
Master Thesis

SCA Resistent Implementation of the Montgomery
kP -Algorithm

Estuardo Alpírez Bock
Matriculation nr.: 2818626

24th September 2015

Adviser: Prof. Dr. rer. nat. Peter Langendörfer
Adviser: Prof. Dr.-Ing. H. T. Vierhaus
Supervisor: Dr. Zoya Dyka

Eidesstattliche Erklärung

Der Verfasser erklärt an Eides statt, dass er die vorliegende Arbeit selbständig, ohne fremde
Hilfe und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt hat. Die aus
fremden Quellen (einschließlich elektronischer Quellen) direkt oder indirekt übernommenen
Gedanken sind ausnahmslos als solche kenntlich gemacht. Die Arbeit ist in gleicher oder
ähnlicher Form oder auszugsweise im Rahmen einer anderen Prüfung noch nicht vorgelegt
worden.

Ort, Datum Unterschrift des Verfassers

i

Abstract

Mathematically, cryptographic approaches are secure. This means that the time an attacker
needs for finding the secret by brute forcing these approaches is about the time of the existence
of our world. Practically, an algorithm implemented in hardware is a device that generates a
lot of additional data during the calculation process. Its power consumption, electromagnetic
radiation, etc. can be measured, saved and analysed for key extraction. Such attacks are
called side channel analysis attacks and are significant threats when applying cryptographic
algorithms. By considering these attacks when implementing a cryptographic algorithm, it is
possible to design an implementation that is more resistant against them.
The goal of this thesis was to design a methodology to securely implement the Montgomery
kP -operation using an IHP implementation as a starting point. In addition, the area and
energy consumption of the secure Montgomery kP -multiplier should still be highly efficient.
The resistance against power analysis attacks of two different IHP ECC implementations was
analysed in this thesis. A horizontal power analysis attack using the difference-of-means test
was performed with the goal of finding potential leakage sources exploited in side channel
analysis attacks, i.e. finding the reasons of a correct extraction of the cryptographic key. For
both analysed ECC designs, four key candidates were extracted with a correctness of 90% or
more. Through analysis of the implemented Montgomery kP -algorithm’s functionality and
its power consumption, it was established that the algorithm’s operation execution flow was
the main cause of the implementations’ vulnerability. Thus, a design methodology consisting
in changing the Montgomery kP -algorithm operation flow was developed. As a result, the
re-designed implementations do not deliver any correctly extracted key candidates whenever
the difference-of-means test is performed on them. These re-designs implied an increase on the
chip area by about 5% for each implementation. The execution time needed for performing a
complete kP -operation was reduced for both designs. Thereby one implementation’s execution
time was reduced by 12% in comparison to its original version and even though its power
consumption was increased by 9%, its energy consumption per kP -operation was reduced by
4.5%.

iii

Kurzfassung

Standardisierte kryptographische Algorithmen sind aus mathematischer Sicht sicher. Dies
bedeutet, dass ein Brute-Force-Angriff zur Bestimmung des geheimen Schlüssels einen
Zeitaufwand von der Dauer der Existenz unserer Welt hat. In Hardware implementierte
Algorithmen generieren aber während des Berechnungsvorganges eine große Menge zusätz-
licher Daten. U.a. können der Energieverbrauch des Gerätes sowie seine elektromagnetische
Strahlung gemessen, gespeichert und analysiert werden, um den privaten Schlüssel zu extrah-
ieren. Solche Angriffe werden Seitenkanalangriffe genannt und sind erhebliche Bedrohungen
für die Sicherheit kryptographischer Algorithmen.
Die vorliegende Arbeit hatte das Ziel, eine Methodik zur Implementierung der Montgomery
kP -Operation zu entwickeln, welche Resistenz gegen Seitenkanalangriffe lieferte. Dabei wurde
eine IHP Implementierung als Ausgangspunkt benutzt. Zusätzlich sollten die Fläche und der
Energieverbrauch der sicheren Montgomery kP -Multiplizierer hoch effizient sein.
Im Rahmen dieser Masterarbeit wurde die Resistenz gegen Seitenkanalangriffe zweier un-
terschiedlicher IHP ECC Implementierungen analysiert. Ein Power-Analysis-Angriff wurde
anhand des difference-of-means Testes (DoMT) durchgeführt, um mögliche Sicherheitslücken
im Bezug auf Seitenkanalangriffe zu finden, d. h. um die Gründe einer erfolgreichen Schlüssel-
Extrahierung festzustellen. Für beide Implementierungen wurden vier Schlüsselkandidaten
mit einer Korrektheit von mindestens 90% extrahiert. Nach Analyse der Funktionalität
des implementierten Montgomery kP -Algorithmus und seines Momentanleistungsverbrauchs
wurde festgestellt, dass die Ausführungseihenfolge der Operationen des Algorithmus die
Hauptursache des erfolgreichen Angriffes war. Hierauf aufbauend ist eine neue Methodik
zur Implementierung des Montgomery kP -Algorithmus entwickelt worden. Diese Methodik
basiert auf einer neuen Ausführungsreihenfolge der einzelnen Operationen im Algorithmus.
Nach diesen Änderungen konnten mit dem DoMT keine Schlüssel mehr erfolgreich extrahiert
werden. Die Änderungen verursachten eine Erhöhung der Implementierungsflächen um ca.
5%. Die Ausführungszeit einer kompletten kP -Operation ist für beide Implementierungen
reduziert worden. Dabei wurde die Ausführungszeit z. B. einer Implementierung im Vergleich
zur originalen Version um 12% reduziert und obwohl ihre durchschnittliche Leistung um 9%
erhöht wurde, ist ihr Energieverbrauch pro kP -Operation um 4,5% reduziert worden.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Elliptic Curve Cryptography 5
2.1 Binary-extension field GF (2233) . 6
2.2 Elliptic Curves over GF (2233) . 8

2.2.1 Point operations . 8
2.3 Elliptic Curve Point Multiplication . 9
2.4 Cryptographic Operations . 13

2.4.1 Key generation . 13
2.4.2 Encryption scheme . 14

3 Side-Channel Analysis 17
3.1 Power Analysis . 18

3.1.1 Simple Power Analysis . 20
3.1.2 Countermeasures against Simple Power Analysis 22
3.1.3 Differential Power Analysis . 24
3.1.4 Comparative Power Analysis . 26
3.1.5 Countermeasures against Differential and Comparative Power Analysis 29

3.2 Fault Sensitivity Analysis . 31
3.2.1 Fault Injection . 31
3.2.2 FSA Attack Technique . 32
3.2.3 Countermeasures against Fault Sensitivity Analysis 34

4 Vulnerability Assessment of an IHP ECC Design 37
4.1 IHP ECC Design . 37
4.2 Difference-of-Means Test . 38

vii

Contents

4.3 Technical Description . 47
4.3.1 System Architecture . 47
4.3.2 Control Signal cntr Description . 50
4.3.3 Montgomery kP -Algorithm Implementation 52

4.4 Observations . 58

5 Re-design of the IHP ECC Implementation 71
5.1 Technical Changes . 71

5.1.1 System Architecture . 72
5.1.2 Control Signal . 73
5.1.3 Re-designed Implementation of the Montgomery kP -Algorithm 75

5.2 Observations . 91
5.3 Results of the Difference-of-Means Test . 94
5.4 Results of a Comparative Power Analysis Attack 100

6 Verification of the Re-design Methodology 103
6.1 Re-design of the ECC Implementation with the 6-clock-cycle Multiplier . . . 103

6.1.1 Re-design of the Main Loop . 103
6.1.2 Re-design of the First Loop Iteration 107
6.1.3 Chip Area and Power Consumption of the new Design 108

6.2 Results of the Difference-of-Means Test . 108

7 Conclusions 111

Appendix A Acronyms 115

Appendix B Flow Diagrams with Power Traces 117

Appendix C Re-designed Flow Charts 127

Bibliography 135

viii

List of Figures

1.1 Security features and how they can be achieved 2

3.1 Inverter . 18
3.2 Power Analysis and different ways of performing it 19
3.3 PT part corresponding to one point doubling and one point addition 21
3.4 PT part corresponding to the execution of the double-and-add algorithm . . . 21
3.5 PT part corresponding to one point doubling and one point addition (unified) 23
3.6 PT part corresponding to an execution sequence of the kP -operation 23
3.7 Vertical and horizontal SCA attacks . 25
3.8 Comparative Power Analysis . 27
3.9 Collision-based attack . 29
3.10 Clock glitch . 31
3.11 Fault Sensitivity analysis . 33
3.12 Fault Sensitivity comparison . 34

4.1 First 8 slots of the simulated PT for case 1 40
4.2 All slots from Figure 4.1 shown clockwise in the same coordinates 40
4.3 Variances as a 57-point-long curve for case 1 41
4.4 Variances as a 57-point-long curve for case 2 42
4.5 Relative correctness curve for the three comparison models 43
4.6 Relative correctness curve using the “direct” and “inverted” assumptions . . . 44
4.7 Relative correctness curves for cases 1 and 2 44
4.8 Relative correctness curves of the ECC blocks 46
4.9 Structure of the IHP ECC design . 48
4.10 Configuration of the signal cntr . 50
4.11 Flow chart diagram for the program montk1 54
4.12 Flow chart diagram for the program montk0 55
4.13 PT part simulated with the IHP ECC design 59
4.14 Flow chart diagram for montk0 with PTs simulated during its execution . . . 62

ix

List of Figures

4.15 Flow chart diagram for montk1 with PTs simulated during its execution . . . 63
4.16 Comparison of the power consumptions of all registers 66
4.17 Flow chart of the initialization part of the Montgomery kP -algorithm 68
4.18 Simulated PTs for keys with different values for kl−2 69

5.1 New structure of the IHP ECC design . 73
5.2 New configuration of the signal cntr . 74
5.3 Flow chart diagram of montk1 re-designed . 80
5.4 Flow chart diagram of montk0 re-designed . 81
5.5 Flow chart diagram of montk1 in its variant form 82
5.6 Flow chart diagram of montk0 in its variant form 83
5.7 Flow chart diagram of montk0 with corresponding PTs 85
5.8 Flow chart diagram of montk1pre . 88
5.9 Flow chart diagram of montk0pre . 89
5.10 Flow chart of the re-designed initialization part of the Montgomery kP -algorithm 90
5.11 PT part simulated for the re-designed ECC implementation 91
5.12 PT simulated at the beginning of the execution of the kP -operation 92
5.13 First 8 regular slots of the simulated PT for case 1 95
5.14 Variances as 54-point-long curves for case 1 and case 2 96
5.15 Relative correctness of the key extraction as a curve for case 1 96
5.16 Relative correctness curves for cases 1 and 2 97
5.17 Relative correctness curves of the re-designed ECC blocks 99
5.18 PTs measured from the re-designed ECC implementation executed on an FPGA101
5.19 Calculated difference of the measured PTs . 102

6.1 Flow chart diagram of montk0 adapted to the the 6-clock-cycle multiplier . . 105
6.2 PT part simulated with the re-designed ECC implementation (6-clock) 106
6.3 PT simulated at the beginning of the execution of the kP -operation 107
6.4 Relative correctness curve for the original ECC implementation (6-clock) and

for its re-designed version . 109

7.1 Relative correctness curves for the original ECC implementation with 9-clock-
cycle multiplier and its re-design version . 112

x

List of Tables

1.1 NIST recommended key sizes (in bits) for RSA and ECC 3

3.1 Propagation delays and energy consumptions for an inverter. 18
3.2 Execution sequence of kP and k(2P) with the double-and-add-always algorithm 28
3.3 Sequence of point doublings and point additions for an EC point multiplication 32

4.1 Description of the input values for the Bus. 51
4.2 Values written to the Bus during cycles 56 and 57 (0) 65

5.1 New possible values of signal cntr for the Bus 75
5.2 Example of the new execution sequence of montk1 and montk0 77
5.3 Total cell area of the different versions of the ECC implementation 93
5.4 Power, time and energy consumption of the different versions of the ECC

implementation . 94

6.1 Power, time and energy consumption of the two versions of the ECC Design . 108

7.1 Comparison of the results of the original ECC implementation with the 9-
clock-cycle multiplier and its re-designed version 113

7.2 Comparison of the results of the original ECC implementation with the 6-
clock-cycle multiplier and its re-designed version 113

xi

1 Introduction

Wireless Sensor Networks (WSNs) are used for monitoring and protecting critical infrastruc-
tures as well as in industrial automation. The sensor nodes used in such fields are small
sized, low cost devices. Since they are battery powered objects connected to a network, the
performance of their functionalities should be efficient over a long period of time (long lived)
and the communication between and with these devices should be reliable and secure. The
wireless sensor nodes’ communication needs to be protected in order not to compromise the
functionality of the system they are being used in. This can be achieved by cryptography.

Cryptographic means need to be applied to provide confidentiality, data integrity and
availability as security goals for the system [1]. Symmetric and asymmetric cryptographic
approaches help reaching these goals, as Figure 1.1 illustrates. This diagram shows how
the two types of cryptographic approaches can be applied in order to provide systems
such as WSNs with characteristics that define them as secure. For ensuring these features,
cryptographic means such as encryption, decryption and digital signature operations have to
be applied. Energy efficient methods for implementing such functionalities need to be studied
and applied in order to cope with resource constraints of WSNs.

1

1 Introduction

Security:

• Confidentiality
• Integrity
• Origin authentication
• Entity authentication
• Non-repudiation

Cryptography

-Encryption
-Decryption

Symmetric
approaches

Asymmetric
approaches

AES, DES
‘+’ fast, efficient
‘+’ short keys
‘-’ key management
‘-’ key distribution

RSA, ECC
‘-’ slow, energy expensive
‘-’ long keys
‘+’ no secret key distribution
‘+’ less memory usage

-Digital Signature
Operations

Figure 1.1: Security features and how they can be achieved.
Symmetric and asymmetric cryptographic approaches are compared, pointing out their advantages
and disadvantages with ‘+’ and ‘-’ respectively.

In symmetric-key cryptography, a sender and receiver share a single secret key for encryption
and decryption of the transmitted message. Algorithms of this type of cryptography are fast,
but the key needs to be distributed through a secret channel. In some scenarios, each entity
needs to store one key for each communication partner. If a network consists of n sensor
nodes, each sensor node stores (n− 1) keys1.
Public-key cryptography is based on complex algorithms that demand more time and energy
than those used in symmetric-key cryptography. These algorithms provide numerous benefits
for the scenarios they are implemented in. Each party has its own key pair: one public and
one private key. The private key has to be stored secretly, while the public key is accessible for
everyone who wants to communicate with its owner. Entities in networks with big numbers
of communication partners also benefit from this approach, as they do not need to store
the private key of every other entity inside the network. This saves storage memory and
energy. The non-repudiation problem is also solved with the generation of digital signatures,
providing data origin authentication and data integrity.

RSA is the most widespread public-key cryptosystem. Since its development in 1977 [2],
RSA gained popularity as it was the first known asymmetric cryptographic approach. It was

1In other scenarios, the same secret key is used for all communication partners. This way each node only
needs to store this key. These scenarios are not ideal for the security of the network since one successful
key extraction would be enough for knowing the value of all communication partners’ private key.

2

included in informative notes from the ISO 9796 [3]. RSA was patented in the United States
only [4] and the patent expired in 2000, thus making its application easier.
As an alternative asymmetric cryptography approach, Elliptic Curve Cryptography (ECC)
was proposed in 1985 [5] and 1987 [6]. ECC’s cryptographic strength is as robust as RSA’s,
using smaller key-sizes and thus, smaller processing efforts. Table 1.1 shows the key-sizes for
both approaches in order to provide an equivalent security level.

Table 1.1: NIST recommended key sizes (in bits) for RSA and ECC (binary field) [7], [8].
RSA Key Size ECC Key Size

1024 163
2048 233
3072 283
7680 409
15360 571

Mobile sensor nodes can benefit from operating with small key-sizes. This decreases the
amount of data needed to be transmitted, stored and processed when communicating, which
reduces their memory usage, power consumption, and time of communication. In considera-
tion of wireless sensor nodes and other devices with limited energy resources, ECC is the
preferred crypto-system to provide secure communication between these devices. Nevertheless,
ECC has gone through a slow adoption. One of the reasons for this is patent related. Different
aspects of ECC have been patented by different persons and companies around the world.
The Canadian company Certicom [9] itself holds more than 130 patents related to elliptic
curves and asymmetric cryptography in general [7]. This makes its application for commercial
purposes more difficult. Despite these difficulties, there is a lot of research done in the field
of ECC because of the previously mentioned benefits.

Though mathematically secure, the implementation and execution of cryptographic algorithms
in hardware and software lead to measurable physical parameters, such as power consumption,
electromagnetic radiation and execution time of the operations performed. If a device such
as a wireless sensor node ends up in the hands of an attacker, the attacker would be able to
measure and analyse these parameters. The information provided by the measurements can
help him reaching his goal: determining the value of the private key. Such attacks are known
as Side-Channel Analysis (SCA) attacks. These aspects have to be taken into account when

3

1 Introduction

implementing a cryptographic algorithm.

For the work described in this thesis a vulnerability assessment of an ECC implementation
from Innovations for High Performance Microelectronics (IHP) [10] was performed. This
implementation had proven to be vulnerable against SCA attacks. A private key could
be successfully extracted by performing a difference-of-means test based on the power
consumption of the design. The assessment was made in order to find out the reasons that
made this implementation vulnerable to the difference-of-means test. After performing the
assessment, the IHP ECC implementation was re-designed in order to make it more robust
against SCA.
Several changes were implemented and their effectiveness was proved by performing a power
analysis attack using the difference-of-means test again.

The re-design method proposed in this thesis was applied for two ECC designs: the first design
— the IHP hardware accelerator for ECC with a 9-clock-cycle multiplier2 — was analysed in
order to understand the parts of it that needed to be re-designed. The same re-design ideas
were then applied to the IHP hardware accelerator for ECC with a 6-clock-cycle multiplier3

in order to evaluate the applicability of the re-design method to other implementations.

The rest of this thesis is structured as follows: Chapter 2 introduces the elliptic curve
crypto-systems and their mathematical background. Chapter 3 provides an introduction to
SCA. This description is focused on Power Analysis (PA) attacks, as these are some of the
most studied SCA attacks. This includes a description of the horizontal PA attack using
the difference-of-means test. This attack was performed on the IHP ECC implementations.
Results are described in Chapter 4. Chapter 4 also describes the vulnerability assessment
performed on the IHP ECC design. This description was made based on analysis of the
source code and simulations of the functionality and power consumption of the design. The
procedure for re-designing the ECC implementation is described in Chapter 5, pointing out
how it has been managed to improve its resistance against the described SCA attacks and
to optimize its energy consumption. Chapter 6 describes how this re-design ideas can be
applied to other versions of the ECC design using the implementation with the 6-clock-cycle
multiplier as an example. Conclusions are given in Chapter 7.

2The multiplier entity that forms part of this design requires 9 clock cycles for completing one multiplication.
3The multiplier entity that forms part of this design requires 6 clock cycles for completing one multiplication.

4

2 Elliptic Curve Cryptography

The concept of using elliptic curves for designing asymmetric cryptographic systems was first
proposed in 1985 [5]. ECC is based on elliptic curves defined over finite fields, also known
as Galois Fields (GF). These are fields that consist of a finite number of elements, denoted
as their order, and a set of two operations: addition and multiplication. The commutative
and distributive laws are valid for operations performed between the elements of a field.
Finite fields are finite cyclic groups, this means that any mathematical operation between
two elements of the field will result in another element of the same field.

Standard elliptic curves used for cryptographic implementations can be defined over fields of a
prime basis, denoted as GF (p) where the order p is a prime number, or over binary-extension
fields, denoted as GF (2m) where m is a positive integer. Elements in GF (2m) can be
represented as up to m-bit long binary numbers. While prime-order curves are well suited for
software implementations, elliptic curves defined over GF (2m) can be efficiently implemented
in hardware [11]. For this reason, the IHP hardware accelerator for ECC, analysed and
re-designed in this work, was implemented for the elliptic curve B-233, defined over GF (2233).
This finite field was selected since key sizes of 233 bits provide cryptographic strength at
least until the year 2030 [8].

This chapter gives a brief introduction to ECC, describing its basic mathematical background.
The definition of the elements on GF (2233) and the operations performed with them are given.
The operations with elliptic curve points are introduced as well. These point operations
— the point addition and point doubling — are used to perform the elliptic curve point
multiplication, denoted as kP -operation, which is also described in this chapter. Finally, it is
explained how these bases are used for approaching key generation and encryption schemes.
More detailed information about finite field and elliptic curve arithmetic can be found in
sections 2 and 3 of [12].

5

2 Elliptic Curve Cryptography

2.1 Binary-extension field GF (2233)

The elements of a binary extension field can be represented using a polynomial basis. To
construct the field, an irreducible polynomial is needed. The irreducible polynomial r(t) is a
polynomial of degree m, which cannot be factored as a product of polynomials of a degree less
than m [12]. Thus, an irreducible polynomial r(t) of degree 233 with coefficients in GF (2)1

can be used to construct the extension field GF (2233).
The irreducible polynomial for the elliptic curve B-233 over GF (2233) is defined as follows
[8]:

r(t) = t233 + t74 + 1. (2.1)

The elements of GF (2m) with an irreducible polynomial r(t) of degree m are then polynomials
of degree m− 1 with coefficients in GF (2):

A(t) = {am−1t
m−1 + am−2t

m−2 + . . .+ a2t
2 + a1t+ a0 : ai ∈ GF (2)}.

The elements of GF (2233) are then polynomials with a maximum degree of 232 and their
coefficients are either 0s or 1s. These elements can be represented as binary numbers with up
to 233 bits: (a232, a231, ..., a2, a1, a0)2.
The irreducible polynomial (2.1) is necessary for performing the multiplication and division
of two elements of GF (2233) as it will be explained in this chapter.

Operations for addition, subtraction, multiplication and division can be performed between
the elements of the field. The following statements are obtained from the definition of these
mathematical operations [12] applied to the elements of GF (2233).

1GF (2) is the smallest finite field. It consists of only two elements: 0 and 1. The addition and subtraction of
these two elements is performed by a boolean XOR operation. The multiplication of the two elements is
performed with a boolean AND operation.

6

2.1 Binary-extension field GF (2233)

Addition and Subtraction: Additions and subtractions are performed as bitwise XOR oper-
ation of the binary representation of two elements of GF (2233). The XOR operator is
denoted in this work by ⊕.
If A(t), B(t) ∈ GF (2233), an addition (or subtraction) of these two elements is performed
in the following way:

A(t)±B(t) = (a232, a231, . . . , a2, a1, a0)2 ⊕ (b232, b231, . . . , b2, b1, b0)2

= (a232 ⊕ b232, a231 ⊕ b231, . . . a2 ⊕ b2, a1 ⊕ b1, a0 ⊕ b0)2

= A(t)⊕B(t).

Multiplication: This operation between two elements of GF (2233) is performed in two steps.
The first step is the multiplication of the polynomials. The product of two polynomials
of degree m− 1 results in a polynomial of degree 2m− 2. For this reason, a reduction
step is required after the polynomial multiplication to find the corresponding polynomial
of degree m − 1 in GF (2m). This is performed by dividing the polynomial product
by the irreducible polynomial r(t). The reminder of this division is the corresponding
polynomial of degree m− 1.
If A(t), B(t) ∈ GF (2233), their multiplication is performed in the following way:

A(t) ·B(t) = (A(t) ·B(t)) mod r(t).

Division: the division in GF (2233) is performed by multiplying the dividend by the divisor’s
inverse. For the IHP ECC implementation this was realized by applying the Fermat’s
Little Theorem [13]. With this approach, a division is performed as a sequence of
square operations and multiplications.

Hardware implementations benefit from the simplicity of the GF (2233) field operations: no
carries are generated. Thus, the complete hardware implementation of these field operations
requires smaller area than the implementation of operations in GF (p).

7

2 Elliptic Curve Cryptography

2.2 Elliptic Curves over GF (2233)

This section provides the definition of elliptic curves and a short introduction to elliptic
curve point operations. It is important to point out that the definitions and descriptions in
this section are simplified by precisely characterizing elliptic curves over GF (2233) with the
irreducible polynomial r(t) (2.1).

An elliptic curve E over GF (2233) is defined by the following equation

E : y2 + xy = x3 + ax2 + b, (2.2)

where a and b are elements of GF (2233). A pair of numbers x, y ∈ GF (2233) is called a
point P on the curve E, if the pair (x, y) satisfies the equation 2.2 [12]. (x, y) are then point
coordinates of the elliptic curve.
The elliptic curve B-233 over GF (2233) with the irreducible polynomial r(t) (2.1) is defined
by equation 2.2, where the coefficients a and b are the following hexadecimal numbers [8]:

a = 1

b = 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad.

All points Pi = (xi, yi), satisfying equation 2.2 and a point at infinity O= (x,∞) are the set
of points denoted by E(GF (2233)).

The following subsection describes the operations with points in E(GF (2233)).

2.2.1 Point operations

This subsection describes the point addition and point doubling operations. This description
is made using concrete formulas for elliptic curves over GF (2233), based on equation 2.2.

Point addition: given two points P = (xP , yP) and Q = (xQ, yQ), whereby P 6= Q (i.e.
xP 6= xQ and yP 6= yQ), the addition of both determines point R = (xR, yR) on the
curve E: R = P +Q.
The coordinates xR and yR are calculated separately with the following formulae:

xR = λ2 + λ+ xP + xQ + a,

yR = yP + yQ + λ(xP + xQ),
(2.3)

8

2.3 Elliptic Curve Point Multiplication

with

λ = yQ + yP

xQ + xP
.

Here, a is the coefficient from equation 2.2.

Point doubling: given one point P = (xP , yP), the addition of this point with itself determines
point R = (xR, yR): R = P + P = 2P .

For the point doubling operation, the coordinates xR and yR are:

xR = λ2 + λ+ a,

yR = yP + yQ + λ(xP + xQ),
(2.4)

with

λ = xP + yP

xP
.

Also here a is the coefficient from equation 2.2.

All mathematical operations performed in formulae 2.3 and 2.4 correspond to the field
operations described in the previous section. The calculation of the coefficient λ is complex
since it requires a field division. To avoid performing divisions and obtain a faster calculation
of the point operations, projective coordinates can be applied [14].
The set of elliptic curve points E(GF (2233)) with operations 2.3 and 2.4 form an additive
finite Abelian group [12].

The elliptic curve point addition and point doubling operations are necessary to perform
the elliptic curve point multiplication, denoted as kP . The kP -operation is described in the
following section.

