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Abstract
ZSM-5 catalysts were subjected to step response cycles of dimethyl ether (DME) at 300 °C in 

a temporal analysis of products (TAP) reactor. Propylene is the major olefin and displays an 

S-shaped profile. A 44-min induction period occurs before primary propylene formation and is 

reduced upon subsequent step response cycles. The S-shaped profile was interpreted 

according to induction, transition-regime and steady-state stages to investigate hydrocarbon 

formation from DME. The influence of precursors (carbon monoxide, hydrogen, 

dimethoxymethane, and 1,5-hexadiene) was studied using a novel consecutive step response 

methodology in the TAP reactor. Addition of dimethoxymethane, carbon monoxide, hydrogen 

or 1,5-hexadiene reduces the induction period of primary olefin formation. However, while 

dimethoxymethane, carbon monoxide and hydrogen accelerate the transition-regime towards 

hydrocarbon pool formation, 1,5-hexadiene attenuates it. Heavier hydrocarbons obtained from 

1,5-hexadiene compete for active sites during secondary olefin formation. A 

phenomenological evaluation of multiple parameters is presented.

Keywords
Methanol; Methanol-to-olefins; ZSM-5; Dimethyl Ether (DME); Temporal Analysis of Products 

(TAP) reactor; primary olefins; nucleation kinetics; dimethoxymethane (DMM); diene; 

transition-regime; induction period; hydrocarbon-pool; multi-parameter space evaluation
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1.  Introduction 
Fuels and chemicals are increasingly produced from non-conventional carbon 

feedstock due to rising demand, a lack of secure resources and a need to reduce carbon 

footprint. Methanol can be obtained from renewable resources and converted to olefins (MTO) 

over zeolite catalysts. Although the MTO process has been commercialised1, the mechanism 

underlying the formation of the first C-C bond and primary olefin(s) remain elusive.  

The MTO process begins with methanol equilibration over fresh ZSM-5 zeolite 

catalysts.2,3 Methanol and equilibration products i.e. dimethyl ether (DME) and water compete 

initially for active sites. The first C-C bond is then formed from these initial species as the 

zeolite is transformed from its fresh state via a transition-regime to its working state.4-7 During 

its working state (i.e steady-state), a “hydrocarbon pool” mechanism (Figure 1)  consisting of 

a dual cycle (an aromatic and an olefin cycle), regulates product distribution.8-10 The pathway 

through which methanol and/or DME leads to the first C-C bond and primary olefin(s) during 

the induction period and the transition regime is currently debated.4,5,8-15 

Figure 1: Dual-cycle during the conversion of methanol to hydrocarbons over zeolite catalysts. 
“Reprinted with permission from 16. Copyright (2013) American Chemical Society.” 

Primary olefins could form directly13,17-19 or indirectly8-10,20 over ZSM-5 catalysts. Alkyl-

substituted cyclopentenyl carbenium ions are a persistent intermediate closely associated with 

the indirect primary olefin formation pathway.21,22 Cyclopentadiene, observed over zeotype 

catalysts23, can be protonated into cyclopentenyl carbenium ions. The origin of the 

cyclopentenyl carbenium ions were initially proposed to be an artefact of impurities (ethanol, 

acetone) in the methanol feed.5 Conversely, Novakova et al.24, Liu et al.15 and Chang et al.25 
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provided evidence for dimethoxymethane as a dominant intermediate in the direct pathway of 

primary olefin formation. Dimethoxymethane decomposes over ZSM-5 catalysts producing 

dimethyl ether, formaldehyde, methyl formate and methanol.26 Methanol further decomposes 

on zeolites in the absence of Brønsted acid sites to form carbon monoxide, hydrogen, 

formaldehyde and methane.15 Carbon monoxide reacts with surface methoxy groups in a 

relatively low activation energy pathway (80 kJmol-1) leading to primary olefins. Here, the 

relevant intermediates are acetyl groups, which dissociate into methyl acetate and acetic 

acid.15,27,28 At higher pressures (400 – 3,000 KPa), hydrogen is involved in hydrogen transfer 

pathways and intercepts the formation of deactivation-inducing polycyclic species, leading to 

increased catalyst stability.29

Haw and co-workers studied the induction period over zeolite and zeotype catalysts in 

a pulse-quench catalytic reactor using 13C MAS NMR spectroscopy.4-6,21,30,31 They observed 

that the active site during MTO conversion is a composite of well-defined organic species and 

one or more inorganic acid sites, which can activate methanol and hold methyl cation 

equivalents30 and impurities such as ethanol and acetone control the induction period.5,6,31 Qi 

et al.32 studied the induction period under continuous flow at 245 – 280 °C and 1 bar. The 

transformation of the initial C-C bond to hydrocarbon pool species was observed to be rate-

limiting in their proposed three-stage induction period of methanol conversion.32  Co-feeding 

methanol with olefin precursors i.e. ethanol, propanol, hexan-1-ol and cyclohexanol33 or 

aromatics i.e. benzene, toluene, p-xylene and naphthalene32,34 reduces the induction period. 

A high zeolite acid site density increases the rate of formation of occluded species and their 

autocatalytic effect.35 Lee et al.36 showed that catalysts with larger crystals and smaller 

external surface area exhibit a longer induction period due to a smaller number of accessible 

channels. The response of the induction period to impurities and olefin and aromatic 

precursors is similar to a crystal nucleation process where seeding agents alter the rate of 

agglomeration.37-39

Temkin40 distinguished two types of relaxation onto steady-state: (a) intrinsic 

relaxation, which is caused by the mechanism of the reaction itself, and (b) extrinsic relaxation, 

which is caused by modifications of the mechanism as a result of sub-surface chemistry. 

