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Zusammenfassung

In der automatischen Spracherkennung wird die Erkennungsgenauigkeit sehr von den Um-
gebungsgeräuschen beeinflusst. Dies gilt insbesondere für Anwendungen in stark geräusch-
behafteten Umgebungen, wie z. B. bei sprachgesteuerten Navigationssystemen im Fahr-
zeug, weil hier die Variabilität der Geräusche besonders groß und wenig vorhersehbar ist.
Zur Verbesserung der Erkennungsgenauigkeit kommen unterschiedliche Methoden zum
Einsatz, denen zumeist spezielle Annahmen über die Art der Störungen zugrunde liegen.
Wenn die störenden Geräusche diese Eigenschaften nicht besitzen, können die Störungen
nicht mehr kompensiert werden und die Erkennungsgenauigkeit sinkt. In den letzten Jahren
sind jedoch neue Methoden vorgeschlagen worden, die lediglich auf der hohen Redundanz
des Sprachsignals beruhen. Deshalb brauchen sie keine Annahmen über die Störungen
selbst zu machen und sind daher zumindest in der Theorie unabhängig von speziellen
Eigenschaften der Störung.

Im ersten Teil dieser Arbeit wird systematisch die Leistung einiger der auf der Ausnut-
zung der Redundanz basierender Ansätze miteinander und diese wiederum mit konventio-
nellen Methoden zur robusten Spracherkennung verglichen. Die Basis der Arbeiten bildet
dabei eine erste Evaluation der Redundanz-Methoden, die innerhalb der EU-Projekte RE-
SPITE und SPHEAR durch die Projektpartner erfolgt ist. Dieser Evaluation wird auf der
AURORA 2000 Datenbank durchgeführt, welche Handy-Sprachaufnahmen in unterschied-
lichen Umgebungen, wie z.B. im Kraftfahrzeug, enthält. Auf der Grundlage dieser Eva-
luation sowie dem darauf basierenden Vergleich werden diejenigen beiden Ansätze weiter
ausgearbeitet und detaillierter analysiert, die hierbei die besten Ergebnisse erzielt haben.
Dabei ist ein Ziel der vorliegenden Arbeit, die Leistung dieser Methoden speziell auf einer
im Kraftfahrzeug aufgenommenen umfangreichen Datenbank zum ersten Mal methodisch
und quantitativ zu untersuchen.

Der erste dieser Ansätze verbindet die herausragende Klassifikationsleistung von neuro-
nalen Netzen mit radialen Basisfunktionen (RBF) mit der Fähigkeit von Hidden-Markov-
Modellen (HMM), Zeitveränderlichkeiten zu modellieren. In einem zweiten Ansatz wer-
den NN zur nichtlinearen Dimensionsreduktion hochdimensionaler Kontextvektoren in un-
terschiedlichen Netzwerk-Topologien untersucht. In den experimentellen Untersuchungen
konnte gezeigt werden, dass der erste dieser Ansätze für die AURORA-Datenbank eine
ähnliche Leistungsfähigkeit wie semikontinuierliche HMM (SC-HMM) aufweist. Der zwei-
te Ansatz erzielt auf einer umfangreichen im Kraftfahrzeug aufgenommenen Datenbank
keine Verbesserungen gegenüber den klassischen linearen Ansätzen zur Dimensionsreduk-
tion (LDA), erweist sich aber auf der AURORA-Datenbank als signifikant überlegen.





Abstract

Environmental noise is one of the major factors that affect the performance of automatic
speech recognition in real world applications, such as in-car navigation systems. To im-
prove the recognition accuracy in noisy environments, a number of noise robust techniques,
e.g. spectral subtraction, are being used in speech recognition systems for commercial ap-
plications. All these approaches assume that the interfering noises have certain properties.
If the interfering noises do not show these properties, the current robust approaches com-
pletely or partially fail to compensate for their deleterious effect. In the last years, however,
new kinds of robust approaches have been proposed which do not make any assumptions
about the interferences. Consequently, their performance is not affected by changes in the
properties of noise. These approaches rely on the high redundancy of the speech signal to
compensate for any changes in the input signal.

In the first part of this thesis we compare, for the first time, the performance of
some redundancy-based approaches with each other and with conventional robust ap-
proaches. These redundancy-based approaches were proposed in the EU-projects SPHEAR
and RESPITE by our project partners. This evaluation is carried out on the AURORA
2000 database, which is a digit recognition task in different noisy environments, typical for
mobile phone applications. The results of this evaluation show that the best-performing
approaches are those that combine the use of multiple streams of features with some kind
of discriminative approach based on neural networks. The final goal of this thesis is to
assess, for the first time, the performance of the previous approaches on an real in-car
task.

The first of the previous approaches is the hybrid RBF/HMM, which is an attempt
to combine the superior classification performance of radial basis functions (RBFs) with
the ability of HMMs to model time variation. Moreover, RBFs can be discriminatively
trained with low computational effort. The second of the mentioned approaches is to
use neural networks for non-linear discriminative feature reduction, since this problem
is closely related to classification. In this thesis, we propose the use of different MLP
topologies to reduce the dimensionality of large feature vectors including context frames.

Experiments on the AURORA 2000 database reveal that the performance of the first
approach is similar to the performance of semi-continuous HMMs. The second approach,
however, cannot outperform the conventional linear discriminant analysis (LDA) on an
in-car database, although its performance is superior on average to that of LDA on the
AURORA 2000 database.





Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Noise Robustness in ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Automatic Speech Recognition System Architecture . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Speech Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Statistical Pattern Recognition Approach to ASR . . . . . . . . . . . . . . . 14

2.4.1 Background on Hidden Markov Models (HMMs) . . . . . . . . . . . 16

2.4.2 Acoustic-Phonetic Modeling Using HMMs . . . . . . . . . . . . . . . 18

2.4.3 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Finding the Optimum Sequence of Words . . . . . . . . . . . . . . . . . . . 20

2.5.1 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 State Probability Computation . . . . . . . . . . . . . . . . . . . . . 24

2.6 Training the Parameters of HMMs . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Code-book Parameter Training . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 The Baum-Welch Algorithm . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Interfacing ASR Systems for Evaluation . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 The Elements of Technology Evaluation . . . . . . . . . . . . . . . . . . . . 32

3.3 Metrics for Technology Evaluation on ASR Tasks . . . . . . . . . . . . . . . 36

3.3.1 Qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Quantitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Methodology: Previous ASR Evaluation Exercises . . . . . . . . . . 46

3.4 Description of our Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Description of the Interfaced ASR Systems . . . . . . . . . . . . . . . . . . 53

3.5.1 Missing Data Class-Imputation with Fuzzy Masks . . . . . . . . . . 53

3.5.2 Tandem Acoustic Modeling with Multiple Streams . . . . . . . . . . 55

3.5.3 Multi-Stream Hybrid MLP/HMM System . . . . . . . . . . . . . . . 57

3.5.4 Multi-Band Noise-Contaminated Training System . . . . . . . . . . 59

3.6 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 61

3.6.1 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



viii Contents

4. Feature Reduction Methods for Classification . . . . . . . . . . . . . . . . . . . 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Feature Reduction for Classification . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Target Classes Selection for Feature Reduction . . . . . . . . . . . . . . . . 75

4.5 Class Separability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Neural Networks for Dimensionality Reduction . . . . . . . . . . . . . . . . 76
4.6.1 NN Topology for Low Number of Classes (Tandem) . . . . . . . . . 77

4.6.2 NN Topology for Large Number of Classes (NLDA) . . . . . . . . . 77

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5. Radial Basis Functions for Hybrid ANN/HMM . . . . . . . . . . . . . . . . . . 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Previous Work on Hybrid RBF/HMM . . . . . . . . . . . . . . . . . . . . . 83
5.3 Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Hybrid ANN/HMM Acoustic Modeling Approach . . . . . . . . . . . . . . . 87

5.4.1 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 State Posteriors Computation Using RBFs . . . . . . . . . . . . . . 89

5.5 Estimating Hybrid RBF/HMM Model Parameters . . . . . . . . . . . . . . 91
5.5.1 Training of the RBF Parameters . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Optimization in Practice . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6. Combining Multiple Streams of Features . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Prior Work on Multi-Stream ASR . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Synchronous Combination of Streams . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Feature Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.2 Probability Combination . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Description of the Speech Databases . . . . . . . . . . . . . . . . . . . . . . 110
7.2.1 The AURORA 2000 Task . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.2 The DaimlerChrysler In-Car Database: UKKCP . . . . . . . . . . . 110

7.3 Experiments on the AURORA 2000 Database . . . . . . . . . . . . . . . . . 111
7.3.1 Baseline System Configuration . . . . . . . . . . . . . . . . . . . . . 111

7.3.2 Optimum Input Feature Set . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.3 Discriminative Feature Reduction . . . . . . . . . . . . . . . . . . . . 126

7.3.4 Hybrid RBF/HMM Systems . . . . . . . . . . . . . . . . . . . . . . 135

7.3.5 Multiple Streams of Features . . . . . . . . . . . . . . . . . . . . . . 138
7.4 Experiments on UKKCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.1 Baseline System Configuration . . . . . . . . . . . . . . . . . . . . . 143

7.4.2 Discriminative Feature Reduction . . . . . . . . . . . . . . . . . . . . 144
7.4.3 Multiple Streams of Features . . . . . . . . . . . . . . . . . . . . . . 151

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Contents ix

8. Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Appendix 163

A. Full Results on AURORA 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.1 Optimum Input Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.2 Discriminative Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . 172
A.3 Hybrid RBF/HMM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.4 Multiple Streams of Features . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B. Feature Extraction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.1 Perceptual Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.2 J-RASTA PLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
B.3 Modulation-Filtered Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . 183

C. The Multivariate Omnibus Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

D. Lee Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

E. Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . . . . . . . . . . 193
E.1 Relation Between LDA and Optimum Features . . . . . . . . . . . . . . . . 194

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197





1. Introduction

In this chapter we introduce the field of automatic speech recognition (ASR) and the scope
of this thesis within this field. In particular, we explain the concept of variability of the
speech signal, and how this enormous variability makes automatic speech recognition a
challenging task even with ‘state-of-the-art’ computers. The sources of this variability are
various, but one that has attracted much attention in the last years is the environment
in which the ASR system operates. This environment includes any noises and channel
distortions that degrade the quality of the speech signal. The topic in ASR that deals
with this problem is known as noise robustness, and constitutes the framework of this
thesis. In the final point, the contents of the individual chapters are briefly summarized
and a figure displaying the thesis’ outline is also shown.

1.1 Automatic Speech Recognition

In a wide sense, the objective of ASR is to design and construct machines that can under-
stand the information contained in the speech signal (speech understanding), and carry out
a certain task according to the received information. In addition, those machines should
be able to communicate with humans using synthetic speech. From this point of view,
ASR is a part of the search for the intelligent machine that is able to ‘hear’, ‘understand’,
‘act’ and ‘speak’. The paradigm of this kind of machine is the supercomputer HAL in
Stanley Kubrik’s famous film 2001, which was able to talk with humans as a normal hu-
man about any theme, and even take its own, albeit fatal, decisions and actions. From a
different viewpoint, the objective of ASR is also to transcribe the linguistic contents of the
speech signal into sentences and words. Nevertheless, this interpretation is inadequate for
the case of spontaneous speech, where many extra-linguistic phenomena and incomplete
sentences occur, and is restricted to the case of read speech or commands.

Unfortunately, our state-of-the-art ASR technology is still far away from this science-
fiction paradigm, since the ASR systems used today in real world applications are always
restricted to working just for the application concerned, i.e. to recognize a limited amount
of possible sentences and words. In addition, current ASR systems are very sensitive
to changes in the environment (noises, channel distortions, etc. . . ), and usually perform
much better if they are adapted to a particular speaker. In spite of the differences between
reality and fiction, the progress made in the nearly fifty years of ASR has been enormous,
and the number of application fields of this technology is still growing, although the bad
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sales on the market of speech transcription systems has recently reduced the enthusiasm
towards ASR.

The main reason for this contrast between reality and fiction is the extraordinary
variability of the speech signal. As explained in [JH96], this variability comes from a
variety of sources that fall into one of the following categories:

• inter-speaker, which groups all the variations due to differences between speakers
in the physiological and articulatory habits, such as sex, age or vocal-tract anatomy.

• context, which includes co-articulation between phonemes, linguistic context such
as syntax, semantics and pragmatics (context of the conversation), and social inter-
action.

• environment, which groups all the phenomena that affect the speech production,
transmission and perception process. Typical phenomena are environmental noises,
room acoustics or channel distortions.

• intra-speaker, which includes all the variations associated with the different speak-
ing styles of a given speaker. In fact, a speaker can change his voice quality or his
speaking rate depending on his physiological and psychological state.

• linguistic, which includes all the variations associated with the dialect or accent of
the speaker.

The boundaries between these categories, however, are not always clear because there are
mutual interactions between the different sources. Despite that, this classification is useful
in showing the large number of variability sources that have an effect on the observed and
perceived form of the speech signal.

Most of this variability is not relevant to speech recognition and must therefore some-
how be suppressed or accounted for during the ASR process. For example, inter-speaker
variability is of no linguistic relevance and must consequently be compensated for before
utterance decoding begins.

In Fig. 1.1 we show a time/frequency representation of the uttered sentence ‘switch
the radio off’, to give an idea of the frequency composition of the speech signal. Note
the non-stationary nature of the variations in the speech spectrum, which is a result of the
different shapes assumed by the vocal tract to produce the speech sounds. For example,
the initial /s/ in the sentence has only components in the high frequency region (4000-8000
Hz) of the spectrum and has no ‘striped’ appearance, because it is an unvoiced sound and
consequently the vocal chords do not vibrate. By contrast, the /I/ in ‘switch’ exhibits
the typical striped appearance of voiced sounds, and has only components in the low
frequency region. Note also that this last sound has high energy regions in the spectrum,
which means that this sound has a formant structure.

Since the handling of this enormous number of sources of variability is impossible with
the current knowledge and technology, we are forced to restrict the scope of current ASR
systems to particular tasks. The complexity of a certain task can be measured using the
following ‘dimensions of difficulty’ as were defined in [DPH93]:

• Speaker dependence or independence. An ASR system that is used by more
than one speaker must be able to deal with the variability in the speech signal
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Fig. 1.1: A time/frequency plot of the utterance ‘switch the radio off’. The dark regions represent
the high energy levels whereas the light ones represent low energy levels.

induced by the differences between speakers. In fact, it is often the case that speaker
dependent ASR systems (one speaker) perform noticeably better than their speaker
independent counterparts. However, for a wide range of tasks, e.g. applications over
the telephone net, speaker independency is a must since the number of potential
users is huge, so that such kind of systems need large training data sets with many
speakers to have an acceptable performance level. To improve the performance of
speaker independent systems for single speakers, some type of speaker adaptation
approach is often included in the speech recognition process. More about those
approaches can be found in [Hai98].

• Nature of the utterances. Depending on the nature of the task in hand, there
are basically two different kinds of recognition strategies: isolated speech recognition
and continuous speech recognition. In the first case, the words in the utterance
are pronounced with pauses between them, so that the speech segments passed to
the decoder contain only one word. This simplifies enormously the decoding task,
but requires some degree of cooperation from the speaker. In continuous speech
recognition, by contrast, the words in the utterance are pronounced without pauses
between them, and it is therefore impossible to establish, before decoding, where
the words begin and end. This fact complicates the decoding stage of ASR because
the number of hypotheses to keep track of is much larger, but no cooperation from
the speaker is needed to successfully decode the utterances. Another important
distinction is the difference between read speech and spontaneous speech. The latter
contains many extra-linguistic phenomena (hesitations,etc. . . ) and grammatically
uncorrect sentences, and is therefore very difficult to transcribe into words.

• Size of the lexicon. As a general rule, the larger the lexicon, the more complex
is the search space in the decoding stage (cf. Fig. 2.1), and therefore the longer
the recognition time and the larger the memory needed. As a consequence, for
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large vocabulary applications mechanisms such as lexicon trees (cf. Sec. 2.4.2) and
language model look-ahead [NO00] are used to reduce the number of operations per
frame. For large lexicons, the performance scores are also in general lower than for
small lexicons, due to the higher confusability between the words. However, there
are also small lexicons, such as the alphabet letters, which are also highly confusable.

• Confusability and ambiguity of the lexicon. The first term refers to the acoustic
similarity of words in the vocabulary, e.g. ‘B’ and ‘D’ in a spelling task, whereas the
second term refers to the amount of homophonous words in the lexicon, e.g. ‘know’
and ‘no’ or ‘to’ and ‘two’, which are not acoustically distinguishable. The more
confusable and ambiguous words there are in a vocabulary, the lower in general is
the performance on the task. As already mentioned, the larger the lexicon, the more
probable it is to have confusable and ambiguous words, and therefore the lower is
the performance.

• Language complexity. In continuous speech recognition it is usual to limit the
number of possible utterances by using some kind of grammar or statistical language
model (cf. Sec. 2.4.3). The complexity of these grammars or models determines also
the size of the search space in the decoding step, and consequently the recognition
time and the memory use.

• Environmental factors. These factors are very important in real world applica-
tions of ASR where the production, transmission and reception of the speech signal
may be affected by distortions. In fact, this kind of factors can dramatically reduce
the performance of an ASR system, especially when the environmental conditions
during recognition are very different from those seen in the training stage of the
speech models used in recognition [LMP87].

The complexity of any task can be characterized using these six dimensions, and it is
therefore possible to deduce from them the requirements that our ASR system must fulfil.
Unfortunately, this characterization of the task is not equal to a parametrization of the
task, since most of the dimensions are difficult to quantify numerically. This parametriza-
tion would be very useful to estimate the performance of a given ASR system on a certain
task, for which no speech database is available [PL95].

1.2 Noise Robustness in ASR

The topic in ASR that studies the improvement of ASR performance in noisy and distorted
environments is known as noise robustness, and constitutes the framework of this thesis.
An ASR technique is noise robust in the wide sense, if it is able to deal with a wide range
of different environmental conditions.

