
Architectural framework for
dynamically adaptable multiprocessors

regarding aging, fault tolerance,
performance and power consumption

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik
der Brandenburgischen Technischen Universität Cottbus-Senftenberg

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr. -Ing.)

genehmigte Dissertation

vorgelegt von

Mag. Sc.
Aleksandar Simevski

geboren am 26. Februar 1984 in Shtip

Gutachter: Prof. Dr.-Ing. Rolf Kraemer

Gutachter: Prof. Dr.-Ing. Heinrich Theodor Vierhaus

Gutachter: Prof. Dr. Aristotel Tentov

Tag der mündlichen Prüfung: 27. November 2014

ii

“I understand the world as a field for cultural
contest among the nations.”

“Ich verstehe die Welt als Feld für einen
Wettkampf der Kulturen.”

— Goce Delchev

iv

Abstract

Despite the numerous benefits that Integrated Circuit (IC) technology downscaling
brings, it also introduces many challenges. First of all, IC dependability is low-
ering: both lifetime reliability and resilience to single event effects is decreasing.
Another major problem is the increased power consumption. On the other hand,
the vast available space enables integrating hundreds of processor cores in a single
chip! Multiprocessing is for over a decade the main architectural trend because of
two reasons. Firstly, the performance of single processors gained by architectural
innovations reached the upper limit i.e., the point of diminishing returns. Secondly,
the operating frequency could not be increased due to the excessive power consump-
tion, as pointed out. This work proposes a multiprocessor architectural framework
that addresses many challenges related to dependability, power consumption and per-
formance. The key idea is dynamical adaptation to the application requirements of
fault tolerance and performance, which is possibly done at the lowest rates of aging
and power dissipation. The application may select one of the three basic operat-
ing modes: de-stress, fault-tolerant and high-performance. De-stress mode prolongs
multiprocessor lifetime and reduces power consumption by using core gating patterns
that systematically power- or clock-off entire cores in the multiprocessor. These pat-
terns use the information supplied by novel IC aging monitors. Fault-tolerant mode,
on the other hand, increases error resilience by forming core-level NMR (N-modular
redundant) systems using the multiprocessor cores. That is, entire cores are tightly
synchronized to execute the same task simultaneously. Voting is done on each clock
cycle using special, programmable NMR voters. Core-level NMR enables masking
faults without invoking recovery procedures which is appreciated by timing-critical,
or, real-time applications. Finally, high-performance mode is used for boosting mul-
tiprocessor performance. The framework is evaluated using a novel environment for
automated fault injection, as well as a novel multiprocessor verification platform. A
vast number of experiments were made which led to closed-form expressions that de-
termine the number of cores N required to survive the projected mission time, given
the fault rate. Moreover, a newly-developed method for lifetime evaluation based
on the Weibul distribution shows the benefits of using core gating patterns. E.g.,
the new Youngest-First Round-Robin (YFRR) pattern enables up to 31% increase in
system’s lifetime compared to a simple Round-Robin.

v

vi

Kurzfassung

Neben den vielzähligen Vorteilen, die die anhaltende Skalierung der Halbleit-
ertechnologien mit sich bringt, gibt es auch eine Reihe von Herausforderungen.
Insbesondere verringert sich die Zuverlässigkeit integrierter Schaltkreise (IC) durch
die verstärkte Alterungseffekte aber auch durch erhöhte Anfälligkeit hochintegrierter
Schaltungen auf Single-Event-Effekten. Ein weiteres Problem ist die steigende Leis-
tungsaufnahme komplexer Schaltungen. Auf der anderen Seite erlaubt die Skalierung
mittlerweile die Integration von Hunderten von Processorkernen in einem einzigen
Chip. Seit mehr als einem Jahrzehnt ist dieses Prinzip des Multiprocessing aus
zwei Gründen Trend bei der Architektur komplexer Prozessoren: Zum einen gibt
es kaum noch Neuerungen in der Architektur von Single-Core-Prozessoren. Zum
anderen kann die Taktfrequenz aufgrund der dadurch steigenden Leistungsaufnahme
nicht weiter erhöht werden. Diese Arbeit stellt ein Framework zur Architektur von
Multiprozessoren vor, dass sich der Herausforderungen bezüglich der Zuverlässigkeit,
der Leistungsaufnahme und auch der Performance annimmt. Dabei ist die Kernidee
die dynamische Anpassung an die Anforderungen der Anwendung bezüglich der
Fehlertoleranz und der Leistungsfähigkeit. Dazu wählt die Anwendung einen der
drei Hauptbetriebsmodi aus: De-stress, Fault-Tolerance und High-Performance.
Der De-stress-Modus verlängert die Lebensdauer des Multiprozessors und reduziert
die Leistungsaufnahme. Dazu werden mittels Clock-Gating oder durch Abschal-
ten der Spannungsversorgung ganze Prozessorkerne abgeschaltet. Neu entwickelte
Monitorschaltungen zur überwachung des Alterungsprozesses liefern dabei die In-
formationen, welcher Kern abgeschaltet werden sollte. Der Fault-Tolerance-Modus
verringert die Fehleranfälligkeit durch Bildung einer N-modularen Redundanz auf
Prozessorkernebene. Dazu werden mehrere Kerne so mit einander synchronisiert, dass
sie exakt die selben Instruktionen durchführen. Ein programmierbarer NMR-Voter
ünbernimmt dabei Takt für Takt die Abgleichung der Ergebnisse. Diese Strategie
ermöglicht eine schnelle Korrektur von Fehlern ohne zeitaufwändige Wiederherstel-
lungsverfahren (Recovery-Verfahren), so dass auch Echtzeitanwendungen unterstützt
werden. Der High-Performance-Modus schöpft die volle Leistungsfähigkeit des Mul-
tiprocessorsystems aus. Zur Evaluation des Frameworks wurde eine neue Umgebung
zur automatisierten Fehlerinjektion sowie eine neue Verifikationsplatform für Mul-
tiprozessoren entwickelt. Es wurden eine Vielzahl an Experimenten durchgeführt,
die zur Bildung einer Formel verwendet wurden, welche bei gegebener Fehlerrate
und Einsatzdauer die Anzahl an benötigten Prozessorkernen bestimmt. Darüber
hinaus wurde basierend auf der Weibul Verteilung eine neu Methode zur Evaluierung
der Lebensdauer entwickelte, die die Vorteile der Abschaltung der Kerne aufzeigt.
Beispielsweise zeigt das Youngest-First Round-Robin (YFRR) Scheduling verglichen
mit dem Standard-Round-Robin Verfahren eine Steigerung der Systemlebensdauer
um 31%.

vii

viii

Acknowledgements

I would like to express my gratitude to the federal state of Brandenburg, Germany
for granting me the scholarship in the frame of the ZUSYS (ZUverlässige SYSteme)
group of the International Graduate School (IGS) at BTU Cottbus-Senftenberg, led
by Prof. H. T. Vierhaus. Many many thanks to my mentor, Prof. Rolf Kraemer in
the first place, a professor at the same university, and a head of the System Design
department at the Institute for high-performance microelectronics IHP in Frankfurt
(Oder), for recognizing my deep interest in microelectronics, for inviting me to apply
for this position, and for his guidance throughout the studies. I’d also like to thank my
previous mentor, Prof. Dr. Aristotel Tentov, a head of the Computer Technologies
and Engineering Department at the Faculty of Electrical Engineering and Information
Technologies (FEEIT) in Skopje, Macedonia, for enabling me to advance very fast,
and for preparing me to undertake a work of this size. Together with my father,
these three professors largely affected my scientific and engineering way of thinking,
for which I’m grateful.

This work would not be possible without the help of many of my colleagues in
IHP and FEEIT. Many thanks to Milos Krstic (IHP) for his inexhaustible support,
the numerous suggestions and advice in both scientific, technical and organizational
issues. Furthermore, I would like to thank Vladimir Petrovic, Steffen Zeidler, Oliver
Schrape, Patryk Skoncej and Cirillo Maurizio (all from IHP) for the suggestions re-
garding many technical issues. Special thanks to Oliver Schrape for the enormous
help regarding the layout, as well as to Irina Matthaei and Peter Dähnert (all from
IHP) for the testing of my 8-core multiprocessor chip produced in IHP. Of course, a
huge thanks to IHP for enabling the chip production! I would also like to thank Elena
Hadzieva (FEEIT) for the very successful cooperation resulting in several scientific
papers: Elena, thank you for proving formally that my intuition was right – scalable,
programmable N-modular redundant voters could be easily constructed! These vot-
ers are essential for my thesis. Finally, many thanks to my brother Igor Simevski
(FEEIT) for building a C compiler for my multiprocessor.

At the end, I would like to thank the members of my closest family, especially my
wife Vesna, for her vicarious support, and our kids Natalija and Dushan for giving me
huge amounts of positive energy needed to finish this work. I cannot find the words
to express my gratitude to my mother and father, Lenka and Dushan. Mom and dad,
thanks for everything!

ix

x

I dedicate this work to my dear wife Vesna,
and our dear kids Natalija and Dushan.

xi

xii

Contents

Abstract . v
Kurzfassung . vii
Acknowledgements . ix
List of Own Publications . xvii
List of Tables . xix
List of Figures . xxi

1 Introduction 1
1.1 Dependability of systems – basic definitions 2

1.1.1 Attributes of dependability . 3
1.1.2 Threats to dependability . 3
1.1.3 Means to achieve dependability 4
1.1.4 Measuring and evaluating dependability 5

1.2 IC reliability failure mechanisms . 8
1.2.1 Aging effects . 11
1.2.2 Single event effects . 13

1.3 Impacts of technology scaling . 15
1.3.1 Reliability trends . 17
1.3.2 Architectural trends – multiprocessing 20

1.4 Thesis proposal . 22
1.4.1 Motivation . 22
1.4.2 Proposed architectural framework 23
1.4.3 Objectives . 26
1.4.4 Thesis organization . 27

2 Related work 29
2.1 Increasing fault tolerance . 29

2.1.1 Information redundancy . 30
2.1.2 Time redundancy . 38
2.1.3 Space redundancy . 41

2.2 Reducing aging and power consumption 48
2.2.1 Reducing power consumption 49
2.2.2 Reducing aging . 50

2.3 Dynamic adaptation to application requirements 51
2.3.1 Solutions based on core adaptation 51
2.3.2 VLIW-based solutions . 53

xiii

2.3.3 COTS-based solutions . 53
2.4 Progress beyond the State-of-the-art 55

3 Architectural multiprocessor framework 59
3.1 Operation in de-stress mode . 60

3.1.1 Module gating patterns . 61
3.1.2 Clock vs. power gating . 63
3.1.3 Selecting an optimal (in)active period 65

3.2 Operation in fault-tolerant mode . 65
3.2.1 NMR system formation . 66
3.2.2 State recovery . 67
3.2.3 Fault classification . 68
3.2.4 Framework fault tolerance . 69

3.3 Operation in high-performance mode 70
3.4 Scalability . 70

4 Implementation 71
4.1 Framework controller . 71

4.1.1 PG/CG control and de-stressing support 72
4.1.2 Aging monitors . 72
4.1.3 NMR system formation . 75
4.1.4 Programmable NMR voters 75
4.1.5 Error handling – interrupt and reset generation 77
4.1.6 Other control and observation functions 79

4.2 Framework middleware . 81
4.2.1 Library of framework procedures 82
4.2.2 Interrupt handlers . 84

4.3 Application layer . 88
4.3.1 Operating modes . 88
4.3.2 Lifetime-aware task mapping and scheduling 90

4.4 Design method for programmable NMR voters 91
4.4.1 Matrix construction and properties 91
4.4.2 Performance and area analyses 94
4.4.3 Implementation results . 96

4.5 FMP(4, 4) chip architecture . 97
4.5.1 Chip performance, power and area 98

5 Verification environment 101
5.1 An overview of fault injection mechanisms 102
5.2 Automated fault injection procedure 103

5.2.1 Netlist preparation . 103
5.2.2 Generation of fault injectors 104
5.2.3 Fault specification . 105

5.3 Practical implementation . 106
5.3.1 Netlist preparation – Netprep 107

xiv

5.3.2 Generation of fault injectors – Figen 107
5.4 Simulation speed evaluation . 108

5.4.1 Relative simulation time as a function of fault rate 108
5.4.2 Relative simulation time as a function of complexity 110
5.4.3 Fault injection into FMP(4, 4) 111

5.5 Multiprocessor verification environment 112
5.5.1 (Multi)processor verification techniques 112
5.5.2 The proposed co-verification platform 113
5.5.3 Practical implementation . 115

6 Evaluation results 117
6.1 Lifetime reliability . 117

6.1.1 Evaluation of core gating patterns 117
6.1.2 Effects of core gating on performance 122

6.2 Error resilience in fault-tolerant mode 122
6.2.1 Experimental setup . 123
6.2.2 Error resilience without recovery mechanisms 123
6.2.3 Employing recovery mechanisms 127

6.3 Power consumption . 130
6.3.1 Simulated power analyses . 130
6.3.2 Chip measurements . 130
6.3.3 Discussion . 131

7 Conclusion 133
7.1 Are the objectives met? . 133
7.2 Future work . 134

7.2.1 Investigating aging effects and monitors 134
7.2.2 Pushing the limits of core-level NMR 135
7.2.3 Other considerations . 136

A A simple and flexible 32/64-bit RISC core 137
A.1 Core architecture . 138
A.2 Instruction set . 143
A.3 Core performance evaluation . 149

B Library of framework middleware procedures 151

List of Abbreviations 155

Bibliography 161

xv

xvi

List of Own Publications

[SH13] A. Simevski and E. Hadzieva. Software Implementation of Programmable
NMR Voters. In Electronics, Telecommunications, Automatics and Infor-
matics (ETAI), 2013 XI international conference on, September 2013.

[SHKK12] A. Simevski, E. Hadzieva, R. Kraemer, and M. Krstic. Scalable design of a
programmable NMR voter with inputs’ state descriptor and self-checking
capability. In Adaptive Hardware and Systems (AHS), 2012 NASA/ESA
Conference on, pages 182–189, June 2012.

[Sim13] A. Simevski. A simple and flexible 64/32-bit RISC core for embedded
multiprocessors. In Electronics, Telecommunications, Automatics and In-
formatics (ETAI), 2013 XI international conference on, September 2013.

[SKK11a] A. Simevski, R. Kraemer, and M. Krstic. An Overview of Dependable Mi-
croprocessor Architectures - Pursuing the State-of-the-art. In Electronics,
Telecommunications, Automatics and Informatics (ETAI), 2011 X inter-
national conference on, September 2011.

[SKK11b] A. Simevski, R. Kraemer, and M. Krstic. Low-complexity integrated cir-
cuit aging monitor. In Design and Diagnostics of Electronic Circuits Sys-
tems (DDECS), 2011 IEEE 14th International Symposium on, pages 121
–125, April 2011.

[SKK12] A. Simevski, R. Kraemer, and M. Krstic. Platform for Automated
HW/SW Co-verification, Testing and Simulation of Microprocessors. In
13th IEEE Latin American Test Workshop (LATW), 2012, April 2012.

[SKK13a] A. Simevski, R. Kraemer, and M. Krstic. Automated integration of fault
injection into the ASIC design flow. In Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2013 IEEE International Symposium
on, pages 255–260, 2013.

[SKK13b] A. Simevski, R. Kraemer, and M. Krstic. Register-Transfer Level NMR
System Generator. In Zuverlssigkeit und Entwurf - 7. ITG/GI/GMM-
Fachtagung. VDE Verlag GmbH - Berlin - Offenbach, September 2013.

[SKK14a] A. Simevski, R. Kraemer, and M. Krstic. Increasing multiprocessor life-
time by Youngest-First Round-Robin core gating patterns. In Adaptive

xvii

Hardware and Systems (AHS), 2014 NASA/ESA Conference on, July
2014.

[SKK14b] A. Simevski, R. Kraemer, and M. Krstic. Investigating core-level N-
modular redundancy in multiprocessors. In International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC-14) , 2014
IEEE 8th International Symposium on, September 2014.

xviii

List of Tables

1.1 Technnology scaling trends . 18

1.2 SER by microprocessors in different technology nodes. 20

2.1 Reliability and MTTF of NMR systems with perfect majority voters
and constant failure rates . 43

4.1 FC registers . 73

4.2 Actions . 78

4.3 Output driver selection . 79

4.4 Interrupt sources . 80

4.5 Synthesis results of programmable NMR voters. W is fixed to 16 while
N varies. 96

4.6 Synthesis results of programmable NMR voters. N is fixed to 4 while
W varies. 96

4.7 Synthesis results of a simple, traditional 3MR voter. 97

4.8 Synthesis results of a programmable 3MR voter. 97

4.9 FMP(4, 4) performance evaluation 99

5.1 Truth table of a FIL function . 104

5.2 Properties of a fault group . 105

5.3 Results of exhaustive simulations of an 8-bit ALU 109

5.4 Relative simulation times for varying number of complex (leaf) gates
and fault injection rates . 110

5.5 Simulation time in seconds of ISS and HDL simulator 115

5.6 Design and verification times of hardware and software components . 116

6.1 End-of-mission reliability of multiprocessors with varied number of
cores using simple RR gating patterns 118

6.2 Reliability of a four-core multiprocessor using simple YFRR core gating
at the end of a 10 year mission . 121

6.3 Comparing simple RR and YFRR in extreme cases 121

6.4 Injection of bit-flips (array length: 100) 124

6.5 Injection of bit-flips (array length: 1.000) 125

6.6 Injection of stuck-at faults . 127

6.7 Performance overheads of recovery mechanisms (no caches) 129

6.8 Performance overheads of recovery mechanisms (with L1 caches) . . . 129

xix

6.9 Simulated power analysis of power-gated cores 130
6.10 Simulated power analysis of clock-gated cores 131
6.11 On-wafer power measurements of clock-gated cores 131
6.12 Percentage of deviation of simulated vs. measured results 132

A.1 Software exceptions . 142
A.2 HW/SW interrupt types . 143
A.3 Data transfer types . 144
A.4 4-bit auxiliary code specifying AL and FP operations 145
A.5 Conditional and unconditional control transfer instructions 145
A.6 Simple branches . 146
A.7 Other control instructions . 146
A.8 FLSH immediate values . 146
A.9 System registers . 148
A.10 Control register . 149
A.11 Core performance evaluation . 150

B.1 Library of framework middleware procedures 151

xx

List of Figures

1.1 Semiconductor industry opens endless possibilities 1
1.2 Dependability-related terms arranged in a tree 2
1.3 Failure sequence . 4
1.4 Bathtub curve representing failure rate 7
1.5 IC reliability failure mechanisms and fault classification 9
1.6 CMOS inverter operation . 11
1.7 Ionizing high energy particle hitting a semiconductor 14
1.8 Classification of single event effects 15
1.9 Confirmation of Moore’s law . 16
1.10 Trade-off between performance and power consumption 19
1.11 Memory and logic area trends in ASICs 21
1.12 Layering and encapsulation . 25
1.13 Framed multiprocessor – general architecture 25
1.14 A specific example of a framed multiprocessor 26

2.1 Error control coder . 30
2.2 Taxonomy of FEC codes . 32
2.3 RAS features of the IBM Power6 multiprocessor. 35
2.4 RAS features of the Itanium 9300 multiprocessor 37
2.5 Multiple sampling circuit . 39
2.6 Primary and redundant instruction execution 41
2.7 An NMR system . 42
2.8 Comparison of reliability functions of NMR systems for various N . . 44
2.9 Dynamic redundancy using hot spares 47
2.10 Self-purging redundancy . 48
2.11 Multiple clustered core processor . 52
2.12 VLIW architecture . 54
2.13 COTS based multiprocessor used in space applications 55

3.1 Processor cores arranged in a FWG 60
3.2 Memory modules arranged in a FWG 61
3.3 Round-robin gating pattern . 62
3.4 RR gating in time . 62
3.5 Youngest first RR module gating times 63
3.6 Power gating . 64
3.7 Clock gating . 64

xxi

3.8 Possible NMR combinations in FMP(4) 67
3.9 State recovery of a TMR in FMP(4) 68
3.10 Fault classification scheme . 69

4.1 Framework controller . 72
4.2 Gate-oxide aging monitors . 74
4.3 Mode register . 75
4.4 I/O configurations of a TMR in FMP(4) 76
4.5 Programmable NMR voter with ISD and self-checks 77
4.6 Action registers . 78
4.7 Last action register . 79
4.8 Interrupt status register . 80
4.9 Command register . 80
4.10 Interrupt handler dispatcher . 81
4.11 Age read-out procedure . 83
4.12 Set actions procedure . 84
4.13 De-stress timer interrupt handler . 86
4.14 End of boot procedure . 87
4.15 OVI1 interrupt handler . 88
4.16 ETI interrupt handler . 89
4.17 FMP(4, 4) chip block diagram . 98
4.18 FMP(4, 4) layout . 99

5.1 Preparing a simulation environment for fault injection 103
5.2 Inserting FIL components into a gate-level netlist 104
5.3 Implementation of automated fault injection 106
5.4 SystemVerilog fault injector for transient bit flips 107
5.5 Relative simulation times of an 8-bit ALU 110
5.6 Relative simulation time as a function of design complexity 111
5.7 HW/SW co-verification, simulation and test platform 113

6.1 Aging rate function of a four-core system with a 10-year mission . . . 120
6.2 Simple test program . 123
6.3 Majority lines of core-level NMR groups 126

7.1 Dynamic core-level NMR group formation 135

A.1 A simple and flexible 64/32-bit RISC core 138
A.2 A microprocessor with L1 and L2 caches 139
A.3 Bus interface FSM . 139
A.4 Bus interface cycles . 140
A.5 Execution FSM . 141
A.6 Interrupt specification . 142
A.7 Data transfer instructions . 143
A.8 Arithmetic/logic and floating-point instructions 144
A.9 Control instructions . 145

xxii

Chapter 1

Introduction

Semiconductor-based electronics enables complex systems that have enormous impact
in virtually all aspects of human life. For instance, the world-wide mobile and tele-
phone networks and the Internet are built using the products and services of the com-
puting and communications industries, as well as other industries such as the space
industry (e.g., for satellite interconnections between the nodes of these networks).
Moreover, these networks are part of even greater systems, such as companies, cities,
entire states, or international organizations. An interesting upside down pyramid
that shows the pervasive use of semiconductors is presented in Fig. 1.1. Nowadays,
one can certainly state that after the stone, bronze, and iron age, the mankind is
currently in the electronic age, where the semiconductor-based electronics lies at the
very base.

Figure 1.1: Semiconductor industry opens endless possibilities. (Adapted pic-
ture from a presentation by Frank Huang at the Green IT Inter-
national Symposium 2008)

The question is what if the lowest part of the pyramid in Fig. 1.1 fails? Or, can
one rely on it? If the semiconductor industry does not provide reliable systems, that
are potentially build out of unreliable components (transistors or integrated circuits),
all other systems built on top of it would not be reliable too. The importance of

1

reliability at this lowest level is clear. Fig. 1.1 also shows the profitable economic
model, which aspect is frequently neglected by scientists. Each industry level has
several times greater market (in billions of dollars) than the level below.

The term reliability is actually an attribute of a broader term – dependability.
Dependability is one of the fundamental system properties besides functionality, per-
formance and cost. The term performance is also a broad term that subsumes speed
of operation and power consumption. Nevertheless, this term is widely used to denote
only the speed of operation of the system, which is also the case in the thesis.

This dissertation deals with several aspects of multiprocessor’s dependability. Sec-
tion 1.1 gives the basic definitions that will be used throughout the thesis. The re-
liability failure mechanisms and how the technological downscaling affects them are
explained in Sections 1.2 and 1.3, respectively. Section 1.4 shortly introduces the
motivation and the proposed approach that is trying to address many challenges re-
garding multiprocessor dependability. At the end of this Chapter, Subsection 1.4.4
presents the organization of the thesis.

1.1 Dependability of systems – basic definitions

Many of the stated definitions in this Section are taken from Avizienis et al. [13].
They introduce a dependability tree (see Fig. 1.2) that clearly classifies the terms
related to dependability.

Figure 1.2: Dependability-related terms arranged in a tree

The dependability of a system is its ability to operate in a way that can justi-
fiably be trusted. Correct operation is perceived when the system implements the
system function that is described by its specification. Logically, incorrect operation
is perceived when the system does not implement the system function.

2

1.1.1 Attributes of dependability

The attributes of dependability are:

• Availability – readiness for correct operation

• Reliability – continuity of correct operation

• Safety – absence of catastrophic consequences on users and environment

• Confidentiality – absence of unauthorized disclosure of information

• Integrity – absence of improper system state alterations

• Maintainability – ability to undergo repairs and modifications

Based on these attributes, dependable systems are also classified:

• Ultra-reliable – used in timing-critical control applications like in nuclear
plants, or the avionic computers for unstable air-crafts (NASA), where the fail-
ure probability is less than 10−9 for a 10 hour mission [28].

• Safety-critical – where safety is the primary objective, e.g., in air-crafts, gas
sensors, microwave applications, nuclear plants, biomedical implants.

• Mission-critical – e.g., space-crafts without crew.

• Long-life – where maintenance and repair is impossible, e.g., satellites.

• Highly-available – where downtime is expensive, e.g., telephone switching
systems.

The main focus in the thesis are reliable, timing-critical, long-life multiprocessor
architectures. Availability and maintainability are also investigated to some extent.

1.1.2 Threats to dependability

A failure occurs when the perceived operation of the system deviates from the correct
operation. In other words, a failure is a transition from correct to incorrect operation.
Failure may occur either because the system operation deviates from its specification,
or the specification itself does not appropriately describe the function of the system.

An error is an incorrect part of the system state which may cause a failure. A
failure is observed when an error reaches the output of the system. A detected error
is signalled by the system through error message(s) or signal(s). A latent error is
an error that is not detected by the system.

A fault is the adjudged or hypothesized cause of an error. An active fault pro-
duces an error, while a dormant fault does not produce an error. The term “fault”
actually denotes an anomalous physical condition in the system, that could be caused

3

by various sources such as manufacturing problem, fatigue, external disturbance, de-
sign flaw. . . Section 1.2 shows a detailed classification of Integrated Circuit (IC) faults,
as well as the most significant sources of IC faults i.e., failure mechanisms.

In other words, an error is the effect of an activation of a fault, i.e., manifestation
of a fault. A failure is an over-all system effect or manifestation of an error. Fig. 1.3
presents this failure sequence.

Figure 1.3: Failure sequence. (Adapted picture from [13].)

Regarding the persistence, faults are classified as permanent, intermittent or tran-
sient. Permanent faults occur due to manufacturing defects, early life (burn-in)
stress, wear-out, etc. Transient faults are caused by external disturbances such
as radiation, noise or electromagnetic interference. Intermittent faults or recur-
ring faults are usually caused by marginal design parameters. They manifest timing
problems, races, skew, etc., or signal integrity problems like crosstalk and ground
bounce.

1.1.3 Means to achieve dependability

As Fig. 1.3 shows, if faults are not present, errors and failures will not occur in the
system. Therefore, the means to achieve system dependability have the term “fault”
at the beginning.

Fault prevention techniques aim at preventing introduction of faults in the sys-
tem. These techniques include radiation hardening, shielding, following strict design
rules, rigorous maintenance procedures, etc.

Fault tolerance is achieved by techniques that try to enable correct operation
of the system in the presence of faults. Widely used approach to fault tolerance is
error detection and recovery. A recovery procedure transforms an erroneous system
state to an error-free system state. Both error detection and recovery could take place
during normal system operation i.e., concurrently, or when the system operation is
temporarily suspended i.e., preemptively.

The recovery procedures do fault and/or error handling. Error handling may be
done by rollback to a previously known and saved, error-free state i.e., checkpoint
or by rollforward to a new error-free state.

The fault handling procedure has four steps: fault diagnosis (identifying and
locating errors), fault isolation (physical or logical exclusion of the faulty compo-
nents), system reconfiguration (switching to spare components or reassigning tasks)
and system reinitialization.

Fault masking is a form of concurrent recovery where error detection may not
be done at all. The system simply relies on redundant components with the same
functions. If one or more of the components have different states than the other

4

components that are majority, the error-free state is recognized in the majority com-
ponents. Of course, this would function as long as there is a majority group of
components with the same states.

Fault removal is done both during development of the system, and during its
operational lifetime. Fault removal during development is performed by verification
that the system adheres to certain properties that will enable correct operation. If
this verification fails, diagnosis and correction of the design have to be done. On the
other side, fault removal during operational lifetime is in the form of corrective or
preventive maintenance. Corrective maintenance tries to remove the faults (causing
errors) that are detected and reported by the system, while preventive maintenance
tries to remove faults before they cause errors. Maintenance is different from fault
handling since it is done by an agent which is external to the system. Fault handling
is done by the system itself.

Fault forecasting is done by qualitative and quantitative evaluation of the sys-
tem behaviour under activation of faults. Fault injection (see Subsection 1.1.4) is
a widely used technique for evaluating system reliability and forecasting system be-
haviour in the presence of faults.

1.1.4 Measuring and evaluating dependability

Dependability calculations are heavily based on the probability theory [95]. Reli-
ability as a function of time R(t) is defined as the probability that the system will
operate correctly under specified circumstances in a defined period of time. Expressed
mathematically, R(t) = P (TTF > t), where TTF is a continuous random variable
that denotes the time-to-failure. It is assumed that t ≥ 0 in all the equations in
this Section. On the other side, F (t) = P (TTF ≤ t) shows the probability that the
system will fail by time t, i.e., the cumulative distribution function (CDF) of failure.
It is obvious that P (TTF > t) + P (TTF ≤ t) = R(t) + F (t) = 1. Thus,

R(t) = 1− F (t) = 1−
t∫

−∞

f(s)ds =

∞∫
t

f(s)ds, (1.1)

where f(s) is the probability density function (PDF) of failure.

Empirical results show good matching to measurements if TTF is assumed to be
exponentially distributed [108], in which case, the PDF of failure would be f(t) =
λe−λt for t ≥ 0. Thus,

R(t) =

∞∫
t

λe−λsds = e−λt. (1.2)

where as shown below, the constant λ turns out to be the failure rate.

5

MTTF, MTTR, MTBF

According to the probability theory, E[TTF] (the expectation, i.e., the mean value
of TTF) is a weighted average of all possible values of TTF:

E[TTF] =

∞∫
−∞

tf(t)dt. (1.3)

E[TTF] is a widely used metric for stating the reliability of systems which is com-
monly known as Mean Time To Failure (MTTF). Replacing f(t) = − d

dt
R(t) (see

Eq. 1.1) into Eq. 1.3 and adopting that the time is non-negative, t ≥ 0,

MTTF = −
∞∫

0

tdR(t)dt = −tR(t)
∣∣∣∞
0

+

∞∫
0

R(t)dt. (1.4)

Assuming that the system will inevitably fail, both limits of the first term in Eq. 1.4
are 0, (lim

t→∞
tR(t) = 0). Thus,

MTTF =

∞∫
0

R(t)dt (1.5)

For exponential distribution of TTF (eq. 1.2), MTTF =
∞∫
0

e−λtdt = 1/λ.

Maintainability as a function of time V (t) is defined as the probability that the
failed system will be brought back to correct operation by time t. V (t) = P (TTR ≤
t), where TTR is the time-to-repair. The mean downtime, or the Mean Time To
Repair (MTTR) is also a common measure, reflecting the maintainability of the
system. It can be derived similarly as MTTF. For exponentially distributed TTR,
the PDF is in the form µe−µt. Thus, MTTR = 1/µ.

Availability as a function of time A(t) is defined as the probability that the system
will operate correctly and implement its function in time t.

A(t) =
MTTF

MTTF +MTTR
=
MTTF

MTBF
, (1.6)

where MTBF is the Mean Time Between Failures. MTBF is sometimes in-
correctly used as MTTF, since practically MTTR � MTTF . In systems that are
not repairable, MTTR and MTBF are not used at all, implying A(t) = R(t). For
repairable systems, A(t) ≥ R(t).

The bathtub curve, the failure rate and the hazard function

The bathtub curve is a widely used function for approximating the failure rate of
complex systems [47]. The failure rate λ(t) is the frequency with which the system

6

fails i.e., failures are observed. It is usually measured in FITs (Failures In Time),
that is the number of failures in 109 hours of operation of the system. Fig. 1.4 shows
the bathtub curve which is a superposition of three functions: the early life (infant
mortality), the constant (random), and the wear-out failure rate. Equation 1.2 holds
in the operational i.e., working time of the system where the failure rate is considered
constant. (λ(t) = λ = const.)

Figure 1.4: Bathtub curve representing failure rate

Expressed more precisely, the failure rate is defined as the probability that a
failure occurs in a time interval [t1, t2], given that no failures occurred prior t1. This
definition shows a clear relation between the failure rate λ(t) and the reliability R(t).
Namely, the probability that a system fails in the interval [t1, t2] is

t2∫
t1

f(t)dt =

∞∫
t1

f(t)dt−
∞∫
t2

f(t)dt = R(t1)−R(t2).

Thus, the failure rate is

λ(t) =
R(t1)−R(t2)

(t2 − t1)R(t1)
=
R(t)−R(t+ ∆t)

∆tR(t)
. (1.7)

In the last part of eq. 1.7, the time interval [t1, t2] is redefined as [t, t+ ∆t]. If the
length of the interval approaches zero, the instantaneous failure rate, i.e., the hazard
function h(t) is obtained:

h(t) = lim
∆t→0

R(t)−R(t+ ∆t)

∆tR(t)
= −dR(t)

dt

1

R(t)
=
f(t)

R(t)
. (1.8)

7

For exponential distribution h(t) = (λe−λt)/e−λt = λ, that is, the hazard function is
independent of time. In other words, the exponential distribution is memoryless. It
is the sole continuous distribution possessing this property.

Fault injection

A fault injection procedure deliberately inserts faults in the system in order to
evaluate the system behaviour, examine the error resilience, measure the failure rate,
etc. Evaluating fault-tolerant mechanisms by fault injection is a common practice. It
could be done in many different ways such as by simulation at various levels, emu-
lation using FPGAs, pulsed-laser injection, heavy ion irradiation or electromagnetic
interference.

When fault injection is done by simulation or emulation, fault models [128] are
used to logically represent the types of faults that are to be injected. Although fault
modeling is a concept that comes from integrated circuit testing where models like
stuck-at, stuck-open or bridging are used to find out structural errors, it is also fun-
damental by simulated/emulated fault injection. Here, additional logical models like
bit-flips or forcing a logical value in a signal may be used. A procedure for automated
integration of fault injection into the ASIC design flow [SKK13a] is used to evalu-
ate the fault-tolerant mechanisms of the proposed architectural framework. Several
models (like stuck-at-0, stuck-at-1, bit-flip, force-0 or force-1) can be used for perma-
nent, intermittent or transient fault modeling. Section 5.2 extensively elaborates the
procedure.

1.2 IC reliability failure mechanisms

ICs produced in CMOS, Bipolar, BiCMOS, ECL, or any other technology (with
CMOS being the most prevalent), fail over time. Although circuits produced in dif-
ferent technologies experience the same or similar failure mechanisms, there are also
technology-specific failure mechanisms. For example, the aging effects observed in
MOS transistors are different and far more severe than the ones observed in bipo-
lar transistors [74]. This section discusses the reliability failure mechanisms of ICs,
especially for CMOS ICs.

Fig. 1.5 shows an IC fault classification tree, and the most significant mechanisms
that trigger each fault type. Spatial faults or defects are observable immediately
after IC production and are fixed in time. They are related to the design and manu-
facturing process. The (non-)presence of defects determines the IC quality1.

Defects stem from the process conditions and variability, the circuit layout, struc-
ture, geometry, environment, etc. They can be systematic or random.

1As said, reliability is the ability of the system to perform according to specifications under stated
conditions and for a specified period of time T , for 0 ≤ t ≤ T . On the other side, quality is the
ability of the system to perform according to specifications under stated conditions at time t = 0,
i.e., Q = R(0).

8

Figure 1.5: IC reliability failure mechanisms and fault classification. Fault
classification tree is shown using white letters on black back-
ground. Failure mechanisms for each leaf are shown using black
letters on white background. Some mechanisms like HCI, BTI
and TDDB aging effects are specific only to CMOS ICs.

Systematic defects appear across large dimensions, e.g., entire die or wafer and
are usually related both to design and to manufacturing process. For instance, the
inability of the process to separate two wires that are put too close in the layout will
lead to a systematic defect after production, resulting with bridged wires, possibly
in each die and in each wafer. Gradients are another type of systematic defects that
arise due to variation of certain physical parameters (e.g., temperature, pressure,
oxide thickness) across an IC. Since these variations are mathematically expressed as
2D fields, their name comes from their mathematical treatment.

Random defects occur during the production process and can not be controlled
or predicted. They include: Random Dopant Fluctuations (RDF) – fluctuations in
quantity of dopant atoms; Line Edge Roughness (LER) and Line Width Roughness
(LWR) stem from the sub-wavelength lithography; Gate Dielectric Variations stem
from variations in the oxide thickness, introduction of fixed charges in the oxide or
interface traps. Defects are actually permanent faults causing malfunctioning ICs, or
ICs with degraded performance. E.g., material defects, cracks, oxide breakdown lead
to a malfunctioning IC, while RDF for example, can cause parametric variations (like
deviation of the threshold voltage or the drive current of transistors) that degrade
the performance of the IC.

On the other side, temporal faults are not observable right after IC production,
and are variable in time. The resilience to these faults determines the IC reliability.
Temporal faults could be destructive or transient (non-destructive). They are related
to the IC properties, operating and environmental conditions.

9

Destructive faults cause a permanent damage to the IC, leading to malfunction-
ing or degraded performance. Destructive faults could be instant or accumulative.
Instant faults could be triggered by several mechanisms. For example, high-energy
particle that hits the IC, could induce sufficient current to burn one or several tran-
sistors. ElectroStatic Disccharge (ESD) or Electrical OverStress (EOS) could cause
dielectric breakdown due to the high voltage applied across the oxide. Accumula-
tive faults come from mechanisms that continuously affect the circuit. The aging
effects are such mechanisms. Another mechanism is the Total Ionizing Dose (TID),
i.e., build-up of trapped charge in the oxide due to ionizing radiation. When active
(not dormant), accumulative faults are usually intermittent at the beginning. Then,
over time they become permanent. Since this thesis is related to long-life multipro-
cessor architectures, aging effects are of special interest. Therefore, Subsection 1.2.1
gives a more detailed introduction in this topic.

Transient faults, on the other hand, are not destructive and disturb circuit op-
eration for a limited time period. Mainly two types of sources cause transient faults:
noise and Electromagnetic Interference (EMI). Nevertheless, other sources like ESD
and EOS may not be destructive and cause transient faults. Noise is defined as a
random, unwanted deviation of a signal from its intended value. Noise is inherent to
the circuit itself, i.e., it comes from the circuit. The production process largely deter-
mines the noise figure of circuits. EMI is defined as an influence of (source) signals on
other, (victim) signals through a conductive, capacitive, magnetic or radiative cou-
pling path. EMI also causes unwanted deviation of a signal from its intended value,
but the source is external to the victim signals. The source signal could be natu-
ral (random) or man-made (deterministic). Natural EMI sources are for example, a
thunderstorm lightning or cosmic noise. Man-made source signals could be accidental
and unrelated to the victim circuit (e.g., switching on a power engine or microwave
oven) or functional (e.g., interconnect crosstalk). The most frequent sources of EMI
are the following. On-chip crosstalk can occur between two circuits, sub-circuits or
elements of the same circuit. Simultaneous Switching Noise (SSN) is a special case
of crosstalk, when circuits share the same power lines. This is commonly known as
ground bounce, substrate noise or power-ground noise. The simultaneous switching of
digital signals (tied to a clock signal) produces relatively large current spikes that are
actually the source of SSN. Radiated EMI occurs when an unintentional transmitter
of electromagnetic waves affects a victim circuit. These unintentional transmitters
could be for example, mobile phones, power engines, microwave ovens, etc. At the
end, high-energy particles such as alpha, beta or gamma rays ionize the semiconduc-
tor material, where the formed charge could change a signal value (transient fault)
or, as said, could be destructive and damage the circuit.

Operating in hostile space environment (e.g., electronics in satellites) is largely
investigated topic. Faults that originate from the ionizing radiation environment i.e.,
high-energy particles are called Single Event Effects (SEE). Since this thesis is
related to multiprocessor architectures intended for space applications, this topic is
introduced in more details in Subsection 1.2.2.

10

1.2.1 Aging effects

Aging effects gradually degrade circuit performance and eventually cause permanent
faults. Different mechanisms are considered as aging effects. Electromigration, for
example, is an aging effect that affects ICs in any technology since it is related to the
metal layers of the circuit. On the other hand, significant aging effects in CMOS ICs
are related to degradation of the gate-oxide. These are Hot Carrier Injection (HCI),
Time-Dependent Dielectric Breakdown (TDDB) and Bias Temperature Instability
(BTI). Fig. 1.6 helps explaining gate-oxide aging effects.

Figure 1.6: CMOS inverter. Significant current flows from Vdd to ground at
each change of state.

Fig. 1.6 assumes operation of digital CMOS circuits. Analog CMOS circuits ex-
perience the same effects.

Hot carrier injection

There are several mechanisms that cause hot carriers i.e., electrons or holes with high
energy to be injected into unallowed regions (gate and spacer oxide) of NMOS and
PMOS transistors [74]. For example, when the gate voltage is (nearly) equal to the
drain voltage of the NMOS transistor, the effect of injecting hot electrons into the
gate-oxide near the drain is maximal. “Lucky” electrons gain sufficient energy (by not
having collisions on their path from source to drain) to pass the barrier of the silicon
– gate-oxide interface. Since holes are more heavier than electrons, this mechanism
is more significant in NMOS transistors.

Another mechanism is impact ionization. When the drain voltage is high and
the gate voltage is low, electron-hole pairs are created due to impact ionization of
the channel current, again near the drain. The generated electrons and holes can
accelerate in the electric field of the channel and potentially pass the silicon – gate-
oxide barrier. This is known as avalanche multiplication and causes the most severe
transistor degradation – a lot of carriers are injected into the gate-oxide at the same
time.

In digital CMOS circuit operation, the channel current id (see Fig. 1.6) is respon-
sible for HCI degradation. Both transistors conduct at each change of state which

11

shows a strong correlation between HCI aging and the frequency of operation of the
circuit. That is, when the circuit is operating faster, it ages more due to HCI.

HCI causes shifts in the transistor parameters such as threshold voltage Vth, cur-
rent factor β and output conductance g0, leading to degraded transistor performance.
Electrically, the input-to-output delay is increased due to HCI (the transistor gets
slower).

HCI is temperature dependant [99]. At lower temperatures the mean free path for
carriers is longer. Thus, carriers can gain higher energies. That means, the lower the
temperature, the greater is the degradation due to HCI, which is especially adverse
for space and aircraft applications.

To summarize, high performance (frequency) and low temperature increase HCI
degradation.

Bias temperature instability

Negative BTI (NBTI) and Positive BTI (PBTI) are observed in PMOS and NMOS
transistors, respectively. Nevertheless, PBTI is observed only in modern High-K
Metal Gate (HKMG) technologies [40]. The impact of BTI is greater in smaller
technology nodes, and becomes a serious issue. BTI also causes shifts in transistor
parameters, especially in the threshold voltage Vth. Again, increasing Vth means an
increase of the input-to-output delay, or slower transistor.