2.3 Elliptic Curve Point Multiplication

Cryptographic operations such as encryption, decryption and key generation are composed
of different mathematical operations. The most complex operation of them is the elliptic
curve point multiplication kP . It is the most time and energy consuming operation when
encryption or decryption is performed. This is why this operation is very often optimized.

9

2 Elliptic Curve Cryptography

An encryption requires two kP -operations while a decryption requires only one. Calculating
kP takes more than 90% of the decryption time.

The multiplication of an elliptic curve point P with a scalar k, i.e. the kP -operation, is
defined as k times the addition of P to itself:

kP = P + P + ...+ P︸ ︷︷ ︸
k

.

The three algorithms presented in this section illustrate the idea behind efficient and balanced
techniques to protect cryptographic implementations against SCA attacks. In this context,
balanced means that each calculation of the kP -operation has to be performed by the same
type and amount of operations for each bit of the number k, independent of the bit’s value.

For algorithm implementation purposes, the number k can be represented as the sum of
powers of two, where k is an l-bit long binary number:

k =
l−1∑
i=0

ki2i.

The kP -operation can then be represented as follows:

kP =
l−1∑
i=0

ki(2i)P = k0P + k1(2)P + k2(22)P + . . .+ kl−1(2l−1)P. (2.5)

Based on this representation of the kP -operation, the following algorithms were designed.

Double-and-add algorithm (left-to-right)

The left-to-right double-and-add algorithm is an implementation of the kP -operation repres-
ented in formula 2.5 under the following observation2:

l−1∑
i=0

ki(2i)P = k0P + k12P + k222P + . . .+ kl−22l−2P + kl−12l−1P

= k0P + 2(k1P + 2(k2P + . . .+ 2(kl−2P + kl−12P) . . .)).

The bits of the scalar k are processed from left to right, i.e. from the Most Significant
Bit (MSB) to the Least Significant Bit (LSB). For every bit ki = 0, only point doubling

2A direct implementation of the formula 2.5 is the right-to-left double-and-add algorithm.

10

2.3 Elliptic Curve Point Multiplication

is performed. For every bit ki = 1, point doubling and point addition are performed as
Algorithm 1 shows.

Algorithm 1 Double-and-add algorithm for the kP -operation (left-to-right)
Input: k = (kl−1, ..., k1, k0)2, P ∈ E(GF (2m)).
Output: kP .
Q← O.
for i from l − 1 downto 0 do
Q← 2Q.
If ki = 1 then Q← Q+ P .

end for
return Q.

Since a different number of operations is performed depending on the value of ki, notable
key-dependant patterns would be shown in the power traces measured from a hardware device
performing this algorithm [15].

Double-and-add-always algorithm

The double-and-add-always algorithm [16] is more robust against SCA attacks than the
straight forward double-and-add. This method ensures that the type and number of elliptic
curve point operations performed for each bit ki of the scalar k are always the same,
independent of the value of ki.

Algorithm 2 Double-and-add-always algorithm for the kP -operation (left-to-right)
Input: k = (kl−1, ..., k1, k0)2, P ∈ E(GF (2m)).
Output: kP .
Q[0]← O.
for i from l − 1 downto 0 do
Q[0]← 2Q, Q[1]← Q[0] + P .
Q[0]← Q[ki].

end for
return Q[0].

In Algorithm 2 for each bit ki a point doubling is performed and saved as point Q[0]. Next,
a point addition of this saved point Q[0] with the input point P is performed and its result is

11

2 Elliptic Curve Cryptography

saved as point Q[1]. Then, the value of ki is checked: if its value is ‘0’, then Q[0] is processed,
otherwise Q[1].
The results of some operations are not used in many iterations, but nevertheless these
operations are performed to ensure balance. An increased energy and time consumption is
compelled by performing these operations, which is a disadvantage of applying this method.

Montgomery Algorithm

In [17] Peter Montgomery introduced a balanced method for performing the kP -operation,
shown in Algorithm 3.

Algorithm 3 Montgomery algorithm for the kP -operation
Input: k = (kl−1, ..., k1, k0)2 with kl−1 = 1, P = (x, y) ∈ E(GF (2m)).
Output: kP .
Q[0]← P , Q[1]← 2P .
for i from l − 2 downto 0 do
if ki = 1 then
Q[0]← Q[0] +Q[1], Q[1]← 2Q[1].

else
Q[1]← Q[0] +Q[1], Q[0]← 2Q[0].

end if
end for
return Q[0].

Implementing the Montgomery kP -algorithm in hardware increases the resistance against
SCA attacks. Each key bit is processed by the same type, amount and sequence of operations.
Julio López and Ricardo Dahab showed in [18] how this algorithm could be improved by using
projective coordinates (see Algorithm 4). Only the value of the x-coordinate of the point P
is used. No division operations and no operations with y-coordinates of the points need to
be performed. For this reason, this algorithm was implemented in the ECC implementation
whose analysis and re-design are described in this thesis.

12

2.4 Cryptographic Operations

Algorithm 4 Montgomery algorithm for the kP -operation using projective coordinates
Input: k = (kl−1, ..., k1, k0)2 with kl−1 = 1, P = (x, y) ∈ E(GF (2m)).
Output: kP = (x1, y1).
X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2.
for i from l − 2 downto 0 do
if ki = 1 then
T ← Z1, Z1 ← (X1Z2 +X2Z1)2, X1 ← xZ1 +X1X2TZ2,
T ← X2, X2 ← X4

2 + bZ4
2 , Z2 ← T 2Z2

2 .
else
T ← Z2, Z2 ← (X2Z1 +X1Z2)2, X2 ← xZ2 +X1X2TZ1,
T ← X1, X1 ← X4

1 + bZ4
1 , Z1 ← T 2Z2

1 .
end if

end forx1 ← X1/Z1.
y1 ← y + (x+ x1)[X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)]/(xZ1Z2).
return ((x1, y1)).

2.4 Cryptographic Operations

By understanding the mathematical background of elliptic curves and how their point
operations are performed, it can now be described how they are applied for cryptographic
means. This section describes how the elliptic curve point operations are used for performing
key generation, encryption and decryption operations.

2.4.1 Key generation

A base point G with the following coordinates is selected to generate a key pair to be used
when applying curves B-233 [8]:

xG = 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36 f8f8eb73 71fd558b

yG = 100 6a08a419 03350678 e58528be bf8a0bef f867a7ca 36716f7e 01f81052

The private key k is an integer chosen randomly from the interval [1,n−1], where n is the
order of the base point G. The corresponding public key Q can be computed as: Q = kG.

13

2 Elliptic Curve Cryptography

Algorithm 5 Elliptic curve key generation
Input: Elliptic curve domain parameters (p,E,G, n).
Output: Public key Q and private key k.
Select k ∈ [1, n− 1].
Compute Q = kG.
return (Q, k).

Although the base point G and the key Q are public and can be known by everybody, it
is still difficult to determine the value of k. This is known as the Elliptic Curve Discrete
Logarithm Problem (ECDLP).

2.4.2 Encryption scheme

The encryption of a plaintext m can be done in the following way: The plaintext m is
represented as the x-coordinate of a pointM = (m, yM). The encryption should be performed
by adding M to dQ, where Q is the public key of the receiver and d is a random number.
The result of this operation is saved as point C2. The sender then transmits two elliptic
curve points: C1 = dG and C2.

Algorithm 6 Elliptic curve encryption
Input: Elliptic curve B-233 domain parameters [8], public key of receiver Q, plaintext m.
Output: Ciphertext: Points C1 and C2.
Represent m as the x-coordinate of point M ∈ B-233.
Randomly select d ∈ [1, n− 1].
Compute C1 = dG.
Compute C2 = M + dQ.
return C1, C2.

The receiver uses its own private key k for the decryption:

M = C2 − kC1.

Hereby, kC1 = k(dG) = d(kG) = dQ and M is obtained by calculating M = C2 − dQ.
It is now possible to recover the message m, which is the x-coordinate of point M . Only the
owner of the private key k is able to recover M without knowledge of the number d (d is
known to the sender but was not sent). Algorithm 7 shows the decryption process.

14

2.4 Cryptographic Operations

Algorithm 7 Elliptic curve decryption
Input: Elliptic curve B-233 domain parameters [8], private key k, ciphertext (C1, C2).
Output: Plaintext m

Compute M = C2 − kC1.
return m = x-coordinate of M .

From a crypto-analysis point of view, ECC is considered to be secure due to the ECDLP and
the proposed key length. Nevertheless, the situation changes completely if SCA attacks are
taken into account.

15

3 Side-Channel Analysis

Devices executing cryptographic algorithms consume energy and generate electromagnetic
and infrared radiations amongst others. These physical parameters can provide information
about the chip’s functionality and data being processed.
Cryptographic hardware implementations are made on Integrated Circuits (ICs) based on
Complementary Metal-Oxide-Semiconductor (CMOS)-technology. CMOS transistor gates
consume power and time when performing cryptographic tasks. These consumptions are
dependant on the input data being processed using the private key and thus, the transistors’
activities are principally responsible for information leakage. The current conducted by all
transistors of the chip can be measured and analysed with the goal of extracting the private
key.
Much research has been done on the different physical parameters that can be observed
and used to understand the internal activities of cryptographic devices. As a consequence,
countermeasures to make these physical phenomena less observable have been developed.
The idea is to make cryptographic devices less vulnerable against physical attacks and in
order to achieve that, the implementation of algorithms in hardware needs to be done under
consideration of these observable parameters.

Side-Channel Analysis (SCA) attacks are passive physical attacks. They are based on the
observation of the devices’ behaviour when performing cryptographic operations. In contrast
to this, active attacks aim at manipulating the behaviour of the device under attack.

This chapter describes SCA and corresponding countermeasures for ECC implementations.
It focuses on Power Analysis (PA). The work presented in this thesis consists of re-designing
a cryptographic implementation in order to improve its resistance against PA attacks. For
this reason, several types of PA attacks are described in this chapter. As an example of
active attacks based on PA, the Fault Sensitivity Analysis attack is presented. The technique
presented in [19], where the initial data execution is used as a template for the extraction of
the private key, is described since a countermeasure against this attack was also implemented
in this work.

17

3 Side-Channel Analysis

3.1 Power Analysis

CMOS gates are used for implementing logic functions in hardware. The complete power
consumption of an IC is composed of the sum of the power consumption of all its gates. The
power consumption of a gate is dependable on the technology it is produced in, its type
and its inputs. This fact will be explained on example of an inverter from the IHP 130 nm
technology [10]. Figure 3.1 shows the representation of an inverter as a gate.

A X = Ᾱ

Figure 3.1: Inverter with its input signal A and output signal X.

A change of the input signal A from ‘0’ to ‘1’ (and thus of the output signal X from ‘1’ to
‘0’) causes different propagation delays and energy consumptions compared to a change of
A from ‘1’ to ‘0’ (of X from ‘0’ to ‘1’). Table 3.1 shows the propagation delays and energy
consumption for both cases as an example.

Table 3.1: Propagation delays and energy consumptions for an inverter.
A X delay energy consumption

0 −→ 1 1 −→ 0 0.02807 ns 0.00265 pJ
1 −→ 0 0 −→ 1 0.02313 ns 0.00239 pJ

A change of A from ‘0’ to ‘1’ causes about 21% longer propagation delays and about 11%
higher energy consumptions as a change from ‘1’ to ‘0’. This relation between the propagation
delays or energy consumption of gates in a cryptographic chip and the data it processes is
the feature that an attacker can exploit for the extraction of the private key.

A circuit consists of many gates. Depending on the instructions performed by the circuit at
a certain clock cycle, only some of those gates switch. In the next clock cycle, other gates are
switching. The current flow on each clock cycle depends on these switching gates. The power
consumption of a device is proportional to its current flow1. A device’s power consumption
changes in each clock cycle since the device performs different instructions. The purpose

1p(t) = i(t) · u(t).

18

3.1 Power Analysis

of examining a Power Trace (PT) is to find its relation to the data the device is processing
during each clock cycle.

Cryptographic implementations perform operations that depend on the value of their private
key. Analysing these operations can help extracting this value. If the type and/or sequence of
the processing steps are dependant of the value of the processed key bit, these differences are
observable (or easy identifiable) in the PT and make the analysis easier. Such implementations
will be referred to as unbalanced in this work. If the key-dependent operations do not differ
excessively from each other, the variations along a PT’s curve would be more difficult to
identify.

Three different kinds of PA are described in this section:

• Simple Power Analysis (SPA): the key can be easily extracted through direct observa-
tions of the measured PTs without statistical means.

• Differential Power Analysis (DPA): the key can be extracted by applying statistical
means.

• Comparative Power Analysis (ComPA): the key can be extracted by comparing a PT
measured on a device using a known key and a PT measured on a device using an
unknown key.

These different kinds of PA are illustrated in Figure 3.2.

SPA DPA ComPA

· performed with simple eye
observations

· one measurement needed
· algorithmic countermeasures

based on balance

· performed with statistic
means

· many measurements needed
· algorithmic countermeasures

based on randomization

FSA

· performed by comparing
PTs

· at least 2 measurements
needed

· same countermeasures as
for DPA

· performed through fault
injection

· observes reactions towards
the fault injections

· same countermeasures as
for DPA

Power
Analysis

Figure 3.2: Power Analysis and different ways of performing it.

19

3 Side-Channel Analysis

These PA methods are detailed described in the rest of this section, since the work described
in this thesis had the goal of re-designing a cryptographic implementation to protect it against
PA. Published countermeasures against these attacks are described as well. Additionally, the
Fault Sensitivity Analysis (FSA) is shown in Figure 3.2. FSA attacks are not classified as
SCA attacks since they involve the direct manipulation of the analysed implementations. For
this reason, FSA is described at the end of this chapter.

3.1.1 Simple Power Analysis

SPA is a technique that uses only one measured PT for extracting the key [15]. For ECC, a
PT of the kP -operation (see section 2.3) is analysed. Unbalanced ECC implementations can
be successfully analysed in short time. If different types or a different number of operations
is performed depending on the value of the processed key bit, differences are observable in
the corresponding parts of the PTs. The complete PT can then be divided into slots2. The
slots differ in this case depending on the actual value of ki.
For example, an implementation based on the double-and-add algorithm (see Algorithm 1 on
p. 11) would cause a PT of this type, having two different types of slots. This algorithm
performs one point doubling operation for each iteration of its main loop for the case ki = 0.
For the case ki = 1, one point doubling and one point addition are performed. In this case,
the slots for the case ki = 0 are shorter than those for ki = 1. It is thus easy to determine for
which case ki the loop iteration has been performed.

The next helpful fact for analysing measured PTs of Elliptic Curve (EC) kP -operations is
that the point operations, the doubling and addition, are performed using different formulas
each (see section 2.2.1). A point doubling consists of less arithmetic operations than a point
addition. Thus, the addition is longer than the doubling and so, the part of a PT that
corresponds to an addition is longer than the part corresponding to a doubling. Figure 3.3
shows a part of a PT with one point doubling and one point addition; they can be clearly
distinguished.

2A slot is a part of a PT which corresponds to the processing of one key bit.

20

3.1 Power Analysis

Figure 3.3: Part of a PT of an EC kP -operation showing one point doubling and one point addition
(source: [20]).
The point doubling is considerably shorter than the point addition.

ECC implementations with distinguishable EC point operations and/or with algorithmic
steps dependable on the key bit value are vulnerable to SPA attacks. By observing the PT
of one complete execution of such algorithms, the individual bits of the private key can be
extracted. Figure 3.4 shows an example of such PTs.

Figure 3.4: Part of a PT of an EC kP -operation implemented using the double-and-add algorithm
(source: [21]).
The point doubling D is considerably shorter than the point addition A. By recognizing the
execution of a point doubling followed by a point addition, it is known that a key bit ki = 1 has
been processed. Otherwise, a key bit ki = 0 has been processed.

21

3 Side-Channel Analysis

3.1.2 Countermeasures against Simple Power Analysis

The basic idea for making a cryptographic implementation robust against SPA attacks is to
make it non-dependable on the key bit value, i.e. to perform always the same number of
the same operations and in the same order. Two possibilities for achieving this are listed
below.

Double-and-add-always algorithm. In [16] a method for protecting implementations of the
double-and-add algorithm was proposed: the point addition would always be executed
after the point doubling, but its result would be ignored in some cases (dummy
operations). The loops of the double-and-add-always algorithm (see Algorithm 2 on p.
11) do not excessively differ from each other. The same point operations, i.e. one point
addition and one point doubling, are always performed, independently of the key bit
value. Thus the extraction of the private key becomes more difficult.
As mentioned in section 2.3, a disadvantage of algorithms that use dummy operations
is the unnecessary energy and time consumed by performing more computations as it
is required.

Indistinguishable EC Point Operations. Alternatively, the formulae for the point addition
and point doubling (see section 2.2.1) can be unified [22]. In this case, both point
operations consist of the same arithmetic operations, which are performed in the same
sequence. This is achieved with help of dummy field arithmetic operations.
By using unified formulae for point operations, even if different point operations are
performed depending on the value of the key bits, the parts of the PT showing the point
additions are indistinguishable from the parts of the PT showing the point doublings.
Figure 3.5 shows two parts of a PT with one point doubling and one point addition,
which are performed using a unified formula. The length and shape of the traces of these
operations look identical to the simple eye. An implementation of the kP -operation
using the double-and-add algorithm with unified formulae for point operations would
also be protected against SPA.

22

3.1 Power Analysis

Figure 3.5: Part of a PT with one point doubling and one point addition (source: [20]).
Both EC point operations are performed using a unified formula. Their traces are indistinguishable.

Alternatively, the point addition formula could be implemented in such way, that its
trace looks as if two doubling operations are performed [12]. Figure 3.6 shows such an
example.

Figure 3.6: Part of a PT of a kP -operation (source: [12]).
The point doubling and point addition are identified by the letters D (doubling) and S (sum)
respectively. The trace of one point addition looks like the trace of two point doubling operations.
It is not easy to identify differences between the slots.

For providing protection against SPA, both countermeasures — the double-and-add-always
algorithm and a unified formula for EC point operations — can be combined. A disadvantage
of implementing the kP -operation this way is that a big number of dummy operations need
to be executed. This increases the execution time and energy consumption significantly.

23

3 Side-Channel Analysis

The countermeasures described in this section can provide protection against SPA, but some
steps of the double-and-add-always algorithm are still dependable on the value of the key bit.
For example, when registers are overwritten. This may not have a visible effect on the PT
when observed with the simple eye, but it can be detected using statistical methods. “Small”
key bit value dependable differences in each slot of a PT can be used for a successful extraction
of the key. Attacks based on this principal are described in the following subsection.

3.1.3 Differential Power Analysis

PTs measured on designs implemented with countermeasures against SPA consist of slots
that look similar to each other. Still, “small” key bit dependabilities can be exploited for
successfully performing attacks on these designs. For example when conditional instructions
are executed, the results of some operations are written in different registers or during
different clock cycles depending on the key bit value being processed. This may lead to light
unbalanced power consumptions.
Considering this fact, the power consumption of a cryptographic device can still leak inform-
ation about the private key. DPA attacks apply statistical methods on a big number of PTs
(or slots of one PT) to find the dependability of the power consumption on the processed
data. The noise can be reduced and minor differences between the traces can be uncovered.

A DPA attack can be performed vertically, or horizontally [23]. Vertical SCA attacks are
attacks that need a numerous amount of measurements in order to extract the secret. For
each measurement, the implementation performs the same operation with the same private
key, but different input parameters. Consequently, a big number of PTs is collected. A
certain part in each PT is selected for analysis. This part corresponds to the execution of the
same step in the algorithm. Statistical methods are applied to compare all PTs in relation to
their selected part. This way, the traces can be grouped according to the differences found
and the value of the key bit processed in this part of the execution can be suggested. A
horizontal SCA attack can be performed using only one or a few measurements. A PT is
divided into slots, each corresponding to an iteration of the implemented algorithm. Since
each iteration is performed differently according to the processed key bit value, statistical
methods can be applied to analyse the slots the same way the PTs are analysed in vertical
attacks. These two concepts are illustrated in Figure 3.7.

24

3.1 Power Analysis

..
.

1st
measurement

2nd
measurement

n-th
measurement

Vertical
 SCA

Horizontal SCA

Figure 3.7: Vertical and horizontal SCA attacks.

The kP -operation is executed as a sequence of key dependant iterations of the implemented
algorithm. If a measurement is made for a complete execution of the kP -operation, a
horizontal SCA attack could be performed by identifying and analysing the single slots in the
measured PT. For this reason, a DPA attack can be performed horizontally when analysing
an ECC implementation.

There are different statistical methods that can be used for performing a DPA-attack,
for example the difference-of-means test, the T-test [24] and the Correlation Power
Analysis [25]. The method used for the analyses made in this work was the difference-of-
means test, described in the following subsection.

Difference-of-Means Test

For performing a difference-of-means test, a PT is first divided into n slots, each corresponding
to the processing of a key bit. Each slot is a sequence of power consumption values over a
period of time t. Each power consumption value is represented as a point mi

j , where j is the
number of the point within a slot, with 1 ≤ j ≤ M ; and i is the number of the slot, with

25

3 Side-Channel Analysis

1 ≤ i ≤ n. Each slot consists of the same number of points. For each point mi
j on every slot

i, a point m̄j with the average value of all points mi
j is calculated:

m̄j =

n∑
i=1

mi
j

n
.

Consequently, a mean curve consisting of all points m̄1, m̄2, . . . , m̄M is created. The mean
curve corresponds then to an average or mean slot. Then, the first point of slot 1, m1

1, is
compared to the point m̄1 of the mean slot and, according to this comparison, slot 1 is classified
under one of two groups: Skey_bit=0 = {mi

j |mi
j < m̄j} or Skey_bit=1 = {mi

j |mi
j ≥ m̄j}. This

means that when slot 1 is classified under Skey_bit=0, it is assumed that a key bit with value
‘0’ has been processed for it. When it is classified under Skey_bit=1, a key bit with value ‘1’
has been processed for that slot. By doing this comparison with the corresponding point
m2

1,m
3
1 . . .m

n
1 for all further slots 2, 3, . . . , n, the first key candidate is obtained. The process

is repeated for all remaining points mi
j+1 in order to find all other key candidates. The

number of key candidates obtained is the same as the number of points on each slot, i.e. M .
In Chapter 4 the process of performing a horizontal DPA attack using the difference-of-means
test against an IHP ECC implementation is described in detail.

3.1.4 Comparative Power Analysis

ComPA attacks extract the value of a private key by comparing two (or more) PTs measured
at the same cryptographic device. The main idea is: the processing of the same data
during the execution of the same algorithm steps on the same device causes the same power
consumption form.
When attacking an implementation of the kP -operation, the same EC point P is selected as
input parameter for both cases. One PT is measured when the operation is performed using
the target private key k, whose value is unknown. The other PT is measured when the private
key d is used, whose value is determined by the attacker. The attacker makes a guess for the
value of a key bit ki and sets the guessed value to the corresponding key bit di. Then, power
consumption measurements are made while the device executes the kP -operation for each
case. The two PTs obtained are compared at the corresponding slot i. If the curves of both
slots are practically identical, it can be concluded that the same data has been processed
at the same slot i, i.e. ki = di. This means that the guess for ki has been done correctly,
otherwise the guess was wrong. This process is then repeated for guessing all remaining key
bit values until the complete value of k is extracted.

26

3.1 Power Analysis

To analyse the correlation of the slots, the difference of the PTs can be calculated. If for
both measurements the same data has been processed, both slots are almost equal and their
calculated difference is very small [26]. Figure 3.8 illustrates this technique for the case that
the same data has been processed during both measurements (left) and the case that different
data has been processed (right).

Figure 3.8: Comparative Power Analysis (source: [26]).
The data processing takes place between the 200 and the 300 ns. For the left part of the figure, the
difference curve (lowermost) has a value close to zero in this period. For the right part of the figure,
the difference curve shows a peak with a much higher value (circled in red).

The attack described in [26] was performed using two separate devices, both identical and
consisting of the same cryptographic implementation, but using a different private key each.
If the target key is used in a device that does not allow its input parameters to be changed,
a second device can be used to perform the cryptographic operations using different key
values.

Other kinds of ComPA attacks that can be conducted on implementations of the kP -operation
are collision attacks. Such attacks are performed on devices that let the attacker determine
the value of the EC point P , while k has an unknown value. For each measurement, the
value of P is changed.
The work presented in [27] describes an example of collision attacks on implementations
based on the double-and-add-always algorithm (see Algorithm 2 on p. 11). It is called
the Doubling Attack and it requires only two measurements. One PT is measured for the
execution of the kP -operation with EC point P as input value. The second measurement
is made with point S = 2P as input value. Here, the slot comparison is made between the
ith slot measured during the computation of kP and the (i− 1)th slot measured during the

27

3 Side-Channel Analysis

computation of kS = k(2P). For some cases, these two adjacent slots will be very similar:
the doubling operations performed on the ith iteration for the computation of kP use the
same operands as the one performed during the (i− 1)th iteration for the computation of
k(2P). In the double-and-add-always algorithm’s main loop, the input value P is doubled
(2P) and if the loop iteration has been performed for ki = 0, 2P is then used as input for the
next iteration. During the next iteration, 2P is again doubled (4P). So the collision between
the adjacent slots of both traces takes place whenever ki−1 = 0, where i corresponds to the
slot analysed for the computation of kP . For this reason, if this algorithm is executed with
the input values k and (2P), the doubling operations performed for every loop iteration for
the case ki = 0 will be the same performed on the (i− 1)th iteration of the algorithm’s main
loop, when executed with the input values k and P . Table 3.2 displays an example for the
execution sequence of kP and k(2P) with the double-and-add-always algorithm. Hereby, the
four MSBs of k are (10011...)2. It can be seen that each point doubling operation for the
processing of key bit ki in the execution of kP , is the same doubling operation as the one for
the processing of key bit ki−1 in the execution of k(2P) when ki−1 = 0.

Table 3.2: Execution sequence of kP and k(2P) with the double-and-add-always algorithm.
ki execution of kP execution of k(2P)
1 2 · 0 2 · 0

0 + P 0 + 2P
0 2 · P 2 · 2P

2P + P 4P + 2P
0 2 · 2P 2 · 4P

4P + P 8P + 2P
1 2 · 4P 2 · 8P

8P + P 16P + 2P
1 2 · 9P 2 · 18P

18P + P 36 + 2P

It can be seen that each point doubling operation processing key bit ki in the execution of
kP , is the same as the doubling operation processing key bit ki−1 in the execution of k(2P)
when ki−1 = 0.