The distortions of the speech signal can be additive (noise) or convolutive (channel
responses). The first type of distortion is linear in the power spectral domain, whereas
the second is linear in the log-spectral or cepstral domain. A combination of both types
of distortion is often the case in practical ASR, which it is even more difficult to handle.
Although in general environmental noise is additive to the speech signal, this is not al-
ways the case. In fact, the environmental noise affects the speech production process, and
therefore changes the shape of the uttered speech signal. This phenomenon is known as
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Fig. 1.2: Power spectrum of the noise at different speeds. Note that the average increase over
all frequencies is about 20 dB. The increase in noise power is not linear with the speed, since the
higher the speed the larger is the increase in the noise power. The power spectral density (PSD)
has been computed using the Welch method, with 16 kHz sampling frequency, Hamming window
of 32 ms, shifted every 10 ms.

Lombard reflex [LT71, Jun93], and it is the natural increase in our vocal level when the
environmental noise level is high enough. This increase cannot be depicted as a simple
loudness increase because to increase the vocal level we modify our articulatory move-
ments, and consequently the shape of the generated speech signal. This phenomenon has
a greater impact on the performance of speaker-dependent ASR than the additive noise
itself [JW89]. However, for speaker independent ASR the impact of the Lombard reflex
on the performance is not so large, since the variability introduced by this phenomenon
is already covered by the variability introduced in the speech models by the different
speakers [JH96].

In a car the sources of noise can be classified into two groups: those noises coming
from outside and those coming from inside. Outside noises are caused by the car itself and
its movement. Most of these noises are low frequency noises due to mechanical sources
(engine, tires) and flat spectrum phenomena produced by aerodynamic phenomena. The
resultant outside noise is depicted in Fig. 1.2 for two different speeds. In fact, the power of
the noise increases in a non-linear way with the speed of the car. In contrast, inside noises
come from a variety of sources such as the passengers, audio equipment, acoustic signals
(turn signal) or windscreen wiper. The variety of resulting noises is depicted in Fig. 1.3,
where we can see that some of these noises have a non-stationary nature.

During the nineties, a great number of approaches to improving the performance of
ASR of noisy or distorted speech have been proposed. Most of these approaches can be
roughly classified in one of the following categories:

• Speech enhancement. These techniques reduce the amount of noise or distor-
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Fig. 1.3: Different noise spectrograms in a typical in-car environment. In (a) we can see the
typical spectrogram of noise in a car at 80 km/h with closed windows. The spectral line at 4600
Hz is a warning signal. By contrast, figure (b) shows the noise spectrogram at 80 km/h with open
windows and wind noise. In figures (c) and (d) we see the noise spectrogram at 0 km/h when the
turn signal and the windscreen wiper are on, respectively. Spectrogram has been computed with
16 kHz sampling frequency and Hamming window of 32 ms shifted every 10 ms.

tion in the speech signal. A frequently used technique in this category is spec-
tral subtraction [LB91, Bol79], which basically estimates the spectrum of the clean
speech by subtracting the noise spectrum from the spectrum of the noisy speech.
Other techniques use statistical filtering techniques such as Wiener or Kalman fil-
tering [LOB78, KGG89]. Speech enhancement techniques are usually implemented
in the ‘pre-processing’ block of Fig. 2.1.

• Robust feature extraction. The techniques grouped under this category use a
feature extraction algorithm (cf. Sec. 2.3) that is relatively ‘robust’ to noise or
channel distortions, in the sense that the feature vectors obtained from distorted
speech are similar to those obtained from undistorted speech. Many techniques exist
in this category, and range from the Perceptual Linear Predictive (PLP) features (cf.
Sec. B.1) based on human perception of speech, to the Cepstral Mean Subtraction
(CMS) technique, which basically subtracts the mean of the cepstral vector to cancel
any channel distortion [RLS94].

• Model Compensation. These kind of techniques use speech models trained on
clean speech, which are then adapted to the noisy speech during recognition. Among
the techniques in this category we can mention parallel model combination (PMC)
or HMM decomposition [GY93, VM90]. Another frequently used technique in this
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category is to train the speech models with noisy speech, which has been shown to
achieve good performance in noise [DRM83, LMP87].

All the techniques in the categories above, however, have their drawbacks. For the
techniques in the speech enhancement category, it is sometimes the case that the speech
signal is distorted during enhancement, which is at least as detrimental as the noise itself to
ASR performance. Robust feature extraction techniques often achieve good performance
in noisy conditions, but comparatively poor in clean speech. The model compensation
techniques usually make strong assumptions on the noise modeled, which leads to poor
ASR performance when the environmental noises do not match these assumptions.

Since most of the techniques in these three categories were not robust in the wide sense,
some researches in the late nineties started to apply new approaches to noise robustness
that do not distort speech or make assumptions on the environmental noises. Among
these approaches we can mention missing data theory [CMG96], multi-band speech recog-
nition [BD96] and multi-stream speech recognition [JEM99]. All these approaches have
in common the use of redundancy to improve the match to the speech models. This
redundancy can be inherent to the speech signal itself, as in the missing data and multi-
band, or rather added to the speech representation as in the multi-stream approach. More
about these new approaches can be found in Chapter 3, where the performance of some
techniques based on the previous approaches will be evaluated.

1.3 Thesis Outline

The objectives of this thesis work are the following:

• assess the performance in environmental noise of a variety of robust approaches based
on the use of redundancy, and compare their performance with that of our baseline
system on a common speech database. The purpose of this evaluation is to find an
approach likely to improve the performance of our current ASR system in noise, but
which also could be implemented into a real-time ASR system. As will be seen in
Chapter 3, the best results in this evaluation are obtained by the approaches that
combine a better discrimination (using for that purpose a neural net) with the use
of multiple streams of features (multi-stream).

• study the use of neural networks for discriminative feature reduction, and the relation
of those neural approaches (also termed connectionist approaches) to the usual linear
discriminant analysis (LDA).

• study the hybrid radial basis functions/hidden Markov model approach (hybrid RBF/
HMM) with full-covariance normal basis functions as a practical alternative to the
more computational intensive hybrid multi-layer perceptron/hidden Markov model
approach (hybrid MLP/HMM).

• study the performance of multi-stream combinations of feature extraction algorithms
in noisy conditions and on tasks with different complexities.

The diagram in Fig. 1.4 shows schematically the integration of the objectives above
into the development of this thesis. We start in Chapter 2 with an overview of a generic
ASR system and its different components. The objective of this chapter is to give a solid
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basis of understanding before Chapter 5, Chapter 4 and Chapter 6, in which we explain the
different approaches tested in this thesis. We follow in Chapter 3 with the start point of
this thesis, namely the evaluation of ‘new’ ASR techniques to improve ASR performance in
noisy environments. We first discuss the difference between user-centered and technology
evaluation. Next we describe the elements of technology evaluation, with special empha-
sis on the measures for technology evaluation on ASR tasks, e.g. hypothesis/reference
alignment, measures, confidence intervals and statistical tests. Since the techniques to be
evaluated were implemented in different systems, and we wanted to keep the results of
the different approaches comparable, we have designed two different interface levels, at
the feature and state-probability levels, to use the same decoding or acoustic modeling
in all the assessments. After that, we introduce the different approaches evaluated and
their configurations. Finally, we present and discuss the evaluation results obtained on the
AURORA 2000 task. This database is a digit recognition task with artificially-added back-
ground noises. As will be seen, the best performing systems in this evaluation are those
that combine multi-stream with some kind of discriminative approach based on neural
networks.

The first of these neural approaches is introduced in Chapter 4. This is based on the
use of an MLP to reduce the dimensionality of the feature vector. We will see in this
chapter that the problem of finding the optimum mapping for feature reduction is similar
to the problem of finding the optimum classifier. In general, the optimum mapping is non-
linear, but if the classes are normally-distributed with equal covariance matrices, then the
optimummapping is linear and corresponds to the solution found by LDA. However, classes
for feature reduction are usually non-normal and have different covariance matrices. An
alternative way to solve this problem is to use neural nets, because they have demonstrated
to be powerful classifiers.

The second neural approach, known as hybrid artificial neural network/ hidden Markov
model (hybrid ANN/HMM), is discussed in Chapter 5. In particular, we discuss the hybrid
RBF/HMM approach, since it can be easily integrated into our current ASR system and
is not as computationally expensive as the usual hybrid MLP/HMM approach.

We devote Chapter 6 to the multi-stream approach. Especially, we will study the
combination of two streams of features using feature concatenation and probability combi-
nation. For the former case, we present an approach that concatenates the LDA vectors of
two different feature streams, and reduces the dimensionality of the concatenated vector
using also LDA.

In Chapter 7 we present the experimental results using the approaches discussed in the
previous three chapters. These experiments have been carried out on two different tasks:
the AURORA 2000 and the UKKCP in-car tasks. The UKKCP task is a typical tasks for
in-car applications (commands, city names and spelling) that has been recorded in real
environments. Therefore, and in contrast to the AURORA task, the noises have not been
artificially added.
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Fig. 1.4: A diagram showing the stages in the development of this thesis.





2. Automatic Speech Recognition System

Architecture

In this chapter we introduce a prototypical ASR system from which virtually all current
state-of-the-art ASR systems are derived. Since this kind of ASR systems uses pattern
recognition to recognize the linguistic content, this approach to ASR is often called the pat-
tern recognition approach [RJ93]. Almost all the current systems following this approach
use hidden Markov models (HMM) to model the acoustic variability of the speech signal
not only in time but also across sentences or speakers. In the first section of this chapter we
present a block diagram of a generic state-of-the-art ASR system, and succinctly describe
how the blocks coordinate to perform the ASR task. The following sections of the chapter
are devoted to the single blocks. As this thesis focuses on the use of pattern recognition
methods for ASR, we will put special emphasis on this topic in Sec. 2.4 where HMMs and
their use in ASR will be described.

2.1 Introduction

The main blocks of the ASR process are schematically depicted in Fig. 2.1. The first of
these blocks is the pre-processing block which is basically an A/D conversion, but may
contain other processing sub-blocks as well to reduce the amount of noise or distortion
present in the speech signal.

In essence, this kind of ASR system performs the following two fundamental operations:

1. discard the information in the speech signal which is not relevant to speech recogni-
tion.

2. using this relevant information find which is the most probable word sequence or
sentence uttered by the speaker.

The first operation is totally or partially based on evidence from the human perception
system, whereas the second operation relies on a combination of statistical pattern recog-
nition theory and Linguistics (phonology 1 and syntaxis).

1 In anglo-saxon literature this science is sometimes termed phonemics
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Fig. 2.1: ASR system based on statistical pattern recognition.

The pre-processing and the feature extraction blocks carry out the first operation, in
order to obtain features with a high content of linguistic information and as low as possible
content of non-relevant or superfluous information to speech recognition. At the output of
the feature extraction block we have a sequence of vectors or patterns X = (x1. . .xT ) which
is ideally a compact representation of the sequence of the linguistically relevant sounds
uttered by the speaker. This compactness of the representation is, from an engineering
point of view, the main benefit of the feature extraction block, because it reduces the flow
of information going into the probability computation block. As the processing time in
this block is strongly dependent on the size of the feature vector at its input, it is advisable
to reduce the size of the input feature vector to just the necessary.

On the other hand, the joint task of the acoustic modeling and decoding blocks is to
search, among the set of all possible sentences (the so-called search space), for the uttered
sentence or word sequence that best matches the pattern X. As we will see in Sec. 2.5,
this is done by computing the probability of the most probable word sequence given the
input pattern X in a very efficient way.

To perform this computation the ASR system in Fig. 2.1 uses the three following
components, which are previously calculated during the training stage:

• acoustic models of words or sub-word acoustic-phonetic units, e.g. phonemes,
which model the acoustic variability of the speech sounds due to the factors already
discussed in Sec. 1.1.

• recognition lexicon which is a mapping between each of the words in our ASR
task and the acoustic model associated with each of them. As it will be explained
in Sec. 2.4.2 this word model can be monolithic and specific to the word it models,
or can consist of a sequence of concatenated sub-word units.

• language model that controls the possible word sequences allowed by the syntax
and semantic of the language.

The parameters of the acoustic models are normally jointly trained to account for the
co-articulation effects between words or between phonemes. This is achieved by concate-
nating the acoustic models of the words in a sentence to form a large acoustic model of the
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sentence. This large model is then trained using the pattern associated with the sentence,
and applying the equations detailed in Sec. 2.6.

In a completely independent procedure the language model is trained or deduced from
the set of possible sentences in our ASR task. The language model conveys, albeit restricted
to a particular domain, the syntactic and semantic rules of the language, which impose
certain constraints on the possible word sequences in that language (cf. Sec. 2.4.3).

2.2 Speech Pre-Processing

As already mentioned, the basic task of this block is to perform an A/D conversion. In a
first step the speech signal is filtered using a low-pass filter to avoid aliasing and to suppress
the high frequency noise. The cut-off frequency of the filter is usually less than the Nyquist
rate to have low signal content around that frequency. Next the signal is usually sampled
and quantized at 8 kHz and 8 or 16 bits/sample for telephone applications or at 16 kHz
and 16 bits/sample for applications where the frequency content of the speech signal is
not limited as for telephone applications.

To further reduce the noise content of the digitized speech signal some kind of noise
reduction algorithm such as spectral subtraction [Bol79, LB91], Wiener or Kalman filter-
ing [LOB78, KGG89], can be applied to the speech signal.

2.3 Feature Extraction

In this step the time sequence of speech samples is converted into a sequence of feature
vectors each bearing the relevant linguistic information in the speech signal at a particular
point in time. To perform this operation it is assumed that the speech signal is a piece-wise
or short-time stationary process. This assumption is reasonable since, although over long
periods of time (on the order of 1/5 sec or more) the speech signal characteristics change
to reflect the different speech sounds being spoken, when examined over a sufficiently short
period of time (between 5 and 100 ms), the speech signal characteristics are approximately
constant.

A feature vector is obtained by first windowing the sequence of speech samples with
a Hamming window of 20 to 30 ms length centered at a particular point of time. The
sequence of feature vectors is generated by shifting the window every 10 ms so that a se-
quence of window frames is gained. Each of those window frames is then further processed
to obtain the desired sequence of feature vectors.

This processing is intended to extract the relevant linguistic information encoded in the
speech signal and at the same time remove as much non-relevant information as possible,
which would otherwise introduce unnecessary variation in the sequence of feature vectors.
As already mentioned in Chapter 1 this unnecessary variation comes from a variety of
sources.

There are basically three kinds of feature extraction methods:

• auditory-based methods, e.g. mel-filter cepstral coefficients (MFCC), which are
partially or totally based on concepts of speech perception.

• production-based methods, e.g. LPC-cepstrum, which are based on speech pro-
duction models.
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Since it has been empirically found that the LPC-cepstrum is more sensitive to noise-
induced variation in the speech signal [JH96], most of the current state-of-the-art systems
use the so-called mel-cepstral coefficients (MFCC) [DM80], which is based on a filter-bank,
and is consequently an auditory-based technique. As depicted in Fig. 2.2, this technique
basically consists of transforming each of the windowed frames into a spectral represen-
tation using a Fast Fourier Transform (FFT). Next the power spectrum of each frame is
computed by taking the square of the modulus of the FFT, which is then processed in
the spectral domain using a filter-bank. This usually consist of a bank of 16-20 trian-
gular or auditory-based filters of equal length and equally spaced in the mel-frequency
scale [RJ93]. In the linear frequency domain this results in a bank of filters that is un-
equally distributed over the frequency axis. Also, the bandwidth of the filters in the bank
is much larger in the high- than in the low-frequency region. This filter-bank simulates the
critical-band behavior of the human auditory system: a sound whose frequency is within
a certain critical-band can influence the perception of the sound in the same band but not
outside [JH96].

From a signal processing point of view, the main benefits of the filter-bank are to
remove the pitch 2 frequency, and to reduce the signal rate. The former operation is
equivalent to a non-linear smoothing in the frequency domain whereas the latter is in
essence a down-sampling of the smoothed spectrum [DPH93].

Although the MFCCs as described above attain a good performance level (up to 99%
connected digit recognition rate in clean conditions) when the environmental conditions
during recognition match those of the training data, their performance drops dramatically
as the mismatch between training and recognition conditions increases. The inherent
lack of robustness of these features has stimulated the research towards improving their
robustness against a variety of distortions, and towards finding other kinds of features
which are inherently more robust against mismatches. In Appendix B we describe some
feature extraction algorithms such as PLP that are more robust in distorted environments.

2.4 Statistical Pattern Recognition Approach to ASR

In this section we discuss the mathematical foundations of the pattern recognition approach
to ASR. The fundamental problem of ASR can be stated in the following way. Let X and
Wi be respectively a sequence of vectors (x1, . . . ,xT ) and a sequence of words (w1, . . . , wLi).
The optimum word sequence Wopt in the minimum probability of error sense is given by:

Wopt = arg max
Wi

P (Wi|X) (2.1)

where P (Wi|X) is the posterior probability of sequence Wi given the observation sequence
X. This is the so-called Bayes classifier, which ensures a minimum classification er-
ror [BM94, Bis96]. Our purpose is to use HMMs, discussed in Section 2.4.1, to solve
the previous problem. In fact, it is shown in Eq. 2.6 that it is rather simple to compute
joint probability of an observation sequence and the state sequence Q given the model Wi.
The previous problem, however, requires the computation of the probability of a word se-
quence given the observation sequence. Using the Bayes formula [Roh76], we can condition

2 The pitch frequency is the vibration frequency of the vocal cords as the air from the lungs flows
through them. The resulting signal does not contribute to the discrimination of the speech sounds, and
merely carries prosodic information [RJ93]
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Fig. 2.2: Feature extraction process of the mel-cepstral coefficients (MFCC). First the speech
signal is windowed using a Hamming window to obtain a speech frame. Next spectrum of the
speech frame is computed using a FFT, and afterwards processed using a filter-bank to smooth
out the pitch and other undesired variation. Finally the log filter-bank coefficients are converted
using a DCT into the desired cepstral coefficients.

