafiglia et al., 2016; Churchward-51 
Venne et al., 2015), interest has grown in attempting to quantify, predict and explain observed 52 
inter-individual variability in response to interventions (Atkinson, Williamson and Batterham, 53 
2019; Voisin et al., 2018; Sparks, 2017; Hecksteden et al., 2015). Such attempts have involved 54 
the application of genomics (Williams et al., 2017; Bouchard et al., 2015), replicated crossover 55 

designs (Goltz et al., 2019; Goltz et al., 2018; Senn et al., 2011) and statistical methods 56 

(Swinton et al., 2018; Atkinson and Batterham, 2015). Here, we aim to reiterate and 57 

demonstrate the importance to sport and exercise scientists in acknowledging intra-individual 58 
variation. 59 
We first describe the concept of intra-individual variation alongside summarising study 60 
designs and statistical approaches that incorporate intra-individual variation to determine 61 
whether true inter-individual responses exist. Two examples of common physiological 62 

practices are then outlined to illustrate why intra-individual variation should be systematically 63 
explored prior to the implementation of an exercise training programme. This article extends 64 
previous discussions by demonstrating conceptually how intra-individual variation in baseline 65 
training parameters (peak or maximum oxygen consumption [V̇O2peak and V̇O2max] and 66 

lactate threshold) may impact stratified randomisation and the ‘exercise dose’ prescribed to 67 

individuals. To our knowledge, these considerations of intra-individual variation have not 68 
previously been discussed, yet provide clear and relatable examples of how intra-individual 69 
variation may contribute to  true observed inter-individual responses to a training programme. 70 

 71 

2. What is intra-individual variation? 72 
 73 
Intra-individual variation can be defined as the difference in values obtained for an outcome 74 
measure(s) when the same participant is studied under similarly standardised testing conditions 75 

and procedures. It is also referred to as day-to-day or within-subject variation and provides an 76 
indication on the reproducibility or reliability of an observation. Similarly, there is intra-77 
individual variation in response to an intervention i.e. variability of pre-to-post differences 78 

when the same participant is administered the same intervention. These two types of intra-79 
individual variation are inter-connected, derive from three overarching sources and have 80 

implications for the design and interpretation of an intervention (see Figure 1).    81 
 82 

In practice many physiological observations measured on a continuous scale are composed of 83 
a ‘true’ value plus ‘error’ (i.e. noise) (Atkinson and Batterham, 2015; Atkinson and Nevill, 84 
1998). This variability, or error, in an estimate can derive from three overarching sources: 85 

measurement (or technical) error, biological error and biological variation. Measurement error 86 
refers to noise derived from the equipment and protocol used and the experimenter, which 87 

theoretically is identical across all individuals (Voisin et al., 2018). Alternatively, biological 88 
error derives from the influence of environmental factors such as diurnal variation, sleep 89 

quality, diet, or psychological stress (Voisin et al., 2018). Even if such a variable has no 90 
measurement error, test-retest variability will likely be prevalent to some extent, attributable to 91 
biological noise (Atkinson and Batterham, 2015). Importantly, these ‘errors’ are 92 

distinguishable from biological variation that induces a shift in the true score (e.g. adaptations 93 
to training or detraining). 94 
 95 



To determine the true intra-individual variation of an observation, serial measurements over 96 
some time-scale must be conducted (i.e. test-retest, concurrent replicates, day-to-day, trial-to-97 
trial). Repeated measurements within a trial are also necessary if the aim is to distinguish 98 
between technical and biological sources of intra-individual variation. Similarly, if 99 
characterising true intra-individual variation in response to an intervention is the aim, then the 100 

same intervention must be repeated at least once in the same participants. Repeated 101 
measurements will conceptually provide a more accurate estimate of a participant’s ‘true’ value 102 
or intervention response, especially when there is no systematic error in measurement (e.g. 103 
learning effects or diminishing returns from a training programme). Furthermore, to obtain a 104 
more valid measurement of intra-individual variation, efforts to reduce all sources of error 105 