BTI is also temperature dependent (T in BTI). In this case it is the opposite
of HCI, i.e., BTI degradation is increased with increase in temperature. The high
electrical field at the gate-oxide combined with elevated temperature leads to the
following process at the silicon – gate-oxide interface. Due to the different structure
of silicon and gate-oxide, a thin interface region is formed. This region contains many
dangling bonds (interface states) that trap and release carriers from the channel.
Trapping carriers reduces carrier mobility and shifts the threshold voltage. During
the manufacturing process, these dangling bonds are passivated by hydrogen so this
process should not occur. Nevertheless, under negative (positive) bias and elevated
temperature the passivized bonds could be broken again.

BTI has a specific property: the transistor degradation is recoverable to some
extent immediately after reducing the stress voltage (due to releasing carriers by
the dangling bonds). This complicates the modeling of the effect, but also measure-
ments and lifetime estimations. Vth has to have permanent and recoverable part in
modeling [39, 73]. The model of [39] includes the temperature dependency of BTI:
Vth ∝ exp(−Ea

kT
), where Ea is the activation energy and k is the Boltzman constant.

In contrast to HCI which causes asymmetric transistor degradation (carriers are
injected near the drain), BTI causes homogeneous degradation and shows small de-
pendency on transistor geometry.

Time-dependent dielectric breakdown

Dielectric materials do not conduct electrical current if the field across the material
is lower than Emax, which depends on the material’s properties, size and geometry. If

12

a larger field than Emax is applied, a Hard BreakDown (HBD) occurs, characterized
by a local but large current flowing through the dielectric. EOS and ESD could cause
HBD, as previously discussed.

The gate-oxide in a CMOS transistor is a dielectric with certain properties. In
normal operating conditions the gate-oxide field is lower than Emax. Nevertheless,
due to aging processes like HCI and BTI, the gate-oxide changes its properties until
it fully breaks down and starts to conduct current in the range of milliamperes. As
said, carriers are trapped into the gate-oxide due to HCI. With time, the larger
and larger accumulation of carriers could form a conductive path through the gate-
oxide, leading to dielectric breakdown. This is actually a time-dependent dielectric
breakdown (TDDB).

HBD is the ultimate effect where the dielectric completely lost the insulating
properties. Prior HBD, Soft BreakDown (SBD) may occur, with only partial degra-
dation of insulating properties. SBD results in significant increase in the gate current
noise [74]. Progressive BreakDown (PBD) could be also observed as a gradual increase
of the gate current with time, prior HBD.

For modern nanometer technologies HBD could be a reliability threat only if the
operating voltage of the transistor is higher than the nominal (normal) operating
voltage [86].

Electromigration

The previous aging mechanisms are related to the gate-oxide of CMOS transistors.
Electromigration, on the other side, is related to the metal wires, vias and contacts.
Therefore, it is not only affecting ICs produced in CMOS technology, but also in any
other technology.

As the name says, electromigration is an aging process where metal atoms (ions)
migrate (are transported) due to high current densities and elevated temperature.
The current electrons largely affect metal ions and transport them in the current
direction. ICs (both with aluminum and copper interconnects) are very prone to
electromigration [68]. The vias and contacts are especially affected. Although there
are many attempts to reduce this effect (e.g., introducing copper in aluminum, or, tin
in copper), electromigration is still a reliability threat in modern IC technologies [123].

Practically, moving metal ions from one place to another creates voids and hillocks
in the interconnections. This in turn could cause changes in the metal resistance, as
well as opens and shorts in the circuit.

1.2.2 Single event effects

Particles with high energy such as α and β particles, γ- and X-rays, heavy ions, pro-
tons and neutrons have negative impact on semiconductor electronic devices, starting
from ionization to complete destruction. Environments with such high energy parti-
cles are referred to as ionizing radiation environments, while their effects on electronic
devices are called ionizing radiation effects. The Van Allen belt around the planet
Earth is such an environment, where many Low Earth Orbit (LEO) satellites reside.

13

Furthermore, solar flares periodically emit tons of protons and ions with high energy.
Cosmic rays contain an abundance of particles with different energies (up to TeV).
Thus, space electronics altogether is subjected to ionizing radiation. Lots of prob-
lems due to ionizing radiation in satellites or space missions have been reported so far.
Moreover, ground applications in high energy physics and medicine (e.g., computed
tomography, magnetic resonance and X-ray imaging) are also environments with high
energy particles.

Ionizing radiation effects could be considered as a special type of electromagnetic
interference (see classification in Fig. 1.5). They can be accumulative and instant.
Regarding transitivity, they can be destructive or transient. Total Ionizing Dose
(TID) is an accumulative radiation effect where charge is build-up in the oxide parts
of semiconductors. The end effect is similar to the one caused by HCI or TDDB.
Nevertheless, oxides thinner than 10 nm are much less sensitive to TID, i.e., modern
technologies are immune (radiation hard) to TID effects [96]. On the other side,
instant ionizing radiation effects (Single Event Effects) largely affect ICs in any tech-
nology.

Figure 1.7: Ionizing high energy particle hitting a semiconductor

Fig. 1.7 shows a high energy particle hitting a semiconductor in the drain (or
source) region. Impact ionization causes electron-hole pair generation in a dense
track, both in silicon and oxide materials. The electrical field causes the generated
carriers to drift and recombine. Nevertheless, many of the generated carrier pairs can
survive. Thus, an amount of positive or negative charge could be collected at sensitive
nodes in the semiconductor. If this charge is larger than a threshold value i.e., the
critical charge, various effects (possibly destructive) could be observed in the circuit.
This Subsection discusses these various single event effects that can arise [83].

The errors caused by SEEs could be classified as soft or hard. Soft errors are
caused by transient SEEs and may be recovered by reset, by power cycle (off and back
on), or simply by rewriting the memory element. On the other side, hard errors are
non-recoverable since the fault causing it, is a destructive SEE. Fig. 1.8 shows the
most significant SEEs observed in semiconductors, arranged and classified in a tree
structure.

Single Event Upset (SEU) is a transient fault caused by an ionizing particle
that induces a charge greater than the critical charge and modifies the electrical state

14

Figure 1.8: Classification of single event effects

of one or more memory elements. If more memory elements are affected, the effect
is also commonly known as Multiple Bit Upset (MBU). The error is produced
when the value is read from the upset memory element(s).

Single Event Transient (SET) are transient voltage or current disturbances
at the semiconductor nodes. In digital circuits, SETs could propagate to a memory
element and practically become a SEU. If this is not the case, the SET would not
trigger any error. On the other hand, in analog circuits SETs cause transient pulses in
amplifiers, digital-to-analog or analog-to-digital converters etc, which could produce
various types of problems.

Single Event Functional Interrupt (SEFI) is a complex effect that can occur
in complex circuits where a SEU for example, disturbs a control register. This may
induce a long series of errors and loss of functionality. Recovery is possible by reset,
power cycle or rewriting the control register. SEFIs require special treatment in the
system.

Single Event Latch-up (SEL) is an event that occurs when a parasitic PNPN
structure in the semiconductor switches state. Besides by high energy particles, SELs
could be triggered by electrical transients. Bulk CMOS technology is especially prone
to this effect. A large increase of supply current is manifested, which could possibly
destroy the semiconductor by overheating. Thus, SELs could be both transient and
destructive. Recovery is possible only by a power cycle (assuming that the semicon-
ductor is not already destroyed).

Single Event Burnout (SEB) and Single Event Gate Rupture (SEGR)
are related to power semiconductors. These effects cause permanent damage to the
devices. Before SEGR, usually Single Event Gate Damage (SEGD) is observed.
The gate-oxide is eventually ruptured and starts to conduct. Although power MOS-
FETs are the most susceptible devices to these effects, similar effects (Single Event
Dielectric Rupture (SEDR)) are observed in CMOS devices too [111].

1.3 Impacts of technology scaling

Since the emergence of ICs (1958), or more exactly the emergence of CMOS technol-
ogy (1963), technology scaling has been (and still is) the main driver of the electronics
industry. Scaling enables denser and faster integration of transistors on the silicon
substrate, providing more and more electronic functions in a single chip with each

15

new generation. A famous citation of Jack Kilby, the inventor of the IC in 1958 at
Texas Instruments, illustrates why scaling is the primary force behind the electronic
industry: “What we didn’t realize then was that the integrated circuit would reduce
the cost of electronic functions by a factor of a million to one. Nothing had ever done
that for anything before!”

In 1965, the co-founder of Intel, Gordon Moore, made a prediction based on
a surprisingly little data. His original statement in [82] is: “The complexity for
minimum component costs has increased at a rate of roughly a factor of two per year.
. . . no reason to believe it will not remain nearly constant for at least 10 years.”

In 1975, Moore reformulated his statement which is known as the Moore’s law:
“The number of transistors will be doubled every 18th month.” Practically, the semi-
conductor industry was defined. Based on the Moore’s law, the ITRS (International
Technology Roadmap for Semiconductors) constitutes a set of predictions for the fu-
ture development of the semiconductor industry. Fig. 1.9 shows the confirmation of
the Moore’s law, using the available data from the past five decades.

Figure 1.9: Confirmation of Moore’s law. Moore had only the first 5 data
samples when he made the famous statement in 1965. (Source:
Intel)

Technology scaling brings lots of benefits: improves performance, increases the
number of IC functions by increasing the transistor density, and reduces power con-
sumption per transistor (or gate). The typical goals of technology scaling are the
following [20].

• reducing gate delay by 30%, thus increasing the operating frequency of ∼ 43%

• doubling the transistor density

16

• reducing energy per transition of about 65%, thus saving 50% in power con-
sumption at 43% increased frequency of operation

Despite the numerous benefits, technology scaling introduces many challenges
and problems. Subsection 1.3.1 is devoted to the negative impacts of scaling on
IC reliability. Besides lower reliability, ICs in each new generation have to deal
with greater power consumption. Although 50% power is saved per transition in
a transistor, the greater number of transistors, the increased operating frequency,
as well as the growing die size, lead to an increased overall power consumption in
each new generation. Eq. 1.9 shows that dynamic power consumption Pd in CMOS
technology is proportional to the operating frequency f , the total IC capacitance
(load plus internal) C, and the square of the supply voltage Vdd. Table 1.1 shows the
trends using data from various generations of processors.

Pd ∝ fCV 2
dd (1.9)

Excessive power consumption periodically appears as a problem. Until the mid
80’s, NMOS and bipolar technology (which dissipate static power) were dominating.
Furthermore, supply voltage was not scaling in order to keep simple interoperability
between different technology nodes i.e., constant-voltage scaling. Afterwards, CMOS
technology turned to be the single choice for digital VLSI circuits due to the negligible
dissipation of static power. Scaling down the supply voltage was the next logical step,
since dynamic power dissipation is proportional to the square of the supply voltage
(see Eq. 1.9).

Currently, the power consumption is a problem again. Frequency scaling had to
stop: as Eq. 1.9 shows, dynamic power consumption is directly proportional to the
operating frequency. The data of the last decade shows that all high-end processors
operate in the range of 1 to 4 GHz.2 Moreover, die growth has also stopped [50] (see
Table 1.1).

Already known “magic bullets” like clock and power gating, DVFS (Dynamic
Voltage and Frequency Scaling), asynchronous design, etc. are used to reduce power
consumption at the expense of another system property/ies (performance, cost and/or
dependability). Reducing performance for example, always leads to lower power con-
sumption. In other words, every design is a 2D point in a plane (see Fig. 1.10), that
does not cross over the Pareto optimal curve [50]. Fig. 1.10 implies that a design
trade-off has to be made, possibly at the optimal performance – power consumption
point.

Of course, a larger design space (e.g., 3D or 4D) could be used in order to take
into account other system properties.

1.3.1 Reliability trends

Technology downscaling has especially adverse impact on IC reliability. One could
make such a statement only by looking at some simple facts. In a constant-voltage

2Over-clocking records go up to 9 GHz in newest technologies.

17

Table 1.1: Technology scaling trends. The largest part of the data in the ta-
ble is collected from Intel. EL and DL denote technologies with
enhanced and depletion load transistors, respectively. The power
supply is given in Volts (V). Some of the older technologies require
several supplies (separated with / in the table). In newer technolo-
gies, the operating voltage range is denoted by min-max allowed
voltage. The power consumption is given in Watts (W). The max-
imal level of integrated (on-chip) cache as well as its size in Bytes
(B) is also given, where L1:8K+8K for example, denote separate
instruction and data cache at the L1 level, both with size 8KB.
The litography resolution, the processor die area and the operating
freqency are given in nm, mm2 and MHz, respectively.

Year Processor Technology nm Tran. MHz V W Cache (B) mm2

1971 4004 EL PMOS 10000 2,3k 0,1 15 1 0 12
1972 8008 EL PMOS 10000 3,5k 0,5 5/-9 1 0 14
1974 8080 EL NMOS 6000 4,5k 2 5/-5/12 1,5 0 21
1976 8085 DL NMOS 3000 6,5k 3 5 1,5 0 20
1978 8086 DL NMOS 3000 29k 5 5 2,5 0 33
1979 8088 DL NMOS 3000 29k 5 5 2,5 0 33
1982 80286 CMOS 1500 134k 6 5 3,3 0 47
1985 i386 CMOS 1000 275k 16 5 2,3 0 104
1989 i486 CMOS 1000 1,2M 25 5 4,73 L1:8K 196
1993 Pentium BiCMOS 800 3,1M 66 5 15,3 L1:8K+8K 294
1995 Pentium Pro BiCMOS 600 5,5M 200 3,3 35 L1:8K+8K 306
1997 Pentium II CMOS 250 7,5M 300 2 21,5 L1:16K+16K 203
1999 Pentium III CMOS 180 28M 533 1,65 14 L2:256K 100
2000 Pentium 4 CMOS 180 42M 1500 1,59-1,75 57,8 L2:256K 217
2002 Itanium 2 CMOS 130 410M 1000 n/a 100 L3:3M 374
2002 Celeron M CMOS 90 144M 1700 1-1,29 21 L2:1M 87
2004 Celeron D CMOS 90 125M 2800 1,25-1,4 84 L2:256K 112
2006 Pentium D HKMG 65 376M 3200 1,2-1,33 130 L2:4M 162
2007 Core 2 Quad HKMG 65 582M 2660 0,85-1,5 105 L2:8M 286
2008 Core i7 HKMG 45 731M 2660 0,8-1,375 130 L3:8M 263
2010 Core i7 2D 2-gate 32 1170M 3330 0,8-1,375 130 L3:12M 239
2013 Core i3 3D 3-gate 22 1400M 3400 n/a 54 L3:3M 177

scaled technology, the transistors experience greater density of the electrical fields.
The greater density of the field across the gate-oxide speeds up gate-oxide aging
effects. Moreover, the smaller cross section of the metal conductors implies greater
current density, thus worsening electromigration. On the other side, if voltage is
scaled, the transistors have lower noise margins that make the IC more prone to
electromagnetic interference and noise, while the conductivity of the metal conductors
is lowered. A logical conclusion is that with technology downscaling, the lifetime of
the IC gets shorter with increased number of FITs during the operational period. In
other words, the bathtub curve in Fig. 1.4 gets narrower and goes up the y-axis.

18

Figure 1.10: Trade-off between performance and power consumption. Each
design is a 2D point. Designers should tend to locate designs at
the Pareto optimal curve.

Aging effects trends

An elaborate description of the trends in aging effects is given in [74]. IC reliability
issues were firstly observed at the beginning of the 1980s. Before that, the main
reasons for system failures were corrosion, bonding problems (the purple plague)
or ionic contamination, which are related to the IC packaging or the PCB (Printed
Circuit Board). Scaling down the gate-oxide led to more and more visible degradation
of IC performance due to the HCI effect, and eventually permanent faults due to
TDDB.

Scaling-related problems with power consumption and reliability led to innova-
tions in device structures and materials. A relatively great reduction in the gate
leakage, the HCI and the TDDB effect was observed. Copper interconnects with low-
k dielectrics were introduced to lower the RC-delays. Furthermore, high-k oxides and
metal gates that enabled further scaling of the gate-oxide in CMOS devices led to the
HKMG technology. Nevertheless, the new materials significantly amplified the so far
negligible aging effects: NBTI and Electromigration. PBTI became equally impor-
tant as NBTI, although it was not observed prior HKMG technology. In other words,
the new materials introduced even greater reliability challenges. The newest FinFET
technologies that use devices with 2 or 3 independent gates (multi-gate devices) also
use these materials and experience the same effects.

Quantitative evaluation of lifetime reliability based on industrial-strength models
for different technology nodes is given in [107], where the authors evaluate several
aging effects in a POWER4-like processor implemented in 180, 130, 90 and 65 nm
technology. The average failure rate goes from 2000 to 4000 FITs for the 180 nm
technology, up to 18000 FITs for the 65 nm technology.

Soft error trends

Besides lifetime reliability issues, ICs in scaled technologies are becoming more prone
to electromagnetic interference and noise, as mentioned. Of special interest are the

19

single event effects causing soft errors. Soft errors generate higher failure rate than
all other reliability failure mechanisms combined [75]. A few quotations follow, illus-
trating the soft error challenges more clearly:

“Cosmic rays are almost impossible to stop. They’ll go through 5 feet of concrete
without any trouble, and cause a bit to flip.” (Lange, IBM)

“In 0,13-micron technology we’re seeing some memory technology with error rates
of 10.000 or 100.000 FITs per megabit. This brings the frequency of error in a single
device down to weeks or months.” (Eric-Jones, MoSys)

“A system with a 1 GB of RAM can expect an error every two weeks; a hypo-
thetical terabyte system would experience a soft error every few minutes.” (Tezzaron
Semiconductor)

As technology scales down, there is an exponential increase in the Soft Error
Rate (SER)3, caused by the most common source of single event upsets i.e., low-
energy alpha particles [75]. The impact of the new technologies on SER is investigated
in [29] using neutron beam irradiation of processors in different technology nodes. The
results are shown in Table 1.2.

Table 1.2: SER by microprocessors in different technology nodes. The SER
per bit decreases as technology scales from 250 down to 65 nm tech-
nology. Nevertheless, a reversal of this trend is observed at the
40 nm technology. (Source: [29])
Tech. Relative SER Mbits/µp Relative SER
(nm) (FITs/kbit) per µp (KFITs)

250 3,2 1,52 5,0
180 3,0 1,52 4,3
130 2,4 3,28 7,9
90 1,0 33,6 33,6
65 0,7 44,3 30,5
40 0,94 71,0 67,0

Table 1.2 also implies a tendency of increase of the SER/microprocessor as tech-
nologies scale down, simply due to the larger number of Mbits/microprocessor i.e.,
the greater complexity and silicon area enabled by the new technology.

An interesting trend is that the larger available silicon area of each new generation
is occupied by memory [69]. Fig. 1.11 shows a 2007 prediction of memory and logic
occupancy in ASICs, using the previously available data. Fig. 1.11 further suggests a
logical assumption that on-chip memories are (and will be) responsible for the largest
part of failures in the ICs.

1.3.2 Architectural trends – multiprocessing

The most widely accepted and used machine programming paradigm today is based
on series of instructions (programs) that optionally use data operands in order to

3The SER is simply the number of FITs caused by soft errors.

20

Figure 1.11: Memory and logic area trends in ASICs. Prediction from 2007.
(Source: Semico Research Corp.) Actually, ITRS 2007 [56] pre-
dicts that memory area will occupy 94% of the total chip area
by 2014.

perform operations like data or control transfers, arithmetic or logic computations.
Based on the limited set of instructions, one could build Finite State Machines (FSM)
that are able to process the instruction series. These FSMs are commonly known as
processors, or, when implemented in microelectronic technology – microproces-
sors.4

Basically, speeding up execution of a program could be done in two ways. One
is to increase the operating frequency of the processor, which is not an easy task
mainly due to the excessive power consumption, as previously discussed. The second
way is to exploit the available Instruction-Level Parallelism (ILP) in the program.
That is, try to execute two or more instructions in parallel. The main obstacles of
this approach are the data and control interdependencies. For example, if the results
of one instruction are used as data in the next one, parallel execution of these two
instructions is not possible. The contemporary microprocessor architectures have
reached the point of nearly full exploitation of the possible ILP [44], thus coming to
another wall. Other ways of further increasing performance have to be found.

The next logical step, and current trend is multiprocessing which is actually a
known concept for decades. One or more programs are divided into separate tasks
and scheduled for execution by one or more Processing Elements (PEs).5 The
term process denotes the part of the program which is being executed by the PE.

4The terms processor and microprocessor are interchangeably used in the thesis, denoting proces-
sors implemented in micro- and nanoelectronic technology. The term nanoprocessor is rarely used
in the literature, and not used here. It is also possible that the term processor is occasionally used
to denote a multiprocessor (or, multi-core processor) realized in a single IC.

5The PE is more commonly called the core, although this term has sometimes different meanings.
Thus, multi-core processors or systems are also multiprocessors.

21

Each PE in the system executes a time-multiplexed series of processes. A context-
switch is a procedure when the processor temporarily stops the execution of the
current process, and starts executing the next process scheduled for execution. This
scheduling could be done in different ways in order to guarantee fairness between
the programs, achieve efficient execution, give priority to some programs, retain pre-
dictability of execution, etc. A system with two or more PEs is called a multipro-
cessing system, or, multiprocessor. The PEs in the multiprocessor could simul-
taneously (i.e., in parallel) execute processes, thus speeding up operation. Of course,
the interdependent tasks have to be executed sequentially, which here too, limits per-
formance. Determining which PE will execute a given task is called task mapping.
Another design challenge, and main differentiating characteristic of multiprocessing
systems is the interconnection network of PEs and memory modules.

The term thread denotes a lightweight process that can not manipulate with
the complete resources of the PE (especially with system resources), opposed to a
“classical” process. One PE could be built to support execution of two or more
threads simultaneously, which is called multithreading.

Multiprocessors are nowadays widely used in all computing segments: desktop,
server and embedded. They present a great processing power to programs which
could be divided into smaller procedures that are processed in parallel, e.g., scientific
applications with intensive computations, or, applications with large number of inde-
pendent processes, e.g., web-servers serving thousands of clients simultaneously. In
the embedded domain, image processing or other computationally-intensive applica-
tions regularly opt multiprocessors. In the desktop domain, usually greater graphic
processing power is required (e.g., for entertainment and games); Graphic Processing
Units (GPU) deal with large amounts of data in parallel; besides that, the operat-
ing systems make use of the greater number of PEs in order to speed up critical
operations.

1.4 Thesis proposal

The dependability challenges and trends, as well as the architectural trends driven
by technology scaling are the basis of this work. To recap, technology downscaling
brings lots of challenges regarding IC reliability: resilience to aging effects and failure
mechanisms like single event effects is lowering! Furthermore, excessive power con-
sumption is a problem again! This Section summarizes the motivation behind the
thesis and shortly outlines the proposed solution.

1.4.1 Motivation

Logical and empirical conclusions show (see Section 1.3) that the best way to save en-
ergy and defy aging is to do less work i.e., lower performance, implying that the same
techniques for reducing power-consumption could be used for reducing aging-effects,
and vice versa. Although emerging technologies show significant improvements in
power consumption (see Table 1.1), this is not the case with aging effects.

22

On the other side, the soft error rate is increasing. ICs are becoming more prone
to electromagnetic interference and single event effects. More elaborate fault-tolerant
mechanisms must be used to keep low error rates. As will be shown in Chapter 2,
increasing fault tolerance could be done by reducing performance, by increasing the
cost of the system (e.g., larger IC area), or, both. In other words, there are different
trade-offs between aging, fault tolerance, performance, power consumption and cost
of the system. Furthermore, Section 2.3 presents solutions based on the strategy used
in this work: dynamic adaptation to application requirements.

That is, the main thesis here is that these challenges and trade-offs could be
addressed by parallel operation, specialized functional units, application-level opti-
mization and intelligent adaptive control! This is basically powered by the fact
that most applications, especially in the embedded domain, dynamically change their
requirements regarding performance (with that energy) and fault tolerance. Consider
Example 1.

Example 1. Satellites are designed to stay operational for ten or more years (long-
life systems) with limited resources of power, mainly solar. Their environment is
extremely hostile: rich with high-energy particles that disturb circuit operation, in-
troduce permanent and transient faults, and accelerate aging effects. Maintenance by
human intervention is not possible.

Let a multiprocessor-based, on-board computer in an earth observation satellite
is involved in several tasks concurrently. High computing performance is needed for
the observation task i.e., image processing. Here, several erroneous image bits are
not mission-critical and can be accepted, meaning that the expectations of reliability
in these computations are not very high. On the other side, critical procedures like
change (or control) of the satellite’s orbit have to be executed with very high reliability
i.e., in a fault-tolerant manner.

In situations where the multiprocessor activity is low (e.g., waiting for an interrupt
for a new observation task), entering a low-power mode which could also extend the
total lifetime of the system, is desirable. As explained, the more stress is caused by
running the multiprocessor at full speed continuously, the shorter the lifetime.

The scenarios from Example 1 call for a high-performance, highly-reliable, long-life
and low-power system. It is impossible to have some combinations of these proper-
ties in the same time and in full extent, due to the trade-offs discussed previously.
Nonetheless, they are not actually required at once, e.g., image processing demands
high performance but not high reliability. In the case of orbit control, exactly the
opposite properties are required. In other words, application requirements are dy-
namically changing. An adaptive and flexible system, capable to adjust itself to the
changing requirements would be a possible solution.

1.4.2 Proposed architectural framework

This work investigates such a flexible and scalable multiprocessor framework that
besides dynamically adapting the multiprocessor to the application requirements re-
garding fault tolerance and performance, at the same time tries to prolong system

23

lifetime and save energy as much as possible. Several operating modes are considered,
three of which are basic:

• de-stress mode,

• fault-tolerant mode,

• high-performance mode.

Dynamically switching these modes on a request by the operating system or other
application would enable dynamical adaptation.

In de-stress mode, a minimum required number of multiprocessor cores are
active (execute instructions), while all others are inactive (disconnected from the
power supply or from the clock). The number of active cores should be determined
according to the application requirements. Using core gating patterns like round-
robin, the work of the currently active cores could be transferred to inactive cores
(which become active), while the active ones are power- or clock-gated (thus becoming
inactive). Such a takeover of the workload could be done repetitively in time by
different cores. This systematic de-stress is supposed to increase the multiprocessor’s
lifetime: as said, aging is reduced or eliminated if the circuit is less active or not
powered. Besides de-stressing, this mode also enables power-saving.

Fault-tolerant mode, on the other side, increases multiprocessor fault tolerance.
N > 1 tightly synchronized cores are assigned to execute the same task simultane-
ously. An NMR voter determines the final core outputs at each clock cycle, thus
forming a core-level NMR (N-Modular Redundant) system. The number of cores N
could be assigned statically or dynamically. In static assignment, N remains fixed
during the execution of the fault-tolerant task. In dynamic assignment, N could be
changed during task execution. For example, the task may be initially executed by
two cores forming a DMR (Dual-Modular Redundant) system. As long as the outputs
of the cores match, an error-free operation is assumed. On a mismatch, new cores are
dynamically assigned and the operation is restarted in order to recover from errors.
Now, N > 2 cores synchronously execute the (restarted) task. For low fault rates,
three cores forming a TMR (Triple-Modular Redundant) would be sufficient. This
dynamic core assignment actually resembles a form of NMR On-Demand (NMROD)
system (see Subsection 2.1.3).

At last, high-performance mode enables high-performance operation. When
operating in this mode, the multiprocessor differs by nothing compared to a common
multiprocessor.

The multiprocessor framework (or simply framework in further text) consists of

• framework controllers – hardware part of the framework that cou-
ples/decouples the modules to/from the power supply or clock in de-stress
mode and forms NMR systems in fault-tolerant mode; the appropriate voters
are part of the controllers;

24

• framework middleware – software that “drives” the framework controllers
on one hand, and offers the framework services to the application layer on the
other hand, hiding the hardware details.

The application layer (operating system, or other applications) call the middleware
routines that program the framework controllers or read their status. Fig. 1.12 shows
the layering and encapsulation of the system.

Figure 1.12: Layering and encapsulation

Fig. 1.13 presents a general multiprocessor system based on the proposed frame-
work. In further text, it is simply called a framed multiprocessor. Each of the
K framework groups are controlled by a framework controller. In a group i with Pi
identical modules, NMR systems with 1 < N ≤ Pi could be dynamically formed. The
modules are connected by an interconnection network which should enable scalability
and fault-tolerant (e.g., redundant) links.

Figure 1.13: Framed multiprocessor – general architecture

The modules could be PEs, cores with or without caches, memory modules or
even entire subsystems consisting of cores and memory modules.

Example 2. A framed multiprocessor consists of two framework groups. The modules
of the first group are three processors, while the modules of the second group are three
memory modules (see Fig. 1.14).

The system could be configured to operate in de-stress mode with one processor and
one memory module, to save power and reduce aging. When fault-tolerant operation
is required, the three processors could be arranged in a TMR system, where the output
is chosen by a voter; in the memory group, only one memory module could be active,
or, alternatively, the three memory modules could be also arranged in a TMR system.
For high-performance, the system could be configured as a multiprocessor with three
independent PEs and three independent memory banks.

25

Figure 1.14: A specific example of a framed multiprocessor

1.4.3 Objectives

To sum up, the proposed multiprocessor framework could improve lifetime and fault
tolerance, but also keep high-performance and lower power consumption by dynami-
cally adapting the multiprocessor to the application requirements. In particular, the
following benefits are expected.

• Meet performance and fault tolerance requirements of applications at the mini-
mum possible rate of aging and power consumption; de-stress mode of operation
inactivates modules that are not needed and systematically de-stresses the active
modules using a de-stress pattern; de-stressing not only reduces aging effects
(improves lifetime) but also reduces power consumption.

• Provide fault tolerance for timing-critical applications; multiprocessors are very
suitable platforms for software-based fault-tolerant mechanisms; however, these
mechanisms are often inappropriate for applications where lengthy error han-
dling is not an option; the fault-tolerant operating mode is based on a coarse-
grained NMR grouping of modules which instantly masks faults and enables
uninterrupted operation; using a very flexible, programmable NMR voters, the
framework could be instructed to build almost any NMR scheme, both static
and dynamic (e.g., NMROD).

• Provide a high-performance mode that makes the framed multiprocessor operate
as any common multiprocessor; however, the framework may employ lifetime-
aware task mapping and scheduling using the information supplied by the em-
bedded aging monitors; furthermore, the power- and clock-gating facility could
be also used to inactivate unneeded modules in this mode.

• Introduce simple approach of building the system, where already verified pro-
cessor cores could be used as building blocks, thus leveraging both hardware
and software design.

26

• Provide scalability using a scalable network for module interconnection; the
network should also enable redundant connections and simple routing.

1.4.4 Thesis organization

Chapter 1 gives the basic definitions and terms in the field of system’s dependability;
it elaborates the trends in micro- and nanoelectronics (i.e., technology downscaling
trends); the motivation of the thesis is highlighted, and the proposed solution is
outlined.

Chapter 2 presents an in-depth overview of the state-of-the-art in the field, espe-
cially emphasizing the solutions of the presented challenges and problems in Chap-
ter 1; moreover, proposed solutions are appropriately classified according to some
criteria (e.g., type of redundancy); a special Section is devoted to the contribution
of this work to the field of investigation, that is, the progress that this work brings
beyond the state-of-the-art.

Chapter 3 elaborates the proposed architectural framework at a general level;
the three basic modes of operation (de-stress, fault-tolerant and high-performance)
are explained thoroughly; hardware and software requirements are outlined for each
mode; the Chapter ends with a section devoted to the scalability of the concept.

Chapter 4 goes deeply into the implementation details of both hardware and soft-
ware part of the proposed framework; the three layers of the system, i.e., framework
controllers, framework middleware and application layer (see Fig. 1.12) are explained
in separate Sections; a special Section presents the design method and evaluation of
one of the most critical components of the framework controllers – the programmable
NMR voters; at the end, Section 4.5 presents an 8-core framed multiprocessor imple-
mented in 130 nm technology which is used to evaluate the framework.

Chapter 5 explains the verification platform and methods; the novel, state-of-the-
art procedure for automated integration of fault injection into the ASIC design flow is
presented; this procedure is integrated into a broader environment for multiprocessor
verification, which is also explained in details.

Chapter 6 is devoted to a thorough evaluation of the proposed concept; all exper-
iments, theoretical evaluations and results are presented; the impacts on aging effects
(lifetime), fault tolerance, performance and power consumption are assessed.

Chapter 7 sums up the most important conclusions; it discusses whether the pro-
posed solutions meet the challenges claimed in Chapter 1, and whether the objectives
are met; the planned future work is also outlined.

At the end, two appendices further discuss some practical aspects of this work.
Implementation details of the RISC core used in the novel multiprocessor imple-

mentation are presented in Appendix A.
Appendix B shows a table of all framework middleware procedures with short

descriptions.
Note that throughout this writing, the own papers are cited in “alpha” style (first

letters of authors’ surnames plus publication year), while other references are cited
using the “plain” style (ordinary numbers). The list of own publications is found on
page xvii, while the bibliography is on page 161.

27

28

Chapter 2

Related work

The increasing rate of faults in ICs demands permanent research of innovative solu-
tions that increase fault tolerance and extend systems’ lifetime. There is an intensive
search for solutions at all levels: introduction of new materials, improvements in the
IC fabrication processes, development of special (e.g., radiation hardened) layout li-
braries, fault-tolerant circuit and system (architectural) design, etc. This Chapter
makes an in-depth overview of circuit and system level techniques for improving fault
tolerance and lifetime in digital circuits, especially in processors and multiproces-
sors. Techniques for reducing power consumption are also reviewed. An overview
of dependable microprocessor architectures which is a part of this work is presented
in [SKK11a].

Section 2.1 presents mechanisms for improving fault tolerance. Reducing aging
and power consumption is reviewed in Section 2.2. Section 2.3 is devoted to tech-
niques for adaptation to application requirements regarding fault tolerance, lifetime,
performance and energy. The advantages and disadvantages of each reviewed solu-
tion (or group of solutions) are highlighted in all Sections. If applicable, a comparison
to the thesis proposal is also made. At the end, the progress that this work makes
beyond the state-of-the-art is presented in Section 2.4.

2.1 Increasing fault tolerance

Digital circuits inherently posses fault-tolerant characteristics. E.g., there is no im-
pact on circuit operation if there is a bit-flip on a line that is logically “and-ed” with
0. Furthermore, if a transient disturbance (e.g., voltage or current spike) occurs for
a short time interval (compared to the clock period), and does not enter the latching
window of the appropriate flip-flop, no error occurs. In large designs, there is another
phenomena that may mask faults: all functions are never used simultaneously. For
instance, a transient fault in the division logic of the processor during a non-division
instruction will not produce an error.

It is also worth mentioning that techniques used for testing, like Built-In-Self-
Test (BIST) or scan-chains, whose original purpose is quality assurance, can be used
for fault diagnosis too. For example, the dual-core UltraSparc processor has a scan

29

lockstep mode in which the scan chains in both cores receive the same inputs. If a
mismatch in any bit in any cycle is detected, it is reported by an output pin.

Nevertheless, practice shows that these inherent mechanisms are not enough. In
order to significantly reduce the system’s FITs one should implement fault-tolerant
mechanisms. All solutions for improving fault tolerance contain some form of redun-
dancy. Broadly speaking, fault-tolerant mechanisms are classified into three categories
based on the type of redundancy they introduce. That is, information, time and space
redundancy. Nevertheless, complex systems may use or combine several mechanisms
of different types.

2.1.1 Information redundancy

Digital data could be represented by more bits than necessary, thus providing a way
to detect and correct errors. This systematic addition of redundant bits to the data
bits, and forming sets of allowed combinations of values of all bits (data + redundant)
is called coding. If the purpose is error detection and/or correction, it is called error
control coding, or, channel coding in telecommunications.1 There are lots of error
detection/correction codes for different classes of errors, that use different amounts
of redundancy. The complexity of design, as well as the ease of coding and decoding
is also different.

The schemes presented in this Subsection are based on error detecting and cor-
recting codes. They can detect both permanent and temporary faults using relatively
small hardware overhead, at the expense of added complexity in design.

Error control coding

An error control coder takes a k-bit data on the input side and produces an n-bit
code, where n > k (see Fig. 2.1).

Figure 2.1: Error control coder used for error detection/correction (n > k)

Forward Error Correction (FEC) codes, commonly also known as ECC (Error
Correction Codes), are principally divided as block and convolutional codes. Block
codes encode data in blocks and are the largest family of error correcting codes. If the
block has n bits, 2n different blocks could be formed, partitioned into codewords and
non-codewords. Thus, an error could be detected only if the codeword is transformed
into a non-codeword.

1Besides error detection/correction, coding may be used for other purposes like data compression
(source coding) or cryptography. In telecommunications and networking, another goal of coding is
to improve transmission speed. Actually, network coding is used to improve throughput, efficiency
and scalability.

30

A separable block code, denoted as (n, k), has k data bits that directly represent
the message, while the rest (n − k) bits are check bits. The advantage of separable
block codes is that the message could be extracted right away, without decoding.
The rate of a block code is defined as R = k/n. Lower rate usually means greater
capabilities for error detection and correction but also greater complexity.

Example 3. Single bit parity code (n, n − 1) is used for error detection only. The
rate R = (n − 1)/n. The check bit is a XOR function of the message bits. E.g., the
message 0101 encoded by a (5, 4) code would be 01010, where the added zero is the
check bit, computed as 0⊕ 1⊕ 0⊕ 1.

On the other side, a non-separable block code does not separate the check bits
from the data bits i.e., decoding is needed.

Example 4. Each codeword in the one-hot code has a single 1. E.g., a 4-bit one
hot code has the codewords 0001, 0010, 0100 and 1000. All other combinations are
non-codewords. This code is non-separable because the message is not contained in
the block and has to be decoded.

A special class of block codes are the linear block codes which have the property
that for any two codewords Ci and Cj, the modulo-2 sum (exclusive or operation)
Ci⊕Cj is also a codeword. Thus, the single bit parity code is linear, while the one-hot
code from Example 4 is not linear.

All linear block codes have a Gk×n generator matrix, and a H(n−k)×n parity check
matrix. The generator matrix is used to construct the n-bit codeword from the k-
bit data (see Fig. 2.1) such that C = mG, where C is the codeword, and m is the
message (the data). On the other hand, CHT = 0 (0 is the zero matrix), for any n-bit
codeword C. Similarly, CHT 6= 0 if C is not a codeword. Furthermore, GHT = 0.
Thus, an error is detected by a simple check if the product of the codeword and the
parity check matrix is not zero. Example 5 illustrates these matrices on the Hamming
(7, 3) code. This code has the possibility to pinpoint the bit location of the eventual
(single) error in the examined vector v, by using the syndrome s = HvT . If s = 0, v
is actually a codeword and no error is present. Thus, simple bit correction follows by
inverting the bit on position s, if s 6= 0.

The hamming distance between two codewords is defined as the number of bits
in which they differ. The codeword weight is defined as the number of ones that
the codeword contains. For instance, the codewords 0110 and 0101 have a hamming
distance and codeword weight of 2. The minimum hamming distance between any
two codewords in the code shows the hamming distance of the code itself. A code
with distance d can detect d− 1 and correct up to b(d− 1)/2c errors in a block.

The Hamming codes are actually a family of linear block codes generalized from
the original Hamming (7, 4) code [41]. They can detect up to two bit errors or correct
one bit error. Therefore, they are usually called SEC-DED (Single Error Correction
– Double Error Detection) codes. The (7, 3) Hamming code is only SEC. Hamming
also gives a very simple procedure for constructing SEC code in the same paper [41]:
any matrix with all distinct and non-zero columns is a H matrix of a SEC code.
Example 5 illustrates error location and correction by a (7, 3) SEC Hamming code.

31

Example 5. Let each column in a H7×3 matrix be equal to the binary representation
of the column number. Let the first column start from 1. Thus, all columns will be
non-zero and different to each other. Now, let the intended codeword C = 0110011
has a single bit error at the beginning, changing it to v = 1110011. The syndrome

s = vHT = [1110011]

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

= [001]

is equal to the first column, or, in other words pinpoints the erroneous first bit of v.
Simple inversion of this bit will correct the error. If s = [000], no error is detected,
and v is a codeword.

Each Hamming code has an equivalent cyclic code. In fact, the largest class of
linear block codes is “polynomially generated”, or, cyclic. Their simplicity of imple-
mentation (shift registers with feedback connections), the rich algebraic structure and
extremely concise specifications render out of use the non-cyclic codes [37]. They are
called cyclic because each cyclic shift of a codeword is also a codeword. All codewords
are actually shifts of one another, and can be represented and derived using generator
polynomials g(x). The Cyclic Redundancy Check (CRC) is a widely used cyclic code.

Polynomially generated codes are further divided into the Bose-Chaudhuri-
Hocquenghem (BCH) codes, and the Golay codes. BCH codes are a generalization
of the Hamming codes that enable multiple error correction capabilities and can use
an arbitrary alphabet, not just binary. The non-binary class of BCH codes are the
Reed-Solomon codes. Fig. 2.2 depicts a clear taxonomy of the FEC codes.

Figure 2.2: Taxonomy of FEC codes. (Adapted from: [37])

Convolutional codes are a different class of codes that besides the current input
block of size k use the preceding m blocks (of the same size) to form the n-bit code.

32

Thus, they are denoted as (n, k,m) codes. m is also called the constraint length.
Encoder design is extremely simple, using several registers and modulo-2 adders (e.g.,
XOR gates). Nevertheless, decoding is more complicated. There are three main types
of decoding: sequential, threshold (majority logic) and Viterbi decoding. By far most
popular and used is the Viterbi decoding [119].

Checkpointing, rollback and retry

Error codes could sometimes only detect errors and do not correct (all of) them.
There are also mechanisms that are designed only to detect errors (see Example 3
and the following Subsections). The question is what to do once the error is detected?

In digital telecommunications, ARQ (Automatic Repeat Request) mechanisms
are used to inform the sender that the received message is erroneous, and request
resending the same message. Basically, there are three mechanisms: stop and wait,
go-back-N and selective repeat. In the stop and wait protocol each block of data is
acknowledged by the receiver. Transmission of the next block proceeds only if a posi-
tive acknowledgement for the previous block is received. If the block is timed out (no
acknowledgement is received) it is automatically retransmitted. In the go-back-N and
selective repeat protocols each block has a sequence number. Each acknowledgement
contains the sequence number acknowledging all blocks up to N − 1. If a negative
acknowledgement is received, or a block timed out, all data blocks starting from the
lastly acknowledged block are retransmitted. In the selective repeat version only neg-
atively acknowledged (or timed out) blocks are retransmitted. Thus, selective repeat
is more flexible and offers higher efficiency, but does not have well defined storage
(memory) requirements, which can be large. On the other side, go-back-N has well
defined storage requirements.

Nevertheless, in control and processor-based systems the ARQ mechanisms are
not appropriate. A widely used technique here is Checkpointing, Rollback and Retry
(CRR): periodically save the system state and retry operation when error is detected
by rolling back to a previously saved error-free state. CRR was shortly introduced in
Section 1.1. Nevertheless, since this technique is important for the work in the thesis,
a more elaborate explanation is given here.