X to the hypothesized word sequence Wi in the probability term, thus obtaining:

Wopt = arg max
Wi

p(X|Wi)P (Wi)

p(X)
(2.2)

The term p(X|Wi) is a likelihood 3 , and the term in the denominator is independent
during recognition of the word sequence Wi, so that we can put Eq. 2.1 in the following
interesting form without any loss of performance. Let X and Wi be as in Eq. 2.1. The
optimum word sequence Wopt in the minimum probability of error sense is given by:

Wopt = arg max
Wi

p(X|Wi)P (Wi) (2.3)

3 In this thesis we distinguish between likelihoods and probabilities. The former are actually probability
densities and are denoted with a lowercase p(.). The probabilities, by contrast, are denoted with a uppercase
P (.)
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Fig. 2.3: A left-to-right HMM represented as a generator of observation vectors. The dotted line
means that state qi has emitted vector xn with likelihoods (probability) p(xn|qi). Note that the
state q4 is a non-emitting state, which means that this state does not generate any observation x.
This state is used to connect an HMM to other HMMs to form word or sentence models.

This last equation reveals that the probability of a given sequence of words is indeed the
product of two probabilities:

• the first probability, p(X|Wi), is computed using the acoustic models of the words
which have been built, for example, by assembling phoneme hidden Markov models
(HMMs) as will be described in Sec. 2.4.1.

• the probability P (Wi), in contrast, conveys the contribution of the language model,
that is, of the syntactical and semantical rules of the language, and is computed
using a language model as will be described in Section 2.4.3.

Consequently, we devote the following section to discuss HMMs and language modeling.

2.4.1 Background on Hidden Markov Models (HMMs)

The topology of a left-to-right or Bakis HMM is shown in Fig. 2.3 where the model is
depicted as a stochastic generator of the observation sequence X. As we can readily see,
an HMM µ consists of a chain of connected states (more precisely a 1st order station-
ary Markov chain [BM94]) each with a well-defined probability density function, which
determines the nature of the observations x generated by the state q. In most of the
state-of-the-art ASR systems the state densities are continuous, and accordingly we can
say that a state q generates an observation x with a certain likelihood p(x|q). In Sec. 2.5.2
we will expand on this topic, to show some different ways of modeling the probability
density functions of the states.
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The connections aij between the states are called transition probabilities, and express
the probability of a transition from state qi to state qj. The transitions probabilities from
a given state qi must satisfy the following conditions:

aij ≥ 0 and

N
∑

j=1

aij = 1 , 1 ≤ i ≤ N (2.4)

A third set of probabilities which rule the behavior are the prior probabilities πj of the
states qj. The πj is the probability that the HMM generation process starts at state qj.
For the usual Bakis HMM (left-to-right) the πj hold:

πj =

{

1 if j = 1,

0 otherwise.
(2.5)

since for this kind of HMM we have always q1 = q1, i.e. the first state in time is always
the first state (from the left) of the HMM.

Interpreted as a generator of observations the HMM is rather straightforward to under-
stand: at a certain instant of time n the HMM stays in a certain state qi which generates
the observation vector xn with a certain probability determined by the density function
of the state qi. Next the model makes a transition to state qi+1 or stays in state qn in
a random way. In the first case, the next observation is generated by state qi+1 whereas
in the second case the next one is generated once again by state qi. During this process
two kinds of sequences are therefore generated: the observed sequence of observations
X = (x1, . . . ,xT ), and the sequence of HMM states Q = (q1, . . . , qT ) which cannot be
observed and is therefore ‘hidden’. Note that this sequence of states is not unique to the
given observation sequence. In fact, and since HMMs are stochastic generators, there is an
infinite number of possible state sequences that may have generated the given observation
sequence. Actually, it is simple to compute the likelihood of the observation sequence X
given the state sequence Q = (q1, . . . , qT ). Assuming a continuous density function of the
states, the likelihood of the observation sequence X given the state sequence Q is:

p(X,Q|Wi) = πq1

T
∏

n=1

aqnqn+1p(xn+1|qn+1) (2.6)

Each of the state sequences generates the observation sequence with a different likelihood,
and consequently there is a state sequence which generates the observation sequence with
maximum likelihood. However, in a practical situation we do not have access to the hidden
state sequence, so that we cannot compute the likelihood of an observation sequence X
using the last formula. In Sec. 2.5.1 we will introduce an efficient algorithm to compute
the likelihood of an observation sequence that circumvents this problem.

The suitability of HMMs for speech modeling is readily seen if we think of the non-
stationary character of the speech signal. As already mentioned in Chapter 1, the statistical
properties of the speech signal change to reflect the different speech sounds being uttered
by the speaker to generate a distinct word. If we now think of the single states in an
HMM as models for the short-time stationary properties of speech sounds, then it can
be readily understood that the transition mechanism of the HMMs provides an excellent
way to model non-stationarity: a leap from one state to another causes a change in the
short-time characteristics of the signal. More details about HMMs and their use in ASR
can be found in the books [RJ93, BM94].
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2.4.2 Acoustic-Phonetic Modeling Using HMMs

The simplest acoustic modeling approach, known as whole word modeling, is to associate
with each word in the lexicon an HMM which is only trained on the occurrences of that
word. In that case the lexicon is just a simple one to one mapping between word and model
identifiers, and there are therefore as many HMMs as words in the lexicon. The use of
this kind of modeling is limited by the size of the lexicon and the amount of training data
available. For small vocabulary size tasks (number of words of the order of 10) whole word
modeling is usually preferred, but for larger tasks it becomes impractical partly because
of the difficulty to robustly train the HMMs of the rare words [Kuh94]. In addition, to
accurately model the co-articulation effects between words, several realizations of a word in
different contexts are needed. Since the amount of possible contexts increases quadratically
with the number of words, this further restricts the use of word level models. Moreover,
word level modeling is not modular because each time a new word is to be recognized a
new HMM must be trained and added to the set of models.

On the other hand, the set of possible phonemes in a language is relatively small and
finite (between 13 and 75 for most of the languages, with a mean number of 30 [Mul69])
and they consequently lend themselves to statistical modeling since it is easy to find
enough training patterns for each phoneme HMM, i.e. they can be robustly trained.
To build a lexicon using phoneme HMMs, we usually use the concepts of phonology to
transcribe each word into a sequence of phonemes, or equivalently a sequence of HMMs,
which is acoustically consistent with the transcriptions of the other words in the lexicon.
In Fig. 2.4, the German city names Ehingen and Solingen are respectively phonetically
transcribed (using SAMPA notation) as eIN@n and zolIN@n, and have therefore the last
four phonemes in common. This implies again that the transcriptions of both words in the
lexicon must have the four last HMMs in common as well, if each HMM is associated with
a phoneme. Otherwise two different acoustic models would be trained on a similar sound,
which would result in further undesired variability in our acoustic models. Since many of
the words in the lexicon have their first phonemes in common, it is possible to arrange the
lexicon in a tree form instead of the list form used for the word models. The nodes in this
tree are the phonemes, and each branch is a word in the lexicon. This structure is called
lexicon a tree, and greatly simplifies and speeds up the decoding step [Kuh94].

The problem with the phoneme-based acoustic modeling is that the phoneme training
patterns typically exhibit a higher degree of variability as compared to the word training
patterns due to the strong co-articulation effects between contiguous phonemes in a word
(allophones). This results in a poor sensitivity to the acoustic context [Kuh94] which
leads to a more inaccurate modeling of the acoustic variability as compared to whole word
modeling.

These two kind of modeling reveal the compromise between robust training of the
acoustic models and the sensitivity of the models to their acoustic context. As a compro-
mise, it is usual to use a kind of mixed modeling in which the very frequent words in the
lexicon are modeled using a whole-word HMM, and the rest using phoneme HMMs. An-
other possibility is to use syllables instead of phonemes as sub-word units, since syllables
contain most of the variability due to the co-articulation between phonemes. A problem
with the syllables is the need for large speech databases to obtain reliable estimates of the
syllable model parameters, because the number of syllables in a language is quite large.
A solution to this previous problem is to use half-syllables instead of syllables, since their
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w o r d  a c o u s t i c  m o d e l

Fig. 2.4: An illustration of the building blocks principle of acoustic modeling. The phonetic
transcriptions of the words are stored in a lexicon. Each phoneme in a lexicon is modeled by an
HMM (phoneme HMMs). These HMMs are used to construct the composite model of the word.

number is much smaller [Kuh94]. Another very common technique is to introduce context-
dependent sub-word models [Kuh94, Lee90], e.g. biphones or triphones, so as to increase
the sensitivity of the HMMs to the acoustic context without reducing their robustness.

This building block principle is illustrated in Fig. 2.4, and is based on the fact that
human languages are articulated (as opposed to unarticulated animal sounds [Mul69]).
This fact allows us to model a very large number of sentences with a comparatively small
number of statistical models.

2.4.3 Language Modeling

As already mentioned in the introductory section of this chapter, the language model
conveys a restricted set of the syntactic and semantic rules valid for the language in
question. Without this set of rules, the words in the lexicon could be freely combined.
This would result in an explosion of the number of possible sentences, from which just a
few would be syntactically and semantically correct. Therefore, the rules in the language
model are extremely useful to restrict the search space in the search process carried out
in the decoding block, which greatly reduces the computation time for large vocabulary
applications. Additionally, the language model may partially correct the errors due to a
bad acoustic model, by improving the score of the correct sentence and reducing the scores
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of the incorrect ones.
This language model can be a simple grammar, in which the possible sequences of words

or sentences are strictly fixed, or a statistical language model which assigns a probability
P (Wi) to each possible word sequenceWi [Ros00]. In fact, the first kind of language model
can be interpreted as a special form of statistical language model in which the probability
of a sentence is one or zero. Also, the use of grammars is restricted to very simple tasks, e.g.
command-and-control, where the structure of the uttered sentences is simple. For tasks
with more complex sentences the grammars are too rigid or become too complicated to
correctly model the variety of the sentences. In addition it is very difficult, if not impossible,
to model with a grammar non-grammatical phenomena typical of spontaneous spoken
sentences, such as repetitions or grammatical errors, e.g. ’Ich hätte gern eine -äh-

ein Pfund Bohnen’. For these reasons, a statistical language model is usually preferred
for complex ASR tasks. The basic idea behind statistical language modeling is to factor
the probability of a given sentence Wi in the following way:

P (Wi) = P (w1, . . . , wLi) =

Li
∏

j=1

P (wj |Hj) (2.7)

where wj is the j-th word in the sentence, and Hj = (w1, . . . , wj−1) is called the history of
word wj .

A very common practice in statistical language modeling is to use an n-gram to model
the history of a given word by taking just the n− 1 previous words, that is:

P (wj |Hj) ≈ P (wj |wj−n+1, . . . , wj−1) (2.8)

The value of n controls the trade-off between the accuracy of the approximation above
and the accuracy of the estimated n-gram probabilities. To understand this, we just
have to figure out how difficult it is to find samples of a history Hj for a certain word
wj . If the history is too long, the number of samples found in a text is usually too low,
and accordingly the estimate of the probability P (wj |wj−n+1, . . . , wj−1) is not reliable.
A common choice is to use a trigram (n=3) when the available training corpus is large
(millions of words), whereas a bigram (n=2) is preferred when the corpus is small. In the
next section we will see how to integrate the language model probabilities in the search
process.

2.5 Finding the Optimum Sequence of Words

In the previous section we have seen the two basic elements used in the statistical modeling
of the speech: acoustic models, which are built from a set of HMMs, and a language model
to model the possible word sequences. In this section, we explain the algorithms used to
find the optimum sequence of words Wopt in the sense of Eq. 2.3.

2.5.1 Decoding

Isolated Word Recognition

To start with the decoding problem, let us reduce the scope of our problem to isolated
word ASR. In this case there is no sequence of words, and accordingly the language model
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term is superfluous. Let us as well assume that the words in our lexicon have equal a
priori probabilities, and that the probability densities of the states are continuous, so that
it is possible to compute the state likelihoods of an observation p(x|q, w). Taking all these
assumptions into account, the Eq. 2.3 can be simplified to:

wopt = arg max
wi

p(X|wi) (2.9)

that is, the problem is to find the word with maximum probability p(X|wi). This last
probability can be further expressed as a sum of the probabilities in Eq. 2.6 over all
possible state paths in the HMM of word wi:

p(X|wi) =
∑

∀q1,...,qT

p(X, q1, . . . , qT |wi) (2.10)

=
∑

∀q1,...,qT

T
∏

n=1

aqn−1qnp(xn|qn, wi)

However, this method of computing the probability of a given word is very inefficient,
because a great amount of possible state sequences exist. The approximate number of
operations required would be N T − 1 additions and (T − 1)N T multiplications, which is
of the order of TNT operations. Even for relatively small number of input frames (for a
second of speech T = 100) and a typical number of states (N = 10) per HMM, the amount
of operations to perform is prohibitive.

A solution to this problem is to use the Viterbi algorithm which is a very efficient
procedure to find the optimum word wopt. The key idea behind this algorithm is to
approximate the sum operation in Eq. 2.10 by a maximum operation, so that just the
probability of the state path with maximum probability has to be computed. Expressed
in mathematical terms we thus have:

p(X|wi) ≈ max
q1... qT

p(X, q1 . . . qT |wi) (2.11)

Substituting into Eq. 2.9 results in the following optimization criterion, which is the one
actually optimized using the Viterbi algorithm:

w̃opt = arg max
wi

max
q1... qT

p(X, q1 . . . qT |wi) (2.12)

If we now define the variable δl(j, i) as:

δl(j, i) = max
q1... ql−1

p(x1 . . . xl, q1 . . . ql−1, ql = qj|wi) (2.13)

the Viterbi algorithm can be expressed in the following elegant form [RJ93]:

Initialization δ1(j) = πj p(x
1|qj, wi)

Recursion δl+1(j) = max
k

[

δl(k) akj

]

p(xl+1|qj, wi) (2.14)

l =1, . . . , T − 1

Termination p(X|wi) ≈ max
k

δT (k)

Decision wopt = arg max
i

p(X|wi)
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This algorithm is based on the Bellman’s Principle of Optimality of Dynamic Program-
ming [Bel67], which states that every partial path of an optimum path must be itself
optimum. This can be seen in the recursion step of Eq. 2.14, which guarantees the opti-
mality of the partial path passing through state qj at time instant l + 1. It can be seen
as well that the final decision is made in the termination step. If at termination we find
that state qk has maximum δT (k), then we know that qk has an optimum predecessor
state resulting from the recursion at time instant T . Continuing backwards it is indeed
possible to trace-back the optimum state sequence, if for each instant of time and state a
trace-back pointer to the previous optimum state has been stored during the algorithm.

Although the approximation in Eq. 2.11 may seem too strong (just one of the several
paths contributes to the probability) to accurately approximate the probability p(X|wi),
our purpose is not this latter, but rather to find the correct word wopt. Experience has
in fact demonstrated that the differences between the sequence w̃opt in Eq. 2.12 and the
exact sequence wopt of Eq. 2.9 using the forward algorithm [RJ93, BM94] are minimal. The
advantage of the Viterbi algorithm is that it can be implemented without multiplications,
which further reduces the computational cost. This is simply achieved by taking logarithms
on both sides of the recursion step in Eq. 2.14.

Connected Word Recognition

From the previous discussions we know how to use a set of HMMs (acoustic models) to
recognize an isolated word. But what happens when the uttered word is a part of an
uttered sentence, and it is consequently no longer clear where the words start or end?.
Moreover, how should the language model term P (Wi) be integrated into the decoding
process, so as to take account of syntactic and semantic information in the decoding
process?. The problem in this case is mathematically formulated in Eq. 2.3. As can be
seen, this equation introduces a further unknown variable which was not present in the
previous case: the sequence of words Wi. A possible solution would be to build HMMs for
all the possible sentences by concatenating the HMMs of the single words (in the same way
as word HMMs were built from sub-word HMMs in Sec. 2.4.2), apply the Viterbi algorithm
to compute the probability of each of those sentences, and finally choose the sentence with
maximum probability. However, this procedure is computationally very inefficient, given
the large number of possible sentences, especially if the number of words in the lexicon is
large.