During the evolution from fresh to working state, intrinsic and extrinsic relaxation can be readily 

distinguished.40,41 Kobayashi et al.42-44 described various shapes and mechanisms underlying 

specie relaxation onto steady-state including: (1) the S-shaped profile where effluents form 

with an induction period, (2) overshoot profile where effluents initially exceed steady-state 

values and, (3) monotonic profiles where effluents begin to form immediately. 

Higher temperatures are required to desorb DME in comparison to methanol from 

ZSM-5 catalysts15,45,46 suggesting that DME is the key surface oxygenate at temperatures 

relevant to MTO. DME is constantly replenished from methanol, while being a constant supply 
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for the formation of aliphatics and aromatics during MTO conversion.47 Transient microkinetic 

modelling studies48 show that the transformation of the first C-C bond is rate-limiting in the 

induction period in accordance with a previous study by Qi et al.32 The evolution of the 

hydrocarbon pool can be described not only by the induction-period chemistry, but also by the 

transition-regime and dual-cycle chemistry.7,48 Here, we report the behaviour of precursors 

during the induction period and transition-regime. Carbon monoxide, hydrogen, 

dimethoxymethane and 1,5-hexadiene  were used to probe the evolution of the fresh catalyst 

to its working state when subject to a DME feed. A novel methodology was developed in a 

temporal analysis of products (TAP) reactor to understand precursor behaviour. Analysis was 

carried out using a logistic (sigmoidal) function for description of the induction period and the 

transition-regime following crystal nucleation kinetics.

Dimethoxymethane, carbon monoxide and hydrogen were chosen following recent 

mechanistic insights obtained from the studies of Liu et al.15 and Chowdhury et al.14,49 on the 

influence of the products of methanol decomposition on the first C-C bond. On the other hand, 

1,5-hexadiene was chosen as a model compound to simulate the effect of impurities, and 

consequently the indirect pathway of primary olefin formation. This is justified as dienes accept 

protons to first form reactive carbenium ions.50,51 Cyclisation later occurs as the non-

carbocationic unsaturated double bond attacks the postive cationic charge center closing the 

ring and resulting in alkylcyclopenta carbenium ions which form over ZSM-5 catalysts.52,53  The 

study with dimethoxymethane gives the combined effect of DME, methyl formate, 

formaldehyde, methanol, carbon monoxide and hydrogen. The individualistic influence of 

carbon monoxide, and hydrogen was studied via co-feeding experiments.

2. Experimental 
2.1. Materials

Fresh NH4-ZSM-5 catalysts with Si/Al ratios of 11.5 and 25, referred to as ZSM-5 (11.5) 

and ZSM-5 (25) respectively, were purchased from Zeolyst International. The ammonium form 

of the zeolite was pressed, crushed, and sieved to obtain particle sizes in the range of 250 – 

500 µm. Anhydrous DME (99.999%) and argon (99.999%) were purchased from CK Special 

Gases Ltd. Experiments were conducted in a transient reactor suited for the temporal analysis 

of products (TAP). The TAP reactor54 consists of three chambers in series: (a) the reactor 

chamber, (b) the differential chamber and (c) detector chamber. The pressure at the exit of 

the reactor chamber is maintained at 10-5 Pa while the pressure at the end of the differential 

chamber is 10-6 Pa and QMS is 10-7 Pa. Further details on the TAP reactor can be found in 

section S1. 
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The response of the quadrupole mass spectrometer (QMS), placed in the detector 

chamber, was calibrated by passing continuous streams of various gases (methanol, DME, 

ethylene, propylene, etc.) in argon over an inert quartz bed with particle diameters between 

355 – 500 µm. The low base pressure (10-7 Pa) in the detector chamber allows for high 

detection sensitivity necessary for quantitative analysis. The inert quartz bed used for 

calibration had the same length as the catalyst bed. The time required to reach steady state 

or to drop from steady state was fastest over the inert quartz bed (section S2). The normalised 

step function of DME over the quartz bed and over a ZSM-5 catalyst bed (Figure S1) was used 

to estimate a residence time of 45 s in the TAP reactor, according to the methodology 

described by Levenspiel.55 

2.2. Characterisation
The ZSM-5 (25) catalyst has a crystallite size of 0.10 ± 0.02 μm,  an apparent BET 

surface area56 of 413 m2 g-1, 428 μmol g-1 of Brønsted acid sites (BAS), 35 μmol g-1 of Lewis 

acid sites (LAS) and a BAS/LAS ratio of 12.2. NH4-ZSM-5 (25) loses 4.2 wt% of its initial mass 

under dry air heating in a thermogravimetric analyser (TGA) at 5 °C min-1 up until 600 °C. 

ZSM-5 (11.5) catalyst is of roughly equal crystallite size as ZSM-5 (25). It has an 

apparent BET surface area56 of 403 m2 g-1,1120 μmol g-1 of BAS, 30 μmol g-1 of LAS and a 

BAS/LAS ratio of 38. NH4-ZSM-5 (11.5) loses 10 wt% of its initial mass under dry air heating 

in the TGA at 5 °C min-1 up until 600 °C. 

The XRD patterns of the two ZSM-5 samples and a reference ZSM-5 pattern are shown 

in Figure S2.1. All two samples are highly crystalline zeolites as with the standard MFI 

structure. Further characterisation details (XRD, SEM images, TGA) can be found in section 

S3.  