The attack presented in [28] identifies similar parts in two PTs at arbitrary slots by using two
input messages (EC points) with a more flexible relation than the one used for the Doubling

28

3.1 Power Analysis

Attack. This attack is also practicable with a single target device, performing all operations
with the private key k.
It is performed under the assumption that a part of the key bits of k have already been
extracted, denoted as ke. ke bits are the first bits to be processed during the execution of
the kP -operation. The rest of the key bits, whose values are unknown are referred to as
kn. An EC point PY is selected as the input for the kP operation. Thus, the operation
kPY is performed and the first PT is measured. During the execution of kPY , the first loop
iterations are performed processing the key bits ke. The value of both, the input for each of
these loops and the key bit being processed, are known. These are referred to as reference
loops and its corresponding slots as reference slots. Then, a second EC point PZ is selected as
input for performing the kP -operation a second time. Thus, the operation kPZ is performed
and a second PT is measured. PZ is selected in such a way that when the first loop iteration
processing an unknown key bit kn is performed, the input values for that loop are equal to
input values that were processed during the execution of any reference loop. These loops are
referred to as target loops and their corresponding slots as target slots. This means that, if a
reference and a target slot are very similar, the same key bit value has been processed for
both slots. Thus, the first unknown key bit value kn can be extracted. This process is then
repeated until all unknown key bit values are extracted. Figure 3.9 illustrates this process.

Figure 3.9: Process of a Collision-based attack (source: [28]).
PY and PZ are two different input points. Their relation helps to generate collisions between the
PTs measured during the kP -operation execution for each case.

3.1.5 Countermeasures against Differential and Comparative Power Analysis

Implementations protected against SPA can still be attacked using DPA. A well balanced
implementation can be successfully attacked with ComPA. A countermeasure based on key-
or input randomization makes an implementation more robust against DPA and will also

29

3 Side-Channel Analysis

make it more robust against ComPA. These countermeasures were first proposed by Coron
in [16].

Key randomization. This countermeasure performs the kP -operation with a randomly com-
puted secret scalar k′, but obtains the same outputs as when Q = kP is performed.
The method for randomizing (blinding) k consists of adding a multiple of #ε to it,
where #ε is the number of all points on the elliptic curve. So, multiplying any random
number r by #ε and adding it to k results in k′. And k′P = kP since #εP = O:

k′ · P = (k + r ·#ε) · P = kP + r · (#εP) = kP + r ·O = kP.

Base point blinding. The randomized value in this case is the point P . The point R is
randomly chosen and added to P , the scalar multiplication is then performed as
Q = k(P +R). After Q is computed, the known value S = kR is subtracted from it,
giving Q = kP . The parameters R and S are initially stored and updated at each
performance of the kP -operation3. The attacker doesn’t know that the point P ′ = P+R
is being multiplied by k.

Further countermeasures are: randomizing the projective coordinates [16]. Here, the projective
representation of a point P is randomized before each new execution of the kP -operation.
Another countermeasure is randomly splitting the secret key into k = k1 + k2, described as
well in [29]. Randomizing the register address to disconnect the relation between key bits
ki and register addresses was proposed in [30]. The work described in [31] proposes and
presents an analysis of randomizing the steps of the implemented kP -algorithm as a strong
countermeasure against DPA.

Each countermeasure has been proposed to make an implementation resistant against a
specific attack. Nevertheless one countermeasure may simplify another attack. The awareness
of different types of attacks can lead to a more secure cryptographic implementation when
the countermeasures against these attacks are taken into consideration.

3This means that the additional EC point multiplication S′ = kR′ using the random point R′ has to be pre-
computed for each new kP -operation. To save time and energy consumption, S = kR can be pre-computed
and the random point can then be calculated as follows: R′ = 2R, S′ = 2S, R′′ = 2R′, S′′ = 2S′; and so on.

30

3.2 Fault Sensitivity Analysis

3.2 Fault Sensitivity Analysis

Fault Injection (FI) attacks are based on analysing the changes on the behaviour of crypto-
graphic systems when faults are induced in them. Such attacks are classified as active attacks
since the functionality of the devices is manipulated [32].

Generally, the attacked implementation has to be able to output faulty results in order
to be analysed with this method. The Fault Sensitivity Analysis (FSA) attacks do not
need the faulty output and they can be applied to cryptographic devices with implemented
countermeasures against FI, which stop a device from delivering faulty results as outputs.
In FSA an operation’s sensitivity to FI is analysed. The faulty outputs of the operations are
not analysed, but rather only if these operations are performed correctly or not. Therefore,
this section describes shortly the process of fault injection and the technique used to perform
this attack.

3.2.1 Fault Injection

The main purposes of inducing faults are either to hinder an instruction execution from
taking place or to manipulate the data being processed. The most common technique for
performing this is through a clock glitch, illustrated in Figure 3.10. The frequency of the
clock coordinating the activities in the cryptographic device’s circuit is altered at a precise
moment. This causes a setup time violation during the glitch cycle and an error for a specific
calculation can be introduced.

T T’

Glitch

Figure 3.10: Clock glitch.
Two types of clock, one with period T and a faster one with period T ′ < T , generate an illegal
clock. f = 1/T is the maximal allowed clock frequency in the circuit for producing correct outputs
during all cycles. In the cycles at which an error should be induced, the frequency is increased to
f ′ = 1/T ′ and a glitch is caused.

31

3 Side-Channel Analysis

The frequency needed for FI varies for each clock cycle since it is dependent on the operations
performed and data being processed during each clock cycle. Variations of this threshold
condition are seen, for example, during the execution of a cryptographic algorithm. A small
acceleration of the clock can induce faults during the cycles at which arithmetic operations
are performed. On the other hand, a bigger acceleration of the clock’s frequency is needed to
induce faults during the cycles at which data is only being stored. The higher a frequency
needs to be for FI, the lower is the Fault Sensitivity (FS) of the circuit at this clock cycle.

3.2.2 FSA Attack Technique

The basic assumption in PA attacks is that whenever an operation is performed using the
same inputs, the same energy is consumed by the cryptographic device. For FSA attacks the
assumption is that a system has the same FS whenever one operation is performed using the
same input data. The FSA attack uses a circuit’s FS as leakage source.
An attacker analyses the threshold conditions during the execution of the point doubling
operations in a chip executing the Montgomery kP -algorithm (see Algorithm 3 on p. 12).
The point doubling operations are performed once during each iteration of the inner loop.
If the iteration is running for ki = 0, then the EC point stored in Q[0] is doubled. If it is
running for ki = 1, then Q[1] is doubled. Table 3.3 shows a calculation sequence example for
the input point P and the private key k = (1101)2. The underlined values are the results
from the doubling during the iteration.

Table 3.3: Sequence of point doublings and point additions for an EC point multiplication.
i 3 2 1 0
ki 1 1 0 1
Q[0] P 3P 6P 13P
Q[1] 2P 4P 7P 14P

It is important to remind that in the Montgomery kP -algorithm the Most Significant
Bit (MSB) of k always has the value ‘1’. For this reason, a point doubling operation for Q[1]
is always performed at the beginning of the kP -execution during the initialization phase.
This calculation can be referred to as the initial doubling.

A key extraction can be successfully performed when it is possible to distinguish, which input
data has been used for performing the point doubling in each iteration. If a device performs

32

3.2 Fault Sensitivity Analysis

two point doublings using the same input data for each operation, the FS of the device while
performing these operations is very similar for both cases.

The input points for the initial doubling of the Montgomery kP -algorithm can be selected
by the attacker. If the point P is selected as input, it is known that the initial doubling
will be Q[1] = 2P . If the point 2P is selected as input, the initial doubling operation will
be Q[1] = 2 · 2P = 4P . This way, the attacker can perform an FSA on the device while it
performs doubling operations with selected data as input. Any input value can be selected
for the initial doubling. It can be observed how the circuit reacts to FI while performing this
operation with different inputs. Figure 3.11 shows an example of the results obtained from
such an analysis. The diagram displays the results of an FSA for the execution of a point
doubling operation, conducted with an initial frequency of 23 MHz. The frequencies with
which a fault injection occurs for each clock cycle are shown as points. The points at 28 MHz
mean that no faults were injected during these clock cycles.

Figure 3.11: Fault Sensitivity Analysis (source: [19]).
The results of an FSA for the execution of a point doubling operation are displayed. The operation
was initially executed with a frequency of 23 MHz. The frequencies with which an FI occurs for
each clock cycle are shown as points. The points at 28 MHz mean that no faults were injected
during these clock cycles.

The results of the analysis made during the initial doubling can then be used as a template,
i.e. they can be compared to FSAs performed for the further iterations of the algorithm. For
each iteration of the kP -operation, the attacker performs an FSA and compares the results to
analyses made with the different inputs for the initial doubling. According to this comparison,
the attacker is able to define what input has been used for the doubling operation and thus,
which key bit has been processed during the iteration.

33

3 Side-Channel Analysis

An example of this process can be described based on the execution sequence shown in Table
3.3. The initial doubling 2P is performed for the processing of key bit k3 and the first loop
iteration is performed processing k2. The attacker performs an FSA for the doubling of this
iteration and compares it to the FSA performed for the initial doubling. In this case, the
results of the analysis do not correlate: for the initial doubling, point P is used as input and
for the doubling in the first loop iteration 2P is used as input. This means that two different
point doublings are performed: 2× P and 2× 2P = 4P . Therefore, a comparison is made
with the FSA performed for the initial doubling with input 2P . This time, both analyses
show a high correlation and it is concluded that k2 = 1. This process is then repeated and
further key bits are extracted. Figure 3.12 illustrates how such a comparison can be done.
Hereby, (a) shows a comparison of FSA results that correspond to different point doublings
and (b) shows a comparison made when the analysis results correspond to the doublings
performed with the same input data.

(a) Low correlation of the FSA results (b) High correlation of the FSA results

Figure 3.12: Fault Sensitivity comparison (source: [19]).

3.2.3 Countermeasures against Fault Sensitivity Analysis

In order to perform this analysis, the attacker needs to provide EC points as inputs for the
cryptographic device being analysed. Consequently, any ECC implementations that do not
allow this are protected against this attack. All DPA and ComPA countermeasures, such as
randomisation of the EC point, key or coordinates (see section 3.1.5), hinder this attack.

34

3.2 Fault Sensitivity Analysis

Due to the big number of countermeasures that can stop the FSA attack from taking place
and the extensive measurements that are needed for it, its application for a private key
extraction is not very practical in comparison for example to ComPA attacks. Nevertheless
the concept of analysing the execution of initial operations and using these analyses as
templates can become useful for further attacks. To prevent this, the initial doubling can be
implemented in a different way as it is implemented for the main loop iterations. This way,
the power consumption or FS templates made with the initial doubling are not useful for
comparison with the rest of the doublings performed during the execution of the Montgomery
kP -algorithm. This idea is described in section 5.2 (see p. 92).

The next Chapter describes the implementation details of the IHP ECC design. This ECC
design was resistant against SPA but not against other SCA attacks described in this chapter.
The implementation details are described as part of a vulnerability assessment of the design.

35

4 Vulnerability Assessment of an IHP ECC Design

When a cryptographic implementation can be successfully attacked, it is necessary to under-
stand the attack’s and the implementation’s details in order to discover security gaps in the
design that have lead to the successful performance of the attack. This way, countermeasures
against it can be applied or developed in order to increase resistance of the implementation
against this attack and thus make the implementation more secure.

This chapter presents a vulnerability assessment of an IHP ECC design. The implementation’s
details are described in section 4.1. A description of the DPA performed on this design
using the difference-of-means test is given in section 4.2. Section 4.3 provides information
about the system’s architecture, the system’s control signals and a detailed description of the
implemented Montgomery kP -algorithm.
Observations that lead to the implementation’s vulnerabilities are listed before concluding
this chapter with suggestions on how to improve this design regarding its protection against
SCA attacks.

4.1 IHP ECC Design

The IHP hardware accelerator for the ECC is an implementation of the Montgomery algorithm
for elliptic curves point multiplication kP (see Algorithm 4 in p. 13). The following points
describe further characteristics of the implementation:

• The algorithm is implemented for NIST elliptic curves B-233 [8].

• The implementation is optimized for IHP 130 nm technology.

• Points of the EC are represented using Lopez-Dahab projective coordinates [18].

• The GF (2233) element’s multiplication has been implemented using the 4-segment
iterative Karatsuba multiplication method [33] and needs 9 clock cycles for calculating
one product.

37

4 Vulnerability Assessment of an IHP ECC Design

• For each partial multiplication, the 233-bit long operands are fragmented into four
59-bit long segments.

• The analysed version of the ECC design is a further developed version of the one
described in [34]. In comparison to the original version described in [34], the analysed
design is resistant against SPA.

• Countermeasures against DPA had not been implemented in this design at the time
this assessment was performed. A DPA attack using the difference-of-means test was
successfully realized as part of the TAMPRES-Project [35].

4.2 Difference-of-Means Test

This section describes how a horizontal DPA attack using the difference-of-means test was
performed against the IHP ECC design. The analysis has been carried out based on simulated
values of the power consumption of the design while executing the EC point multiplications
kP (from this chapter on referred to as kP -operation).
The difference-of-means test was performed using simulated PTs for two different cases:

- case 1: for the kP -design processing the EC point P1 = (x1, y1) as the input data using
the scalar k1

- case 2: for the kP -design processing the EC point P1 = (x1, y1) as the input data using
the scalar k2

The following values were assigned to the EC point coordinates and scalars, here represented
in hexadecimal notation:

x1 = 181 856adc1e 7df13784 91fa736f 2d02e8ac f1b9425e b2b061ff 0e9e8246

y1 = 89 fed47b79 6480499c baa86d8e b39457c4 9d5bf345 a0757e46 e2582de6

k1 = 93 919255fd 4359f4c2 b67dea45 6ef70a54 5a9c44d4 6f7f409f 96cb52cc

k2 = cd ea65f6dd 7a75b8b5 133a70d1 f27a4d95 06ecfb6a 50ea526e b3d426ed

Simulation results of the power consumption of the investigated IHP ECC design were
obtained using the Synopsis PrimeTime suite [36] and saved in an “.out”-file. This file consists
of the power consumption not only for the complete design, but also for each of its entities,
i.e. for each individual block of the ECC design. The difference-of-means test was performed
for the following blocks separately:

38

4.2 Difference-of-Means Test

1. complete ECC design (ecc)
2. block Multiplier (mult)
3. block Arithmetic Logic Unit (ALU) (alu)
4. register X1 (x1)
5. register Z1 (z1)
6. register X2 (x2)
7. register Z2 (z2)

The names written in brackets correspond to the names used to describe the results of the test
regarding each block. Additionally, the difference-of-means test was performed for the sum of
the power consumptions of the registers X1, Z1, X2, Z2 and the ALU block (all_register+alu).
The analysis of individual blocks of the ECC design can be useful for uncovering which of
these blocks are SCA leakage sources and how.

Each simulated PT of the investigated IHP ECC design can be separated in parts corres-
ponding to the kP -algorithm:

- The initialization part: This part corresponds to the initialization phase of the
Montgomery kP -algorithm. During this phase, the conversion of affine EC point
coordinates (x, y) to projective coordinates (X,Y,Z) takes place and the most significant
bit of the scalar k is processed. This part takes 8 clock cycles.

- The part of the processing of all remaining bits of the scalar (i.e. key) k,
excluding its most significant bit: Both scalars that are used – k1 and k2 – are
232 bit long. This means that this part consists of 232-1=231 slots1. The duration
of each slot is always 57 clock cycles. One single power value is present during each
clock cycle2, consequently each slot consists of 57 points. So, the kP -operation needs
(232− 1)× 57 = 13167 clock cycles to be calculated.

- The last part of the kP trace: This part corresponds to the conversion of the
multiplication result kP = (X,Y, Z) back to affine coordinates and takes 431 clock
cycles.

For the difference-of-means test, only the part of the kP -operation that corresponds to the
processing of the scalar was chosen, i.e. the part with 231 slots. The test was performed as
follows:

1Each slot is a part of a PT which corresponds to the processing of only one bit of the scalar k, i.e. one
execution of the algorithm’s main loop.

2Simulation setup.

39

4 Vulnerability Assessment of an IHP ECC Design

1 - The investigated part of the PT was partitioned into 231 slots, each one consisting of
57 clock cycles. Each slot was represented as a curve consisting of 57 points. Figure 4.1
shows the first 8 slots of the simulated PT for case 1. Figure 4.2 shows the slots from
Figure 4.1 clockwise in the same coordinates. This way, the points of each slot can be
compared with corresponding points of the other slots.

Slot 231

Slot 230

Slot 229

Slot 228

Slot 227

Slot 226

Slot 225

Slot 224

clock cycle

p
o

w
er

, W

Figure 4.1: First 8 slots of the simulated PT for case 1.
The IHP kP -design processed the EC point P1 = (x1, y1) as the input data using the scalar k1.

clock cycle

p
o

w
er

, W

Figure 4.2: All slots from Figure 4.1 shown clockwise in the same coordinates.

2 - The mean curve of all 57-point-long curves was then calculated.

3 - The power value of the 1st point of the mean curve was compared with the power
value of the 1st point of each slot. The first comparison was made with slot 231, which
corresponds to the processing of the key bit k1230. The last comparison was made with
slot 1, which corresponds to the processing of the key bit k10. If the power value of
the mean curve was higher than the value of the slot compared, it was assumed that
the slot corresponded to the processing of a key bit with value ‘1’. Otherwise it was
assumed that the slot corresponded to the processing of a key bit with value ‘0’. Thus,

40

4.2 Difference-of-Means Test

the first key candidate was obtained based on comparisons of the 1st points of all slots
with the 1st point of the mean curve.

4 - Step 3 was repeated for all other 56 points of the mean curve and the remaining 56
points of each slot. So, the next 56 key candidates were obtained.

Usually, the variance is calculated to obtain information about SCA leakage sources. In this
work it was calculated for each point j, with 1 ≤ j ≤ 57, of the mean curve as follows:

variancej = σ2
j = 1

n

n∑
i=1

(xi
j − x̄j)2.

Here, n = 231 is the number of slots and x̄j is the value of the jth point of the mean curve,
i.e. the average value of all point values xi

j of all slots i.

Using this formula, the variances for all 57 points of the mean curve were calculated. Figure
4.3 shows all calculated variances as a curve consisting of 57 points.

Figure 4.3: Variances as a 57-point-long curve for case 1.

The peaks on the variance curve are usually defined as potential SCA leakage sources.
Applying this approach, at least 4 SCA leakage sources can be detected: they are the
activities performed at clock cycles 1, 15, 24 and 33 of the slots.

The variance curve for case 2, i.e. for the same ECC design processing the same EC point
but using scalar k2 as key is shown in Figure 4.4.

41

4 Vulnerability Assessment of an IHP ECC Design

Figure 4.4: Variances as a 57-point-long curve for case 2.

Only three peaks are shown in the variance curve in Figure 4.4: at clock cycles 1, 15 and 48.
Both calculated variance curves differ significantly from each other.

Since the variance curve cannot be used to define clearly all SCA leakage sources of the
investigated design, each one of the 57 key candidates was compared with the key bit value
that was processed. For each key candidate, three different comparisons were made:

Comparison model v1: This is a direct comparison of the key candidate’s bit value with
the key bit value that was actually processed for that slot. The suggestion is that the
bit value of the key candidate extracted using slot i corresponds to the bit value ki.

Comparison model v2: A comparison of the key candidate’s bit value extracted using
slot i with the key bit value ki−1, i.e. the key bit value that was processed for the
corresponding previous slot.

Comparison model v3: A comparison of the key candidate’s bit value extracted using
slot i with the key bit value ki+1, i.e. the key bit value that was processed for the
corresponding following slot.

These three comparisons were taken into consideration due to the fact that, even though
each slot corresponds to the processing of one single bit, the values in the curve of the slot
could be influenced by the key bit processed for the previous or the following slot. This
could take place for example if the last operations of the previous loop iteration are executed
during the first clock cycles of the actual iteration. In a similar way, operations belonging
to the following iteration could already start being executed during the last clock cycles of
the actual iteration. The attack model using the difference-of-means test was extended with
these three comparison suggestions.

With this approach, three different key candidates were obtained for each point of the mean
curve, so a total of 3 × 57 key candidates were obtained. The relative correctness of each

42

4.2 Difference-of-Means Test

key candidate was calculated as number_of_correct_extracted_bits/231 ∗ 100%3. This
relative correctness of the extraction of the key was presented for the three variants of each
of the 57 key candidates as 3 curves consisting of 57 points each (see the white dotted curve
for comparison model v1, the black dotted curve for v2 and the yellow dotted curve for v3 in
Figure 4.5).

Figure 4.5: Relative correctness of the extraction of the key for each of the 57 key candidates for each
of the three comparison models.

From the security point of view the ideal case is if the correctness of the key extraction
is 50% for all key candidates. This would mean that only 50% of all key bits have been
correctly extracted. From the attacker point of view, the best result is the one with the
relative correctness that is more distant from 50%, for example 100% or 0%. If the relative
correctness of the key extraction is 0%, it means that all bits of the key candidate have
been extracted wrong. The inversion of all key bits of this key candidate would give a new
candidate with 100% correct extracted key bits. In this context, the red curve in Figure 4.5
displays the best attack results out of the three comparisons.

The correctness of the key extraction for the key candidates 1, 47, 48 and 57 is extremely
high (see red curve in Figure 4.5). For example, the correctness of the key candidate 1 is
100%. Contrary, the correctness of the key candidate 56 is extremely low, only about 15
%. This means that the basic assumption for the search of the key candidate is wrong.
But it means that, for example, for the 56th point of each slot the “inverted” assumption is
correct: if the power value of the 56th point of the mean curve is higher than the value of the
current slot, it corresponds to the key bit value ‘0’, otherwise to ‘1’. The new key candidate,
that was obtained using this new assumption, is equal to the inverted “old” key candidate.
The correctness of this new key candidate number 56 is 100%− 15% = 85%. The relative
correctness of the extraction of the key for each of the 57 key candidates using the inverted
assumption in comparison to the “old” assumption is shown in Figure 4.6.

3n = 231 is the number of slots for this difference-of-means test.

43

4 Vulnerability Assessment of an IHP ECC Design

Figure 4.6: Relative correctness of the extraction of the key for each of the 57 key candidates using
the “direct” and “inverted” assumptions.

The difference-of-means test with three comparison models was done for case 2 as well, in
which the kP -operation was executed using the same EC point P1 but with a different key
k2. The black curve in Figure 4.7 shows the relative correctness of the extraction of k2
(best results out of the three comparison models). The red curve represents the best results
obtained from the key extraction of k1; this is the same red curve shown in Figure 4.5. The
green curve corresponds to the ideal case.

Figure 4.7: Relative correctness of the extraction of the key for each of the 57 key candidates for both
analysed cases.
The red curve corresponds to the case 1 and the black curve to the case 2; the green curve shows
the ideal case.

The correlation between the red and the black curves in Figure 4.7 is much higher than the
correlation between the variance curves (see Figure 4.3 and Figure 4.4) for both cases: in
both investigated cases the correctness of the key extraction for the key candidates 1, 47, 48,
56 and 57 is extremely high. The variance curves for both cases gave only clock cycle 1 as an
SCA leakage source.

Using the relative correctness of the key extraction for the two investigated cases, the following
can be summarized: 5 out of 57 calculated key candidates - numbers 1, 47, 48, 56 and 57 - are
extracted with a correctness from 85% up to 100%. The next 3 key candidates – number 19,

44

4.2 Difference-of-Means Test

23 and 37 are extracted with a correctness of about 70%. With these results, the following
points can be summarized for the IHP implementation of the kP -operation:

• the implementation can be successfully attacked using the difference-of-means test by a
horizontal DPA attack,

• the implementation has many SCA leakage sources, the most relevant are found at clock
cycles: 1, 47, 48, 56 and 57 of the main loop iteration of the implemented algorithm.

The analysis of the results of the difference-of-means test using relative correctness curves
provides many more correct defined SCA leakage sources in comparison to the calculation
of the variance. Cryptographic designers can always calculate the relative correctness since
they know the actual value of the processed key. Attackers on the other hand, can only do
this for implementations that allow a value of k to be given as input; or for implementations
with key randomization methods that are manipulable. This can be useful for estimating
the design’s robustness against SCA before its actual hardware implementation takes place,
which can save costs in production.

The difference-of-means test performed with the PT of each individual block of the ECC
design shows many more possible sources of SCA leakage. Figure 4.8 shows the relative
correctness of the extraction of the key for each of the 57 key candidates for blocks of the
ECC design, it consists of the following figures:

a) The relative correctness curve for the complete ECC design (ecc) is displayed in black
colour. The red curve corresponds to the block Multiplier (mult).

b) The relative correctness curve for register X1 (x1) is displayed in blue. The orange dotted
curve displays the relative correctness of register Z1 (z1).

c) The relative correctness curve for register X2 (x2) is displayed in blue. The white dotted
curve displays the relative correctness of register Z2 (z2).

d) The relative correctness curve for the ALU block (alu) is displayed in black.

e) This curve corresponds to the relative correctness calculated when all four registers X1, Z1,
X2, Z2 and the ALU are considered as one block (all_register+alu), i.e. the analysed
PT was calculated as the sum of the PTs of these five blocks.

45

4 Vulnerability Assessment of an IHP ECC Design

b)

a)

c)

d)

e)

Figure 4.8: Relative correctness of the extraction of the key for each of the 57 key candidates using
PTs of the ECC design and its individual blocks separately.

The registers X1, X2, Z1, Z2 and the block ALU are the most insecure (leaking) blocks (see
Figure 4.8 b), c) and d)). By considering the activities of all registers together and the ALU

46

4.3 Technical Description

as one block (Figure 4.8 e)) less leakage sources can be observed. The activity of the block
Multiplier (see Figure 4.8 a)) can be assessed as a significant SCA leakage source at points
56 and 57 only. The power consumption of the Multiplier is very high compared to other
blocks. Its constant activity covers leakage sources caused by other blocks. For this reason,
if the Multiplier is inactive4, the activity of other blocks is easier observable.

4.3 Technical Description

In this section, the implementation of the IHP ECC design is described based on an analysis
made on its source code. The analysis focuses on the main loop of the Montgomery kP -
algorithm, which corresponds to the slots used for the difference-of-means test. Special focus
is put on the parts of the loops executed during the clock cycles for which a key extraction
was made with a high relative correctness in the difference-of-means test. This way, the
causes of the successful key extraction could be defined.