In a digital system, the system state is defined by the contents of the system’s
storage elements (e.g., flip-flops and memory cells). Most often, the input values
of the system also have to be considered as a part of the system state. Thus, it is
clear that in large systems the system state can be huge – hundreds of megabytes.
Nevertheless, not every bit of information is usually necessary to properly restart
operation, i.e., a reduced system state could be specified. Therefore, a checkpoint
is defined as a snapshot of the information needed to restart system operation at the
moment it was taken. Checkpoints have to be saved on a medium with sufficient
reliability (e.g., RAM memory with fault-tolerant mechanisms and battery back-up).

Checkpoint latency is the time needed to save the checkpoint. Checkpoint overhead
is the extra time added to the operation (execution) time. Overhead and latency
are identical in simple systems. Nevertheless, system operation could be (partially)

33

overlapped with checkpointing, thus making the overhead smaller, or practically close
to zero.

Introducing a CRR technique requires many issues to be resolved. E.g., how
frequent and at which points checkpoints should be taken? How to reduce over-
head? How to checkpoint if the system is distributed (in order to avoid deadlocks or
repeated rollbacks)? How transparent, i.e., at what level (kernel/user/application)
should checkpointing be? What to do if multiple retries fail – report permanent faults
and halt operation?

Error control coding in (multi)processors

Desktop, server and embedded systems have different requirements regarding de-
pendability and fault tolerance. For example, embedded systems used in automotive,
medicine, aircraft or spacecraft applications are safety- and/or mission-critical and
require high fault tolerance; embedded systems used in satellites have to sustain long-
life operation. Server processors, on the other side, must be highly-available, since
their downtime is very expensive. The average downtime costs vary considerably
across industries, from approximately $90.000 per hour in the media sector to about
$6,48 million per hour for large online brokerages [31]. Therefore, a special attention
is given to the Reliability, Availability and Serviceability (RAS) features of server
processors. At last, desktop processors are low on fault-tolerant mechanisms because
of the lower dependability demand. Usually only parity and simple ECC are used for
caches and memory controllers.

The RAS features of the server multiprocessors IBM Power6 and Power7 in-
clude numerous error detection, correction and recovery techniques, control and data-
flow checkers that cover almost all SRAMs and registers [93, 43, 11]. All I/O signals
are protected by ECC. Internal signals are also ECC protected. Almost all data and
control signals are equipped with error detection. The control units employ logical
consistency checkers that check whether the states are valid with respect to their state
machine. When a core error occurs, the instruction is retried. A low-level CRR is
done by a recovery unit that marks whether the instruction completed without errors.
In a super-scalar architecture like POWER, more than one instruction can complete
at the same time. Thus, checkpointing has to be done after successful completion of
a group of instructions. The core restarts execution due to a core fault from the last
checkpoint. Nevertheless, this is only effective for transient errors. If a permanent
error is detected, recovery is done at higher level. The task is assigned to another
core, isolating the faulty one. Fig. 2.3 shows the fault-tolerant features of the Power6
multiprocessor.

The L1 caches are parity protected, while L2 and L3 caches are ECC protected.
This is because ECC is slow in comparison to the L1 memory and takes large area
i.e., it is not cost-effective to implement ECC for memories with small latency. In
case of a parity error at the L1 cache, the block is fetched again from memory. The
L1 cache (consisting of a 4-way and 8-way set-associative instruction and data cache,
respectively) implements a mechanism for permanent fault recovery. If a permanent
fault is detected in a set, the set is marked as unusable. L2 and L3 caches include

34

Figure 2.3: RAS features of the IBM Power6 multiprocessor. (Source: [93])
The features in bold are enhancements over the Power5 proces-
sor. The Power7 processor builds upon Power6 by adding features
like redundant service processor with dynamic failover and active
memory mirroring.

cache line delete and enhanced error recovery for multibit errors. All caches have
special tags and flags for faulty data which handle non-correctable errors. I/O lines
can be dynamically repaired. Spare lines and pins are added, so if a wire or pin is
faulty, the error is reported as correctable and the data flow is redirected through the
spare pin. Power 6 has also a redundant oscillator which runs concurrently with the
active one. They are kept in phase, so if the active oscillator fails, the other takes
over without affecting operation. In a case of a permanent fault, the processor isolates
itself and the workload is moved to another processor. POWER7 further extends the
error resilience by using a stacked latch design, which is inherently less prone to single
event effects [43].

A plethora of parity, SEC-DED and other types of ECC are used in the SPARC64
V [4] and Sun Niagara II [105] server multiprocessors. On the other hand, the
AMD Opteron has only a parity protected instruction cache, ECC protected data
and L2 cache, and ECC support for the DRAM memory controllers [14].

The ARM Cortex is a highly customizable embedded processor for real-time
systems with fault-tolerant options [10]. The data and instruction caches have parity
and ECC build options which may be included during implementation. Furthermore,
a second, redundant copy of the core that shares the input pins with the master core

35

may be also implemented. The master core always drives the outputs. Nevertheless,
a comparison logic may show disagreements between the master and the redundant
core, thus indicating errors.

Leon3-FT [35] is a fault-tolerant version of the LEON3 processor used in embed-
ded applications. It has an instruction and data cache of 8KB. Both tag and data
parts are protected with four parity bits per 32-bit word, detecting up to 4 errors
per word. If an error is detected, the corresponding cache line is flushed and the
instruction is restarted. This introduces a penalty of additional 6 clock cycles. There
are also error counters for detected and corrected errors which can be used for anal-
ysis. The register file has four RAM blocks protected by four parity bits per 32-bit
word, plus a duplicated copy of the original data word. Upon a detected parity error,
the copy of the data is read out from a redundant location in the register file, re-
placing the failed data. This operation takes place during normal pipeline operation
i.e., without restarting the pipeline. Data correction is transparent to the software
and does not incur any timing penalty. If the redundant data also contain errors, a
register-file error-trap is generated. Error counters that monitor register file errors are
also provided. Leon4-FT further provides Reed-Solomon protection of the DDR2
interface.

RH32S is a radiation hardened 32-bit processor for embedded applications [54].
Fault-tolerant features include microinstruction retry on error detection, cache line
refill and software rollback. All functional units are monitored for errors. A recovery
procedure is invoked on a detected error. All of the internal pipeline stages and
control registers are byte parity protected. The memory interface has a SEC-DED
facility. L1 and L2 caches use parity error detection and line invalidation. All cache
words including tags have four parity bits. If a parity fault is detected during a cache
read, it is treated as a miss, and a cache line refill is performed.

In [118], the authors propose a technique for online error detection and correction
of erratic bits in register files.

Error control coding in on-chip memories

In the previous overview of error control coding in processors, it was obvious that each
of the reviewed examples (even desktop processors) have mechanisms for protecting
the caches and the memory controllers. This is not by a coincidence, actually the
memories (both on- and off-chip) are responsible for the largest part of errors in the
systems [70]. Furthermore, as discussed in Section 1.3, the percentage of memory area
in chips is constantly increasing (see Fig. 1.11). Therefore, memory fault tolerance is
of primary importance, and thus, a widely researched topic.

Besides improvements in the production process, materials and layout, the follow-
ing error mitigation techniques are used in memories at the architectural level. They
are all based on error control coding techniques.

Parity and ECC codes combined with memory cell interleaving (physically
distant placement of logically neighboring memory cells) is a frequently used tech-

36

nique. Physically distant memory cells of a logical memory location2 lowers the
probability for multiple-bit upsets in that location, thus enabling simpler ECC to be
used.

Re-fetch of a clean block is used in some of the previously reviewed processors.
Caches which are only parity protected can always fetch a clean copy of the block
from a memory at a higher hierarchical level when error is detected.

Memory scrubbing is a mechanism in which memory locations are read, the
possible errors are corrected by an ECC for example, and than the correct data is
written back to the same location.

In a memory mirroring technique, a redundant copy of the entire memory content
is created, which is accessed through a second channel. If an error is detected in
one of the memory copies, the controller continues operation using the other copy
without any disruption, and tries to fix and resynchronise the errant copy. An obvious
drawback of this scheme is that the amount of memory has to be doubled.

An in-depth explanation of numerous nanoscale memory protection and repair
techniques is given in [49]. A vivid example of a multiprocessor with an abundance
of memory protection techniques is the Itanium 9300 server multiprocessor (shown
in Fig. 2.4). As discussed, the caches in (multi)processors are also mainly ECC or
parity protected. More elaborate schemes for cache protection are also reported. For
example, in [63], entire cache block is sacrificed in order to detect and repair errors
in other blocks.

Figure 2.4: RAS features of the Itanium 9300 multiprocessor. (Source: Intel)

Discussion

The previous overview of fault-tolerant mechanisms in processors and memories shows
that information redundancy techniques are massively used. This is because they have

2A memory location is a logical sequence of bits (memory cells) selected by a single memory
address.

37

relatively lower power and area overhead than the space-redundant schemes discussed
in Subsection 2.1.3, and still cope with both transient and permanent faults. They
also have lower performance overhead compared to the time-redundant schemes in
Subsection 2.1.2. On the downside, information redundancy techniques have lower
fault coverage, and much more complex design and verification than techniques based
on modular (space) redundancy.

2.1.2 Time redundancy

Time redundancy techniques increase the fault tolerance by performing the same
operations twice. If the results in both cases are not the same, a fault is detected,
triggering a recovery mechanism (e.g., CRR).

Many of these schemes can only detect transient faults. For example, a permanent
fault in a circuit for addition will always produce the same erroneous result no matter
how many times the operation is performed. Another disadvantage is that a significant
performance overhead may be introduced by performing the same operations twice.
Power consumption is also increased. Furthermore, these techniques only detect errors
and start recovery, i.e., uninterrupted operation in presence of errors is not possible
like in ECC techniques. On the positive side, an advantage of these schemes is the
low, or zero hardware (area) overhead.

The double execution of the same operation could be consecutive or partially over-
lapped. For partial overlapping, two (not necessarily identical) modules are needed.
Moreover, consecutive re-execution could also use two modules. A technique which
fully overlaps the operation of two identical modules is actually the Dual-Modular
Redundant (DMR) scheme discussed in Subsection 2.1.3. This Subsection makes an
overview of fault-tolerant mechanisms that introduce time redundancy.

Multiple sampling

Multiple sampling is a simple circuit-level technique that detects transient faults
whose duration is less than ∆t (see Fig. 2.5). Two latches/flip-flops are used to sample
the signal in different instances of time at ∆t distance. A modulo-2 addition of the
main and shadow latches/flip-flops shows whether there is a transient fault. Besides
the performance overhead which is a function of ∆t, this mechanism also introduces
additional hardware – at least a shadow latch and a XOR gate per protected signal.

This technique is used in several works, including processor pipelines and high-
speed circuits [30, 21]. In [76], the signal is sampled in three different points of time
and the final output is selected by a majority voter.

Repeated execution

Repeated execution is a very simple technique in which the same operation is ex-
ecuted by the same module twice, consecutively. Most frequently, this scheme is
implemented entirely on the software level without additional hardware, although
hardware implementations with minimal area overhead could be also easily realized.

38

Figure 2.5: A multiple sampling circuit

Performance and power consumption overhead are always present due to the extra
execution, comparison and recovery.

Diversely-repeated execution is a simple extension of this technique in which
the repeated operation is done differently than the first. E.g., let the first multiplica-
tion produce a result R1 = A×B, and then swap operands, producing R2 = B ×A.
The results R1 and R2 are compared at the end, potentially showing faults. With
this scheme, even some permanent faults could be detected. Furthermore, if there
are two multipliers in the system, one may opt to do the multiplication using both of
them, which is actually done in [121] with very low area overhead.

An approach based on diversely-repeated execution is presented in [88], where run-
time error detectors are derived by examining the application properties extracted
using the compiler’s facility for static analysis. The derived detectors diversely re-
compute the values of the identified critical variables in the program.

It is worth mentioning that repeating execution more than twice introduces too
much overhead and is rarely used in practice, i.e., it is simply not appropriate even
for applications with modest performance requirements.

Redundant execution

The built-in capabilities in (multi)processors for increasing performance could be used
to actually increase the fault tolerance. For example, a processing element (PE) that
supports multiple threads of execution could be used for redundant execution of the
same software. That is, two copies of the program are executed concurrently by the
thread facilities of the PE, and the results are compared at the end by software. This
partial overlapping of executing the threads can significantly reduce the performance
penalty compared to a consecutive (non-overlapped) execution. Nevertheless, looking
more broadly and taking into account other programs in the system, the performance
capabilities of the PE are in any case reduced, since the redundant thread takes over
the place of another independent thread. Thus, there is still a performance penalty.
Such a scheme is detailed in [94], were the Simultaneous Multi-Threading (SMT)
capability of superscalar multiprocessors is used as a mechanism for transient fault
detection.

39

In a multiprocessor (e.g., a multi-core processor), an entire core could be assigned
to concurrently execute a second copy of the program. The discussion is the same
as in the multi-threading case. A dual and triple core-level redundant execution
where two and three copies of the same program are executed by different cores is
presented in [38]. Solely stores are compared in order to reduce performance overhead,
which is enough since only store instructions are output instructions in a RISC core.
On a mismatch, a CRR technique is employed. The authors report 99% transient
fault recovery with a 5,2% performance overhead. Although not the case in [38],
an advantage of multi-threading and multi-core based redundant execution is that
the fault-tolerant system could be implemented entirely at the software level, using
Commercial Off-The-Shelf (COTS) (multi)processors.

A technique based on redundant execution is presented in [110, 109], where pro-
grams have the option to be executed in a fault-tolerant manner. A leading core
executes instruction chunks which are afterwards redundantly executed by a trailing
core. The leading core heuristically marks some of the instructions as critical, and
forwards the results of their execution to the trailing core for comparison. Further-
more, the leading core supplies the trailing core with all outcomes of branches and
load values, which may speed up execution since the cache is not accessed and the
directions of the branches are already resolved. The distinction between leading and
trailing cores is only logical i.e., both have identical structure. Nevertheless, this
scheme introduces additional pipeline structures in the cores in order to enable the
described operation. Interestingly, the authors do not show evaluation results of this
approach regarding improvements in fault tolerance, although this is the primary goal
of the papers.

A slightly different approach in which the leading and the trailing core addition-
ally make use of another capability of the superscalar processors – the speculation
mechanism, is presented in [127]. A detected transient fault can be simply treated
as a misspeculation and corrected by the already existing facility for dealing with
misspeculations.

A technique for transient fault mitigation in embedded microprocessors is pre-
sented in [125]. The processor executes a primary and redundant thread of the same
program, and compares the results at the end of the pipeline (see Fig. 2.6). On a
mismatch, an exception is triggered starting a recovery procedure. Additionally, the
caches and the register file are protected by parity and ECC. The scheme introduces
minimal area overhead (a redundant program counter and a comparator). Neverthe-
less, the instruction fetch bandwidth is halved. The authors claim a 71,5% detection
of injected transient faults and 22,9% “naturally” masked faults by the internal logic.

The on-line software testing and monitoring techniques in embedded multipro-
cessors [45] and manycore processors3 [32], periodically check for errors in the cores.
The test procedure is scheduled for execution by an idle core in order to minimize
performance penalties. Nevertheless, these schemes could discover only permanent

3Manycore processors have large number of cores in a single chip i.e., over 8 or 16, up to
several hundred, opposed to multi-core processors which have up to 8 or 16 cores.

40

faults. Transient faults in the functional application that is running in parallel on
another core are not detected.

Figure 2.6: Primary and redundant instruction execution. The shaded com-
ponents are the hardware overhead. (Source: [125])

2.1.3 Space redundancy

Space or hardware redundancy is mainly based on N-Modular Redundant (NMR)
systems, as the one depicted in Fig. 2.7. Static space-redundant schemes mask faults
rather than detect-and-recover, providing uninterrupted operation. This is very im-
portant for real-time or timing-critical systems, where time for reconfiguration and
recovery cannot be afforded.

Dynamic schemes, on the other hand, switch to spare components upon a detection
of a fault, i.e., the system is reconfigured to use a spare (fault-free) module. The
hybrid schemes combine static and dynamic operation: they mask faults but also
reconfigure the system to use spares.

The downside of this group of techniques is the significant area and power over-
head. For illustration, an NMR system has at least N times greater power and area
overheads than a single (simplex) module.

Static (passive) redundancy

Fig. 2.7 shows an NMR system with N identical modules M0,M1, . . . ,MN−1 fed with
the same input z. The outputs are expected to be equal i.e., x0 = x1 = . . . = xN−1.
Nevertheless, in a real case the modules are subject to faults, leading to differences

41

in outputs. A decision maker D is therefore needed to select the actual output of the
system y even in the presence of errors.

Figure 2.7: An NMR system

A widely used decision maker is the M-out-of-N voter, where of N voter inputs
(module outputs), at least M should be equal in order to consider an error-free,
uninterrupted operation. Nevertheless, if M ≤ N/2, ambiguous situations may occur
since more than one input value could be a legitimate voting output value. E.g., let in
a 2-out-of-4 voter x0 = x1 6= x2 = x3. Both values of x0 (equal to x1) and x2 (equal to
x3) could be the output of voting. Therefore, one of the most frequently used voters
is the majority voter, where at least bN/2 + 1c voter inputs (i.e., module outputs)
have to be equal for error-free operation, otherwise the system fails.

Evaluating the reliability R(t) of NMR systems is relatively simple. Using the
binomial theorem in probability theory

P (M successes in N trials) =

(
N

M

)
pM(1− p)N−M , (2.1)

where p is the probability of success, the following equation is obtained for a Triple
Modular Redundant (TMR) system with a majority voter (operation is considered
correct if at least two modules are operating):

Rtmr =

(
3

3

)
p3(1− p)0︸ ︷︷ ︸

all modules operating

+

(
3

2

)
p2(1− p)1︸ ︷︷ ︸

2-out-of-3 operating

= 3p2 − 2p3. (2.2)

Let each of the modules have equal reliability Rm(t) with exponentially distributed
time-to-failure (see Eq. 1.2), i.e., constant failure rate. That is, p = Rm(t) = e−λmt.
Furthermore, in Eg. 2.2 the reliability of the voter is assumed to be ideal, i.e., Rv(t) =
1 which is not realistic. Let Rv(t) = e−λvt. Thus,

Rtmr(t) = (3e−2λmt − 2e−3λmt)Rv(t) = 3e−(2λm+λv)t − 2e−(3λm+λv)t. (2.3)

According to Eq. 1.5, MTTFtmr = 3
2λm+λv

− 2
3λm+λv

. Even if a perfect voter is

assumed (λv = 0), MTTFtmr = 5
6λm

, which is actually lower than the MTTF of a

single module 1
λm

. This pitfall will be explained soon.

42

Let’s first determine the reliability of a general NMR system with M-out-of-N
voter, by generalizing Eq. 2.2. That is

Rnmr =
N∑
i=M

(
N

i

)
pi(1− p)N−i. (2.4)

Assuming exponential distribution of the TTF and including voter’s reliability

Rnmr(t) = Rv(t)
N∑
i=M

(
N

i

)
Ri
m(t)(1−Rm(t))N−i = e−λvt

N∑
i=M

(
N

i

)
e−iλmt(1−e−λmt)N−i.

(2.5)
Table 2.1 shows Eq. 2.5 in unfolded forms for NMR systems with perfect majority
voter i.e., Rv(t) = 1 and M = bN/2 + 1c.

Table 2.1: Reliability and MTTF of NMR systems with perfect majority vot-
ers and constant failure rates
N Rnmr(t) MTTFnmr

1 e−λmt 1
λm

2 e−2λmt 1
2λm

3 3e−2λmt − 2e−3λmt 5
6λm

4 4e−3λmt − 3e−4λmt 7
12λm

5 6e−3λmt − 7e−4λmt + 2e−5λmt 13
20λm

6 15e−4λmt − 24e−5λmt + 10e−6λmt 37
60λm

Fig. 2.8 plots the Rnmr(t) equations from Table 2.1 for a module failure rate of
λm = 1, which is 1 failure per 109 hours of operation (MTTF = 109 hours).

Fig. 2.8(a) shows that a DMR system always has lower reliability than simplex.
This is not surprising, i.e., it is expected that a 2-out-of-2 system with two identical
modules is more likely to fail than a system with one such module.4 Nevertheless, the
system with two modules can detect errors and trigger recovery mechanisms, while
the simplex system cannot. Thus, the equation for DMR systems in Table 2.1 is
incomplete.

Fig. 2.8(a) further shows that a TMR system has greater reliability than simplex
up to a specific point of time. The two formulas for TMR and simplex are equal at the
intersection point. Solving the equation e−λmt = 3e−2λmt − 2e−3λmt gives t = ln2/λm.
Replacing this into R(t) = e−λmt gives R(ln2/λm) = 0,5. In the same way, a 4MR
system has greater reliability up to t = ln(6/(1 +

√
13))/λm, i.e., intersection point

(0,264, 0,768), etc.
Thus, a TMR system for example, has greater reliability than simplex for mission

times of up to ln2 × MTTFsimplex ≈ 0,693/λm, i.e., up to ≈ 70% of the simplex
mean time to failure. Looking from another angle, TMR has lower reliability than

4In 1-out-of-2 system, R(t) = 2e−λmt − e−2λmt. MTTF = 3/(2λm) – 50% better than simplex.

43

(a) Simplex vs. DMR vs. TMR (b) Simplex vs. 100MR vs. ∞MR

(c) Simplex vs. 4MR (d) TMR vs. 4MR

(e) Simplex vs. 5MR (f) TMR vs. 5MR

(g) Simplex vs. 6MR (h) TMR vs. 6MR

Figure 2.8: Comparison of reliability functions of NMR systems for various
N, with a simplex and a TMR system. (λm = 1).

44

simplex if the single module reliability Rm(t) < 0,5. Of course, the discussion applies
if exponential distribution of the time-to-failure (constant failure rate) is assumed.

It is interesting to see what happens when N → ∞. Fig. 2.8(b) shows a plot for
N = 100. According to 1.5 and replacing Eg. 2.5,

MTTFN→∞ = lim
N→∞

∞∫
0

Rnmr(t)dt =
ln2

λm
.

Theoretically, an infinite modular redundant system is perfectly reliable up to t =
ln2/λm, or, Rm(t) > 0,5. Afterwards, it is useless. (Again, this applies for exponential
distribution).

Plots 2.8(d) and 2.8(f) show another pitfall: 4MR and 5MR always have lower
reliability than TMR. 6MR has only slightly greater reliability than TMR (up to 24%
of simplex MTTF). In other words, greater N does not necessarily mean more reliable
system.

The discussion that comes from these calculations and graphs can be a little
bit misleading. An intuitive example is the following. Two faults in two different
modules in a 5MR system will not fail the system, but will surely fail a TMR system,
which is not caught by Fig. 2.8(f). This comes from the basic definitions of reliability
and failure rate (see Subsection 1.1.4) that actually treat only permanent faults:
if a module fails at time t, it is considered useless after that time. Nevertheless,
modules in NMR systems can temporarily fail due to a transient, but afterwards
continue operation. Taking into account transient faults will significantly improve
the reliability picture of NMR systems. Of course, the reliability of recovery and
repair mechanisms should be also considered in order to completely characterize the
overall system reliability.

So far, the analyses mainly assumed perfect voters which is never the case in a
real system. If the voter in an NMR system fails, the entire system fails. Fortunately,
voters have relatively small complexity and area, which lowers the probability of voter
faults. Nonetheless, there are also mechanisms for voter protection. A totally self-
checking NMR system with concurrent error location capability is presented in [57].
The system determines whether an error occurred during voting as well as its location.
A full error coverage in the system is achieved, i.e., the error could be detected in the
redundant modules, the voter, or the error detection circuit. The authors compare
their work to a similar scheme proposed in [36]. Another technique based on error
correction by Alternate-Data Retry for increasing NMR voter reliability is introduced
in [113].

Solutions based on NMR are widely used in processors, starting from DMR/TMR
protected pipelines [78, 114] and TMR protected registers in the Leon3-ft [35, 16], to
entire TMR processor [53].

The lock-step architecture is a DMR technique that uses two processors: a master
and a checker which synchronously execute the same instructions. Only the master
has access to the memory hierarchy and actually drives all outputs, while the checker
monitors the buses and executes the instructions fetched by the master. Both master

45

and checker outputs are compared. If the values disagree, an error is detected, but the
faulty processor can not be identified. A loosely-synchronized lock-step architecture
does not have this strong relationship between the processors. The independently-
operating processors have access to different memory sub-systems. A subset of critical
tasks (or all tasks) are duplicated in both memory spaces and executed in parallel.
Outputs are exchanged and compared by both processors. If outputs disagree, they
do not commit and an error recovery procedure is invoked. In [15], a combination
of these two techniques is presented – dual lock-step architecture. Actually in the
loosely-synchronized architecture each of the two processors are replaced by a master
and checker processors accordingly. The memory sub-system is divided in four banks
interconnected by a crossbar switch. The authors also give comparison between these
architectures (plus a TMR architecture) in terms of area and performance. However,
reliability analysis are shallow.

A comparison of TMR ALU (Arithmetic/Logic Unit), DMR ALU with recovery,
and parity-checked program counter with recovery in a 32-bit MIPS compatible pro-
cessor is presented in [66], with 84,6%, 84,2% and 78,2% masked faults, and 1,64x,
1,72x and 1,07x gate count overhead, appropriately. (The unprotected system masks
68,8% of the injected faults.)

A low-level DMR register protection against SEEs is presented in [102]. Based on
this technique, an automated procedure for generation of the redundant modules and
checkers is presented in [89]. In [12], only specific input combinations are TMR pro-
tected i.e., a selective fault tolerance is applied in order to lower area costs. Protecting
50% of the input combinations for example, gives an area reduction of 20%.

Dynamic (active) redundancy

In dynamic redundancy schemes, spare functional blocks are activated when a fault is
detected. Alternatively, the system could decide to dynamically “offline” a redundant
functional module upon detection of a fault, and later decide to use it again. Thus, in
contrast to static schemes, dynamic schemes reconfigure the system. The automated
switch to a redundant module is called failover. A similar term is switchover, which
denotes the case when human intervention is required. At last, failback (switchback)
is the process of restoring a system in a failover (switchover) state, back to its original
state.

The spares in the system could be kept unpowered (cold), or powered (hot). Cold
spares extend system lifetime since aging effects affect only the powered circuits, as
discussed. Besides that, a single cold spare doubles the MTTF of the system given
that faults are always detected and the reconfiguration circuit never fails. A drawback
of cold spares besides the inactive area (hardware), is the additional power up and
initialization time. Furthermore, a cold spare cannot help detecting faults i.e., the ac-
tive circuit has to employ time or information redundant techniques, or, periodically
do offline tests in order to detect faults. Hot spares, on the other hand, can be used
to detect faults. Fig. 2.9 shows two examples of schemes using dynamic redundancy.
The duplicate-and-compare system in Fig. 2.9(a) is similar to a DMR system, with the
difference that upon fault detection a diagnostic procedure is invoked to pinpoint the

46

failing module, which is afterwards replaced by a hot spare. The pair-and-spare sys-
tem in Fig. 2.9(b) builds on this, further enabling uninterrupted operation during the
diagnostic procedure, which is suitable for timing-critical applications. Nevertheless,
opposed to cold spares, hot spares age similarly to other modules in the circuit.

(a) Duplicate-and-compare (b) Pair-and-spare

Figure 2.9: Dynamic redundancy using hot spares

Schemes based on dynamic redundancy are broadly used in multiprocessor sys-
tems, especially in multi-core and manycore processors. For example, apart of the
other RAS features, the highly-threaded Niagara II server processor includes a dy-
namic management of faulty cores and thread facilities. The thread facility is dy-
namically “offlined” if it frequently experiences errors. If more thread facilities in the
core further experience errors, the entire core is offlined [105]. A comparable strategy
for faulty core isolation in commodity multi-core processors is presented in [2].

Manycore multiprocessors usually have several spare cores on-chip in order to
increase yield, sometimes drastically [64]. Moreover, spares can be activated later,
if permanent faults are diagnosed [124, 72], i.e., the faulty cores are replaced by
the spares. Reconfiguring a manycore processor in this way gives rise to several
problems. For example, the NoC (Network-on-Chip) infrastructure is changed when
a core is offlined and replaced by a spare. Thus, programmers may have a hard time
developing operating procedures that efficiently adapt and map the applications to the
dynamically changing network topology. A downside of these manycore schemes is the
incapability of masking transient faults, unless additional mechanisms are provided.

Hybrid redundancy

Techniques based on hybrid redundancy combine static and dynamic schemes. TMR
with spares, self-purging redundancy and NMR On Demand (NMROD) are the most
representative hybrid schemes. In a TMR with spares scheme, a failed TMR module
is replaced by a spare (either hot or cold) without interrupting operation. Of course,
this could be generalized to NMR with K spares. The self-purging redundancy, or,
sift-out scheme presented in Fig. 2.10 uses N redundant modules and a M-out-of-N
voter where M is usually 2. All modules that produce an output different than the

47

voter output are self-purged, i.e., disconnected from the system by the elementary
switches. Using the initialization inputs of the elementary switches, the system can
bring the disconnected modules back to function.

Figure 2.10: Self-purging redundancy

The NMROD scheme may have different implementations. Usually power con-
sumption is taken into account leading to the following pattern NMROD pattern.
Normally, a DMR system is formed comparing the outputs of two redundant mod-
ules. All other redundant modules are powered off. On a mismatch, the system
powers up another module and forms a TMR system, and repeats the failed proce-
dure. Then, the system may failback or power up additional modules. Of course, in
an adaptive scheme (like the one presented in this work) the system may decide on
the number of redundant modules according to the application requirements, besides
the considerations of power saving and reducing aging.

An NMROD technique employed in processors is presented in [91, 92], where a
pool of computational units (C-units) and control (voter) units is formed. Issuing an
instruction triggers allocating an appropriate voter which further assigns two C-units
to redundantly execute the same instruction. The two C-units return results to the
voter. If they agree, the instruction is committed and the allocated voter is released.
Otherwise, the voter incrementally allocates C-units and compares the results until
two of them agree.

One last thing to mention regarding dynamic and hybrid redundancy is that the
reliability analyses can be performed similarly to the static case. Including these
analyses here would unnecessarily lengthen the discussion.

2.2 Reducing aging and power consumption

A synonym phrase to “reducing system aging” is “increasing system lifetime”. Both
of them are used interchangeably in the thesis. Occasionally, the term “wear-out”
could be found as a synonym to aging. On the other side, power which is the rate

48

at which work is done, is different from energy, which is the power expended over
time. In other words, energy is power integrated over time, or alternatively, power is
the instantaneous energy. Although power and energy have clear definitions, they are
often misused – consider Example 6. In the thesis, reduction of power consumption
is one of the objects of investigation.

Example 6. Processor 1 with a power consumption P does a given job in a time
period T. Processor 2 with a power consumption P/2 does the same job in a time
period 2T. Processor 1 has twice the power consumption of processor 2, but in both
cases the energy required to do the job is the same. Thus, the Power-Delay Product
(PDP) is the same, while the Energy-Delay Product (EDP) is two times greater for
Processor 2.

As already underlined in the motivation Subsection 1.4.1 (based on the material
in Subsection 1.2.1 and Section 1.3), reducing aging effects and power consumption
could be achieved by doing less work i.e., by lowering performance. When the circuit
is powered (under stress), it ages and consumes power.5 In other words, aging and
power consumption are strongly correlated.6 Therefore, all “de-stress” solutions
that reduce power consumption reduce aging too, and vice versa. Nonetheless, as will
be shown soon, there are solutions that take into account only aging or only power
consumption, but also both of them.

2.2.1 Reducing power consumption

Power reduction is an “old topic” for which an abundance of techniques are devel-
oped over the years. Three of them are massively used in processors, especially in
battery-operated, mobile devices. These are power and clock gating, and DVFS
(Dynamic Voltage and Frequency Scaling). Power/clock gating techniques cut off the
power/clock of the temporarily unused modules in the system. In a DVFS scheme,
the voltage which is quadratically related to power consumption (see Eq. 1.9), is dy-
namically lowered to save power, or elevated to increase performance. The voltage
column V in Table 1.1 shows that each processor after year 2000 has a voltage range
specification for the purposes of DVFS. Voltage scaling has to be accompanied by fre-
quency (performance) scaling, since the transistor input-to-output delay is inversely
proportional to the supply voltage.

The IBM Power7 multiprocessor has an elaborated power management system.
Clock gating and DVFS are the key techniques used to implement three low power
states: nap, sleep and heavy sleep [34]. These states introduce different trade-offs
between power and core activation latency. For example, the nap state is optimized
for fast wake-up: the frequency of the core is reduced, the execution units are clocked-
off, while the caches remain coherent. In the sleep state, entire core is clocked-off
including the caches. The sleep state saves more power but core activation requires

5This seems to be true for other systems, e.g., the human body as an example of biological system
ages faster under stress.

6An interesting investigation would be to compare the age of Processor 1 and 2 from Example 6,
immediately after each of them finishes the job.

49

more time due to the required initialization and bringing the caches to a coherent
state. That is, core activation latency is increased. In the heavy sleep mode, all cores
go to the described sleep mode, at a reduced voltage. IBM states that dynamic power
savings go up to 50%.

2.2.2 Reducing aging

Aging-reduction technique based on DVFS and micro-architectural adaptation of the
microprocessor is found in [106]. The authors present an architectural model and
implementation of microprocessors that dynamically track lifetime reliability, and
respond to the changes in workload, application requirements and behaviour. Fur-
thermore, a RAMP (Reliability Aware MicroProcessor) methodology is proposed,
which is used to estimate the microprocessor lifetime reliability.

Another de-stress technique based on a dynamic scheme where inactive spare
blocks are used both for self-repair and lifetime improvement is presented in [62]. A
further extension is given in [61], where the multiple functional blocks in VLIW (Very
Long Instruction Word) processors (see Fig. 2.12) are used to dynamically improve
reliability and lifetime.

A lot of work is done in the area of lifetime-aware task mapping and scheduling in
multiprocessors, especially in manycore NoC-based processors. In [51, 52], lifetime-
aware scheduling and task allocation for MPSoC (Multiprocessor System-on-Chip)
is proposed. Similar schemes used in multimedia MPSoCs are given in [27, 26].
Virtually all of these solutions rely on theoretical models of aging when devising the
mapping/scheduling algorithms. Analytical results are obtained either exercising the
models, or, by simulation. These proposals take into account only the aging-related
aspect of reliability i.e., SEE fault tolerance is not treated. Some of them do take
into account the run-time application dynamism and try to find a solution based on
the power-performance trade-offs [18, 24]. An increase of 16% to 30% in lifetime is
reported in these works.

Significantly closer approach to this thesis regarding aging-based task scheduling
is the one described in [87]. The paper presents an adaptive idleness distribution
technique that tries to equalize the lifetime of each core in MPSoC platforms. The
authors assume that process variations and variations in aging effects will lead to
uneven performance of the cores. Thus, a possible solution is to idle the cores, each
with appropriate duty cycle. However, the authors rely on error detection and cor-
rection mechanisms as means to monitor aging. That is, age information is obtained
by counting errors in each core, which number dynamically determines the scheduling
duty cycle. This can be misleading since errors may be introduced by SEEs too, not
only by aging effects.

Alternative parameter that could be used to monitor aging and make decisions
about task mapping and scheduling is temperature. The work in [26] advocates task
mapping relying on temperature distribution. Although temperature is strongly cor-
related to aging, this parameter alone could be also misleading. Namely, factors
like supply voltage, current density, architectural characteristics and application re-
quirements are also very important and directly affect aging. Motivated by these

50

observations, the work in [42] proposes a task mapping technique based on ant colony
optimization. Having the system description and an initial task graph, various so-
lutions (ants) are synthesized. The information about the solutions is shared by
pheromones. As ants in the real world use pheromones to direct other ants to food
sources, here too, each synthesized solution directs other solutions to the optimal task
mapping. Although the authors report an average of 32% lifetime improvement over
temperature-driven schemes, this mechanism does not take into account run-time
application dynamism, and is relatively tedious for implementation.

On the other side, the work in [33] bases task mapping on an array of circuit-level
wear-out sensors. The scheduling and mapping policies are dynamically built accord-
ing to the feedback from these sensors and the assessment of the current workload.
The authors report a 38% lifetime improvement of a 16-core multiprocessor using
their technique, over a naive round-robin scheduler.

In the thesis, lifetime-aware task mapping and scheduling is also based on spe-
cial on-line HCI and NBTI monitors [SKK11b] which are placed in all cores in the
multiprocessor. Nevertheless, primary mechanisms of lifetime improvement are clock
and power gating, in a special de-stress mode of operation. This mode also uses the
feedback from the aging monitors.

2.3 Dynamic adaptation to application require-

ments

The thesis title hints a multiprocessor technique that dynamically adapts to the appli-
cation requirements regarding aging (lifetime), fault tolerance to SEEs, performance
and power consumption. The motivation behind this work was clearly highlighted in
Subsection 1.4.1, based on the considerations exposed in Chapter 1. Such a technique
is suitable for long-life mission critical systems which require real-time, or, timing-
critical operation. An example is a satellite multiprocessor involved in many tasks
concurrently. Of course, fault-tolerant systems of other types may find this work
useful (see classification of fault-tolerant systems in Subsection 1.1.1).

This Section gives an overview of such schemes, proposals and techniques, empha-
sizing the advantages and disadvantages, comparing them to the thesis proposal.

2.3.1 Solutions based on core adaptation

A multi-core processor with a dynamic trade-off between fault tolerance, power con-
sumption and performance is introduced in [98]. It consists of multiple clustered cores
shown in Fig. 2.11. When a task with low parallelism requires high-performance, a
large core is assigned. On the other hand, for high-performance with high paral-
lelism, several small cores are used. If high performance is not required, a small core
is assigned. Making the core small or large is done by powering on/off one or more
clusters using special instructions.

Regarding fault tolerance, two modes of operation are proposed, based on the
redundant-multithreading technique (see Subsection 2.1.2) i.e., dual large core mode

51

for high performance and dual small core mode for lower power consumption. Each
thread is executed redundantly by the two cores. Similarly, the required performance
directs the choice of the operating mode.

The authors evaluate the different modes and processor configurations using the
energy, delay, upset-rate product (EDUP). Using rough estimations and architectural
level simulation they show for example 21% improvement in EDUP if adapting to
application requirements is used, compared to a case when the processor is configured
to execute only in the dual small core mode.

(a) Dual large core (b) Hetero core (c) Dual small core

Figure 2.11: Multiple clustered core processor (MCCP). (Source: [98]) Three
configurations of two cores with two clusters are shown. Each
cluster consists of instruction queue (IQ), register file (RF) and
functional units (FU). The cores additionally contain instruc-
tion and data cache (I$ and D$), instruction decode and branch
prediction unit. Special instructions are used for cluster gating.

In contrast to the MCCP proposal, the fault-tolerant solution in the thesis is based
on NMR mechanisms, which is applicable for timing-critical applications where time
for error recovery can not be afforded. Also, one of the thesis goals is that the frame-
work could be able to function with virtually any processor core, including off-the-shelf
cores (e.g., MIPS, ARM, ARC, LEON), without extending the instruction set. Thus,
no special instructions are needed for multiprocessor adaptation. Furthermore, the
thesis addresses an additional dependability aspect – multiprocessor lifetime.

Similar in motivation to [98] is the FPSR (Field-programmable self-repair) ap-
proach presented in [58]. The authors present an adaptable and self-repairable mi-
croarchitecture based on micro-operation units which could be configured by look-up
tables (as in FPGA). The programmer directly chooses the micro-operation units
and controls the internal operations and instructions. Several instruction sets are
supported such as ARM and Texas Instruments’ TMS320C55. The objective is that
the application extracts the maximum possible fault tolerance with maximum possible
performance.

52

Surprisingly, the authors do not show reliability evaluation of the proposal. In
one of the published papers on this subject, only power, area and performance mea-
surements are given. On the other hand, the work in [116] shows a mechanism for
average execution time optimization for two fault-tolerant techniques: CRR (Sub-
section 2.1.1) and majority software voting on several program copies executed by
different cores. They report up to 50% improvement compared to the non-optimized
case.

The FPSR approach, however, only treats the trade-offs between fault tolerance
and high performance. Besides, it requires great efforts in programming and detailed
knowledge of the microarchitecture. On the other side, being able to operate with
almost any kind of processor core, the thesis proposal leverages both software and
hardware development. Already written software (e.g., compilers, operating system)
could be reused and extended. The programmer does not need new knowledges and
skills.

2.3.2 VLIW-based solutions

In VLIW architectures, as the one depicted in Fig. 2.12, several slots concurrently
execute the short instructions packed by the compiler in one long instruction, thus
increasing performance. The slots could be alternatively exploited to increase the
fault tolerance of the processor [100, 101, 23]. The idea is to perform the same
operation by two slots as long as the results match. On a mismatch, a third slot
is assigned, forming a TMR system. Actually, this resembles an NMROD scheme
described in Subsection 2.1.3. When high-performance is required, the application
uses all available slots without replication of the operations, of course, in a non-fault-
tolerant fashion.

On the downside, besides the smaller fault-coverage (e.g., error in the control unit
could not be covered, which is crucial against SEFI), this approach is applicable only
in VLIW processors.

2.3.3 COTS-based solutions

Using COTS cores to build a dependable multiprocessor is an attractive strategy,
primarily because high-performance cores which are already proved and verified could
be integrated in the planned system, avoiding the effort to design the core itself.
Furthermore, a large body of software may already exist for such cores, reducing the
effort of software design too. As pointed out in a few places, the thesis proposal is
suitable for such a scenario. Of course, there are several other proposals.

A parallel, symmetric architecture for satellite systems built with high-
performance COTS components is presented in [126]. To increase dependability,
the architecture provides two fault-tolerant modes of operation: centralized and
distributed. The system is started in centralized fault-tolerant mode. If errors are
frequently detected, the system switches to distributed fault-tolerant mode, where
performance overheads are greater, but fault tolerance is higher, thus forming a self-

53

Figure 2.12: VLIW architecture. (Adapted from: [100]) Available slots pro-
cess in parallel one long instruction which consists of several
short (comparable to RISC) instructions. The slots are pipeline
replicas starting at the fetch phase, ending at the write-back
phase. There is a single register file and centralized control.
Note that the proposed reliability enhancement (NMR system,
depicted with dashed lines and dark shade of gray) could be
implemented at several places in the pipeline – even more ra-
tional would be behind the write-back registers. Only data-flow
is shown between the blocks, while control flow and instruction
supply are omitted for simplicity.

adaptable, hierarchical fault-tolerant scheme. However, here adaptability is related
to the number of errors observed in the system, not to application requirements.

Finally, although not adaptable, a dependable multiprocessor based on COTS
processors that is worth mentioning is detailed in [48, 97]. As depicted in Fig. 2.13
the cores (data processors 1 to N) are connected with redundant interconnections
A and B, and controlled by a redundant, radiation-hardened system controllers A
and B. The authors show an irradiation-based evaluation with 90%-95% confidence
that the system will be able to fulfill the 120-day space mission, expecting 945 SEUs.
Nevertheless, this is a short-mission system that does not employ mechanisms for
dynamic adaptation to application requirements and lifetime increase.

54

Figure 2.13: COTS based multiprocessor used in space applications.
(Source: [48])

2.4 Progress beyond the State-of-the-art

The Sections in Chapter 2, especially Section 2.3 already emphasized many features
of the thesis proposal that make progress beyond the current state-of-the-art. Never-
theless, this Section summarizes all the aspects that bring novelty and contributions
in the field.

At a first glance, the abstract overview of the thesis proposal shortly introduced
in Section 1.4 may seem as a simple combination of known concepts. Looking more
deeper, reveals multiple contributions in several fields.