2.3. Transient study 
2.3.1. Methodology

10 mg of NH4-ZSM-5 (25) catalyst was initially decomposed in the TAP reactor 

chamber by heating it at 10 °C min-1 up to 450 °C, holding for 30 min before bringing the 

sample to 300 °C. Background signal intensities were obtained. The catalyst was then 

subjected to a steady flow of argon at 10-8 mols-1 in a first series of experiments. Afterwards, 

the flow was instantaneously switched to a feed of 5 vol% DME in argon (step-up) at a flow 

rate of 4.4 × 10-8 mol s-1. At steady-state, the inlet DME feed was switched to a flow of argon 

(stopped-flow). A single step response cycle consists of three phases: step-up, steady-state 

and stopped-flow. Experiments involving multiple step response cycles were conducted and 

presented in a previous publication.48
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In a second series of experiments, the influence of co-feeding carbon monoxide (0.33 

vol%) and hydrogen (0.33 vol%) separately with the DME feed in a single step response cycle 

was studied over ZSM-5 (25) catalysts. 

Lastly, precursors such as dimethoxymethane and 1,5-hexadiene were seeded 

separately in the TAP reactor before introduction of the DME feed using a novel consecutive 

step response methodology over ZSM-5 catalysts packed in a shallow bed in the TAP reactor. 

The consecutive step response experiments in the TAP reactor was implemented by 

conducting two step response cycles with different feeds: the first step-up cycle using the 

precursor (dimethoxymethane or 1,5-hexadiene) and the second step response cycle using 5 

vol% DME at 300 °C over ZSM-5 (11.5) catalysts. As a baseline study for the consecutive step 

response experiments, 5 vol% DME over 10 mg of fresh ZSM-5 (11.5) catalysts was studied 

in a single step response cycle. To compare dimethoxymethane to 1,5-hexadiene, equimolar 

carbon input of the precursor was used. A step response of 2.5 vol% of 1,5-hexadiene was 

carried out on the reactor for 5, 15 and 90 min giving molar carbon input of 2.1, 6.53 and 39.2 

µmol respectively followed by a step response of 5 vol% DME over the ZSM-5 (11.5) catalyst. 

Also, a step response of 5 vol% of dimethoxymethane was carried out for 5 min giving a molar 

carbon input of 1.9 µmol followed by a step response of 5 vol% DME over the ZSM-5 (11.5) 

catalyst. Thus, dimethoxymethane can be compared to 1,5-hexadiene after having seeded 

both precursors for 5 min each, while the effect of increasing molar carbon input can be 

observed with 1,5-hexadiene.  

The influence of carbon monoxide and hydrogen were investigated via co-feeding while 

that of dimethoxymethane and 1,5-hexadiene were studied through seeding as the adsorption 

equilibrium of the former on bare non-modified zeolites is such that no appreciable coverage 

can be sustained under vacuum conditions. Redox sites are required to retain coverage. 

Conversely, dimethoxymethane and 1,5-hexadiene are susceptible to adsorption on acid sites 

following carbenium ion mechanism. 

 Flow rates of the inert feed similar to step response feed (ca. 10-8 mols-1), inlet pressure 

below 1000 Pa57 and reactor temperatures of 300 °C were used in all experiments. The active 

catalyst bed length was short (2 mm) compared to the overall bed length of 25 mm. The raw 

data (QMS ion currents) were corrected for background levels and fragmentation contributions 

for the different molecules and sensitivity factors (section S4). 

Steady state DME conversion was calculated using equation 1: 

                                                                                                           (1)XDME =  
2nDME, i ― (nMeOH, e + 2nDME,e)

2nDME,i
 

where  is the conversion of DME,  is the molar feed flowrate of DME,  is the 𝑋𝐷𝑀𝐸 nDME, i nMeOH, e

effluent molar flowrate of methanol and  is the effluent molar flowrate of DME. The nDME,e

reaction products observed under steady-state conditions showed no gaseous products 
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heavier than an m/z ratio of 56 (Figure S3). The induction period and growth rate of the 

transition-regime were analysed using the logistic (sigmoidal) function described in section 3.

2.4. Temperature programmed desorption (TPD)
TPD was carried out after every step response experiment by supplying argon at similar 

flow rates to the DME feed for 20 min to remove weakly adsorbed species from the ZSM-5 

(25) catalyst and subjecting the zeolite to a linear temperature ramp at 15 °C min-1. Analysis 

of the TPD profiles for estimation of maximum temperatures and activation energies of 

desorption were carried out using a microkinetic model described in our previous work.45 

After the third step response cycle at 300 °C, the ZSM-5 catalyst was heated up until 

470 °C at 15 °C min-1 under argon flow. The response (  and normalised response R =
Ii ― Ibl

IAr
) (RN

 were obtained. Ii is the ion current intensity at a specified m/z ratio, Ibl is the background =
R

RMax
)

intensity, IAr is the ion current intensity for argon and Rmax is the maximum response value. 

The activation energies of the species desorbed were obtained for maximum temperatures of 

desorption of 400 and 460 °C. 