4.3.1 System Architecture

The analysed IHP ECC design was implemented in the hardware description language Very
High Speed Integrated Circuit Hardware Description Language (VHDL) and consists of 17
files describing registers and mathematical operators. Each Functional Unit (FU) in the
design consists of one VHDL file. The value of the key k and the coordinates of the EC point
P = (x, y) as input parameters were included in an additional test bench file. The inputs
k, x, and y can be up to 233-bit long binary numbers.
For the analysis, P is the point P1 which was used as input for performing the difference-of-
means test (see p. 38 on section 4.2). The key k is only 10 bit long: k = 2cc (in hexadecimal).
This length was selected to reduce the simulation time and simplify the analysis. The
simulated traces for the power consumption of the entire design and of its individual FUs
were generated with the software PrimeTime [36].

4The functionality of the Multiplier will be explained in section 4.3.

47

4 Vulnerability Assessment of an IHP ECC Design

The system architecture of the ECC design is represented by the block diagram shown in
Figure 4.9.

Controller

Multiplier

ALU

X1

Z1

Z2

X2

we

we

we

we
seta setb

we xe sqe

233

233

233

233-Bit

is_set

cntr

cntr(23-0)

cntr(27-24)

cntr(14)

cntr(15)

cntr(16)

cntr(17)

cntr(18) cntr(19) cntr(20)

cntr(21) cntr(22)

233-Bit

233

Figure 4.9: Structure of the IHP ECC design.
The entities shown in this diagram execute the kP -operation and are connected with each other
through a bus channel. The FUs X1, Z1, X2 and Z2 are 233-bit long registers. The FUs Multiplier
and ALU perform mathematical operations in GF (2233). The Controller controls the complete
calculation process.

Each FU shown in Figure 4.9 is described below:

• Controller: This FU is described as a 32-bit register and it manages the work of all
other FUs. The bits 0-27 of this register manage the access of all other FUs to the Bus.
This way, the execution process of the kP -operation is controlled. Figure 4.9 shows
the single bits of the cntr signal next to their corresponding inputs on the other FUs.
The input signal is_set determines if a key bit with value ‘1’ or with value ‘0’ should
be processed. Depending on this and on its current internal status, the value of the
output signal cntr is set. A detailed description of cntr is presented in section 4.3.2.

48

4.3 Technical Description

• Bus channel: This entity is responsible for the data exchange between all other FUs in
the design. The value on its input signal cntr(27-24), bits 27 to 24 of cntr, determines
the FU who’s output data is to be written to the Bus. This data is transmitted to the
inputs of all other FUs immediately. The Controller decides which of these FUs should
save this data in their internal register. All data inputs and outputs are connected this
way through the Bus.
Additionally during the execution of the kP -operation the Bus reads once the output
data from the registers x5 and b6 of the ECC design. These two registers are not shown
in Figure 4.9.

• external registers X1, Z1, X2, Z2: These entities are 233-bit long storage registers.
If their input signal we has the value ‘1’, the data from the Bus will be saved in the
register. These registers are used to save intermediate values during the execution of
the Montgomery kP -algorithm.

• ALU: The ALU has a 233-bit long data input and a 233-bit long data output. The
results of its operations are saved in an internal 233-bit long register. All values saved
in this register are automatically sent to the ALU’s output. The ALU is responsible
for two arithmetic operations: addition and squaring of the elements of GF (2233).
When the ALU’s input signal we has the value ‘1’, the data on its input (that is, the
data from the Bus) is saved in the internal register. When the signal xe has the value
‘1’ the data on its input is added (XORed) to the data saved in the internal register.
This means that the addition of two elements of GF (2233), that is the bitwise XOR of
two big binary numbers, needs two clock cycles to be executed.
When the ALU’s input signal sqe has the value ‘1’, the data on its input is squared
and saved in its internal register.

• Multiplier: When the input signal seta has the value ‘1’, the Multiplier saves the
data from the Bus as the first operand in one internal register. The second multiplicand
is saved from the Bus in another internal register when the signal setb has the value
‘1’. Once both operands have been saved, the multiplication starts. It is finished after 9
clock cycles. This means that the Multiplier needs in total 11 clock cycles in order to
complete a multiplication: 2 cycles for saving both operands and 9 cycles for calculation
of one product.

5Register x saves the x-coordinate of the EC point P = (x, y) during the execution of the kP -algorithm.
6Register b contains the standard value b = 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f
7d8f90ad [8]. It is one standard parameter of the EC B-233.

49

4 Vulnerability Assessment of an IHP ECC Design

4.3.2 Control Signal cntr Description

The block diagram in Figure 4.9 shows how the FUs in the analysed design are controlled
using the Controller’s output signal cntr. This is an input signal for all other FUs, controlling
the Bus access to their inputs and outputs. This subsection describes the configuration of
this signal and the function of its single bits.

Depending on its internal state, the Controller sets the value of this signal and sends it as
separated bits to all other functional units of the ECC design. Figure 4.10 illustrates the
configuration of the cntr signal, showing its single bits and the corresponding names of the
FU’s inputs to which they are sent.

23

we(b)

13 12

we(x)

11

we(y)

10

we(k)

9 8 7

testbit

6

ALU

ALU

Bus

sel

 27-24

sqe

20

xe

19

we

18

we(X2)

17

we(X1)

16

we(Z2)

15

we(Z1)

14

be32

5-1

we32

0

31-28

Multiplier

setb

22

seta

21

Figure 4.10: Configuration of the signal cntr.

The bits 31-28, 23, 12, 8, and 7, represented in white boxes in Figure 4.10, are unused. The
functionality of all used bits and bit groups of the signal cntr is described below:

• Bits 27 to 24: This group of bits — a 4-bit long word — is the input data of the Bus.
The value of this bit word indicates which FU’s data output should be written to the
Bus. The values represented as decimal numbers in Table 4.1 determine the Bus access
to the output data of the corresponding FUs. The names given in the table for the
signals are the names used in the design’s source code (file ecc_233.vhd). These are
the names used for the port mapped signals between the functional units in the design.

50

4.3 Technical Description

Table 4.1: Description of the input values for the Bus.

sel, Used Value Signal Name Description
0 o_ext_reg_r_out output of external regiser is written to the Bus
1 o_b_r_out output of register b is written to the Bus
2 o_z1_r_out output of register Z1 is written to the Bus
3 o_z2_r_out output of register Z2 is written to the Bus
4 o_x1_r_out output of register X1 is written to the Bus
5 o_x2_r_out output of register X2 is written to the Bus
6 o_multiply_result output of Multiplier is written to the Bus
7 o_alu_r_out output of ALU is written to the Bus
8 o_x_r_out output of register x is written to the Bus
9 o_y_r_out output of register y is written to the Bus

The Bus receives four bits from cntr, bit 27 to bit 24, as the input signal sel. The
binary number represented by this 4-bit word determines the access control of the Bus.
This means that depending on the value of sel, the output from one FU of the design
is written to the Bus as input data for other FUs.

• Bits 22 and 21: These bits are sent to the inputs seta and setb of the FU Multiplier
respectively. If any of these bits has the value ‘1’, the Multiplier saves the value from
the Bus in one of its internal registers and uses it as one of the multiplicands for the
next multiplication. The multiplication starts as soon as both values have been set.

• Bits 20, 19, 18: These bits are sent to the inputs sqe (square enable), xe (xor enable),
and we (word enable) of the FU ALU respectively. The value on these inputs determines
the operation to be executed by the ALU with the data from the Bus on the current
clock cycle: This way input data of the ALU can either be squared (sqe) and saved in
the ALU’s internal register, only saved (we) in the internal register, or added (xe) to
the value already saved in the internal register. Everything saved in the ALU’s internal
register is automatically placed on the ALU’s output.

• Bits 17, 16, 15, 14: These bits control the functionality of the registers X2, X1, Z2,
and Z1 respectively. For each bit with value ‘1’, the corresponding register saves its
data input at the current clock cycle. This way, values can be saved within the process.

51

4 Vulnerability Assessment of an IHP ECC Design

• Bits 13, 11, 10, 9: These bits control the functionality of the registers b, x, y, and k
respectively. For each bit with value ‘1’, the corresponding register saves the actual
value located on its data input at this clock cycle.
These bits are only used outside the Montgomery kP -algorithm’s main loop executions
for specific purposes. The value of bit 13 is never set to ‘1’. Bits 11 and 10 are used
only once each at the end of the kP -operation to overwrite the registers x and y with
its final output values. Bit 9 is used regularly in the finalization phase after all loops in
the algorithm have been processed.

• Bit 6: This bit controls the functionality of the test bit register. When this bit has
the value ‘1’, the test bit register saves the actual value located on its input data at
this clock cycle. At the same time this value is placed on its output, which is sent to
the Controller as the is_set signal.

• Bits 5 to 1 and bit 0: These bits are sent to two ALU inputs, be32 and we32

respectively. When we32 has the value ‘1’, a 32 bit long value, taken from the data
input r_in32 of the ALU can be saved as part of the 233-bit long internal register of
the ALU, overwriting thus 32 bits in this register. be32 is a 5-bit long word and its
value specifies which 32 bits of the internal register should be overwritten by the value
taken from r_in32.
The value of bit 0 is set to ‘1’ only once in the initialization and the internal value of
the ALU is set to 1.

4.3.3 Montgomery kP -Algorithm Implementation

The Montgomery kP -algorithm (see Algorithm 3 on p. 12) is a balanced method for perform-
ing the kP -operation that does not demand the use of dummy operations. As mentioned in
section 2.3, every main loop iteration of the algorithm is performed with the same pattern and
all results obtained during one loop are used as input parameters for further iterations. The
implementation of the Montgomery kP -algorithm is considered to be a strong countermeasure
to protect cryptographic implementations at least from SPA attacks [37].

The biggest amount of time needed for the performance of the kP -operation with this design
is spent in the inner loop of the Montgomery kP -algorithm. The number of times this loop
is performed depends on the value, or rather the length, of the key k [34]. Being dependable
from k, these processes play a crucial role in the performance of a side-channel attack on

52

4.3 Technical Description

this implementation. This section describes the IHP implementation of the Montgomery
algorithm for the kP -operation — that is, the sequence of the operations performed in the 2
possible cases for the inner loop.

The Montgomery kP -algorithm consists of 3 steps: the initialization, the inner loops (for the
cases ki = 0 and the ki = 1), and the finalization (these steps are also described in page 39).
These 3 steps are implemented in the VHDL file controller_9_FPGA.vhd under the names
mont, montk1 (for ki = 1), montk0 (for ki = 0), and montpost respectively. Two variables —
state and control — organize the calculation of kP . The variable state is responsible for
the running step of the Montgomery kP -algorithm, i.e. it can start the programs for mont,
montk1, montk0 or montpost, and it sets the value of the variable control. The value of
control controls the data exchange between the FUs of the ECC design. Figures 4.11 and
4.12 present two flow chart diagrams titled montk1 and montk0 respectively. These charts
describe the operation flow for both cases of the inner loop.

53

4 Vulnerability Assessment of an IHP ECC Design

montk1

we-Z2

seta

setb

^2

X1 Z1

we-X1

we-X2

seta

setb

we -Z1

we-X2

^2

^2

seta

b

setb

we-Z2

Z2

seta

setb

we-ALU

+

we-X2

X2

we-ALU

+

we-Z1

^2

seta

x

setb

Z1

we-ALU

M +

we-X1

X1

seta

Z2

MM

MM

^2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Z2X2

X1

X2

Z2

Z2

b

X2

X1

Z1

setb

13 (mont)

state

07010000

Control (HEX)

2 00000000

3 03100000

4 07008000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

02200000

05500000

06010000

07020000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

03200000

05500000

06004000

07020000

03100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06008000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

04200000

02400000

06040000

05080000

07020000

04040000

02080000

07100000

00000000

07204000

08400000

06040000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 00000000

03200000

06080000

07400000

07010000

.

.

.

.

.

.

 0

 2

 3

 8

 9

 11

 17

 18

 19

 20

 21

 22

 26

 27

 28

 29

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57
(cycle 0 from

next loop)

 58
(cycle 1 from

next loop)

 1

 4

 6

 7

 5

 13

 15

 23

 24

 25

 32

 33

 34

 30

 31

 16

 14

 12

 10

Clock cycle

Figure 4.11: Flow chart diagram for the program montk1.

54

4.3 Technical Description

montk0

 0

 2

we-x1
 3

 8
seta

 9
setb

^2

X1 Z1 X2 Z2

 10

 11

 12

we-Z2

we-Z1

 17
seta

 18
setb

X1

 19
we -X2

 20
we-X1

^2

^2

 21

 22

 26
seta

 27

 28

 29

b

setb

we-Z1

Z1

35

36

seta

Z2

setb

Z2

 37

 38

 39

 40

we-ALU

X1

+

we-X1

X1

we-ALU

Z2 + 41

 42

 43

 44

 45

 46

we-Z2

^2

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57
(cycle 0 from

next loop)

Z2

we-X2

X2

we-ALU

M +

we-X2

X2

seta

Z2

X1

 58
(cycle 1 from

next loop)

MM

MM

^2

X2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
setb

Z1

13 (mont)

state

07020000

Control (HEX)

2 00000000

3 04100000

4 07010000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

05200000

02500000

06008000

07004000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

02200000

04500000

06020000

07010000

02100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06004000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

05200000

03400000

06040000

04080000

07010000

05040000

03080000

07100000

00000000

07208000

08400000

06060000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 00000000

03200000

06080000

04400000

07020000

.

.

.

.

.

.

 1

 4

 6

 7

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

Figure 4.12: Flow chart diagram for the program montk0.

55

4 Vulnerability Assessment of an IHP ECC Design

Below is a short description of the structure of these diagrams:

• On the left side of the diagrams the clock cycles are listed. Each loop consists of 57
cycles.

• The column named ‘state’ lists the states of the variable program during the loop. Each
flow chart describes the complete process operated by one program, either montk0 or
montk1. The state described in the cycle 0 of each chart (state = 13 (mont) for every
case) is part of the program mont. mont is the initialization program and it is always
entered in its state = 13 for the first cycle of each loop. During this clock cycle, the
first multiplication process for a loop starts and the Controller also decides, if a loop
for a bit ‘1’ or for a bit ‘0’ should be entered: if the Controller’s input signal is_set

has the value ‘1’, state = 2 of montk1 is entered in the cycle 1 of the loop. If is_set

has the value ‘0’, state = 2 of montk0 is entered in the cycle 1 of the loop.

• On the right side of the flow chart the values of the Controller’s cntr signal are listed.
They are given as hexadecimal numbers, as described in the VHDL file.

• The actions denoted as “we-” represent a word enable operation performed by the
indicated register.

• The red units with the label ‘M’ represent the activity of the Multiplier. Units displayed
with a solid red color represent the current activity of the Multiplier. Units displayed
with a transparent red color (cycles 9, 55 and 56 for both programs) represent a non-
operating state of the Multiplier7. The result obtained from the last operation is saved
and can be read. Each loop contains 6 multiplications.
The non filled units with the label ‘M’, placed in the cycles 57 and 58 of each loop
represent multiplications which belong to the following loop.

• The yellow units with the label ‘ˆ2’ represent the squaring operation of an element
of GF (2233) performed by the ALU. Each loop contains 5 squaring operations. Each
squaring operation needs one clock cycle.

• The blue units with the label ‘+’ represent the addition of two elements of GF (2233)
performed by the ALU. This operation needs two clock cycles for the calculation of
the sum: in the first cycle the first operand is saved in the inner register of the ALU

7In the non-operating state of the Multiplier, also named inactive state, the new multiplicands for the
following multiplication are not available yet and the Multiplier waits for them. The Multiplier has two
internal registers named operand_a and operand_b, where the operands of its partial multiplications are
saved. If the Multiplier is in its non-operating state, operand_a and operand_b are both overwritten with
the value ‘0’.

56

4.3 Technical Description

(when its word enable signal is set to ‘1’). In the second clock cycle the second operand
is directly added to the first if its xor enable signal is set to ‘1’. There is a total of 3
additions performed in each loop.

• All registers X1, Z1, X2, Z2 are shown in grey colour when they are being used as input
parameters on the beginning of the loop. They are white coloured when being used for
saving intermediate values and beige coloured when they store the final values (output
values) of the loop.

Both programs, montk1 and montk0, have been implemented the same way. In the Mont-
gomery kP -algorithm, both loops require exact the same number and the same sequence of
operations to be executed. They differ only in the use of the registers (X1 and X2; Z1 and
Z2) as input and output parameters depending on the value of the processed key bit [18].
In the IHP implementation montk0 and montk1 have the following differences, observable in
their flow chart diagrams in Figures 4.11 and 4.12 respectively.

1. In cycle 46 of montk0 one we- operation is performed by the ALU and another one
by the register X2. This means that 2 we- operations are performed on this cycle
for montk0. In cycle 46 of montk1 in contrast, only one we- operation is performed:
we-ALU. For this reason, the power consumption during clock cycle 46 is always higher
when the program montk0 is executed than when montk1 is executed8.

2. In cycle 44 for both programs a seta operation is performed. The output value
of the ALU is saved in an internal register of the Multiplier, named polynomial_a.
polynomial_a is overwritten every time a seta operation is performed. Also during
cycle 44, a we- operation is executed and the output value of the ALU is saved either
in register Z1 (for montk1) or in register Z2 (for montk0). In cycle 54, a seta operation
is again performed, which means that the value of polynomial_a is again overwritten.
Both programs, montk1 and montk0, use the value of register Z2 as input to perform
the seta operation in cycle 54. For montk1 the value of Z2 has been set for the last
time during cycle 28, so when seta is executed in cycle 54, polynomial_a is overwrit-
ten with a complete new value. For montk0 on the other hand, the value of Z2 has
been set for the last time during cycle 44, using the same input that was used for
performing the seta operation. This means that polynomial_a receives the same input

8The performance of the we-X2-operation is not needed since the value of the register X2 is overwritten again
in the clock cycle 0 of the following loop, being this the last operation performed by montk0. Between the
clock cycles 46 and 57 (clock cycle 0 for the next loop), the value of X2 is never read. It is believed that
the performed we-X2-operation has been implemented by mistake.

57

4 Vulnerability Assessment of an IHP ECC Design

data that it already has and the value of the register is not overwritten but it is just kept.

3. In cycle 56, the last clock cycle in the loop, a setb operation is performed for setting
the second multiplicand for the multiplication for the next loop. In montk0 the value of
the second multiplicand is obtained from register X1, in montk1 this value is obtained
from the ALU.

The flow charts shown in the previous section describe the inner loops of the Montgomery
kP -algorithm by depicting every operation being executed in each clock cycle. Figures in
Appendix B show the complete flow diagram for the kP -operation with the use of a small
key k = 2cc. To illustrate the leakage sources, the power consumption is shown in the same
diagram as traces for each FU of ECC designs.

4.4 Observations

The analysis of the diagrams in Figures 4.11 and 4.12 has been a key part for the realisation of
the security assessment described in this chapter. This section lists the causes of information
leakage that were detected through comparison the power consumption of the montk1 and
montk0 programs. These leakage sources are explained based on observations made on the
implementation’s characteristics that have been listed in the previous sections and in the
simulated PTs of the FUs of the ECC design.

1) Easy identification of the boundaries between the loops
Periodically repeated forms of the PT simplify the detection of how long (how many
clock cycles) each key bit needs to be processed. PTs for the analysed design show
two of such characteristic forms: one being a “plateau” in the curve and the other one
being a significant dip. Both of these characteristics appear right after each other in all
slots for each bit processing, also for each loop. Figure 4.13 shows these characteristics
of the PT.

58

4.4 Observations

SlotDip

Plateau

Figure 4.13: Part of a PT of the ECC design during the performance of the kP -operation.
The graph shows power (in W) over a period of time (in ps). This part of a PT corresponds to the
processing of 4 bits of a 10 bit long key. The dips in the trace’s curve are caused due to a very low
power consumption of the design during only one clock cycle. A few clock cycles before each dip, a
plateau can be observed. The space between 2 dips corresponds to one slot and is 57 clock cycles
long.

The following conclusions have been made related to both of these anomalies through
analysing the flow charts for the inner loops of the Montgomery kP -algorithm:

• Plateau: This object is seen between the clock cycles 38 and 42 of each slot (5
cycles in total). 3 operations are performed by the ALU during this time. Two
of them are additions and one is a squaring operation. This relative big number
of ALU operations is only performed in this short period of time between these
clock cycles and it demands constant activity from the ALU during this period,
thus leading to a continuous high power consumption of this FU. Such a number
of ALU operations in a similar short time interval is not performed in any other
period during the loop.

• Dip: This anomaly is seen at the end of each loop. The reason for the dip is
the fact that, having the highest energy consumption of all FUs, the Multiplier is
not active during the last two clock cycles (55 and 56). After cycle 54, the last
multiplication in the loop has been completed and its result can be read. The
Multiplier stays in its non active state for the following two clock cycles because it
needs to wait for its next input parameters. The Multiplier’s energy consumption
reaches a value close to zero during cycle 56 when none of its gates are switched.

59

4 Vulnerability Assessment of an IHP ECC Design

This implies a big decrease of the energy consumption of the entire design at this
clock cycle.

2) Correct key extractions when the DPA is performed on individual FUs
Figure 4.8 (see p. 46) shows the relative correctness of the key extractions obtained
when using PTs of the individual blocks of the ECC design. More than 10 out of a
total of 57 key candidates are extracted with a correctness of 100% when using PTs of
the registers (see Fig 4.8 b) and c)).

Some of these correct extractions are caused because the registers are used differently
in montk1 and montk0. For example, during a clock cycle in montk1 the register X1 is
overwritten and in montk0 instead, the register X2 is overwritten in the corresponding
clock cycle. The registers consume power dynamically whenever their values are
overwritten.
Other correct key extractions are done for clock cycles on which the output value of an
FU is written to the Bus and used as input for another FU in the design. For example,
during a clock cycle in montk1 the value of the register X1 is written to the Bus; in
montk0 instead, the value of X2 is written to the Bus in the corresponding clock cycle.
Whenever data is written to the Bus, all FUs receive this data on their data inputs,
even though only one of them actually uses it (see section 4.3.1). Every time the data
input of an FU is changed, the FU consumes a small amount of internal power9. The
internal power consumption of a register is significantly different when its data input
and output are the same as when its data input and output have different values.

9The internal power is the power consumed by an FU when its input is changed but its output is not changed.
Through the change on its input, a small number of transistors of the FU’s gates are switching [36].

60

4.4 Observations

3) Unbalanced implementation of the ECC design
The loop executions in the Montgomery kP -algorithm depend on the value of the
processed key bit. The details about the algorithm implementation, explained in
section 4.3.3, point out that there are 3 differences in the programs montk0 and montk1.
The diagrams montk0 (5) in Figure 4.14 and montk1 (6) in Figure 4.15 show the
operations being executed for each loop and the power consumed by these operations.
The power consumption is shown as part of a PT on the right side of the diagrams.
This illustrates the effects of the unbalance in the implementation of the Montgomery
kP -algorithm10. These are PTs simulated for the complete ECC design and for its
individual FUs. Below is a comparison of the operations and the power consumptions
for programs montk1 and montk0 during the clock cycles that were pointed out as
leakage sources in section 4.3.3.

10The diagrams displayed in Figures 4.14 and 4.15 are part of the diagrams included in Appendix B, which
show the complete flow diagram for the kP -operation when a small key is used.

61

4 Vulnerability Assessment of an IHP ECC Design

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

Montk0 (5)

 0

 2

we-x1
 3

 8
seta

 9
setb

^2

X1 Z1 X2 Z2

 10

 11

 12

we-Z2

we-Z1

 17
seta

 18
setb

X1

 19
we -X2

 20
we-X1

^2

^2

 21

 22

 26
seta

 27

 28

 29

b

setb

we-Z1

Z1

 35

 36

seta

Z2

setb

Z2

 37

 38

 39

 40

we-ALU

X1

+

we-X1

X1

we-ALU

Z2 + 41

 42

 43

 44

 45

 46

we-Z2

^2

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57
(cycle 0 from

next loop)

Z2

we-X2

X2

we-ALU

M +

we-X2

X2

seta

Z2

X1

 58
(cycle 1 from

next loop)

MM

MM

^2

X2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
setb

Z1

13 (mont)

state

07020000

Control
(HEX)

2 00000000

3 04100000

4 07010000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

05200000

02500000

06008000

07004000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

02200000

04500000

06020000

07010000

02100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06004000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

05200000

03400000

06040000

04080000

07010000

05040000

03080000

07100000

00000000

07208000

08400000

06060000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk1) 00000000

03200000

06080000

04400000

07020000

.

.

.

.

.

.

 1

 4

 6

 7

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4.14: Flow chart diagram for montk0 with PTs simulated during its execution.

62

4.4 Observations

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

montk1 (6)

we-Z2

seta

setb

^2

X1 Z1

we-X1

we-X2

seta

setb

we -Z1

we-X2

^2

^2

seta

b

setb

we-Z2

Z2

seta

setb

we-ALU

+

we-X2

X2

we-ALU

+

we-Z1

^2

seta

x

setb

Z1

we-ALU

M +

we-X1

X1

seta

Z2

MM

MM

^2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Z2X2

X1

X2

Z2

Z2

b

X2

X1

Z1

setb

13 (mont)

state

07020000

Control
(HEX)

2 00000000

3 03100000

4 07008000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

02200000

05500000

06010000

07020000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

03200000

05500000

06004000

07020000

03100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06008000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

04200000

02400000

06040000

05080000

07020000

04040000

02080000

07100000

00000000

07204000

08400000

06040000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk1) 00000000

03200000

06080000

07400000

07010000

.

.

.

.

.

.

 0

 2

 3

 8

 9

 11

 17

 18

 19

 20

 21

 22

 26

 27

 28

 29

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57
(cycle 0 from

next loop)

 58
(cycle 1 from

next loop)

 1

 4

 6

 7

 5

 13

 15

 23

 24

 25

 32

 33

 34

 30

 31

 16

 14

 12

 10

Clock cycle

Figure 4.15: Flow chart diagram for montk1 with PTs simulated during its execution.

63

4 Vulnerability Assessment of an IHP ECC Design

• Unbalance in cycle 46
In montk0 two we- operations are performed during this cycle: one we- operation
is performed by the ALU and another one by the register X2.
In montk1 only one we- operation is performed: the one of the ALU.
This means that in montk0 the gates of two registers switched, while in montk1

only the gates of one register switched during this clock cycle. Consequently,
the power consumption of the sum of all registers is higher for montk0 than for
montk1 (compare PT part circled in red in Figure 4.14 and the part circled in
black in Figure 4.15). This explains why the difference-of-means test reached
a key-extraction with over 90% correctness for this clock cycle (see point 47 in
Figures 4.5 and 4.7).