First of all, this work proposes a novel dependable multiprocessor framework
targeting fault tolerance, longer lifetime, lower power consumption and high-
performance. The key concept is dynamical adaptation of the multiprocessor to
application requirements by changing the operating modes (de-stress, fault-tolerant
and high-performance). The de-stress mode is based on core gating patterns that
transfer the workload to inactive cores, while the currently active cores are deac-
tivated by switching off the power supply or clock; besides de-stressing, this mode
enables power saving. The fault-tolerant mode, on the other hand, is based on tightly
synchronized core-level NMR, where voting in each clock cycle enables masking faults
without interrupting operation, which is important for real-time, or, timing-critical
applications. Finally, high-performance mode enables high performance. Chapter 3
describes the proposal in details.

In particular, there are also 10 contributions (see the List of Own Publications at
page xvii) regarding the solutions used in the multiprocessor framework, or regarding
its evaluation:

55

• novel aging monitor presented in [SKK11b] and Subsection 4.1.2; a low-
complexity, all-digital, self-calibrating monitors are proposed; the cumulative
delay effect in an NBTI and an HCI inverter chain is used to make a relative
assessment of the age; the ends of the chains are registered, which enables
observing the age by interpreting the codes in these registers;

• novel core gating patterns for lifetime improvement based on the aging moni-
tor (see Subsection 3.1.1 and [SKK14a]); after each elapsed gating period, the
pattern activates and transfers the workload to the “youngest” core(s) in the
multiprocessor, while the currently active cores are powered- or clocked-off; the
pattern evaluation method which is based on the Weibul distribution is also
novel (see Subsection 6.1.1 and [SKK14a]);

• novel type of programmable NMR voters with self-check capability; a detailed
presentation of these voters is given in [SHKK12] and in Subsection 4.1.4; a
general method for design is also given in [SHKK12] and in Section 4.4; the
“programmable” property enables defining which of the redundant modules
should be considered during voting; programming could be done even in each
clock cycle; furthermore, the voters output a description of the inputs’ state,
e.g., which of the modules err (if so); the self-check facility signals whether the
voter itself operates correctly;

• novel technique for automated fault injection into the ASIC design flow which
is used to evaluate the fault-tolerant mechanisms in the proposal; the technique
is presented in [SKK13a] and in Section 5.2; it consists of preparing the gate-
level netlist of the circuit for fault injection and generating appropriate fault
injectors; all the procedures are automated; this technique is very versatile and
in a class by itself – it outperforms all known solutions for simulated fault
injection at the gate-level;

• novel 64/32-bit RISC core architecture (including novel instruction set), pre-
sented in [Sim13] and Appendix A; the core is simple and flexible, with novel
interrupt and virtual memory mechanisms;

• an 8-core framed multiprocessor based on the 32-bit RISC core is built accord-
ing to the thesis proposal, for the purposes of evaluation of the framework;
publication [SKK14b] presents the general concept and architecture;

• novel platform for automated HW/SW co-verification, testing and simulation of
(multi)processors [SKK12], used to verify and test the design of the core and the
multiprocessor (see Section 5.5); an assertion-based verification is carried out
during software execution; additionally, various execution logs are produced;
the instruction set simulation logs are compared to the register-transfer and
gate-level simulation logs, which indicates potential flaws; furthermore, the au-
tomated fault injection procedure is integrated into this platform, and later
used to evaluate the framed multiprocessor;

56

• novel register-transfer level NMR system generator, presented in [SKK13b];
given the parameter N, and the top file of a single module, the NMR system
generator builds an NMR system ready for synthesis.

A very important characteristic of the architectural framework is that it can be
built using virtually any type of cores, including COTS cores. In this way, both hard-
ware and software design is leveraged: hardware IP cores could be directly integrated;
already developed software procedures could be used and extended (e.g., operating
system procedures like task scheduling).

It is also interesting to note that the largest part of solutions for multiprocessor
dependability mentioned in Chapter 2 (e.g, core or thread-level redundant execu-
tion, NMR, duplicate-and-compare, pair-and-spare, NMR with K spares, self-purging,
NMROD, aging-based scheduling, etc.) could be implemented, or, emulated by the
proposed framework. That is, the framework could be used as a test and evalua-
tion platform for various fault-tolerant techniques, thus increasing its scientific and
practical value.

At last, a feature of this framework is its scalability (regarding the number of
cores), which is crucial for multiprocessor systems (see Subsection 3.4).

57

58

Chapter 3

Architectural multiprocessor
framework

As outlined in Section 1.4, the thesis investigates a multiprocessor framework with
several modes of operation that are dynamically changed according to the current
application requirements regarding performance and fault tolerance. The framework
tries to satisfy these requirements at the lowest possible aging rate and power con-
sumption. The three basic operating modes are: de-stress, fault-tolerant and high-
performance.

The general architecture of a Framed MultiProcessor (FMP) with K Framework
Groups (FWGs) was given in Fig. 1.13 on page 25. A short notation for this system
is FMP(P1, P2, . . . , PK), where Pi, i ∈ {0, 1, . . . , K} is the number of modules in the
i-th FWG. Similarly, the notation M(i, j) is used to denote module j of group i.

Fig. 3.1 presents a more detailed look into a FWG, in which the modules are
processor cores. Optionally, one or more levels of cache could be present. All inputs
and outputs of the cores are connected through the Framework Controller (FC). The
FC generates control signals like interrupt and reset for all PEs, thus enabling the
Framework Middleware (FM) to control the entire system. Global resets could be
also generated by the FC. Subsections 4.1 and 4.2 give an in-depth overview of the
FC and FM, respectively.

On the other side, Fig. 3.2 shows a FWG in which the modules are memory
blocks. The FC is slightly different only in respect to the connection of the signals.
For example, the memory blocks could not be interrupted. Here too, interrupt lines
have to be connected to the PEs in the system. Furthermore, note the reversal of
directions of the data, address and control lines. With some exceptions, the FC does
not care about the logical meaning of the module’s signals. Of course, it is important
whether the signal is a module input or output.

Thus, building FMPs as in Fig. 1.13 is straightforward. Furthermore, if direct
connections are used in simple systems like in Example 2 on page 25, only one FC is
sufficient!

Details of an FMP(4, 4) produced in IHP 130 nm technology are given in Sec-
tion 4.5.

59

Figure 3.1: Processor cores arranged in a FWG. Inputs and outputs go
through FC. Dashed lines indicate additional control signals gen-
erated by FC.

3.1 Operation in de-stress mode

If the current workload of the FMP requires only one or few modules operating, the
rest of them could be inactive. Inactive module means that it is switched off the
power supply or decoupled from the clock, in order to reduce power consumption
and wear-out (aging effects). An active module performs its given function i.e., it is
powered and clocked. In other words, the active module is under stress, while the
inactive is being de-stressed. Almost complete de-stressing is achieved if the module
is powered off, while decoupling only the clock partially de-stresses the module.

Furthermore, in order to de-stress the currently active modules, the workload
could be transferred to the inactive modules (after activating them). Of course, the
modules which were active up to now are deactivated. Doing this repetitively by some
pattern may lead to longer system lifetime.

However, several issues and trade-offs have to be investigated. Firstly, the pat-
tern and frequency of module gating i.e., (de)activation, as well as their (in)active
periods may significantly affect aging and power consumption, but also performance.
Too frequent module gating could make more damage in respect to aging and cause
greater power consumption, than if the module is left active all the time. Moreover,
performance overheads are increased. On the other hand, leaving the module active
for too long, may negatively impact its lifetime.

Secondly, modules can be clock- or power-gated. Clock Gating (CG) could signif-
icantly reduce HCI aging effects and dynamic power consumption. However, static
power consumption is not eliminated, while NBTI is even more pronounced. On the

60

Figure 3.2: Memory modules arranged in a FWG. FC control signals (mainly
interrupts) are connected to PEs.

other hand, Power Gating (PG) could lead to neglectable aging and power consump-
tion, but the activation latency is significantly increased.

It is worth noting that de-stressing could be done beyond the borders of the
framework groups. That is, the logical grouping of modules in the system does
not play a role in de-stress mode. For example, execution of a set of tasks in a
FMP(3, 3, 3) system with identical modules can begin at M(1, 1), continue with
M(1, 2),M(1, 3),M(2, 1) and end at M(2, 2). This is suitably represented as:

. . .
T0−→M(1, 1)

T1−→M(1, 2)
T2−→M(1, 3)

T3−→M(2, 1)
T4−→M(2, 2)

T5−→ . . . ,

where T0 to T5 denote the active periods of the modules. The periods over the arrow
refer to the modules that start the arrow, i.e., T1 is the active period of M(1, 1), T2

of M(1, 2), etc. M denotes the module that starts the execution of the observed set
of tasks.

3.1.1 Module gating patterns

From a power consumption perspective, it does not matter if only a specific set of
modules is mostly active, while other modules are mostly inactive. Alas, taking
into account aging, makes a lot of difference. The goal of finding an appropriate
gating pattern is to balance the load and equalize the aging between the modules
in the system, which hopefully will prolong system lifetime. A pattern that equally
distributes the load is Round-Robin (RR) with an active period T for all modules.
Fig. 3.3 shows a RR gating pattern applied in an FMP(4) system. For simplicity of

61

presentation, the examples in the thesis consider mainly one active module. Patterns
are easily extended for cases with up to Pi − 1 active modules, as Fig. 3.4 depicts.1

(a) One active module (b) Two active modules

(c) Three active modules

Figure 3.3: Round-robin gating pattern of an FMP(4). In systems with one
FWG, modules are simply denoted as Mj , j ∈ {1, 2, . . . , P1}. Ac-
tive periods T (not shown for clearness) are assumed in all tran-
sitions.

Fig. 3.3(b) and Fig. 3.3(c) do not clearly illustrate which modules are currently
active and which are not. A more convenient presentation for that purpose is given
by Fig. 3.4, showing when and which of the modules are active.

(a) One active module (b) Two active modules (c) Three active modules

Figure 3.4: RR gating in time. Grey and white rectangles denote active and
inactive modules, respectively. Since all transitions assume an
active period T, each rectangle is T time units wide.

Nonetheless, an RR pattern with equal T for all modules could equalize aging
only in a theoretical or perfect system. Factors like process variations may introduce
“different ages” of the modules even before the system begins to function. This
becomes worse if the modules are spanned across separate dies, ICs, or sub-systems.

1Having Pi active modules in each FWG does not de-stress the system.

62

A possible solution is to assign different active periods T for different modules, i.e.,
weighted RR. In order to do so, one has to estimate the age of the modules somehow.

Feedback on aging may be obtained by counting errors (see Subsection 2.2.2),
using error detection circuits or schemes, like in [87]. As said, this is not very ap-
propriate since errors are frequently induced by SEEs. Alternatively, one can rely on
aging sensors or monitors like the ones presented in [117, 122, 79, 17]. One of the
novel proposal of this thesis is a low-complexity, all-digital, self-calibrating, integrated
circuit aging monitor [SKK11b], described here in Subsection 4.1.2. It is used as a
mean to find the relative age of all modules in the multiprocessor, and based on this
information, construct the gating pattern.

Youngest First RR (YFRR) could be a possible strategy to equalize the age of
the modules and increase system lifetime. That is, the youngest modules are active
until they equalize their age to another module. If several modules have the same
(youngest) age, they are RR gated, while older modules are left inactive. Proceed-
ing in this way, the system ends up using RR gating with all modules. Consider
Example 7.

Example 7. Let the modules M1,M2,M3 and M4 in a FMP(4) system are at the
ages of 2, 3, 4 and 5, respectively. Assuming one active module at a time, a YFRR
pattern will hold only M1 active until it reaches the age of 3. Afterwards, M1 and M2

are interchangeably gated in a RR fashion, until they reach the age of 4. Similarly,
M1, M2 and M3 are gated in a RR fashion until they reach the age of 5. Then, all
four modules are gated in a RR fashion. Fig. 3.5 graphs the YFRR gating pattern.

Figure 3.5: Youngest first RR module gating times

Note that in a YFRR pattern it is not necessary (although possible) to calculate
special active periods for the modules, i.e., an active period T is always assumed.

3.1.2 Clock vs. power gating

Several trade-offs drive the choice between clock and power gating. On-chip PG is
implemented by big header or footer transistors which control whether a certain block
is powered or not (see Fig. 3.6(a) and 3.6(b)). Since the block is connected to Vdd
or ground through these transistors i.e., to a virtual ground or virtual Vdd, there will
be still some small current leakage causing static power dissipation when the block is
powered off. Much more significant phenomena are the rush currents that flow during

63

a limited time period after the block is switched on/off (see Fig. 3.6(c)). Thus, the
off period of the block should be at least equal to the break-even period [71], in order
to guarantee that the circuit will at least not increase the power consumption. Of
course, these rush currents have negative impact on aging, e.g., they can significantly
speed-up HCI.

(a) Using headers (b) Using footers (c) Dissipation, savings, break-even

Figure 3.6: Power gating

On the other hand, CG is implemented by logically “anding” the clock signal with
the control signal (see Fig. 3.7(a)), usually with an additional latch that eliminates
the glitches on the control signal (see Fig. 3.7(b)). A variety of CG circuits are given
in [60]. However, CG does not eliminate static power dissipation (leakage), which in
modern nanotechnologies is greater than dynamic power dissipation. Furthermore,
when the clock is off, all negatively biased PMOS and positively biased NMOS tran-
sistors are more prone to the BTI effect, since now the circuit does not change states,
i.e., the transistors are constantly under the same bias. HCI, on the other side, would
be lowered since no significant currents flow through the transistors (except leakage).

(a) CG control anded with clk (b) CG control latched and anded with clk

Figure 3.7: Clock gating

Another aspect to take into account is the activation time, or, activation la-
tency, which is directly related to performance. For instance, a large power-gated
module has to be (de)activated part by part, in order to limit the rush currents that
would otherwise damage the circuit. This is done using several headers or footers
which are switched consecutively with some time distance. Depending on the mod-
ule size, dozens of clock cycles may be needed for wake-up/go-to-sleep. Even worse,

64

consider the case where entire cores with L1 caches are subject to PG. The caches (at
least instruction cache) have to be refilled on each core wake up, which depending on
the cache type and block size, as well as memory connection and organization could
take up to several thousand cycles. On the contrary, CG can bring the core back to
function in one clock cycle, since the caches are powered and have not changed state.
However, in the case of PG, clever schemes could be implemented: module activation
could be done in parallel with another activity. For example, an FMP operating in
de-stress mode could activate core X to take over the job of core Y in advance, just
before the take-over, so there is no (or minimal) performance penalty.

In the proposed framework, both PG and CG are provided. The decision which
one to use is left to the application layer.

3.1.3 Selecting an optimal (in)active period

Subsections 3.1.1 and 3.1.2 already discussed most of the aspects that direct the
choice of the active period T. To summarize, the factors that should be taken into
account when deciding on the active periods are:

• mission time,

• number of modules,

• number of concurrently active modules required,

• age of modules,

• gating pattern,

• gating type – clock or power.

As said, each module could have a special active period, assigned in accordance
to its age. Alternatively, the system may opt for the YFRR pattern where each
module could have the same active period. In both cases, the active period could be
dynamically calculated and adapted according to the feedback on aging. For long-
life systems, e.g., satellite on-board multiprocessor with a 10 year mission, active
periods in the order of days, weeks, or even months could be selected, depending on
the number of cores. Of course, switching the operating mode disturbs the de-stress
(gating) pattern and the (in)active module times.

3.2 Operation in fault-tolerant mode

Fault-tolerant system design is driven by many factors such as the expected error
rate, performance demands, power restrictions, as well as the available area, i.e., the
cost of the system. As elaborated in Chapter 2, fault-tolerant mechanisms require
redundancy of some form (information, time or space).

65

The multiprocessor framework in this work is based on coarse-grained NMR mech-
anism, where coarse structures like cores with or without caches, memory blocks, etc.,
are the “redundant” modules in the NMR system. A special programmable NMR
voter (see Subsection 4.1.4) is used to dynamically form the NMR system from an
arbitrary set of identical modules, and arbitrary N. In each clock cycle, the voter
selects the majority output and takes additional actions, if needed.

The following considerations led to selection of these mechanisms in fault-tolerant
mode. As outlined in Subsection 1.3.2, in order to increase performance, multipro-
cessors exploit parallelism in programs (and between programs) using multiple PEs.2

When a PE is idle, it could be alternatively viewed as a redundant component – a
requirement for fault tolerance. Thus, in a special, fault-tolerant operating mode,
these PEs could re-execute jobs of other cores in order to confirm the results and
increase reliability.

Using entire multiprocessor cores as “redundant” modules in a NMR system has
several advantages. Firstly, any type of core (including already verified off-the-shelf
IPs) could be used to build the multiprocessor, without any design changes. This is
advantageous, as said, since both hardware and software design are leveraged. Sec-
ondly, the error coverage is greater in comparison to finer-grained solutions. Thirdly,
additional fault-tolerant mechanisms are not needed. For example, if the L1 cache
is part of the “redundant” module, it does not even have to include parity checks.
Lastly, an NMR system (with N > 2) masks possible errors in each clock cycle, which
is appropriate for timing-critical operations – the core performance is not affected at
all. Furthermore, using the programmable voters, NMR systems could be dynami-
cally formed, i.e., NMROD with arbitrary combination of N identical modules. (Static
NMR is even more straightforward.) Actually, a great deal of fault-tolerant mecha-
nisms described in Chapter 2, could be implemented by the proposed framework.

However, N has an upper bound due to practical limitations. As shown in Sec-
tion 4.4.3 and [SHKK12], both area and propagation delay of the programmable voter
scale quadratically with N. Because of these limitations, and with the purpose to build
a scalable and orthogonal multiprocessor architecture, FWGs have to be defined. A
FWG is a set of P identical modules in which NMR systems could be formed, where
1 ≤ N ≤ P . On the other hand, redundant execution (for applications that are not
timing-critical) by two or more cores like in [38], could be easily implemented using
any set of cores, regardless of the FWG boundaries.

At the end, note that the “redundant” modules are not redundant in other modes
of operation. E.g., high-performance mode uses the multiprocessor cores in exactly
the same manner as any regular multiprocessor.

3.2.1 NMR system formation

Before elaborating how NMR systems are formed inside a FWG, one of the basic
questions to be investigated is how many cores should a FWG contain, i.e., what is
the optimal number P . Increasing P will maybe offer higher fault tolerance. On the

2On the other side, multiple memory banks are used to increase system throughput.

66

other side, the complexity, area, performance and power consumption overheads of
the framework controller may outweigh the gains in fault tolerance.

As discussed, if only permanent faults are considered, a TMR system outper-
forms 4MR and 5MR (see Fig. 2.8), and is only slightly worse than 6MR. Several
experiments were conducted in order to evaluate the behaviour under temporary
faults. Section 6.2 details these experiments and their results, as well as results re-
garding the performance overheads when state recovery is engaged. Furthermore,
Section 4.4.3 and [SHKK12] present an in-depth evaluation of the programmable
NMR voters which are the main building blocks of the framework controllers. The
insight into the trade-offs helps choosing P when building an FMP. However, for the
purposes of this Chapter, P = 4 is mainly assumed, that is, FMP(4).

In a FMP(4), the framework controller should enable dynamically forming DMR,
TMR and 4MR systems, using any combination of modules. Furthermore, two DMR
systems at a time should be also possible. Fig. 3.8 shows all NMR configurations in
a FMP(4).

Figure 3.8: Possible NMR configurations in FMP(4)

The framework controller should be able to restructure the FWG in several clock
cycles, e.g., go to TMR from DMR, or, change the combination of modules that form
the TMR. In other words, transitions from a FWG configuration to another FWG
configuration should be dynamically made upon a system or application request in
just a few cycles.

3.2.2 State recovery

Modules in an NMR system could get into non-consistent states. For instance, if a
fault in one or more cores in the FMP occurs, their state may no longer be the same
as the state of the correct ones. Schemes for efficient state recovery of the erroneous
modules in the system have to be investigated.

Several proposals for state recovery in NMR systems are given in [19]. Mechanisms
of state recovery could be various: simply resetting all the modules that belong to
the NMR system and restarting the computation, CRR, or copying the state from
the non-faulty cores to the faulty ones.

67

Different solutions for state recovery impose different trade-offs on efficiency, per-
formance overheads and power consumption. Besides quickly detecting the erroneous
state, fast state recovery schemes require that the framework controller is able to pin-
point the erroneous module(s), as well as determine the number of erroneous modules.
As will be shown, the programmable NMR voters have an Input State Descriptor
(ISD) that outputs this information which is later used by the framework controller.
Furthermore, the framework controller should be able to take the appropriate action
efficiently: reset the module(s), or, invoke interrupts and state recovery handlers of
one or more modules.

An intelligent state recovery scheme of a TMR system formed inside a FMP(4),
where the fourth module is not needed and therefore deactivated, is the following.
Let an error occur in one of the modules in the TMR system. The inactive module is
then activated and included into the system. Operation can continue as long as the
correct DMR system does not encounter errors. The erroneous module is deactivated
(e.g., switched off the power supply or clock, or simply reset and not used). A special
procedure, similar to a context-switch, is used to transfer the correct state from the
error-free modules to the newly activated core. That is, the error-free cores save
their state, and all three modules now forming the new TMR system resynchronize
by reloading the saved state. This scheme is depicted in Fig. 3.9. Of course, if the
error is found to be transient, the erroneous module itself could be brought back to
a correct state instead of waking another module. Subsection 3.2.3 reveals how the
framework controller determines whether the error is transient or permanent.

Figure 3.9: State recovery of a TMR in FMP(4)

If the modules are memory blocks instead of PEs, a simple rewrite of the erroneous
word would be enough. The rewrite operation could be done by a PE in the system,
or, alternatively, the framework controller could scrub that memory location without
interrupting any PE – the correct data is present at the outputs of the non-erroneous
memory blocks in the FWG.

An advantage of this state recovery scheme is that it de-stresses the module in
which a fault was diagnosed, which is helpful in some cases (e.g., by NBTI-induced
faults).

3.2.3 Fault classification

A simple scheme of distinguishing transient from permanent faults is counting errors
in each module, during a specified time period (see Fig. 3.10). If the number of module

68

errors overcomes a predefined error threshold in this time period, a permanent fault
is reported, else the error count for that module is reset to zero. Thus, the framework
controller could decide to further use the module or to shut it down. Afterwards, the
mechanism is initiated again and the procedures are repeated cyclically.

Figure 3.10: Fault classification scheme

The expected fault rate is the main guide when determining the time period and
the error threshold for a specific system and environment. Fault injection could be
used to find the optimal values of these parameters.

Before shutting a module down, more extensive checks could be initiated in order
to confirm that the module is permanently damaged. Built-in self tests, or other
diagnostic procedures are suitable for this purpose. For memory blocks, write-in and
read-out of predefined patterns at each memory location could be performed.

Summed up, in order to efficiently support fault classification, the framework
controller should additionally include error counters for each module in the FWG.

3.2.4 Framework fault tolerance

If a fault occurs in one of the modules operating in fault-tolerant mode, it will be
masked by the voter. Nevertheless, if a fault occurs in the framework controller, the
system may fail. The controller, which in this case is a single point of failure, has
significant functions that drive the entire operation of the system. A potential fault
could induce fatal SEFIs.

69

Therefore, a special attention to the framework controller’s reliability should be
paid. Subsections 4.1.4 and 4.4.1, as well as [SHKK12] describe the self-check capa-
bility of the programmable NMR voters.

Furthermore, it is worth noting that the framework controller is a relatively small
circuitry compared to the rest of the system. For example, the synthesis results
of the FMP(4,4) implementation presented in Section 4.5 show that the framework
controllers area is 1,47% of the entire FMP. The voters occupy 27,2% of the framework
controllers, or 0,4% of the FMP. Thus, approximately 1% of the logic should be
additionally protected. The low area figure allows implementing this logic with larger
and/or radiation-hardened cells, but also circuit-level solutions such as elaborate Error
Detection and Correction (EDAC) codes.

3.3 Operation in high-performance mode

Previously was stated that a FMP operating in high-performance mode is similar
in operation to any regular multiprocessor. Nonetheless, there are some differences.
Firstly, task mapping and scheduling could be lifetime-aware (see Subsection 4.3.2),
based on the aging information supplied by the aging monitors described in Subsec-
tion 4.1.2.

Secondly, the framework controller could be used to switch off the clock or power
supply of the unneeded modules. That is, if the application requires parallel process-
ing using M-out-of-N modules in the multiprocessor, the “oldest” (N −M) modules
could be deactivated. However, this is not the same behaviour as in de-stress mode,
in which module gating patterns automatically transfer the workload to “fresh”, inac-
tive modules and de-stress the active ones. High-performance mode does not involve
module gating patterns in order to avoid performance overheads. Though, it does
involve simple, dynamic, on-demand (de)activation of modules.

3.4 Scalability

The scalability of the proposed concept has several aspects which are tightly related
to the number of modules in the system. A special investigation should answer the
question “how easy” the system is scaled, i.e., how performance, fault tolerance,
lifetime, power consumption and cost are affected by varying the number of modules
in the system. Of course, the type of the interconnection network directly answers
many of these questions.

Moreover, besides scalability, the network should enable fault-tolerant intercon-
nections of the modules, since one of the objectives of this thesis is fault-tolerant
multiprocessor operation. Mesh, cube and k-ary n-cube networks are possible can-
didates because besides scalability and redundant links, they enable simple routing
protocols. However, proposing an appropriate interconnection network topology and
routing (switching) mechanisms for the multiprocessor framework is planned as a
future work.

70

Chapter 4

Implementation

Chapter 3 explained the three operating modes (de-stress, fault-tolerant and high-
performance) and stressed what the framework should contain, in general. This Chap-
ter explains the implementation in great details. Firstly, the layers of the system (see
Fig. 1.12 on page 25) are described in Sections 4.1, 4.2 and 4.3. Section 4.4 elabo-
rates the design method for one of the most crucial elements of the thesis proposal –
the programmable NMR voters. At the end of the Chapter, Section 4.5 presents the
framed multiprocessor FMP(4, 4) that was built to explore the proposed concept.

4.1 Framework controller

Fig. 4.1 shows the block diagram of the framework controller (FC).

Before explaining the functions of the FC, let’s first see how the component is
accessed, i.e., how the PEs write and read the FC registers. All inputs and outputs
of all modules in the FWG go through the FC. It is therefore enough to indicate the
positions of the address, data and read/write control lines. The FC monitors the
Output Multiplexing Logic (OML) inputs whether some of the modules selects the
FC and issues a write or read command to a valid address of a register. It reacts
appropriately by writing the data to the selected register, or, places the contents of
the register at the corresponding data lines when read operation is requested.

Table 4.1 shows the complete register set of the FC. Note that some of the registers
are omitted in Fig. 4.1 with the purpose not to overload the block diagram.

However, in a FWG of memory blocks, the read/write operations have still to
be done by the PEs in the system. In this case, the register write-in and read-out
directions should be reversed (see Fig. 4.1). Furthermore, the address, data and
control signals now come from the Input Multiplexing Logic (IML). This Section
mainly assumes a FC for a FWG of PEs, although all principles apply to a FC for a
FWG of memory blocks too.

71

Figure 4.1: Framework controller. A FWG with P modules assumed. Thin
arrow lines denote control flow. Thick arrow lines denote data
flow.

4.1.1 PG/CG control and de-stressing support

The PG/CG control block contains CG cells as in Fig. 3.7, driving the clock of
each module in the FWG. Furthermore, it drives the control signals of the PG
header/footer transistors (see Fig. 3.6), thus controlling which module is powered
on/off.

The framework middleware simply sets/resets the appropriate bits in the PG/CG
register for the module(s) that have to be power-/clock-gated.

Note that if DVFS is used, this block would contain additional power and fre-
quency control functions.

In de-stress mode, the de-stress timer is set to hold the active period T. On a
timer-out event, the FC interrupts all active modules. The middleware handler takes
control and (de)activates the modules by writing the PG/CG register, according to
the information from the aging monitors and the gating pattern. The de-stress timer
is run again, and the activated module(s) resume the work of the previously active
module(s), after returning from the interrupt handler. Of course, the handler previ-
ously writes all process states in memory – similarly to a context switch procedure.

4.1.2 Aging monitors

The introductory Section 1.2.1 explains the aging effects in more details, while Sec-
tion 1.3.1 shows the impacts of technology scaling on these effects. As said, the most
dominant effects in CMOS technology are NBTI and HCI, which degrade the gate-
oxide layers in the IC. In the thesis, their cumulative effect is used to construct gate-

72

Table 4.1: FC registers
Register Description

Command Basic commands for tweaking operation
PG/CG PG/CG of modules in the FWG
Mode Set NMR groups
De-stress timer Timer for the de-stress period
2P+2 Action registers Define actions for the formed NMR groups
2P+2 Aging monitors HCI and NBTI aging monitors for each module and FC
P Error counters Counting errors in NMR groups
P Error timers Used to implement fault classification
Last action Status and last taken action for a NMR group
Interrupt status Pin-point and acknowledge generated interrupts
Interrupt mask Enable/disable specific interrupts
Predefined outputs Drive NMR outputs on voter error
Inactive outputs Drive outputs when system environment is not NMR

oxide aging monitors. The YFRR core gating pattern, as well as the lifetime-aware
scheduling and task mapping, use the information supplied by the aging monitors.

Fig. 1.6 on page 11 could help explaining the cumulative effect of NBTI and HCI
in a simplified manner, using the classical CMOS inverter.

NBTI occurs when the inverter is in a stable state and its output is logic 0 (∼
0 V). Since the input is at logic 1 (around Vdd), the PMOS transistor is off and
negatively biased. The negative bias triggers an electrochemical process – trapping
and releasing carriers from the channel. Trapped carriers reduce the mobility of the
channel carriers which in effect shifts the threshold voltage of the transistor. In older
technologies NBTI affects only PMOS transistors. However, in newer ones, the same
effect (PBTI) is observed in NMOS transistors too. Luckily, this process is reversible
to some extent. If the inverter is not powered, most of the carriers are released back
to the channel.

HCI occurs when the inverter changes the state i.e., transistors switch on/off. On
a switch, both transistors conduct during a small time interval, in which a relatively
large current flows from Vdd to gnd. Thus, some of the “hot carriers” are able
to get sufficient kinetic energy to pass the Si/SiO interface and enter the forbidden
oxide layer. HCI affects both NMOS and PMOS transistors. Unfortunately, HCI
degradation is irreversible. The trapped carriers cannot be released back to the
channel, eventually causing oxide breakdown – the carriers form a conductive path
through the oxide.

Thus, both NBTI and HCI increase the threshold voltage of the transistors, i.e.,
increase their input-to-output delay. The cumulative effect is lowered IC performance
(frequency of operation). Ultimately, the transistors may get permanently damaged.

This cumulative effect is used to build NBTI and HCI aging monitors, proposed
in [SKK11b]. In short, both of them are based on inverter chains, with the HCI chain

73

being switched on each clock cycle, while the NBTI monitor is never switched (except
during age read-out). Fig. 4.2 shows both aging monitors.

(a) HCI monitor

(b) NBTI monitor

Figure 4.2: Gate-oxide aging monitors

Gate-delay due to gate-oxide aging effects will eventually obstruct the signal to
propagate through all the inverters in the chain. As the circuit gets older, more
inverters at the end will not feel the signal change in one clock period. Thus, an
information that shows the level of circuit aging could be extracted.

For example, in a monitor with 16 inverters and an 8-bit register the “age code”
of 01010101 means that the signal successfully propagated through all 16 inverters.
A code of 01010100, on the other hand, indicates that the signal did not propagate
through the last inverter in the chain. Similarly, 01010110 indicates that the last two
inverters did not feel the signal change, etc.

The length of the chain should be constructed according to the target frequency
of the modules. For example, the implemented FMP(4, 4) (see Section 4.5) has 320
inverters at 50 MHz. Though, the register width could be smaller. For practical
reasons, it is handy to be an integer multiple of the data bus width of the module
(e.g., the width of these registers in the implemented FMP is 64-bit).

Although the aging monitors logically belong to the FC, the PG/CG functions
affect them exactly as they affect the corresponding modules. That is, if a module
is power- or clock-gated, the corresponding monitor is also power-/clock-gated in
the same time, and in the same manner. Extraction of the age information using
the monitors has to be done in two steps: firstly, activate age read-out by setting
an appropriate bit in the command register, and secondly, read the age code in the
monitor’s register. However, factors like temperature may affect the results and lead
to deviations. In order to get a clearer picture of the age code, several read-outs and
averaging the results are recommended.

Note that there are one HCI and one NBTI monitor per module. Thus, in a FWG
with P modules, 2P aging registers have to be read. Additional pair of an HCI and

74

an NBTI monitor which is constantly powered and clocked observes the aging of the
FC itself.

4.1.3 NMR system formation

The NMR formation inside a FWG is done simply by programming the mode register
shown in Fig. 4.3.

Figure 4.3: Mode register. All fields are one bit wide, except IOMOD which
is dlog2 P e bits wide.

If bit Mi is set, the corresponding module is part of the NMR group, otherwise it
is an independently operated module. Minimum two bits have to be set in order to
form at least a DMR, otherwise no NMR group is formed. Setting all bits makes the
entire FWG an NMR system consisting of P redundant modules. From outside, an
NMR group is viewed as a single module (as in any NMR system). Of course, if the
module is powered or clocked off it is not considered as a member of the NMR group,
in which case the Mi bit is a “don’t care” bit.

Setting the mode register configures the OML and IML, and the programmable
NMR voters inside them.

Example 8. Let the PEs 1, 2 and 3 form a TMR in a FMP(4), and let PE 4 be
standalone. M1, M2 and M3 have to be set by writing the mode register. The outside
world sees a two-core system consisting of PE 4 and the TMR group of PEs. One
thing left to convey to the FC is the environment in which this FMP is supposed to
operate. If the AIO (All I/O) bit is set, the FC considers that the TMR system is
extended outside the FWG. E.g., the inputs/outputs corresponding to PEs 1, 2 and 3
are connected to redundant memory blocks. Therefore, it configures the system as in
Fig. 4.4(a).

On the other side, if AIO is reset, the FC considers that the formed TMR group of
PEs is connected to a single memory block, and configures the system as in Fig. 4.4(b).
The communication between the TMR group and the external memory block uses the
lines of the PE specified in IOMOD (IO module). In this example, IOMOD is set to
2. Setting IOMOD to 4 will trigger the “false setup” bit (FSET) in the last action
register since PE 4 is not a part of the NMR group (M4 is reset). The “inactive
outputs” register now drives all outputs of PEs that belong to the NMR group except
the PE specified in IOMOD. The IML in this case, does not use the voter.

4.1.4 Programmable NMR voters

The characteristics of the NMR system are mostly determined by the type of the
voter. One of the contributions of this thesis is the novel type of programmable NMR

75

(a) AIO is set (b) AIO is reset, IOMOD=2

Figure 4.4: I/O configurations of a TMR in FMP(4)

voters which are presented in this Subsection. A design method for the novel voters,
and their evaluation regarding performance and area is given in Section 4.4, as well
as in [SHKK12].

A few definitions follow. Assuming that there are P redundant modules, let the
set of inputs of the NMR voter be A = {x0, x1, . . . , xP−1}, and the voting output
be y. The absolute difference between two input values xi and xj is δij = |xj − xi|.
The easiest to implement, and actually the most used algorithm is the exact voting
algorithm where δij must be 0 in order to consider xi and xj equal. An inexact
voting algorithm on the other hand, defines σ for which if δij < σ then xi and xj are
considered equal. The third type is approved voting where each input consists of a set
(or range) of approved values. The voter in this case outputs the most appropriate
set of input values.

A general M-out-of-N voter considers the voting successful if there are at least M
equal inputs (of N inputs in total). However, if M ≤ N/2 then ambiguous situations
exist, in which 2 or more candidates could be legitimate outputs. For instance, let in
a 2-out-of-4 system x0 = x1 6= x2 = x3. Two values are legitimate candidates for the
voting output – the voter hesitates what to choose: y = x0 = x1, or, y = x2 = x3?

Fig. 4.5 shows the interface of the 1-out-of-N, programmable NMR voter used in
the thesis. This voter has such a capability that N could be dynamically set in the
range 1 ≤ N ≤ P , using any combination of redundant modules. The xi inputs and
the output y can be W-bits wide. The voting output y is always equal to xi, where xi
belongs to the largest group of equal inputs. Furthermore, the voter gives a complete
description of the situation at its inputs xi i.e.,

• the number of inputs which differ from the determined output – nr diff (or,
equivalently, the number of inputs which are equal to the determined output –
nr eq),

76

• the signals ei which signal whether xi is equal to y, and

• the ambiguous situation signal – amb.

These additional outputs are denoted as the Inputs State Descriptor (ISD).

Figure 4.5: Programmable NMR voter with ISD and self-checks

Moreover, the voter does on-line self-checking of its operation. Inconsistencies are
reported by asserting the err signal. Details of the self-check function are given in
Subsection 4.4.1.

The programming is done in the following way. Each input xi has an associated
programming bit pbi, which signals whether the input is to be considered for voting,
i.e., whether xi is an active input. Thus, in Example 8, the FC will configure pb0 =
pb1 = pb2 = 1 and pb3 = 0 of both IML and OML voters. In other words, x0, x1 and
x2 are set as active inputs, while x3 as inactive.

Thus, dynamical reconfiguration could be done. 1MR, 2MR,. . . , PMR systems
with any combination of redundant modules could be formed. There are two exotic
situations though: configuring all the inputs as inactive is considered illegal (y could
be anything in 0MR); in a 1MR system on the other hand, the output y is always
equal to the active input. For proper operation, at least one input should be defined
as active.

Last characteristic but not least important is that the design of these voters is
easy-scalable in respect to both P and W parameters (see Section 4.4).

4.1.5 Error handling – interrupt and reset generation

The ISD outputs of the voters enable precise definitions of actions. In each clock
cycle, the FC knows whether all of the modules in the formed NMR group agree,
or, which of the modules disagree, their total number, and whether an ambiguous
situation exists. Fig. 4.6 shows the action registers which define the actions that
should be taken on all possible events.

77

Figure 4.6: Action registers. Two packs of P+1 registers (one for IML, and
one for OML) define what actions should be taken for each possi-
ble nr diff output of the IML and OML voters, correspondingly.
The “voter error” register defines the actions when the voter it-
self reports erroneous operation, and supersedes all other action
registers on that event. If the formed NMR group has N mod-
ules where N < P , only the top N registers and the “voter error”
register are valid.

The action registers could be programmed to reset or interrupt one or more mod-
ules, as well as invoke a global reset. This is necessary in order to bring all the
NMR modules back to a consistent state, but also to enable uninterrupted opera-
tion in timing-critical procedures. Table 4.2 shows the actions that may be triggered
according to the 3-bit ACTION field.

Table 4.2: Actions. Some of the actions use the P-bit ARG1 field that indi-
cates the modules for which the actions apply.

Action code Action

000 Raise interrupt to modules specified by ARG1
001 Raise interrupt to erroneous modules
010 Raise interrupt to non-erroneous modules
011 Not used. (Sets the “false setup” bit FSET.)
100 Reset modules specified by ARG1
101 Reset erroneous modules
110 Reset non-erroneous modules
111 General reset

If set, the DA (disable actions) and FLAR (freeze last action register) bits further
set the eponymous bits in the command register (see Fig. 4.9), disabling successive
actions (resets and interrupts), and updates of the last action register (see Fig. 4.7).
The reasoning behind these bits is that once a module gets into erroneous state, it
could trigger multiple interrupts and resets, which may prohibit efficient state recovery
in some situations. Re-enabling actions and updates of the last action register are
done by resetting these bits in the command register.

78

Besides definition of actions, it is necessary to drive the output of the NMR group
in cases where one or more modules are erroneous. Normally, the voter output y is
the most appropriate choice whenever there is a majority. However, when the voter
operation is erroneous (reported by the err signal), or indecisive (reported by the
amb signal), or when there is no majority (nr diff ≤ N/2), a “more trusted” module
could be set to drive the outputs of the NMR group. Alternatively, the “predefined
outputs” register could be also configured for the same purpose. Table 4.3 shows the
output drivers which can be selected by the OUTDRV field.

Table 4.3: Output driver selection. In the ‘10’ case, the dlog2 P e-bit ARG0
field is set to indicate the module which drives the output; note
that the module does not have to belong to the formed NMR group
(when N < P).

Outdrv code Output driver

00 Voter drives NMR group output(s)
01 Not used. (Sets the “false setup” bit FSET.)
10 Module ARG0 drives output(s)
11 The “predefined outputs” register drives output(s)

As its name suggests, the read-only “last action” register shown in Fig. 4.7 records
the last action that was taken (if the FLAR bit is not set)1. The interrupt handler
can thus inspect what happened and make intelligent decisions.

Figure 4.7: Last action register

The FSET bit is set if the FC configuration is false. The VERR bit indicates that
a voter error occured. The GRES bit indicates that the last action was a global reset
initiated by the FC. If the global reset comes from outside, the GRES bit is not set.
RES1 to RESP show which of the modules were reset (if any). INT1 to INTP show
which of the modules were interrupted (if any). ERR1 to ERRP show which of the
modules erred – just by registering the ei signals of the voter’s ISD. The IND bit
indicates whether the voter was indecisive by registering its amb output, while the
NR DIFF field registers the nr diff output of the voter.

4.1.6 Other control and observation functions

When an NMR group is formed, each disagreement of a module output with the voter
output is additionally noted by incrementing an error counter. In a FWG(P), the FC

1Actually, more appropriate name would be “last action and status” register. For short, only the
“last action” part is used.

79

has P error counters in total. Furthermore, the FC supports the fault classification
scheme discussed in Subsection 3.2.3. For that purpose, P error timers are provided to
count the predefined time periods. If the module is not a member of the NMR group,
or it is not powered or clocked, the corresponding error timer is inactive. Otherwise,
writing a value greater than zero in the error timer register, starts the timer. On
a timer-out event (when the error timer reaches zero), the corresponding module is
interrupted.

The interrupt status register shown in Fig. 4.8 could be inspected to see the sources
of the generated FC interrupts. Resetting the corresponding bits of this register tells
the FC which of the generated interrupt(s) are handled. Table 4.4 describes the
interrupt sources.

Figure 4.8: Interrupt status register

Equal in size, and with corresponding bit positions is the interrupt mask register
which defines whether the interrupts are masked or not. Masked interrupts do not
trigger events outside the FC.

Table 4.4: Interrupt sources.
Interrupt Description

VEI Voter error interrupt
DTI De-stress timer interrupt (timer-out event)
OVI1 – OVIP OML voter interrupt (i voter disagreements)
IVI1 – IVIP IML voter interrupt (i voter disagreements)
ETI1 – ETIP Error timer interrupt (timer-out of i-th timer(s))
ECI1 – ECIP Error counter interrupt (the i-th counter(s) overflowed)

Finally, the write-only command register shown in Fig. 4.9 provides additional
functions.

Figure 4.9: Command register

The DA and FLAR bits are explained in Subsection 4.1.5. The GR bit could be
set to trigger global reset, while bits RM1 to RMP trigger resets to the corresponding
modules in the FWG. Similarly, REC1 to RECP reset the error counters. AGE1 to
AGEP initiate age read-out of the corresponding modules, while AGE0 initiates age
read-out of the FC itself. As previously explained, the age codes should be read
from the corresponding aging monitors, after initiating age read-out in the command
register.