3. Results 

3.1. Step response
 Figure 2, which has been reported before48, shows the results of a step response 

experiment with 5 vol% DME at 300 °C. Propylene is the major olefin and exhibits an S-shaped 

profile. A 44-min induction period is observed before steady-state flow of propylene effluent in 

the first cycle. Methanol effluent displays a slight overshoot while water effluent displays a 

significant overshoot. DME effluent rises in two stages: first rapidly and then slowly onto its 

steady state value. In the initial transient phase, the DME and methanol effluent rise onto 

steady values, which are lower than the total feed concentration. Water has a non-negligible 

induction period signifying that it is formed during the reaction and not desorbed from the 

reactor walls. The m/z ratio of 18 (Table S1) used to identify water has no contribution from 

any other hydrocarbons. Moreover, thermogravimetric analysis (TGA) of the NH4-ZSM-5 (25) 

catalyst shows that it loses 4.2% of its initial mass at 600 °C. About 4% of its initial mass is 

lost at 450 °C indicating little loss of zeolite mass due to drying or decomposition of the zeolite 

above 450 °C. The prior calcination at 450 °C removes any residual water from the zeolite 

such that the water effluent observed in Figure 2 is generated from the reaction. The low 

selectivity to ethylene at low temperatures has been observed previously by Dewaele et al.58 

Pérez-Uriarte et al.59 also observed relatively high propylene selectivity at low temperatures 

with an increase in ethylene selectivity with temperature rise. 
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9

The second step response shows a different behaviour compared to the first step. After 

steady-state was achieved at 300 °C, the catalyst was purged by a flow of argon for 20 min 

starting at 80 min time on stream (TOS). A second step response cycle of 5 vol% DME was 

passed at 100 min TOS. The initial induction time of propylene effluent observed in the first 

step response cycle is removed. Propylene effluent maintains its S-shaped profile showing 

that no significant coke deposition had occurred. There is no overshoot in the water effluent 

on subsequent step response cycles. The DME effluent rises immediately in subsequent step 

response cycles in comparison to its slower pace in the first cycle. 

Figure 2: Step response of 5 vol% DME at 300 °C over 10 mg of ZSM-5 (25) catalysts. Total 
molar flow rate (5 vol% DME, balance Ar) = 4.4 × 10-8 mol s-1. Steady state conversion is 
34.8%. “Reprinted with permission from 48. Copyright 2019. John Wiley & Sons.” 

3.2.  Nature of occluded species using TPD of ZSM-5 (25) 
The nature of the occluded species was studied by TPD of the ZSM-5 (25) catalyst 

after being subjected to multiple step response cycles at 300 °C. Figure S4 shows two groups 

of occluded species: (a) m/z ratio of 29, 31, 41 and 45 and (b) m/z ratio of 16, 18 and 91. 

These two groups can be distinguished based on their maximum temperatures (400 and 

460 °C) and activation energies of desorption. Using m/z ratio of 41 as a proxy for the first 

group and m/z ratio of 91 for the second group, activation energies of desorption of 100 kJ 

mol-1 and 115 kJ mol-1 were obtained respectively. The low signal to noise ratio obtained in 

Figure S4 is evidence for weak signals of concentration profiles obtained during the step 
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10

response experiments. The first group (using m/z=41 as a proxy) and second group (using 

m/z=91 as a proxy) could be identified as fingerprints of the olefin and aromatic cycles 

respectively. 

Although Figure S3 shows that no species heavier than m/z = 56 is present in the gas 

phase, the desorption of the working catalyst via TPD in Figure S4 shows that heavier products 

up until m/z = 91 are occluded in the spent catalyst. This behaviour has earlier been reported 

by Weisz and co-workers60 who demonstrated product selectivity by showing that, of the many 

products that could form, only the molecules that can exit the pores based on their size 

appears in the products. 

Desorption profiles for dimethoxymethane and 1,5-hexadiene were obtained over ZSM-

5 (25) catalysts. Dimethoxymethane shows reactive decomposition under vacuum at 15 °C 

min-1 (Figure S5a). 1,5-hexadiene undergoes molecular adsorption at low temperatures (< 200 

°C) and dissociative adsorption at higher temperatures between 250 and 450 °C (Figure S5b).  

The desorption profiles of DMM and 1,5-hexadiene are compared to that obtained after a step 

response of DME over ZSM-5 (25) catalysts. The desorption profiles for DMM and 1,5-

hexadiene show that they either exist in the pores of the catalyst or products of their 

dissociation are present in the pores of the catalyst at the step response temperatures. Further 

differentiation is obtained via the consecutive step response experiments described in section 

3.4. 

3.3. Co-feeding carbon monoxide or hydrogen with DME  
Co-feeding of carbon monoxide or hydrogen with the DME feed was carried out over 

ZSM-5 (25) catalysts at 300 °C. Carbon monoxide and hydrogen are formed due to methanol 

decomposition on ZSM-5 catalysts. Consequently, co-feeding carbon monoxide or hydrogen 

should serve to subsequently increase their concentrations in the feed. Propylene effluent 

maintains its S-shape irrespective of the co-feed (Figure 3). 
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Figure 3: Effect of co-feeding (0.33 vol%) of carbon monoxide or hydrogen with 5 vol% DME 
on the induction period of propylene formation over ZSM-5 (25) catalysts at 300 °C. Raw data 
has been subject to noise filtering using a moving average of 3. 