To efficiently solve this problem a number of different algorithms have been proposed,
but the most frequent algorithm in ASR is the one-pass (one-stage) dynamic programming
search algorithm [NO99, NO00]. Like the Viterbi algorithm this kind of search is time-
synchronous 4, and it makes use of the maximum approximation to compute the probability
of the acoustic models. The minimization criterion of the one-stage algorithm can be thus
stated as:

W̃opt = arg max
Wi

[

P (Wi) max
q1... qT

p(X, q1 . . . qT |Wi)

]

(2.15)

4 A search strategy is time-synchronous if the search hypotheses are built synchronously with the se-
quence of feature vectors. This is a very desirable property for ASR, because we do not have to wait until
the end of the sentence to start the search.
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As in the previous case, we define δl(j, i) as:

δl(j, i) = max
q1... ql−1

p(x1 . . . xl, q1 . . . ql−1, ql = qj |wi) (2.16)

that is, as the score of the best path up to time l that ends in state qj of word wi.
Additionally, we define the variable τ l(j, i) as the start time of the best state path in word
wi up to time l that ends in state qj of word wi. The recursion step of the one-stage
algorithm is divided into two sequential levels, which are carried out, as in the Viterbi
case, for each new input frame x. The first is the acoustic level in which all the word/state
pairs are processed using the following recursions:

δl+1(j, i) = max
k

{

δl(k, i) akj

}

p(xl+1|qj, wi) (2.17)

τ l+1(j, i) = τ l(kmax, i) (2.18)

where kmax is the index of the best predecessor state of the maximization in the 1st
equation. In a second level, the following recursion is performed over all words in the
lexicon:

υl+1(i) = max
j

{

P (wi|wj)δl+1(klast, j)
}

(2.19)

where P (wi|wj) is the probability of word wi given the predecessor word wj, and klast is
the index of the last state of word wj . Note that in the recursion of Eq. 2.19 the time
index l is not incremented, since this score is actually used to initialize the recursions in
Eq. 2.17 for successor words. For that purpose, we introduce a non-emitting state between
q0 in each word (analogous to the shaded states in Fig. 2.3), to pass both the score ω and
the time index at which the new word started:

δl(0, i) = υl(i) (2.20)

τ l(0, i) = l

In this fashion the score δl+1(j, i) can capture both the acoustic and the language model
probabilities. To be able to quickly trace-back the optimum sequence of words Wopt at
termination, the index of the best predecessor of word wi at time l + 1 is stored as well:

ι(i, l + 1) = jmax (2.21)

At termination the scores δT (k, i) are used to determine the last word of the optimum
sequence Wopt in the following fashion:

wLopt = arg max
wi

[

max
k

δT (k, i)

]

(2.22)

To trace-back the optimum sequence we use the word wLopt , the table of stored predecessors
υ and the table of time boundaries τ . We first look into table υ to know which is the best
predecessor of wLopt at time T . Next we look into table ι to get the start time of word
wLopt , and use this time and the predecessor of wLopt to repeat the process for this word
and all the precedent words until the start of the sentence is reached.
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2.5.2 State Probability Computation

In this section we address the question of how to model the probability density functions
of the HMM states. We have assumed in the preceding section that these densities are
continuous, and it is therefore possible to compute the state likelihood p(x|q, w) of an
observation vector. When these densities are discontinuous, however, it is no longer valid,
in the strict sense, to use the term likelihood. But which kind of HMMs have continuous
densities and which have discrete ones? In speech recognition there have basically been—
and still are— three different kinds of HMMs categorized according to the type of state
densities:

• Discrete HMMs (DDHMM). This kind of HMM applies first a vector-quantization
algorithm to transform the input continuous sequence X into a sequence of discrete
symbols S = (s1, . . . , sT ). These symbols are extracted from a set of code-vectors
S = {s1, . . . , sM} stored in a code-book. The density function of a state is there-
fore discrete, and assigns to each symbol si in the code-book a probability of being
emitted by the state, i.e.:

bik = P (sk|qi) , ∀i, k (2.23)

with the constraint:
K
∑

k=1

bik = 1 , ∀i (2.24)

The state emission probabilities are therefore:

p(xn|qi) =
sk=[xn]

P (sn = sk) = bik , ∀i, k (2.25)

where the square brackets [.] symbolize the vector-quantization operation.

• Continuous density HMMs (CDHMM). In this kind of HMMs the density
function of each state is usually modeled using a mixture of normal densities:

p(x|qi) =
K
∑

k=1

bikN (x;mik,Kik) (2.26)

where the bik must satisfy:
K
∑

k=1

bik = 1,∀i (2.27)

if p(x|qi) is to be a density function.

• Semi-continuous HMMs (SCHMM). The third kind of HMM is a sort of com-
promise between the discrete and continuous density HMMs. As a discrete model
it uses a vector-quantization algorithm to transform the sequence of observations
X into a sequence of symbols S. However, this algorithm does not output just a
code-book symbol s for each input frame x, but rather the probabilities of the sym-
bols in the code-book given the input frame x. This implies that the symbols in
the code-book are no longer a representation of a single code-vector, but rather a
representation of a probability density function. This can be interpreted as a kind
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of fuzzy vector-quantization which avoids the hard decisions of the discrete density
case. The probability density function associated with each of the symbols in the
code-book is usually normal, so that we can compute the probability of each symbol
given the observation vector x as:

gk(x) = p(x| sk) = N (x;mk,Kk) (2.28)

At the output of the vector quantization we have for each input frame xn a vector
gn which contains all the gk, and accordingly we have a sequence G = (g1, . . . ,gT )
for each input utterance.

To compute the state emission probability p(x|qi) we proceed as in the continuous
density case, although in this case the Gaussian mixtures bik of the previous case are
interpreted as symbol emission probabilities of the state, i.e. the probabilities that
a given symbol sk has been emitted by the state qi. Therefore the state emission
probabilities are:

p(x| qi) =
K
∑

k=1

bik gk(x) , ∀i (2.29)

where as before:
K
∑

k=1

bik = 1,∀i (2.30)

Thus semi-continuous HMMs can also be interpreted as a kind of continuous HMM
where all the normal densities are shared between the states.

There are, however, other methods to model the probability densities of the observation
vectors x in each state. In fact, we will see in Chapter 5 that it is possible to use artifi-
cial neural networks for that purpose, and still use the decoding algorithms discussed in
Sec. 2.5.1 to find the optimum word sequence.

2.6 Training the Parameters of HMMs

Training is the process of computing the parameters of the HMMs, such as the state
transition probabilities aij , so that the trained HMMs can be used to recognize an uttered
sentence using the algorithms described in the previous points.

As seen in Fig. 2.1, an essential part of the process is a speech database which is
an orthographically transcribed set of speech recordings. Ideally we would like to have
as large a speech database as possible, so that most of the possible word or phoneme
contexts in our recognition tasks are covered in the training phase. If additionally the
recognition task is speaker independent, then the database must contain utterances from
many speakers to cover the inter-speaker variation [JH96]. In general we can say that
a speech database should cover, as far as possible, the sources of variation that could
arise during recognition. Thus, as a general rule, the more sources of variation, the larger
must be the speech database to obtain reliable HMMs. Another important factor that
conditions the size of the speech database (and which is hardly mentioned in the ASR
literature) is the number of parameters to be trained. This is a consequence of the so-
called curse of dimensionality [Bis96] which somehow limits the number of parameters
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trainable with a given amount of training data. In fact, it has often been observed that
an increase in the complexity of the models does not lead to an increase in performance.
To understand this phenomenon, let us assume that a non-linear mapping T : R

d −→ R is
to be computed using a set of input/output pairs C = {(x1, y1), . . . , (xN , yn)}. To perform
this computation, we divide the value space of each of the d input variables into M cells,
so that in the R

d we have a total of M d cells. If we are given a new point x that falls
into a certain cell, we can find an output value for that point by averaging the output
values of the training points in that cell. To increase the precision of this approximation
one would simply increase M . However, this also increases the number of cells, which
increases exponentially to M d. Since each cell must at least contain one training point,
the number of training points must also exponentially increase, if the variance of our
mean estimator is to be approximately the same as before. In general we can say that
the number of training samples needed to train a certain number of parameters does not
increase linearly with the number of parameters, but it rather grows in an exponential
fashion. In Chapter 4 we will discuss some techniques to reduce the dimensionality of the
feature vector (and consequently the number of HMM parameters), which are useful in
mitigating the effects of this phenomenon.

A second important aspect of the training process is the training criterion used to
train the parameters. A very common and important criterion is the maximum likelihood
(ML) criterion so that the training criterion of the HMM parameters can be stated in the
following fashion: Let X be as before, W the sequence of words corresponding to X and
Θ the set of parameters of the HMM associated with W . The optimum parameter values
in the ML are found using the following criterion:

Θopt = arg max
Θ

p(X|W,Θ) , ∀X (2.31)

The term p(X|W,Θ) is the same as in Eq. 2.3 but in this case the sequence of wordsW
is fixed and the set of parameters Θ is allowed to vary. Since the data vectors in X used to
train the HMMs in ASR are not ‘labelled’, i.e. no class label is associated with each of the
vectors in X, the training data set is said to be incomplete. Our ML estimation problem,
therefore, is a case of training with incomplete data, and has consequently no closed-form
solution [Bis96]. As in the recognition step, we have basically two options to iteratively
solve the optimization criterion above:

• use the maximum approximation in Eq. 2.11, and optimize the parameters for just
the sequence of states with maximum likelihood. This is the basic idea behind the
Viterbi training [BJM83] procedure, and its generalization the segmental k-means
algorithm [RJ93].

• optimize the set of parameters without approximating the value of p(X|W,Θ) by
using the Baum-Welch training [Bau72] procedure.

As a consequence of the maximum approximation the number of computations per
iteration in Viterbi training is lower than that of Baum-Welch training. At the same time,
however, the former algorithm needs more iterations and training data than the latter
to obtain HMMs with a similar statistical robustness [ME91], which counterbalances the
lower computational cost per iteration of Viterbi training.
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On the other hand, we have already mentioned that we are primarily interested in
semi-continuous HMMs, because most of our experiments have been performed using this
kind of system. We have seen in Sec. 2.5.2 that an SCHMM system has the following
components: a code-book of symbols, a set of emission probabilities of those symbols for
each HMM state, and the transition probabilities between the different states. As seen in
the following sections, the first set of parameters is trained independently from the other
two. The Viterbi training procedure is used to train the parameters of the code-book,
whereas the Baum-Welch is used to compute the symbol and the transition probabilities.

2.6.1 Code-book Parameter Training

Let X, W and (q1, . . . , qT ) be as before. The Viterbi training criterion can be expressed
in the following way:

Θ̃opt = arg max
Θ

max
q1,...,qT

p(X, q1, . . . , qT |W,Θ) (2.32)

As already mentioned above, an iterative solution to the previous optimization is given
by the Viterbi training algorithm. The algorithm is the following:

1. Generate an initial segmentation of the training data into HMM-states, which assigns
to each training vector xl a label tl associated with a particular HMM-state. We
can start for example with a flat segmentation, which assigns the same number of
frames to each HMM-state present in an utterance. A better solution if we use
phoneme HMMs is to use the average phoneme durations [BM94]. The results is a
set S = {(xl, ql)} of frame/state pairs which it is called henceforth segmentation.

2. Actualize the parameters of the SCHMMs, i.e. the {aij}, the {bij}, the {mj} and the
{Kj}, over all sentences and independently of each other using the last segmentation
into states.

3. Use the re-computed SCHMMs to generate a new segmentation into states for all
the sentences in the training set. In this step, the segmentation is generated using
a forced alignment, and a mean score over all sentences, usually the average of
maxq1... qT p(X, q1 . . . qT |wi), is also computed.

4. If the score computed in the previous step is better than that of the last iteration,
then go to step 2 and repeat the process, otherwise terminate the algorithm.

Our training procedure of the code-book parameters is analogous to the previous al-
gorithm, but with some particularities. The first particularity is that just one training
iteration has been performed, so that steps 3 and 4 are actually not carried out in our
algorithm. A second particularity is that the initial segmentation into states of step 1
has been generated using a previously trained set of HMMs, which have been trained as
described in [CKRB93]. These HMMs are semi-continuous as well, but their code-book
has been trained using the Linde-Buzo-Gray (LBG) clustering algorithm [LBG80], which
is an unsupervised learning technique, and accordingly does not need any initial segmenta-
tion to compute the parameters of the code-book [Bis96]. This is opposed to a supervised
learning technique, which uses a segmentation S to train the parameters of a classifier.
Our implementation of the algorithm above is a supervised learning technique, because
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we assume that the segmentation S is a priori given. The third one is that we have just
used the Viterbi training to compute the parameters of the code-book, i.e. the means
{mj} and the covariances {Kj}, but not the emission and transition probabilities, which
have been computed using the Baum-Welch algorithm of the next section. This has been
done to find a compromise between training speed and statistical robustness of the trained
SCHMMs. A last particularity of our method is the way we build the classes of the code-
book when the number of states is very large: we first gather the states into a smaller set
of state clusters, using the Lee clustering algorithm [Lee90] (cf. Appendix D), and finally
we associate with each cluster a symbol in the code-book [CKRB93]. In contrast, if the
number of states is small, we simply associate each state with a symbol, and we compute
the ML-estimate 5 of the mean and covariance over all feature vectors assigned to that
symbol by the segmentation S.

2.6.2 The Baum-Welch Algorithm

This algorithm is also an iterative solution of the criterion in Eq. 2.31, which was first
published by Baum [Bau72]. In fact, this algorithm is an special case of the more general
expectation maximization algorithm [DLR77] (EM) used to solve the above mentioned
problem of training with incomplete data. With the Baum-Welch algorithm we want to
train the transition probabilities A and the emission probabilities of the symbols B, using
as input data the output sequence of the vector quantization G = (g1, . . . ,gT ), which has
been computed using the code-book of the previous step.

We begin by defining the forward variable αl(j) and the backward variable β l(j) as:

αl(j) = p(g1 . . . gl, ql = q = j|W ) (2.33)

βl(j) = p(gl+1 . . . gT |ql = qj,W )

where both variables hold:

p(G|W ) =
∑

∀j

αl(j)βl(j),∀l (2.34)

and using these two variables we can further define:

γl(i) =
αl(j)βl(j)

p(G|W )

ηl(i, j) =
αl(i)aijp(g

l|qj,W )βl(j)

p(G|W )
(2.35)

ζ l(i, j) = γl(i)
bijN (gl;mj ,Kj)

p(gl|qi,W )

Using these variables the re-estimation (recursion) formulas of the Baum-Welch algorithm

5 This estimate is simply the sample mean, m̂ = (1/N)
∑N

i
x

i and covariance, K̂ = (1/N)
∑N

i
(xi

−

m̂)′(xi
− m̂), over all the frame/state pairs in the segmentation S having the same qk
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are:

aij =
mean # of transitions from qi to qj

mean # of stays in state qi
=

∑T−1
l=1 η

l(i, j)
∑T−1

l=1 γ
l(i)

(2.36)

bij =
mean # of obs. of symbol sj in state qi

mean # of stays in state qi
=

∑T
l=1 ζ

l(i, j)
∑T

l=1 γ
l(i)

(2.37)

The values of both sets of parameters are actualized once for training iteration.

2.7 Summary

In this chapter we have presented a generic ‘state-of-the-art’ ASR system, and explained
its different building blocks. The pre-processing and the feature extraction blocks are
responsible for discarding the variability in the speech signal not relevant to speech recog-
nition, e.g. noises or speaker-dependent effect, and reducing the information flowing into
the probability computation block. In contrast, the probability computation and the de-
coding blocks carry out the decoding of the linguistic content in the speech signal. To
carry out this sub-task, two different kinds of statistical models are used: HMMs and
language models. The first are used to model the acoustic variability, whereas the latter
are used to model the syntactic and semantic variability.
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This chapter is devoted to the evaluation of ASR algorithms. The evaluated algorithms
have been developed during the course of the RESPITE and SPHEAR projects by our
project partners. Our task was in both projects to find out whether any of those algorithms
was a better alternative to our current ASR system. Consequently, we devote the first
section of the chapter to the fundamental question of what kind of ASR evaluation is useful
to our purpose. After that we detail the fundamental elements of technology evaluation,
with especial emphasis on the metrics used to evaluate ASR systems in ASR tasks. Two
previous large-scale evaluation exercises will be reviewed and taken as examples to design
our own evaluation. After that a brief description of each of the algorithms evaluated is
given, followed by the results of our evaluation and their discussion.

3.1 Introduction

As the number of applications of ASR technologies is increasing steadily, the need for
ASR system evaluation is growing rapidly. This need is specially urgent since the number
of different ASR technologies is overwhelming. However, it is not at all clear how ASR
systems should be evaluated, or rather from which standpoint ASR systems should be
evaluated. In the following sections we try to clarify this concept.

As defined by Crouch, Gaizauskas and Netter [CGN95] evaluation is in the strict sense
a comparison between the assessment results of different systems. Assessments can be of
two different kinds depending on the desired perspective:

• user-centered or extrinsic assessments are useful for the end-users of the system.
These assessments try to find how well does the system allows an end-user to complete
his intended goal in a given environment.

• technology or intrinsic assessments are useful from the point of view of the
technologist [Gai98]. These assessments, by contrast, try to measure how well a
system meets some pre-defined functional specification of the task it is intended to
carry out on some specific test data set.
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Both kinds of assessments are obviously not completely unrelated since any improvement
measured in a technology assessment should lead to an observable benefit from the end-
user point of view. On the other hand, the job of a technologist in the spoken language field
is only possible if technology assessment and measures are used. This is easily understood
if we realize that user-centered assessments measure the quality of the man-machine inter-
action, whereas technology assessment measure the quality of the machine or system itself
using some predefined functional criterion. The former have therefore a rather subjective
nature, since they partially depend on the end-user, which is too imprecise to be useful in
drawing useful conclusions for a technologist, i.e. to be useful in establishing cause-effect
relations in the experiments carried out by a technologist.

Thus we have two complementary assessments, each intended to fulfil the necessities
of two different groups: end-users and speech technologists. Of course, as technologists we
are mainly concerned with technology assessment, but to understand the limits of our pre-
defined abstract measures we have to gain some insight into the user-centered perspective
as well.

The approaches researched in the SPHEAR and RESPITE projects, however, are far
from being implemented into a commercial ASR system for the moment. Consequently,
any user-centered evaluation of them is pointless and even impossible. Nevertheless some
user-centered considerations should always be kept in mind in any technology evaluation,
since the improvements measured during technology evaluation must be large enough to be
noticeable for an hypothetical end-user. This is even more true if, as stated at the beginning
of the chapter, the final objective of the process is to implement the best approach in our
ASR system for applications in cars.

3.2 The Elements of Technology Evaluation

The fundamental elements of technology evaluation, which should be determined before
evaluation begins, are discussed in the following paragraphs.

System

This is the object of technology evaluation itself and is defined as a set of software compo-
nents that carry out a certain spoken language processing task. An ASR system is always
a fundamental sub-system of a spoken language processing system, and its performance is
therefore decisive for the correct operation of the complete system.

Task

This is the pre-defined functional specification of the spoken language processing task to
be carried out. This can be viewed as an abstract mapping between a set of input objects
and a set of output objects. For instance, ASR can be interpreted as a mapping between
an uttered speech signal and a written representation of it. This representation can be
the optimal—in some predefined sense— string of words, a list of N-best strings, or even a
word graph. Therefore we speak henceforth of the automatic speech recognition task . As
a consequence we can talk of a system as implementing a certain task. Systems must fulfil
the requirements of the task if they are to perform it successfully. Obviously systems can
be decomposed into sub-systems and likewise a task can be broken down into sub-tasks.
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Input/Output attributes

• language of the input or output, e.g.
German, English, etc. . .