80

4.2 Framework middleware

This Section details the software part of the framework – the framework middleware
(FM). The FM is the middle layer in the framework (see Fig. 1.12 on page 25) which
uses the services of the FC, and offers its services to the upper application layer.

The FM consists of two parts. The first part is a library of procedures that
greatly simplify the communication with the FC, by hiding all details like addresses
of registers and positions of various bits. For instance, simply invoking the procedure
powerOff(3) will power off the module 3 in the FWG. Here, only the number of the
module which should be switched off is supplied. The address of the PG/CG register
as well as the bit position that controls the power state of module 3 are handled in the
FM procedure – the application layer only calls the procedure with the appropriate
argument. Furthermore, using powerful constructs of high-level languages, like enu-
meration types, the numbers of the modules could be replaced by symbolic names.
Thus, calling the procedure would be e.g., powerOff(BACKUP CORE).

The second part of the framework are the interrupt handlers. Each PE in the
system which could be interrupted by the FC should implement the main FC interrupt
handler, or, handler dispatcher. The dispatcher should investigate the interrupt status
register to see which FC interrupts are pending (see Fig. 4.8 and Table 4.4). If more
than one interrupts are pending, the one with the highest priority is selected. In
this Section it is assumed that the priority of FC interrupts is defined according to
the bit positions in Fig. 4.8, i.e., VEI is the highest priority interrupt, while ECIP is
the lowest. However, each specific system could define its own FC interrupt handlers
(and their priorities), which may deviate from the ones presented here.

Throughout the Section, a pseudo programming language (similar to C) is used
to describe the FM procedures which are written in a fixed-width font. For instance,
Fig. 4.10 shows the interrupt handler dispatcher.

whilewhilewhile(ifIntrPending()) //while pending interrupts

{
intintint ISTAT = getIntrStatus(); //copy intr status to ISTAT

intintint INTR = findHPIntr(ISTAT); //find highest priority intr

intintint HNDL ADDR = intrHndlAddr(INTR); //get intr handler address

jmpjmpjmp HNDL ADDR; //jump to handler

ackIntr(INTR); //acknowledge interrupt

}
returnreturnreturn; //return from dispatcher

Figure 4.10: Interrupt handler dispatcher. Here, findHPIntr() and
intrHndlAddr() are not part of the FM. All other functions are
explained later. An integer variable is defined by int, while a
single bit boolean variable is defined by bool. ifIntrPending()
for example, returns boolean.

81

4.2.1 Library of framework procedures

Table B.1 on page 151 in Appendix B lists the library of FM procedures. The appli-
cation layer controls and observes the framework solely by invoking these procedures.

Note that set and get functions like getPGCG(), setPGCG(int), getMode(), or
setMode(int) should be used only for storing or retrieving the state of the FC.
Otherwise, one has to know the exact bit positions of registers which is contrary to
the purpose of this library.

Procedures related to action registers contain the word Action, and are actually
aliases of “OMLAction” procedures. The completely equivalent “IMLAction” proce-
dures in which only the corresponding register addresses are different, are not shown
in Table B.1. Thus, for example, if one wants to get all actions of the OML, should
either call getActionsAll() or getOMLActionsAll(); to get all actions of the IML,
getIMLActionsAll() should be called. This is the case for each function that relates
both to OML and IML.

Procedures related to PG/CG, de-stress mode and age monitoring

The most exotic function in the FM library is the *int getAge(*int) function since
it involves two different types of registers – the command register and the aging mon-
itors. For instance, in order to get the age of all modules and the FC in FMP(4), one
should call getAge(0,1,2,3,4). Alternatively, *int getAgeAll() could be invoked,
which assumes all possible age codes, and therefore no arguments are needed. The
procedure firstly initiates age read-out in the aging monitors by writing the corre-
sponding AGE0 to AGE4 bits in the command register. Then, it reads all HCI and
NBTI monitors in each module and the FC, and packs the information in the return
*int array. Note that the output array has twice as many elements as the input
array. The procedure is shown in Fig. 4.11.

For de-stress operation, e.g., implementation of the YFRR pattern, two additional
registers are crucial besides the aging moniors – the de-stress timer and the PG/CG
register. The de-stress timer is activated by simply writing a non-zero value to it,
using the setDeStressPeriod(int) function, while noDeStress() deactivates it by
writing a zero value. The function ifCouldDeStress() checks if there is at least one
inactive module, so a de-stress pattern could be applied.

Procedures related to NMR system formation and error handling

Forming an NMR group is simply done by the formNMR() procedure, by specifying
the module numbers that form the group as arguments. For example, formNMR(2,4)
forms a DMR group of the modules 2 and 4. The procedure only writes the corre-
sponding bits of the mode register. Of course, there are a dozen of other functions
that ease mode setup.

Defining actions is a bit more trickier, because of the greater number of arguments
that need to be set. The setAction() procedure has two versions which differ by
the number of specified arguments. The first version has two arguments: the action
register number (from 0 to P), and the contents of the register. Nevertheless, much

82

*intintint OUTARR getAge(*intintint INARR)

{
intintint AGE BITS = 0; //initialize all AGE BITS to zero

foreachforeachforeach INARR //loop through input array:

{ //for each specified module

AGE BITS($) = 1; //set corresponding bit

}
AGE BITS = sl(AGE BITS, 3+2P); //shift left 3+2P positions

//to reach AGE bits of command reg.

storestorestore AGE BITS, [CMR ADDR]; //store in command register

nopnopnop; //no operation, wait for age read-out

*intintint HCIARR; //declare HCI array

*intintint NBTIARR; //declare NBTI array

intintint i = 0;

foreachforeachforeach INARR

{
loadloadload HCIARR(i), [HCI ADDR($)]; //read $ -th HCI monitor

loadloadload NBTIARR(i), [NBTI ADDR($)]; //read $ -th NBTI monitor

i = i+1;

}
OUTARR = concatArrays(HCIARR, NBTIARR); //concatenate HCI and NBTI

//arrays into OUTARR

returnreturnreturn OUTARR;

}

Figure 4.11: Age read-out procedure. As usual, P is the predefined constant
of the number of modules in the FWG. concatArray() concate-
nates two or more arrays into a single one. $ is a Perl-like vari-
able that contains the current element of iteration of the loop.
E.g., if INARR = (2, 4, 5), in the three iterations of foreach
INARR, $ will have the values of 2, 4 and 5, respectively. load
and store read and write data from/to memory (or, memory-
mapped components as the FC), where the contents in angle
brackets denotes the memory address.

more handy is the second version shown in Fig. 4.12 which has seven arguments that
specify each field of the selected action register.

In order to further ease the programming, enumeration types could be used to
give symbolic names to numbers. For example,

OUTDRV FIELD enumenumenum VOTER, MODULE=2, PREDEFINED;

ACTION FIELD enumenumenum INTR, INTR ERR, INTR NO ERR, RESET=4, RESET ERR,

RESET NO ERR, RESET GLOBAL;

set symbolic names to the corresponding values of Tables 4.2 and 4.3. Thus, in order
to set an action upon an OML voter error that invokes a reset to modules 1 and 4,

83

voidvoidvoid setAction(intintint NR REG, boolboolbool DA, boolboolbool FLAR, intintint OUTDRV,

intintint ACTION, intintint ARG0, *intintint ARG1)

{
intintint LOG2P = roundUp(log2(P)); //the width of ARG0 field

bit arraybit arraybit array[2] OD = LSBits(OUTDRV, 2); //get 2 LS bits of OUTDRV

bit arraybit arraybit array[3] ACT = LSBits(ACTION, 3);

bit arraybit arraybit array[LOG2P] ARG0 F = LSBits(ARG0, LOG2P);

bit arraybit arraybit array[P] ARG1 F = 0;

foreachforeachforeach ARG1 //loop through ARG1 array:

{ //for each specified module

ARG1 F($) = 1; //set corresponding bit

}
intintint FVAL = concatBits(ARG1 F, ARG0 F, ACT, OD, FLAR, DA);

storestorestore FVAL, [ACTION ADDR(NR REG)]; //store in action register

}

Figure 4.12: Set actions procedure. NR REG is the number of action reg-
ister (0 to P). All other arguments correspond to the fields of
the action registers. Note that bit array[] defines an array of
bits. LSBits() returns the least significant bits of the integer
argument. concatBits() concatenates the input argument bits
and returns an integer.

where module 3 drives the outputs, and where DA and FLAR bits are set, one could
invoke the procedure as follows:

setAction(P, TRUE, TRUE, MODULE, RESET, 3, (1, 4)).

4.2.2 Interrupt handlers

As already stressed, each system may define its own FC interrupt handlers according
to the application needs. However, this Subsection reviews the handlers needed to
support the framework functions like YFRR de-stressing, state recovery, fault clas-
sification, etc., that were described in previous Sections. Some of the handlers are
specific though, and may largely differ in different applications. For example, the
voter error interrupt (VEI) reports a serious flaw in the system – the voter of the
formed NMR group itself is a subject of faults. Apparently, the most appropriate
action would be reset all NMR modules, or, do a global reset instead of generating in-
terrupts. Nonetheless, for diagnostic or other specific purposes, interrupts to modules
that do not belong to the NMR group could be invoked.

YFRR software handler

The de-stress timer interrupt (DTI) handler is given in Fig. 4.13. It signals the timer-
out event of the de-stress timer. If YFRR is employed, this means that now at least
one active module should be inactivated. Furthermore, modules that were inactive

84

up to now, should be activated to take over the job of the modules that are going to
be inactivated. At the end, the de-stress timer should be set again to countdown the
same period. A short description of this handler follows.

The *int getAgeModulesAll() procedure is another alias of getAge(), which is
similar to getAgeAll() except that the age of the FC itself is not returned.

The *int youngestFirst(*int) procedure is a simple sort procedure that just
sorts the input array – the youngest modules come first (at lower indexes). It uses
the getAge() procedure to investigate the age of the modules specified in the input
array. It returns the sorted array.

The bool ifDestressSwitcher(int) procedure just checks if the input argument
is the first active module in the array returned by getActiveModules(). Only one
active module should inactivate all others (possibly itself too), as well as activate
the youngest modules, otherwise a chaos may occur. Note that the activate(*int)

procedure sets the corresponding bits in the PG and CG register. Thus, if the module
is already active, this procedure has no effect.

Lastly, saveProcessState(int) and loadProcessState(int) save and load the
process state of the module specified as argument. These procedures are similar to a
context switch and heavily depend on the instruction set of the PE.

Now let’s see how the entire system functions regarding DTI. As said, the de-
stress timer interrupts all active modules in the FWG on a timer-out event. Thus,
all active PEs will jump to the same instruction handler. For the purposes of simple
synchronization, it is important to set high priority of DTI, so all PEs will interrupt
the current work and set the SWITCHER DONE variable to zero roughly in the same
time, which is long before the switcher module sets the variable to one.

One last thing needed is that the activated modules which were previously inactive
should load one of the states of the previously active modules. Therefore, the boot
procedure should end with the code in Fig. 4.14. The DESTRESS MODE variable should
be set to one only once, when entering de-stress mode, and reset to zero when leaving.

State recovery support

OVIi and EVIi interrupts, as said, signal voter disagreements in the OML and IML,
respectively. They could be triggered only if an NMR group is formed i.e., if the voters
are active. In different systems, or, more precisely, different NMR configurations of
groups, these interrupts could have different priorities and meanings. The appropriate
handlers could be very diverse, from a simple bookkeeping of a single disagreement
in an NMR group with greater N (e.g., N ≥ 4), to a systematic state recovery, reset
of modules and restarting operation of the entire NMR group. For example, Fig. 4.15
shows the OVI1 handler in a FMP(4) system, in which a TMR group is formed, and
where the state recovery mechanism of Subsection 3.2.2 is employed. As discussed
there, the fourth module in this scheme should be inactive.

Since the system actually sees one module in an NMR group, all modules will have
the same SELF identifier. Therefore, configuring the FC to interrupt all modules on a
single voter disagreement would be the most appropriate choice for this state recovery
scheme. As the modules are tightly-synchronized (on a clock-cycle basis), they will

85

voidvoidvoid DTIHandler()

{
storestorestore 0, [SWITCHER DONE]; //set synchronization variable to 0

saveProcessState(SELF); //save state of active modules

intintint NRACT = nrActive(); //get the number of active modules

*intintint OLD ACTM = getActiveModules(); //get active modules

*intintint AGES = getAgeModulesAll(); //get age of all modules

*intintint YOUNGEST = youngestFirst(AGES); //age-based sorting of modules

storestorestore NRACT, [NRACT ADR]; //maybe needed after reboot

storestorestore OLD ACTM, [OLD ACTM ADR]; //maybe needed after reboot

storestorestore YOUNGEST, [YOUNGEST ADR]; //maybe needed after reboot

boolboolbool SWITCHER = ifDestressSwitcher(SELF); //check if switcher:

ififif(SWITCHER) //a single module

{ //has to switch all others

boolboolbool SWITCHINACT = 0; //inactivate switcher too?

intintint i = 1;

foreachforeachforeach YOUNGEST //loop through YOUNGEST:

{ //activate NRACT youngest modules,

ififif(i > NRACT) //inactivate all the rest

{
ififif(i = SELF) {SWITCHINACT = 1;}
elseelseelse {powerOff($);}
}
elseelseelse {activate($);}
i = i+1;

}
setDeStressPeriod(DESTRESS PERIOD); //activate timer again

storestorestore 1, [SWITCHER DONE]; //switcher module did its job

ififif(SWITCHINACT) {powerOff(SELF);} //if not youngest

}
elseelseelse //wait until switcher does its job

{
loop whileloop whileloop while (SWITCHER DONE = 0);

}
forforfor i ininin 1 tototo NRACT //load states of newly active modules

{ //with the states of previously active ones

ififif(YOUNGEST(i) = SELF) {loadProcessState(OLD ACTM(i));}
}
}

Figure 4.13: De-stress timer interrupt handler. Assuming YFRR implemen-
tation with PG. The SELF identifier is simply the number of the
module that executes the procedure.

86

...

ififif(DESTRESS MODE)

{
intintint NRACT;

*intintint OLD ACTM;

*intintint YOUNGEST;

loadloadload NRACT, [NRACT ADR]; //stored by DTIHandler

loadloadload OLD ACTM, [OLD ACTM ADR]; //stored by DTIHandler

loadloadload YOUNGEST, [YOUNGEST ADR]; //stored by DTIHandler

loop whileloop whileloop while (SWITCHER DONE = 0); //wait here for switcher

forforfor i ininin 1 tototo NRACT //load states of newly active modules

{ //with the states of previously active ones

ififif(YOUNGEST(i) = SELF) {loadProcessState(OLD ACTM(i));}
}
}
ififif(FAULT-TOLERANT MODE)

{
intintint NMR ID = getNMRID();

loadProcessState(NMR ID);

}

Figure 4.14: End of boot procedure

simultaneously jump to the interrupt handler. The erroneous module is outvoted.
After saving their state, the modules firstly investigate which is the erroneous one, by
examining the last action register. Then, they activate the inactive module, inactivate
the erroneous module, and redefine the TMR group. Synchronization is done by
resetting all modules through the FC command register, and loading the saved state.
Fig. 4.14 also shows the boot procedure part related to the fault-tolerant mode.

Fault classification support

Two facilities are handy for implementation of the fault classification scheme elabo-
rated in Subsection 3.2.3: the error timers and counters. ETIi interrupts signal the
timer-out events of the error timers which are set to count down the error time pe-
riod. The error counters automatically register each module error. Of course, this
functions only in fault-tolerant mode. Fig. 4.16 shows exactly the same algorithm as
in Fig. 3.10.

Note that only one error timer is enough for the fault classification function.
Moreover, the de-stress timer could be used in fault-tolerant mode exactly for this
purpose – the DTI Handler would be extended with the contents of the ETI Handler.
The extended DTI handler would have to additionally check the mode of operation
by examining the DESTRESS MODE and FAULT-TOLERANT MODE variables. However, for
more advanced FMP systems in which a mix of modes is possible (e.g., de-stress of
a NMR group), or, in which several NMR groups could be formed (e.g., two TMR

87

voidvoidvoid OVI1Handler()

{
saveProcessState(SELF); //save state of the old TMR group

intintint INACTIVE = 0; //inactive module identifier

forforfor i ininin 1 tototo 4

{
ififif(ifInactive(i)) {INACTIVE = i} //identify inactive module,

ififif(ifModuleError(i)) {clockOff(i)} //inactivate erroneous module

}
*intintint DMR GROUP = getActiveModules(); //get the error-free DMR group

formNMR(DMR GROUP, INACTIVE); //redefine TMR group

activate(INACTIVE); //activate module after putting it in TMR

resetModules(DMR GROUP, INACTIVE); //reset the new TMR group

}

Figure 4.15: OVI1 interrupt handler. TMR in FMP(4) with state recovery
scheme of Subsection 3.2.2 assumed. CG is used for fast core
(de)activation.

groups in FMP(6)), several timers would be needed. Here, it is assumed that P error
timers exist, which should simultaneously interrupt the corresponding modules of the
NMR group. The handler dispatcher should direct all ETIi interrupts to the same
handler (shown in Fig. 4.16).

At last, the ECIi interrupts signal an overflow of the error counters. Actually, this
interrupt should never be triggered – if it does occur, it is a sign of a serious system
flaw.

4.3 Application layer

The application layer should be tailored according to the applications needs, and as
such, it is the most diverse since it can use the underlying FM and FC in different
ways. In the thesis, three basic modes of operation were assumed – de-stress, fault-
tolerant, and high-performance.

4.3.1 Operating modes

The application layer simply sets some variables like DESTRESS MODE and FAULT-

TOLERANT MODE, and invokes the FM procedures listed in Table B.1 in order to set
the desired mode and set up the system. As said, this should be done according to
the application requirements of performance, fault tolerance and power consumption,
and the objective of prolonging the lifetime of the system.

For example, let’s assume that an FMP(4) system is by default put in high-
performance mode after reset. In order to put it into de-stress mode with one active
and three inactive (powered-off) modules, three simple operations are enough:

88

voidvoidvoid ETIHandler()

{
boolboolbool DO TESTS = 0;

boolboolbool PERMANENT FAULT = 0;

*intintint NR ERRORS = getErrorCountAll(); //read all error counters

foreachforeachforeach NR ERRORS

{
if($ > ERROR THRESHOLD) {DO TESTS = 1}
}
ififif(DO TESTS) {PERMANENT FAULT = doExtensiveTests()}
ififif(PERMANENT FAULT)

{
...

power-off module(s) with permanent fault diagnosis;

re-form NMR group using healthy modules;

...

}
resetErrorCountersAll();

setErrorPeriodAll(ERROR PERIOD); //start error timer again

}

Figure 4.16: ETI interrupt handler. The ERROR THRESHOLD and
ERROR PERIOD are two critical parameters that should be
carefully chosen. doExtensiveTests() does deep analyses,
performs BIST and other self-check procedures that should
determine whether a permanent fault occurred in one or more
modules. Module(s) with diagnosed permanent faults are
powered off. If possible, a new NMR group is formed using only
healthy modules. The error counters are reset, and the error
timers are started again.

powerOff(2, 3, 4); //power off all but one module,

setDeStressPeriod(DESTRESS PERIOD); //set+start de-stress timer,

storestorestore 1, [DESTRESS MODE]; //store the mode of operation,

where DESTRESS PERIOD is a variable (or constant) which is set during the boot-up.
After this, the DTI handler (see Fig. 4.13) is the only code needed to implement the
YFRR de-stress scheme.

Let’s assume that now the system should be reconfigured in fault-tolerant mode
with a TMR group. The following commands suffice.

noDeStress(); //turn-off de-stress timer

storestorestore 0, [DESTRESS MODE]; //no de-stress mode

formNMR(1, 2, 3); //form the TMR

storestorestore 1, [FAULT-TOLERANT MODE]; //it is fault-tolerant mode

activate(2, 3); //power-on 2 more modules for TMR

resetModules(1, 2, 3); //reset TMR to synchronize

89

Returning to high-performance mode with all modules is simply done by the following
commands.

noNMR(); //ungroup TMR

storestorestore 0, [FAULT-TOLERANT MODE]; //no fault-tolerant mode

activate(4); //power-on the 4-th module

resetModules(1, 2, 3, 4); //reset all modules through FC

Of course, it is assumed that during boot time, the FC is appropriately configured,
i.e., action registers, interrupt masks, predefined/inactive outputs, etc., are set.

However, the framework enables far more complex dynamic reconfigurations of
the system, starting from a NMROD scheme, to various, mixed modes of operation.
For instance, it is possible to have a mix of de-stress and fault-tolerant mode: let in a
FMP(9) system only three modules which form a TMR are active, and let the entire
TMR is de-stressed. That is, after each DESTRESS PERIOD, a fresh triple of modules
replaces the old TMR triple.

Furthermore, the application layer could bring the system to a very high level of
sophistication! For example, compared to a common multiprocessor, a fork of a new
process in a framed multiprocessor would optionally require stating the required level
of fault tolerance which is by default set to a pre-defined value. Then, based on the
workload, the framed multiprocessor tries to fulfil the fault-tolerant and performance
requirements at the lowest possible rate of aging and power consumption. That is,
the application layer tries to find an optimal number of active cores, which dynami-
cally form NMR groups if needed. Additionally, de-stress patterns may be involved.
Thus, the framed multiprocessor could execute existing software with no (or minimal)
changes.

Nevertheless, the application layer is barely in the scope of this thesis, and is left
as a future work (see Section 7.2). The thesis heavily deals with the lower layers
though – the framework controller and middleware.

4.3.2 Lifetime-aware task mapping and scheduling

Typical goals of task mapping and scheduling in a common multiprocessor is to reduce
the total execution time, increase the throughput, ensure fairness between programs,
give priority of execution to specific tasks, etc. Additional goal for the framed multi-
processor would be to reduce aging (improve lifetime). Lifetime-aware task mapping
and scheduling is actually a widely investigated topic (see Section 2.2.2).

Generally, the application layer could also employ mechanisms of fault tolerance,
lifetime improvement and power saving. For example, lifetime-aware task mapping
and scheduling could be a significant supplement of de-stressing, since de-stressing
could not be done if all modules are constantly active, e.g., when operating in high-
performance mode. A significant advantage of the framed multiprocessor is that it
possesses aging monitors which supply information that could be used in the map-
ping/scheduling process. Nevertheless, this topic is out of the thesis’ scope and is left
as a future work.

90

4.4 Design method for programmable NMR voters

This Section details the design method of the programmable NMR voters introduced
in Subsection 4.1.4 (see also [SHKK12]), using the same definitions, symbols and
denotements. It further gives the performance and area analyses as a function of
the redundancy degree N and the input/output width W. Note that software voters
implemented using this method are evaluated in [SH13].

The method is based on a binary matrix which represents the equality between
the inputs. Actually, the information needed to determine all voter outputs is found
in this matrix. Subsection 4.4.1 presents the matrix and its properties, and describes
how voter outputs are determined, while Subsections 4.4.2 and 4.4.3 give the perfor-
mance/area analyses and hardware implementation results, respectively.

4.4.1 Matrix construction and properties

An N ×N binary matrix A = [Aij]
N−1,N−1
i=0,j=0 is built as follows. If input xi = xj then

Aij = Aji = 1 otherwise Aij = Aji = 0, i, j = 0, N − 1. For example, let N = 4,
x0 = 20, x1 = 30, x2 = 20, x3 = 10, and let all inputs be active (pbi = 1). The matrix
would be:

A =

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 (4.1)

Note that each voter input xi which is defined as inactive by using the pbi program-
ming bits, is considered to be different from all other inputs (no matter if active or
not).

The following properties of a matrix built in this way are obvious immediately.

Property 1. A = AT . A is always symmetric, which implies that it is a hermitian
matrix A = A† and that its eigenvalues are always real numbers λi ∈ R, i = 0, N − 1.

Property 2. Aij = 1 for i = j. All elements of the main diagonal are 1 (all elements
are equal to themselves). This implies that trace(A) = N .

Property 3. If all inputs are different, then A = I (identity matrix). On the other
hand, if all inputs are equal, the matrix elements are all ones (Aij = 1).

The following assertions which are not so obvious also hold.

Assertion 1. A is positive semi-definite matrix.

Assertion 2. λi ∈ N0. That is, all eigenvalues of A are natural numbers or zero.

The proofs of assertions 1 and 2 are beyond the scope and are actually rather
long. However, the method is mainly based on the following assertion.

Assertion 3. The biggest number of equal inputs is equal to the maximal eigenvalue
of A. (Put in a more comprehensible form: the biggest number of equal inputs is
equal to the maximal number of ones in a row (column)).

91

Proof. (by Dr. Elena Hadzieva)

Let the most frequent voter input appears r times, that is

∃k1, k2, . . . kr ∈ {0, 1, 2, . . . , N − 1},
xk1 = xk2 = . . . = xkr

(4.2)

Generality is preserved even in the case when k1 < k2 < . . . < kr.

Since A is positive semidefinite matrix, all of its eigenvalues λi are nonnegative,
so its spectral radius ρ(A) = max

i=0,1,...,N−1
|λi| = max

i=0,1,...,N−1
λi. The inequality

ρ(A) ≤ ||A|| (4.3)

holds for every norm of A (Meyer [77], p. 497). If the || · ||1 – norm is selected, then

ρ(A) ≤ ||A||1 = max
j

∑
i

|Aij| = r, (4.4)

since the largest absolute row sum in A is r.

On the other hand, according to the Collatz-Wielandt formula for nonnegative
matrix (Meyer [77], p. 670),

ρ(A) = max
y≥0, y 6=0

f(y), f(y) = min
0≤i≤N−1, yi 6=0

[Ay]i
yi

,

where yi is the i-th component of the N -dimensional vector y and [Ay]i is the i-th
component of the N -dimensional vector Ay.

Let the vector ȳ be defined as

ȳi =

{
1, Ak1,i = 1
0, Ak1,i = 0

, i = 0, N − 1

which is equivalent to

ȳi =

{
1, i = k1, k2, . . . , kr
0, otherwise

, i = 0, N − 1.

Then

[Aȳ]i =

{
r, i = k1, k2, . . . , kr
0, otherwise

, i = 0, N − 1,

and

ρ(A) = max
y≥0, y 6=0

f(y) ≥ f(ȳ) = min {r, r, . . . , r}︸ ︷︷ ︸
r

= r. (4.5)

Now, inequalities (4.4) and (4.5) imply that

ρ(A) = max
i=0,1,...,N−1

λi = r, (4.6)

92

which concludes the proof.

Construction of ISD

Enough information for the state of the voter inputs is given by the elements of the A
matrix which are above (or below) the main diagonal. This follows from Properties 1
and 2. The elements above the main diagonal of the A matrix in Eq. 4.1 are:

0 1 0
0 0

0

If the missing places are filled with zeros, a reduced (N − 1)× (N − 1) matrix

AR =

 0 1 0
0 0 0
0 0 0

 (4.7)

is obtained, where the original row and column enumeration (of the A matrix) for
the elements above the main diagonal is kept. That is i = 0, N − 2 and j = 1, N − 1.

The ISD signals nr diff, ei and amb could be now easily determined. According
to Assertion 3, nr diff = min

i=0,1,...,N−2
|{Aij|Aij = 0, j = 1, N − 1}|. At the beginning,

ei is initialized to pbi, i.e., ei = pbi, i = 0, N − 1. By convention, ei = 1 signals that
xi 6= y, while ei = 0 signals that xi = y. Now, all rows i = 0, N − 2 of the AR matrix
are examined, in order to find a row i = I, with the smallest number of zeros; here,
the zeros which come from inactive inputs are not counted. The output of voting is
y = xI , which implies that eI = 0. The rest of the error signals ej, for j 6= I are
determined by examining the columns j = 1, N − 1 of row I. That is, ej = 0 only if
AIj = 1, otherwise ej keeps the initialization value. If more than one row with the
smallest number of zeros is found, then amb = 1, else amb = 0.

For example, the row i = 0 of the AR matrix in Eq. 4.7 has the smallest number
of zeros. That means, y = x0 = 20, nr diff = 2 (there are two zeros in row i = 0),
and e0 = 0. The rest of the ej signals for j 6= 0 are determined by examining row 0:
A01 = 0 =⇒ e1 = 1, A02 = 1 =⇒ e2 = 0, A03 = 0 =⇒ e3 = 1, reflecting which
input is equal to the output of voting. Since only row 0 has the smallest number of
zeros, the situation is not ambiguous, i.e., amb = 0.

Self-check operation

The ISD was easilly determined using Assertion 3, but also using the fact that the A
matrix (and AR in a way) represent a transitive relation:

if xi = xj ∧ xi = xk then xj = xk. (4.8)

Relation 4.8 enables building self-check functions, which is demonstrated by the
following example. Let N = 4 and x0 = x1 = x2 6= x3. The corresponding AR

93

matrix would be

AR =

 1 1 0
0 1 0
0 0 0

 .
Now, assume that for some reason (e.g., a transient fault), AR12 is set to 0 instead of
1, which gives

AR =

 1 1 0
0 0 0
0 0 0

 .
Such a matrix could not be built according to the explained method. Even worse,
it is contradictive. It states that x0 = x1, and x0 = x2, but in the same time states
that x1 6= x2. In other words, relation 4.8 is not satisfied. Such a matrix is labelled
as erroneously built, or, contradictive matrix.

Assertion 4. The corresponding A matrix of an erroneously built AR matrix has at
least one eigenvalue which is neither a natural number nor zero. That is, ∃λi /∈ N0,
i = 0, N − 1.

A contradictive matrix is an error indicator which the voter could use in order to
do a self-check of its own operation. Namely, for each i = 0, N − 2 of the AR matrix,
and each j and k where j > i and k > j, the voter checks if relation 4.8 is satisfied.
If so, err = 0 else err = 1. The proof of Assertion 4 is not given here since it is
a bit long, and is actually not relevant for the discussion – the voter simply checks
relation 4.8, not if the eigenvalues of A are naturals or zero.

However, err = 0 does not mean that the voter is 100% operating correctly. It
does mean that an error is not detected while building the matrix, but parts of the
voter which later use matrix information may err and these errors may not be caught.

4.4.2 Performance and area analyses

An evaluation of hardware voters designed using the proposed method follows. Voter
performance is evaluated by estimating the propagation delay expressed through the
levels of logic needed to build the circuit. Voter area, on the other hand, is evaluated
by estimating the number of basic logic gates that constitute the circuit.

Propagation delay

Main building blocks of the programmable NMR voters are comparison circuits and
multiplexers. Comparison circuits take approximately log2W levels of logic, where
W is the width of the input signals. Multiplexers also take log2N levels of logic to
choose among N inputs.

The voter makes N(N − 1)/2 comparisons between each of the input signals to
build the AR matrix. However, all comparisons could be done in parallel, so building
the matrix takes approximately log2W levels of logic. Next, for each row of the AR
matrix, the voter has to count the number of zeros. Instead of counting zeros, a

94

“random” variable (e.g., a 1 represented with N bits) could be shifted once to the
left, each time a zero is encountered in a row. In this way, the number of zeros is
obtained in a decoded form, which is not important since the numbers are needed only
for relative comparisons. Shifting for a constant number of bit positions takes zero
levels of logic since only rewiring is needed (or one logic level if buffers are used). For
each row, the voter has to determine the number of positions (0 to N-1) for which the
variable will be shifted, and select among 2N−1 possible input values – that is log2 2N−1

levels of logic. Repeating this for each row gives (N − 1) log2 2N−1 = (N − 1)2 levels.
Furthermore, the voter has to check if the number of zeros of the current column is
equal to the number of zeros of the previous column (for an ambiguous situation),
and then to check if it is bigger. The order of these checks is not important. Checking
equality takes log2(N), while checking which is bigger takes 2 log2N levels of logic.
That yields 3 log2N for these operations. At the end, one level of logic is needed to
determine ej for j 6= I, in parallel.

These are the main operations which contribute to the levels of logic. The rest
of the assignments take either constant or insignificant levels of logic or are parallel
to the described operations. For instance, the self-checks account for N comparisons
of two bits made in parallel with the operation of counting zeros. Summing up, the
levels of logic are LoL ≈ log2W + (N − 1)2 + 3 log2N + 1 = (N − 1)2 + log2 2WN3.
The W parameter has a small impact on the propagation delay since it plays a role
only during matrix construction. Its contribution is only ∼ log2W .

One last step remains. A programmable voter has to take into account the pbi
bits which define which input is active. This could be simplified if each input signal
is extended one bit. Thus, building the matrix takes log2 (W + 1). Furthermore, the
actual number of active inputs can vary from 1 to N. That is choosing between N
values, or plus log2N levels of logic. At the end, when counting zeros, the voter has
to shift only if the zero comes from active inputs. This is plus log2N logic levels
for each row i.e., (N − 1) log2N . Now, the final approximation for the logic levels is
≈ log2 (W + 1) + (N − 1)2 + 3 log 2N + 1 + (N − 1) log2N + log2N i.e.,

LoL ≈ (N − 1)2 + log2 2(W + 1)NN+3.

Number of basic logic gates

As said before, N(N − 1)/2 comparisons are needed. The number of gates of a
comparison circuit is roughly proportional to W, so the number of gates for building
the matrix is ∝ NW (N−1)/2. Next, for each of the N-1 rows, N-1 zero checks of one
bit (which is negligible) have to be performed, as well as an N-bits wide comparison
of the number of zeros. That is, the gate count is proportional to N(N−1)(W/2+1).
In this case too, the area grows more rapidly with the increase of N (proportionally to
the square of N). On the other side, assuming that N is constant, the area increases
linearly with respect to W. Making similar simplifications for the programming bits as
above, the number of gates needed to build the matrix would be∝ N(W+1)(N−1)/2.
At the end, determining the number of active inputs takes an area proportional to N,

95

which finally gives an approximation of the total number of gates:

Nr.gates ∝ N{(N − 1)[(W + 1)/2 + 1] + 1}.

4.4.3 Implementation results

This Section presents synthesis results of voters built according to this method. The
synthesis is done for the IHP 130 nm technology. The synthesizer is instructed to do
no optimizations with respect to the propagation delay and area.

Tables 4.5 and 4.6 present the figures of the levels of logic (LoL), length of the
critical path (CPL) in ns, number of gates, area in µm2 and number of nets, varying
N and W, respectively.

Table 4.5: Synthesis results of programmable NMR voters. W is fixed to 16
while N varies.

N LoL CPL (ns) Nr. gates Area (µm2) Nr. nets
2 17 3,78 80 825 114
3 21 6,61 205 2.076 256
4 35 8,87 406 4.092 474
5 44 11,57 646 6.674 732
6 60 15,17 971 9.977 1.074
7 74 18,36 1.306 13.759 1.427
8 90 22,96 1.836 18.660 1.973

Table 4.6: Synthesis results of programmable NMR voters. N is fixed to 4
while W varies.

W LoL CPL (ns) Nr. gates Area (µm2) Nr. nets
1 31 9,61 231 2.134 239
2 32 9,97 271 2.413 283
4 32 9,93 308 2.758 328
8 32 9,78 312 3.024 348

16 35 8,87 406 4.092 474
32 35 9,00 590 6.195 722

The results for the logic levels and gate count from the tables closely match the
two formulas obtained by analyses in Subsection 4.4.2. Note that in the case of gate
count (or area), an offset and scale constants have to be added in order to match the
actual figures, since the formula only gives the proportionality of area with N and W.
These constants can be numerically determined from the table data for each N and
W.

For the purpose of comparison, Table 4.7 shows the figures of a traditional 3MR
voter (varying W), while Table 4.8 shows the same figures of a programmable 3MR
voter designed according to the proposed method. The simplest, traditional 3MR

96

voter has three inputs (each of them W-bits wide), a W-bits wide voting output, and
one bit output signalling majority.

Table 4.7: Synthesis results of a simple, traditional 3MR voter.
W LoL CPL (ns) Nr. gates Area (µm2) Nr. nets

1 6 1,77 11 106 14
2 9 1,93 31 252 37
4 9 2,17 54 451 66
8 7 2,34 52 583 76

16 11 2,75 108 1.190 156
32 12 3,08 209 2.343 305

Table 4.8: Synthesis results of a programmable 3MR voter.
W LoL CPL (ns) Nr. gates Area (µm2) Nr. nets

1 17 5,95 91 804 97
2 17 5,96 108 964 117
4 17 6,28 134 1.207 149
8 17 5,43 159 1.565 186

16 20 5,54 236 2.419 287
32 20 5,89 388 4.146 487

Tables 4.7 and 4.8 show that when W is increasing, the differences between the
corresponding levels of logic and gate counts (areas) of the voters are decreasing.
Thus, for W=1 the programmable NMR voter has 2,83x levels of logic and 8,27x
gates compared to the traditional voter, while for W=32 the figures are 1,67x and
1,86x, respectively.

4.5 FMP(4, 4) chip architecture

The 32-bit version of the core presented in Appendix A is used to build an 8-core
FMP, organized as FMP(4, 4), i.e, two FWGs with four cores. The block diagram of
the chip is shown in Fig. 4.17. The chip is produced and tested in the IHP 130 nm
technology.

The framework controllers implement the functions described in Section 4.1. The
two memory interfaces are used to connect the FMP to the memory banks. These
interfaces contain arbitration logic that grant access to memory to each of the four
cores. Each core or NMR group that needs to communicate with memory sends the
request (over the FC) to the memory interface. The memory interface resolves which
core will be granted access according to the simple Round-Robin algorithm which
does not prioritize any of the cores, thus enabling fair access.

The design is leveraged by replication at two levels. Firstly, the core is replicated
four times, and connected to the FC and memory controller, thus building one FWG,

97

Figure 4.17: FMP(4, 4) chip block diagram. Each FWG has a separate mem-
ory interface.

and then, the entire FWG is replicated once again. As can be seen, the design is
symmetric with respect to the two FWGs.

Fig. 4.18 shows the layout of the chip. The red areas are caches, while the “cross”
section contains the logic. The 208 pads, of which 160 signal pads, direct the layout
of the chip, and limit the design in a great extent. The initial target frequency of the
FMP was 100 MHz. However, the great power consumption due to the large number
of pads led to a decision to reduce the frequency to 50 MHz. Lowering the frequency
of operation enabled reducing the pipeline stages from five to two.

4.5.1 Chip performance, power and area

The total area of the chip is 33 mm2. The area of a single core is∼ 0,5 mm2 (∼ 1,9 mm2

with 64 KB L1 cache).
Extensive power reports of the FMP are given in Section 6.3. The FMP has a

maximum of 350 mW power consumption of which over 90% is in the pads. That
is, ∼ 52,5 mW goes into the core of the multiprocessor chip. In order to get an
approximate result of a single core power consumption, the last figure should be
divided by 9 (8 cores plus framework controllers and memory bus arbitration logic).
Thus, a single core with 64 KB cache consumes ∼ 5,83 mW. Without cache, the
estimate is ∼ 1 mW. Power analyses using the PrimeTime tool showed similar results:
7,34 mW and 3,23 mW, respectively.

Performance evaluation is done similarly to the single core in Section A.3. That
is, three cases are examined in which all eight processors execute the same copy of a
program:

• the caches are not used (switched off);

98

Figure 4.18: FMP(4, 4) layout. The large number of I/O pads constrains the
entire design. Power supply pads are encircled.

• the main program loop resides in the L1 caches of each core;

• the main program loop fits completely in one block of L1 (in each core).

In order to get the best cases, the FMP(4, 4) is put in high-performance mode.
All eight cores operate in parallel, with no interdependent communication. Table 4.9
shows the average CPI (Clocks Per Instruction) and IPC (Instructions Per Clock).

Table 4.9: FMP(4, 4) performance evaluation
No cache Loop in L1 Loop in L1 block

Nr. instructions 1.024.008 1.043.088 1.024.016
Nr. clocks 1.116.352 284.897 212.498
CPI 1,09 0,27 0,21
IPC 0,92 3,66 4,82

Thus, if all eight cores execute their (independent) programs in a block of the L1
cache, a performance of nearly five instructions per clock is achievable.

99

100

Chapter 5

Verification environment

A widely used approach [6, 5] for evaluation of fault-tolerant mechanisms and quan-
tification of error resilience is to inject faults in a protected and non-protected circuit
and then compare the number of errors that occurred in both circuits under the
same conditions. This could offer a fair evaluation of the fault-tolerant mechanism
employed in the protected circuit.

Fault injection is a very wide field. It can be performed at many levels during
system design. For instance, simulation-based fault injection could take place at the
behavioural, register-transfer, gate or geometry level, while emulation-based enables
speeding up the fault simulation using FPGAs. Hardware-based fault injection in-
cludes methods like heavy ion irradiation, pulsed-laser or electromagnetic interference.
A cross-level comparison of fault injection techniques is given in [7].

In order to investigate the fault tolerance against SEE of the proposed multi-
processor framework in this thesis, the following two-step procedure for automated
integration of fault injection during the ASIC design flow was used. In the first step,
the gate-level netlist of the circuit for fault injection is prepared by inserting sabo-
teurs i.e., Fault Injection Logic (FIL) components at each output of each standard
(and non-standard) cell found in the netlist. The FIL components have inputs that
control the injection of faults. In the second step, HDL descriptions of fault injectors
are generated according to the fault specifications. The fault injectors drive the con-
trol inputs of the previously inserted FIL components. In other words, the two steps
create a simulation-ready fault injection environment, given the gate-level netlist of
the circuit (post-synthesis and/or post-layout) and the fault specifications. Note that
the procedures are automated – the single effort required from the user is the fault
specification i.e., quoting the fault model, rate and probability of fault occurrence,
start/end time of injection, etc.

An appropriate fault injector that drives a FIL component enables modeling of
various types of “logic faults” i.e., transient SETs and SEUs (bit-flip, force-0, force-
1) and permanent (stuck-at-0, stuck-at-1) faults. It also enables modeling of single
event multiple node upsets. Furthermore, if the netlist is not ungrouped (module’s
boundaries are kept), fault injection could be directed to take place only in specified
modules or instances of modules. This gives a possibility to investigate the impact
of faults in specific parts on the entire design. For example, faults in a microproces-

101

sor’s data-path have different impact on the microprocessor behaviour compared to
faults in its control logic. At last, both stochastic and deterministic patterns of fault
injection are possible.

A gate-level simulation is rather slow compared to an RTL simulation, especially
for a large circuit. Increasing the complexity of the netlist (by FIL insertion) and by
inclusion of fault-injectors further affects simulation time. Nevertheless, the results
from the evaluation of this environment show that if the fault rate is not extremely
high, the simulation time is 1,17x to 2x greater than the simulation time of the unmod-
ified netlist without fault injection. This price is paid in order to get highly detailed
and precise fault injection simulation. It is worth mentioning that the procedure does
not change the gate-level netlist of the circuit. It just inserts “vampire taps” that
occasionally disturb circuit operation. Thus, simulating the final post-layout netlist
could show the real effects of the injected faults in the circuit. The SDF (Standard
Delay Format) files that describe the delays of gates and interconnects could be also
annotated.

5.1 An overview of fault injection mechanisms

Downside of the simulation-based fault injection techniques is the slow simulation
speed if it is not conducted at a high, abstract level as in [65]. On the other hand,
emulation-based fault injection in FPGAs such as in [81, 3, 25] enables fast evaluation.
However, higher abstract levels do not allow detailed and precise simulation, which is
somehow true for the emulation-based approach since the final circuit will be different
from the one deployed in the FPGA.