3.4. Consecutive step response experiments in the TAP reactor
Further experiments were carried out to distinguish the effect of 1,5-hexadiene and 

dimethoxymethane on a step response of DME in the TAP reactor. 5 vol% DME over 10 mg 

of fresh ZSM-5 (11.5) catalysts at 300 °C give an induction period and growth rate of the 

transition-regime of hydrocarbon pool formation half and twice the induction period and growth 

rate of the transition-regime of hydrocarbon pool formation over 10 mg of ZSM-5 (25) catalysts 

at 300 °C respectively. This suggests a relationship between the number of active sites, 

induction period and the rate at which the hydrocarbon pool is established at constant molar 

flowrate. After the consecutive step response experiments, temperature programmed 

desorption of occluded hydrocarbons in the ZSM-5 catalyst was carried out. Figure S6 gives 

the full consecutive-step response experiments of dimethoxymethane and 1,5-hexadiene over 

ZSM-5 (11.5) catalysts. In Figure S6a, no fragments of m/z = 41 are formed during DMM 

seeding, thus establishing the certainty of this assignment to propylene on introduction of the 

DME feed in the second step response cycle. With 1,5-hexadiene in Figure S6b, certainty of 

this assignment arises from the observation that on removal of the precursor feed, the intensity 

of the fragment falls immediately and not slowly as would be the case for slow desorption. The 

m/z=41 fragment rises again on introduction of the DME feed in the second step response 
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cycle. As can be observed, the rise rates of the intensity of the m/z=41 fragment on 

introduction of the 1,5-hexadiene precursor and on introduction of DME are different further 

buttressing the fact that the former is due to the precursor and the latter is due to propylene 

formed from DME. 

3.5. Analysis of induction period and transition-regime
Several functions were used to model the S-shaped profile of propylene including the 

Avrami equation61-63, Richards curve64 and logistic (sigmoidal) function65. Of these, the S-

shaped propylene profile was best described by the logistic (sigmoidal) function. Accordingly, 

the S-shaped profile can be defined by: (i) an initial induction stage where no propylene is 

obtained, (ii) a subsequent transition (growth) stage in which propylene effluent flowrates 

increase rapidly, and (iii) a final steady-state stage, where propylene effluent flowrate reaches 

a plateau and the dual-cycle dominates. The S-shaped profile of propylene can be normalised, 

and the logistic function can be fitted to account for these various phases: 

    (2)𝐼(𝑡) =
𝐼𝑚𝑎𝑥

1 + 𝑒
―𝑘(𝑡 ― 𝑡𝑚)

where I(t) is the intensity at time t, Imax is the maximum intensity at the plateau phase of the S-

shaped profile, tm is the inflection time at which the growth rate reaches its maximum and k 

(min-1) is the apparent rate constant for the growth phase (transition-regime). The induction 

time (min) is given in empirical parameters as: 

(3)𝑡𝑖𝑛𝑑 = 𝑡𝑚 ―
2
𝑘 

Analysis by a logistic (sigmoidal) function for description of the evolution of the 

hydrocarbon pool as the catalyst evolves from its fresh state to its working state allows for a 

relatively simple mathematical treatment, which prevents the problem of over-

parameterisation when a full mechanistic model is rendered. A full mechanistic model 

encompassing the induction period, transition-regime and the dual cycle mechanism would 

require modelling of greater than 100 rate constants where steady-state chemistries are 

considered. These include: olefin methylation, oligomerisation and cracking, hydrogen transfer 

and cyclisation and aromatic methylation and dealkylation.16 Even more, when such a detailed 

mechanism is simulated, it would be difficult to make collective predictions of the group of 

chemistries and their influence of precursors on the induction period, transition-regime or the 

dual-cycle directly in the S-shaped propylene profile. The logistic (sigmoidal) function avoids 

these difficulties mentioned above by modelling the propylene effluent. This is feasible by 

analogy as the induction period is influenced by impurities, olefin co-feeding or aromatic co-

feeding, thus mirroring the behaviour of crystal nucleation kinetics. The impact of adsorbed 

intermediates is evinced in the logistic (sigmoidal) function as the S-shaped profile is due to a 

series of stable intermediates.42-44 

Page 12 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

3.6. Influence of precursors on the induction period and transition regime of DME 
conversion to hydrocarbons

An analysis of the S-shaped propylene profile with or without precursors was carried out 

using equations 2 and 3. Carbon monoxide and hydrogen reduce the induction period of 

propylene formation (table 1). The reduction of the induction period with a carbon monoxide 

co-feed is 1.5 times the reduction of the induction period with a hydrogen feed. A step 

response of 5 vol% DME over ZSM-5 (25) without any co-feed gives an induction time of 44 

min and growth rate of the transition-regime of 0.34 min-1. Carbon monoxide co-feed 

decreases the induction period of a DME only feed by 54% while hydrogen co-feed decreases 

the induction period by 34%. The growth rate of the transition-regime is increased with carbon 

monoxide (79%) and hydrogen (24%).

Table 1: Induction times and growth rate constants of the S-shaped propylene profile obtained 
from DME at 300 °C over ZSM-5 (25) catalysts

Co-feed tind (min) k (min-1)
None 43.5 0.34

CO (0.33 vol%) 19.9 0.61

Hydrogen (0.33 vol%) 28.6 0.42

Propylene effluent, on seeding with dimethoxymethane for 5 min, shows a similar profile 

shape as with the single step response cycle of DME (Figure 4). 
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Figure 4: Comparison of induction times of propylene formation after its introduction in argon 
only (-); after introduction of a first step response cycle of 2.5 vol% 1,5-hexadiene for 5 (-), 15 
(-) and 90 (-) min followed by a step response of 5 vol% DME in argon; after introduction of a 
first step response cycle of 5 vol% DMM for 5 min followed by a step response of 5 vol% DME 
in argon (-) over ZSM-5 (11.5) catalysts. Propylene is formed during the first step response of 
2.5 vol% of 1,5-hexadiene. For brevity, only the effluents of the second step response cycle 
are shown (see Figure S6 for full consecutive step response methodology). 
 