should be taken, including standardised calibration and testing procedures, appropriate 106 

timeframes between testing and adequate pre-trial standardisation on ‘determinants’ of the 107 

outcome variable (e.g. physical activity levels and/or dietary intake). (For detailed discussions 108 
on intra-individual variation see Swinton et al., 2018; Voisin et al., 2018; Hecksteden et al., 109 
2015; Atkinson and Batterham, 2015; Atkinson and Nevill, 1998). Therefore, to confidently 110 
capture intra-individual variation many aspects need to be considered.  111 

 112 
3. Accounting for intra-individual variation to determine whether true inter-individual 113 
responses to an intervention exist  114 
 115 
To infer that true inter-individual response differences exist, it is imperative to discern between 116 

systematic or ‘true’ changes (i.e. intervention induced) and intra-individual variation (from 117 

measurement and biological error) (Solomon, 2018; Voisin et al., 2018). Indeed, intra-118 
individual variation is in some circumstances large enough to account for all, or a large 119 
proportion of apparent inter-individual differences in training responses (e.g. for V̇O2max 120 

[Williamson et al., 2017] and weight change [Williamson et al., 2018]). To achieve this 121 
distinction several study designs and/or statistical approaches are available that measure intra-122 

individual variation and accordingly provide information on whether ‘true’ inter-individual 123 
responses are present or if they are an artefact of intra-individual variation.  124 
 125 

The ideal method is to conduct a replicated randomised controlled trial in the same participants, 126 
together with repeated testing within each treatment period (Voisin et al., 2018; Hecksteden et 127 
al., 2015; Senn, 2011). Here, participants are randomly allocated to the intervention or control 128 

(or the order of receiving these conditions if a crossover design) as per a typical randomised 129 
controlled trial (RCT). However, upon completion and after an adequate washout period, the 130 

study is essentially repeated in the same participants to examine if individuals demonstrate a 131 
consistent response to the intervention relative to control. Clearly this poses considerable 132 

logistical and feasibility challenges at both the level of the participant and researcher(s). An 133 
alternative is to implement one of these approaches alone i.e. either replicate the intervention 134 
or have repeated testing pre- and/or post-trial. While such approaches present similar 135 

challenges, several studies have adopted replicated designs (Goltz et al., 2019; 2018; Lindholm 136 
et al., 2016; Senn et al., 2011). . For example, Goltz and colleagues (2018) found in a replicated, 137 

randomized crossover experimental design that true inter-individual differences in subjective 138 
appetite and blood hormonal responses to acute exercise were apparent in fifteen healthy males, 139 

exceeding measurement error and biological error. Similarly, a more recent randomised 140 
replicated cross-over study by Goltz and co-workers (2019) also found true inter-individual 141 
differences in postprandial appetite responses to a standardised breakfast in eighteen healthy 142 

males. Moreover, a similar elegant design was also employed in a knee extension training 143 
programme where subjects were their own control through exercising one-leg initially followed 144 
by a washout period and then two-leg training (Lindholm et al., 2016). While Lindholm and 145 



co-workers (2016) found the response of a large fraction of genes only changed in one training 146 
period, indicating intra-individual variation, unfortunately inter-individual response 147 
differences were not explored. Nevertheless, the appearance of such study designs shows a 148 
move towards the importance of measuring intra-individual variation to determine whether 149 
true inter-individual response differences exist.   150 