• topic, e.g. weather reports, broadcast
news, etc. . .

• degree of spontaneity of input speech,
e.g. read speech or spontaneous speech

• channel distortions, e.g. telephone
channel, microphones, etc. . .

• environmental noise type and level, e.g.
car-motor noise at different speeds

• accent of speakers, e.g. native or non-
native, dialectal, etc. . .

• speaker independent or speaker depen-
dent task

• degree of fluency of input speech, e.g.
isolated words or connected words.

Object attributes Internal objects like lexicon, grammars or lan-
guage models used to perform the task, which
are of course partially determined by some of
the I/O attributes.

Mode attributes Attributes related to how the task is per-
formed, such as depth, accuracy, robustness
or efficiency of the task.

Structural attributes Decomposition of the task into sub-tasks,
since there may be more than one way to de-
compose the spoken language processing task

Tab. 3.1: Categorization of the task attributes of a spoken language processing task.

On the other hand, tasks can be of two kinds:

• user-significant tasks, are tasks where both the input and the output objects have
some direct significance to a system end-user.

• user-transparent tasks, by contrast, are tasks where input or output objects have
no direct meaning to the end-user.

Typically a user-transparent task is a sub-task of a wider user-significant task. For ex-
ample, for the end-user of a car navigation system the output of the ASR task is of no
relevance, and in this sense the ASR task is a user-transparent sub-task of the larger user-
significant car navigation task. Obviously, technology evaluation is mainly concerned with
user-transparent tasks, whereas user-centered evaluation only considers user-significant
tasks.

A task is described by means of attributes which can fall into one of the categories
shown in Table 3.1. System and sub-systems parameters should be adapted to the re-
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Fig. 3.1: Dependence and interaction between environment/task/system.

quirements imposed by task and sub-task attributes, if the system must perform the task
accurately.

Environment

This environment is composed of the factors external to a task or sub-task that determine
or influence its attributes. For user-transparent sub-tasks within a wider user-significant
task, the environment is determined by the surrounding sub-tasks. For user-significant
tasks, by contrast, the environment is determined not only by other user-significant and
user-transparent tasks surrounding it, but also by the users themselves. From this dis-
cussion it seems clear that environments possess a rather layered nature—also termed
onion-like [CGN95]— where a certain task at a given level may be the environment of an-
other sub-task at a lower level. In a car navigation task, for instance, the dialogue system
would be the environment of the ASR task, and would thus determine the attributes of the
ASR task. Similar to tasks, environments are characterized by their attributes. If a task
is to match its environment, task input/output attributes must satisfy the requirements
of it, i.e. task attributes must match those of the environment.

An interesting consequence of this last fact and the layered nature of environments is
that environment attributes tend to percolate down into task structure. This means that
environmental attributes at a higher level influence sub-task attributes at a lower level,
which implies that user-centered issues cannot be completely ignored at a user-transparent
sub-task level. This conclusion further justifies our discussion in the introduction.

It may be helpful to look in Fig. 3.1 to understand the relation between the three
elements explained above. As can be seen, environment attributes determine principally
global task input/output attributes. The global task and the sub-tasks surrounding a
given sub-task, constitute the environments of this sub-task, and therefore determine its
attributes as well. After that the parameters of a given sub-system must be customized
to match as accurately as possible the attributes of the corresponding sub-task.
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Evaluation Data

As pointed out in the introduction, technology evaluation is carried out on a specific data
set, on which a certain quality or qualities are measured. This data set or evaluation data
contains three different kinds of data:

• test data, which is processed by the systems to obtain an output hypothesis.

• reference data, or the ‘correct’ output of the task, which is compared to the output
hypothesis of the systems in order to assess them.

• train data, or the data used to train the parameters of the spoken language process-
ing system.

For evaluation to be meaningful, evaluation data must have the fundamental characteris-
tics [CGN95] listed below:

• realistic, which implies that data must be the kind of input data the system receives
in real operation conditions.

• representative, which means that evaluation data should include a significant sam-
ple of all the possible inputs a system could receive during operation. For example,
the test part of our evaluation should include a variety of different noise conditions
present in car applications if we want to measure environmental noise robustness.
But even reference data must also include at least a transcription of test data into
words, if word error rate (cf. Sec. 3.3.2) is to be measured.

• statistically independent train and test data, which ensures a realistic estima-
tion of the performance, since the real operation conditions will be quite different
from those of training. In general we can say that the smaller the training data set,
the more important it is to have an independent test data set. Another interesting
point is whether training data should include the noises present in the test data or
not. This is not fair from a theoretical point of view, but from a practical point of
view it has been empirically demonstrated [LMP87, HP00] that ASR system perfor-
mance can benefit from a noisy training, even if the noises are different from those
of the test data.

• large test data set, since it must be large enough to have statistically significant
results. As we will see in section 3.3, if the test data set is too small, it is not possible
to measure statistically significant differences between the systems.

• large train data set, to guarantee the correct estimation of the model parameters.
As argued in [PL95] it could well be that a given ASR system using a certain complex
approach needs, to obtain the maximum performance out of the approach, more
training data than another ASR system using a different simpler approach. The
performance of this complex ASR system would be well above the performance of
the simple ASR system, if enough training data was available. But if training data is
scarce, it could even be that the performance of the simple ASR system is better than
that of the complex ASR system, because model parameters are not well estimated.
This problem is related to the so-called curse of dimensionality problem, which has



36 3. Interfacing ASR Systems for Evaluation

already been discussed in Sec. 2.6. Unfortunately, it is extremely difficult to predict
how large a training data set should be to obtain the maximum performance out of
a certain approach. The only possibility remains to train on different training set
sizes, and afterwards test the performance of the different ASR systems on the same
test data set, in the hope that a certain performance limit for the approach is found.

Metrics

This includes all the questions regarding performance measurement. These questions fall
into one of the following categories:

• qualitative, i.e. what is actually to be measured?

• quantitative, i.e. which quantity should be used to observe changes in the quality?

• methodology, i.e. how should measurements be carried to be consistent, reliable
and significant?

These three question are further discussed in the next section.

Implementation

This element groups system-dependent issues like hardware platform, operating system,
programming language, etc. . . .

3.3 Metrics for Technology Evaluation on ASR Tasks

In this section we deal with the metrics for technology evaluation already mentioned in
the previous section. The questions regarding metrics may fall in one of the categories
explained into the following subsections.

3.3.1 Qualitative

As already mentioned in Sec. 3.2, the nature of the measurements is partially determined
by the quality to be measured, which may fall for an ASR task into one of the following
categories:

• accuracy qualitiesmeasure the similarity between actual output of the ASR system
and expected output for the ASR task, such as the number of correctly or falsely
recognized words, sentences, etc. . . .

• robustness qualities measure the mean accuracy over a given range of environ-
ment/task attributes, such as robustness against different environmental noises,
channel distortions, etc. . . .

• efficiency qualities measure how efficiently does the ASR system uses the hard-
ware/software resources available to perform the ASR task.



3.3. Metrics for Technology Evaluation on ASR Tasks 37

Robustness is measured on test sets in which a certain environment/task attribute
varies within a range of possibilities. This range of possibilities should ideally be deter-
mined from the actual variation range of the environment/task attribute in the intended
application. Computing the accuracy of a given ASR system on this kind of test set we
can evaluate its robustness to a certain kind or kinds of environmental/task attribute vari-
ation. On the other hand, efficiency is usually quantified using a measure of the amount
of a resource being consumed or the amount of time needed by an ASR system to perform
an ASR experiment.

3.3.2 Quantitative

We have seen in the previous point that to measure the three qualities above we need ba-
sically two kind of measures, namely similarity and efficiency measures. Another point to
consider is that ASR systems are seldom used in isolation except for a few applications like
automatic speech transcription or dictation. More often, an ASR system is the most im-
portant part of a complex spoken language processing system which carries out a language
related task in a specific environment. Since ASR systems are thus embedded in larger
spoken language processing systems, it would be reasonable to evaluate them embedded in
the large spoken language processing task, because the performance measurements would
then be on the end-result of the global task. However this is not always feasible for a
number of reasons such as:

• assessments can be too complex,

• a complete spoken language processing system may not be available for testing,

• for a dialog application, experts don’t agree about how to assess its output,

• no evaluation data readily available,

• it is not always clear what will be the end-application,

• there is usually no agreement on which measure should be used to assess the outputs
of spoken language Systems.

Therefore we must assess directly the output of ASR systems since:

• it is much easier and quicker,

• there are plenty of readily available evaluation databases,

• there is general agreement on how to evaluate outputs of ASR systems.

But this kind of assessment further poses the following problem: how large should be
the improvement observed in an ASR sub-task, to be measurable in the global spoken
language processing task?. This is not a trivial question and it has just been faced by a
few authors such as [BEG+96, GVSJ97]. Nevertheless it is shown in both cases that the
correlation between WER and the corresponding high-level measure is quite high. But
even if the correlation would have been low, it seems intuitive that having a good WER at
the output of an ASR system is always a good property. Consequently, the performance
of ASR systems is usually evaluated by assessing the output of the ASR systems.
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Levenshtein Algorithm

Measures of similarity depend clearly on the output format of an ASR system. If this out-
put is the best hypothesized transcription into words of the input speech, then the problem
reduces to finding the ‘distance’ between the reference string and the hypothesized string.
Many algorithms exist to compute this string distance 1, but among ASR researchers it
is common practice, for its simplicity, to perform a string alignment that minimizes the
Levenshtein distance metric between the output of the ASR system (hypothesis) and the
correspondent reference data file. This alignment is performed for each file in the test
set, and the total number of errors over all files is used to compute a final performance
score of the ASR system. This Levenshtein distance [Lev66] is a kind of string edit dis-
tance [WF74]. This kind of distance computes the minimum number of edit operations
needed to convert one string to the other. Those edit operations can be of three types:

• insertions, if a word present in the hypothesis is not in the reference,

• deletions, if a word present in the reference is not in the hypothesis,

• substitutions, if a word in the reference is substituted by another word in the
hypothesis.

Each of those operations has a predefined cost which can be fixed for all the words— as in
the Levenshtein distance case — or changed from word to word. The Levenshtein algorithm
is an efficient algorithm to find the set of edit operations with minimum Levenshtein
distance, and it is illustrated in Fig. 3.2

This algorithm is based on dynamic programming (DP) similar to the Viterbi algorithm
explained in Sec. 2.14. In Fig. 3.2(a), a horizontal arrow in the matrix symbolizes a
deletion, a vertical arrow an insertion, and a diagonal arrow symbolizes a substitution
or a correct assignment which always has zero cost. As it is common to all dynamic
programming techniques, each of the cells in the grid is assigned a distance which is
computed following the Bellman optimality principle [Bel67], i.e. computed selecting as
predecessor cell the one among the three possible that generates a minimum cost in the
present cell. This optimum predecessor is saved and the process is repeated for all the
cells in the grid, until the cell in the upper right corner is reached. After computing the
optimum predecessor for this cell, the sequence of optimum predecessor cells is traced
back, and thus the sequence of optimum edit operations. The result of the Levenshtein
alignment between reference and hypothesis is displayed in Table 3.2(b). For a more
detailed mathematical treatment of string edit distances we refer to [BC95] or to [WF74].

Word Error Rate (WER)

After performing this alignment for each of the test files we obtain a total number of
insertions, deletions and substitutions on the test set, which can be viewed as the errors
generated by the assessed ASR system. These numbers are then used to compute the

1 For an excellent review of most of the current algorithms used in DNA sequencing to compare, align
or search DNA strings see [Gus97]
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t h r e e 8 6 5 4 3 5 4
f o u r 6 4 3 2 4 4 7
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(b) Alignment result

Fig. 3.2: Levenshtein algorithm to align the hypothesis of an ASR system with the reference.
The red trace-back path in Tab. 3.2(a) shows the best alignment. The costs used to compute the
Levenshtein table are csub = 1 and cdel = cins = 2. The ’DEL’ in Tab. 3.2(b) stands for deletion.

WER score of the ASR system on the given set. This WER score can be expressed as:

WER =
I +D + S

N
(3.1)

where I, D, S and N are respectively the total number of insertions, deletions, substitu-
tions and the total number of words in the reference test set.

An alternative metric to the WER is proposed In [WN82]: the relative information
loss (RIL). This is an entropy-based measure which can be computed from phonetic-
pair or word-pair confusion matrices, if the elements of these matrices are interpreted as
probabilities of a given confusion pair.

Statistical Comparison of Measurements

Once a WER score has been computed for each ASR system, there remains the question
of how to compare the scores or hypothesis/reference alignments of two different ASR
systems. The most straightforward way is to simply assume that WER scores are deter-
ministic quantities and compare them as such. But this ignores the fact that WER scores
are stochastic quantities subject to random variation. This arises from the finiteness of
the test data set, which implies that our score is just an estimation of the true WER.
Fortunately, there are a plethora of methods to compare stochastic quantities [Roh76],
which basically fall into two categories:

• confidence intervals are intervals centered at the estimated WER values in which
the true WER value can fall at a certain confidence level α.

• statistical tests, by contrast, test the hypothesis that two given Levenshtein align-
ments are statistically equivalent against the hypothesis that both are different at a
certain confidence level α.

The diagram in Fig. 3.3 shows the evaluation process of two ASR systems based on
the statistical comparison of the WER. As already mentioned, if the test set consists of
data with varying environmental/task attributes, then the measured WER is a measure
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Fig. 3.3: Evaluation of the accuracy of two ASR systems on an ASR task. The HYP data are
the hypothesis files of the recognizer, whereas the ALI data are the results of the Levenshtein
alignments with the reference transcriptions. The McNemar’s statistical test is used to determine
whether the differences in the WER between both ASR systems are statistically significant. The
confidence interval (CI) determines the range of values were the true value of the WER may fall.

of the robustness of a system to changes in these attributes. In the following two points
we explain in more detail how the confidence intervals and statistical tests are performed.

Confidence Intervals

To compute a confidence interval for the WER, we have to find a statistical characteriza-
tion of this random variable. Previous work in the field [PL95, Kuh94, GC89, Moo77] has
exclusively focused on the statistical modeling of the correctness 2, assuming that dele-
tions and substitutions occur according to a binomial distribution b(N, p), where p is the
probability of error and N is the total number of reference words. This model, however,
cannot be applied when the insertions must be taken into account, because they are not
considered in the correctness.

However, if we now let N → ∞ with λ = Np constant in the binomial distribution
formula, we obtain the Poisson distribution P (λ) with parameter λ [Roh76]:

P (K = k) = e−λ
λk

k!
(3.2)

where K is a random variable modeling the observed number of errors, and the parameter
λ can be interpreted as the expected number of errors. We can extend the values of K
and λ to include the insertions, and consequently we can use the previous distribution to
find a distribution for the WER. This is easily found by denoting the associated random
variable to the WER with W and recalling that W = K/N . Substituting in the previous
equation we find:

P (W = w) = e−λ
λNw

(Nw)!
w = 0,

1

N
,
2

N
, . . . (3.3)

2 The correctness is defined as WC = N−(D+S)
N

, and consequently does not include the number of
insertions.
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The mean and the variance of the random variable W are:

µW =
λ

N
(3.4)

σ2W =
µW
N

To estimate the mean of W — and therefore the value of the parameter λ— we can use
one of the two following estimators M̂ :

• Take the value of the actual sample w = k/N and assume that this is the estimate
of the mean, so that the estimate has the same distribution as the random variable
W , i.e.:

M̂ =W (3.5)

The upper and lower limits of the confidence interval of the value of λ at a certain
level α— usually 0.05% or 0.01% — can be found using the following reasoning: the
upper limit is determined by the highest value of lambda for which the probability
P (W ≤ w) is larger than α/2, whereas the lower limit is determined by the smallest
value of λ for which the probability P (W ≥ w) is larger than α/2. As before
w = k/N where k is the number of errors observed including insertions, deletions
and substitutions. Using the two previous probabilities and the distribution of W
in Eq. 3.3, the limits λinf and λsup are found by solving for λ the following two
equations:

upper limit
k
∑

j=0

e−λsup
λjsup
j!

=
α

2
(3.6)

lower limit

∞
∑

j=k

e−λinf
λjinf
j!

=
α

2

where k is the number of observed errors, lambdasup and λinf are the limits of
the confidence interval, and α is the desired confidence level. Both equations can
be numerically solved for λ using the Newton method to numerically solve non-
linear equations [HSZ96]. The solution is shown in Fig. 3.4 where the variation
of the interval lengths with the WER is shown. It is interesting to observe in the
previous figure that the uncertainty increases with increasing WER, which is actually
logical since the Poisson distribution spreads with increasing λ. Also, the confidence
intervals obtained assuming a binomial or a Poisson distribution are similar for low
WERs, but differ significantly as the WER increases. In fact, for the binomial
model the length of the confidence interval reaches its maximum at a WER of 50%
and then decreases with increasing WER. For the Poisson model, in contrast, the
length increases steadily with increasing WER.