On addition of 1,5-hexadiene, the propylene effluent shows a different relaxation 

behaviour, although still exhibiting similar logistic characteristics to the single step response 

cycle of DME. The propylene effluent maintains an S-shaped profile irrespective of added 

precursors, as observed during the co-feeding experiments.  A step response of DME over 

ZSM-5 (11.5) with no precursors give an induction time of 23 min and growth rate of the 

transition-regime of 0.63 min-1. The induction time is reduced by 31 and 36% with roughly 

equimolar carbon input of dimethoxymethane and 1,5-hexadiene respectively (table 2). 
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Table 2: Induction times and growth rate constants of the S-shaped propylene profile 
obtained from DME at 300 °C over ZSM-5 (11.5) catalysts

Precursor Seeding time 
of precursor 
(min)

Molar carbon 
input of 
precursor (µmol) 

tind (min) k (min-1)

None - - 23.2 0.63

DMM 5 1.90 15.9 1.02

1,5-hexadiene 5 2.10 14.8 0.15

1,5-hexadiene 15 6.53 4.28 0.18

1,5-hexadiene 90 39.2 1.07 0.26

However, while DMM increases the growth rate of the transition-regime of hydrocarbon 

pool formation by 62%, 1,5-hexadiene decreases the growth rate of the transition-regime of 

hydrocarbon pool formation by 76%. The growth rate increases further with increasing seeding 

time by 73% after 90 min in comparison to a seeding time of 5 min while the induction period 

drops.

4. Discussion
4.1. Step response study 

During pulse measurements in the TAP reactor, a low detection limit and an unperturbed 

measurement of signal intensities due to the direct placement of the measuring probe in the 

detection chamber are implemented. Collisions between probe molecules and a complex 

solid, under Knudsen diffusion, may provide unique kinetic signatures contained in the motion 

of the molecules which are characteristic of the composition and structure of the catalyst 

surface.66 This behaviour allows for kinetic investigations. The decrease in the contribution of 

re-adsorption phenomena and the removal of extra-particle mass transfer under vacuum 

conditions demonstrates its immense benefit.45,67,68

During step response experiments in the TAP reactor, low detection limits and an 

unperturbed measurement of signal intensities are still afforded. The influence of gaseous 

collisions between species and of collisions between the solid surface and gaseous species 

are relatively greater due to the flow conditions experienced during our step response 

experiments. Reduced pressure (<1000 Pa), however at these conditions, allows for reduced 

pressure gradients in the film surrounding the catalytic particle which, in the limits, are non-

existent at the low pressures and ensuing densities. The dilute mixture also allows for 

negligible extra-particle heat transfer. Chansai et al.69 presented a similar switching 

methodology as in our step response experiments albeit at much shorter time on stream and 

in a bench flow reactor. We note, however, that enhanced sensitivity in the TAP reactor used 

for step response experiments results from the transient techniques employed therein that 
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allow for decoupling of elementary steps in the induction period. Furthermore, the transfer 

function is virtually non-existent in the TAP reactor due to the free flight path at the end of the 

catalytic bed resulting in a negligible set-up contribution. 

Initially, pulse studies of methanol and DME were carried out over ZSM-5 catalysts in 

the TAP reactor45 with the aim of observing primary olefin formation. It became immediately 

clear that pulse studies were not sufficient to unravel the complexity of the underlying 

mechanisms as methanol showed no outlet pulse over hydrocarbon-occluded ZSM-5 

catalysts. The product desorption rates are much slower in comparison to formation rates such 

that the intensities observed during the methanol pulse response is so small that it is observed 

in the noise of the sampling equipment. Nonetheless, we showed in ref.45 that the alternative 

methodology used, that is temperature programmed desorption experiments used to probe 

desorption phenomena were carried out under intrinsic conditions following a methodology 

specified by Demmin and Gorte.70 Similar phenomena have been observed on pulsing 

ammonia over Al-Sb-V-W oxide catalyst during propane ammoxidation in a TAP-2 reactor.71 

Consequently, our current methodology has involved the study of the preferential adsorption 

and desorption of methanol and DME over fresh and hydrocarbon occluded ZSM-5 catalysts 

of different Si/Al ratios.45 Thereafter, a study of the evolution of hydrocarbons from DME using 

a novel methodology in the TAP reactor and identification of the rate-limiting steps in the 

induction period.48 Here, we sought to understand the influence of various model precursors 

on the induction period and transition-regime before hydrocarbon pool formation.   

A slow build-up of a steady pool of intermediates and their reaction to propylene occur 

during the first step response cycle (Figure 2) at 300 °C. The reaction of the DME feed with 

the occluded pool of intermediates is initiated during subsequent step response cycles. 

Heavier species are formed in the pores of the zeolite (Figure S4) compared to that observed 

in the gas phase (Figure S3). Therefore, the first cycle should involve intrinsic and extrinsic 

relaxation40 describing the transformation due to the innate mechanism and pore chemistry 

respectively while the second and subsequent step response cycles should involve intrinsic 

relaxation only. 

