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Modeling and Measurement Accuracy Enhancement
of Flue Gas Flow Using Neural Networks

Haizhuang Kang, Qingping Yang,Member, IEEE, and Clive Butler

Abstract—This paper discusses the modeling of the flue gas
flow in industrial ducts and stacks using artificial neural net-
works (ANN’s). Based upon the individual velocity and other
operating conditions, an ANN model has been developed for
the measurement of the volume flow rate. The model has been
validated by the experiment using a case-study power plant. The
results have shown that the model can largely compensate for the
nonrepresentativeness of a sampling location and, as a result, the
measurement accuracy of the flue gas flow can be significantly
improved.

Index Terms—Error analysis, gas flow measurement, measure-
ment system data handling, modeling, neural network applica-
tion.

I. INTRODUCTION

CURRENT measurements of emissions of pollutants to
the environment have errors in excess of 20% at most

thermal power stations and other industrial installations. This
is mainly due to the low degree of representativeness of
the gas samples collected, nonoptimum sensor location, and
inaccuracies in the measurement of flue gas flows. In order to
reduce the measurement error, it is important to optimize the
sensor locations by means of the flue gas modeling.

This paper presents a novel method using neural networks to
model the flue gas flow in industrial ducts and stacks. Several
different designs including network architecture and training
algorithms will be studied and compared.

II. M EASUREMENT OF THEVOLUME FLOW RATE

A. Using Manual Operation and ISO10780

The volume flow rate of the flue gas flow in the indus-
trial ducts and stacks are often calculated according to the
ISO 10780, when a manual operation using Pitot tubes are
employed.

The average Pitot tube pressure differenceis given as

where is the pressure difference at sampling pointThe
unit is kilopascals. is the number of sampling points.
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Fig. 1. Neural network model for predicting flue gas flow rate in industrial
ducts and stacks.

The average gas velocity,, may be then expressed as

where

Pitot tube coefficient;
Pitot tube constant 129 (m/s) [kg/(kmol K)] ;
the average temperature at the section, in Kelvins;
the average Pitot tube pressure difference in the sec-
tion, in kilopascals;
the absolute gas pressure, in kilopascals;
the molar mass of gas.

The volume flow rate at stack condition is defined as
, where

the average gas velocity in one section (m/s);
the cross-sectional area;
the volume flow rate at stack condition (m/s).

The volume flow rate at standard reference conditions (i.e.,
0 C and 101.3 KPa) can be expressed as

B. Using Artificial Neural Networks with Manual Operation

To be compatible with the ISO 10780, the proposed method
will be based upon the manual operation using Pitot tubes.
The measurements thus include static pressure, differential
pressure, and temperature, taken at various sampling locations.

Since the measurement accuracy is significantly influenced
by the nonrepresentativeness, which, in practice, is largely due
to the instable gas flow in the sampled locations, it is very
important to establish the relationship between the gas flows
in a sampling location and a reference one which is stable and
representative.
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Fig. 2. Construction of the duct.

Because of the existence of the turbulence and disturbance
in the gas flow, the relationship concerned is difficult to
establish using a conventional method. The use of artificial
neural networks is proposed due to its learning ability, as well
as capacity for solving nonlinear and complicated problems,
among other advantages. The trained neural network will then
allow for a much improved prediction of the gas flow in a
nonoptimized location, and can therefore compensate for the
nonrepresentativeness of the gas samples, hence improving the
measurement accuracy.

III. D ESIGN OF THENEURAL NETWORK MODEL

A. Network Architecture

The proposed neural network model is based on a three-
layered feedforward neural network. As the volume flow rate
is the product of average gas velocity and cross-sectional area
of the sampling plane, the individual gas velocity is included
in the input to the neural network. In order to establish the
velocity profile and account for the spatial variations, the
location of a sampling point is also represented in the model.
In addition, the operating conditions (e.g., power and oxygen
flow) are considered in the model.

As shown in Fig. 1, the input vector is Velocity
Oxygen Power], while the output vector is simply [Flowrate].

and in the input vector are the coordinates of the
measurement point in a predefined coordinate system. The

axis represents the location of the sampling plane along
the centerline of the duct. Due to the circular shapes of the
duct cross sections, the positions of sampling points in these
sampling planes are represented as polar coordinates,and
Velocity stands for individual velocity at the point .
At this moment, the output power in this unit isPower(MW)
and the percentage of oxygen in the flue gas flow isOxygen
(%). In the output vector,Flowrate is the volume flow rate in
the sampling plane in the duct or stack corresponding to the
individual velocity.

B. Training and Testing

The training of the neural network is based upon the
Levenberg–Marquardt algorithm [3]. Typically, about half of
the data in each sampling plane are randomly selected to train
the neural network. After the training, two kinds of testing are

then performed.

Test 1— Using the trained data set,
i.e., those used in training

Test 2— Using the testing data set,
i.e., those not used in training.

Because the initialization of the neural network is different
each time, the training and testing are performed five times
for each data set. The final results are the mean values of the
five results.Test 2 normally gives a better indication of the
generation ability of neural networks.