• Another possible estimator is to take a sequence of measurements of the WERs, and
compute the sample mean to estimate the true WER, i.e.:

M̂ =
1

n

n
∑

i

Wi (3.7)
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Fig. 3.4: Variation of the upper and lower confidence interval lengths with the WER. In both
figures, the estimator of the true WER is the current WER value. In (a), the number of words N is
3257. The continuous line corresponds to the upper part of the interval, whereas the discontinuous
corresponds to the lower part. The dotted line corresponds to half the length of the confidence
interval obtained by assuming a binomial-distributed number of errors. In (b), the length of the
confidence interval for the WER is shown for different sizes of the test set. The ‘digits’ set has
11869 words, the ‘spelling’ set has 4480 and the ‘cities’ set has 533.
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Since the measurements are independent and identically distributed, the mean and
variance of the estimator M̂ are:

µM̂ = E{M̂} = λ

N
= µW (3.8)

σ2
M̂

=
µM̂
nN

Assuming that the values of µM̂ and σM̂ are given, i.e. they are not estimated
using an estimator for the mean and for the variance, the following quantity is
known to be distributed according to a normal distribution of zero mean and unit
variance [Roh76]:

M̂ − µ̂M̂
σ̂M̂

∼ N (0, 1) (3.9)

whereN (0, 1) is the normal distribution of zero mean and unit variance. A confidence
interval for the values of µW at confidence level α can be found by putting:

P (−dα/2 <
M̂ − µM̂
σM̂

< dα/2) = α (3.10)

where the dα/2 is the α/2-quantile of the normal distribution with zero mean and unit
variance. The previous equation can be put in the form of a quadratical equation
and solved for µM̂ to give:

µW = M̂ +
d2α/2

2nN
±

√

d4α/2

(nN)2
+ M̂

d2α/2

nN
(3.11)

for sufficiently large n this can be further simplified to:

µW ' M̂ ± dα/2

√

M̂

nN
(3.12)

A representation of this last equation as a function of the estimated WER, i.e. as
a function of M̂ , is shown in Fig. 3.5. As in the previous case, the length of the
confidence interval increases with increasing WER, which implies that statistically
significant differences between two different WER values must be larger for large
WERs.

Statistical Tests

On the other hand, statistical tests on the alignments just tell us whether two given align-
ments are statistically different or not. All those tests define one or more random variables
on the alignments, extract samples of them from each hypothesis/reference alignment,
and then define a certain statistical test on some statistic hypothesized on those mea-
surements. A variety of statistical tests have been proposed to compare ASR system
outputs [Mar89, GC89], but we restrict our discussion to the description in some detail
of the well-known McNemar’s test. Assume we have two alignments A1 and A2, each
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Fig. 3.5: Variation of the length of the confidence interval with the estimated WER for different
values of n. The number of reference words N has been fixed to 1001, and the confidence level
is 95%. Note the similarity of the curves with those in Fig. 3.4, except for the steps seen in that
figure, which are not present in this case because the estimator M̂ has a continuous density.

associated with a certain ASR system output and computed using for instance the Leven-
shtein distance described above. The results of both alignments can be summarized as in
Tab. 3.2, where N00 is the number of tokens correctly classified by both systems, N01 is
the number of tokens classified correctly by A1 but incorrectly by A2, N10 is the number
of tokens classified correctly by A2 but incorrectly by A1 and finally N11 is the number of
tokens incorrectly classified by both systems. A token can be a phoneme, a word or even
a whole sentence. Since we are interested in the differences between both ASR systems,
it seems logical to ignore the cases where both ASR are equal and to compare instead the
probability P (A1correct∧A2incorrect) with the probability P (A2correct∧A1incorrect).
If both probabilities are equal, it would be logical to think that both ASR systems are
statistically undistinguishable. More formally we define K as the number of tokens in
which the alignments A1 and A2 differ, i.e. K = N01 + N10. If we now condition the
previous probabilities on K we can define:

q = P (A1correct ∧A2incorrect|K = k) (3.13)

1− q = P (A2correct ∧A1incorrect|K = k)

The null hypothesis H0 is thus ‘both conditional probabilities are equal’ which can be
expressed mathematically as:

H0 : q =
1

2
(3.14)

To test the null hypothesis let’s assume that N01 and N10 are distributed according to the
binomial distributions 3 B(k, q) and B(k, 1 − q), respectively. Under the null hypothesis

3 This assumption is in general only valid if the errors are assumed independent which is only strictly
true if tokens are whole sentences, or if we are evaluating an isolated word ASR system
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A2
Correct Incorrect

A1 Correct N00 N01
Incorrect N10 N11

Tab. 3.2: Comparison of the results of two alignments.

both random variables are equally distributed and the binomial distribution is symmetric
around k/2. Therefore we can use the following two-sided test:

pMcNemar =







2Pr(n01 ≤ N01 ≤ k|K = k), if n01 > k/2;
2Pr(0 ≤ N01 ≤ n01|K = k), if n01 < k/2;
1, if n01 = k/2.

(3.15)

which can be computed directly as follows:
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(3.16)

If pMcNemar is under a certain predefined significance level α then the null hypothesis H0
must be rejected. This significance level α usually takes the values 0.05, 0.01 or 0.001,
and we thus accept/reject the null hypothesis at the 95%, 99% or 99.9% confidence level,
respectively. Furthermore pMcNemar can be interpreted as a the degree of chance observed
in our measurements. If for instance pMcNemar = 0.38, then we have 38% probability that
the differences observed are due to chance. If, on the contrary, pMcNemar = 0.01, we have
just a 1% probability that the differences are due to chance. Another interesting point to
note is that if K is not large enough, then it is not possible to reject the null hypothesis.
This means that the test data must have a minimum size in order to detect significant
differences in the performance, as already stated in section 3.2.

Measures of Efficiency

We have already mentioned that to measure the efficiency of a given ASR system one has
to measure the amount of a resource being consumed or the time a resource is in use to
perform the ASR task. Any of those quantities depend on the complexity or length of the
utterance being recognized, and therefore they must be normalized in some sense by the
utterance complexity or length. A commonly used measure of efficiency is the Real Time
Factor (RTF) which can be computed as:

RTF =
Tcpu

Tutterance
(3.17)

where Tcpu is the total cpu time needed to recognize the utterance, and Tutterance is the
total duration of the utterance. This measure is between 1 and infinity, with values near
to 1 being close to real time operation.

Another commonly used measure of efficiency is the profile of an ASR system, which
is the amount of memory occupied by the ASR system. This figure is usually given in
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kb or Mb, i.e. not normalized, but it is clearly dependent on the complexity of the ASR
task. This figure is specially important for the so-called embedded applications where the
amount of available memory and CPU resources are strongly limited.

3.3.3 Methodology: Previous ASR Evaluation Exercises

Using two well-known evaluations as examples, we show two very different methodologies
to evaluate ASR systems. Although there have been other evaluations, usually restricted to
the participants of a certain project such as SAM or Verbmobil, we have chosen the above
two because they are the most well-known programs open to every institution willing to
evaluate its ASR system or a particular ASR algorithm. Moreover, they are representative
of two different kinds of evaluation. The one assesses and evaluates the performance
of state-of-the-art ASR technology for a certain spoken language processing application,
whereas the other tries to set a standard for front-end algorithms, which are a part of
ASR technology, somehow independent of the end-application intended. The one aims at
paving the way for the introduction of ASR technologies into real life applications, the
other may be interpreted as an attempt to improve ASR technology by finding a best
front-end and afterwards building upon it. And finally the one is of special interest for
language engineers willing to integrate ASR technology into a spoken language processing
system, whereas the other is more interesting for the ASR technologist whose aim is to
improve a certain ASR system.

The ARPA/NIST Evaluation Programs

The first official ASR system evaluation program using the Resource Management (RM)
corpus, which was the first created by ARPA for the sole purpose of evaluation [PFB88],
was conducted in 1989, and marked the start of a series of yearly tests which continue
today. These evaluation programs are coordinated by the US National Institute for the
Standardization of Technology (NIST), and involve the ARPA, the US Linguistic Data
Consortium (LDC), and the research institutions which participate with their ASR systems
in the evaluation. Those evaluations programs are open to all research institutions willing
to participate, and participating institutions vary from year to year. These programs have
concentrated in the past on ASR system evaluation for ASR task, i.e. for speech-to-text
transcription, but today the trend seems to be to evaluate the ASR systems in larger spoken
language processing tasks. The complexity of the ASR tasks proposed for evaluation has
been growing from year to year, spanning from the initial read speech RM ASR task to
the spontaneous speech Call Home (CH) ASR task. In fact, in the last years there have
been two ARPA/NIST ASR evaluation programs: the Broadcast News evaluation and the
Recognition of Conversational Speech over Telephone evaluation. The first focused on the
recognition of so-called ‘found speech’ in broadcast news, and was organized in a hub and
spokes paradigm. This paradigm consists simply of defining a central test— the hub —
which all participants must evaluate, and a set of independent test suites— the spokes
— on which participants can evaluate if they are willing to test the effect of different
channels, noise conditions or non-native speech on their ASR systems. The central test
for this program was therefore termed Hub-4, and was extracted from the Broadcast News
(BN) corpus recorded by ARPA. On the other hand, the second program concentrated
on the transcription of telephone conversations, i.e of spontaneous speech. The hub of
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this program was extracted from the CH corpus, and was termed Hub-5. Compared
to the Hub-4 test set, the WER on the Hub-5 was much larger due to typical effects
of spontaneous speech such as contracted forms, disfluencies, etc. . . . As the train data
set, participants in both programs used the test data set of past years. To ensure the full
comparability of the measurements, all the participants in both evaluation programs shared
the same evaluation software package SCLITE, which performs the reference/hypothesis
alignments and measurements already described in Sec. 3.3. For a good summary of
ARPA/NIST evaluations until the year 1998 we refer to [YC98], and for up-to-date and
detailed information about present and past ARPA/NIST evaluations, we look into the
NIST web-site http://www.nist.gov/speech.

In spite of the success of those evaluations, in the sense that some of the most renowned
institutions in ASR have participated in them, it is not actually clear if they are useful
for comparison of ASR algorithms or approaches. This is the most interesting comparison
from the standpoint of a speech technologist, since his work is mainly to implement and
extend algorithms into an existent ASR system. The ARPA/NIST evaluations however
compare ASR systems, not algorithms or approaches, i.e. they are not primarily intended
to find out why a given ASR system performs well or badly. Actually, the ASR systems
compared in those evaluations are so different, that sometimes it is hard to tell why a
certain system is actually performing better. It could be due to a particular algorithm
implemented in the best performing system, or it could as well be due to a combination of
factors. Therefore it seems that to be more useful to speech technologists, those evaluations
should apply some kind of restrictions or conditions on the ASR systems evaluated. This
is somehow coupled to the fact that ARPA/NIST evaluations do not focus on a particular
situation or phenomenon ,e.g. noise or out of vocabulary words (OOV), since ARPA speech
databases usually include many different phenomena which must somehow be tackled by
the competing ASR systems. What is important is the overall performance, not the
performance in the presence of a particular phenomenon.

Nevertheless ARPA/NIST evaluations are certainly useful for language processing en-
gineers willing to integrate an ASR system into their large language processing system.
This seems to be the future direction favored by ARPA/NIST, since the new evaluation
programs Spoken Document Retrieval (SDR) [GAVF98] and Rich Transcription (RT) eval-
uate ASR systems embedded in a larger language processing Task, which suggests that
ARPA/NIST evaluations are becoming even more application-oriented.

The AURORA Evaluations

The first evaluation program sponsored by the EU and open to any institution willing to
participate in it was started in 1999 under the aegis of the European Telecommunication
Standards Institute (ETSI) and continues today. The official objective of this program was
somehow more precise than that of ARPA/NIST evaluations, since it was to find an ASR
front-end standard for distributed speech recognition (DSR) over mobile voice networks.
The official evaluation program has been called AURORA DSR front-end evaluation, and
is coordinated by the STQ DSR group of the ETSI. This group has given the guidelines and
recorded different speech databases for the official evaluation. Those speech databases were
made available through the European Language Resources Association (ELRA), which
plays a similar role to the US LDC. A first standard was issued in the year 2000, which
was based on the usual mel-filter cepstral coefficients [ETS00]. A more advanced standard
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front-end, based on more robust algorithms, was released in October 2002 [ETS02].

Essentially the idea of DSR is to split the ASR process between the mobile terminal,
e.g. cellular phone or PDA, and a distant end-server. The mobile terminal performs the
speech signal pre-processing and feature extraction for ASR. It also encodes the feature
vectors to transmit them over a mobile telephone channel to the distant end-server. This
powerful end-server performs the decoding of feature vectors, acoustic modeling and de-
coding steps, which are more computationally expensive. This approach guarantees a
minimum loss of ASR performance due to transmission effects, even over different mobile
transmission channels. On the other hand, the environments of mobile applications are
usually noisy or very noisy at the user’s end, which implies that front-end algorithms for
those applications must be robust against noise. At the same time this fact means that the
evaluation data must somehow include this phenomenon, if the results of evaluation are
to be significant for such applications. Evaluation was performed at the ASR task level,
and the end-application initially intended was command-and-control, and therefore tasks
with a small to medium vocabulary size. Since just front-end algorithms could compete in
the official program, a standard back-end, i.e. acoustic modeling and decoding, software
and configuration was provided to all participants. This ensured a high degree of compa-
rability between the ASR results of different algorithms. Thus participants had to provide
the results of the ASR system, built up from their front-end and the pre-defined back-end,
on the evaluation database provided by ELRA. The qualities to measure were of course
the overall noise robustness, the degradation due to channel encoding and the latency, i.e.
the delay introduced by the front-end algorithm. The measure used to quantify the first
qualities was the word accuracy, instead of the usual WER [HP00].

The first speech database issued for the program, called AURORA 1999 database,
was extracted from the TI-digits database, which consists of sequences of digits spoken in
American English. Different noises at different SNR levels were added artificially to the
training and test speech data. Added noises were identical for both test and train sets,
and no clean data for HMM training was provided. Since some participant institutions
argued that their approaches could only be trained on clean data and that test noises
must be different from train noises, a second speech database was provided in year the
2000 and was called AURORA-2000 [HP00]. The differences from the previous database
were a separate full training set with clean speech only, and two new test conditions. The
first with added noises different from those in training, and the second with a channel
distortion applied to the speech data. More details about this database can be found in
Sec. 7.2.1.

In spite of the extended use of the AURORA-2000 database to test noise-robustness,
the database has its limitations. First of all the different noises have been added artifi-
cially to the speech signal, which implies that complex interactions between speech and
noise, present in real speech recordings, are not present in the database. Second, the
proposed ASR task, namely the recognition of English digits, is too little for today’s typ-
ical applications of ASR, which means that results are not easy extrapolated to more
real and complex tasks. A final problem of the unofficial competitions is common to the
ARPA/NIST evaluations: it is difficult to compare algorithms which are implemented in
different ASR systems, since it is hard to tell if the observed improvement is mainly due
to a certain algorithm.

Since the parallel between our objective, namely the evaluation of acoustic modeling
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algorithms for noise robustness, and that of the AURORA evaluation is evident, we present
in the next section an evaluation exercise which is similar to the AURORA evaluation.

3.4 Description of our Evaluation

Task

The first step in the design of a technology evaluation is to define the task which will
be used for the evaluation. Remember that in Chapter 2 we have seen that an ASR
systems can be decomposed into three main, more or less independent sub-systems, namely
feature extraction, probability computation and decoding. Likewise an ASR task can be
decomposed into a feature extraction, a probability computation and a decoding sub-task.
We have thus a situation parallel to the one depicted in Fig. 3.1, substituting the global
SLP task by the ASR task, the sub-tasks in the figure by the three ASR sub-tasks just
mentioned, the sub-systems by the corresponding ASR sub-systems and finally the SLP
system by the ASR system. The difference with respect to the previous case is that it
is no longer possible to assess the performance of a given sub-system at the sub-task
level, i.e. sub-system performance must be assessed at the global ASR task level. This
is because no human-generated reference for the outputs or inputs of the mentioned sub-
tasks can be generated, and therefore it is neither possible to compare actual outputs
with a ‘best-possible’ output reference, nor it is possible to provide sub-systems with a
‘best-possible’ human-generated input. Therefore to be able to assess the performance of
a given ASR sub-system it is essential to have the other ASR sub-systems. To assess, for
instance, the performance of different feature extraction sub-systems, one could use in each
assessment different acoustic modeling or decoding blocks. However, if the different sub-
system assessments are to be fully comparable, the configurations of the acoustic modeling
and decoding sub-systems must remain fixed or as constant as possible over all assessments.
Consequently, while evaluating on a given ASR sub-task, the sub-systems implementing
the other ASR sub-tasks must remain as constant as possible. Unfortunately, this is not
always possible, since some ASR sub-systems impose certain constraints on the preceding
or following sub-systems, i.e. they are actually not fully independent from each other.

Environment

Once the task level to evaluate on has been determined, the next step is to determine which
is the ASR task environment and which attributes our ASR task must have to match it.
A typical application in cars is of the command-and-control type, where the functionality
of some devices is controlled by voice. The number of commands is usually small or not
very large, and the commands are usually spoken in isolation, e.g. ‘rewind’, or at most
in very short and precise sentences, like for instance in ‘turn the radio off’. Therefore
phenomena typical of spontaneous speech are not an issue for those applications. Speaker
independence is, on the contrary, a must for those applications, since it is certainly in
advance not clear who the speaker will be. As performance of ASR systems is greatly
affected by environmental noise, this is also a very important issue to consider. As was
already discussed in Section 1.2, environmental noise may depend on many factors such
as speed, open/closed car windows or screen wipers switched on, etc. . . .



50 3. Interfacing ASR Systems for Evaluation

Metrics

From Section 3.3 we know that the questions to clarify in this point are three, namely:

• Qualities to measure. Since the main goal of the algorithms developed in SPHEAR
and RESPITE is to improve ASR performance in a variety of noise conditions, the
principal quality to measure is noise robustness. Another secondary quality is the
memory efficiency of the algorithms proposed, or equivalently the number of parame-
ters of a recognizer using any of those approaches. Finally an interesting quality to
observe would have been the complexity of the algorithms, which is usually measured
using the RTF defined in Sec. 3.3. As it will be seen, the evaluation methodology we
adopt does not let us reliably measure the RTF, so that just a qualitative judgement
of complexity is possible. A second question is what attributes of the task, envi-
ronment or implementation must vary to measure the selected qualities, and which
must be fixed to guarantee a certain comparability. Clearly if the desire is to mea-
sure noise robustness the attributes related to environmental noise must vary, i.e.
assessments must be carried out ideally over the range of noise conditions which are
to be expected during real operation. Since speaker independency is mandatory for
the application intended it must remain fixed, if assessments are to be comparable
and meaningful for the application. So does the spontaneity of input speech, since it
is not an issue for the application intended and therefore phenomena associated with
it is not present in the input speech and must not be tackled by the systems. Other
I/O task attributes such as language or subject area must remain fixed as well.