The work in [46] proposes two methods for stochastic fault injection at the gate-
level. In the first method, a modified component library that includes fault models is
used. Each synthesized gate independently “decides” whether to inject a fault. This
approach enables the method to be implemented entirely in the Hardware Description
Language (HDL) and facilitates the development of stochastic models for concurrent
fault injection. As the authors show, the simulation time is extremely large since each
synthesized gate now includes additional code for fault injection. Thus, the method
is not suitable for large designs.

The second proposed method uses a fault injector that randomly chooses gates in
the netlist to inject faults. Here, fault injection is centralized, i.e., the fault injector
“decides” in which gates to inject faults, enormously improving the simulation speed
compared to the previous approach. However, simulation is yet half an order of mag-
nitude slower than simulation of the synthesized netlist without fault injection. The
fault injector is written in a high-level programming language and directly interacts
with the HDL environment. On the other hand, in the procedure described in this
Appendix, the HDL code of the fault injectors is generated automatically, and later
integrated into the simulation environment, enabling much faster simulation.

A Verilog-based fault-injection framework is presented in [59]. The authors de-
velop fault libraries in C/C++ that are linked to the simulator using the VPI (Verilog

102

Programming Interface), which is similar to [46]. Nevertheless, this environment is
limited to Verilog and to VPI compliant simulators.

5.2 Automated fault injection procedure

As said, the procedure consists of two automated steps that transform the usual
simulation environment from Fig. 5.1(a) into the one shown in Fig. 5.1(b).

(a) Original environment (b) Fault injection environment

Figure 5.1: Preparing a simulation environment for fault injection

5.2.1 Netlist preparation

The gate-level netlist is obtained after synthesis or layout using the target technology
library. The technology library has a HDL model (usually Verilog) of the standard
and non-standard cells. For simplicity, the cells found in the technology library will
be referred to as leaf gates from now on.

Fig. 5.2 illustrates how the gate-level netlist is modified for the purposes of fault
injection. Each output of each leaf gate in the netlist is rewired to the input of a FIL
component (saboteur), and the FIL output is connected to the point of the original
gate output. The inputs of the i -th FIL component are labelled with roi, the outputs
with noi and the control inputs with c0i, c1i, . . . , c(N−1)i where N is the number of
control bits of the FIL component.

The function of the FIL component is to enable modeling the faults that need to
be injected. The example FIL function from Fig. 5.2: noi = roic0i + c1i(roi + c0i)
allows implementation of both permanent and transient faults. Table 5.1 shows how
the logic value of the leaf gate output could be changed i.e., how a fault could be
injected using this function. For example, a bit flip or bit inversion is injected if
both control signals are held 1 in a given clock period or in a specified time duration.
If only one of them is 1, then a logical value 0 or 1 is forced. On the other side,
permanent stuck-at-0 faults at a leaf gate output i could be injected if c1i and c0i

are being held constantly at 0 and 1, respectively. For stuck-at-1 faults they should

103

Figure 5.2: Inserting FIL components into a gate-level netlist

be 1 and 0. Furthermore, one could use an arbitrary FIL function with an arbitrary
number of control inputs to implement more complex “logical” fault models.

Table 5.1: Truth table of the FIL function in Fig. 5.2
c1i c0i noi

0 0 roi
0 1 0
1 0 1
1 1 roi

If LGO is the total number of outputs of all leaf gates in the netlist, then N ×
LGO input signals are added to the circuit in order to control the injection of faults
(Fig. 5.1). Each of these input signals is connected to one of the control inputs of a
FIL component. Of course, for the purposes of simulation, the FIL does not have to
be synthesized or implemented with gates of the technological library – the equation
suffices.

Now the netlist is ready for fault injection. Next, drivers (fault injectors) for the
newly-created inputs of the netlist have to be generated. The fault injectors drive the
control inputs of the FIL components, enabling different fault injection patterns and
campaigns with various types of fault models.

5.2.2 Generation of fault injectors

According to Table 5.1, one can dynamically choose one or more of the newly-created
inputs and inject faults over time by changing the value of the chosen inputs to 1.
This could be done in a stochastic or deterministic manner. Changing the value of
an input actually changes the value of a leaf gate output. (Of course, if the leaf gate
output in a given clock period is 0 for example, and 0 is forced through the chosen
control inputs at that leaf gate output in that cycle, the value would not be changed
and the injected force-0 fault would not be observed as an error.)

104

The usual HDL constructs for creating stimuli and testing the design could be
used to form fault injectors for each fault group. Since these fault injectors have
regular structures, they could be generated automatically by using previously created
templates for the fault models. The procedure consists of taking a template copy and
filling the numerical values of the fault specification such as rate, probability, start
and end of injection.

5.2.3 Fault specification

The term fault group to denotes a group of faults with similar characteristics. The
user actually specifies fault groups. For each group, the user further specifies the
fault type and model, manner, scope and rate of occurrence. The correspondingly
generated fault injectors arbitrarily select FIL components i.e., leaf gate outputs and
inject the specified faults. Table 5.2 shows the properties of a fault group and some
of the possible values.

Table 5.2: Properties of a fault group
Property Example values

Model bit-flip; force-0; stuck-at-1;
Number of faults 1; 2; 3; ...
Injection frequency Each 500 cycles; Every 20µs;

Each 100 – 200 cycles;
Probability 1; 0,5; 0,34;
Duration 1 cycles; 2 cycles; 1 ns; 2 ns;
Relative position pos-0; neg-0; pos-0,12; neg-0,5; pos-1;
Modules affected all; module 1 name; module 2 name;
Start injection at 50-th clock cycle; 55.000 ns; 0;
End injection at end; 500-th clock cycle;

The fault models that the FIL function from Fig. 5.2 enables are transient bit-flip,
force-0, force-1, permanent stuck-at-0 and stuck-at-1. Both SEUs and SETs could be
modelled.

The fault rate could be specified either in clock cycles or time units. It is deter-
mined by number of faults/injection frequency. E.g., if the number of faults is 3 and
the injection frequency is 300 clock cycles, the fault rate is 1/100 faults/cycle. If the
injection frequency is 30µs, the fault rate is 1/10 faults/µs. The number of faults is
non-negative integer value.

If the probability property has a value lower than 1 or the injection frequency is
defined in the “each-to” manner (e.g., each 100 – 200 cycles, or each 500 – 1000µs)
then the absolute times of the fault injection pulses are specified stochastically. For
instance, setting the number of faults to 2, probability to 0,8 and an injection fre-
quency to 300-800, means that there is an 80% probability to inject 2 faults each 300
to 800 cycles.

105

One could specify the duration of the injected pulses either in number of cycles
or in time units. A pure number without time unit denotes number of cycles – this
holds for each property that can be specified both in cycles or time units.

The property “relative position” defines the relative time distance from the pos-
itive/negative edge of the clock to the starting edges of the injected pulses. E.g.,
‘pos-0,35’ defines that the injected pulse should start after 0,35 * clock period time
units after the positive clock edge. The possible values for this property are positive
decimal numbers from 0 to 1.

The property “modules affected” defines where faults should be injected – whether
in the entire circuit or only in the specified modules or instances. One can specify
an array of module and/or instance names in which faults should be injected (an
inclusion array), or in which faults should not be injected (an exclusion array). If
faults are to be injected in the entire circuit, one could use the special value ‘all’ for
this property.

Start/end injection could be specified either in clock cycles or time units. A
special value ‘end’ denotes the end of simulation and could be used to specify that
fault injection should be conducted till the end of simulation.

5.3 Practical implementation

Fig. 5.3 presents the tools and data needed to implement an automated fault injection.

Figure 5.3: Implementation of automated fault injection

Although not shown, the “simfi” script calls both “netprep” and “figen”, sets and
runs the simulation. Several commercial simulation tools from Cadence, Synopsys
and MentorGraphics are used. As can be seen, the single extra effort required from
the user is fault specification. That is specifying a few numbers, as explained in Sub-
section 5.2.3. However, the “simfi” script could be instructed to generate predefined
fault groups, so an initial fault injection simulation could be conducted without any
efforts.

106

5.3.1 Netlist preparation – Netprep

At the beginning, the “netprep” script parses the file(s) that contain the Verilog
models of the cells in the technology library, archiving the module names and their
outputs. Later, this information is used to find the leaf gate outputs in the gate-
level netlist and insert the FIL components. Furthermore, the control inputs of each
FIL component are added as circuit inputs i.e., the circuit now has additional N
input vectors with LGO elements. The LGO parameter is obtained by simply count-
ing the total number of outputs of the used leaf gates in the gate-level netlist. A
“dont insert fil <leaf gates>” switch may be used to instruct the script to refrain
from inserting FIL components at the specified leaf gates. The script outputs the
prepared gate-level netlist file.

Additionally, the script outputs the mappings of the control input vector for each
module and instance. The “figen” script could later use these mappings to generate
fault injectors that target only specific modules/instances for fault injection. This is
further explained in Subsection 5.3.2.

5.3.2 Generation of fault injectors – Figen

The “figen” script has predefined templates of HDL code (for now only SystemVerilog)
that are used to generate the fault injectors. An example SystemVerilog fault injector
for transient bit flips is shown in Fig. 5.4.

intintint r ind, nr period = 0, nr injected = 0;

intintint lperiod = START TIME + L IF BOUND;

intintint uperiod = START TIME + U IF BOUND;

intintint inject period = $urandom range(uperiod, lperiod);

foreverforeverforever #CLK PERIOD beginbeginbegin

c0 = 0; c1 = 0;

ififif(($time >= START TIME) & ($time <= END TIME) &

(nr period == inject period)) beginbeginbegin

repeatrepeatrepeat(NR FAULTS) beginbeginbegin

r ind = $urandom range(U LGO IND, L LGO IND);

ififif($urandom range(100, 1) <= PROBABILITY) beginbeginbegin

c0[r ind] = 1; c1[r ind] = 1; nr injected++;

endendend

endendend

lperiod += U IF BOUND; uperiod += U IF BOUND;

inject period = $urandom range(uperiod, lperiod);

endendend

nr period++;

endendend

Figure 5.4: SystemVerilog fault injector for transient bit flips

107

Input to the “figen” script are the fault specifications. The script generates a
fault injector for each specified fault group, setting the corresponding SystemVerilog
“localparams” such as NR FAULTS (Fig. 5.4). c0 and c1 are the newly-added control
input vectors with LGO elements each. The function $urandom range(max, min)

generates random numbers (unsigned integers) in the range between max and min.
Thus, if the fault rate is “2 faults every 1000 to 2000 clock cycles”, then NR FAULTS

= 2, L IF BOUND = 1000 and U IF BOUND = 2000. If the fault specification instructs
fault injection in specific modules, the script inserts appropriate code and parameters.
For instance, if one specifies injection in a module that is mapped in the range from
6500 to 7700, the fault injector always chooses a random index between L LGO IND

= 6500 and U LGO IND = 7700 of the control input vectors c0 and c1. If faults are
to be injected in the entire circuit, then L LGO IND = 0 and U LGO IND = LGO - 1.
The parameter PROBABILITY could be set from 0 to 100 as previously explained.
START TIME and END TIME denote the time (clock cycles) when injection starts and
ends, respectively.

The script generates the example injector in Fig. 5.4 by a specification of a bit-flip
fault model where the numbers for injection frequency, duration, start and end time of
simulation resemble clock cycles. If time units were specified, the injector would have
different form. Furthermore, different fault models translate to different codes. For
instance, if transient force-1 instead of bit-flip is specified, “figen” would not add the
“c1 = c0;” line in the code. For force-0 it would use c1 instead of c0. For permanent
stuck-at faults the entire structure of the injector would be different. However, all
fault injectors that are generated for each corresponding fault group, could be set
to drive the newly-added control input vectors c0 and c1. The script actually puts
the generated injectors in separate procedures (tasks) that are called in a fork – join
block.

5.4 Simulation speed evaluation

Numerous experiments were conducted in order to evaluate this environment. Firstly,
the relative simulation time as a function of the fault rate is found by exhaustively
simulating a simple ALU. The numbers of injected faults, observed errors as well
as some interesting analyses are also given. Then, the relative simulation time as
a function of circuit complexity is examined. Furthermore, the possibilities of this
platform are demonstrated on the FMP(4, 4) presented in Section 4.5, which is a
relatively big design.

5.4.1 Relative simulation time as a function of fault rate

Here, the test vehicle is a simple 8-bit ALU. The number of leaf gate outputs in
the ALU is LGO = 2203. The ALU supports the operations of unsigned/signed
addition, subtraction, multiplication and division, left/right logic shifts/rotates, right
arithmetic shift, and the logical operations: and, or, nand and xor. There are two 8-
bit input operands, 5-bit operation selector, 16-bit output, as well as overflow/borrow

108

and division by zero output bits. The total number of valid input combinations is
796.672. This number multiplied by LGO gives the fault space i.e., the number of
possible faults is 1.755.068.416.

The experimental setup is the following. In each experiment (with or without fault
injection) an exhaustive simulation is assumed, where all the possible input values are
passed to the ALU in separate clock cycles. An output checker counts and reports
the errors. The checker reports zero errors when simulating without fault injection.
SEU bit-flips are injected with the “probability” parameter set to 100%. The whole
netlist is affected and injection occurs during the entire simulation. Table 5.3 shows
the simulation results for varying injection rates.

Table 5.3: Results of exhaustive simulations of an 8-bit ALU
Rate (faults/cycle) Injected faults Errors Rel. sim. time

1/600.000 1 0 1,17
1/100.000 7 0 1,17
1/10.000 79 7 1,17
1/1.000 796 52 1,17

1/100 7.966 613 1,18
1/50 15.933 1.266 1,18
1/25 31.866 2.616 1,20
1/10 79.667 6.433 1,22
1/5 159.334 13.246 1,25

1 796.671 65.401 1,58
2 1.593.342 122.182 1,90
3 2.390.013 169.832 2,20
4 3.186.684 212.022 2,49
5 3.983.355 249.413 2,73

The fault injector defines a variable nr injected (Fig. 5.4) that holds the number
of injected faults. The output checker reports the encountered errors. According to
Table 5.3, the number of errors is an order of magnitude lower than the number of in-
jected faults. This is because the leaf gate outputs are stochastically selected. Thus,
a transient fault could be injected in the multiplier during an addition operation.
That fault will not appear as an error. The number of errors for the same fault spec-
ification is different (but approximate) in successive fault injection campaigns since
the function $urandom range arbitrarily chooses times and places of fault injection.

The platform enables various analyses. For example, the number of errors is
significantly bigger in the multiplier and divider of the ALU compared to the other
circuit blocks because they occupy the most of the space in the ALU (have the greatest
number of leaf gates). The significance of such reports is great because they can direct
the construction of fault-tolerant mechanisms.

Table 5.3 and Fig. 5.5 show that the simulation time is only 17% greater compared
to the simulation time of the original netlist without fault injection for fault rates

109

below 1/50 faults/cycle. Simulation time rises quickly for extreme rates of fault
injection e.g., when injecting several faults in each clock cycle.

Figure 5.5: Relative simulation times of an 8-bit ALU. Horizontal axis has
logarithmic scale with base 10.

5.4.2 Relative simulation time as a function of complexity

In order to represent the relative simulation time as a function of the number of gates
in the netlist, the following experiments were set. The ALU from Subsection 5.4.1
is modified by varying the width from 8-bit to 52-bit and/or changing some other
parameters and configurations in order to obtain netlists with various number of
gates. Many of the ALUs created in this way could not be tested exhaustively in
reasonable time. However, functionality is not of concern here, so in each case 3,2M
cycles were simulated. Table 5.4 and Fig. 5.6 present the results for varying number
of complex (leaf) gates found in the netlists. The number of inverter gates in the
corresponding circuits is at least 2,5x bigger.

Table 5.4: Relative simulation times for varying number of complex (leaf)
gates and fault injection rates (in faults/cycle)

Nr. gates 1/1000 1/25 1/10 1/5 1 5

20.645 1,43 1,83 2,10 2,63 5,79 6,93
40.180 1,67 2,15 2,67 3,44 6,34 7,35
62.379 1,88 2,25 3,05 3,99 6,78 7,91
81.732 2,04 2,52 3,25 4,45 8,36 9,79

103.297 2,04 2,60 3,46 4,92 9,45 10,80

The rate of 1/1000 faults/cycle is the bottom limit. The same (or very approxi-
mate) values are obtained for rates below 1/1000 faults/cycle.

The results from Fig. 5.6 show that for “normal” rates of fault injection i.e., 1/1000
faults/cycle and below, the worst case is maximum 2,04x greater than the simulation
without fault injection. Actually, experiments with 1/1000 faults/cycle were made
for designs with 200K and 300K complex gates, which gave figures of 1,91x and 1,86x,

110

Figure 5.6: Relative simulation time as a function of design complexity

respectively. For small designs, this figure is in the range from 1,17x to 1,25x. Using
extremely high rates of injection, e.g., 5 faults/cycle could sky-rocket the simulation
time.

5.4.3 Fault injection into FMP(4, 4)

The FMP(4, 4) of Section 4.5 has over 400K complex (leaf) gates (3,1M inverter
gates). The simulation setup is similar like in the previous cases. Transient bit-flips
were injected in campaigns during which all cores executed the same program. Around
50.000 instructions per core were executed during each campaign. Nevertheless, the
exact number of the encountered errors could not be given since the design is too
complex to develop exhaustive output and state checkers.

Regarding the simulation time, the following behaviour was observed. If the in-
jection rate is 1/100 faults/cycle or below, the simulation time is 1,44x worse than
the simulation time without fault injection (and with the original netlist). This is
surprisingly lower value than the one expected from Fig. 5.6. However, the relative
simulation time also depends on the testbench complexity. If the fault injectors intro-
duce small activity compared to the rest of the testbench, the relative simulation time
goes down. This is the case with the FMP(4, 4) which has complex object-oriented
testbench programs and assertion checkers.

If the fault injection rate is higher than 1/100 faults/cycle, figures below 1x are
obtained. E.g., for 1/50 faults/cycle the simulation time is 0,80x, which means that
simulation is faster with fault injection than without. At first glance, this seems to
be a paradox, but what happens is the following. If a fault causes an error that puts
a core into an unknown state (where the core signals have unknown X values), the
simulator has actually no events to simulate in the X-ed core since the signals remain
with the same X values till the end of simulation. Eventually, all eight cores will end
up in the unknown state. If the fault injection rates are high, this will happen rather
quickly. On the other hand, when the recovery mechanisms successfully mask the

111

errors i.e., when the fault injection rate is 1/100 faults/cycle or below, the cores do
not fall into unknown states and simulation continues with known states and signal
values.

5.5 Multiprocessor verification environment

Deep-submicron processes enable vast space for accommodating very complex sys-
tems performing complex functions. On the down side, verification of these systems
becomes a nightmare. It has been widely reported that verification time accounts
from 70% to 80% of the total design time of the chip. Although there are many
concepts used to perform verification, increasing complexity means increased number
of corner cases which are easy to be forgotten. Nowadays companies have special
verification teams, concentrated only to functional verification of the design, apart
from the design team. Both teams work in parallel according to the specification of
the product which reduces its time-to-market.

5.5.1 (Multi)processor verification techniques

Verification of microprocessors, especially aggressively pipelined super-scalar multi-
cores is an extremely challenging task. The reasons as explained lie in the enormous
complexity, deeply hiding corner cases.

A detailed description of the verification of the IBM POWER7 microprocessor
is given in [103]. The main verification efforts focus on the unit level. Unit level
verification is based on Constrained-Random Verification (CRV), using the IBM’s
cycle-based, event-driven simulator. Additionally, a method for functional coverage
and assertion instrumentation, called BugSpray with extended capabilities over the
one used for POWER4 is also used to annotate the RTL (Register-Transfer Level)
with coverage events.

The verification of another multi-core microprocessor – the SPARC CMT (chip-
multi-threaded) with support for 32 threads is presented in [115]. The verification
approach and methodology is assertion-based. More than 200.000 assertions (both for
coverage and assertion of properties) are developed and maintained during the design
cycle, with the “write-once, use-always” philosophy. Simulation-based verification
with assertion checkers is also complemented with semi-formal verification to further
increase confidence in correctness, using the Magellan formal tool.

The single core, and later the FMP(4, 4) was designed and verified in a special
platform [SKK12] based on the co-verification paradigm, where software verification
starts at the RTL. Thus, hardware is verified along with the software, which signif-
icantly reduces time-to-market. Nonetheless, a co-verification environment has even
more profound advantages. When a hardware bug or problem is found during soft-
ware verification, the usual solution is a software patch which almost always degrades
performance and/or functionality of the system. If co-verification is used, hardware
or software bugs, problems and bottlenecks can be identified early during hardware

112

design, so they can be resolved before actual chip production, saving efforts, money
and time.

Comparison between two co-verification methods of an ARM prototype is pre-
sented in [120]. One of them is software-based while the other is based on using
hardware-development board. The advantages and disadvantages of speed, degree
and insight of simulation are contrasted. Another co-verification platform based on
FPGA development board is presented in [125]. The processor is modelled by ISS
(Instruction Set Simulator) which communicates with the FPGA through a commu-
nication wrapper. A method of co-verification of the 8051 architecture described in
SystemC is presented in [104]. The standard comparison of outputs between the HDL
(Hardware Description Language) model of the microprocessor and its golden model
is used in [22], where large-size real applications are used as test vectors. Finally, there
are very powerful commercial environments for accelerating co-verification of ASICs
that contain already verified microprocessors, or, interact with them. They are based
on hardware emulators assuming that the microprocessor has software ISS (which is
slow), encoded RTL model or actual physical component on board (or bonded-out
core).

5.5.2 The proposed co-verification platform

Fig. 5.7 depicts the proposed co-verification platform. The software that is intended to
be verified could be written either in high-level language or in assembly. Appropriate
compiler and/or assembler translates the input code to machine code which is further
input to HDL simulator and to the ISS. The ISS is actually a software model of the
microprocessor. The output indicates whether errors in one (or both) models are
present or not. The platform also enables generating various reports, statistics, data
and information about the behaviour of both hardware and software.

Figure 5.7: HW/SW co-verification, simulation and test platform

113

The microprocessor’s model doesn’t need to be even complete in order some por-
tions of software to be executed. While the software is tested and verified, the micro-
processor is being verified automatically, finding hardware bugs early in design phase.
Also, software problems or bugs can be foreseen. Their solution could be either in
hardware or software.

The RTL model of the microprocessor, the models of memories and caches, TML
(Test, Monitor and Log) fixture and assertions that verify functionality are written in
HDL and simulated by HDL simulator. The TML fixture besides reading the machine
code, monitors instruction execution and writes all changes of the microprocessor’s
state after each executed instruction into a log file. The microprocessor’s state is the
state of all general purpose, system and control registers, as well as outputs and other
internal signals. During code execution, each instruction is checked by at least one
assertion which verifies that all changes that are made by the instruction are allowed,
and changes that are not allowed are actually not made. For instance, instruction
which adds registers reg1 and reg2 and places the result in reg1 should make a change
only to reg1, and that change is exactly the sum of reg1 and reg2. All other registers
and outputs must not be changed. All instructions are checked by appropriate as-
sertions in this way. Failed assertions have to be examined. Furthermore, functional
coverage assertions are used to assess the level of covered cases.

The same machine code translated by the compiler/assembler is input to the ISS
which also produces a log of all the changes of the microprocessor’s state that each
instruction makes. This log should be exactly the same with the one produced by the
HDL simulator i.e., the TML fixture. Actually, the same code is input to the same
microprocessor models – one written in HDL, and the other in high-level language.

At the back-end, only a comparator of these two logs is needed. A single mismatch
in comparison is an indicator that one (or both) of the microprocessor models are
erroneous.

Another function of the TML fixture is creation of many other useful reports such
as: number of cache misses/hits, number of taken branches, number of correctly pre-
dicted branches, average number of clocks per instruction or instructions per clock,
number of interrupts and exceptions etc. These reports can be very beneficial both to
hardware and software designers since they can point out to hardware/software prob-
lems and inefficiencies, trade-offs, performance bottlenecks, not wanted behaviours
etc., early in the design phase of the microprocessor. In this phase, it is the cheapest
in terms of money, time and effort to agree upon the solutions and make the optimal
trade-off.

A feature of this platform is that these procedures are automated. A simple
script is used to take the source code of the software as an input, activate the com-
piler/assembler to translate it to machine code, feed and run the HDL simulator and
the ISS, take their output log files and run the comparator to compare them. The
result of comparison is displayed, and all reports are already written into files by the
HDL simulator and the ISS.

114

5.5.3 Practical implementation

The platform was implemented and used for co-verification of the 64/32-bit RISC core,
and later extended as a multiprocessor platform for co-verification of the FMP(4, 4).
The RTL of the designs and the assertions for functional verification are written in
SystemVerilog. Cadence’s ncverilog HDL simulator is used for simulation and as-
sertion evaluation. The ISS, assembler and comparator are realized in Perl. The
script for automation of the processes is also written in Perl. A simple operating
system consisting of the basic procedures for context-switching, the framework mid-
dleware procedures described in Section 4.2, and other framework-related procedures
like recovery mechanisms, is written in the assembly language of the microprocessor
(high-level language compiler is under construction). Besides, an instruction gen-
erator written in Perl is also used in order to generate large number of valid and
random instructions (usually more than 100.000) in order to extensively verify the
(multi)processor. The large number of generated instructions is also used to assess
and measure the simulation performance of this platform.

Table 5.5 shows results of the simulation times of both ISS and HDL simulator
for large number of instructions. ISS and HDL simulator can run in parallel on
different machines. Nevertheless, ISS simulation is approximately 10 times faster
than HDL simulation, which means that the simulation time is determined by the
HDL simulator. Table 5.5 shows that verifying one million instructions takes nearly
12 hours.

Table 5.5: Simulation time in seconds of ISS and HDL simulator. Numbers
marked with * are interpolated estimates. Simulation software is
running on a four-processor AMD Opteron 856 based server.

Nr. instructions ISS simulation HDL simulation
100.000 464 4.150
200.000 907 8.096
300.000 1.313 12.317
500.000 2.278 * 20.750

1.000.000 4.590 * 41.500

Table 5.6 summarizes the time (in person days) that was needed for design and
verification of all the hardware and software components.

115

Table 5.6: Design and verification times of all hardware and software compo-
nents related to the design, and all components needed for imple-
menting the platform.

COMPONENT LANGUAGE PERSON DAYS

Hardware SystemVerilog 480
- core RTL SystemVerilog 270
- TML fixture SystemVerilog 30
- assertions SystemVerilog 90
- FMP(4, 4) RTL SystemVerilog 90
Software µp Assembler 90
- operating system µp Assembler 90
Platform Perl 104
- Assembler Perl 30
- ISS Perl 60
- Comparator Perl 2
- Automation script Perl 2
- Instr. generator Perl 10

TOTAL 674

116

Chapter 6

Evaluation results

The proposed framework responds to many dependability- and performance-related
challenges of multiprocessors. Many aspects have to be investigated in order to fully
evaluate the concept, primarily because multiprocessors are very complex systems.
These investigations may span across several theses of this size. However, the scope
of this work is to at least confirm (or reject) the basic assumptions, and when pos-
sible, quantify them. Quantitative evaluation and measurements of the proposed
framework regarding lifetime, fault tolerance, power consumption and performance
are in the focus of this Chapter. Most of the test cases are based on the FMP(4, 4)
implementation presented in Section 4.5.

6.1 Lifetime reliability

Subsection 6.1.1 quantitatively investigates the increase in lifetime of multiprocessors
using YFRR, compared to a simple RR, and to no gating at all. Additionally, effects
on performance are evaluated in Subsection 6.1.2.

6.1.1 Evaluation of core gating patterns

It is clear that deactivating the cores in a multiprocessor (especially when power
gating is used) will prolong system lifetime – the aging effects are negligible when the
power supply is off. One of the contributions of the thesis is the following method for
analysis of the lifetime increase in multiprocessors that use core gating patterns. The
method is based on the Weibul distribution as a function of time t and temperature
Temp, as suggested in [1]:

R(t, Temp) = e
−
“

t
α(Temp)

”β
, (6.1)

where α(Temp) is the scale, and β is the slope parameter. For each core in a homoge-
neous multiprocessor platform β = 2. In heterogeneous platforms, β = 2,5 for main
processors, while β = 2 for coprocessors [52].

Let a task be executed by a single core in p time intervals:
∑p

i=1 ∆ti. The lifetime
reliability of the core at the end of task execution tp is:

117

R(tp, Temp) = e
−
“Pp

i=1
∆ti

α(Temp)

”β
(6.2)

Now, let the ∆ti intervals be fixed and equal: ∆ti = T,∀i ∈ {1, 2, . . . , p}. Thus,

R(tp, Temp) = e
−
“Pp

i=1
T

α(Temp)

”β
= e

−
“

pT
α(Temp)

”β
. (6.3)

Eq. 6.3 is in a convenient form for analysis of core gating patterns. T is actually
an active period of a core. Let a multiprocessor with Nc cores employ a fair and
simple RR pattern. That is, each core is active p/Nc periods. For simplicity, it is
assumed α(Temp) = α = const and β = 2. The multiprocessor lifetime reliability at
the end of mission (at time tp) is:

Rmp(tp) = e−(pT
αNc

)
2

e−(pT
αNc

)
2

· · · e−(pT
αNc

)
2︸ ︷︷ ︸

Nc

(6.4)

or,

Rmp(tp) = e−Nc(
pT
αNc

)
2

= e−
1
Nc

(pTα)
2

. (6.5)

Let’s apply Eq. 6.5 in real scenarios. For example, consider a long-life satellite
system with a 10-year mission (pT = 10 years). Assume that(

pT

α

)2

= 2. (6.6)

Replacing Eq. 6.6 into Eq. 6.5 reveals that a single processor system has a 13,53%
probability to survive and fulfil the 10-year mission. Table 6.1 shows the reliabilities
of multiprocessors with Nc cores using simple RR gating patterns. Note that in simple
RR, the value of T is irrelevant.

Table 6.1: End-of-mission reliability of multiprocessors with varied number of
cores Nc using simple RR gating patterns. (Assume Eq. 6.6 holds.)

Nc 2 4 8 16 32 64
Rmp(tp) (%) 36,79 60,65 77,88 88,25 93,94 96,92

So far, the fact that the cores in the system may have different “age” due to
phenomena like process variations was neglected. The following definitions are made
in order to take this fact into account. Let the age and health state be ai(t) and
hi(t), respectively, where ai(t) = 1/hi(t). These parameters characterize each core
i ∈ {1, 2, . . . , Nc} in the multiprocessor. In the starting moment t0 of observation of
the system a0

i = ai(t0) and h0
i = hi(t0).

Alas, it is difficult to obtain absolute values of a0
i and h0

i . Fortunately, their
relative values are enough to construct the YFRR pattern, which are easily collected
by the aging monitors presented in Subsection 4.1.2. These monitors are convenient
for YFRR since they can report the health of each core in the multiprocessor using
values which can be represented (translated) in the range from, e.g., 0,5 to 1,5 (±50%),

118

showing how much the core deviates from the nominal age. Thus, a value lower than
0,5 would mean that the core is dead (out of specs), while 1,5 means that the core
is 50% younger than the nominal age of 1. In relative comparison, this would mean
that a core with a health state of 0,95 for example, is 5% younger, or, healthier than
a core with a health state of 0,9. The relative age range [0,5, 1,5] which is assumed
here, could be easily redefined with absolutely no restrictions.

With these definitions at hand, Eq. 6.4 could be extended to include the initial
age information of the cores – by simply multiplying the scale parameter α by h0

i :

Rmp(tp) =
Nc∏
i=1

e
−
„
piT

h0
i
α

«2

(6.7)

Thus, each core reliability is effectively increased/reduced if its initial age is
greater/less than 1, leading to greater/lower overall multiprocessor reliability. Note
that, generally, the number of active periods pi may be different for each core as in
the case of YFRR, and opposed to a simple RR where pi = p, ∀i ∈ {1, 2, . . . , Nc}.
The same holds for T , but here T is considered equal in all cases.

Now, assume an FMP(4) using a simple RR gating pattern. Let T = 0,1 years
(36,5 days) and let the initial health states h0

i are 0,9, 1,25, 0,75 and 1,1. According
to Eq. 6.7 the end-of-mission reliability is Rmp(tp) = 57,13%. The end-of-mission
health states hpi are 0,68, 1,03, 0,53 and 0,88, while the single core reliabilities Ri(tp)
are 86%, 92%, 80% and 90%, respectively.

In a real scenario, the aging monitors can always inspect the age of each core, i.e.,
hi(t), and based on this information (de)activate the cores according to the YFRR
algorithm. However, for the purposes of theoretical evaluation, (in order to calculate
pi) the aging rate ar(t) should be determined somehow. For convenience, let the aging
rate be defined as a percent of aging per active period T. Thus, using Eq. 6.3, the
aging rate during period j could be determined as:

ar(jT) = e−((j−1)T
α)

β

− e−(jTα)
β

. (6.8)

Fig. 6.1 plots Eq. 6.8 using the parameters of the FMP(4). For a better overview,
the plot is continuous, although the function is discrete (j ∈ N0).

Fig. 6.1 shows that the aging rate reaches a maximum of 1,21% for j = 50 (in
the middle of the mission). At the beginning, for j = 1 the aging rate is minimal –
0,02%. At the end of mission, for j = 100 the aging rate is 0,06%.

A small computer program based on Eq. 6.8 is devised to help determining pi,
i.e., determine the active periods of each core in the FMP(4). Inputs of the program
are the health states, the mission time and the active period duration T . However,
for the purposes of quick paper-and-pen evaluation, assume an average aging rate
of ar = 0,86%, derived by averaging Eq. 6.8 for j ∈ [1, 100]. The number of active
periods pi would be 12, 53, 0 and 35 for cores i from 1 to 4, respectively. Replacing
this into Eq. 6.7 gives an end-of-mission reliability of 55,01%, which is actually worse
than a simple RR pattern. The end-of-mission health states hpi are 0,8, 0,79, 0,75 and

119

Figure 6.1: Aging rate function of a four-core system with a 10-year mission,
with active period T = 0,1 years. Function scales with T . E.g., if
T = 0,01, y-axis values are 10 times lower, while x-axis values are
10 times greater.

0,8, while the end-of-mission single core reliabilities Ri(tp) are 96%, 69%, 100% (core
3 is not used) and 81%, respectively.

What happens is the following. Fig. 6.1 shows that the average aging rate is
not a linear function of the active period. Too large period may lead to a situation
where cores are never activated during the mission (core 3 in the example). Thus,
larger initial health state variations require smaller active period T . On the other
side, the period can not be too small since frequently switching the power on/off may
cause larger stress (and power consumption) than if the core is constantly powered.
Performance overheads are also greater. Apparently, the optimal active period has to
be found.

In this case, the selected period is too large. Selecting a smaller period of e.g.,
T = 0,01 years (87,6 hours) would improve the picture. The numbers of active periods
are now 175, 425, 125 and 275, which leads to an improved end-of-mission reliability
of 61,42%. Furthermore, more equalized single core end-of-mission reliabilities of
93%, 79%, 95% and 88% are obtained at the expense of less equalized end-of-mission
health states of 0,73, 0,83, 0,63 and 0,83. Table 6.2 makes a comparison of the simple
RR and YFRR in four cases, varying the initial health states.

As Table 6.2 shows, YFRR excels significantly when large initial variations are
present. Furthermore, note that in case IV, simple RR is not able to keep core 1 in
the range above 0,5 (which means that core 1 is out of specification). The extreme
case where two cores have an initial health state 1,5, while the other two 0,5, shows
a 32,92% end-of-mission multiprocessor reliability using simple RR, where two failed
cores have an end-of-mission health state 0,25. In contrast, YFRR in the same case
achieves 64,12%, without failed cores – two cores have an end-of-mission health state
0,5, while the other two have 1,0.

120

Table 6.2: Reliability of a four-core multiprocessor using simple YFRR core
gating at the end of a 10 year mission. Initial health states h0

i are
varied. An active period T = 0,01 years (87,6 hours) is assumed,
which means that p = 250 for all cores when using simple RR, while
average aging rate is ar = 0,1%.

Simple RR (p = 250) YFRR
Case i (core) h0

i hpi Ri(tp) (%) Rmp(tp) (%) pi hpi Ri(tp) (%) Rmp(tp) (%)

I

1 1,05 0,80 89,28

60,08

267 0,78 87,87

60,81
2 1,10 0,85 90,19 316 0,78 84,79
3 0,90 0,65 85,70 200 0,70 90,60
4 0,95 0,70 87,07 217 0,73 90,09

II

1 0,90 0,65 85,70

57,13

175 0,73 92,72

61,42
2 1,25 1,00 92,31 425 0,83 79,36
3 0,75 0,50 80,07 125 0,63 94,60
4 1,10 0,85 90,19 275 0,83 88,25

III

1 1,10 0,85 90,19

58,29

283 0,82 87,60

61,26
2 1,20 0,95 91,69 383 0,82 81,57
3 0,90 0,65 85,70 184 0,72 91,98
4 0,80 0,55 82,26 150 0,65 93,21

IV

1 0,55 0,3 66,15

47,70

25 0,53 99,59

62,11
2 0,85 0,6 84,11 125 0,73 95,77
3 1,15 0,9 90,98 275 0,88 89,19
4 1,45 1,2 94,23 575 0,88 73,01

Using the same setup as in Table 6.2, Table 6.3 shows extreme cases for varied
number of cores Nc, where half of them have initial health states of 1,5, while the
other half is set to 0,5.

Table 6.3: Comparing simple RR and YFRR in extreme cases. In each row,
Nc/2 cores have initial health states of 1,5, while the other half
0,5. The “almost dead” half of cores is never used if YFRR is
applied, which means that their end-of-mission health state is also
0,5, opposite to simple RR where the hprr column shows the lowest
values.
Nc hprr Rrr(tp) (%) Ryfrr(tp) (%) ∆ (%)

2 0,00 10,84 41,11 30,27
4 0,25 32,92 64,12 31,20
8 0,38 57,38 80,07 22,70

16 0,44 75,75 89,48 13,74
32 0,47 87,03 94,60 7,56
64 0,48 93,29 97,26 3,97

128 0,49 96,59 98,62 2,03

Note that the evaluation method presented here was exercised using one assump-
tion which may not correspond to real-life systems i.e., the assumption that Eq. 6.6
holds. This was made with the single purpose to ease the computations. In other
words, it was initially assumed that a single processor system has a 13,53% end-of-

121

mission reliability. However, applying any number in the range of (0, 100)% for the
end-of-mission reliability would give proportional results and confirm the superiority
of YFRR compared to simple RR. As said, the same holds for the relative age which
was defined in the range of [0,5, 1,5].

It is worth mentioning that an interesting analytical result could be obtained for
the optimal active period T, which was found here by a computer program. That is, it
is possible to find a closed-form expression that gives the optimal period T for which
the average aging is minimal. The procedure consists of finding the stationary points,
i.e., the roots of the first partial derivative of Eq. 6.8 with respect to T. The function
may have maxima, minima or no extrema in the stationary points which is revealed
by the second (or higher order) partial derivative with respect to T. Unfortunately,
it is very complicated to find the first derivative of this function, which discourages
exercising the procedure. Using computer programs like Matlab or Mathematica
would be beneficial in this direction.

6.1.2 Effects of core gating on performance

It is clear that the performance overhead due to core gating is directly related to the
active period T. That is, the more frequently are the cores gated, the greater are
the performance overheads. At the end of each T period, the active cores need to
write their states in memory, which will be then read by the newly activated cores
(see the DTI handler procedure in Fig. 4.13). Other factors like cache warm-up also
should be included in calculating the overheads. However, the evaluation presented in
Subsection 6.1.1 shows that the active periods should be very large (days or months),
which leads to extremely small performance overheads that are not worth examining.
This fact also answers the question whether PG or CG should be used (see discussion
in Subsection 3.1.2), i.e., an YFRR pattern should always opt PG.

6.2 Error resilience in fault-tolerant mode

As discussed several times before, the greatest advantage of NMR systems is that
they can instantly mask faults and continue operation without invoking any error
recovery mechanisms, and incurring no performance penalties. However, a fault that
flips the state of a memory element, e.g., a bit in the register file, brings the core
into a non-consistent, erroneous state. The voter may see intermittent or continuous
disagreements at the outputs of that core. Therefore, recovery mechanisms are still
needed. The programmable NMR voter, as described, easily identifies these situa-
tions, and may signal the framework controller to initiate an appropriate action for
state recovery.

This Section investigates the fault tolerance of core-level NMR systems, both
with and without recovery mechanisms. Firstly, Subsection 6.2.2 investigates the
time period that the NMR group would function correctly without invoking any
recovery mechanisms, under various fault rates. This can be alternatively seen as
finding the minimal number of redundant modules in a NMR system needed to survive

122

the mission time, given the fault rate. Secondly, Subsection 6.2.3 examines several
recovery mechanisms, including the one proposed in Subsection 3.2.2.

For these purposes, the following experimental setup is employed.

6.2.1 Experimental setup

The simple RISC core presented in Section A.1 that includes separate 64 KB instruc-
tion and data caches is used to build a 16-core framed multiprocessor – FMP(16).
The programmable NMR voter dynamically forms 1MR, 2MR,. . . , 16MR groups. A
simple program (see Fig. 6.2) whose length of execution could be easily changed is
used as a workload. The program reads two arrays of integers from memory, performs
arithmetic operations on each element, and writes the results back to memory. The
size of the arrays is the actual parameter that defines the length of execution of the
program.

voidvoidvoid NMRftTestProgram()

{
*intintint a, b, c; //arrays of integers

intintint NR ELEMENTS = 10000; //nr. elements in a, b and c

forforfor i ininin 0 tototo NR ELEMENTS - 1

{
c[i] = a[i] + b[i];

}
}

Figure 6.2: Simple test program. Length of execution is easily controlled by
the NR ELEMENTS parameter.

The platform for automated integration of fault injection into the ASIC design
flow, fully described in Section 5.2, is used in the experiments to inject faults in
the synthesized netlist of the FMP(16). This platform enables fine tuning of many
parameters like fault rate, probability, periods of injection, etc., and allows defining
which of the modules should be a target of fault injection.

A special environment (see Section 5.5 and [SKK12]) is used to keep track of the
multiprocessor state. That is, the states of the flip-flops and outputs of each core
are logged in each clock cycle. Comparing the log of execution in the case with no
injected faults to the logs of executions with faults injected at various rates, shows
which of the cores “survived” and whether the NMR system operated with a majority
of error-free cores.

6.2.2 Error resilience without recovery mechanisms

Numerous experiments were conducted using the setup described in Subsection 6.2.1
in order to examine the error resilience of the framed multiprocessor operating in
fault-tolerant mode. The number of active cores in the NMR system N was varied
from 1 to 16. The fault injection rate was varied and correlated to the length of

123

execution (mission time). Note that faults were not injected in the programmable
NMR voter because the only way to recover from voter errors is to trigger the fault
recovery mechanisms, which is not wanted here. Both transient and permanent faults
were injected.

Injection of transient faults

Tables 6.4 and 6.5 show results for an array of 100 and 1.000 elements, respectively.
Similar results were obtained for an array length of 10.000 (execution time of 310.164
cycles), and the corresponding fault injection rates of 1/10.000, 1/5.000, 1/2.500,
1/1.000, 1/500 and 1/250 faults/cycle. In this case, fault rates greater than 1/100
faults/cycle failed all cores for each N.