 151 
A further pragmatic compromise is to repeatedly test throughout a trial to act as a surrogate for 152 
a repeated intervention (Hecksteden et al., 2018; Hecksteden et al., 2015). Here, serial 153 
measurements are ideally obtained at similar intervals throughout an intervention (i.e. a time-154 
series experimental design) where the slope of a linear regression is then fitted to an 155 

individual’s measured values to determine their response. Intra-individual variation can then 156 

be calculated as the standard error (i.e. typical error) of an individual’s slope in which 157 

intervention response (and classification of (non-) responders) can be estimated by pre-158 
determined thresholds (e.g. zero change, or measured day-to-day variability, minimum 159 
clinically relevant change or smallest worthwhile difference in the respective outcome variable 160 
[Hecksteden et al., 2018; Hecksteden et al., 2015]). This approach can begin to overcome 161 
measurement and biological error in the assessment of the intervention response on that 162 

occasion but cannot discern how individuals would respond if the intervention were repeated. 163 
Furthermore, additional shortcomings to this design exist e.g. the assumption that training 164 
adaptations are linear over a programme (Hecksteden et al., 2015), albeit a non-linear 165 
regression model (e.g. a mono-exponential curve) can be applied in such circumstances 166 

(Bonafiglia et al., 2019), or that the measurement per se does not exhibit a temporal rhythm 167 

independent of the intervention. Moreover, Atkinson and colleagues (2019) have recently 168 
discussed in-depth several further validity concerns in determining inter-individual responses 169 
and (non-) responders by counting the number of changes in a sample that exceed or fall below 170 

a pre-determined threshold (e.g. sample comparisons of responder counts have low statistical 171 
power). Recently, Voisin et al (2018) also highlighted using a control period prior to 172 

implementing an intervention. This overcomes potential carry-over effects of exercise training 173 
in a repeated intervention and measurements in the control period can act as the baseline. 174 
However, treatments are not randomly administered, nor can all sources of variability be 175 

disentangled (Voisin et al., 2018).  176 
 177 
An overarching shortcoming is also that many of the designs above are not possible for some 178 

types of outcome. For example, long-term interventions with “hard” end points (such as RCTs 179 
with cardiovascular disease as an end point); or interventions that have learning effects, other 180 

similar biases, or require long washout periods. For instance, unaccustomed exercise that elicits 181 
marked muscle damage should not be performed as a cross-over, since the repeated bout effect 182 

confounds the second-response unless a long washout period is implemented (Goodall et al., 183 
2017; Betts et al., 2009); or similarly, if an intervention supplements lipid soluble antioxidants, 184 
many months are required for values to return to un-supplemented levels, by which time the 185 

intervention group may no longer be equivalent to the control group. Collectively, this shows 186 
that designing an intervention to incorporate intra-individual variation involves many 187 

complexities.   188 
 189 

Alternative statistical approaches can also be applied independently or in adjunct with the 190 
above study designs. Atkinson and Batterham (2015) neatly describe how comparing the 191 
standard deviation of change between the intervention and control groups can act as a measure 192 

of intra-individual variation. They demonstrate that intra-individual variation can account for 193 
a large proportion, if not all, of apparent individual response differences. True individual 194 



responses are only evident, and worth exploring, if the standard deviation for change in the 195 
intervention group is substantially larger than the control group.  196 
 197 
When a control group is not feasible, a second approach is to calculate the typical error of a 198 
measurement (or the within-subject standard deviation) (Solomon, 2018; Swinton et al., 2018). 199 

This can be calculated through using difference scores derived from either testing a single 200 
participant multiple times or a single test-retest in a group of participants (Swinton et al., 2018). 201 
Importantly, repeated testing must occur in a time-frame where the ‘true’ value should remain 202 
theoretically stable (Swinton et al., 2018). Assuming data are normally distributed, the pre-to-203 
post change should be no less than 1.96 standard deviations of the group-level within-subject 204 

mean to be 95% confident that the apparent intervention-induced change is not simply intra-205 

individual variation (Solomon, 2018). Arguably, alternative reliability statistics could also be 206 

used in place of the typical error such as 95% limits of agreement (Bland and Altman, 1986).  207 
 208 
Importantly, there are overarching considerations for the above statistical approaches. For 209 
example, intra-individual variation must be consistent across time (e.g. pre- and post-210 
intervention) and sub-groups / different populations (i.e. display no heteroscedasticity) 211 