We have already mentioned above that to evaluate on a given ASR sub-task the sub-
systems implementing the other ASR sub-task must remain as constant as possible
over all assessments. This also concerns the objects used by those systems (object
attributes of the task) to perform the corresponding sub-task. For instance, if two
systems using exactly the same decoding block are to be fully comparable, then the
lexicons used by the identical decoding blocks must be the same. Otherwise it could
be that the results of one of the systems are worse due to a higher confusability of its
lexicon or to some OOV word, and not due to differences in the acoustic modeling
or feature extraction blocks. Likewise if we are to compare two different acoustic
modeling approaches, then the topology, i.e. number of HMM-states and allowed
transitions, of the HMMs must be fixed to guarantee comparability. As we have
already mentioned, efficiency attributes are not as important in this comparison as
accuracy and robustness, since the evaluated algorithms are far from being imple-
mented efficiently. Consequently, we do not demand a uniform implementation for
the evaluated sub-systems.

• Measures. As we want to assess the robustness of feature extraction or acoustic
modeling sub-systems on an ASR task, the most straightforward measure of robust-
ness to use is a kind of mean value of the WER over different environmental noise
conditions. The WER for the single tests is computed as described in Sec. 3.3. As
for the measures of efficiency, we just grade the evaluated systems according to their
number of parameters and to their degree of complexity.

• Methodology for our evaluation. We have already mentioned at the start of
the section that to ensure a high degree of comparability between ASR sub-system
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Fig. 3.6: Interfacing process through the feature interface.

assessments, the other ASR sub-systems should remain as constant as possible over
all those assessments. Typically we have the situation, however, that ASR systems
are not easily separated into a feature extraction, an acoustic modeling and a de-
coding sub-system, because sub-systems have been so closely coded, that it is no
longer possible to take the code of a sub-system in ASR system A and use it in ASR
system B. Consequently if the desire is to have an ASR system built up from blocks
of different ASR systems, the simplest solution is to define interfaces between those
blocks, so as to be able to exchange data between ASR sub-systems. Since we have
three different ASR sub-systems or blocks, two different interface points naturally
emerge:

– feature interface, between the output of the Feature Extraction block and
the input of the acoustic modeling block.

– likelihood/posterior interface, between the output of the acoustic modeling
block and the input of the decoding block.

The interfacing process is illustrated in Fig. 3.6 and Fig. 3.7 where the two different
interfaces are shown. To assess the performance of a certain feature extraction
algorithm implemented in system B, the feature vectors generated by this algorithm
are output, converted into our system’s format and input into our system through
the feature interface to be further processed by the acoustic modeling and decoding
blocks of our system. Of course the parameters of our system’s acoustic modeling
and decoding blocks must have been previously trained on these kind of features.

The situation is somehow different if the performance of a certain acoustic modeling
algorithm is to be assessed. If the given acoustic modeling allows it, the feature vec-
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Fig. 3.7: Interfacing process through the state-likelihoods interface.

tors generated by our systems’s feature extraction block are output, transformed into
the format of system B and input into the acoustic modeling block of system B. This
block further processes the features and generates the HMM state likelihoods which
are then output, converted into our system’s format and input into our system’s
decoding block to obtain the final hypothesis. Note that in this case the parameters
of the acoustic modeling of system B have been trained using our system’s features.
If on the contrary the acoustic modeling algorithm in system B is not compatible
with our system’s features, the feature extraction block of system B must be used
instead of ours. Features are then further processed by the acoustic modeling block
of system B whose output is then converted into our data format and passed to the
decoding block of our ASR system.

As we were not allowed to distribute our ASR system or a part of it among our
project partners, the only solution left was to carry out, at our lab, the interfacing
experiments just described. Since some other project partners had problems as well
with a free distribution of their ASR software, we decided to keep things flexible
and let them decide between sending us their ASR software or just the features or
likelihoods to be input into our ASR system for recognition. If the first variant was
chosen, a running version of their ASR software, including all the necessary objects
such as HMMs, transform matrices, etc. . . , had to be sent to us. If on the contrary
the second option was selected, feature or state likelihood vectors, output by the
feature extraction or acoustic modeling block being evaluated, had to be generated
for the files in the test set of the AURORA database. In addition, the feature vectors
for the train set have to be generated as well, if a feature extraction block is to be
evaluated. This is necessary because the parameters of our acoustic modeling block
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must be trained on those feature vectors, before we can use them to recognize speech.

Evaluation Data

At this point we already have a very precise idea of the evaluation we want to carry out,
and it is thus possible to think of the evaluation data we need. Ideally we would have
bee able to use our own English database recorded in car environments for command-
and-control applications, because it is perfectly suited to the conditions described above.
Unfortunately we were not allowed to distribute this database or a part of it to the other
SPHEAR and RESPITE partners, since possible competitors would then have had free
access to our database. We thus had two possible options: to use another sub-optimal
database or to get the systems from our project partners and evaluate them at our site
using our database. This last option was however not feasible since some partners were
not eager to give away their systems and not enough manpower was available at our site
to fully configure, train and test the five systems for the intended task. Therefore, we
decided to use another sub-optimal database that was somehow suited to our evaluation
and was readily available to all project partners. The best candidate we had, at the
time our evaluation started, was the AURORA-2000 database which is particularly suited
to test noise robustness as mentioned in the preceding section. Of course, the database
has many drawbacks such as artificially-added noises, some noises not suitable for the
application intended and very small size vocabulary, but it was the best, readily available
and affordable database we could have at the time.

3.5 Description of the Interfaced ASR Systems

As already mentioned in Chapter 2 and although at first sight the feature extraction
and acoustic modeling blocks to be evaluated may seem quite different, all of them have
in common that no assumptions on the environmental noise are made. The effect of
environmental noise is mitigated by using the inherent redundancy of the speech signal
or adding redundancy to it. We start with a full description of our baseline ASR system
for the AURORA-2000 ASR task, since the acoustic modeling and decoding blocks of this
system are used to evaluate the blocks of other ASR systems.

3.5.1 Missing Data Class-Imputation with Fuzzy Masks

Approach

This technique was first applied to noise robust ASR by researchers at the University of
Sheffield [CGM94], and has undergone many refinements and improvements since then.
The underlying principles of this theory are:

• Occlusion of speech. This principle refers to the fact that during the auditory
process speech and noise do not mix up additively, like signal and noise in a normal
telecommunications channel. On the contrary, experimental evidence seems to show
that the strongest signal occludes or masks locally the weakest, which is then locally
missing for any practical purpose.

• Redundancy of speech. This second principle claims that the inherent redundancy
of speech may be exploited to recover, in some sense, the missing or occluded regions
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of the speech signal from the present or speech-only regions. This seems to be
corroborated by the fact that human listeners can cope with severely distorted speech
by using the inherent high redundancy of this signal [All94, LC97, WRBB95].

Since, according to the two principles above, the speech signal can be segmented into
present and missing components and the missing ones may be recovered from the present
ones, an ASR system relying on MDT must solve the two following basic problems:

1. Signal-noise segmentation or masks.

2. ASR with missing and present components.

The first problem is not directly related to MDT, although it is crucial to guarantee the
successful use of MDT in any ASR application. In fact, it has been shown that the potential
of MDT for ASR is huge, as the striking results— virtually clean speech performance over a
wide range of SNR— using a priori signal-noise segmentations seem to indicate [GBCJ01].
However, these a priori segmentations or masks are unattainable in practice because a
noise-free version of the utterances is needed to obtain them. Consequently, we need a
signal-noise segmentation algorithm which only relies on the noisy speech signal to obtain
the mask showing the present and missing components of the signal. Unfortunately, no
satisfactory solution to this problem has been found to date, and MDT must therefore be
reliant on imperfect signal-noise segmentation.

In the second problem we assume that a signal-noise segmentation or mask is available,
which is then used to retrieve the missing from the present components using MDT. The
best performing MDT technique to date [JCGV99] is the class imputation, or marginalisa-
tion of the Gaussian mixture density functions of the HMMs over the missing components.
These marginalised density functions are then used in the normal way. In spite of its
good performance, the class imputation approach has an important inconsistency in its
algorithm that may be limiting its potential performance. Since this approach requires
marginalization of normal density functions for each input feature vector, diagonal covari-
ance normal densities are normally used in the acoustic model to reduce the computational
burden. This implies that the components of the feature vectors are assumed uncorrelated.
At the same time, the components of the feature vector cannot be mixed, because then it
is no longer possible to separate missing and present components of the feature vector. As
a consequence, we are forced to use feature vectors in the frequency domain where missing
and present components are easily separated. But the components of a feature vector in
the frequency domain, e.g. filter-bank coefficients, are usually strongly correlated which is
at odds with the use of diagonal covariance normal densities. This inconsistency between
model and features may be partially mitigated by increasing the number of normal den-
sities in the HMMs, but this increases the computational load. The interested reader can
find mathematical and further details about MDT [CGJV99, GBCJ01].

Evaluated System

In order to evaluate MDT for ASR, we received, from the University of Sheffield, an
ASR toolkit that implements present/missing mask generation, feature extraction and
acoustic modeling for MDT speech recognition. Since MDT is chiefly an acoustic modeling
approach, the logical interface point with our ASR system is the likelihood interface.
Consequently, the situation in this case is as depicted in Figure 3.7.
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The evaluated system was configured as described in the following points:

• Feature extraction. filter-bank of 32 linearly spaced filters in the ERB scale be-
tween 50 Hz and 3750 Hz [Coo91]. The instantaneous Hilbert envelope at the output
of each filter was smoothed with a first order filter with an 8 ms time constant, and
sampled at a frame-rate of 10 ms.. A cube root compression was applied to the frame
of energy values. No further transformation, e.g. DCT, was used in this case because
otherwise present and missing components would then be mixed up. Static features
were supplemented with their temporal derivatives, to form a 64 dimensional feature
vector.

• Acoustic modeling. Topology of HMMs (number of states per word and allowed
state transitions)is exactly the same as in our baseline system. Continuous density
HMMs with a mixture of 7 diagonal covariance normal densities per state, which
results in a total of 7×127 = 889 normal densities of 64 dimensions. The total number
of parameters in the acoustic modeling block is 114935 ((64+64)∗889+889+2∗127).

• Training. The Baum-Welch algorithm was used to compute the normal densities,
the mixture weights of the densities and the state-transition probabilities. The train-
ing set used to train these parameters was the clean set of AURORA 2000.

• Recognition. The fuzzy-masks were generated for the files in the test sets of the
AURORA-2000 database. The fuzzy-masks used in the recognition step are soft
signal-noise segmentations in the spectro-temporal space. These masks are obtained
by computing the instantaneous SNR value for each filter-bank coefficient and ap-
plying a softmax non-linearity to it, so as to have a value between 0 and 1 [GBCJ01].
After that, fuzzy masks and feature vectors were input into a MDT acoustic mod-
eling that employs class imputation with bounded marginalization as in [GBCJ01]
to compute the values of the state likelihoods. The final step was to input the state
likelihoods through the likelihood interface into the decoding block of our baseline
system. We also used the HHM-state transition probabilities, generated during HMM
training with HTK, during decoding. As in our baseline system, no grammar was
used.

3.5.2 Tandem Acoustic Modeling with Multiple Streams

Approach

In contrast to the previous approach, which exploits the inherent redundancy of the spec-
tral feature vector, the multi-stream approaches incorporate into the speech recognition
process different feature vectors conveying complementary information about the speech
signal, or any other signal, for example lip movements, related to the speech production
process. The reasons for this combination of different sources of information are manifold,
the most important being the incorporation of different aspects or views of a speech sound
which may help to discriminate between similar sounds. A second reason more relevant
to noise robustness is the fact that different speech features may be unequally affected
by certain noises, which can be used to improve performance in noise by weighting or
averaging in some sense over all streams of features, so that ASR performance remains
constant over a wider range of noise conditions. From a pattern recognition viewpoint
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this approach is none other than the so-called mixture-of-experts approach [Bis96, Bou99]
which aims at tackling situations in which an input pattern may have different statistical
properties, or equivalently in which a different mapping must be used depending on the
region of the input space. We will return to the topic in Chapter 6 where the multi-stream
approach will be treated in some detail.

On the other hand, the tandem acoustic modeling approach [HES00] uses the output
of a neural network classifier as the input features for the Gaussian mixture model, so
that the system can be interpreted as having effectively two acoustic models operating in
tandem. The neural net is trained on phonetic targets, and therefore the net outputs could
be interpreted as phonetic posterior probabilities whose variation in time is then modeled
using the GMM/HMM acoustic modeling. According to the authors in [HES00] this allows
the GMM/HMM acoustic model to concentrate on the difficult phonetic transitions, since
the neural net eliminates spurious variability and magnifies the phonetic transition regions.
As it will be seen in Chapter 4, the neural net of this approach can also be interpreted
as performing a kind of discriminative dimensionality reduction which is somehow a more
natural interpretation than the one explained above.

Both the tandem and the multi-stream can be combined as in [HES00] to obtain
further performance improvements. The basic idea is to take two or more neural nets and
train each using different kinds of features, which should convey as much complementary
information as possible. After that the outputs of the neural nets are combined during
recognition to obtain a single feature vector which is then passed to the GMM/HMM
acoustic model. Since the outputs of the neural nets are phonetic posterior probabilities
the combination can be a simple average of their outputs. In Chapter 6 we will return to
the more general question of how to combine multi-stream and tandem-like approaches.

Evaluated System

Our RESPITE partners at the International Computer Science Institute (ICSI) provided
us with a package specially designed to train neural nets for classification tasks in ASR: the
SPRACHcore package 4. This is a highly modular package which includes different feature
extraction algorithms, very efficient neural net training and classification programs, and a
very powerful Viterbi decoder.

The main features of the evaluated system are the following:

• Feature extraction. The speech signal was analyzed using a window length of 25
ms and a frame shift of 10 ms. This system uses two different feature streams, namely
the well-known PLP features (cf. Sec. B.1) and the Modulation Spectrogram (MSG)
features developed at ICSI (cf. Sec. B.3). The PLP features in this experiment
consisted of the frame energy plus a total of 12 PLP coefficients, i.e. a total of 13th
coefficients. The MSG feature vector consisted of two different 14th-dimensional
feature vectors which were concatenated to obtain a final 28th dimensional feature
vector.

• Acoustic modeling. Dynamic features were appended to the PLP vector and a
time window of nine enlarged PLP feature vectors was then used as input to the
neural net resulting in 13 × 3 × 9 input units. No dynamic features were appended

4 http://www.icsi.berkeley.edu/∼dpwe/projects/sprach/sprachcore.html
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to the MSG static features but a time window of 9 MSG frames was used as well,
resulting in a total of 28×9 input units. Both MLPs had just one single hidden layer
of 480 sigmoidal units, and an output layer of 24 softmax units each associated with
one of the phonetic classes present in the AURORA digit corpus. The activation
function of the units in the hidden layer was a sigmoid whereas that of the output
layer is a softmax function, as described in Section 5.5.1. The scHMMs consisted of
a supervised code-book of 127 normal densities with 24 dimensions, and the same
topology as in our baseline system. The total number of parameters used in the
feature extraction and acoustic modeling blocks was 370011 ((351 + 24) × 480 +
(252 + 24) × 480 + 127 × ((24 × 23)/2 + 24 + 24) + 127× 127 + 2× 127).

• Training. The targets of the neural nets were hard targets (output values are 1 or 0)
obtained from a phonetic segmentation of the AURORA 2000 multi-condition train
set. The coefficients of PLP and MSG features were normalized to have null mean
and variance one, to avoid problems with the net training algorithm and to speed
up the computation. The neural net training was performed using the usual error
back-propagation algorithm (EBP) with cross-validation to avoid over-fitting (cf.
Sec. 5.5.2), and the process was stopped when cross-validation scores did not change
significantly or after a maximum of 12 EBP iterations. After MLP training, the
pre-nonlinearity outputs of the MLPs were used as features in order to have features
which are better adapted to the GMM/HMM acoustic model. The combination
of the outputs of the PLP and MSG nets was achieved by simply adding the pre-
nonlinearity outputs of both nets as reported in [HES00].

Subsequently the combined features were used to train the scHMMs, as in our base-
line training using a supervised code-book. The difference was that there was no need
for an LDA transform in this case since dimensionality reduction had already been
performed by the neural net. Therefore, the supervised code-book of 24-dimensional
normal densities was trained using the same segmentation into states as in our base-
line system (cf. Sec. 7.3.1). As in our baseline training, the quantized features
were used during Baum-Welch training to compute the emission probabilities of the
vq-symbols in each HMM state and the state-transition probabilities. The training
set used to train neural nets and scHMMs was the multi-condition set of AURORA
2000.

• Recognition. We started the evaluation of the trained tandem multi-stream sys-
tem by generating the pre-nonlinearity outputs of the nets for the test sets of
the AURORA 2000 database, and combining them as in the training step. After
that we input the combined feature vectors through the feature interface into the
GMM/HMM acoustic modeling of our ASR system, configured as described in the
training step, to obtain the final sentence hypothesis. As in the previous experiments,
the decoding block of our ASR system does not employ any grammar at all.

3.5.3 Multi-Stream Hybrid MLP/HMM System

Approach

Neural nets are known to be powerful tools for pattern recognition tasks [Lip87, Bis96] but
they fail to grasp the time variation of the speech signal when they are used in isolation.
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To overcome this problem, a series of approaches using neural nets were developed but
it was not until the early 90s, as the first hybrid ANN/HMM systems were being devel-
oped [BW90], that a first successful neural net approach for ASR arrived. The rationale
behind hybrid ANN/HMM acoustic modeling is to combine the outstanding discrimina-
tion capabilities of neural nets with the good modeling of time variation offered by HMMs.
Essentially the idea is to substitute the GMM used in conventional HMMs by an MLP (cf.
Sec. 5.4) with one hidden layer, and use it to compute the state posterior probabilities as
shown in Figure 5.3. Actually, what makes both approaches so different is the training
algorithm, since the ANN is trained to approximate conditional state posterior probabil-
ities instead of conditional state likelihoods, and is therefore a discriminative training by
nature. This means that during training not only the likelihood of the right state is max-
imized but also the likelihood of the incorrect states is minimized. For a detailed review
of the hybrid approach we refer to [MB95] and to Chapter 5.