Table 6.4: Injection of bit-flips. The table shows the number of cores that
remained error-free after fault injection with various rates. Grayed
cells stress cases where majority is sustained. An array length of
100 is assumed (execution time is ∼ 3.100 cycles).

Fault rate (faults/cycle)
N 1/100 1/50 1/25 1/10 1/5
1 1 0 0 0 0
2 2 0 1 0 0
3 1 3 0 0 0
4 4 3 2 2 0
5 4 4 2 0 0
6 5 4 4 0 0
7 5 5 3 2 0
8 7 8 8 1 0
9 8 6 3 3 2

10 8 7 7 6 2
11 10 10 8 4 1
12 12 12 10 8 3
13 12 11 9 7 3
14 14 12 11 8 2
15 15 13 13 8 0
16 14 12 11 7 5

Assuming the same (constant) fault injection rate, two obvious comments are the
following. Firstly, the probability that the system fails is proportional to the execution
time. Secondly, increasing N actually increases the area on which faults are injected.
Thus, the same number of faults spread over greater area leads to smaller number of
failed cores.

Using the results from these experiments one can easily construct the majority
lines for the core-level NMR groups by interpolation. These lines show the fault
injection rates and mission times for which the system is able to keep a majority of
error-free cores. The graphs are presented in Fig. 6.3. If the (t, Fr(t))-point of a given

124

Table 6.5: Injection of bit-flips. The table shows the number of cores that
remained error-free after fault injection with various rates. Grayed
cells stress cases where majority is sustained. An array length of
1.000 is assumed (execution time is ∼ 31.000 cycles).

Fault rate (faults/cycle)
N 1/1.000 1/500 1/250 1/100 1/50 1/25 1/10 1/5
1 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0
3 2 3 0 0 0 0 0 0
4 4 3 2 2 0 0 0 0
5 4 4 0 0 0 0 0 0
6 6 4 4 0 0 0 0 0
7 5 5 2 1 0 0 0 0
8 8 7 7 0 0 0 0 0
9 8 7 4 3 2 0 0 0

10 8 8 7 6 3 0 0 0
11 10 10 9 3 0 0 0 0
12 10 11 8 9 4 2 0 0
13 12 11 11 5 3 0 0 0
14 13 11 13 8 0 1 0 0
15 15 15 0 6 4 1 0 0
16 14 13 11 8 5 0 0 0

NMR group is below the N-th line, the system will complete execution successfully
(sustain majority during the mission). Otherwise, the system will fail (will not sustain
majority).

A straight line in a log-log plot is easily converted into a closed-form expression
using the template y = axb, where a is the slope of the line and log b is the interception
on the (log y)-axis. That is, the lines for N ∈ [1, 2], N ∈ [3, 9] and N ∈ [10, 16] in
Fig. 6.3 are y = 1/x, y = 2/x and y = 4/x, respectively. Hence, the closed-form
expression of the majority lines as a function of time t would be:

Fr(t) =

31

ft
, for N ∈ [1, 2]

62

ft
, for N ∈ [3, 9]

124

ft
, for N ∈ [10, 16]

, (6.9)

where Fr(t) is the fault rate, and f is the operating frequency.

However, of practical interest is to determine whether a given (t, Fr(t))-point is
below or above the majority line, i.e., whether the NMR group will survive or not.
For a straight line Ax+By +C = 0, a point (p, q) is above the line if q > −B

A
p− C

A
.

125

Figure 6.3: Majority lines of core-level NMR groups. Both x and y axes are
in logarithmic scale (log-log plot). Note that for simplicity of
computation and representation, the x-axis values correspond to
the array length. These values should be multiplied by ∼ 31 to get
the actual number of cycles, and by 1/50 MHz to get the actual
execution time in ns (simulation was done at 50 MHz).

Since Fig. 6.3 is a log-log plot, one should investigate the (log p, log q) point instead,
i.e.,

log q > −105 log p+ 1100, for N ∈ [1, 2],
log q > −105 log p+ 2100, for N ∈ [3, 9],
log q > −105 log p+ 4100, for N ∈ [10, 16].

(6.10)

Thus, if the system (or user) knows the length of execution of the timing-critical
task, it can assign the appropriate number of cores by exercising Eq. 6.10, and guar-
antee fault-tolerant operation without invoking recovery mechanisms.

It is worth noting that enabling or disabling the instruction/data caches of the
cores does not play a role. Very similar results were obtained in both cases (with and
without using caches).

Injection of permanent faults

Exactly the same experiments were conducted with permanent faults. In the case
of permanent ‘stuck-at’ faults, the obtained results are absolutely identical for each
investigated array length (100, 1.000 and 10.000), and for the corresponding fault
rates. Table 6.6 shows the results.

126

Table 6.6: Injection of stuck-at faults. The table shows the number of cores
that remained error-free after fault injection of stuck-at-0 with var-
ious rates. (Stuck-at-1, and mixed stuck-at-0 and stuck-at-1 fault
injection simulations show similar results.) Grayed cells stress cases
where majority is sustained. The corresponding fault rates in the
case of an array length of 10.000 are given, where the execution
time is ∼ 310.000 cycles.

Fault rate (faults/cycle)
N 1/10.000 1/5.000 1/2.500 1/1.000 1/500 1/250
1 0 0 0 0 0 0
2 2 1 0 0 0 0
3 2 0 0 0 0 0
4 2 2 2 0 0 0
5 3 2 0 0 0 0
6 6 4 2 0 0 0
7 6 4 0 0 0 0
8 8 6 4 0 0 0
9 8 6 5 0 0 0

10 8 8 0 0 0 0
11 8 6 0 0 0 0
12 12 11 0 0 0 0
13 12 11 9 0 0 0
14 13 10 9 6 2 0
15 14 13 11 0 0 0
16 15 15 11 0 0 0

As expected, it is harder to cope with permanent faults. That is, greater number
of cores are needed to sustain majority, assuming the same fault rate. E.g., for a fault
rate of 1/5.000 faults/cycle and an array length of 10.000, transient bit-flips could be
masked with three cores, while stuck-at faults with six cores at least.

The same analysis as in the case with bit-flips could be made for stuck-at faults
too. A similar equation to Eq. 6.10 is obtained. Here, the lines of plot 6.3 would be
shifted towards the (0, 0) point.

6.2.3 Employing recovery mechanisms

An NMR group of cores could achieve much greater reliability regarding transient
faults if recovery mechanisms supplement the NMR mechanism itself. Here, three
recovery mechanisms that treat transients were examined:

1. Save-reload: save and reload the state of the cores;

2. Save-reset-reload: save the state, reset the NMR group, and then reload the
state;

127

3. Save-reset-reform-NMR-reload: the same as mechanism 2, but at least one ad-
ditional powered-off core in the FWG is activated to replace the faulty core and
reform the NMR group upon a detected error. (See Subsection 3.2.2.)

Actually, all of the mechanisms are based on saving the current state of the core(s)
upon a detected error. The state is defined as the contents of all internal registers
of the core(s). Of course, only registers which are directly addressable, and both
readable and writeable, are taken into account.

Furthermore, all of the recovery mechanisms are triggered by the ISD of the pro-
grammable NMR voter (Fig. 4.5), which signals detected errors in one or more cores
of the NMR group, but also by the voter’s err signal which reports the outcome of
the self-check operation.

Having an NMR majority, the correct cores in the NMR group will outvote the
faulty ones and write the correct state into the memory (assuming no faults occurred
out of the NMR group). The last part of all examined recovery mechanisms is to
reload the state back to the cores. The procedures for saving and reloading the state
are similar to a context (process) switch, with the difference that after recovery, the
same process is loaded.

Assuming that the NMR group always sustains majority in presence of errors,
the simplest recovery mechanism (1) is to save the state, during which process the
erroneous state is outvoted, and then simply reload the correct state to the NMR
group. Unfortunately, this mechanism is rarely successful (as the simulations showed).
The reason is that there are a lot of other memory elements such as registers or flip-
flops, which could not be saved and reloaded in the way the state registers are.
Thus, the erroneous state of these elements could not be fixed, and the errors quickly
accumulate.

Nevertheless, including a reset step between the save and load procedures (mech-
anism 2) turned out to be sufficient. The simulations showed perfect recoveries for
fault rates up to 1/100, and in many cases up to 1/50 faults/cycle. Larger fault rates
affect the recovery procedure itself since the duration of saving and reloading the
state is around 200 cycles.

Resetting the cores is practically performed by invoking the resetModules func-
tion of the framework middleware after saving the state. The function sets the cor-
responding bits in the framework controller’s command register that further triggers
the reset lines of the cores in the FWG (see Table B.1 and Fig. 4.9). After reset, the
boot procedure checks to see who made the reset by investigating the FC registers,
and then reloads the saved state of the cores. Of course, the boot procedure knows
the predefined memory location of the saved state.

Finally, mechanism 3 achieves the same results as mechanism 2, but its advantage
is that it de-stresses the core(s) in which errors were detected. For example, if NBTI
effects were responsible for the fault, intermittent errors may be avoided since the
faulty core would be left inactive for a while, recovering from NBTI.

On the downside, recovery mechanisms introduce performance penalties which are
examined next. Tables 6.7 and 6.8 show the overheads of mechanism 2 for various
fault rates, with and without using the L1 caches, respectively. Mechanism 3 exhibits

128

almost completely equal overheads, which is expected since its procedures have just
several instructions more than mechanism 2. Note that the number of active cores in
the NMR group is irrelevant regarding the performance, as long as there is majority.
Therefore, all experiments were made with N = 16 using the setup described in
Subsection 6.2.1. The array length is 10.000 in all cases.

Table 6.7: Performance overheads of state recovery mechanisms. Caches are
inactive. (Note that in the case without fault injection and recov-
eries, 110.011 instructions are executed in 310.156 clock cycles.)

Overhead in %
Fault rate Nr. recoveries Nr. instr. Nr. cycles Instructions Exec. time

1/10.000 1 110.046 310.262 0,03 0,03
1/5.000 2 110.081 310.368 0,06 0,07
1/2.500 3 110.116 310.474 0,10 0,10
1/1.000 13 110.466 311.534 0,41 0,44

1/500 23 110.816 312.594 0,73 0,79
1/250 48 111.691 315.244 1,53 1,64
1/100 121 114.246 322.982 3,85 4,14

Table 6.8: Performance overheads of state recovery mechanisms. L1 caches are
active. (Note that in the case without fault injection and recoveries,
110.013 instructions are executed in 318.406 clock cycles.)

Overhead in %
Fault rate Nr. recoveries Nr. instr. Nr. cycles Instructions Exec. time

1/10.000 1 110.048 319.218 0,03 0,26
1/5.000 2 110.083 320.030 0,06 0,51
1/2.500 3 110.118 320.842 0,10 0,77
1/1.000 13 110.468 328.962 0,41 3,32

1/500 23 110.818 337.082 0,73 5,87
1/250 48 111.693 357.382 1,53 12,24
1/100 121 114.248 416.658 3,85 30,86

When the cores use their L1 caches (separate data and instruction cache per
core), execution time overheads are greater since the caches warm up on each reset.
Of course, instruction overheads are the same in both cases since the same program
is executed.

Note that in the case without fault injection and recoveries, program execution
lasts longer in the case when caches are enabled (318.406 vs. 310.156 cycles). This is
because the data cache is write-through with no write allocation, which means that
each write and then read to/from the same memory location will cause a cache miss.
On the other side, the program intensively reads and writes data from/to memory.
Using a write-back cache improves this picture, although execution time overheads

129

when fault injection triggers recovery mechanisms remain the same as write-through
– execution time overheads are caused mainly by the instruction cache which has to
be reloaded on each reset.

6.3 Power consumption

Using PG and CG will definitively lower power consumption, which is one of the
goals of the thesis proposal. This Section presents the results of the quantitative
evaluation of power consumption of the proposed multiprocessor framework. The
8-core FMP(4, 4) chip presented in Section 4.5 is used for this purpose. The chip
was successfully produced and tested in the IHP 130 nm technology with the target
frequency of 50 MHz. The chip core and pads supply voltages are 1,2 V and 3,3 V,
respectively. Note that the chip core contains all of the eight logical processor cores
(PEs), as well as the framework controllers and memory interfaces (see Fig. 4.17).

6.3.1 Simulated power analyses

Unfortunately, power consumption measurements of PG could not be performed,
since power gating is not integrated into the IHP 130 nm design flow. Thus, the cores
in the produced chip could not be power-gated. Nonetheless, power analyses were
made using the Synopsys’ PrimeTime power analyser. The simulated results of power
consumption where the number of powered off cores is varied from 0 to 7 are given
in Table 6.9, while the results of clock-gated cores are given in Table 6.10.

Table 6.9: Simulated power analysis of power-gated cores. N is the number of
active (power-on) cores.

Simulated chip core power in mW
N Without caches With L1 caches

1 1,92 2,16
2 2,39 4,32
3 3,58 6,48
4 4,77 8,63
5 6,00 10,85
6 7,17 12,91
7 8,37 15,12
8 9,58 17,38

6.3.2 Chip measurements

Table 6.11 shows the results of on-wafer measurements of power consumption using
core gating, where the number of clocked off cores is varied from 0 to 7. Again, two
cases with and without active caches are examined.

130

Table 6.10: Simulated power analysis of clock-gated cores. N is the number
of active (clock-on) cores.

Simulated chip core power in mW
N Without caches With L1 caches

1 2,65 3,07
2 3,13 5,34
3 4,19 7,67
4 5,65 9,83
5 6,78 11,55
6 8,12 14,05
7 9,74 16,29
8 10,31 18,46

Table 6.11: On-wafer power measurements of clock-gated cores. N is the num-
ber of active (clock-on) cores.

Measured chip core power in mW
N Without caches With L1 caches

1 1,56 2,52
2 2,28 3,72
3 3,00 4,92
4 3,60 6,12
5 4,44 7,56
6 5,04 8,76
7 5,88 10,08
8 6,48 11,28

For the purposes of comparing the measured vs. simulated results of power, Ta-
ble 6.10 gives the simulated results of power consumption using CG, which could be
compared to the measured results of Table 6.11. Table 6.12 shows the percentage of
deviation of simulated (Table 6.10) vs. measured (Table 6.11) results of CG power
consumption. The differences are in the range from 18% to 39%.

6.3.3 Discussion

Chip core power is reduced proportionally when PG/CG is used. Each activated core
contributes with approx. 1 mW. PG saves around 0,8 mW more compared to CG.
Activating the caches leads to higher power consumption: for PG, the overhead is in
the range from 12,5% for one active core to 81,4% for eight active cores, while for CG
is from 61,5% to 74,1% (using results from measurements).

One peculiarity of the produced FMP(4, 4) is that over 90% of the power is
consumed by the large number of pads, which were chosen to enable strong current
drive capability. Pads could not be power- or clock-gated – they should be active even

131

Table 6.12: Percentage of deviation of simulated vs. measured results
%∆

N Without caches With L1 caches

1 41,13 17,92
2 27,16 30,34
3 28,40 35,85
4 36,28 37,74
5 34,51 34,55
6 37,93 37,65
7 39,63 38,12
8 37,15 38,89

if only one core is operating. Thus, the difference between the least power consuming
case (one core with no caches), to the most power consuming case (eight operating
cores with caches) is only 34,5 mW for CG, and 76,3 mW for PG.

An interesting observation caused by this peculiarity is the following. An expected
behaviour is that when caches are used, core power would be increased, but pad power
would be decreased, leading to a lower figure of total power consumption. When the
caches are used, the frequency of memory requests that go out of the chip is reduced,
which lowers the dynamical power consumption by the pads. The conclusion in this
case would be that caches should be used in order to reduce power consumption.1

This behaviour was actually caught by the chip measurements. Of course, using
normal pads, or using the FMP(4, 4) in a larger SoC (System-on-Chip), disregards
this situation.

1It was claimed before (see Section 2.2) that power consumption could be reduced by reducing
performance. However, caches are used to actually increase performance! In the FMP(4, 4) case,
using caches may both increase performance and reduce power consumption!

132

Chapter 7

Conclusion

The past chapters described a multiprocessor architectural framework for increasing
the lifetime reliability and fault tolerance against single event effects. Reducing power
consumption and improving performance (especially for timing-critical systems) were
also in the focus. The proposed mechanism introduced three basic operating modes
of the multiprocessor: de-stress, fault-tolerant and high-performance, which could be
dynamically changed according to the current application requirements. The main
motivation behind this proposal was the fact that multiprocessor applications dynam-
ically change their reliability and performance requirements. Thus, when high error
resilience against SEEs is required, the application could put the multiprocessor in
fault-tolerant mode. For high performance, where reliability requirements are low,
the application could opt the high-performance mode. Finally, de-stress mode could
be selected when the application performs low performance tasks that do not require
high fault tolerance.

Several novel concepts like the low-complexity, self-calibrating aging monitors, the
YFRR de-stress pattern, the programmable NMR voters, the recovery mechanism,
were compiled to build the novel multiprocessor architectural framework. Besides nov-
elties in the proposed solutions, this thesis brought novelties in their evaluation too.
A simple analytical method based on the Weibul distribution was used to evaluate
the RR and YFRR patterns of core gating. Furthermore, core-level NMR redundancy
was investigated on a multiprocessor platform with 16 cores. The simulation results
led to closed form expression that enables easily finding whether an NMR group of
cores would survive the mission time without invoking recovery mechanisms, given the
fault rate. This is appreciated by timing-critical, or, real-time systems. Of course, re-
covery mechanisms were also introduced and examined, since they would significantly
improve the multiprocessor fault tolerance.

7.1 Are the objectives met?

The topic treated in the thesis is very wide and requires a lot of work, investigation,
and experimenting. The work presented in the thesis was able to answer the basic
postulates, but even more important, it was able to quantify them! That is, the

133

evaluation in Section 6.1 showed that operating the multiprocessor in de-stress mode
which employs an YFRR gating pattern may prolong multiprocessor lifetime up to
31%. Further improvements are possible by using aging-aware task mapping and
scheduling.

Moreover, the experiments conducted in fault-tolerant mode produced results that
showed the correlation between the number of redundant modules in an NMR group
of cores, the mission time and the fault rate (See Fig. 6.3, and Eqs. 6.9 and 6.10).
Using Eq. 6.10 for example, one can quickly determine the number of cores that
need to be arranged in an NMR group in order to accomplish a timing-critical task
in a fault-tolerant manner. This quantification was done both for transient and
permanent faults (Tables 6.4, 6.5 and 6.6). The performance overheads of state
recovery mechanisms were also examined (Tables 6.7 and 6.8). At the end, simulations
and measurements of power consumption (Tables 6.9, 6.10 and 6.11) were also made.

Thus, it can be said that most of the objectives stipulated in Subsection 1.4.3 are
met. Two major challenges remain though. First, an investigation of the dynamical
behaviour of the system using profiled applications and benchmarks of real-life sys-
tems would give the picture of the time that the multiprocessor spends in the three
operating modes. Knowing the distribution of these periods will lead to deeper in-
sights and improvements of the framework itself. Secondly, an investigation of the
scalability of the proposed concept would give the answer whether the framework
corresponds to the scale of the targeted problem.

7.2 Future work

Besides the two major challenges mentioned in Section 7.1, there are a lot of ideas,
mechanisms investigations and experiments that may be implemented or conducted,
or, are currently in the implementation phase. For example, a supplement to the PG
and CG in de-stress mode could be DVFS. The cores could dynamically fine tune the
scale of the voltage and frequency according to the performance requirements. Fur-
thermore, temperature monitors could supplement the aging monitors, which would
give a more precise picture of the age of the cores. As elaborated before, aging is
strongly correlated with temperature.

7.2.1 Investigating aging effects and monitors

Special ICs that will be used to investigate the HCI and NBTI aging effects, as well
as the operation of the aging monitors detailed in Subsection 4.1.2 are planned. The
effect of core gating patterns with various duty cycles will be investigated. In this
direction, a special environment for aging acceleration will be used. That is, aging
effects could be accelerated significantly if the circuit is operated in an environment
with abnormal temperatures and with supply voltage that is greater than the nominal
(see Subsection 1.2.1). Both extremely low (-55◦C) and extremely high (+200◦C) tem-
peratures will be used, which accelerate the HCI and the NBTI effects, respectively.
Furthermore, aging as a function of the operating frequency will be also investigated.

134

7.2.2 Pushing the limits of core-level NMR

A general scheme for dynamic core-level NMR using a pool of cores and a pool of
voters is feasible if the cores are identical and synchronous (driven by the same clock),
which is the main motivation in [SKK14b]. Fig. 7.1 shows several possible formations
of NMR groups in a 16-core multiprocessor. Note that the maximum number of
voters required is Q = P/2, since maximum P/2 DMR systems may be formed in a
multiprocessor with P cores. The example in Fig. 7.1 uses only three of the voters
V0, V1 and V2 in order to form the 4MR, TMR and DMR groups, respectively. The
4MR group is formed using C0, C1, C4 and C5, the TMR group is formed using C6,
C7 and C10, while the DMR uses C9 and C12. Note that voters V3 to V7 are not used
in the current configuration, while C2, C3, C8, C11, C13, C14 and C15 are used as
independent, stand alone cores.

Figure 7.1: Dynamic core-level NMR group formation using programmable
NMR voters

In order to form an arbitrary number of NMR groups, each with an arbitrary set
of N cores, a simple programmable controller is needed (Prog. cntrl in Fig. 7.1), which
could dynamically connect the cores to the voters. Upon an application request, the
controller could reconfigure the system in another form in a few clock cycles. E.g.,
the multiprocessor configuration of Fig. 7.1 could be transformed to a single TMR
group consisting of C0, C3, C15 and V5, while the rest of the cores could be set as
stand alone. Of course, the controller could be programmed to form no NMR groups
at all, in which case the multiprocessor would operate as any regular multiprocessor
(the voters are not used in this case). Another extreme is to put all 16 cores in one
NMR group using a single voter.

In an NMR group, the outputs of all cores are actually inputs of the assigned
programmable NMR voter. The N cores are tightly synchronized, executing simulta-
neously the same instruction, and are thus viewed by an external system as a single
core. In each clock cycle the voter selects the actual output of the NMR group. In
the example configuration of Fig. 7.1 the number of cores is effectively reduced to
ten. The external system recognizes the seven stand alone cores, but considers that
each of the three NMR groups is a single core.

135

In this scheme, not only the cores are redundant, but also are the voters. If the
system perceives that a voter constantly reports erroneous self-checks, it will simply
not use it any more. This scheme would enable binding any set of cores to any of the
voters in the pool.

However, in order to relax the requirements that the cores in a core-level NMR
system are tightly synchronous and homogeneous, a different approach is required.
Initial considerations go in the direction that voting should be done only for the
“store” operations, when the cores in the NMR group write into memory. Each write
would be redirected to a special NMR voter which has to wait all active cores in the
NMR group to supply the data. After voting, the voter itself is the actual entity that
writes the (majority) result to memory.

This approach has several challenges arising from the fact that the cores do not
supply the data synchronously. Firstly, the voters have to wait for data in a limited
time period, since if a core fails to supply data due to an error, the system will be
blocked. This time period is not necessarily deterministic. If a core fails to write
data, or the data between cores differ, interrupts should be triggered. Secondly, the
cores should get a feedback from the voter if their data is written to memory so they
can continue processing, otherwise memory inconsistencies may occur. Both of these
issues seriously affect the performance1 and increase the complexity of the system.

7.2.3 Other considerations

At the application layer, an investigation of the mixed modes of operation shortly
described in Subsection 4.3.1 may give valuable insights. E.g., de-stressing a NMR
group of cores with a “fresh” NMR group of cores would provide fault tolerance,
but also a time for recovery from effects like NBTI. However, the most significant
extension of the application layer would be the introduction of lifetime-aware task
mapping and scheduling, based on the information supplied by the aging monitors.

Finally, scalability regarding the number of cores in the framework requires exam-
ining many aspects related to the interconnection network, such as redundant links
and fault-tolerant routing/switching protocols.

1As a guideline, around 12% of the program instructions are memory write operations [44].

136

Appendix A

A simple and flexible 32/64-bit
RISC core

Multiprocessors are widely used in all computing segments i.e., desktop, server and
embedded. The embedded domain has the most diverse application requirements
regarding performance, power consumption and dependability. Therefore, a design of
a core that is planned to be used in different embedded systems should enable an easy
trade-off between these attributes. Of course, the cost is another system attribute
that has to be taken into account. A specific and desirable property of embedded
systems is predictable execution time.

Lots of IP (Intellectual Property) cores of (multi)processors are currently available,
both commercial and non-commercial. The ARM [9] and ARC [112] microprocessors
are widely used for embedded applications such as mobile and multimedia devices,
game consoles, computer networking and communications, etc. These processors have
modular designs, or different versions for specific usage like DSP (Digital Signal Pro-
cessing) applications, or fault-tolerant mechanisms for use in space projects like the
LEON processor [35]. However, these processors are designed for specific SoC appli-
cations with standard bus interfaces that enable communication between the different
components in the SoC. On the other side, powerful general-purpose architectures like
MIPS [80], SPARC [67], PowerPC [55] (and ARM in a way) although RISC, have rel-
atively complex instruction set architectures (ISA). Some of them do not completely
adhere to the RISC design principles (i.e., not pure RISCs) in order to boost perfor-
mance for specific applications. Nonetheless, there is a lack of simple and easy-to-use
processor cores for embedded multiprocessing environments and SoCs, especially for
64-bit systems. This is partially a motivation behind the OpenRISC [84], which is an
open-source project for general-purpose 32- and 64-bit microprocessors with optional
vector processing support, as well as the OpenSPARC [85] architecture.

The FMP(4, 4) designed to investigate the thesis proposal uses a novel load/store
RISC core [Sim13] with flexible design space which offers simplicity and ease-of-use.
First instance of flexibility is the core’s operational width i.e., 64- or 32-bit. The
instruction set is completely compatible between the two widths. Special features
include: classical stack, novel interrupt organization and virtual memory system.
Furthermore, if caches are not used (or are switched off), an exact prediction of the

137

execution time is possible. The core is designed in an environment for simulation, test-
ing and co-verification of microprocessors presented in Section 5.5 (see also [SKK12]).
The FMP(4, 4) is built of eight such cores (32-bits wide). It is successfully produced
and tested in the IHP 130 nm technology, and used in many experiments aimed at
evaluation of the thesis proposal.

A.1 Core architecture

The proposed load/store RISC core comes in two widths – 64- and 32-bit. The 64-
bit version has a 64-bit data bus, 40-bit address bus and 64 (64-bit wide) General
Purpose Registers (GPRs). The 32-bit version has a 32-bit data bus, 24-bit address
bus and 32 GPRs (32-bit wide). Fig. A.1 shows the core’s architecture.

Figure A.1: A simple and flexible 64/32-bit RISC core

The thick arrows in Fig. A.1 depict the data-path, while the thin arrows show the
control. The Instruction supply unit extends the signed/unsigned immediate values in
instructions to 64/32 bits and passes them to the Register file or the Arithmetic/Logic
and Floating-Point Unit (ALFPU). The ALFPU has two 64/32-bit inputs coming
from the selected two registers in the register file. In the 8-core implementation the
FPU part is not included, while the FPU support is left, so encountering a floating-
point instruction will not raise exceptions but will also not change the microprocessor
state – equivalent to executing a NOP (no operation) instruction. Although not shown
(for the sake of clear presentation) in Fig. A.1, the second input of the ALFPU can
be an immediate value from the Instruction supply block; Section A.2 shows that
the second argument of the arithmetic/logic operations can be either a register or an
immediate value.

138

Cache support

The core provides instruction support for L1 data and instruction caches and L2
shared cache. Inclusion of higher level caches is possible, although there is no explicit
instruction support. Fig. A.2 presents a microprocessor based on the proposed core.

Figure A.2: A microprocessor with L1 and L2 caches

The designer is free to choose the inclusion/exclusion of caches as well as their
size and number of blocks (of course, in a limited design space). For example, the
cores in the 8-core implementation have only L1 caches.

Bus interface

Fig. A.3 shows the bus interface (BI) Finite State Machine (FSM) that consists of
three states NT (no transfer), IF (instruction fetch) and RW (data read/write). The
core does not fetch instructions i.e., it is in the NT state only in reset and wait states,
otherwise it is in the IF state. When executing a load/store instruction, it transits
to the RW state.

Figure A.3: Bus interface FSM

The memory and peripherals do not make a difference between an instruction fetch
and data read. Furthermore, peripherals could be only memory-mapped, so the core
does not make a difference whether the transfer is to/from memory or peripherals.

Fig. A.4 shows an example bus operation. Regarding the bus interface, the core
operates similarly to a master device of an AMBA AHB 2.0 bus [8]. In the first
cycle, the core requests a read operation setting the address and the transfer width
(specifying byte, halfword, word or doubleword) and raising the signals req and rd.
Note that the core supports only aligned memory access, e.g., a halfword read/write

139

at an odd address will raise an exception. The addressed unit sets the ready signal
in the second cycle, placing the requested data on the data bus.

Figure A.4: Bus interface cycles

In the third cycle the core requests a write operation, raising wr and placing the
data on the data bus. The addressed unit responds in the same cycle, raising ready.
However, a transfer to/from slower units could take an arbitrary number of cycles.
For example, the initiated transfer in the fourth cycle is completed in the seventh.

Data transfer addressing modes

The core provides three (virtually four) addressing modes for data transfers in order
to support high-level programming languages. All GPRs could be used by load/store
instructions to form the effective addresses.

Displacement. A base specified in a GPR and an immediate, 12-bit signed offset
(contained in the load/store instruction) form the effective address. Thus, effective
address = base + offset. For zero offset, the register addressing mode is obtained.

Indexed. Two GPRs specify the base and the index of an effective address i.e.,
effective address = base + index.

Immediate. The LOAD instruction has an immediate form, where an 18-bit
signed/unsigned immediate value could be specified.

Execution FSM

Fig. A.5 shows the seven-states execution FSM of the core. The core is in the Empty
(E) state during reset and when waiting for the BI to supply instructions. If instruc-
tions are ready for execution, the core transits to the Fetch and execute (FEX)
state. An exception or interrupt (excint in Fig. A.5) puts the core into the Excep-
tions and interrupt (INT) state.

Simple instructions are executed in one cycle in the FEX state. Multi-cycle (mc)
instructions have one FEX state and several Execution (EXE) states. Load/store
instructions put the core into the Data Transfer (DT) state if the requested transfer

140

occurs within the current process; otherwise, the core has to check (in the Shared
data access check (SDC) state) if the requested transfer is allowed. If so, the core
transits to the DT state, otherwise an exception is invoked, transiting to the INT
state.

If the current instruction is simple, the core checks for exceptions and interrupts
before fetching a new instruction. If so, it transits to the INT state. If excint is
inactive and a new instruction is ready to be fetched from the instruction supply
(Fig. A.1) i.e., empty is inactive, the core stays in the FEX state, otherwise it transits
to the E state.

The core stays in the EXE state till the last cycle of the multi-cycle instruction.
Similarly like in the FEX state, it goes in the E state if the following instruction is
not ready, otherwise it transits to the FEX state. If excint is active it goes to the
INT state. The same holds when the core is in the DT state, where instead of the
last cycle, the core waits the ready signal to acknowledge the transfer.

The WAIT instruction puts the core into the WAIT state. Only a hardware
exception or a non-masked hardware interrupt could take the core out of this state
i.e., into the INT state. Of course, active reset puts the core into the E state.

In the INT state the core behaves as follows. In the case of a hardware inter-
rupt, the core has to read the interrupt specification from the interrupt controller.
The interrupt controller is a peripheral that puts the specification on the data bus.
Therefore, the core transits to the DT state. In a case of exception, the core has all
data available and transits immediately to the E state, since the first instruction of
the exception handler that resides in memory could not be loaded in this single cycle.

Figure A.5: Execution FSM

141

Exceptions and interrupts

The core has by default 4 hardware NMEs (Non-Maskable Exceptions) that are in-
voked by the nme input signal. The designer could actually specify the number
of NMEs (from 0 to 8) by setting an appropriate parameter. NMEs signal critical
situations that should be immediately treated.

Software exceptions are maskable and occur when instructions produce situations
that require special attention. Table A.1 shows all software exceptions, ordered by
priority.

Table A.1: Software exceptions
Exception Remark
Invalid instruction unknown instruction, wrong code
Protection violation four types of violation
Unaligned memory access address/data width is not aligned
Overflow/Underflow the result does not fit into the GPR
Division by zero the divisor operand is zero
Floating-point invoked by FP ops, e.g., FP overflow
Timer/watchdog a timer/watchdog reached zero

There are by default two timers/watchdogs, with a special exception for each of
them. The designer could easily change the number of timers/watchdogs (from 0 to
8) and with that add/remove the appropriate exceptions for each timer/watchdog.

Figure A.6: Interrupt specification

Hardware interrupts are invoked by an interrupt controller over the intr input.
The interrupt controller places the interrupt specification on the data bus when the
core acknowledges the interrupt by initiating data read operation at the interrupt
controller’s address. Software interrupts could be inter-processor or self-interrupts.
They are invoked by the INTR instruction. An inter-processor interrupt is sent to the
interrupt controller that further interrupts the appropriate cores/processors. Fig. A.6
presents the hw/sw interrupt specification. The Interrupt ID specifies which interrupt
to be invoked, while the Core ID specifies which core/processor to be interrupted.
Table A.2 presents the types of interrupts.

If there is no core with the specified core ID, the interrupt is ignored. The type
001 specifies that the controller should interrupt an inactive core. For that purpose,
the controller should observe the busy outputs of the cores in the system. If bit 4 of
the control register is set, the core treats self-interrupts as inter-processor interrupts
and sends the interrupt specification to the interrupt controller. Although the core
ID is 8-bits, and the interrupt ID is 10-bits wide, the designer could easily change
these widths. The total width including the 3-bits for type should not exceed 24.

142

Table A.2: HW/SW interrupt types
Type Interrupt type
000 Self-interrupt (core ID is irrelevant)
001 Single interrupt to inactive core (if all active, to core ID)
010 Single interrupt, exclusively to core ID
011 Broadcast to all cores
100 Broadcast to all cores, except to core ID

Priority is resolved in the following manner. NMEs have highest priority (starting
with NME 0). Then, exceptions follow with priorities as in Table A.1. Hardware in-
terrupts have the lowest priority. The appropriate handler can define for itself whether
it could be interrupted or not, by setting the appropriate masks and enable/disable
interrupt bits.

A.2 Instruction set

All instructions are 32-bit wide with 0, 1, 2 or 3 arguments. The two most-significant
bits (MSBs) of the instruction define the type of the instruction: load/store, arith-
metic/logic/fp or control.

Data transfer instructions

Fig. A.7 shows the layout of the data transfer i.e., LOAD/STOR instructions. The
D bit has to be 1. The L bit defines a LOAD (L=1) and a STOR (L=0) instruction.
There are four types of load: with base+index (O=0) or base+offset (O=1) address-
ing, register-register (copy), and load immediate (18-bits wide). On the other hand
there are two types of store: with base+index or base+offset addressing. The U-bit
specifies whether the transfer refers to unsigned (U=1) or signed (U=0) data. The
12-bits wide offset is always signed.

Figure A.7: Data transfer instructions

Table A.3 shows the data transfer types for LOAD and STOR instructions. The
2-bit W field specifies the data width of the transfer for T=0.

Register-register transfer could occur between GPRs, between system registers
or between a GPR and a system register. For T=1 and W=10, the O-bit decides
whether the destination is a GPR (O=0) or a system register (O=1). Similarly, the
U bit decides the source (0 for GPR, 1 for system). The destination and source are

143

Table A.3: Data transfer types
W T = 0 T = 1
00 64-bit not used
01 32-bit reserved for floating-point
10 16-bit register-register
11 8-bit load immediate

specified as 6-bit numbers. The source is specified in the index field in Fig. A.7. The
S-bit is set (S=1) for LOAD/STOR instructions that involve a system register.

Arithmetic/logic and floating-point instructions

Fig. A.8 shows the layout of the AL and FP instructions. Here, D=0 and C=0. The
first operand is a GPR specified by the 6-bit destination field. The second operand
could be either a GPR specified by the 6-bit source (here, I=0), or an 15-bit immediate
value (I=1). The result of multiplication or division (which is 128/64-bit in 64/32-bit
core, respectively), is written into the two GPRs specified as destination and source.
By division, the quotient and the reminder are placed in the specified destination and
source GPRs, respectively. Therefore, the MUL (multiplication) and DIV (division)
instructions do not have the “immediate value” form. The CONV (conversion from
FP to integer or vice versa) instruction and all FP instructions also do not have an
immediate form.

If the specified destination is equal to the specified source of a MUL operation,
only the lower half of the result is written to the GPR. By DIV, only the quotient
(with value 1) is written to the specified GPR.

Figure A.8: Arithmetic/logic and floating-point instructions

The 2-bit W field specifies the width of operation with the same codes as in
Table A.3 for T=0. Signed/unsigned integer operation is specified by U (0/1), while
in FP operations the F-bit is set. Table A.4 shows the auxiliary (auxc) codes of all
AL and FP instructions.

Standard operations of addition/subtraction and multiplication/division can be
both integer or FP. ABS (FP absolute value), CMP (FP compare), NEG (FP nega-
tion) and SQRT (square root) are FP only. Shifts and rotates could be left (SL, RL)
or right (SR, RR). By arithmetic right shift U=0 while by the simple right shift U=1.
Also, by logic operations AND, NAND, OR and XOR the U bit is set.

144

Table A.4: 4-bit auxiliary code specifying AL and FP operations
Operation Auxc[3:2] F
ADD, SUB 00 0/1
MUL, DIV, CONV 01 0/1
RL, RR, SL, SR 10 0
AND, NAND, OR, XOR 11 0
ABS, CMP, NEG, SQRT 10 1

Control instructions

Fig. A.9 shows the layout of the control instructions. Here, D=0 and C=1.

Figure A.9: Control instructions

The TBT field specifies the control Transfer or Branch Type, but is also used
for other instructions. The O-bit defines whether the location of the (un)conditional
control transfer is specified by an offset (O=1) or by GPR (O=0). The R-bit defines
whether the transfer is IC-relative (R=0) or absolute (R=1). For absolute transfers
O has to be 1, i.e., the absolute location has to be specified by a GPR. If the P bit
(procedural transfer) is set, the current instruction pointer is saved on stack before
the jump to the specified location. Tables A.5 and A.6 present the control transfer
instructions.

Table A.5: Conditional and unconditional control transfer instructions
TBT S Instructions Used fields

00 0 JMP location/offset24
00 1 JMP.S argument, aux. arg., location/offset12
01 0 Simple branches argument, auxc, location/offset15
10 0 BE argument, aux. arg., location/offset12
11 0 BNE argument, aux. arg., location/offset/12

The JMP instruction performs an unconditional transfer to the specified location.
The bit S is set (S=1) for system instructions, otherwise S=0. For example, a system
jump (JMP.S) is used for context switch. Instructions in Table A.6, as well as BE
(branch equal) and BNE (branch not equal) perform conditional transfers. BE and

145

Table A.6: Simple branches
auxc Instruction Branch if
000 B0 zero
001 BN0 not zero
010 BP positive
011 BPZ positive or zero
100 BN negative
101 BNZ negative or zero
110 BT F FP operation bit true
111 BF F FP operation bit false

BNE compare the values in the GPRs specified by the argument and the auxiliary
argument and if the condition is satisfied, jump to the specified location.

Table A.7: Other control instructions
TBT P S = 0 S = 1

00 0 RET RETE
00 1 PUSH PUSH.S
01 0 POP POP.S
01 1 / /
10 0 INTR WAIT
10 1 INTR FLSH
11 0 / SB
11 1 / RB

Table A.8: FLSH immediate values
Immed. 6 FLSH

000001 SDAT
000010 NEI
000100 I Cache
001000 D Cache
010000 L2 Cache

However, if the instruction is not of the control transfer type, the O, R and P bits
encode other states too. Table A.7 shows the rest of the control instructions.

Although the PUSH and POP instructions actually transfer data to/from the top
of the stack, and more naturally belong to the data transfer group of instructions,
they are put here since the code space is substantially exhausted for the data transfer
instructions and a further extension of the instruction set would be harder. PUSH
and POP use the argument field to specify a GPR (S=0) or a system register (S=1)
as source/destination.

146

The RET instruction takes the top of the “normal” memory stack. The core
resumes execution at the address fetched by RET. RETE takes the top value from a
built-in-core NEI (exception/interrupt return address) stack. RET and RETE do not
have arguments. The depth of the NEI stack is by default three, but the designer could
easily change this parameter in the range from 3 to 16. The instruction counter is
automatically pushed in the NEI stack in the INT state on each exception/interrupt.

The INTR instruction is used to invoke software interrupts, as explained in Sub-
section A.1. The interrupt specification could be specified by an immediate (21-bit)
value or by a GPR.

The WAIT instruction puts the core in the WAIT state (Fig.A.5).

SB and RB set and reset single bits in the system registers. The system register
is specified in the argument field, while the bit is specified in the immed. 6 field.

The FLSH (flash/flush) instruction has several usages differentiated by auxc. The
form which uses the argument field (auxc = 000) is used to fill the SDAT (shared
data access table) of the novel virtual memory system. The immed.6 form where
auxc = 001 (shown in Table A.8) is used to flush the caches, the SDAT or the NEI.
For example FLSH 28 (FLSH 0b011100) flushes all caches.

Assembly

Instruction assembly is proposed as follows. Firstly, the instruction mnemonic is
specified and then the argument(s) (if any) separated by comma. The arguments
could be GPRs (reg0, reg1,. . . reg31/reg63), system registers (srg0, srg1,. . . , srg18) or
immediate values in binary, decimal or hexadecimal format. E.g., ADD reg0, reg1
specifies that the result of adding the values in the GPR reg0 and the GPR reg1 is
placed in reg0. SUB reg3, 5 specifies that the result of subtracting the immediate
value 5 from the value in reg3 is placed in reg3.

Load/store instructions have specific second argument. E.g., LOAD reg2,
reg3[5] specifies displacement addressing with base in reg3 and displacement 5,
while LOAD reg2, reg7[reg4] specifies indexed addressing with base in reg7 and
index in reg4. The read data will be placed in reg2. If a system register is specified
as destination (e.g., the control register) the form would be LOAD.S CR, reg7[2]
or LOAD.S srg16, reg7[2]. The .S suffix is optional. An example load immediate
would be LOAD reg14, 345.

64/32-bit compatibility

The instruction set is completely equivalent for both core versions. That is, software
written for the 32-bit core could be executed on a 64-bit core, and vice versa. There
are two precautions that have to be taken. Firstly, if a 64-bit program that uses the
registers from 32 to 63, is executed on a 32-bit core, the 32-63 registers will be mapped
in the range from 0 to 31 (since there are 32 registers in the 32-bit core). Therefore,
if porting a 64-bit application to a 32-bit core is planned, it is best to avoid using the
registers from 32 to 63, when possible. Furthermore, double word (64-bit) transfers

147

are not supported by the 32-bit version. If a load/store instruction specifies 64-bit
transfer, a 32-bit core performs a 32-bit (word) transfer without raising exceptions.

Modes of operation and OS support

The control unit has 19 system registers specified in Table A.9. The core starts
in system mode after reset. Resetting the 0-th bit of the control register CR (see
Table A.10) switches the core to user mode. This could be done by executing the
pseudo-instruction USRM (which translates to RB CR, 0). A form of the JMP.S
instruction (JMP.S U) is a convenient way for context-switches since it loads the
process ID, the process base PB and length PL into the appropriate registers and
additionally puts the core in user mode. Only an interrupt or exception can switch
the core back to system mode. Thus, system calls should be implemented by invoking
a self-interrupt with the INTR instruction.