DME dissociates initially on acid sites and leads to the formation of surface methoxy 

groups and methanol. Methanol further dissociates leading to surface methoxy groups and 

water13,45,72 or equilibrate leading to DME and water. Together, DME forms surface methoxy 

groups, methanol and water. Even in the absence of Brønsted acid sites, methanol 

decomposes to form carbon monoxide, formaldehyde, methane and hydrogen.15 On further 

reaction, surface methoxy groups are converted into hydrocarbons and regenerate the active 

site.18,19,73 Thus, the overshoot in water formation in Figure 2 can be described by two 

competing factors: (1) the generation of surface methoxy groups and methanol from DME and 

(2) the consumption of these adsorbed species towards hydrocarbon formation. These 
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competing factors could lead to an overshoot governed by the slow regeneration of active 

species (surface methoxy groups) or active sites on the catalyst surface.42   

Reduction of the induction period in subsequent step cycles involves the co-operative 

nature of the incoming DME feed and the occluded hydrocarbons on the ZSM-5 catalyst. 

4.2. Perspective on reaction mechanism 
Initially, DME produces methanol, water, surface methoxy groups on its dissociation 

on Brønsted acid sites of the ZSM-5 catalyst. Recent studies show that surface methoxy 

groups74 or formaldehyde75 bound on extra framework aluminium sites could be critical C1 

species from which the initial C-C bond is produced. With no co-feeding or precursor addition, 

DME converts directly to primary ethylene and/or propylene via the formation of adsorbed 

intermediates such as dimethoxymethane, dimethoxyethane and methyl propenyl ether46,48,76 

in the induction period. Dimethoxymethane decomposes on ZSM-5 catalysts to form DME 

(96.5%), methanol, formaldehyde and methyl formate.26 Methanol further decomposes to form 

carbon monoxide, formaldehyde, methane and hydrogen, even in the absence of Brønsted 

acid sites.15 Co-feeding with carbon monoxide or hydrogen increases their concentration 

during the propagation of the primary formation of ethylene and/or propylene. Carbonyl 

compounds such as methyl acetate and acetic acid have been observed on co-feeding 

methanol with carbon monoxide over zeolite catalysts.14,15,49,77 Primary ethylene and/or 

propylene then forms higher olefin homologues through methylation with surface methoxy 

groups and cracking in the olefin cycle. Subsequent hydrogen transfer and cyclisation steps, 

and aromatic methylation and dealkylation lead to establishment of the dual cycle and 

production of secondary olefins. Thus, the total ethylene and propylene produced at steady-

state can be conceived as a function of that produced primarily via dimethoxyethane and 

dimethoxymethane in the induction period and that obtained secondarily through the aromatic 

dealkylation chemistry in the aromatic cycle (Figure 5).  

Alkylcyclopenta carbenium ions form methylbenzenes and primary ethylene and/or 

propylene indirectly in the induction period. 1,5-hexadiene is used as a model compound to 

initiate the formation of alkylcyclopenta carbenium ions52,53 thus simulating the pathway 

previously observed with impurities by Haw and co-workers.5 The formation of coke species 

could also result from these precursors (alkylcyclopenta carbenium ions and 

methylbenzenes). However, as observed in our TAP studies, the ZSM-5 catalysts were stable 

through multiple step response (Figure 2). Primary olefins (ethylene and/or propylene) formed 

from the 1,5-hexadiene via alkylcyclopenta carbenium ions in the induction period could further 

be methylated by surface methoxy groups and subsequent olefin homologues crack through 

the olefin cycle. Thereafter, hydrogen transfer and cyclisation steps, as well as further aromatic 

methylation and dealkylation steps complete the dual cycle. Thus, the total ethylene and 
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propylene produced at steady-state can be conceived as a function of that produced primarily 

by alkyl cyclopenta carbenium ions and methylbenzenes in the induction period and that 

produced secondarily by the dual cycle (Figure 5). 

The difference between both pathways (dimethoxymethane, carbon monoxide and 

hydrogen; 1,5-hexadiene) is that heavier hydrocarbons are formed before the formation of 

primary olefins with 1,5-hexadiene while the heavy aromatics are formed after the formation 

of primary olefins with dimethoxymethane, carbon monoxide and hydrogen (Figure 5). 

Figure 5: Proposed scheme of competing direct (—) and indirect (—) pathways to primary 
olefin formation from DME over ZSM-5 catalysts. Transition (growth) chemistry is given by (- - 
-). 

As shown in tables 1 and 2, increasing the concentrations of carbon monoxide, 

hydrogen and dimethoxymethane all reduce the induction period. Carbon monoxide is 1.5 

times as effective as hydrogen in reducing the induction period. The reduction of the induction 

period by carbon monoxide and dimethoxymethane following a spike in their concentrations 

may allow for faster rates of formation of intermediates (methyl acetate, surface 

acetates14,15,49) and could lead to faster rates of hydrocarbon pool formation. The reasons for 

reduction of the induction period and increase in the rate of hydrocarbon pool formation with 

hydrogen addition are less evident. Nonetheless, according to the framework developed in 

Figure 5, it is proposed that hydrogen reduces the induction period through increases in its 

concentration during primary olefin formation. Hydrogen also increases the growth rate of 

hydrocarbon pool formation due to its involvement in hydrogen transfer reactions in the 

formation of secondary olefins.16

The formation of alkylcyclopenta carbenium ions through 1,5-hexadiene reduces the 

induction period by the same amount as dimethoxymethane. A high concentration of alkyl 

cyclopenta carbenium ions reduces the induction period as shown when the introduction of 
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these precursors is increased from 5 min to 90 min. The mechanism governing the influence 

of 1,5-hexadiene on the induction period is evident following the work of Haw and co-

workers.30 Here, simulating impurities by increasing the concentrations of 1,5-hexadiene could 

reduce the induction period by faster rates of methylbenzene formation and subsequent 

propagation to primary olefins as depicted in Figure 5. However, seeding with 1,5-hexadiene 