IV. EXPERIMENT

A. Experimental Setup

The neural network model was validated with experiment
based on a case-study plant, as shown in Fig. 2, where the
duct presents the following geometry: the gas inlets occur at
an angle of 900along two pipes measuring 5.5 m in diameter
and 7 m in length. The flue gas flow is along a horizontal
pipe of a diameter of 7.1 m for a distance of 31 m at the
centerline. As from this point there is a horizontal elbow of
39 54 measuring a total 13 m in length. Downstream from
this elbow, another 52 m long duct of a diameter of 7.1 m
leads directly into the stack.

B. Sampling Locations

According to the ISO 10780, sampling shall take place in
a length of a straight duct with constant shape and cross-
sectional area, and, as far as possible, downstream from any
obstruction which may cause a disturbance and produce a
change in the direction of flow. The section of straight duct
should be at least 7 hydraulic diameters long. Over the length
of the straight section, locate the sampling plane at a distance
of 5 hydraulic diameters from the inlet. If the sampling plane
is to be located in a duct near the gas stream exit there should
also be 5 hydraulic diameters (making a straight length of
10 hydraulic diameters). Based upon the above requirement,
five sampling planes (#1–#5) were selected along the duct. In
each sampling plane, four diameters were measured, with six
sampling points on each radius (Fig. 3).

The measurements may be performed at different times in
order to model the system under different operating conditions.
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Fig. 3. Sampling plane.

TABLE I
NUMBER OF PAIRS OF INPUT–OUTPUT VECTORS FOREACH SAMPLING PLANE

TABLE II
FORMAT OF INPUT AND OUTPUT VECTOR

As a pair of input and output vectors can be generated from
each measurement, the total numbers of pairs of vectors in
each sampling plane are shown in Table I.

C. Data Format

The data format is shown in Table II, with two examples
from the measuring plane #4. As the measurement was per-
formed at the same time, these two samples have the same
Power, Oxygen, and Flowrate.

V. RESULTS AND DISCUSSIONS

The data obtained from the experiment were preprocessed
before the training and testing. The results will be discussed
with two sampling planes #4 and #2.

The neural network had 5 neurons in the hidden layer and
the training used an error goal of 0.01 with a maximum of
200 epochs. In sampling plane #4, there were 288 samples
available. Half of them, 140, were randomly selected for
training and Test 1, and the rest 148 for Test 2 (see Table III).

The results of Test 2 using 60 samples (from 141 through
200) are shown in Fig. 4 (solid line is the actual flow rate,
dash line is the predicted flow rate). The prediction errors for
each sample and distribution of prediction errors are shown in
Figs. 5 and 6, respectively.

In sampling plane #2, there were total 96 samples, 48 of
them were randomly selected for training and Test 1, the rest
for Test 2. The results were given in Table IV.

TABLE III
RESULTS OF THETESTS 1 AND 2 IN SAMPLING PLANE #4

TABLE IV
RESULTS OF THETESTS 1 AND 2 IN SAMPLING PLANE #2

From Table IV, it can be seen that as sampling plane #2
is very close to the inlets of the gas flow and the elbow, the
flow in this plane was not as stable as that in sampling plane
#4, and some large prediction errors have occurred. Sampling
plane #4 as the sensor location is therefore much better than
sampling plane #2. This conclusion also agrees with the ISO
10780. The results of Test 2 using the 48 testing samples are
shown in Fig. 7 (solid line is the actual flow rate, dash line is
the predicted flow rate). The prediction errors for each sample
and distribution of prediction errors are given in Figs. 8 and 9.

VI. CONCLUSIONS

The use of artificial neural networks for the modeling of
the flue gas flow in industrial stacks and ducts has been
discussed, together with the results from a case-study power
plant. The following conclusions may be drawn from the above
discussions.

1) Using the neural network model, the volume flow rate of
the flue gas flow in the ducts and stacks can be predicted
with the individual velocity, plusPowerandOxygen.

2) As a result, the neural network model is able to com-
pensate for the nonrepresentativeness of the gas samples,
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Fig. 4. Part of Test 2 results in sampling plane #4.

Fig. 5. Prediction errors for each testing sample in sampling plane #4.

Fig. 6. Distribution of prediction errors in sampling plane #4.
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Fig. 7. Test 2 results in sampling plane #2.

Fig. 8. Prediction errors for each testing sample in sampling plane #2.

Fig. 9. Distribution of prediction errors in sampling plane #2.
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and hence improve the measurement accuracy of the gas
flow.

3) The sensor location is an important factor in the mea-
surement of the flue gas flow, and can sometimes cause
large measurement errors. It is necessary to optimize the
sensor location, in order to achieve better measurement
accuracy.

Since the above model only used individual velocity, large
errors may result from the turbulence and disturbance in the
ducts and stacks. A more robust model with more information
about the velocity profiles will considerably reduce the risk
of producing large errors and improve the neural network
performance. The optimization of sensor locations and the
more robust models will be reported in the future.
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