The CR has many other functions such as enabling/disabling interrupts, caches
and timers/watchdogs. The SYNC (SB CR, 8) and CSYN (RB CR, 8) instructions
set the SYNC bit of the control register that directly drives the sync output of the
core. This is used for synchronization purposes in a multiprocessor environment. The
status of the NEI stack is automatically updated in bits 9 and 10. Write operations
in the control register do not affect the NEI bits.

Table A.9: System registers
Nr. Abbrev. Register name

0 PB Process Base
1 PL Process Length
2 SP Stack Pointer
3 EM Exception Masks
4 IB Interrupt handler Base address and process number
5 IL Interrupt handler Length
6 NB NME handler Base address and process number
7 NL NME handler Length
8 EB Exceptions handler Base address and process number
9 EL Exceptions handler Length

10 EXC Exceptions register
11 LI Last Instruction before exception
12 IID Interrupt ID register
13 AV Address violation register
14 CID Core ID register
15 ICA Interrupt Controller’s physical Address
16 CR Control Register
17 TM0 Timer/watchdog 0
18 TM1 Timer/watchdog 1

148

The stack pointer SP points to the top of the stack and besides the use with
PUSH and POP can be used to automatically save the Instruction Counter IC when
executing a control transfer instruction (as explained in Subsection A.2).

Exceptions and interrupts’ handler addresses, process numbers and lengths are
specified in the IB, IL, NB, NL, EB, and EL registers. Exception masks could be set
in the EM register, while triggered exceptions could be viewed and reset in the EXC
register. The last instruction before the triggered interrupt/exception is saved into
the LI register. The core loads the IID register after received interrupt on the intr
line from the Interrupt Controller’s address specified in ICA.

The CID register holds the core ID which is mainly used by the interrupt system,
but is also very convenient in multiprocessor environments.

TM0 and TM1 registers hold the current count of the appropriate timers/watchdogs.
If active, these values are decremented in each clock cycle. Once the timers/watchdogs
reach zero, they trigger an exception.

Table A.10: Control register
Bit Function Value after reset

0 System mode 1
1 Enable hw interrupts 0
2 Enable self-interrupts 1
3 Enable inter-processor interrupts 1
4 Treat self-interrupts as inter-processor 0
5 Instruction cache active 0
6 Data cache active 0
7 L2 cache active 0
8 SYNC mode 0
9 NEI stack empty (not affected by write op) 1

10 NEI stack full (not affected by write op) 0
24 Timer/watchdog 0 active 0
25 Timer/watchdog 1 active 0

The control unit triggers a protection violation exception in the following cases:
when it encounters a system instruction (e.g., write/read operations to/from the
system registers) in user mode, when the instruction or data is out of process bounds,
or when the data access is not allowed (the AV register records the violated address).

At last, it is worth mentioning that the core satisfies the classic virtualization
requirements (i.e., trap-and-emulate) defined by Popek and Goldberg in [90].

A.3 Core performance evaluation

Since the appropriate C compiler is under construction, the performance of the core is
evaluated with non-standard benchmark programs, written entirely in the assembly
language. Actually, an instruction generator is used to generate around 128 K in-
structions. The number of clock cycles needed to execute the generated instructions

149

is evaluated without using any cache, and using a 64 KB directly-mapped instruction
cache with 512 B block-size. Furthermore, in the case with L1 cache, two sub-cases
are evaluated. Firstly, an array with ∼ 16 K instructions (that fits completely in the
cache) loops 4 times. Then, an array of 128 instructions (that fills a single cache block)
loops 1000 times. Table A.11 shows the average CPI (clocks per instruction) and the
inverse IPC (instructions per clock). CPI/IPC are the usual figures for comparing
processor architectures [44].

Table A.11: Core performance evaluation
No cache Loop in L1 Loop in L1 block

Nr. instructions 128.001 130.386 128.002
Nr. clocks 602.890 296.749 216.846
CPI 4,71 2,27 1,69
IPC 0,21 0,44 0,59

150

Appendix B

Library of framework middleware
procedures

Table B.1: Library of FM procedures. The procedures are presented in C-like style. *int
denotes array of integers.

Procedure Description

Command
void enableActions() reset DA bit
void unfreezeLastActions() reset FLAR bit
void globalReset() set GR bit
void resetModules(*int) set RMi bit(s)
void resetErrorCounters(*int) set RECi bit(s)
void resetErrorCountersAll() set all REC bit(s)
*int getAge(*int) Initiate age read-out (set AGEi bit(s))

and read aging monitor(s)

PG/CG
int getPGCG() get contents of PG/CG register
void setPGCG(int) set contents of PG/CG register
void powerOff(*int) power-off module(s)
void powerOn(*int) power-on modules(s)
void clockOff(*int) clock-off module(s)
void clockOn(*int) clock-on module(s)
void activate(*int) power-on and clock-on module(s)
*int getPGoff() get a list of powered-off modules
*int getPGon() get a list of powered-on modules
*int getCGoff() get a list of clocked-off modules
*int getCGon() get a list of clocked-on modules
*int getActiveModules() get a list of active modules
*int getInactiveModules() get a list of inactive modules
int nrActive() get the number of active modules
int nrInactive() get the number of inactive modules

151

bool ifActive(int) check if module is active
bool ifInactive(int) check if module is inactive
bool ifActiveAll() check if all modules are active
bool ifOneActive() check if only one module is active
bool ifPGoff(int) check if module is powered-off
bool ifPGon(int) check if module is powered-on
bool ifCGoff(int) check if module is clocked-off
bool ifCGon(int) check if module is clocked-on

Mode
int getMode() get contents of mode register
void setMode(int) set contents of mode register
void formNMR(*int) form a NMR group of specified modules
void noNMR() dissolve any NMR group formed
void setAIO() set AIO bit
void clearAIO() reset AIO bit
void setIOMOD(int) set IOMOD field
int getIOMOD() get IOMOD field
bool ifAIO() check if AIO is set
bool ifInNMR(int) check if module belongs to a NMR group
bool ifDriver(int) check if module is specified in IOMOD

De-stress timer
void setDeStressPeriod(int) set contents of De-stress timer register
int getDeStressTimerValue() get contents of De-stress timer register
void noDeStress() set zero in De-stress timer register
bool ifDeStressing() check if De-stress timer value > 0
bool ifCouldDeStress() inverted ifActiveAll() function

Action registers
int getAction(int) get contents of specified action register
*int getActionAll() get contents of all action registers
void setAction(int, int) set specified action in specified register
void setActionDA(int) set DA bit in specified register
void clearActionDA(int) reset DA bit in specified register
void setActionFLAR(int) set FLAR bit in specified register
void clearActionFLAR(int) reset FLAR bit in specified register
void setAction(int, bool, set specified action in specified register,
bool, int, int, int, *int) field by field
void setNoAction(int) set no action in specified register
void setNoActionAll() set no action in all registers
void setActionOUTDRV(int, int) set OUTDRV field in specified register
void setActionACTION(int, int) set ACTION field in specified register
void setActionARG0(int, int) set ARG0 field in specified register
void setActionARG1(int, *int) set ARG1 field in specified register

152

void ifActionDA(int) check if DA action is set
void ifActionFLAR(int) check if FLAR action is set
void ifNoAction(int) check if no action is set
void ifActionIntr(int) check if action is an interrupt
void ifActionReset(int) check if action is a reset

Error counters
int getErrorCount(int) get contents of specified error counter
*int getErrorCountAll() get contents of all error counters
bool ifErrorCount(int) check if errors occurred in module
bool ifErrorCountAll() check if errors occurred at all

Error timers
void setErrorPeriod(int, int) set contents of specified error timer
void setErrorPeriodAll(int) set contents of all error timers
int getErrorTimerValue(int) get contents of error timer
*int getErrorTimerValueAll() get contents of all error timers
void stopErrorTimer(int) set zero in specified error timer
void stopErrorTimerAll() set zero in all error timers

Last action
int getLastAction() get contents of last action register
bool ifFalseSetup() check if FSET bit is set
bool ifVoterError() check if VERR bit is set
bool ifGlobalReset() check if GRES bit is set
bool ifModuleReset(int) check if RESi bit is set
bool ifModuleIntr(int) check if INTi bit is set
bool ifModuleError(int) check if ERRi bit is set
bool ifVoterIndecisive() check if IND bit is set
int getNrDiff() get contents of NR DIFF field
bool ifError() check if at least one ERRi bit is set
bool ifIntr() check if at least one INTi bit is set
bool ifReset() check if at least one RESi bit is set
bool ifLastActionOK() check if last action register is zero

Interrupt status
int getIntrStatus() get contents of interrupt status register
bool ifIntrPending() check if interrupt status is not zero
bool ifVEI() check if VEI bit is set
bool ifDTI() check if DTI bit is set
bool ifOLI(int) check if OLI bit is set
bool ifILI(int) check if ILI bit is set
bool ifETI(int) check if ETI bit is set
bool ifECI(int) check if ECI bit is set
bool ifOLIAll() check if at least one OLI bit is set
bool ifILIAll() check if at least one ILI bit is set

153

bool ifETIAll() check if at least one ETI bit is set
bool ifECIAll() check if at least one ECI bit is set
void ackIntr(int) reset specified interrupt bit (acknowledge)
void ackIntrAll() acknowledge all interrupts (reset to zero)

Interrupt mask
int getIntrMask() get contents of interrupt mask register
void setIntrMask(int) set contents of interrupt mask register
void enableIntrAll() enable all interrupts
void disableIntrAll() disable all interrupts
void enableVEI() enable VEI interrupt
void disableVEI() disable VEI interrupt
void enableDTI() enable DTI interrupt
void disableDTI() disable DTI interrupt
void enableOLI(int) enable OLIi interrupt
void disableOLI(int) disable OLIi interrupt
void enableOLIAll() enable all OLI interrupts
void disableOLIAll() disable all OLI interrupts
void enableILI(int) enable ILIi interrupt
void disableILI(int) disable ILIi interrupt
void enableILIAll() enable all ILI interrupts
void disableILIAll() disable all ILI interrupts
void enableETI(int) enable ETIi interrupt
void disableETI(int) disable ETIi interrupt
void enableETIAll() enable all ETI interrupts
void disableETIAll() disable all ETI interrupts
void enableECI(int) enable ECIi interrupt
void disableECI(int) disable ECIi interrupt
void enableECIAll() enable all ECI interrupts
void disableECIAll() disable all ECI interrupts

Predefined outputs
int getPredefOutputs() get contents of predefined outputs register
void setPredefOutputs() set contents of predefined outputs register

Inactive outputs
int getInactiveOutputs() get contents of inactive outputs register
void setInactiveOutputs() set contents of inactive outputs register

YFRR support
*int youngestFirst(*int) sort input modules by age (youngest first)
*int oldestFirst(*int) sort input modules by age (oldest first)

154

List of Abbreviations

ALFPU Arithmetic/logic and floating-point unit, page 138

ALU Arithmetic/logic unit, page 46

ARQ Automatic repeat request, page 33

ASIC Application-specific integrated circuit, page 8

BCH Bose-Chaudhuri-Hocquenghem, page 32

BiCMOS Bipolar-CMOS, page 8

BIST Built-in self test, page 29

BTI Bias temperature instability, page 11

BTU Brandenburgische technische Universität, page ix

CDF Cumulative distribution function, page 5

CG Clock gating, page 60

CMOS Complementary metal oxide semiconductor, page 8

COTS Commercial off-the-shelf, page 40

CPI Clocks per instruction, page 99

CRR Checkpointing, rollback and retry, page 33

CRV Constrained-random verification, page 112

DDR Double data rate, page 36

DMR Dual-modular redundant, page 24

DVFS Dynamic voltage and frequency scaling, page 17

ECC Error correction codes, page 30

ECL Emitter-coupled logic, page 8

155

EDAC Error detection and correction, page 70

EDP Energy-delay product, page 49

EDUP Energy-delay-upset rate product, page 51

EMI Electromagnetic interference, page 10

EOS Electrical overstress, page 10

ESD Electrostatic discharge, page 10

FC Framework controller, page 59

FEC Forward error correction, page 30

FEEIT Faculty of electrical engineering and information technologies, page ix

FIL Fault injection logic, page 101

FinFET Fin-shaped field effect transistor, page 19

FIT Failures in time, page 7

FM Framework middleware, page 59

FMP Framed multiprocessor, page 59

FPGA Field-programmable gate array, page 8

FPSR Field-programmable self-repair, page 52

FSM Finite state machine, page 21

FWG Framework group, page 59

GPR General-purpose register, page 138

GPU Graphic processing unit, page 22

HBD Hard breakdown, page 13

HCI Hot carrier injection, page 11

HDL Hardware description language, page 113

HKMG High-K metal gate, page 12

I/O Input/output, page 34

IC Integrated circuit, page 3

IGS International graduate school, page ix

156

IHP Institut für Halbleiterphysik, page ix

ILP Instruction-level parallelism, page 21

IML Input multiplexing logic, page 71

IP Intellectual property, page 137

IPC Instructions per clock, page 99

ISD Input state descriptor, page 68

ISS Instruction set simulator, page 113

ITRS International technology roadmap for semiconductors, page 16

L1 Level 1, page 18

LEO Low Earth orbit, page 13

LER Line edge roughness, page 9

LWR Line width roughness, page 9

MBU Multiple bit upset, page 15

MCCP Multiple clustered core processor, page 52

MOSFET Metal oxide semiconductor field effect transistor, page 15

MPSoC Multiprocessor system-on-chip, page 50

MTBF Mean time between failures, page 6

MTTF Mean time to failure, page 6

MTTR Mean time to repair, page 6

NASA National aeronautics and space administration, page 3

NBTI Negative BTI, page 12

NMOS Negative-channel metal oxide semiconductor, page 11

NMR N-modular redundant, page 24

NMROD NMR on demand, page 24

NoC Network-on-chip, page 47

OML Output multiplexing logic, page 71

PBD Progressive breakdown, page 13

157

PBTI Positive BTI, page 12

PCB Printed circuit board, page 19

PDF Probability density function, page 5

PDP Power-delay product, page 49

PE Processing element, page 21

PG Power gating, page 61

PMOS Positive-channel metal oxide semiconductor, page 11

PNPN Positive-negative-positive-negative, page 15

RAM Random access memory, page 20

RAMP Reliability aware microprocessor, page 50

RAS Reliability, availability and serviceability, page 34

RDF Random dopant fluctuations, page 9

RISC Reduced instruction set computer, page 40

RR Round-robin, page 61

RTL Register-transfer level, page 112

SBD Soft breakdown, page 13

SDF Standard delay format, page 102

SEB Single event burnout, page 15

SEC Single error correction, page 31

SEC-DED Single error correction – double error detection, page 31

SEDR Single event dielectric rupture, page 15

SEE Single event effect, page 10

SEFI Single event functional interrupt, page 15

SEGR Single event gate rupture, page 15

SEL Single event latch-up, page 15

SER Soft error rate, page 20

SET Single event transient, page 15

158

SEU Single event upset, page 14

SMT Simultaneous multi-threading, page 39

SoC System-on-chip, page 132

SRAM Static random access memory, page 34

SSN Simultaneous switching noise, page 10

TDDB Time-dependent dielectric breakdown, page 11

TeV Tera electron Volt, page 14

TID Total ionizing dose, page 10

TML Test, monitor and log, page 114

TMR Triple-modular redundant, page 24

TTF Time to failure, page 5

TTR Time to repair, page 6

VLIW Very long instruction word, page 50

VLSI Very large scale of integration, page 17

YFRR Youngest first round-robin, page 63

ZUSYS Zuverlässige Systeme, page ix

159

160

Bibliography

[1] Methods for calculating failure rates in units of fits. JEDEC Standard No.
JESD85, pages 1–22, 2001.

[2] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi, and James E.
Smith. Isolation in Commodity Multicore Processors. Computer, 40(6):49–59,
2007.

[3] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, and G.R. Sechi.
Evaluation of Single Event Upset Mitigation Schemes for SRAM based FPGAs
using the FLIPPER Fault Injection Platform. In Defect and Fault-Tolerance in
VLSI Systems, 2007. DFT ’07. 22nd IEEE International Symposium on, pages
105 –113, sept. 2007.

[4] H. Ando, R. Kan, Y. Tosaka, Keiji Takahisa, and K. Hatanaka. Validation of
hardware error recovery mechanisms for the SPARC64 V microprocessor. In
Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008.
IEEE International Conference on, pages 62–69, June 2008.

[5] J. Arlat, A. Costes, Y. Crouzet, J.C. Laprie, and D. Powell. Fault injection and
dependability evaluation of fault-tolerant systems. Computers, IEEE Transac-
tions on, 42(8):913 –923, aug 1993.

[6] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles Fabre,
Jean-Claude Laprie, Eliane Martins, and David Powell. Fault Injection for
Dependability Validation: A Methodology and Some Applications. IEEE Trans.
Softw. Eng., 16(2):166–182, February 1990.

[7] Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Emmerich Fuchs,
and Guenther H. Leber. Comparison of Physical and Software-Implemented
Fault Injection Techniques. IEEE Transactions on Computers, 52:1115–1133,
2003.

[8] ARM. AMBA Specification and Multi layer AHB Specification (rev2.0).
www.arm.com, 2001.

[9] ARM. ARM Architecture Reference. http://www.arm.com, 2010.

[10] ARM. Cortex-R4 and Cortex-R4F Technical Reference Manual. ARM, 2011.

161

[11] R. X. Arroyo, R. J. Harrington, S. P. Hartman, and T. Nguyen. IBM POWER7
systems. IBM Journal of Research and Development, 55(3):2:1–2:13, May 2011.

[12] M. Augustin, M. Goessel, and R. Kraemer. Reducing the area overhead of
TMR-systems by protecting specific signals. In On-Line Testing Symposium
(IOLTS), 2010 IEEE 16th International, pages 268 –273, july 2010.

[13] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental Con-
cepts of Dependability. 2001.

[14] K.J. Balakrishnan, G. Giles, and J. Wingfield. Test Access Mechanism in the
Quad-Core AMD Opteron Microprocessor. Design Test of Computers, IEEE,
26(1):52–59, Jan 2009.

[15] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, Maurizio
Peri, and Saverio Pezzini. Fault-tolerant platforms for automotive safety-critical
applications. In In Proc. of the Intl. Conf. on Compilers, Architectures and
Synthesis for Embedded Systems, pages 170–177. ACM Press, 2003.

[16] R.P. Bastos, F.L. Kastensmidt, and R. Reis. Design of a robust 8-bit micropro-
cessor to soft errors. In On-Line Testing Symposium, 2006. IOLTS 2006. 12th
IEEE International, page 2 pp., 0-0 2006.

[17] Thomas Baumann, Georg Georgakos, Christian Pacha, and Anselme
Urlick Tchegho Kamgaing. Circuit arrangement with a test circuit and a refer-
ence circuit and corresponding method, August 2010.

[18] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and B. Veeravalli. Run-
time mapping for reliable many-cores based on energy/performance trade-offs.
In Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2013 IEEE International Symposium on, pages 58–64, Oct 2013.

[19] A. Bondavalli, F. Di Giandomenico, F. Grandoni, D. Powell, and C. Rabejac.
State restoration in a COTS-based N-modular architecture. In Object-Oriented
Real-time Distributed Computing, 1998. (ISORC 98) Proceedings. 1998 First
International Symposium on, pages 174 –183, apr 1998.

[20] S. Borkar. Design challenges of technology scaling. Micro, IEEE, 19(4):23–29,
Jul 1999.

[21] Sanghoan Chang and Gwan Choi. Gate-Level Exception Handling Design for
Noise Reduction in High-Speed VLSI Circuits. In VLSI Design, 2007. Held
jointly with 6th International Conference on Embedded Systems., 20th Interna-
tional Conference on, pages 109–114, Jan 2007.

[22] You-Sung Chang, Seungjong Lee, In-Cheol Park, and Chong-Min Kyung. Veri-
fication of a microprocessor using real world applications. In Design Automation
Conference, 1999. Proceedings. 36th, pages 181 –184, 1999.

162

[23] Yung-Yuan Chen, Shi-Jinn Horng, and Hung-Chuan Lai. An integrated fault-
tolerant design framework for VLIW processors. In Defect and Fault Tolerance
in VLSI Systems, 2003. Proceedings. 18th IEEE International Symposium on,
pages 555 – 562, 3-5 2003.

[24] Chen-Ling Chou and R. Marculescu. FARM: Fault-aware resource management
in NoC-based multiprocessor platforms. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, pages 1–6, March 2011.

[25] Grzegorz Cieslewski, Alan D. George, and Adam Jacobs. Acceleration of FPGA
Fault Injection Through Multi-Bit Testing. In Toomas P. Plaks, David Andrews,
Ronald F. DeMara, Herman Lam, Jooheung Lee, Christian Plessl, and Greg
Stitt, editors, ERSA, pages 218–224. CSREA Press, 2010.

[26] A. Das, A. Kumar, and B. Veeravalli. Aging-aware hardware-software task
partitioning for reliable reconfigurable multiprocessor systems. In Compilers,
Architecture and Synthesis for Embedded Systems (CASES), 2013 International
Conference on, pages 1–10, Sept 2013.

[27] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. Reliability-driven task
mapping for lifetime extension of networks-on-chip based multiprocessor sys-
tems. In Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pages 689–694, March 2013.

[28] B. S. Dhillon. Design Reliability - Fundamentals and Applications. CRC Press,
June 1999.

[29] A. Dixit and Alan Wood. The impact of new technology on soft error rates. In
Reliability Physics Symposium (IRPS), 2011 IEEE International, pages 5B.4.1–
5B.4.7, April 2011.

[30] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline
based on circuit-level timing speculation. In Microarchitecture, 2003. MICRO-
36. Proceedings. 36th Annual IEEE/ACM International Symposium on, pages
7–18, Dec 2003.

[31] Evolven. Downtime, Outages and Failures - Understanding Their
True Costs. http://www.evolven.com/blog/downtime-outages-and-failures-
understanding-their-true-costs.html, 2013.

[32] Etienne Faure, Mounir Benabdenbi, and Francois Pecheux. Distributed online
software monitoring of manycore architectures. In Proceedings of the 16th IEEE
International On-Line Testing Symposium (IOLTS’10), pages 56–61, 2010.

[33] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Maestro:
Orchestrating Lifetime Reliability in Chip Multiprocessors. pages 186–200,
2010.

163

[34] M. Floyd, M. Ware, K. Rajamani, T. Gloekler, B. Brock, P. Bose, A. Buyuk-
tosunoglu, J.C. Rubio, B. Schubert, B. Spruth, J.A. Tierno, and L. Pesantez.
Adaptive energy-management features of the IBM POWER7 chip. IBM Journal
of Research and Development, 55(3):8:1–8:18, May 2011.

[35] J. Gaisler. A portable and fault-tolerant microprocessor based on the SPARC
v8 architecture. In Dependable Systems and Networks, 2002. DSN 2002. Pro-
ceedings. International Conference on, pages 409 – 415, 2002.

[36] N. Gaitanis. The design of totally self-checking TMR fault-tolerant systems.
Computers, IEEE Transactions on, 37(11):1450 –1454, nov 1988.

[37] Ian Glover and Peter Grant. Digital Communications. Prentice Hall, 1998.

[38] Rui Gong, Kui Dai, and Zhiying Wang. Transient Fault Tolerance on Chip
Multiprocessor Based on Dual and Triple Core Redundancy. In Dependable
Computing, 2008. PRDC ’08. 14th IEEE Pacific Rim International Symposium
on, pages 273–280, Dec 2008.

[39] T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nel-
hiebel. A two-stage model for negative bias temperature instability. In Relia-
bility Physics Symposium, 2009 IEEE International, pages 33–44, April 2009.

[40] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger,
P. J Wagner, F. Schanovsky, J. Franco, P. Roussel, and M. Nelhiebel. Recent
advances in understanding the bias temperature instability. In Electron Devices
Meeting (IEDM), 2010 IEEE International, pages 4.4.1–4.4.4, Dec 2010.

[41] R.W. Hamming. Error detecting and error correcting codes. Bell System Tech-
nical Journal, The, 29(2):147–160, April 1950.

[42] A.S. Hartman, D.E. Thomas, and B.H. Meyer. A case for lifetime-aware task
mapping in embedded chip multiprocessors. In Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International
Conference on, pages 145–154, Oct 2010.

[43] Daniel Henderson and Jim Mitchell. POWER7 System RAS - Key Aspects of
Power Systems Reliability, Availability, and Serviceability. White paper, 2012.

[44] John L. Hennessy and David A. Patterson. Computer Architecture - A Quan-
titive Approach. Morgan Kaufmann (imprint of Elsevier), 4th edition, 2007.

[45] O. Heron, J. Guilhemsang, N. Ventroux, and A. Giulieri. Analysis of on-line self-
testing policies for real-time embedded multiprocessors in DSM technologies.
In On-Line Testing Symposium (IOLTS), 2010 IEEE 16th International, pages
49–55, July 2010.

[46] Christian J. Hescott, Drew C. Ness, and David J. Lilja. A Methodology for
Stochastic Fault Simulation in VLSI Processor Architectures. 2005.

164

[47] Eugene R. Hnatek. Practical Reliability Of Electronic Equipment And Products.
CRC Press, October 2002.

[48] L. Hoffmann, G. Gardner, J. Lintz, J. Samson, C. Kouba, and R. Some. De-
signing the dependable multiprocessor space experiment. In Radiation and Its
Effects on Components and Systems, 2007. RADECS 2007. 9th European Con-
ference on, pages 1 –9, sept. 2007.

[49] Masashi Horiguchi and Kiyoo Itoh. Nanoscale Memory Repair. Springer, Jan-
uary 2011.

[50] M. Horowitz. Scaling, Power and the Future of CMOS. In VLSI Design, 2007.
Held jointly with 6th International Conference on Embedded Systems., 20th In-
ternational Conference on, pages 23–23, Jan 2007.

[51] Lin Huang, Feng Yuan, and Qiang Xu. Lifetime reliability-aware task allocation
and scheduling for MPSoC platforms. In Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., pages 51–56, April 2009.

[52] Lin Huang, Feng Yuan, and Qiang Xu. On Task Allocation and Scheduling for
Lifetime Extension of Platform-Based MPSoC Designs. Parallel and Distributed
Systems, IEEE Transactions on, 22(12):2088–2099, Dec 2011.

[53] C.A. Hulme, H.H. Loomis, A.A. Ross, and Rong Yuan. Configurable fault-
tolerant processor (CFTP) for spacecraft onboard processing. In Aerospace
Conference, 2004. Proceedings. 2004 IEEE, volume 4, pages 2269 – 2276 Vol.4,
6-13 2004.

[54] A.S. Hwang. Radiation hardened 32-bit RISC microprocessor. In Aerospace
Conference Proceedings, 2000 IEEE, volume 5, pages 219 –226 vol.5, 2000.

[55] IBM. PowerPC User Instruction Set Architecture. IBM, January 2005.

[56] ITRS. Yield enhancement. www.itrs.net/Links/2007ITRS, 2007.

[57] Jianhui Jiang, Hongbao Shi, and Xiaodong Zhao. A novel NMR structure with
concurrent output error location capability. In Dependable Computing, 1999.
Proceedings. 1999 Pacific Rim International Symposium on, pages 32 –39, 1999.

[58] Yong-Kyu Jung. Non-FPGA-based Field-programmable Self-repairable (FPSR)
Microarchitecture. In Adaptive Hardware and Systems, 2008. AHS ’08.
NASA/ESA Conference on, pages 93 –100, june 2008.

[59] David Kammler, Junqing Guan, Gerd Ascheid, Rainer Leupers, and Heinrich
Meyr. A fast and flexible Platform for Fault Injection and Evaluation in Verilog-
based Simulations. In Secure Software Integration and Reliability Improvement
(SSIRI), 2009, Proceedings of the IEEE International Conference on, pages
309–314, Shanghai, China, jul 2009.

165

[60] Jagrit Kathuria, M. Ayoubkhan, and Arti Noor. A Review of Clock Gating
Techniques. MIT International Journal of Electronics and Communication En-
gineering, 1, August 2011.

[61] T. Koal and H.T. Vierhaus. Optimal spare utilization for reliability and mean
lifetime improvement of logic built-in self-repair. In Design and Diagnostics of
Electronic Circuits Systems (DDECS), 2011 IEEE 14th International Sympo-
sium on, pages 219–224, April 2011.

[62] Tobias Koal and Heinrich T. Vierhaus. Combining De-Stressing and Self Repair
for Long-Term Dependable Systems. Proceedings of the IEEE DDECS 2010,
Vienna, 2010.

[63] Cheng-Kok Koh, Weng-Fai Wong, Yiran Chen, and Hai Li. The salvage cache:
A fault-tolerant cache architecture for next-generation memory technologies. In
Computer Design, 2009. ICCD 2009. IEEE International Conference on, pages
268 –274, 4-7 2009.

[64] E. Kolonis, M. Nicolaidis, D. Gizopoulos, M. Psarakis, J.H. Collet, and P. Zajac.
Enhanced self-configurability and yield in multicore grids. In Proceedings of the
15th IEEE International On-Line Testing Symposium (IOLTS’09), pages 75–80,
June 2009.

[65] Dongwoo Lee and Jongwhoa Na. A Novel Simulation Fault Injection Method
for Dependability Analysis. IEEE Design and Test of Computers, 26:50–61,
2009.

[66] Kab Joo Lee and G. Choi. Design of a fault-tolerant microprocessor: a sim-
ulation approach. In Fault-Tolerant Systems, 1997. Proceedings., Pacific Rim
International Symposium on, pages 161 –166, 15-16 1997.

[67] A.S. Leon, K.W. Tam, J.L. Shin, D. Weisner, and F. Schumacher. A Power-
Efficient High-Throughput 32-Thread SPARC Processor. Solid-State Circuits,
IEEE Journal of, 42(1):7–16, 2007.

[68] L.L. Lewyn. Physical design and reliability issues in nanoscale analog CMOS
technologies. In NORCHIP, 2009, pages 1–10, Nov 2009.

[69] E. Litvinova, K. Mostovaya, and K. Krasnoyarujskaya. Fault diagnosis and
repair of SoC memory. In Modern Problems of Radio Engineering, Telecommu-
nications and Computer Science, 2008 Proceedings of International Conference
on, pages 635–639, Feb 2008.

[70] Shyue-Kung Lu, Huan-Hua Huang, Jiun-Lang Huang, and P. Ning. Syner-
gistic Reliability and Yield Enhancement Techniques for Embedded SRAMs.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 32(1):165–169, Jan 2013.

166

[71] Anita Lungu, Pradip Bose, Alper Buyuktosunoglu, and Daniel J. Sorin. Dy-
namic Power Gating with Quality Guarantees. In Proceedings of the 14th
ACM/IEEE International Symposium on Low Power Electronics and Design,
ISLPED ’09, pages 377–382, New York, NY, USA, 2009. ACM.

[72] S. Makar, T. Altinis, N. Patkar, and J. Wu. Testing of Vega2, a chip multi-
processor with spare processors. In Test Conference, 2007. ITC 2007. IEEE
International, pages 1–10, Oct 2007.

[73] E. Maricau and G. Gielen. Computer-Aided Analog Circuit Design for Reli-
ability in Nanometer CMOS. Emerging and Selected Topics in Circuits and
Systems, IEEE Journal on, 1(1):50–58, March 2011.

[74] E. Maricau and G. Gielen. Analog IC Reliability in Nanometer CMOS. Springer,
2013. ISBN: 978-1-4614-6162-3.

[75] Ritesh Mastipuram and Edwin C. Wee. Soft errors’ impact on system reliability.
www.edn.com, 2004.

[76] D.G. Mavis and P.H. Eaton. Temporally redundant latch for preventing single
event disruptions in sequential integrated circuits, October 3 2000. US Patent
6,127,864.

[77] Carl D. Meyer. Matrix analysis and applied linear algebra. SIAM, April 2000.

[78] Timothy Miller, Nagarjuna Surapaneni, Radu Teodorescu, and Joanne Degroat.
Flexible Redundancy in Robust Processor Architecture. 2009.

[79] E. Mintarno, J. Skaf, Rui Zheng, J. Velamala, Yu Cao, S. Boyd, R.W. Dutton,
and S. Mitra. Optimized self-tuning for circuit aging. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2010, pages 586 –591, 8-12 2010.

[80] MIPS. MIPS Technologies. www.mips.com, 2012.

[81] J.M. Mogollon, H. Guzman-Miranda, J. Napoles, J. Barrientos, and M.A.
Aguirre. FTUNSHADES2: A novel platform for early evaluation of robust-
ness against SEE. In Radiation and Its Effects on Components and Systems
(RADECS), 2011 12th European Conference on, pages 169 –174, sept. 2011.

[82] Gordon E. Moore. Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.
Solid-State Circuits Society Newsletter, IEEE, 11(5):33–35, Sept 2006.

[83] Michael Nicolaidis. Soft Errors in Modern Electronic Systems. Springer, 2010.

[84] OpenRISC. OpenRISC 1000 Architecture Manual. www.opencores.org, 2007.

[85] Oracle. OpenSPARC T1 and T2 architecture specification. www.oracle.com,
2008.

167

[86] Sangwoo Pae, A. Ashok, Jingyoo Choi, T. Ghani, Jun He, Seok hee Lee,
K. Lemay, M. Liu, R. Lu, P. Packan, C. Parker, R. Purser, A. St.Amour, and
B. Woolery. Reliability characterization of 32nm high-K and Metal-Gate logic
transistor technology. In Reliability Physics Symposium (IRPS), 2010 IEEE
International, pages 287–292, May 2010.

[87] F. Paterna, L. Benini, A. Acquaviva, F. Papariello, A. Acquaviva, and
M. Olivieri. Adaptive idleness distribution for non-uniform aging tolerance
in MultiProcessor Systems-on-Chip. In Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., pages 906–909, April 2009.

[88] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Critical
Variable Recomputation for Transient Error Detection. 2007.

[89] Vladimir Petrovic. Design Methodology for highly Reliable Digital ASIC Designs
Applied to Network-Centric System Middleware Switch Processor. PhD thesis,
BTU Cottbus-Senftenberg, 2013.

[90] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable
third generation architectures. Communications of the ACM, 17(7):412–421,
July 1974.

[91] W. Rao, A. Orailoglu, and R. Karri. Architectural-level fault tolerant compu-
tation in nanoelectronic processors. In Computer Design: VLSI in Computers
and Processors, 2005. ICCD 2005. Proceedings. 2005 IEEE International Con-
ference on, pages 533 – 539, 2-5 2005.

[92] Wenjing Rao, A. Orailoglu, and R. Karri. Fault tolerant nanoelectronic proces-
sor architectures. In Design Automation Conference, 2005. Proceedings of the
ASP-DAC 2005. Asia and South Pacific, volume 1, pages 311–316 Vol. 1, Jan
2005.

[93] K. Reick, P.N. Sanda, S. Swaney, J.W. Kellington, M.J. Mack, M.S. Floyd, and
D. Henderson. Fault-tolerant design of the IBM Power6 microprocessor. Micro,
IEEE, 28(2):30 –38, march-april 2008.

[94] S.K. Reinhardt and S.S. Mukherjee. Transient fault detection via simultane-
ous multithreading. In Computer Architecture, 2000. Proceedings of the 27th
International Symposium on, pages 25 – 36, 2000.

[95] Sheldon M. Ross. Introduction to Probability and Statistics for Engineers and
Scientists. Verlag: Academic Press, 4th edition, 2009.

[96] Nelson S. Saks, M.G. Ancona, and J.A. Modolo. Generation of Interface States
by Ionizing Radiation in Very Thin MOS Oxides. Nuclear Science, IEEE Trans-
actions on, 33(6):1185–1190, Dec 1986.

168

[97] J.R. Samson, J. Ramos, A.D. George, M. Patel, and R. Some. Technology
validation: NMP ST8 Dependable Multiprocessor Project. In Aerospace Con-
ference, 2006 IEEE, page 14 pp., 0-0 2006.

[98] T. Sato and T. Funaki. Dependability, power, and performance trade-off on a
multicore processor. In Design Automation Conference, 2008. ASPDAC 2008.
Asia and South Pacific, pages 714 –719, march 2008.

[99] C. Schluender. Device reliability challenges for modern semiconductor circuit
design – a review. 2009.

[100] M. Scholzel. HW/SW co-detection of transient and permanent faults with fast
recovery in statically scheduled data paths. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, pages 723 –728, march 2010.

[101] Mario Scholzel. Software-based self-repair of statically scheduled superscalar
data paths. In Design and Diagnostics of Electronic Circuits and Systems
(DDECS), 2010 IEEE 13th International Symposium on, pages 66 –71, april
2010.

[102] Gunter Schoof, Michael Methfessel, and Rolf Kraemer. Fault-tolerant ASIC
design for high system reliability. In Smart System Integration (SSI) 2010,
European Conference and Exhibition on Integration Issues of Miniaturized Sys-
tems, March 2010.

[103] K.-D. Schubert, W. Roesner, J. M. Ludden, J. Jackson, J. Buchert, V. Paruthi,
M. Behm, A. Ziv, J. Schumann, C. Meissner, J. Koesters, J. Hsu, and B. Brock.
Functional verification of the IBM POWER7 microprocessor and POWER7
multiprocessor systems. IBM Journal of Research and Development, 55(3):10:1
–10:17, may-june 2011.

[104] L. Semeria and A. Ghosh. Methodology for hardware/software co-verification in
C/C++. In Design Automation Conference, 2000. Proceedings of the ASP-DAC
2000. Asia and South Pacific, pages 405 –408, june 2000.

[105] Manish Shah, Robert Golla, Gregory Grohoski, Paul Jordan, Jama Barreh,
Jeff Brooks, Mark Greenberg, Gideon Levinsky, Mark Luttrell, Christopher
Olson, Zeid Samoail, Matt Smittle, and Tom Ziaja. Sparc T4: A Dynamically
Threaded Server-on-a-Chip. IEEE Micro, 32(2):8–19, 2012.

[106] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The case for lifetime
reliability-aware microprocessors. In Computer Architecture, 2004. Proceedings.
31st Annual International Symposium on, pages 276 – 287, june 2004.

[107] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The impact of technol-
ogy scaling on lifetime reliability. In Dependable Systems and Networks, 2004
International Conference on, pages 177–186, June 2004.

169

[108] Milos Stanisavljevic, Alexandre Schmid, and Yusuf Leblebici. Reliability of
Nanoscale Circuits and Systems - Methodologies and Circuit Architectures.
Springer, 1st edition, 2011.

[109] P. Subramanyan, V. Singh, K.K. Saluja, and E. Larsson. Energy-efficient fault
tolerance in chip multiprocessors using Critical Value Forwarding. In Depend-
able Systems and Networks (DSN), 2010 IEEE/IFIP International Conference
on, pages 121–130, June 2010.

[110] P. Subramanyan, V. Singh, K.K. Saluja, and E. Larsson. Multiplexed redundant
execution: A technique for efficient fault-tolerance in chip multiprocessors. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pages
1572 –1577, 8-12 2010.

[111] G.M. Swift, D.J. Padgett, and A.H. Johnston. A new class of single event hard
errors. Nuclear Science, IEEE Transactions on, 41(6):2043–2048, Dec 1994.

[112] Synopsys. Using DesignWare ARC Processors to enhance your next SoC Design.
www.synopsys.com/IP/ProcessorIP, 2011.

[113] Kohtaro Takaesu and Takeo Yoshida. Construction of a fault-tolerant voter for
N-modular redundancy. Electronics and Communications in Japan (Part II:
Electronics), 87:62–71, December 2004.

[114] Emmanuel Touloupis, James A. Flint, Vassilios A. Chouliaras, and David D.
Ward. A Fault-Tolerant Processor Core Architecture for Safety-Critical Auto-
motive Applications. In SAE 2005 World Congress and Exibition, 2005.

[115] B. Turumella and M. Sharma. Assertion-based verification of a 32 thread
SPARCtm CMT microprocessor. In Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE, pages 256 –261, june 2008.

[116] M. Vayrynen, V. Singh, and E. Larsson. Fault-tolerant average execution time
optimization for general-purpose multi-processor system-on-chips. In Design,
Automation Test in Europe Conference Exhibition, 2009. DATE ’09., pages 484
–489, 20-24 2009.

[117] J.C. Vazquez, V. Champac, A.M. Ziesemer, R. Reis, I.C. Teixeira, M.B. San-
tos, and J.P. Teixeira. Low-sensitivity to process variations aging sensor for
automotive safety-critical applications. In VLSI Test Symposium (VTS), 2010
28th, pages 238 –243, 19-22 2010.

[118] X. Vera, J. Abella, J. Carretero, P. Chaparro, and A. Gonzalez. Online error
detection and correction of erratic bits in register files. In Proceedings of the
15th IEEE International On-Line Testing Symposium (IOLTS’09), pages 81–86,
June 2009.

170

[119] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. Information Theory, IEEE Transactions on,
13(2):260–269, April 1967.

[120] Guozhang Wang, Qiaolin Shi, Zhiguo Yu, and Zongguang Yu. The study
of HW/SW co-verification on ARM-prototype system. In Solid-State and
Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Confer-
ence on, pages 1847 –1850, oct. 2008.

[121] Kaijie Wu and R. Karri. Algorithm level recomputing with allocation diversity:
a register transfer level time redundancy based concurrent error detection tech-
nique. In Test Conference, 2001. Proceedings. International, pages 221–229,
2001.

[122] Hyunbean Yi, Tomokazu Yoneda, Michiko Inoue, Yasuo Sato, Seiji Kajihara,
and Hideo Fujiwara. Aging test strategy and adaptive test scheduling for SoC
failure prediction. In Proceedings of the 16th IEEE International On-Line Test-
ing Symposium (IOLTS’10), pages 21–26, 2010.

[123] L. Zhang, J. P Zhou, J. Im, P.S. Ho, O. Aubel, C. Hennesthal, and E. Zschech.
Effects of cap layer and grain structure on electromigration reliability of Cu/low-
k interconnects for 45 nm technology node. In Reliability Physics Symposium
(IRPS), 2010 IEEE International, pages 581–585, May 2010.

[124] Lei Zhang, Yinhe Han, Qiang Xu, and Xiaowei Li. Defect Tolerance in Ho-
mogeneous Manycore Processors Using Core-Level Redundancy with Unified
Topology. pages 891 –896, mar. 2008.

[125] Shijian Zhang and Weiwu Hu. Fetching primary and redundant instructions in
turn for a fault-tolerant embedded microprocessor. In Dependable Computing,
2008. PRDC ’08. 14th IEEE Pacific Rim International Symposium on, pages 1
–8, 15-17 2008.

[126] Hao Zhou and Jingfei Jiang. CSHFt: A Composite Fault-Tolerant Architecture
and Self-Adaptable Hierarchical Fault-Tolerant Strategy for Satellite System. In
Distributed Computing and Applications to Business, Engineering and Science
(DCABES), 2011 Tenth International Symposium on, pages 333 –337, oct. 2011.

[127] Huiyang Zhou. A case for fault tolerance and performance enhancement using
chip multi-processors. Computer Architecture Letters, 5(1):22–25, 2006.

[128] George W. Zobrist. VLSI Fault Modeling and Testing Techniques. Praeger,
January 1993.

171

172