(Solomon, 2018; Swinton et al., 2018). Similarly, if no true comparator arm is available, 212 
standard deviations or typical errors from prior reliability studies can be used (Atkinson and 213 
Batterham, 2015), albeit generalisability must then be assumed, which may be troublesome 214 
given laboratory specific practices and the often-small sample sizes of such studies (Voisin et 215 

al., 2018; Solomon et al., 2018). Moreover, while confounders such as socio-environmental 216 

influences, natural variations and certain biases are in principle controlled for by 217 
randomisation, it must be assumed no changes in behaviour or other biases have driven any 218 
potential pre-to-post differences in the control group. Indeed, controlling for familiarisation 219 

effects may pose substantial challenges (e.g. muscle damage induced by unaccustomed 220 
exercise [Goodall et al., 2016; Betts et al., 2009]). Furthermore, trial effects (i.e. the Hawthorne 221 

effect) can lead to conscious or unconscious changes in behaviour. Such scenarios may skew 222 
change scores and misinform interpretations of intra-individual variation and subsequently 223 
whether true inter-individual response differences exist. Nevertheless, the above statistical 224 

approaches adjust for error uncertainty in pre-to-post changes, where apparent inter-individual 225 
response differences are easily able to be encapsulated by intra-individual variation.   226 

 227 

4. The consideration of intra-individual variation prior to a training programme to 228 
explain true inter-individual responses 229 
The above statistical approaches to quantify intra-individual variation employ these methods 230 
after data collection. While applying this step is essential to interpret whether further 231 

exploration of inter-individual responses to an intervention are warranted, if these criteria are 232 
met, intra-individual variation should not then be neglected. As demonstrated below, intra-233 
individual variation should also be considered much earlier in the design and implementation 234 

of a training programme as it may be an underlying factor contributing to observed true inter-235 
individual responses.  236 

 237 
4.1 Example 1: Stratified randomisation 238 
 239 
Randomised control trials frequently use stratified randomisation to control for a priori 240 
identified parameter(s) of importance. This helps reduce confounding influences of co-variates 241 

that may mask, attenuate or intensify potential intervention effects and jeopardise conclusions 242 
(e.g. regression to the mean or ceiling effects). Consequently, establishing ‘true’ baseline 243 
estimates are imperative (Swinton et al., 2018). 244 



 245 
Alongside representing a common outcome measure, cardiorespiratory fitness can be an 246 
important baseline characteristic for stratification in an exercise training RCT. Typically, a one-247 
off incremental graded exercise test (GXT) is used to estimate V̇O2peak or V̇O2max as a marker 248 
of cardiorespiratory fitness. However, obtaining only a one-off estimate for cardiorespiratory 249 

fitness could conceptually threaten stratification. For example, if an individual’s estimate of 250 
V̇O2peak is assessed only once at baseline, but large variability is unknowingly evident in this 251 
estimate, this participant could be categorised into the wrong strata. Repeated assessment at 252 
baseline (or the inclusion of a shorter verification protocol [Poole and Jones, 2017]) would in 253 
principle provide a more confident estimate of their cardiorespiratory fitness and increase the 254 

researcher’s confidence that this participant meets the pre-defined strata thresholds. This would 255 

consequently attenuate the influence of potential confounding biases (such as selection bias 256 

and ceiling effects) that may otherwise be introduced if intra-individual variation at baseline 257 
was not assessed. In principle this would help to more precisely determine whether true inter-258 
individual response differences are apparent and/or facilitate the identification of further 259 
contributing factors.   260 
 261 