• Unbalance in cycle 54
For the reasons mentioned in section 4.3.3 (see point 2 in p. 57), more gates of the
Multiplier switched during this clock cycle when montk1 is executed than when
montk0 is executed.
Thus more power is consumed during this and the following clock cycle (55) when
montk1 is executed. The difference-of-means curve shows a relative correctness
of the key extraction of 90% for clock cycle 55 (see point 56 in Figures 4.5 and
4.7). The difference-of-means test performed on the Multiplier block also gives
this point as a strong SCA leakage source (see point 56 in Figure 4.8 a)).

• Unbalance in cycle 56
The differences in the implementations of montk0 and montk1 regarding this cycle
are explained detailed in section 4.3.3 (see point 3 on p. 58). Here is a short
overview of these differences.
In both programs, the Multiplier obtains through a setb operation its second
multiplicand as input during this clock cycle. The difference is that in montk0 this
multiplicand is read from register X1 and in montk1 from the ALU, i.e. in montk0

the value of register X1 is written to the Bus and in montk1 the value of the ALU
is written to the Bus. The writing of different values to the Bus is one cause of
the information leakage (see observation 2 on p. 60). This type of information
leakage becomes significant in this case because the ALU and the register X1
are implemented with flip-flops of different types due to their functionalities11.

11The results of the difference-of-means test for register X1 show that a key is extracted with 100% correctness
for clock cycle 56 (see point 57 in Figure 4.8 b)). For the ALU, a key-extraction with 30% correctness
could be done for this clock cycle (see point 57 in Figure 4.8 d)).

64

4.4 Observations

The internal and dynamic power consumptions of the ALU and the registers are
significantly different. This is the reason why this unbalance in the implementation
— the writing to the Bus of the value of a register in montk0 and the writing to
the Bus of the value of the ALU in montk1 — is more observable compared to the
case when in both programs values of two different registers are written to the
Bus.

This difference is small and not easily observable in the power consumption of
the complete ECC design if the Multiplier is active. The Multiplier consumes
the biggest amount of power in this design. If the Multiplier is active, its power
consumption covers the activities of other FUs.
It can be seen in the diagrams montk0 (5) and montk1 (6) in Figures 4.14 and
4.15 respectively, that by clock cycle 56 the power consumption of the Multiplier
reaches a value near zero. No gates are switched in the Multiplier. The significantly
reduced activity of the Multiplier reduces its covering effect. The results of the
difference-of-means test for the complete ECC design show that a key-extraction
with a correctness of almost 90% can be done for cycle 56 (see point 57 in Figure
4.7).

• Unbalance in cycle 57 (also represented as cycle 0 of the following loop)
In montk0 during clock cycles 56 and 57 two different values are written to the
Bus: the value of register X1 in cycle 56 and the value of the ALU in cycle 57.
In montk1 the same value of the ALU is written to the Bus during both cycles (56
and 57).
The FUs do not demand internal power consumption during cycle 57 when montk1

has been executed since their data inputs are not changed. Thus, the power
consumption of all FUs is higher during clock cycle 57 (0) when montk0 has been
executed as when montk1 has been executed. The activity in the Bus for both
programs during these clock cycles is summarized in Table 4.2.

Table 4.2: Values written to the Bus during cycles 56 and 57 (0).
cycle 56 cycle 57 (0)

montk0 value of X1 value of ALU
montk1 value of ALU value of ALU

65

4 Vulnerability Assessment of an IHP ECC Design

The different power consumptions during clock cycle 0 for the programs montk0

and montk1 can be seen in Figure 4.16.

Cycle 0

Cycle 0

montk0

montk1

Figure 4.16: Comparison of the power consumption of all registers during the first clock cycle of a
loop (see cycle 0).
The upper part of the diagram corresponds to montk0 and the lower part to montk1.

This key bit value dependant power consumption is only partially covered by the
Multiplier. The Multiplier is active for the first time after having been inactive
for 2 clock cycles. This means that in the previous clock cycles, cycles 55 and
56, its internal registers operand_a and operand_b and other gates of its partial
multiplier have the value ‘0’. In clock cycle 0, the Multiplier performs a partial
multiplication again and its internal registers are overwritten with the values of
the multiplicands. The amount of power consumed to calculate the partial product
is smaller after such “zero”-initialization than it is in the usual cases, when the
initialized values of all registers is not ‘0’12.

This means that the Multiplier always consumes a smaller amount of power
during clock cycle 0 than it usually13 does. The complete ECC design’s power
consumption is consequently smaller during this clock cycle and the details in the
power consumptions of individual FUs are more observable: the key was extracted
with a relative correctness of 100%.

It can be concluded that the interchangeable use of the registers in programs montk1

and montk0 as input parameters for other FUs leads to information leakage. A possible
12If all flip-flops inside the register contain the value 0, only some of them have to be switched in order

to set the new value in the register. If the register holds a value different to 0, a bigger amount of flip
flops have to be switched (from 0 to 1 and from 1 to 0) to set the new value. The flip-flops used for the
implementation of these internal registers consume less power when they are switched from 0 to 1 as when
they are switched from 1 to 0 [10].

13i.e. in comparison to clock cycles 1 – 54.

66

4.4 Observations

countermeasure against this would be the re-design of the system architecture of this
implementation: the internal power consumption of each FU would not be changed so
frequently if they would not receive a different data value from the Bus every clock cycle.
Nevertheless, the leakage through internal power consumption of the FUs becomes
significant for this design’s vulnerability against SCA only if the Multiplier consumes
less power as it usually does, i.e. if its covering effect is not present.

4) The length of a PT depends on the size of the key
By using a key of small length, the PT of the kP -operation has a short size. This
could let an attacker know about the size of the key, providing him information about
the implemented algorithm or letting him know that the performance of a brute force
attack is possible in case of a key with a short length. Figure 4.17 displays the entire
initialization process for the kP -operation. Some activities can be seen on the beginning
and then, depending on the length of the key, no operations are performed for a certain
time. Operations are performed again as soon as the processing for the first key bit
starts.

67

4 Vulnerability Assessment of an IHP ECC Design

Start: mont

 0

 2

 3

 8

 9

X1

Z1

Z2

X2

x

we-X1
^2

we-Z2
 1 ^2

we-ALU

b

we-X2

+
ALU-reg 4

 6

 7

 5
alu = 00001

+

ALU-reg = 0001

we-Z1 i=232

.

.

.

.

.

.

seta
X1

MM

Z2

MM
.
.
.

setb

i=i-1

.

.

.

.

.

.

is_set = 1

is_set = 0

is_set = 0
.
.
.

.

.

.

is_set = 1

is_set = 1

is_set = 0 or 1

montk0 or montk1
(cycle 1)

2

state

08110000

Control (HEX)

3 07108000

4 07040000

5 01080000

6

7

8

070A0000

00000001

07004000

000000409

9

8

9

9

8

00000000

00000000

00000040

00000000

00000000

13

2 (M1 or M2)

13

00000000

04400000

12 03200000

11

10

9

00000000

00000000

00000040

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Clock cycle

Figure 4.17: Flow chart of the initialization part of the Montgomery kP -algorithm.

5) The first iteration of the main loop reveals information about the corresponding key bit value

The PTs for the execution of the first loop iteration, i.e. for the processing of key bit
kl−2 look different compared to those for the execution of the rest of the loops. Figure
4.18 shows simulated PTs for two different keys. The keys have the same length and

68

4.4 Observations

the MSB of both is kl−1 = 1. The key bit kl−2 is different for each case: for the first
key, kl−2 = 0 and for the second key kl−2 = 1. The first slot in the PTs corresponds to
the first loop iteration. For the upper curve kl−2 = 0 and for the lower curve kl−2 = 1.

kl -2 = 0 kl -3 kl -4 ...

kl -2 = 1 kl -3 kl -4 ...

Figure 4.18: Simulated PTs for keys with the same MSB value and different value for kl−2.
For the upper curve, the power consumption along the slot is lower and more irregular than for the
curve below.

In the diagram of Start: mont, displayed in Figure 4.17, it can be observed that the
register Z1 is initialized with the value ‘1’. This means that the first iteration of the
main loop, i.e. the iteration for the key bit kl−2 will take the register Z1 with this
value as input. Any multiplication performed with Z1 = 1 as operand will result in the
value of the other operand. The same applies for any multiplication performed with
the result of a squaring operation that has taken Z1 = 1 as input, since the result to
this squaring operation is also 1. The performance of such operations does not demand
a big amount of power consumption since the values in internal registers in these cases
are not overwritten. For this reason, the PTs measured during the execution of the first
loop iteration look different as those measured during the rest of the loop iterations.
montk0 and montk1 use the register Z1 differently as input. Thus, a different amount
of multiplications with an operand of value 1 is performed when the first loop iteration
takes place for the key bit kl−2 = 0 as for the key bit kl−2 = 1. montk0 performs a
total of 3 multiplication with an operand of value 1, while montk1 performs only 1 of
such multiplications. This means that the power consumption is higher in the first slot
if kl−2 = 1 and monkt1 is executed. In this context the bit value of kl−2 can be easily

69

4 Vulnerability Assessment of an IHP ECC Design

identified.
Revealing the value of one key bit so easily may have big negative consequences. By
knowing for sure which key bit is being used during a specific slot, it is possible to use
this slot as a template for attacks based on FI, for example in the FSA attack (see
section 3.2.2).

The observations mentioned in this chapter helped to identify the reasons that caused this
ECC implementation’s vulnerabilities to SCA attacks. The design’s functionality and its
power consumption have been displayed in diagrams. This, alongside the difference-of-means
test results, help to understand which of the operations are strong leakage sources for an
SCA. By taking these properties into consideration when re-designing this crypto-algorithm,
a more secure implementations can be developed.

70

5 Re-design of the IHP ECC Implementation

The observations made through the security assessment described in the previous chapter
helped identify the causes of a successful performance of a DPA attack using the difference-
of-means test on the IHP ECC implementation. The SCA leakage sources were identified.
By understanding the implementation’s architecture and functionalities, it is possible to
re-design it in such a way, that these leakage sources are no longer present and that the
implementation’s vulnerability to SCA attacks decreases.

This chapter describes the adjustments made on the ECC design, which improved its resistance
against SCA. Several changes have been done in the system’s architecture and thereby, special
effort was made so that the increase on the system’s area and energy consumption caused
by the implementation of countermeasures remained as small as possible. The new design’s
architecture, its improved efficiency and security features are displayed in diagrams the same
way as they are displayed in the previous chapter.

Section 5.1 describes the changes made on the system’s architecture, the configuration of the
signal cntr, and how these helped to re-design the operation sequences in the Montgomery
kP -algorithm. Results regarding the chip area and energy consumption of the re-designed
implementation are compared to the chip area and energy consumption of the original IHP
ECC design in section 5.2. Two PA attacks are performed on the re-designed implementation:
a DPA attack using the difference-of-means test (see section 5.3) and a ComPA attack with
PTs measured from the execution of the re-designed implementation on an FPGA (see
section 5.4). The results of both tests are presented to show how the ECC implementation’s
vulnerability to such attacks changed after its re-design.

5.1 Technical Changes

To achieve resistance against a DPA attack using the difference-of-means test, the operation
sequence of the implemented Montgomery kP -algorithm (see section 4.3.3) was modified.
The sequence of the single operations in the algorithm’s main loop and the regularity of each

71

5 Re-design of the IHP ECC Implementation

operation’s execution were changed. Both programs, montk1 and montk0 were implemented
in the same way, but without the disadvantages mentioned in section 4.3.3 (see p. 57) and
thus, a balanced algorithm implementation was achieved.
For the re-design of the Montgomery kP -algorithm, two new registers — X3 and X4 —
are additionally used for saving values during the algorithm’s main loop executions. As a
consequence, two further bits of the signal cntr are used for the communication with these
registers. The resulting state of the ECC’s system architecture, the extended configuration
of cntr and the re-designed operation sequence of the main loops of the kP -algorithm are
described in this section.

5.1.1 System Architecture

The block diagram in Figure 5.1 shows all entities that are part on the re-designed execution
of the kP -operation and how they are connected with each other. It consists of the same
entities as described in 4.3.1, two additional registers X3 and X4, and the corresponding
single bits of the signal cntr for the communication with these two registers.

72

5.1 Technical Changes

Controller

Multiplier

ALU

X1

Z1

Z2

X2

we

we

we

we

seta setb

we xe sqe

233

233

233

233-Bit

is_set

cntr

cntr(23-0)

cntr(27-24)

cntr(14)

cntr(15)

cntr(16)

cntr(17)

cntr(18) cntr(19) cntr(20)

cntr(21) cntr(22)

233-Bit

233

X3

X4

cntr(12)

cntr(7)

233

233

Figure 5.1: New structure of the IHP ECC design.
The entities shown in this diagram execute the kP -operation and are connected with each other
through a bus channel. The FUs Multiplier and ALU perform mathematical operations in GF (2233).
The FUs X1, Z1, X2, Z2, X3 and X4 are 233-bit long registers. Registers X3 and X4 are needed for
a balanced operation sequence and a time optimized execution of the kP -operation.

Like the other external registers, X3 and X4 are 233-bit long storage registers. The data
from the Bus is saved in the registers every time their input signal ‘we’ (word enable) has the
value ‘1’. These registers are used to save intermediate values during the execution of the
Montgomery kP -algorithm’s main loops.
All other entities work the same way as described in 4.3.1.

5.1.2 Control Signal

The Controller’s output signal cntr controls the Bus access for all other FUs . The bits 27
to 24 form a bit word, which is received by the Bus as the input signal sel. The value of
signal sel determines which FU’s data output should be written to the Bus.

73

5 Re-design of the IHP ECC Implementation

With the two additional FUs, registers X3 and X4, two single bits from cntr needed to be
assigned as their we input signals. Figure 5.2 illustrates the configuration of the cntr signal
after these new bit assignments. In the original IHP ECC design, 8 bits of cntr are not used
by the Controller (see section 4.3.2). Two of these bits, bit 7 and bit 12, are now assigned as
we inputs of the registers X4 and X3 respectively.

23

we(b)

13

we(X3)

12

we(x)

11

we(y)

10

we(k)

9 8

we(X4)

7

testbit

6

ALUBus

sel

 27-24

sqe

20

xe

19

we

18

we(X2)

17

we(X1)

16

we(Z2)

15

we(z1)

14

5-0

31-28

Multiplier

setb

22

seta

21

Figure 5.2: New configuration of the signal cntr.

To control the Bus access to the output data of the new registers, the Bus needed to recognize
two further possible values of its input signal sel. The binary representation of the numbers
“10” and “11”, formed by the bits 27 to 24 of cntr, were assigned for this. This way, the
signal sel could have two further possible input values for the Bus. Table 5.1 shows how the
possible states of sel were extended:

74

5.1 Technical Changes

Table 5.1: Re-designed implementation: values of the signal cntr for the Bus.
The additional values of sel for writing the outputs of the new registers are marked.

sel, Used Value Signal Name Description
0 o_ext_reg_r_out output of external regiser is written to the Bus
1 o_b_r_out output of register b is written to the Bus
2 o_z1_r_out output of register Z1 is written to the Bus
3 o_z2_r_out output of register Z2 is written to the Bus
4 o_x1_r_out output of register X1 is written to the Bus
5 o_x2_r_out output of register X2 is written to the Bus
6 o_multiply_result output of Multiplier is written to the Bus
7 o_alu_r_out output of ALU is written to the Bus
8 o_x_r_out output of register x is written to the Bus
9 o_y_r_out output of register y is written to the Bus
10 o_x3_r_out output of the register X3 is written to the Bus
11 o_x4_r_out output of the register X4 is written to the Bus

The new configuration of the signal cntr has the following differences in comparison to its
original configuration, (see section 4.3.2): bits 5 to 0 are not used any more as inputs for the
ALU (see Figure 5.2). They are no longer needed as it will be explained later in this chapter.
These bits remain unused for the entire execution of the kP -operation. The length of cntr

can be reduced or the unused bits can be used when implementing further functionalities in
this ECC design. The following subsection describes the re-designed implementation of the
kP -operation.

5.1.3 Re-designed Implementation of the Montgomery kP -Algorithm

As explained in section 4.3.3, the execution time of the kP -operation consists mostly of the
time needed for the inner loops of the Montgomery kP -algorithm. Depending on the value of
the processed key bit, program montk1 or program montk0 is executed.
The main changes made on these programs for their re-design regard the sequence of the
single operations performed by them and the regularity of each operation’s execution. This
way, the re-designed implementation of the algorithm is time optimized: the processing of

75

5 Re-design of the IHP ECC Implementation

each key bit only needs 54 clock cycles now, these are 3 cycles less in comparison to the
original implementation.

For the implementation of the Montgomery kP -algorithm described in [18], the processing of
each key bit requires always the same number and the same sequence of operations. Only
the use of the registers (X1 and X2; Z1 and Z2) as input and output parameters for the loop
depends on the value of the processed key bit. For example, X1 and Z2 are used to perform
the first multiplication of the loop if a key bit with value ‘1’ is being processed. Otherwise,
the first multiplication uses X2 and Z1 as inputs. The multiplication, addition and squaring
operations are performed one by one at different clock cycles each. This is not time and
energy consumption efficient since multiplications need a longer execution time and demand
higher power consumptions than the rest of the operations.
The operation sequence in the loops of the original IHP ECC implementation differs from
the one introduced in [18]. In the original IHP ECC implementation, the data from registers
X1 and Z2 is always used as input for the first multiplication, independent of the value of the
key bit being processed. This was done in order to achieve a faster execution time of the
loops. Since the execution of the multiplications needed 9 clock cycles and the rest of the
operations were performed by different FUs, the operation sequence was implemented in such
a way, that other arithmetic operations were performed in parallel to the multiplications of a
product.

To achieve a balanced and time optimized implementation, additional instructions were
implemented on both programs montk1 and montk0 as part of the re-design process. These
are conditional instructions with which the programs can be executed either in their normal
or in a variant form. During the execution of these programs, the conditional instructions
check which program (montk1 or montk0) was previously executed. Depending on this, some
arithmetic operations are executed at different clock cycles.

The programs are executed in their variant forms every time after montk1 has been executed,
otherwise the programs are executed in their normal form. Every time montk1 is executed,
an internal variable variant is set to the value ‘1’. Every time montk0 is executed, variant

is set to ‘0’. So the value of variant is always checked in order to know which program has
been previously executed. Table 5.2 shows an example of the execution sequence of these
programs and their variations for the case that the key k = 10101100 is being processed.
Hereby (v) is written next to the names of the programs when they are executed in their
variant forms.

76

5.1 Technical Changes

Table 5.2: Example of the new execution sequence of montk1 and montk0 for the processing of
k = 10101100.

ki 1 0 1 0 1 1 0 0
prg mont montk0 montk1 montk0(v) montk1 montk1(v) montk0(v) montk0

In the re-designed IHP ECC implementation, when montk0 and montk1 are executed in their
normal form, the first multiplication at the beginning of the program execution is performed
using the data from registers X1 and Z2 as input, as in the original implementation. The
seta and setb signals, with which the Multiplier saves its multiplicands to its inner registers,
are always set during the last two cycles (52 and 53) of the previous iteration. Concerning
these two clock cycles for both programs, an important difference should be mentioned:

- In montk0 the seta and setb signals are set to obtain the data from registers Z2 and
X1 respectively. These registers already hold their final output value for the loop and
they can thus be used as input parameters for the following loop.

- In montk1 in contrast, at the time the seta and setb operations are performed, register
Z2 has not yet been overwritten with its final output value for the loop and Z2 cannot
be used as an input parameter for the first multiplication of the following loop. For
this reason, the seta and setb operations performed in cycles 52 and 53 of montk1

are performed with the values of registers X2 and Z1 respectively. X2 and Z1 already
hold their final output value for the loop and can be used as input parameters for a
multiplication of the following loop.

This means that the first multiplication in every loop iteration performed after montk1 has
been executed, is a multiplication with the values of the registers X2 and Z1 as multiplicands.
The second multiplication uses then X1 and Z2 as multiplicands. For this reason, the programs
are executed in their variant forms every time the previous program execution has been done
for montk1. As mentioned above, when the programs are executed in their normal form, the
first multiplication is performed using X1 and Z2 as multiplicands and thus, the second uses
X2 and Z1 as multiplicands.

The variations of both programs take place during the clock cycles 7, 8, 9, 18, 22, and 25.
With these variations, it is possible to execute every loop iteration in a total of 54 clock
cycles only.

77

5 Re-design of the IHP ECC Implementation

Flow chart diagrams describing both re-designed programs (Figure 5.3 for montk1 and Figure
5.4 for montk0) and their variations (Figure 5.5 for montk1 and Figure 5.6 for montk0) are
outlined in the same way as those presented in Chapter 4. For this reason, their description
is very similar to the one presented in 4.3.3. Nevertheless small details result in important
differences and it is thus worth providing a complete description:

• On the left side of the diagrams the clock cycles are listed. Each loop consists now of
54 cycles only.

• The column named ‘state’ lists the states of the program during the loop. The state
described in the cycle 0 (state = 14 (mont) in every chart) is part of the program mont.
mont is the initialization program and it is always entered in its state = 14 for the first
cycle of each loop. During this clock cycle, the first multiplication process for a loop
starts and the Controller decides, if a loop for a bit ‘1’ or for a bit ‘0’ should be entered:
if the Controller’s input signal is_set has the value ‘1’, state = 2 of montk1 is entered
in cycle 1 of the loop. If is_set has the value ‘0’, state = 2 of montk0 is entered in
the cycle 1 of the loop.

• On the right side of the flow chart the values of the Controller’s signal cntr are listed.
They are given as hexadecimal numbers, as described in the VHDL file.

• The actions denoted as we- represent a word enable operation performed by the indicated
register.

• The red units with the label ‘M’ represent the activity of the Multiplier. All units are
displayed with a solid red color and this represents the current activity of the Multiplier.
In contrast to the diagrams displayed in the previous chapter, there are no units
displayed with a transparent red color. This means that there are no “non-operating”
states of the Multiplier in these loops; this entity is constantly performing operations.
Each loop contains 6 multiplications.
The non filled units with the label ‘M’, placed in the cycles 54 and 55 of each loop
represent multiplications which belong to the following loop.

• The yellow units with the label ‘ˆ2’ represent the squaring operation of an element
of GF (2233) performed by the ALU. Each loop contains 5 squaring operations. Each
squaring operation needs one clock cycle.

• The blue units with the label ‘+’ represent the addition of two elements of GF (2233)
performed by the ALU. This operation needs two clock cycles for the calculation of
the sum: in the first cycle the first operand is saved in the inner register of the ALU

78

5.1 Technical Changes

(when its word enable signal is set to ‘1’). In the second clock cycle the second operand
is directly added to the first if its xor enable signal is set to ‘1’. There is a total of 3
additions performed in each loop.

• All registers- X1, Z1, X2, Z2- are shown in grey colour when they are being used as
input parameters at the beginning of the loop. They are white coloured when being
used for saving intermediate values and beige coloured when they store the final values
(output values) of the loop.

• The new registers X3 and X4 are displayed in white colour and are only used to store
data inside the loop iteration. X4 is only used on the variant versions of both loops.

79

5 Re-design of the IHP ECC Implementation

7 02400000

montk1

 0

 2

 3

 8

seta

 9

setb

X1

 10

 11

 12

we-Z1

we-X3

 17

seta

 18

setb

 19

we -X2

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X2

35

36

seta

setb

 37

 38

 39

 40

+

X1

 41

 42

 43

 44

 45

 46

we-Z1

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z1

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06008000

Control (HEX)

2 00000000

3 03100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

05200000

06004000

00000000

07008000

00000000

05100000

00000000

07010000

10

11

12

13

14

14

15

15

16

16

16

03200000

01400000

06020000

00000000

02040000

00000000

05080000

00000000

00000000

0520000017

18

19

19

20

20

21

21

02400000

06020000

00000000

07100000

21

00000000

07004000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06008000

00000000

04100000

00000000

05080000

00000000

07020000

04200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

03080000

00000040

07010000

00000000

00000000

34 05200000

35

14 (mont)

2

02400000

06008000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z2

^2

we-X1

^2

Z2

b

we-ALU

X2

Z1

+

^2

Z1

we-Z2

^2

X2

X2

+

we-X2

X1

X3

X1

X3

M

Z2

we-X1

M

Z2

we-Z2

X2

seta
Z1

setb

MM

MM

Z1

.

.

.

.

.

.

.

.

.

.

.

.

Z2

X2

X2

Figure 5.3: Flow chart diagram of montk1 re-designed.

80

5.1 Technical Changes

7 02400000

montk0

 0

 2

 3

 8

seta

 9

setb

X1 Z2

 10

 11

 12

we-Z2

we-X3

 17

seta

 18

setb

 19

we -X1

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X1

35

36

seta

setb

 37

 38

 39

 40

+

X2

 41

 42

 43

 44

 45

 46

we-Z2

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06004000

Control (HEX)

2 00000000

3 02100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

05200000

06008000

00000000

07004000

00000000

04100000

00000000

07020000

10

11

12

13

14

14

15

15

16

16

16

02200000

01400000

06010000

00000000

03040000

00000000

04080000

00000000

00000000

0420000017

18

19

19

20

20

21

21

03400000

06010000

00000000

07100000

21

00000000

07008000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06004000

00000000

05100000

00000000

04080000

00000000

07010000

05200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

02080000

00000040

07020000

00000000

00000000

34 03200000

35

14 (mont)

2

04400000

06004000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z1

^2

we-X2

^2

Z1

b

we-ALU

X1

Z2

+

^2

Z2

we-Z1

^2

X1

X1

+

we-X1

X2

X3

X2

X3

M

Z1

we-X2

M

Z1

we-Z1

Z2

seta
X1

setb

MM

MM

X2Z1

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.4: Flow chart diagram of montk0 re-designed.

81

5 Re-design of the IHP ECC Implementation

7 03400000

montk1 (variant)

 0

 2

 3

 8

seta

 9

setb

 10

 11

 12

we-X4

we-X3

 17

seta

 18

setb

 19

we -Z1

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X2

35

36

seta

setb

 37

 38

 39

 40

+

X1

 41

 42

 43

 44

 45

 46

we-Z1

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z1

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06008000

Control (HEX)

2 00000000

3 03100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

04200000

06000080

00000000

07008000

00000000

05100000

00000000

07010000

10

11

12

13

14

14

15

15

16

16

16

03200000

01400000

06004000

00000000

02040000

00000000

0B080000

00000000

00000000

0B20000017

18

19

19

20

20

21

21

02400000

06020000

00000000

07100000

21

00000000

07004000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06008000

00000000

04100000

00000000

05080000

00000000

07020000

04200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

03080000

00000040

07010000

00000000

00000000

34 05200000

35

14 (mont)

2

02400000

06008000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z2

^2

we-X1

^2

Z2

b

we-ALU

+

^2

X4

we-Z2

^2

X2

X2

+

we-X2

X1

X3

X1

X3

M

Z2

we-X1

M

Z2

we-Z2

X2

seta
Z1

setb

MM

MM

Z1

.