reduces the growth rate of the transition-regime of hydrocarbon pool formation (table 2). Two 

factors could be responsible: (1) the formation of coke species which deactivate the catalyst 

and/or (2) formation of heavy hydrocarbons/aromatics52 from alkylcyclopenta carbenium ions 

which compete for active sites. The potential for coke deposition is reduced at low pressure 

and the deactivation is unlikely in our experiments as evinced by similar DME reactivity during 

the sequence of the step response experiments presented in this work. Hence, the data 

suggests that seeding with 1,5-hexadiene leading to the reduction of the rate of hydrocarbon 

pool establishment in the transition-regime is likely due to increased competition for active 

sites by heavier hydrocarbons formed a priori. The heavy hydrocarbons are formed during 

seeding with 1,5-hexadiene before initial ethylene and/or propylene formation. Subsequently, 

these heavy hydrocarbons compete for active sites with chemistries that establish the dual-

cycle during the transition-regime. 

Extensive spectroscopic (transmission FTIR) experiments (section S9) compared 

hydrocarbon-occluded ZSM-5 catalysts to experiments where 1,5-hexadiene, and 

dimethoxymethane were activated on fresh ZSM-5 catalysts to further understand the 

behaviour of these precursors. The results showed that no differentiation can be made based 

on FTIR alone. 

Further evidence is provided from the TPD profiles of dimethoxymethane (Figure S5a) 

and 1,5-hexadiene (Fig S5b). Products of decomposition of 1,5-hexadiene only exit the zeolite 

pore system at temperatures between 250 and 450 °C. At a step response temperature of 300 

°C, these products of decomposition of 1,5-hexadiene are still occluded in the pores. It can be 

conceived that these decomposition/reaction products compete for active sites at step 

response temperatures. However, the TPD profiles of dimethoxymethane shows that major 

products of decomposition exit the zeolite pore structure before step response temperature 

suggesting less competition for active sites. Evidently, dimethoxymethane still leads to 

propylene formation (Figure S5a). 

We showed previously that the transformation of the first C-C bond is rate-limiting in the 

conversion of DME to primary olefins.48 This was observed by Qi et al.32 for MTO conversion. 

Herein, we show further that increasing the concentration of precursors i.e. carbon monoxide, 

hydrogen, dimethoxyethane and 1,5-hexadiene reduces the induction period and thus 

alleviates the bottleneck (rate-limiting) process in the conversion of DME to primary olefins. 
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However, formation of heavier hydrocarbons from 1,5-hexadiene compete with the 

transformation of these primary olefins thus reducing the rate of establishment of the dual 

cycle during the conversion of dimethyl ether to hydrocarbons. 

5. Conclusions
The behaviour of precursors (carbon monoxide, hydrogen, dimethoxymethane, 1,5-

hexadiene) during the induction period and transition-regime of the conversion of dimethyl 

ether to olefins over ZSM-5 catalysts has been studied in a temporal analysis of products 

reactor at 300 °C. 

Propylene is the major olefin formed on introduction of the DME feed and a 44-min 

induction period is observed in its formation during the first step response cycle, which is 

reduced on the second and subsequent step response cycles. Propylene displays an S-

shaped profile similar to the logistic (sigmoidal) behaviour observed with a crystal nucleation 

mechanism. Propylene is primarily formed through a series of slowly generated adsorbed 

intermediates in the induction period and supplemented with the secondary formation via the 

aromatic dealkylation chemistry once the dual-cycle is established. Seeding the ZSM-5 

catalyst with carbon monoxide, hydrogen and dimethoxymethane increases their 

concentration before introduction of the DME feed. However, on prior seeding of the ZSM-5 

catalyst with 1,5-hexadiene, primary olefins are generated indirectly by the aromatic 

dealkylation chemistry and secondary olefin formation occurs after the establishment of the 

dual cycle.  

The induction period is decreased on addition of dimethoxymethane, carbon monoxide 

and hydrogen and the growth rate of the transition-regime of hydrocarbon pool formation is 

increased on addition of these precursors. The induction period is reduced due to increasing 

concentrations of the precursors during the early stages while the growth rate of the transition-

regime is increased due to higher rate of formation of intermediates such as methyl acetate 

and surface acetate from the precursors. 1,5-hexadiene also reduces the induction period due 

to increased concentration of methylbenzenes which form primary propylene indirectly. The 

growth rate of the transition-regime is reduced, however, as heavy intermediates formed a 

priori compete for active sites with constituents of the hydrocarbon pool.  

6. Supplementary Information
Relevant details about the TAP reactor, blank experiments, characterization of ZSM-5 

catalysts by XRD, SEM and TGA, analysis procedures, spectrum of species at steady-state, 

TPD of working catalyst, TPD of dimethoxymethane and 1,5-hexadiene, consecutive step 

response methodology and transmission FTIR experiments. 
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Figure 1: Dual-cycle during the conversion of methanol to hydrocarbons over zeolite catalysts. “Reprinted 
with permission from (16). Copyright (2013) American Chemical Society.” 
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Figure 2: Step response of 5 vol% DME at 300 °C over 10 mg of ZSM-5 (25) catalysts. Total molar flow rate 
(5 vol% DME, balance Ar) = 4.4 × 10-8 mol s-1. Steady state conversion is 34.8%. “Reprinted with 

permission from (48). Copyright 2019. John Wiley & Sons.” 

148x111mm (150 x 150 DPI) 

Page 27 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Page 28 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Page 29 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Page 30 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

85x47mm (150 x 150 DPI) 

Page 31 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