The relevance of this example is apt given findings from studies that have explored the 262 
reproducibility of V̇O2peak estimates from GXTs. While high intra-class correlations (0.92–263 
0.99) and low within-subject coefficient of variations (CVs) (3–5%) are typically reported 264 
(Edgett et al., 2018; Dideriksen and Mikkelsen, 2017; Midgley et al., 2007), evidence exists 265 

that V̇O2peak may be underestimated from an initial or first GXT compared to an identical 266 

second and third GXT (Edgett et al., 2018). This learning effect may be particularly evident in 267 
individuals inexperienced to maximal testing and importantly influenced the classification of 268 
individual responses in V̇O2peak following exercise training (Edgett et al., 2018). Additionally, 269 

within-subject CVs and a typical error of up to 9 % and 4.27 mL.kg-1.min-1, respectively, for 270 
V̇O2max estimates were reported in eleven male amateur runners who completed four identical 271 

treadmill GXTs (Lourenço et al., 2011). This demonstrates that intra-individual variability in 272 
V̇O2peak estimates from one-off GXTs could influence fitness classifications (such as those 273 
outlined by Decroix et al. [2016] and De Pauw et al. [2013]). Moreover, a recent study showed 274 

group mean estimates of V̇O2peak varied by ~1–5 mL·kg-1·min-1 alongside within-subject CVs 275 
between 2.0 – 5.2 %, when five different GXT protocols employing varying stage lengths were 276 
compared in seventeen trained male cyclists (Jamnick et al., 2018).  277 

 278 
To further demonstrate the potential impact that intra-individual variation in a baseline 279 

characteristic may have for stratified randomisation, a theoretical example is provided in Figure 280 
2. This figure reflects a hypothetical scenario where participants V̇O2peak (mL·kg-1·min-1) has 281 

been estimated at baseline on three separate occasions (GXT 1, 2 and 3) from the same 282 
treadmill GXT. The within-subject variability of V̇O2peak is within the typical error reported 283 
by Lourenco and colleagues (2011) i.e. 4.27 mL.kg-1.min-1, where stratified randomisation is to 284 

be performed for participants who have a V̇O2peak threshold of < 45 mL.kg-1.min-1 (threshold 285 
derived from performance level 1 fitness classification in males as outlined by De Pauw et al. 286 

(2013)). As illustrated, for participant’s 1, 4, 5, 6 and 10, if V̇O2peak was assessed only once 287 
at baseline (i.e. GXT 1), the researcher(s) would assume these participants are similarly 288 

matched for cardiorespiratory fitness and would believe stratified randomisation, to say an 289 
exercise RCT, is appropriate. However, if intra-individual variability was accounted for by 290 
repeated assessment at baseline (i.e. obtaining an average from each individual’s GXT 1, GXT 291 

2 and GXT 3 values), a more precise estimate of the participant’s true fitness levels (e.g. the 292 
within-subject mean on Figure 2) would conceptually be obtained. The researcher(s) would 293 
then see that they would be incorrect to perform stratified randomisation on participant 1, 4 294 



and 10. Equally, the reverse is true for participant 2 and 8, who initially would be excluded 295 
from stratified randomisation based on the observed value from GXT 1, but in actual fact could 296 
be appropriately stratified were repeated assessment to be performed. While the 297 
meaningfulness of ± 4.27 mL.kg-1.min-1 in V̇O2peak could be questioned, the relevance of this 298 
variability is highlighted by a meta-analysis of n = 34 studies that reported sprint interval 299 

training (mean intervention length of 5-weeks) improved V̇O2peak by 8 % (Vollaard et al., 300 
2017), which equates to 3.5 mL·kg-1·min-1 with the V̇O2peak threshold used above. This 301 
hypothetical example shows how overlooking intra-individual variation in a baseline 302 
characteristic could in principle lead to inappropriate stratified randomisation and introduce 303 
biases that may affect analysis techniques (e.g. skew the standard deviation of change in the 304 

intervention and/or control groups) and mask, attenuate or intensify intervention effects and 305 