.

.

.

.

.

.

.

.

.

.

.

X2

X2X1 Z2

X4

Z1

Figure 5.5: Flow chart diagram of montk1 in its variant form.

82

5.1 Technical Changes

7 03400000

montk0 (variant)

 0

 2

 3

 8

seta

 9

setb

Z2

 10

 11

 12

we-X4

we-X3

 17

seta

 18

setb

 19

we -Z2

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X1

35

36

seta

setb

 37

 38

 39

 40

+

X2

 41

 42

 43

 44

 45

 46

we-Z2

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06008000

Control (HEX)

2 00000000

3 02100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

04200000

06000080

00000000

07004000

00000000

04100000

00000000

07020000

10

11

12

13

14

14

15

15

16

16

16

02200000

01400000

06008000

00000000

03040000

00000000

0B080000

00000000

00000000

0B20000017

18

19

19

20

20

21

21

03400000

06010000

00000000

07100000

21

00000000

07008000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06004000

00000000

05100000

00000000

04080000

00000000

07010000

05200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

02080000

00000040

07020000

00000000

00000000

34 03200000

35

14 (mont)

2

04400000

06004000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z1

^2

we-X2

^2

Z1

b

we-ALU

+

^2

X4

we-Z1

^2

X1

X1

+

we-X1

X2

X3

X2

X3

M

Z1

we-X2

M

Z1

we-Z1

Z2

seta
X1

setb

MM

MM

X2Z1

.

.

.

.

.

.

.

.

.

.

.

.

X1

X4

Z2

Figure 5.6: Flow chart diagram of montk0 in its variant form.

83

5 Re-design of the IHP ECC Implementation

The operations performed by the ALU and the we- operations performed by the registers
demand a similar amount of power when they are executed. The ALU consumes about 0.6
mW over two clock cycles when it performs a squaring or an addition. When a we- operation
is performed, the ALU and registers consume about 0.4 mW over two clock cycles. The
sequence of all arithmetic and we- operations executed by each program has been ordered
in such way, that there is always at least one clock cycle between the execution of two of
these operations. With the operation sequence implemented this way, the amount of power
consumed by the ALU and registers together has constantly a value between 1.3 and 1.6
mW.

As an example, Figure 5.7 shows the flow chart diagram for montk0 when executed in its
variant form. On the right side of the diagram, simulated PTs of the ALU and each register
during the execution of montk0 in its variant version are displayed. The sum of the power
consumed by all registers and the ALU together is also displayed as one PT. It can be seen,
that the power consumed by these seven FUs during the program execution has constantly a
value between 1.3 and 1.6 mW when any of these FUs is active. The complete ECC design
consumes a regular amount of power during the loop execution.

84

5.1 Technical Changes

7 03400000

montk0 (variant)

 0

 2

 3

 8

seta

 9

setb

Z2

 10

 11

 12

we-X4

we-X3

 17

seta

 18

setb

 19

we -Z2

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X1

35

36

seta

setb

 37

 38

 39

 40

+

X2

 41

 42

 43

 44

 45

 46

we-Z2

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06008000

Control (HEX)

2 00000000

3 02100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

04200000

06000080

00000000

07004000

00000000

04100000

00000000

07020000

10

11

12

13

14

14

15

15

16

16

16

02200000

01400000

06008000

00000000

03040000

00000000

0B080000

00000000

00000000

0B20000017

18

19

19

20

20

21

21

03400000

06010000

00000000

07100000

21

00000000

07008000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06004000

00000000

05100000

00000000

04080000

00000000

07010000

05200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

02080000

00000040

07020000

00000000

00000000

34 03200000

35

14 (mont)

2

04400000

06004000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z1

^2

we-X2

^2

Z1

b

we-ALU

+

^2

X4

we-Z1

^2

X1

X1

+

we-X1

X2

X3

X2

X3

M

Z1

we-X2

M

Z1

we-Z1

Z2

seta
X1

setb

MM

MM

X2Z1

.

.

.

.

.

.

.

.

.

.

.

.

X1

X4

Z2

ALUX1Z1X2Z2

Registers + ALU
X3X4

clk

Figure 5.7: Flow chart diagram of montk0 with corresponding PTs of some FUs of the re-designed
ECC implementation.

85

5 Re-design of the IHP ECC Implementation

Special Execution of the First Loop Iteration

Besides the re-designs made for the programs montk1 and montk0, programs montk1pre and
montk0pre are additionally implemented in the block Controller. During the execution of
the kP -operation, one of these two programs is executed when the main loop iteration is
performed for the first time. According to the Montgomery kP -algorithm, the first main loop
iteration takes place for processing the key bit kl−2, whereby l is the length of k in bits.

Depending on the value of the key bit kl−2, montk1pre or montk0pre are executed after
the initialization phase. These programs perform the loop iterations with several changes
in comparison to the main programs montk1 and montk0. These changes were made under
the observation that the initialized value of register Z1 is 1. Given this fact, some of the
operations in the first main loop iteration of the algorithm have results that can be known
before their computation. For example, any multiplication that uses register Z1 with value 1
as a multiplicand results in the value of the other multiplicand. In a similar way, the squaring
of register Z1 results in 1 as well: Z12 = 12 = Z1.
This means that some operation executions can be skipped. This reduces the time and energy
consumption of this loop execution. It also hinders the performance of FSA attacks using
the first main loop execution as a template, since this execution differs significantly from the
rest.

In this thesis, the first iteration of the algorithm’s main loop was simplified. Its execution
time needs 9 clock cycles less than the rest of the loops. In the rest of this section, a
detailed description of the implemented programs for the execution of the first loop of the
kP -operation is given.

The first loop iteration can be simplified differently depending on the value of the key bit
being processed. When kl−2 = 1, Z1=1 is used once as a multiplicand. When kl−2 = 0, Z1=1
is used once as a multiplicand and once as input parameter for a squaring operation. The
result of this squaring operation is as well 1 and it is then squared again. The result of the
second squaring, which is as well 1, is used as a multiplicand to perform another multiplication.
This means that if the first loop iteration is performed for processing the key bit kl−2 = 1,
the iteration can be performed with one multiplication less than usual. If it is performed
for processing kl−2 = 0, the iteration can be performed with two multiplications and two
squaring operations less than usual. If all these operation executions would be skipped when
kl−2 = 0, the loop execution would be shorter (unbalanced), than when kl−2 = 1. Under this
observation, not all possible optimizations were made for the program montk1pre.

86

5.1 Technical Changes

The flow chart diagrams in Figures 5.8 and 5.9 describe the operation flow for both programs.
The programs montk1pre and montk0pre have the following differences in comparison to
montk0 and montk1:

• Each program performs only 5 multiplications, i.e. one multiplication less than montk1

and montk0. This loop iteration consists of only 45 clock cycles.

• Register Z1 is not used as a direct input parameter of the loop. Its value is first
overwritten in cycle 5 for montk0pre and in cycle 9 for montk1pre.

• The state described in cycle 0 of each diagram (state = 13 (mont) for both cases)
is part of the initialization program mont. This state is only entered once after the
initialization phase. In this state, it is known that the first iteration of the main loop,
i.e. for the key bit kl−2, should be processed as next. The first multiplication process
for this loop starts with the input values of the registers X1 and Z2 and the Controller
decides if the program montk0pre or montk1pre should be entered.

• Program montk0pre executes dummy operations, which are displayed in a dark blue
colour in its corresponding flow chart diagram (see Figure 5.9). The results of these
operations are not used. These operations are only executed in order to achieve balance
between the time and power consumption of both programs montk1pre and montk0pre.
This makes the execution of both programs indistinguishable, independently form the
key bit value being processed.

• During the last two clock cycles, 43 and 44, the input values for the first multiplication
of the following loop are set. Here montk0pre and montk1pre operate the same way as
described for montk0 and montk1.

• Clock cycle 45 on the diagrams displays the first clock cycle of the next loop. The state
described in this cycle (state = 14 (mont)) is part of the program mont. In this state it
is decided if state = 2 of montk1 or of montk0 is entered.

87

5 Re-design of the IHP ECC Implementation

8 01400000

montk1pre

 0

 2

 3

 8

seta

 9

setb

X1

 10

 11

 12

we-Z1

we-X3

 17

seta

 18

setb

 19

we -X2

 20

 21

 22

 26

 27

 28

 29

35

36

seta

setb

 37

 38

 39

 40

+

X1
 41

 42

 43

 44

 45
(cycle 0 from

next loop)

 46
(cycle 1 from

next loop)

we-Z1

seta

setb

Z1

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

13 (mont)

state

00000000

Control (HEX)

2 00000000

3 00000000

3 00000000

4

5

6

03100000

07010000

07100000

7

9

10

11

12

13

07200000

06004000

05100000

07010000

02040000

05080000

00000000

00000000

13

13

14

15

16

16

17

17

18

18

18

05200000

02400000

19

20

21

21

22

22

23

23

06020000

00000000

07100000

24

00000000

07004000

00000000

00000000

25

26

27

27

28

29

30

30

07200000

08400000

06008000

00000000

04100000

00000000

05080000

00000000

07020000

04200000

0A400000

06040000

30

31

32

14 (mont)

2

00000000

03080000

00000040

07010000

00000000

00000000

05200000

02400000

06008000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-X1

we-ALU

+

we-Z2

^2

X2

+

we-X2

X3

X1

X3

M

Z2

we-X1

M

Z2

we-Z2

X2

seta
Z1

setb

MM

MM
.
.
.

.

.

.

.

.

.

.

.

.

Z1
b

^2

^2

Z2

Z1

X2

^2

x

x

X1

X1

X2

X2

Figure 5.8: Flow chart diagram of montk1pre.

88

5.1 Technical Changes

8 07400000

montk0pre

 0

 2

 3

 8

seta

 9

setb

 10

 11

 12

we-X3

we-Z1

 17

seta

 18

setb

 19

we -X3

 20

 21

 22

 26

 27

 28

 29

35

36

seta

setb

 37

 38

 39

 40

+

X2
 41

 42

 43

 44

 45
(cycle 0 from

next loop)

 46
(cycle 1 from

next loop)

we-Z2

seta

setb

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

13 (mont)

state

00000000

Control (HEX)

2 00000000

3 00000000

3 00000000

4

5

6

04100000

07004000

07100000

7

9

10

11

12

13

05200000

06001000

05100000

07000080

0A040000

05080000

00000000

00000000

13

13

14

15

16

16

17

17

18

18

18

05200000

0A400000

19

20

21

21

22

22

23

23

06001000

00000000

07100000

24

00000000

07008000

00000000

00000000

25

26

27

27

28

29

30

30

08200000

07400000

06001000

00000000

02100000

00000000

01080000

00000000

07010000

04200000

02400000

06040000

30

31

32

14 (mont)

2

00000000

0A080000

00000040

07020000

00000000

00000000

03200000

04400000

06001000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-X4

we-ALU

we-x3

^2

+

we-X1

Z1

X1

Z2

M

X3

we-X2

M

X3

we-X3

Z2

seta

setb

MM

MM
.
.
.

.

.

.

.

.

.

.

.

.

Z1

^2

Z2

X3

^2

x

x

X4

Z1

X3

X1 X2

Z1Z1^2

+

b

X1

b

Figure 5.9: Flow chart diagram of montk0pre.

89

5 Re-design of the IHP ECC Implementation

The initialization process of the kP -operation also went through modifications and was
simplified do to the fact that no initialized value needs to be assigned to register Z1 any
more. The flow chart diagram in Figure 5.10 describes the re-designed initialization process.
Register X1 is initialized in cycle 0 with the value of register x; register Z2 is initialized in
cycle 1 with the value x2; register X2 is initialized in cycle 4 with the value x4+ b.

Start: mont

 0

 2

 3

 8

 9

X1

Z2

X2

x

we-X1
^2

we-Z2
 1 ^2

we-ALU

b

we-X2

+
 4

 6

 7

 5

i=232

.

.

.

.

.

.

seta
X1

MM

Z2

MM
.
.
.

setb

i=i-1

.

.

.

.

.

.

is_set = 1

is_set = 0

is_set = 0
.
.
.

.

.

.

is_set = 1

is_set = 1

is_set = 0 or 1

montk0pre or montk1pre
(cycle 1)

2

state

08110000

Control (HEX)

3 07108000

4 07040000

5 01080000

6

7

8

07020000

00000000

00000000

000000409

9

8

9

9

8

00000000

00000000

00000040

00000000

00000000

13

2 (M1p or M2p)

13

00000000

04400000

12 03200000

11

10

9

00000000

00000000

00000040

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Clock cycle

Figure 5.10: Flow chart of the re-designed initialization part of the Montgomery kP -algorithm.

90

5.2 Observations

5.2 Observations

This section lists observations made on the re-designed IHP ECC implementation using
simulated PTs of the complete design and its FUs separately. These observations show
improvements regarding the resistance of the re-designed implementation against SCA.

1) Boundaries between the loops are not easily identifiable
Figure 5.11 shows a part of a PT of the re-designed ECC implementation during four
main loop executions.

Figure 5.11: Part of a PT simulated for the re-designed ECC implementation.
The graph shows power measurements (in W) over a period of time (in ps). Compared to the PT of
the original ECC implementation (see Figure 4.13), there are no dips or plateaus along the curve.

The simulated PT of the re-designed ECC implementation contains no dips or plateaus
along its curve while performing the main loop iterations. This way, it is not easy to
identify boundaries between the single loops, i.e. between the slots of the PT.

In the re-designed implementation, the Multiplier is constantly active during the loop
iterations. The sequence of the squaring, addition and we- operations performed in
these loops has been implemented in such way, that each operation is performed at
least every two clock cycles. These three operations consume a similar amount of power
over two clock cycles each time they are executed. By always leaving at least one clock
cycle between the execution of each operation, the power consumption of the complete
design remains regular along the loop iteration.

91

5 Re-design of the IHP ECC Implementation

2) Balanced implementation of the ECC design
Each loop iteration is dependent on the value of the processed key bit. Nevertheless,
the same operations are performed at the same time for every iteration (see details in
p. 76).

3) The first loop iteration gives no information about the processed key bit
Figure 5.12 shows a part of a simulated PT. It corresponds to the execution of the first
loop and its following loops. The programs montk1pre and montk0pre execute the first
loop iteration. It was mentioned in 5.1.3, that both programs have been designed in the
same way. They perform the same operations in the same sequence. So both programs
produce a similar PT for the first loop.

Figure 5.12: PT simulated at the beginning of the execution of the kP -operation.
The graph shows power measurements (in W) over a period of time (in ps). No low power
consumption can be detected at the beginning of the curve.

With the modifications made for the first loop iteration, the value of kl−2 cannot be easily
extracted as it was feasible for the original ECC implementation. A comparison can be
made with Figure 4.18, which shows the PTs simulated during the first loop iteration
performed by the original implementation. By executing the first loop iteration in this
way, the slot corresponding to the processing of kl−2, i.e. the initial data execution,
cannot be used as a template for attacks based on FI, for example the FSA attack
described in section 3.2.2.

Besides protecting the identity of the key bit kl−2 and providing protection against the
FSA attack, the PT shows a small plateau near its beginning. This plateau is caused
due to the fact that during clock cycles 4, 5 and 6 of these programs, one squaring, one
we- and another squaring operation is performed. For the rest of the programs, there
is at least one clock cycle between each operation. This bigger amount of operations

92

5.2 Observations

performed in such a small amount of time causes a higher power consumption of the
entire design during this period.
This characteristic also makes the analysis of the complete PT more difficult since it
is not clearly understandable, at which moment the first key bit has stopped being
processed and what this bigger power consumption means.

4) Chip area and power consumption of the re-designed implementation
The modifications made on the design had an obvious effect on its chip area. Two new
registers (X3 and X4) are used and the block Controller has been extended through the
programs montk1pre and montk0pre. The programs for montk1 and montk0 have also
been extended since conditional instructions were added to them. On the other hand,
the initialization phase of the algorithm was simplified. With these modifications, a
first re-design of the implemented Montgomery kP -algorithm was done.

After the first re-design, a few functionalities of the blocks Multiplier and ALU were
identified, which were no longer used. The Multiplier had additional input signals to
control its functionality while it was in a non-operating state (illustrated by the units
with transparent red color in Figures 4.11 and 4.12). The ALU had one input signal
and a corresponding internal state, with which its internal register was set to the value
1. This was only used in the initialization phase of the Montgomery kP -algorithm (see
clock cycles 5 and 6 in Figure 4.17). These and other unused functionalities1 were
removed from the design. Table 5.3 shows the chip area of the original IHP hardware
accelerator for ECC and of the first and final re-designed implementation.

Table 5.3: Total cell area of the different versions of the ECC implementation
ECC version original first re-design final re-design

area 0.260258 mm2 0.284256 mm2 0.274844 mm2

The final re-designed implementation has an area 5.6% bigger than the original design.
In a similar way, the complete power consumption of the implementation was affected
by its modifications. In the re-designed version, a bigger number of operations is
performed per loop and additional (conditional) instructions are executed during several
clock cycles. On the other hand, the execution of each loop was reduced from 57 to
only 54 clock cycles and the simplifications made in some FUs reduced the number
of operations performed. Table 5.4 shows the power, time and energy consumption

1Unused lines of code were identified in the original ECC design.

93

5 Re-design of the IHP ECC Implementation

of the first and final re-designed implementation in comparison to the original IHP
ECC design. The execution time is calculated by the number of clock cycles taken
for a complete execution of the kP -operation, with one clock cycle having a period of
T = 0.30 ns.

Table 5.4: Power, time and energy consumption of the different versions of the ECC implementation.
ECC version original first re-design final re-design

Power consumption 4.90 mW 5.51 mW 5.40 mW
Time of a kP -operation 0.41 ms 0.39 ms 0.39 ms

Energy consumption per kP -operation 2 µJ 2.13 µJ 2.09 µJ

5.3 Results of the Difference-of-Means Test

A horizontal DPA attack using the difference-of-means test was performed for the re-designed
version of the IHP ECC implementation in the same way and using the same inputs as
described in Chapter 4. This section describes the results of this attack.

The difference-of-means test was performed using simulated PTs for the following cases:

- case 1: for the kP -design processing the EC point P1 = (x1, y1) as the input data
using the scalar k1

- case 2: for the kP -design processing the EC point P1 = (x1, y1) as the input data
using the scalar k2

The values of these input parameters were the same as those used in Chapter 4 (see p. 38).

The test was performed for the following design blocks separately:

1. complete ECC design (ecc)
2. block Multiplier (mult)
3. block ALU
4. register x1 (X1)
5. register z1 (Z1)
6. register x2 (X2)
7. register z2 (Z2)
8. register x3 (X3)

94

5.3 Results of the Difference-of-Means Test

9. register x4 (X4)

Additionally, the difference-of-means test was performed for the sum of the power
consumptions of the registers X1, Z1, X2, Z2, X3, X4 and the block ALU.

For this test, only the PTs simulated during the processing of the scalar k were chosen.
These corresponds to the slots of the PTs simulated during the execution of the Montgomery
kP -algorithm’s main loops. The slot corresponding to the first execution of the main loop
was not included for this test2. Thus, a total of 230 slots were obtained from the simulated
PT for performing this test.

The difference-of-means test was performed as follows:

1 - The investigated part of the PT was partitioned into 230 slots, 54 clock cycles each.
Each slot was used as a separate curve that consists of 54 points. Figure 5.13 shows
the first 8 regular slots of the simulated PT for case 1.

Slot 230
Slot 229

Slot 228
Slot 227

Slot 226
Slot 225

Slot 224
Slot 223

clock cycle

p
o

w
er

, W

Figure 5.13: First 8 regular slots of the simulated PT for case 1.
The re-designed IHP kP -implementation processed the EC point P1 = (x1, y1) as the input data
using the scalar k1.

2 - The mean curve was calculated using 230 slots.

3 - The power value of the 1st point of the mean curve was compared with the power
value of the 1st point of each slot. The first slot corresponded to the processing of the
key bit kl−3 = k230. The last slot corresponded to the processing of the key bit k0. If
the power value of the mean curve was higher than the value of the curve in the current
slot, it was assumed that the slot corresponded to the key bit value ‘1’, otherwise to ‘0’.
Thus, the first key candidate was obtained.

4 - Step 3 was repeated for all other 53 points of the mean curve and the remaining 53
key candidates were obtained.

2The re-design ECC implementation performs the first loop iteration differently and in a shorter period of
time as the rest of the loop iterations (see section 5.1.3)

95

5 Re-design of the IHP ECC Implementation

The variance for all 54 points of the mean curve were calculated. Figure 5.14 shows all
calculated variances for case 1 as a blue and all variances for case 2 as a red curve.

Figure 5.14: All calculated variances represented as a curve consisting of 54 points. The blue curve
shows the variances calculated for case 1 and the red curve shows the variances calculated for case
2.

Both variance curves are similar, contrary to the variance curves obtained with the original
ECC design (see Figures 4.3 and 4.4). Both curves in Figure 5.14 show a peak on point
53. Using the variance as criteria, this point can be identified as a potential SCA leakage
source.

Each of the 54 obtained key candidates was compared with the key value that was actually
processed. For each key candidate, the three different comparisons v1, v2 and v3 were made
(see details in p. 42 of section 4.2). Figure 5.15 shows the relative correctnesses of the key
extraction for case 1, whereby the white dotted curve corresponds to v1, the black dotted
curve to v2 and the yellow dotted curve for v3. The red solid curve consists of the values of
the best key candidates from all three models (v1, v2, v3) for each point.

Figure 5.15: Relative correctness of the key extraction as a curve for case 1.

This process was done for case 2 as well. The results for both cases are shown in Figure
5.16. The red curve shows the results obtained for case 1 (the same red solid curve as shown

96

5.3 Results of the Difference-of-Means Test

in Figure 5.15) and the black curve shows the results obtained for case 2. The green curve
corresponds to the ideal case.

Figure 5.16: Relative correctness of the extraction of the key for each of the 54 key candidates as a
curve. The red curve corresponds to case 1 and the black curve to case 2; the green curve shows
the ideal case.

Both curves in Figure 5.16 have the same value at point 1. For both cases, the correctness of
the key extraction for the key candidate 1 has a value of 70% (100-30=70%). No other key
candidate reaches a value of 70% or higher for any of the two cases. In comparison to the
original ECC design, the resistance against the performed DPA attack with the re-designed
implementation is much stronger. The test performed on the original version gives five key
candidates with a relative correctness higher than 85% (see p. 44).

The results of this difference-of-means test lead to the following conclusions about the
re-designed IHP ECC implementation:

• The SCA leakage points identified in Chapter 4 have been successfully eliminated: the
horizontal DPA attack using the difference-of-means test was not successful.

• The re-designed ECC implementation does not show strong SCA leakage sources.

Even though the difference-of-means test performed on the complete ECC design does not
show strong SCA leakage sources, the test performed with the PTs of the individual blocks
of the re-designed implementation shows many possible leakage sources. Figure 5.17 shows
the relative correctness of the extraction of the key for each of the 54 key candidates for most
blocks of the ECC design. Figure 5.17 consists of the following curves:

a) The relative correctness curve for the complete ECC design (ecc) is displayed in black
colour. The red curve corresponds to the block Multiplier (mult).

97

5 Re-design of the IHP ECC Implementation

b) The relative correctness curve for register X1 (x1) is displayed in blue. The black dotted
curve displays the relative correctness of register Z1 (z1).

c) The relative correctness curve for register X2 (x2) is displayed in blue. The black dotted
curve displays the relative correctness of register Z2 (z2).

d) The relative correctness curve for register X3 (x3) is displayed with the blue dotted curve.
The orange curve displays the relative correctness of register X4 (x4).

e) The relative correctness curve for the ALU block (alu) is displayed in dark blue.

f) The relative correctness curve for the case that all six registers X1, Z1, X2, Z2, X3, X4
and the ALU are considered one block (all_register+alu). This means that the sum of
the power consumption of these seven blocks was analysed in a difference-of-means test.

98

5.3 Results of the Difference-of-Means Test

b)

a)

c)

d)

e)

f)

Figure 5.17: Relative correctness of the key extraction using PTs of the re-designed ECC implementa-
tions and its individual blocks.

99

5 Re-design of the IHP ECC Implementation

The registers X1, X2, Z1, Z2, X4 and the ALU (Figure 5.17 b), c), d) e)) are the most
insecure (leaking) blocks. The activity of the Multiplier (Figure 5.17 a)) cannot be assessed
as a significant SCA leakage source any more.

An attacker does not have the possibility to measure the power consumption of individual
blocks of a cryptographic implementation. For this reason, he cannot obtain the results
displayed in Figure 5.17. These results are only known to the designers and should be
considered for understanding how the power consumption of individual FUs in a cryptographic
design could lead to SCA leakage sources.

5.4 Results of a Comparative Power Analysis Attack

To test the resistance of the re-designed ECC implementation against a different type of PA,
a ComPA attack was made with power consumption measurements. The attack described
in this section was successfully performed on the original ECC implementation [38]. The
ECC implementation was run in an FPGA Spartan 6 from Xilinx and the FPGA’s power
consumption was measured. The setup and procedure for performing the power consumption
measurements was the same as described in [38]. Measurements were made for the following
cases:

- case 1: for the kP -design processing the EC point P1 = (x1, y1) as the input data using
the scalar k1

- case 2: for the kP -design processing the EC point P1 = (x1, y1) as the input data using
the scalar k2

- case 3: for the kP -design processing the EC point P1 = (x1, y1) as the input data using
the scalar k3

The following values were assigned to the EC point coordinates and scalars, here represented
in hexadecimal notation:

x1 = 181 856adc1e 7df13784 91fa736f 2d02e8ac f1b9425e b2b061ff 0e9e8246

y1 = 89 fed47b79 6480499c baa86d8e b39457c4 9d5bf345 a0757e46 e2582de6

k1 = 93 919255fd 4359f4c2 b67dea45 6ef70a54 5a9c44d4 6f7f409f 96cb52cc

k2 = 93 919255fd 4359ffff ffffffff ffffffff ffffffff ffffffff ffffffff

100

5.4 Results of a Comparative Power Analysis Attack

k3 = ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

This means that the kP -operation was performed by the same ECC implementation using
the same point P1 for all cases. This is a standard condition for performing a ComPA attack
(see p. 26 in section 3.1.4). The keys k1, k2 and k3 have different values, whereby the first
quarter of the key bits of k1 and k2 are the same, but the rest of k2 consists only of bits
with the value ‘1’. k3 consists completely of key bits with value ‘1’. Figure 5.18 shows the
PTs measured for all three cases. The uppermost trace corresponds to case 1, the middle
trace to case 2 and the trace in the bottom corresponds to case 3.

Figure 5.18: PTs measured from the re-designed ECC implementation executed on an FPGA.
The Figure shows power measurements (in mW) over time (in ms). The uppermost trace corresponds
to the execution of the kP -algorithm using k1, the trace in the middle was measured using k2 and
the lowermost trace using k3.

The assumption made for ComPA is that if an implementation performs the same operations
using the same input parameters, the difference between their measured PTs should consist
only of the noise that was part of the measurements, i.e. the difference between both traces
should be very small.
The first quarter of the key for case 1 and 2 were the same, this means that about the first
58 loop iterations for these two cases have been executed exactly in the same way, using the
same input data. As soon as one key bit k1i differs from the corresponding key bit k2i, the
loop iterations are performed with different input and output parameters for all the following

101

5 Re-design of the IHP ECC Implementation

iterations. Consequently, the difference between the PTs measured for case 1 and case 2
should not give a small difference any more. The calculated difference between the PTs
measured for case 1 and case 3 on the other hand should not have a small value since both
keys used k1 and k3 are completely different. Figure 5.19 shows the calculated difference
of the PTs measured for case 1 and 2 (see the middle curve) and the calculated difference
of the PTs measured for case 1 and 3 (see the curve in the bottom). The curve at the top
corresponds to the PT measured for case 1 and is shown in the picture as a length reference
for the curves. It can be seen that the first quarter of the middle curve has a very small
value. From the second quarter on, the difference is not small any more and has irregular
values. The values along the lowest curve are never small and irregular all the time.

Figure 5.19: Calculated difference of the measured PTs.
The Figure shows power measurements (in mW) over time (in ms). The middle curve is the
calculated difference for cases 1 and 2. The bottom curve shows the calculated difference for cases 1
and 3 (lowest curve). The curve at the top corresponds to the PT measured for case 1.

The results shown in Figure 5.19 prove that a ComPA attack can still be performed on
the re-designed ECC implementation. Further DPA countermeasures, based for example on
randomization, should be considered to achieve a more secure ECC implementation.

102

6 Verification of the Re-design Methodology

In order to verify if the re-design ideas described in Chapter 5 could also make other ECC
implementations more resistant against SCA, the same methodology was used to re-design
the IHP hardware accelerator for ECC with a 6-clock-cycle multiplier. This chapter describes
shortly the re-design process done for this ECC implementation. The results of a horizontal
DPA attack performed using the difference-of-means test confirm that the re-design meth-
odology can be used for improving the resistance of further ECC implementations against SCA.

6.1 Re-design of the ECC Implementation with the 6-clock-cycle
Multiplier

The IHP hardware accelerator for ECC with the 6-clock-cycle multiplier was proven to be
vulnerable against a horizontal DPA attack using the difference-of-means test [35]. This
design consisted of a similar architecture as the one described in Chapter 4, but with one
significant difference: the GF (2233) element’s multiplication was implemented using the
iterative Winograd multiplication method, which needs 6 clock cycles for the calculation of
one product. For the processing of one key bit, this design needed 41 clock cycles. Both
implementations have the same bus architecture and all other ECC blocks operate in the
same way (see section 4.3).

6.1.1 Re-design of the Main Loop

Since the ECC design with the 6-clock-cycle multiplier has the same architecture as the
one described in section 4.3.1, the re-design methodology presented in Chapter 5 could be
implemented in the same way as it was done for the ECC design with the 9-clock-cycle
multiplier. The only difference to consider when doing this was the fact that the processing
of each bit, i.e. each loop iteration of the Montgomery kP -algorithm, could be performed in

103

6 Verification of the Re-design Methodology

a shorter period of time. As described above, the Multiplier integrated in this ECC design
needs 6 clock cycles for performing one multiplication. The Montgomery kP -algorithm’s
main loop includes 6 multiplications. This means that at least 36 clock cycles are needed in
order to perform one complete loop.

The operation sequence implemented in the first design consisted of performing arithmetic
and we- operations in parallel to the execution of multiplications. A total of 33 operations
are performed parallel to the multiplications, including the squaring-, addition-, we-, seta,
and setb operations. For this reason, 36 clock cycles are sufficient for performing the rest
of these operations and the main loop can be executed in this period of time and with the
same operation sequence as the one described in the flow chart diagrams of section 5.1.3 (see
Figures 5.3, 5.4, 5.5 and 5.6). In contrast to the operation sequence described in the diagrams
of section 5.1.3, the operations are performed parallel to the partial multiplications in almost
every clock cycle. Consequently, the programs montk1, montk0 and their variations were
implemented in the same way but without waiting times between the states of the programs.
The diagram in Figure 6.1 shows how this operation sequence has been applied in loops
consisting of only 36 clock cycles. This type of operation sequence (with the corresponding
interchangeable use of the registers) has been applied to both programs montk1 and montk0

and their variations.

104

6.1 Re-design of the ECC Implementation with the 6-clock-cycle Multiplier

7 02400000

montk0

 0

 2

 3

 8

seta

 9

setb

X1 Z2

 10

 11

 12

we-Z2

we-X3

 17

seta

 18

setb

 19

we -X1

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X1

35

36
(cycle 0 from

next loop)

seta

setb

 37
(cycle 1 from

next loop)

+

X2

we-Z2

seta

x

setb

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06004000

Control (HEX)

3 02100000

4

5

07001000

07100000

6

8

9

10

05200000

06008000

07004000

04100000

0702000011

12

13

14

15

15

16

02200000

01400000

06010000

03040000

00000000

04080000

0420000017

18

19

20

20

21

03400000

06010000

07100000

00000000

07008000

22

23

24

25

26

07200000

08400000

06004000

05100000

04080000

07010000

05200000

0A400000

06040000

27

28

29

30

31

32

33

02080000

00000040

07020000

34 03200000

35

14 (mont)

3

04400000

06004000

02100000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

7

^2

we-Z1

^2

we-X2

^2 Z1

b

we-ALU

X1

Z2

+

^2

Z2

we-Z1

^2

X1

X1

+

we-X1

X2

X3

X2

Z1

we-X2

we-Z1

Z2

seta
X1

setb

MM

MM

X2Z1

.

.

.

M

M

M

X3

^2^2
Z1

.

.

.

.

.

.

.

.

.

Figure 6.1: Flow chart diagram of montk0 adapted to the 6-clock-cycle multiplier.

105

6 Verification of the Re-design Methodology

By executing the programs montk1 and montk0 in 36 clock cycles, it is assured that the
Multiplier will not enter an inactive state in any cycle while performing the loop iteration. This
was important to achieve, not only for optimizing the execution time of the implementation
but also to avoid possible vulnerabilities to SCA caused by the Multiplier’s inactivity (see p.
66 in section 4.16).

The main difference the operation sequence in Figure 6.1 has compared to the operation
sequence applied to the ECC implementation with the 9-clock-cycle multiplier (see Figure
5.4), is the fact that squaring, addition and we- operations are performed during almost
every clock cycle. In the re-designed implementation with the 9-clock-cycle multiplier, these
operations are performed at least every 2 clock cycles in order to cause a regular power
consumption of the ALU and the registers along the loop execution (see p. 84 in section
5.1.3). This is also achieved for the ECC implementation with the 6-clock-cycle multiplier,
since the regularity with which each one of these operations is performed remains constant.
For this reason, no anomalies such as big dips or plateaus can be detected along the simulated
or measured PT. The boundaries between the slots corresponding to single loop iteration
executions are not easily identifiable. Figure 6.2 shows a PT simulated for the re-designed
ECC implementation with the 6-clock-cycle multiplier.

Figure 6.2: Part of a PT simulated for the re-designed ECC implementation with 6-clock-cycle
multiplier while executing the kP -operation.
The graph shows the power consumption (in W) over the time (in ps). No big dips or plateaus in
the trace can be easily detected and the boundaries between the slots are not easily identifiable.

In contrast to the PT simulated for the re-designed ECC implementation with the 9-clock-
cycle multiplier (see Figure 5.11 in p. 91), the PT in Figure 6.2 repeatedly shows small
dips. These dips are not easily observable; the difference in the power amplitude between the
maximum and minimum values in a slot is not big. Nevertheless it is not excluded that these
dips could be helpful for identifying the boundaries between the slots in the PT.

106

6.1 Re-design of the ECC Implementation with the 6-clock-cycle Multiplier

6.1.2 Re-design of the First Loop Iteration

The re-design methodology for the execution of the first loop iteration can also be applied to
the ECC implementation with the 6-clock-cycle multiplier. Analogue to the design with the
9-clock-cycle multiplier, the number of clock cycles needed for executing the first loop iteration
can be reduced by performing one multiplication less than for the rest of the loop iterations.
The minimum time of execution of the first loop is thus 30 clock cycles (5 multiplications ·
6 clock cycles). 29 other operations need to be executed in parallel to the multiplications.
Figure 6.3 shows a simulated PT at the beginning of the kP -operation.

Figure 6.3: Part of a simulated PT at the beginning of the execution of the kP -operation.
The graph shows the power consumption (in W) over the time (in ps). The slot of the first loop
iteration execution is not easily identifiable.

In contrast to the re-designed ECC implementation with 9-clock-cycle multiplier, the slot
corresponding to the first loop iteration does not show an obvious plateau at the beginning
(see Figure 5.12 in p. 92). The power consumption is more constant since arithmetic, we-

and set_ operations are performed during almost each clock cycle of the loop, just like for
the rest of the loop iterations. Nevertheless, the first slot does not reveal information about
the key bit being processed, since no multiplications are performed using an operand with
value = 11. This provides protection against FSA and other attacks that use initial data
execution and corresponding slots as templates when the value of the processed key bit is
known.

1If the first loop iteration of the implemented algorithm is performed in the same way as the rest of the
iterations, several multiplications in the loop are performed with operands with value = 1 as this is the
initialized value of register Z1. The effects of performing multiplications with operands with value = 1 are
explained in the fifth point of section 4.4, p. 69.

107

6 Verification of the Re-design Methodology

6.1.3 Chip Area and Power Consumption of the new Design

Analogue to the re-design process of the IHP ECC implementation with the 9-clock-cycle
multiplier, the modifications made on the IHP ECC implementation with the 6-clock-cycle
multiplier implied increases on the design’s chip area and average power consumption.
Nevertheless the execution time of each key bit processing was reduced from 41 to 36 clock
cycles. As a consequence, the energy consumption per kP -operation was reduced by 4.7%.
Table 6.1 shows the power, time and energy consumption of the original and the re-designed
ECC implementation with the 6-clock-cycle multiplier. The execution time is calculated by
the number of clock cycles taken for a complete execution of the kP -operation, with one
clock cycle having a period of T = 0.30 ns. Changes on the area of the implementation are
also shown.

Table 6.1: Area, power, time and energy consumption of the original and re-designed versions of the
ECC implementation with the 6-clock-cycle multiplier.

ECC version original re-designed
Power consumption 5.63 mW 6.19 mW

Time of a kP -operation 0.30 ms 0.26 ms
Energy consumption per kP -operation 1.69 µJ 1.61 µJ

Area 0.281117 mm2 0.294870 mm2

6.2 Results of the Difference-of-Means Test

The original IHP ECC design implemented with the 6-clock-cycle multiplier was not resistant
to a horizontal DPA attack using the difference-of-means test (see the red dotted curve in
Figure 6.4). The test delivered 41 key candidates. Four of them had a relative correctness
of about 90% (see key candidates 34, 35, 40, 41) and key candidate 1 was extracted with a
correctness of 100% (see red dotted curve in Figure 6.4).
The difference-of-means test was again performed on the implementation after its re-design.
The test was performed in the same way as described in sections 4.2 and 5.3. 230 slots were
used for the test and 36 key candidates were obtained (see the black curve in Figure 6.4).

108

6.2 Results of the Difference-of-Means Test

Figure 6.4: Relative correctness for the original ECC implementation with 6-clock-cycle multiplier
(red dotted curve) and for its re-designed version (black curve).

The re-designed ECC implementation delivers 36 key candidates. These are five candidates
less than the 41 delivered by the original implementation. None of the 36 new key candidates
has a relative correctness higher than 76%. So no point can be pointed out as a strong SCA
leakage source.

It can be concluded that the re-design made on a second version of the ECC implementation
has made it more resistant against the horizontal DPA attack using the difference-of-means
test.

109

7 Conclusions

The work described in this thesis consisted of analysing the implementation details of an
IHP ECC design, which was not resistant to a horizontal DPA attack performed using the
difference-of-means test. Subsequently, this ECC implementation was re-designed and its
vulnerability against SCA was successfully reduced. The re-design ideas were applied to two
ECC implementations with the same structure but with a different type of Multiplier each.
This re-design methodology can be used for all others implementations of the Montgomery
kP -algorithm which are based on a bus architecture and consist of an ALU and a multiplier
that perform their operations independently of each other.

In order to understand the reasons why the original IHP ECC implementation was not
resistant against the difference-of-means test, the implementation’s system architecture and
source code were analysed in detail. This helped to understand, which entities were part
of this design and how they were connected to each other. Subsequently, the activities
performed by all entities during the execution of the kP -algorithm were analysed. Three
major observations were made:

• The implementation of the Montgomery kP -algorithm was not balanced.

• The key-bit value dependent use of the registers in the IHP implementation of this
algorithm is a strong SCA leakage source.

• The internal power consumption of the FUs in the design may lead to SCA leakage as
well.

In addition to this, the executions of unnecessary instructions were identified.

The ECC implementation was carefully re-designed considering the observations mentioned
above. The operation sequence for each bit processing was improved. A more regular power
consumption was achieved for the performance of all the bit processing operations and each
bit processing time was optimized. The number of clock cycles needed for processing one key
bit was reduced from 57 to 54 and from 41 to 36 for the 9-clock-cycle and the 6-clock-cycle

111

7 Conclusions

implementations respectively. A faster execution time was achieved and at the same time,
the ECC implementations became more robust against SCA.

Figure 7.1 shows a comparison of the difference-of-means test results for the original imple-
mentation with the 9-clock-cycle multiplier (see the red dotted curve) and for its re-design
(see the black solid curve).

Figure 7.1: Relative correctness curves for the original ECC implementation with 9-clock-cycle
multiplier (red dotted curve) and the re-designed version of this implementation (black curve).

In the original implementation five operations leaked so much information about the private
key that it could be extracted with a correctness of over 90% (see Figure 7.1). One of the key
candidates was even extracted with 100% correctness. The re-designed ECC implementation
delivers three key candidates less than the original one, which reduces the probabilities of
extracting the private key successfully with this test. The new implementation does not
deliver any point with a relevant key extraction correctness.
The same re-design ideas, i.e. the same re-design methodology, applied to the ECC design
with 6-clock-cycle multiplier also improved the resistance of this design against the difference-
of-means test. The original design delivered four key candidates with a relative correctness of
about 90% and one with a correctness of 100%. The re-designed implementation does not
deliver any point with a key extraction correctness higher than 75% and it delivers five key
candidates less than the original one (see Figure 6.4 in section 6.2).

The improved resistance of the ECC design against PA was achieved by adding two new
registers to the system architecture and increasing the number of operations performed
while processing a key bit. This led to a small increase in the chip area needed for the
design and its average power consumption. Nevertheless the energy consumption caused
by performing a complete kP -operation remained almost the same for the implementation
with the 9-clock-cycle multiplier and was even reduced for the implementation with the
6-clock-cycle multiplier. This was achieved due to the shorter execution time needed for

112

performing the complete kP -operation. Tables 7.1 and 7.2 summarize the results obtained
for both re-designed ECC implementations.

Table 7.1: Comparison of the results of the original ECC implementation with the 9-clock-cycle
multiplier and its re-designed version.

ECC version original re-designed
Clock cycles per key bit-processing 57 54 (reduced by 5%)
Clock cycles per kP -operation 13606 12904 (reduced by 5%)
Time of a kP -operation 13606 · 30 ns ≈ 0.41 ms 12904 · 30 ns ≈ 0.39 ms (reduced by 5%)
Power consumption 4.90 mW 5.40 mW (increased by 10%)
Energy consumption per kP -operation 2 µJ 2.09 µJ (increased by 4.5%)
Area 0.260258 mm2 0.274844 mm2 (increased to 5.6%)

Table 7.2: Comparison of the results of the original ECC implementation with the 6-clock-cycle
multiplier and its re-designed version.

ECC version original re-designed
Clock cycles per key-processing 41 36 (reduced by 12%)
Clock cycles per kP -operation 9910 8749 (reduced by 11.7%)
Time of a kP -operation 9910 · 30 ns ≈ 0.30 ms 8749 · 30 ns ≈ 0.26 ms (reduced by 11.7%)
Power consumption 5.63 mW 6.19 mW (increased by 9%)
Energy consumption per kP -operation 1.69 µJ 1.61 µJ (reduced by 4.7%)
Area 0.281117 mm2 0.294870 mm2 (increased by 4.9%)

It was shown in section 5.4 that the re-designed implementation is still vulnerable against
ComPA attacks. Therefore, further countermeasures against DPA should be considered for
achieving a more secure ECC implementation.

113

Appendix A Acronyms

ALU Arithmetic Logic Unit

CMOS Complementary
Metal-Oxide-Semiconductor

ComPA Comparative Power Analysis

DPA Differential Power Analysis

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm
Problem

FI Fault Injection

FS Fault Sensitivity

FSA Fault Sensitivity Analysis

FU Functional Unit

GF Galois Fields

IC Integrated Circuit

IHP Innovations for High Performance
Microelectronics

LSB Least Significant Bit

MSB Most Significant Bit

PA Power Analysis

PT Power Trace

SCA Side-Channel Analysis

SPA Simple Power Analysis

VHDL Very High Speed Integrated
Circuit Hardware Description
Language

WSNs Wireless Sensor Networks

115

Appendix B Flow Diagrams with Power Traces

The figures in this appendix show the flow diagrams and PTs for all slots of the kP -operation
simulated using the EC point P1 = (x1, y1) (see section 4.2) and a small key k = 2cc.

The most significant bit of k is processed in the initialization part of the Montgomery kP -
algorithm and is not shown here. To illustrate the leakage sources, the power consumption
curves of the ECC design and of its single entities are shown in the same flow diagram as
traces. This way, it is possible to observe the power consumption of each entity during the
individual clock cycles.

The power consumption of the following entities is shown on the right side of each diagram:

- Complete ECC design

- Multiplier

- ALU

- X1 register

- Z1 register

- X2 register

- Z2 register

- The sum of the registers X1, Z1, X2, Z2

A total of 9 diagrams display how the 9 bits of the 10 bit long key are processed.

117

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

Montk0 (1)

pulse 0

pulse 2

we-x1
pulse 3

pulse 8
seta

pulse 9
setb

^2

X1 Z1 X2 Z2

pulse 10

pulse 11

pulse 12

we-Z2

we-Z1

pulse 17
seta

pulse 18
setb

X1

pulse 19
we -X2

pulse 20
we-X1

^2

^2

pulse 21

pulse 22

pulse 26
seta

pulse 27

pulse 28

pulse 29

b

setb

we-Z1

Z1

pulse 35

pulse 36

seta

Z2

setb

Z2

pulse 37

pulse 38

pulse 39

pulse 40

we-ALU

X1

+

we-X1

X1

we-ALU

Z2 +pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

we-Z2

^2

seta

x

setb

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

Z2

we-X2

X2

we-ALU

M +

we-X2

X2

seta

Z2

X1

pulse 58
(pulse 1 from

next loop)

MM

MM

^2

X2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
setb

Z1

13 (mont)

state

00000000

Control
(HEX)

2 00000000

3 04100000

4 07010000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

05200000

02500000

06008000

07004000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

02200000

04500000

06020000

07010000

02100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06004000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

05200000

03400000

06040000

04080000

07010000

05040000

03080000

07100000

00000000

07208000

08400000

06060000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk1) 00000000

03200000

06080000

04400000

07020000

.

.

.

.

.

.

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 14

pulse 15

pulse 16

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

Clock pulse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

montk1 (2)

we-Z2

seta

setb

^2

X1 Z1

we-X1

we-X2

seta

setb

we -Z1

we-X2

^2

^2

seta

b

setb

we-Z2

Z2

seta

setb

we-ALU

+

we-X2

X2

we-ALU

+

we-Z1

^2

seta

x

setb

Z1

we-ALU

M +

we-X1

X1

seta

Z2

MM

MM

^2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Z2X2

X1

X2

Z2

Z2

b

X2

X1

Z1

setb

13 (mont)

state

07020000

Control (HEX)

2 00000000

3 03100000

4 07008000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

02200000

05500000

06010000

07020000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

03200000

05500000

06004000

07020000

03100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06008000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

04200000

02400000

06040000

05080000

07020000

04040000

02080000

07100000

00000000

07204000

08400000

06040000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk1) 00000000

03200000

06080000

07400000

07010000

.

.

.

.

.

.

pulse 0

pulse 2

pulse 3

pulse 8

pulse 9

pulse 11

pulse 17

pulse 18

pulse 19

pulse 20

pulse 21

pulse 22

pulse 26

pulse 27

pulse 28

pulse 29

pulse 35

pulse 36

pulse 37

pulse 38

pulse 39

pulse 40

pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

pulse 58
(pulse 1 from

next loop)

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 15

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

pulse 16

pulse 14

pulse 12

pulse 10

Clock pulse

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

montk1 (3)

we-Z2

seta

setb

^2

X1 Z1

we-X1

we-X2

seta

setb

we -Z1

we-X2

^2

^2

seta

b

setb

we-Z2

Z2

seta

setb

we-ALU

+

we-X2

X2

we-ALU

+

we-Z1

^2

seta

x

setb

Z1

we-ALU

M +

we-X1

X1

seta

Z2

MM

MM

^2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Z2X2

X1

X2

Z2

Z2

b

X2

X1

Z1

setb

13 (mont)

state

07010000

Control
(HEX)

2 00000000

3 03100000

4 07008000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

02200000

05500000

06010000

07020000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

03200000

05500000

06004000

07020000

03100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06008000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

04200000

02400000

06040000

05080000

07020000

04040000

02080000

07100000

00000000

07204000

08400000

06040000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk0) 00000000

03200000

06080000

07400000

07010000

.

.

.

.

.

.

pulse 0

pulse 2

pulse 3

pulse 8

pulse 9

pulse 11

pulse 17

pulse 18

pulse 19

pulse 20

pulse 21

pulse 22

pulse 26

pulse 27

pulse 28

pulse 29

pulse 35

pulse 36

pulse 37

pulse 38

pulse 39

pulse 40

pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

pulse 58
(pulse 1 from

next loop)

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 15

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

pulse 16

pulse 14

pulse 12

pulse 10

Clock pulse

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

Montk0 (4)

pulse 0

pulse 2

we-x1
pulse 3

pulse 8
seta

pulse 9
setb

^2

X1 Z1 X2 Z2

pulse 10

pulse 11

pulse 12

we-Z2

we-Z1

pulse 17
seta

pulse 18
setb

X1

pulse 19
we -X2

pulse 20
we-X1

^2

^2

pulse 21

pulse 22

pulse 26
seta

pulse 27

pulse 28

pulse 29

b

setb

we-Z1

Z1

pulse 35

pulse 36

seta

Z2

setb

Z2

pulse 37

pulse 38

pulse 39

pulse 40

we-ALU

X1

+

we-X1

X1

we-ALU

Z2 +pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

we-Z2

^2

seta

x

setb

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

Z2

we-X2

X2

we-ALU

M +

we-X2

X2

seta

Z2

X1

pulse 58
(pulse 1 from

next loop)

MM

MM

^2

X2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
setb

Z1

13 (mont)

state

07010000

Control
(HEX)

2 00000000

3 04100000

4 07010000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

05200000

02500000

06008000

07004000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

02200000

04500000

06020000

07010000

02100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06004000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

05200000

03400000

06040000

04080000

07010000

05040000

03080000

07100000

00000000

07208000

08400000

06060000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk0) 00000000

03200000

06080000

04400000

07020000

.

.

.

.

.

.

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 14

pulse 15

pulse 16

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

Clock pulse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

Montk0 (5)

pulse 0

pulse 2

we-x1
pulse 3

pulse 8
seta

pulse 9
setb

^2

X1 Z1 X2 Z2

pulse 10

pulse 11

pulse 12

we-Z2

we-Z1

pulse 17
seta

pulse 18
setb

X1

pulse 19
we -X2

pulse 20
we-X1

^2

^2

pulse 21

pulse 22

pulse 26
seta

pulse 27

pulse 28

pulse 29

b

setb

we-Z1

Z1

pulse 35

pulse 36

seta

Z2

setb

Z2

pulse 37

pulse 38

pulse 39

pulse 40

we-ALU

X1

+

we-X1

X1

we-ALU

Z2 +pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

we-Z2

^2

seta

x

setb

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

Z2

we-X2

X2

we-ALU

M +

we-X2

X2

seta

Z2

X1

pulse 58
(pulse 1 from

next loop)

MM

MM

^2

X2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
setb

Z1

13 (mont)

state

07020000

Control
(HEX)

2 00000000

3 04100000

4 07010000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

05200000

02500000

06008000

07004000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

02200000

04500000

06020000

07010000

02100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06004000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

05200000

03400000

06040000

04080000

07010000

05040000

03080000

07100000

00000000

07208000

08400000

06060000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk1) 00000000

03200000

06080000

04400000

07020000

.

.

.

.

.

.

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 14

pulse 15

pulse 16

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

Clock pulse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

montk1 (6)

we-Z2

seta

setb

^2

X1 Z1

we-X1

we-X2

seta

setb

we -Z1

we-X2

^2

^2

seta

b

setb

we-Z2

Z2

seta

setb

we-ALU

+

we-X2

X2

we-ALU

+

we-Z1

^2

seta

x

setb

Z1

we-ALU

M +

we-X1

X1

seta

Z2

MM

MM

^2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Z2X2

X1

X2

Z2

Z2

b

X2

X1

Z1

setb

13 (mont)

state

07020000

Control
(HEX)

2 00000000

3 03100000

4 07008000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

02200000

05500000

06010000

07020000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

03200000

05500000

06004000

07020000

03100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06008000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

04200000

02400000

06040000

05080000

07020000

04040000

02080000

07100000

00000000

07204000

08400000

06040000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk1) 00000000

03200000

06080000

07400000

07010000

.