inter-individual response differences to exercise training.   306 

Collectively, this suggests repeated assessment (or verification tests) are necessary to obtain 307 
more confident estimates of baseline characteristics to stratify upon. Moreover, given the 308 
potential influence of learning effects, researchers and practitioners may wish to determine the 309 
number of assessments required for this bias to dissipate (and consequently exclude initial 310 
measurements as appropriate) and/or then obtain the average of the remaining repeated 311 

measurements. This arguably would facilitate a more confident assessment of baseline 312 
parameters, where acknowledging intra-individual variation prior to randomisation may assist 313 
with participant group allocation and consequently help remove further confounding biases 314 
that may contribute to observed true inter-individual responses.  315 

 316 

4.2 Example 2: Standardisation of prescribed exercise dose   317 
 318 
Many exercise training programmes and RCTs ‘standardise’ the exercise dose i.e. the workload 319 

performed by participants, by fixing the exercise intensity, duration and/or frequency of 320 
sessions between participants. However, the method used to standardise exercise programmes 321 

varies considerably, leading to concerns over whether the exercise dose standardisation 322 
procedure allows precise quantification of inter-individual responses (Ross et al., 2019). In a 323 
similar manner, intra-individual variation in training prescription parameters may pose a 324 

concern not only for the standardisation of exercise dose between-subjects but also within a 325 
participant during an exercise programme. To our knowledge, the potential implication of 326 
intra-individual variation in training parameters that are used to prescribe exercise dose has not 327 

previously been highlighted but may contribute to observed true inter-individual response 328 
differences.  329 

 330 
To demonstrate the importance of acknowledging intra-individual variation in training 331 

prescription parameters, a hypothetical example is provided whereby a training programme 332 
prescribes participants a ‘set’ relative intensity to exercise at derived from a one-off GXT. As 333 
issues of prescribing exercise intensity based on a percentage of V̇O2max, or a percentage / 334 

beats below maximum heart rate (HRMAX) have been discussed elsewhere (Piatrikova et al., 335 
2019; Mann et al., 2013; Meyer et al., 1999), this example focuses on the recommendation to 336 

prescribe exercise upon indices that elicit more similar physiological responses between-337 
subjects such as the lactate threshold or critical speed.  338 

 339 
Before describing this scenario, it is important to acknowledge that the precise prescription of 340 
exercise intensity is particularly important given that the physiological responses to exercise 341 

intensity are not necessarily linear. If the physiological stress displayed a linear relationship 342 
across all exercise intensities, then (non-systematic) variability could be reduced simply with 343 
randomisation and a sufficient sample size. However, since the metabolic stress response to 344 



exercise is non-linear, an over-estimation of exercise intensity could disproportionally affect 345 
the physiological response compared to an equivalent under-estimate, and therefore balance 346 
would not necessarily be achieved by randomisation. Accordingly, repeated assessment at 347 
baseline to accurately prescribe exercise intensity (and at time-points throughout a training 348 
programme to recalibrate the prescribed exercise intensity to account for any training 349 

adaptations) can be important to ensure that the adaptive stimuli is similar across people within 350 
each group of an intervention. 351 
 352 
Take a hypothetical situation where intra-individual variability in the GXT used to determine 353 
the lactate threshold, for which exercise training sessions are prescribed upon, is unknowingly 354 

large. The metabolic stress (i.e. ‘training stimuli’) induced by each acute exercise bout may 355 

consequently vary session-to-session. In support of this example, the corresponding speed and 356 

heart rate at which the lactate threshold (first significant elevation of blood lactate 357 
concentration above resting levels) and fixed 4 mmol.L-1 blood lactate concentration were 358 
detected, showed 95% limits of agreement of +/-± 1.5 and 1.3 km.h-1 and 16 and 12 beats per 359 
minute, respectively in twenty males and sixteen females who were young, healthy and active 360 
(Grant et al., 2002). This variability in running speed at “lactate threshold” is equivalent to 361 

~10%, which is therefore substantial. Similar low reproducibility in several blood lactate 362 
markers during GXTs have also subsequently been reported, albeit partly moderated by factors 363 
such as analysis method, stage duration and training status (Gavin et al., 2014; Morton et al., 364 
2012). Training status is particularly important given that sedentary individuals are often 365 

recruited to training programmes, where reproducibility of lactate measures are speculated to 366 

be lower (Gavin et al., 2014; Grant et al., 2002). Further support for the realism of the above 367 
example derives from a recent study that found substantial inter-method variability when 368 
estimating the lactate threshold via five one-off GXT protocols of various stage lengths and 369 

fourteen analysis techniques in seventeen trained males (Jamnick et al., 2018).  370 
 371 

Echoing the issue of prescribing relative exercise intensity upon V̇O2max or HR, the potential 372 
variability in ‘training stimuli’ session-to-session may induce different training adaptations, 373 
supporting previous speculations and potentially accounting for observations of ‘responders’ 374 

and ‘non-responders’ to a training programme (Mann et al., 2013; 2014). Moreover, this 375 
potential variability in training stimuli may influence the standard deviation of change in the 376 
intervention group and have important implications for data interpretation (Voisin et al., 2018). 377 

Further complications may also derive from individuals potentially having different capacities 378 
to work aerobically and anaerobically (Piatrikova et al., 2018; Buchheit and Laursen, 2013). 379 

The applicability of this example is apt given preliminary findings that acute differences in 380 
metabolic stress to the first exercise training session (mean blood lactate concentrations) were 381 

positively associated (via a simple linear regression) with increases in V̇O2peak after 4-weeks 382 
of exercise training (Preobrazenski et al., 2018), albeit approaches to adjust for intra-individual 383 
variation in pre-to-post changes were not employed. Nevertheless, the above collectively 384 

suggests that a more confident estimate of the selected parameter to prescribe training upon 385 
would conceptually provide more assurance that participants are exercising at an intensity that 386 

elicits similar physiological responses both within- and between-subjects. This can be achieved 387 
by repeated testing prior to the implementation of and during a training programme, which 388 

would arguably lead to a more precise standardisation of the exercise dose prescribed.  389 
Collectively, this would attenuate any potential confounding bias introduced by intra-390 
individual variation that may contribute to true observed inter-individual responses to a training 391 

programme.   392 
 393 
 394 



5. Conclusion 395 
 396 
This perspective piece highlights the importance that intra-individual variation in baseline and 397 
training parameters may have on the implementation of a training programme and 398 
consequently, how this may dictate apparent group and true inter-individual responses to a 399 

training programme. Ultimately, the reasons behind true heterogeneous training adaptations 400 
are likely multi-dimensional (Solomon, 2018; Swinton et al., 2018; Hecksteden et al., 2015) 401 
and there is unlikely one universal solution to incorporate intra-individual variation 402 
(Hecksteden et al., 2015). Nevertheless, while quantifying and controlling for intra-individual 403 
variation through repeated testing is undoubtedly challenging, researchers who do this will be 404 

better placed to: a) identify true effects of a training programme and b) more confidently and 405 

appropriately prescribe ‘personalised’ training programmes on an individual basis. Moreover, 406 

while examples specific to aerobic endurance training were used, the implications of intra-407 
individual variation highlighted here are highly applicable and transferable to all domains of 408 
sport and exercise science (e.g. resistance exercise, biomechanics and / or psychology). 409 
Overall, acknowledging intra-individual variation will attenuate a potential confounding 410 
variable and facilitate greater insights into alternative variables that may predict and/or explain 411 

true observed inter-individual responses to exercise training. 412 
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Figure 1. Sources and potential implications of intra-individual variation 415 
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Figure 2. A hypothetical scenario to demonstrate the influence intra-individual variation at 438 
baseline may have for stratified randomisation439 
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