.

.

.

.

.

pulse 0

pulse 2

pulse 3

pulse 8

pulse 9

pulse 11

pulse 17

pulse 18

pulse 19

pulse 20

pulse 21

pulse 22

pulse 26

pulse 27

pulse 28

pulse 29

pulse 35

pulse 36

pulse 37

pulse 38

pulse 39

pulse 40

pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

pulse 58
(pulse 1 from

next loop)

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 15

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

pulse 16

pulse 14

pulse 12

pulse 10

Clock pulse

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

montk1 (7)

we-Z2

seta

setb

^2

X1 Z1

we-X1

we-X2

seta

setb

we -Z1

we-X2

^2

^2

seta

b

setb

we-Z2

Z2

seta

setb

we-ALU

+

we-X2

X2

we-ALU

+

we-Z1

^2

seta

x

setb

Z1

we-ALU

M +

we-X1

X1

seta

Z2

MM

MM

^2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Z2X2

X1

X2

Z2

Z2

b

X2

X1

Z1

setb

13 (mont)

state

07010000

Control
(HEX)

2 00000000

3 03100000

4 07008000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

02200000

05500000

06010000

07020000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

03200000

05500000

06004000

07020000

03100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06008000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

04200000

02400000

06040000

05080000

07020000

04040000

02080000

07100000

00000000

07204000

08400000

06040000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk0) 00000000

03200000

06080000

07400000

07010000

.

.

.

.

.

.

pulse 0

pulse 2

pulse 3

pulse 8

pulse 9

pulse 11

pulse 17

pulse 18

pulse 19

pulse 20

pulse 21

pulse 22

pulse 26

pulse 27

pulse 28

pulse 29

pulse 35

pulse 36

pulse 37

pulse 38

pulse 39

pulse 40

pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

pulse 58
(pulse 1 from

next loop)

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 15

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

pulse 16

pulse 14

pulse 12

pulse 10

Clock pulse

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

Montk0 (8)

pulse 0

pulse 2

we-x1
pulse 3

pulse 8
seta

pulse 9
setb

^2

X1 Z1 X2 Z2

pulse 10

pulse 11

pulse 12

we-Z2

we-Z1

pulse 17
seta

pulse 18
setb

X1

pulse 19
we -X2

pulse 20
we-X1

^2

^2

pulse 21

pulse 22

pulse 26
seta

pulse 27

pulse 28

pulse 29

b

setb

we-Z1

Z1

pulse 35

pulse 36

seta

Z2

setb

Z2

pulse 37

pulse 38

pulse 39

pulse 40

we-ALU

X1

+

we-X1

X1

we-ALU

Z2 +pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

we-Z2

^2

seta

x

setb

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

Z2

we-X2

X2

we-ALU

M +

we-X2

X2

seta

Z2

X1

pulse 58
(pulse 1 from

next loop)

MM

MM

^2

X2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
setb

Z1

13 (mont)

state

07010000

Control
(HEX)

2 00000000

3 04100000

4 07010000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

05200000

02500000

06008000

07004000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

02200000

04500000

06020000

07010000

02100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06004000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

05200000

03400000

06040000

04080000

07010000

05040000

03080000

07100000

00000000

07208000

08400000

06060000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

13 (mont)

2 (montk0) 00000000

03200000

06080000

04400000

07020000

.

.

.

.

.

.

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 14

pulse 15

pulse 16

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

Clock pulse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

key
state

ecc
fullmultip.ALUX1Z1X2Z2

X1 + Z1 +X2 + Z2

Montk0 (9)

pulse 0

pulse 2

we-x1
pulse 3

pulse 8
seta

pulse 9
setb

^2

X1 Z1 X2 Z2

pulse 10

pulse 11

pulse 12

we-Z2

we-Z1

pulse 17
seta

pulse 18
setb

X1

pulse 19
we -X2

pulse 20
we-X1

^2

^2

pulse 21

pulse 22

pulse 26
seta

pulse 27

pulse 28

pulse 29

b

setb

we-Z1

Z1

pulse 35

pulse 36

seta

Z2

setb

Z2

pulse 37

pulse 38

pulse 39

pulse 40

we-ALU

X1

+

we-X1

X1

we-ALU

Z2 +pulse 41

pulse 42

pulse 43

pulse 44

pulse 45

pulse 46

we-Z2

^2

seta

x

setb

pulse 47

pulse 48

pulse 49

pulse 50

pulse 51

pulse 52

pulse 53

pulse 54

pulse 55

pulse 56

pulse 57
(pulse 0 from

next loop)

Z2

we-X2

X2

we-ALU

M +

we-X2

X2

seta

Z2

X1

pulse 58
(pulse 1 from

next loop)

MM

MM

^2

X2

.

.

.

.

.

.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
setb

Z1

13 (mont)

state

07020000

Control
(HEX)

2 00000000

3 04100000

4 07010000

4

4

4

00000000

00000000

00000000

000000004

5

6

7

8

8

8

8

05200000

02500000

06008000

07004000

00000000

00000000

00000000

00000000

00000000

8

8

9

10

11

12

13

13

13

13

13

02200000

04500000

06020000

07010000

02100000

00000000

00000000

00000000

00000000

0720000014

15

16

16

16

16

16

16

01400000

06004000

00000000

00000000

16

00000000

00000000

00000000

00000000

17

18

19

20

21

22

23

24

05200000

03400000

06040000

04080000

07010000

05040000

03080000

07100000

00000000

07208000

08400000

06060000

24

25

26

27

27

27

27

27

27

27

00000000

00000000

00000000

00000000

00000000

00000000

28 00000040

29

30

31

14 (mont)

1 (montkpost) 00000000

03200000

06080000

04400000

07020000

.

.

.

.

.

.

pulse 1

pulse 4

pulse 6

pulse 7

pulse 5

pulse 13

pulse 14

pulse 15

pulse 16

pulse 23

pulse 24

pulse 25

pulse 32

pulse 33

pulse 34

pulse 30

pulse 31

Clock pulse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Appendix C Re-designed Flow Charts

The figures in this appendix show flow chart diagrams of all re-designed programs for the
implementation of the Montgomery kP -algorithm.

The initialization phase of the algorithm, executed by the program mont, is described in
the diagram titled Start: mont. The programs montk1pre and montk0pre, which execute
the first loop iteration, are described in the diagrams titled montk1pre and montk0pre
respectively. The programs montk1 and montk0 and their variations are described in the
diagrams titled montk1, montk0, montk1 (variant) and montk0 (variant).

127

Start: mont

 0

 2

 3

 8

 9

X1

Z2

X2

x

we-X1
^2

we-Z2
 1 ^2

we-ALU

b

we-X2

+
 4

 6

 7

 5

i=232

.

.

.

.

.

.

seta
X1

MM

Z2

MM
.
.
.

setb

i=i-1

.

.

.

.

.

.

is_set = 1

is_set = 0

is_set = 0

.

.

.

.

.

.

is_set = 1

is_set = 1

is_set = 0 or 1

montk0pre or montk1pre
(cycle 1)

2

state

08110000

Control (HEX)

3 07108000

4 07040000

5 01080000

6

7

8

07020000

00000000

00000000

000000409

9

8

9

9

8

00000000

00000000

00000040

00000000

00000000

13

2 (M1p or M2p)

13

00000000

04400000

12 03200000

11

10

9

00000000

00000000

00000040

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Clock cycle

8 01400000

montk1pre

 0

 2

 3

 8

seta

 9

setb

X1

 10

 11

 12

we-Z1

we-X3

 17

seta

 18

setb

 19

we -X2

 20

 21

 22

 26

 27

 28

 29

35

36

seta

setb

 37

 38

 39

 40

+

X1
 41

 42

 43

 44

 45
(cycle 0 from

next loop)

 46
(cycle 1 from

next loop)

we-Z1

seta

setb

Z1

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

13 (mont)

state

00000000

Control (HEX)

2 00000000

3 00000000

3 00000000

4

5

6

03100000

07010000

07100000

7

9

10

11

12

13

07200000

06004000

05100000

07010000

02040000

05080000

00000000

00000000

13

13

14

15

16

16

17

17

18

18

18

05200000

02400000

19

20

21

21

22

22

23

23

06020000

00000000

07100000

24

00000000

07004000

00000000

00000000

25

26

27

27

28

29

30

30

07200000

08400000

06008000

00000000

04100000

00000000

05080000

00000000

07020000

04200000

0A400000

06040000

30

31

32

14 (mont)

2

00000000

03080000

00000040

07010000

00000000

00000000

05200000

02400000

06008000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-X1

we-ALU

+

we-Z2

^2

X2

+

we-X2

X3

X1

X3

M

Z2

we-X1

M

Z2

we-Z2

X2

seta
Z1

setb

MM

MM
.
.
.

.

.

.

.

.

.

.

.

.

Z1
b

^2

^2

Z2

Z1

X2

^2

x

x

X1

X1

X2

X2

8 07400000

montk0pre

 0

 2

 3

 8

seta

 9

setb

 10

 11

 12

we-X3

we-Z1

 17

seta

 18

setb

 19

we -X3

 20

 21

 22

 26

 27

 28

 29

35

36

seta

setb

 37

 38

 39

 40

+

X2
 41

 42

 43

 44

 45
(cycle 0 from

next loop)

 46
(cycle 1 from

next loop)

we-Z2

seta

setb

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

13 (mont)

state

00000000

Control (HEX)

2 00000000

3 00000000

3 00000000

4

5

6

04100000

07004000

07100000

7

9

10

11

12

13

05200000

06001000

05100000

07000080

0A040000

05080000

00000000

00000000

13

13

14

15

16

16

17

17

18

18

18

05200000

0A400000

19

20

21

21

22

22

23

23

06001000

00000000

07100000

24

00000000

07008000

00000000

00000000

25

26

27

27

28

29

30

30

08200000

07400000

06001000

00000000

02100000

00000000

01080000

00000000

07010000

04200000

02400000

06040000

30

31

32

14 (mont)

2

00000000

0A080000

00000040

07020000

00000000

00000000

03200000

04400000

06001000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-X4

we-ALU

we-x3

^2

+

we-X1

Z1

X1

Z2

M

X3

we-X2

M

X3

we-X3

Z2

seta

setb

MM

MM
.
.
.

.

.

.

.

.

.

.

.

.

Z1

^2

Z2

X3

^2

x

x

X4

Z1

X3

X1 X2

Z1Z1^2

+

b

X1

b

7 02400000

montk1

 0

 2

 3

 8

seta

 9

setb

X1

 10

 11

 12

we-Z1

we-X3

 17

seta

 18

setb

 19

we -X2

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X2

35

36

seta

setb

 37

 38

 39

 40

+

X1

 41

 42

 43

 44

 45

 46

we-Z1

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z1

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06008000

Control (HEX)

2 00000000

3 03100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

05200000

06004000

00000000

07008000

00000000

05100000

00000000

07010000

10

11

12

13

14

14

15

15

16

16

16

03200000

01400000

06020000

00000000

02040000

00000000

05080000

00000000

00000000

0520000017

18

19

19

20

20

21

21

02400000

06020000

00000000

07100000

21

00000000

07004000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06008000

00000000

04100000

00000000

05080000

00000000

07020000

04200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

03080000

00000040

07010000

00000000

00000000

34 05200000

35

14 (mont)

2

02400000

06008000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z2

^2

we-X1

^2

Z2

b

we-ALU

X2

Z1

+

^2

Z1

we-Z2

^2

X2

X2

+

we-X2

X1

X3

X1

X3

M

Z2

we-X1

M

Z2

we-Z2

X2

seta
Z1

setb

MM

MM

Z1

.

.

.

.

.

.

.

.

.

.

.

.

Z2

X2

X2

7 02400000

montk0

 0

 2

 3

 8

seta

 9

setb

X1 Z2

 10

 11

 12

we-Z2

we-X3

 17

seta

 18

setb

 19

we -X1

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X1

35

36

seta

setb

 37

 38

 39

 40

+

X2

 41

 42

 43

 44

 45

 46

we-Z2

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06004000

Control (HEX)

2 00000000

3 02100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

05200000

06008000

00000000

07004000

00000000

04100000

00000000

07020000

10

11

12

13

14

14

15

15

16

16

16

02200000

01400000

06010000

00000000

03040000

00000000

04080000

00000000

00000000

0420000017

18

19

19

20

20

21

21

03400000

06010000

00000000

07100000

21

00000000

07008000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06004000

00000000

05100000

00000000

04080000

00000000

07010000

05200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

02080000

00000040

07020000

00000000

00000000

34 03200000

35

14 (mont)

2

04400000

06004000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z1

^2

we-X2

^2

Z1

b

we-ALU

X1

Z2

+

^2

Z2

we-Z1

^2

X1

X1

+

we-X1

X2

X3

X2

X3

M

Z1

we-X2

M

Z1

we-Z1

Z2

seta
X1

setb

MM

MM

X2Z1

.

.

.

.

.

.

.

.

.

.

.

.

7 03400000

montk1 (variant)

 0

 2

 3

 8

seta

 9

setb

 10

 11

 12

we-X4

we-X3

 17

seta

 18

setb

 19

we -Z1

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X2

35

36

seta

setb

 37

 38

 39

 40

+

X1

 41

 42

 43

 44

 45

 46

we-Z1

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z1

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06008000

Control (HEX)

2 00000000

3 03100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

04200000

06000080

00000000

07008000

00000000

05100000

00000000

07010000

10

11

12

13

14

14

15

15

16

16

16

03200000

01400000

06004000

00000000

02040000

00000000

0B080000

00000000

00000000

0B20000017

18

19

19

20

20

21

21

02400000

06020000

00000000

07100000

21

00000000

07004000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06008000

00000000

04100000

00000000

05080000

00000000

07020000

04200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

03080000

00000040

07010000

00000000

00000000

34 05200000

35

14 (mont)

2

02400000

06008000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z2

^2

we-X1

^2

Z2

b

we-ALU

+

^2

X4

we-Z2

^2

X2

X2

+

we-X2

X1

X3

X1

X3

M

Z2

we-X1

M

Z2

we-Z2

X2

seta
Z1

setb

MM

MM

Z1

.

.

.

.

.

.

.

.

.

.

.

.

X2

X2X1 Z2

X4

Z1

7 03400000

montk0 (variant)

 0

 2

 3

 8

seta

 9

setb

Z2

 10

 11

 12

we-X4

we-X3

 17

seta

 18

setb

 19

we -Z2

 20

 21

 22

 26

seta

 27

 28

 29

b

setb

we-X1

35

36

seta

setb

 37

 38

 39

 40

+

X2

 41

 42

 43

 44

 45

 46

we-Z2

seta

x

setb

 47

 48

 49

 50

 51

 52

 53

 54
(cycle 0 from

next loop)

 55
(cycle 1 from

next loop)

Z2

we-ALU

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

14 (mont)

state

06008000

Control (HEX)

2 00000000

3 02100000

3 00000000

4

4

5

07001000

00000000

07100000

6

8

8

9

9

10

04200000

06000080

00000000

07004000

00000000

04100000

00000000

07020000

10

11

12

13

14

14

15

15

16

16

16

02200000

01400000

06008000

00000000

03040000

00000000

0B080000

00000000

00000000

0B20000017

18

19

19

20

20

21

21

03400000

06010000

00000000

07100000

21

00000000

07008000

00000000

00000000

22

23

24

24

25

25

26

26

07200000

08400000

06004000

00000000

05100000

00000000

04080000

00000000

07010000

05200000

0A400000

06040000

27

28

29

30

30

31

32

33

33

33

00000000

02080000

00000040

07020000

00000000

00000000

34 03200000

35

14 (mont)

2

04400000

06004000

00000000

 1

 4

 6

 5

 13

 14

 15

 16

 23

 24

 25

 32

 33

 34

 30

 31

Clock cycle

M

7

^2

we-Z1

^2

we-X2

^2

Z1

b

we-ALU

+

^2

X4

we-Z1

^2

X1

X1

+

we-X1

X2

X3

X2

X3

M

Z1

we-X2

M

Z1

we-Z1

Z2

seta
X1

setb

MM

MM

X2Z1

.

.

.

.

.

.

.

.

.

.

.

.

X1

X4

Z2

Bibliography

[1] Jean Claude Lapire. Dependability: Basic Concepts and Terminology. Springer, 1992.

[2] R. L. Rivest, A Shamir, and L. M. Adelman. A method for obtaining digital signatures
and public-key cryptosystems. Technical Report MIT/LCS/TM-82, 1977.

[3] ISO/IEC 9796. Information Technology-Security Techniques-Digital Signature Scheme
Giving Message Recovery. International Organization for Standarization, 1991.

[4] R. L. Rivest, A. Shamir, and L.M Adleman. Cryptographic Communications System
and Method. U.S. Patent #4,405,829, 1983.

[5] Victor S. Miller. Use of Elliptic Curves in Cryptography. Proceedings of Advances in
Cryptology, Springer, pages 417-426, 1985.

[6] Neal Koblitz. Elliptic curve cryptosystems. In Mathematics of Computation, 48 (1987),
American Mathematical Society pages 203-209, 1987.

[7] National Security Agency. The Case of Elliptic Curve Cryptography. https://www.nsa.

gov/business/programs/elliptic_curve.shtml, last visited: April 2015.

[8] NIST Computer Security Division. Digital Signature Standard (DSS), FIPS 186-
3. http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf, last vis-
ited: September 2014.

[9] Elliptic Curve Cryptography (ECC). https://www.certicom.com/, last visited: April
2015.

[10] IHP - Innovations for High Performance Microelectronics. http://www.

ihp-microelectronics.com/en/start.html, last visited: April 2015.

135

https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://www.nsa.gov/business/programs/elliptic_curve.shtml
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://www.certicom.com/
http://www.ihp-microelectronics.com/en/start.html
http://www.ihp-microelectronics.com/en/start.html

Bibliography

[11] Debdeep Mukhopadhyay and Rajat Subhra Chakraborty. Hardware Security: Design,
Threats, and Safeguards. Chapman & Hall/CRC, 2014.

[12] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve Crypto-
graphy. Springer, 2004.

[13] R.G.E. Pinch. Some primality testing algorithms. Notices of the American Mathematical
Society, vol. 40, pages 1203-1210, 1993.

[14] Julio López and Ricardo Dahab. Improved algorithms for elliptic curve arithmetic in
GF(2m). Proceedings of the 5th Annual International Workshop on Selected Areas in
Cryptography, Springer, pages 201-212, 1998.

[15] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. Proceedings
of the 19th Annual International Cryptology Conference, Springer, pages 388-397, 1999.

[16] Jean-Sébastien Coron. Resistance Agianst Differential Power Analysis For Elliptic Curve
Cryptosystems. Proceedings of the First International Workshop on Cryptographic
Hardware and Embedded Systems, Springer, pages 292-302, 1999.

[17] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
In Mathematics of Computation, 48 (1987), American Mathematical Society, 1987.

[18] Julio López and Ricardo Dahab. Fast multiplication on elliptic curves over GF(2m)
without precomputation. Proceedings of the First International Workshop on Crypto-
graphic Hardware and Embedded Systems, Springer, pages 316-327, 1999.

[19] Hikaru Sakamoto, Yang Li, Kazou Ohta, and Kazou Sakiyama. Fault Sensitivity
Analysis Against Elliptic Curve Cryptosystems. Proceedings of the 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography, IEEE Computer Society, pages 11-20,
2011.

[20] Huiyun Li, Keke Wu, Guoqing Xu, and Hai Yuan. Simple Power Analysis Attacks Using
Chosen Message against ECC Hardware Implementations. Proceedings of the 2011 World
Congress on Internet Security, IEEE, pages 68-72, 2011.

[21] Sahbuddin Abdul Kadir, Arif Sasongko, and Muhammad Zulkifli. Simple power analysis

136

Bibliography

attack against elliptic curve cryptography processor on fpga implementation. Interna-
tional Conference on Electrical Engineering and Informatics, 2011.

[22] Éric Brier and Marc Joye. Weierstraß Elliptic Curves and Side-Channel Attacks. Pro-
ceedings of the 5th International Workshop on Practice and Theory in Public Key
Cryptosystems, Springer, pages 335-345, 2002.

[23] Christophe Clavier. Side channel analysis for reverse engineering (scare) - an improved
attack against a secret a3/a8 gsm algorithm. IACR Cryptology ePrint Archive, 2004.

[24] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. Stochastic
Methods -A Performance Analysis for Side Channel Cryptanalysis. Proceedings of the 8th
International Workshop on Cryptographic Hardware and Embedded Systems, Springer,
pages 15-29, 2006.

[25] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with
a Leakage Model. Proceedings of the 6th International Workshop on Cryptographic
Hardware and Embedded Systems, Springer, pages 16-29, 2004.

[26] Michael Hutter, Mario Kirschbaum, Thomas Plos, Jörn-Marc Schmidt, and Stefan
Mangard. Exploiting the Difference of Side-Channel Leakages. Proceedings of the 3rd
International Workshop on Constructive Side-Channel Analysis and Secure Design,
Springer, pages 1-16, 2012.

[27] Pierre-Alain Fouque and Frederic Valette. The Doubling Attack - Why Upwards is Better
than Downwards. Proceedings of the 5th International Workshop on Cryptographic
Hardware and Embedded Systems, Springer, pages 269-280, 2003.

[28] Naofumi Homma, Atsushi Miyamoto, Akashi Satoh, and Adi Shamir. Collision-Based
Power Analysis of Modular Exponentiation Using Chosen-Message Pairs. Proceedings of
the 10th International Workshop on Cryptographic Hardware and Embedded Systems,
Springer, pages 15-29, 2008.

[29] Mathieu Ciet and Marc Joye. (Virtually) Free Randomization Techniques for Elliptic
Curve Cryptography. Proceedings of the 5th International Conference on Information
and Communication Security, Springer, pages 348-359, 2003.

137

Bibliography

[30] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. A Practical Countermeasure against
Address-Bit Differential Power Analysis. Proceedings of the 5th International Workshop
on Cryptographic Hardware and Embedded Systems, Springer, pages 382-396, 2003.

[31] Elisabeth Oswald. Enhancing Simple Power-Analysis Attacks on Elliptic Curve
Cryptosystems. Proceedings of the 4th International Workshop on Cryptographic Hard-
ware and Embedded Systems, Springer, pages 82-97, 2003.

[32] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential Fault Attacks on Elliptic Curve
Cryptosystems. Proceedings of the 20th Annual International Cryptology Conference,
Springer, pages 131-146, 2000.

[33] Zoya Dyka and Peter Langendörfer. Area Efficient Hardware Implementation of Elliptic
Curve Cryptography by Iteratively Applying Karatsuba’s Method. Proceedings of Design
Automation and Test in Europe Conference, IEEE Society Press, pages 70-75, 2005.

[34] Steffen Peter. Evaluation of design alternatives for flexible elliptic curve hardware
accelerators. Diplome Thesis-BTU Cottbus, 2006.

[35] IHP. Research - Project TAMPRES . http://www.ihp-microelectronics.com/

de/forschung/drahtlose-systeme-und-anwendungen/abgeschlossene-projekte/

tampres.html, last visited: October 2014.

[36] Synopsis - PrimeTime. http://www.synopsys.com/Tools/Implementation/SignOff/

Pages/PrimeTime.aspx, last visited: September 2014.

[37] Marc Joye and Sung-Ming Yen. The Montgomery Powering Ladder. Proceedings of
the 4th Internatinal Workshop on Cryptographic Hardware and Embedded Systems,
Springer, pages 291-302, 2002.

[38] Zoya Dyka, Christian Wittke, and Peter Langendoerfer. Clockwise Randomization
of the Observable Behaviour of Crypto ASICs to Counter Side Channel Attacks.
To appear in: Proceedings of http://paginas.fe.up.pt/~dsd-seaa-2015/program/

dsd-sessions-schedule/, 2015.

138

http://www.ihp-microelectronics.com/de/forschung/drahtlose-systeme-und-anwendungen/abgeschlossene-projekte/tampres.html
http://www.ihp-microelectronics.com/de/forschung/drahtlose-systeme-und-anwendungen/abgeschlossene-projekte/tampres.html
http://www.ihp-microelectronics.com/de/forschung/drahtlose-systeme-und-anwendungen/abgeschlossene-projekte/tampres.html
http://www.synopsys.com/Tools/Implementation/ SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/ SignOff/Pages/PrimeTime.aspx
http://paginas.fe.up.pt/~dsd-seaa-2015/program/dsd-sessions-schedule/
http://paginas.fe.up.pt/~dsd-seaa-2015/program/dsd-sessions-schedule/

	Document Title
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Elliptic Curve Cryptography
	2.1 Binary-extension field GF(2233)
	2.2 Elliptic Curves over GF(2233)
	2.2.1 Point operations

	2.3 Elliptic Curve Point Multiplication
	2.4 Cryptographic Operations
	2.4.1 Key generation
	2.4.2 Encryption scheme

	3 Side-Channel Analysis
	3.1 Power Analysis
	3.1.1 Simple Power Analysis
	3.1.2 Countermeasures against Simple Power Analysis
	3.1.3 Differential Power Analysis
	3.1.4 Comparative Power Analysis
	3.1.5 Countermeasures against Differential and Comparative Power Analysis

	3.2 Fault Sensitivity Analysis
	3.2.1 Fault Injection
	3.2.2 FSA Attack Technique
	3.2.3 Countermeasures against Fault Sensitivity Analysis

	4 Vulnerability Assessment of an IHP ECC Design
	4.1 IHP ECC Design
	4.2 Difference-of-Means Test
	4.3 Technical Description
	4.3.1 System Architecture
	4.3.2 Control Signal cntr Description
	4.3.3 Montgomery kP-Algorithm Implementation

	4.4 Observations

	5 Re-design of the IHP ECC Implementation
	5.1 Technical Changes
	5.1.1 System Architecture
	5.1.2 Control Signal
	5.1.3 Re-designed Implementation of the Montgomery kP-Algorithm

	5.2 Observations
	5.3 Results of the Difference-of-Means Test
	5.4 Results of a Comparative Power Analysis Attack

	6 Verification of the Re-design Methodology
	6.1 Re-design of the ECC Implementation with the 6-clock-cycle Multiplier
	6.1.1 Re-design of the Main Loop
	6.1.2 Re-design of the First Loop Iteration
	6.1.3 Chip Area and Power Consumption of the new Design

	6.2 Results of the Difference-of-Means Test

	7 Conclusions
	Appendix A Acronyms
	Appendix B Flow Diagrams with Power Traces
	Appendix C Re-designed Flow Charts
	Bibliography