This approach can be combined with the multi-stream paradigm in a way similar to the
tandem approach. As in this approach, two or more neural nets are trained independently
on two or more complementary feature sets. Since the neural nets have been trained using
the same output targets, the outputs of both nets can be combined during recognition to
obtain the final state posteriors, which are then passed to the decoding block to generate
a final recognition hypothesis.

Evaluated System

The most important characteristics of the evaluated system using the previous approach
are detailed in the following points:

• Feature extraction. The evaluated hybrid ANN/HMM system used exactly the
same feature streams as the tandem multi-stream system, namely the PLP and the
MSG feature sets.

• Acoustic modeling. The topology of the neural nets used is different from the one
used in the tandem multi-stream system, since the targets of the neural nets in this
case are the 127 states of the whole word HMMs of our baseline system. This makes
a total of 127 output units for each neural network (cf. Sec. 7.3.1). The number of
units in the hidden layer for both neural nets is 480, and the number of input units
for the PLP neural net is 13 × 3× 9 whereas the MSG neural net has 28 × 9 input
units. The activation function of the hidden and output units are the same as for
the tandem system. The total number of parameters used in the acoustic modeling
for this approach were 411360 ((351 + 127) × 480 + (252 + 127)× 480).

• Training. As in the tandem case, the coefficients of PLP and MSG features were
normalized to have null mean and variance one. Both neural nets are trained in-
dependently on each of the feature sets, using exactly the same segmentation into
HMM-states we used to obtain the code-book for LDA in our baseline system (cf.
Sec. 7.3.1). Neural nets were also trained using the same algorithm (EBP) and
methodology as for the tandem system, i.e. hard targets, cross validation, etc....
The training set used to train both neural nets was the multi-condition set of AU-
RORA 2000.
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• Recognition. After training both neural nets, they were used to generate the HMM-
state posteriors for each speech frame in the test sets. The HMM-state posteriors
obtained from each neural net were subsequently combined to obtain a single pos-
teriors vector per frame. The combination technique was similar to the one used
in the tandem multi-stream approach, but instead of adding the pre-nonlinearity
outputs we added the logarithms of the outputs, i.e. we multiplied the posteriors.
The resulting HMM-state posteriors vectors were then input into our ASR system
through the likelihood interface, and were decoded using the Viterbi decoding block
of our baseline system. As in the previous assessments, no grammar was used during
the decoding.

3.5.4 Multi-Band Noise-Contaminated Training System

Approach

The multi-band paradigm for ASR is a kind of multi-stream approach in which the streams
are associated with frequency sub-bands. This approach was first suggested by Bourlard
[BD96, BD97] who was largely inspired by the work of Fletcher [All94], which dealt with the
effects of telephone channel distortion on human speech intelligibility. In this approach the
spectral sub-bands are independently processed and afterwards recombined at some later
stage of the ASR process. Theoretically the benefit of this technique for noise robustness
is the possibility to recognize noisy speech by discarding the noise-corrupted sub-bands
and using just those that have not been affected by noise. Another potential advantage
of the multi-band approach would be the possibility to model asynchrony between sub-
bands, since it could well be that phoneme transitions do not occur synchronously between
sub-bands. But to allow for asynchronism between sub-bands a significant adaptation of
the recognizer must be performed [Bou99, WKM98, VM90], since the recombination is no
longer at the HMM-state level.

In spite of some successful initial tests using a very simple multi-band approach to
deal with artificial narrow-band noises and the continual refinement of this approach using
more elaborated sub-band combination methods [MHB99, GB00, MHGB99, HM00], it
was not possible to demonstrate any significant improvement with respect to the full-band
baseline systems when the interfering noises were wide-band or real-world noises [Hag01,
pp.132,170]. Nor has any of the tested multi-band asynchronous combination algorithms
shown a significant and clear improvement over the synchronous or state-level combination
approach [MM99].

Recently, however, a variant called multi-band noise-contaminated approach based also
on the multi-band paradigm has been successfully used to deal with wide-band real-world
noises [DR01] was developed by researches at the Faculté Polytechnique de Mons (FPM).
The idea is based on the simple but clever observation that, if sufficiently narrow frequency
bands are considered, noises inside these bands differ only in their energy level, not in the
shape of their band-limited power spectrum. Consequently, if we train our acoustic models
using speech data artificially corrupted by any kind of wide-band noise added at different
SNR levels, it can be expected that these acoustic models are robust to other kind of noises
different from that used to corrupt the training data.
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Evaluated System

The main features of this system are explained in the following points:

• Feature extraction. In a first step a critical band analysis of the speech frames
was carried out based on a bank of 30 trapezoidal filters equally spaced along the
Bark scale. A temporal filter of the J-RASTA kind [HM94] was then applied to
the temporal trajectories of the filter-bank coefficients. The 30 filtered critical band
energies were then divided between 7 frequency sub-bands and therefore grouped into
sub-vectors. The 7 sub-bands were a kind of compromise between the assumption
of sub-band narrowness and keeping enough speech specific information in each sub-
band.

• Acoustic modeling. Each sub-band vector was normalized to make them indepen-
dent of the absolute energy of the speech frame. A temporal window of 15 frames was
afterwards constructed for each sub-band and then transformed using a non-linear
transform implemented via an MLP with 2 hidden layers, in a way similar to the
tandem system described in Sec. 3.5.2, since phonetic targets are used as well in this
case. However, the output vector space used during recognition is not the output of
the output layer but the output of the 2nd hidden layer. It will be shown in Chap-
ter 4 that this is actually theoretically related to linear discriminant analysis (LDA).
These neural nets have 1000 nodes in the 1st hidden layer and 30 in the 2nd hidden
layer. The non-linearly transformed features were then concatenated to obtain an
acoustic feature vector that can be used for ASR in the conventional sense. The
training data used to train these neural nets was a contaminated (henceforth ‘con-
taminated training’) version of the clean train set of the AURORA 2000 database.
To contaminate the clean data, white noise at different SNR levels was artificially
added. The acoustic modeling used was a rather large hybrid MLP/HMM acoustic
model [MB95] with just one single hidden layer. The inputs of this model were 3
concatenated frames of the above described feature vector which gave 3 × 7 × 30
input nodes. The number of nodes in the hidden and output layers were 1000 and
127, respectively. These 127 output probabilities modeled the conditional posterior
probabilities of the states in our baseline HMM topology given the current input
vector xt. The total number of parameters in the feature extraction and acoustic
modeling blocks was 1531185 parameters. A more detailed description of this system
can be found in [DR01].

• Training. All neural nets in the acoustic modeling were trained using the usual
EBP algorithm.

• Recognition. Unlike the previously described techniques, we were provided in this
case with just the state likelihoods of the data in the test sets of the AURORA 2000
database. Therefore the state-priors for the files in the test sets of the AURORA 2000
database were generated at FPM using the feature extraction and the acoustic model
described above, and recorded on CDROMs which were then sent to us for evaluation.
We subsequently input the data in the CDROMs into the Viterbi decoding block
of our ASR system through the likelihood interface to obtain the final sentence
hypothesis. As in the previous cases no grammar at all was used during decoding.
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Fig. 3.8: WER results over the three test sets of the AURORA 2000 database. The WERs in (a)
are the averages over all noise types and SNRs at 0 dB, 10 dB, 20 dB and clean, whereas those in
(b) are the averages over the all the test sets and noises.

3.6 Experimental Results and Discussion

To validate the interfaces described in Sec. 3.4, we performed a series of experiments on
the AURORA database. In a first set of experiments, we tested the operativeness of the
feature interface with the tandem multi-stream features. Results were similar to the results
obtained by ICSI with different acoustic modeling and decoding blocks, although for low
SNRs (0 dB) the results of our system were slightly worse.

For the likelihood interface we used the likelihoods from the MDT system in Sec. 3.5.1
for validation. The results obtained with our decoding system were similar to those ob-
tained at Sheffield University, but Sheffield’s results were slightly better than ours because
their system used a kind of grammar during decoding. This grammar forced noise or silence
models at both ends of the sentences, which improved the results in the AURORA case,
specially in low or very low SNRs, due to the long pauses at both ends of the sentences in
the database.

3.6.1 Evaluation Results

The evaluation results of the approaches presented in the previous sections are shown in
Fig. 3.8. The acronym MDT corresponds to missing data class-imputation with fuzzy
masks, TMS to tandem acoustic modeling with multiple streams, MBN to multi-band
noise-contaminated training, and finally HMS to multi-stream hybrid MLP/HMM. The
details about the DC baseline can be found in Sec. 7.3.1.

In Fig. 3.8 we can observe:

• The hybrid MLP/HMM system is on average the best performing system. The
average difference with respect to the next best system (TMS) is about 13% relative,
whereas the difference with respect to our baseline is 62% relative. The differences
between hybrid MLP/HMM and the tandem system, however, are not uniform across
the different test sets. In matched test conditions (test a) both systems have a similar
performance, whereas in unmatched test conditions (test b) the performance of the
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DC MDT TMS MBN HMS

DC - ← ↑ ↑ ↑
MDT ↑ - ↑ ↑ ↑
TMS ← ← - ← ↑
MBN ← ← ↑ - ↑
HMS ← ← ← ← -

Tab. 3.3: Pairwise statistical comparison of the overall results on AURORA 2000 of the evaluated
systems using the McNemar’s statistical test. The direction of the arrow indicates which of the
two systems is better according to this test.

hybrid system is clearly better. In contrast, the performance of the tandem system
is better in the test c set, where the input speech has been additionally distorted by
a channel response.

• The second best performing system— the tandem multi-stream system — is also
much better than our baseline with a 45% average improvement. Moreover, this
improvement is consistent across all test sets and SNR levels.

• The multi-band noise-contaminated training approach is also on average better than
our baseline system (7.5% relative). However, the differences are not consistent
across the different test sets. For the test a set, our baseline is clearly better than
the previous system, whereas on the test b both systems have a similar performance.
For the test c, in contrast, the performance of the multi-band system is much better.
Moreover, this system is the best performing system on this test set, which agrees
with the theoretical expectations discussed in Sec. 3.5.4.

• The worst performing system is the missing data class-imputation with fuzzy masks
system. Its average performance is about 50% worse than that of our baseline, and
the differences are consistent across SNRs and test sets.

To confirm that the differences observed in the previous table are statistically signifi-
cant, we applied the McNemar’s test on each pair of results. The results of these tests are
shown in Tab. 3.3, where the arrows in each cell point to the best system according to the
test. As we can see, all the differences observed in Fig. 3.8 are statistically significant.

To evaluate the complexity of the previous approaches we have qualitatively estimated
the training and recognition complexity of each system. A comparison of the ‘complexity of
the training data’ set and of the training algorithm are shown in Tab. 3.4. By ‘complexity
of the training data’ we mean the degree of difficulty of preparing the training data. Thus,
the missing data approach must be trained on clean speech for the approach to make sense,
and the data must therefore be carefully recorded. For the multi-band noise contaminated
approach we need clean training data as well, but we additionally have to add white
noise at different SNR levels to the clean data. As we can see in the previous tables,
the complexity of both the tandem and hybrid MLP/HMM multi-stream approaches is
larger in the training step due to the EBP training (cf Sec. 3.5.2 and Sec. 3.5.3) needed
to train the weights of the neural nets used in both approaches. During recognition, the
use of the neural net instead of the LDA matrix in the tandem approach increases the
computational burden. However, the most complicated system by far is the multi-band
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training complexity
System data algorithm

DaimlerChrysler baseline + +
Missing Data ++ +

tandem multi-stream + +++
Multi-Band Noise Contaminated +++ +++
Hybrid MLP/HMM multi-stream + ++

recognition
System complexity

DaimlerChrysler baseline +
Missing Data +

tandem multi-stream ++
Multi-Band Noise Contaminated +++
Hybrid MLP/HMM multi-stream +

Tab. 3.4: Qualitative comparison of the complexity of the participant systems. Complexity of the
training step is shown in (a), whereas the complexity of the recognition step is shown in (b).

noise contaminated system since the number of weights of the two neural nets used in this
approach is very large (cf. Sec. 3.5.4).

3.7 Summary

In this chapter we have first explained the difference between user-centered and technology
evaluation. Next we have discussed the elements of this last kind of evaluation, and how
such an evaluation must be designed to have a meaningful evaluation. After that we have
discussed the kind of measures used in technology evaluation, with special emphasis on
accuracy measures. We have seen that to measure the accuracy of an ASR system we
basically need an alignment between reference and hypothesized sentence, a measure on
this alignment, and finally an statistical procedure to test the significance of the differences
between scores.

In the second part of this chapter, we have explained our chosen evaluation problem,
namely the evaluation of feature extraction or acoustic modeling blocks. The proposed
solution to this problem has been to define an interface at the feature level and another
at the state-likelihood level, to be able to use the same acoustic modeling or decoding
block across all assessments. This guarantees a high degree of comparability between
assessments, and consequently a meaningful evaluation of feature extraction and acoustic
modeling blocks. We have also briefly described the different approaches we have evaluated,
and finally we have shown the results of our evaluation. These results clearly show the
advantage of using connectionist approaches (tandem and hybrid MLP/HMM) combined
with multi-stream speech recognition to improve recognition performance across a range of
noises and SNRs. For this reason, we devote the following three chapters of this thesis to
the study of hybrid ANN/HMM, of tandem in the general framework of feature reduction
for classification, and finally of multi-stream ASR.





4. Feature Reduction Methods for Classification

In this chapter we study the tandem approach by interpreting it as a kind of feature
reduction method for classification, which is a family of mappings from a high-dimensional
space into a low-dimensional one in which the separation of the classes is similar to that
in the original high-dimensional space. These kind of mappings are used in ASR to be
able to add context to the feature frame without significantly increasing the processing
time, and the amount of parameters to train. After reviewing some literature in the
field, we proceed with the fundamentals of feature reduction for classification to explain
which is an optimum transform for feature reduction. Next the usual linear discriminant
analysis (LDA) approach is discussed and related to the optimum mapping in the previous
point. Finally a family of connectionist approaches is discussed, which use multi-layer
perceptrons (MLP) to approximate the optimum mapping.

4.1 Introduction

It is well known that ASR systems can take advantage of the context of a feature frame
[Fur86]. Appending dynamic features or using a large context window of 5-10 consecutive
feature frames is common practice among speech researchers. Since by doing so we are
increasing the dimensionality of our feature space the two following problems arise:

• Larger processing time in the acoustic modeling stage.

• The so-called curse of dimensionality which may cause poorly trained acoustic mod-
eling parameters (cf. Sec. 2.6).

To solve both problems feature dimensionality reduction methods can be used. The
idea is to compute a mapping from a high-dimensional into a low-dimensional space that
preserves some intrinsic or extrinsic characteristic of the speech signal. As depicted in
Fig. 4.1 the mapping takes a window of consecutive feature frames and maps it into a
low-dimensional vector, which is then passed to the acoustic modeling stage. Depending
on the nature of the characteristic preserved, the methods to compute that mapping can
fall into the two following categories:
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Fig. 4.1: A system representation of the feature reduction process embedded in an ASR system.

• feature reduction for signal representation, e.g. principal component analysis
(PCA), which compute the mapping to preserve some intrinsic characteristic of the
signal [Fuk90].

• feature reduction for classification, e.g. linear discriminant analysis (LDA),
which compute a mapping to reduce the dimensionality of the input feature vec-
tor without reducing the classification capability in the original high-dimensional
space [Fuk90].

Since the task of the acoustic modeling stage is actually a classification one the methods
belonging to the 2nd group are theoretically more suited to our problem.

A common approach in ASR is linear discriminant analysis (LDA) which uses a non-
square matrix to reduce the dimensionality. In ASR the classes used to compute the LDA
matrix are usually associated with the HMM-states. To find those classes a segmentation
into HMM-states of the training database is used in order to assign an HMM-state to each
feature frame in the training set. As in Sec. 2.6.1, the mean vectors and covariance matrices
of the classes in the LDA are then found by simply computing the mean and covariance
over the feature vectors belonging to the same HMM-state (supervised learning). As seen
in Sec. 4.3, the LDA approach is only optimum in the Bayes sense if the classes are normally
distributed and have equal covariance matrices. A group of classes with these properties
are called homoscedastic classes as opposed to heteroscedastic classes, which have different
covariance matrices. These assumptions contradict the results of the statistical tests shown
in Table C.1 of Appendix C where the statistical test reject the null hypothesis (normality)
for all the states of the HMMs.

But even if the classes were normally distributed, the assumption of equal covariance
matrices would also be violated. In Fig. 4.2 we have plotted, for instance, the distribution
of the classes in the code-book (class distributions are assumed normal) on the c1 - c3
plane, where c1 and c3 are the 1st and the 3rd cepstral coefficients (other choices for the
coefficients give a similar result). The code-book has been computed on the same features
as for experiment in Tab. C.1. In the plot the classes have been assumed to be normally
distributed, and the ellipses represent the contour lines of the densities.

To relax the strong assumption of heteroscedasticity some authors have proposed the
use of an heteroscedastic discriminant analysis (HDA) linear transform [SPGC00] . How-
ever, no closed form solution exists for this linear transform, and it must therefore be
found using a numerical algorithm. In addition, the HDA transform is still based on the
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normality assumption which we have seen to be false in practice.

Therefore it could be interesting to try discriminative dimensionality reduction ap-
proaches that do not make such strong assumptions on the input data, and that are
therefore optimum in the Bayes sense. As it is further seen in this chapter, this can in
theory be achieved by using Neural Networks (NN).

4.2 Literature Overview

One of the first uses of LDA in ASR was reported in [HUN92], where a significant improve-
ments using LDA feature reduction for large vocabulary speech recognition was reported.

Since LDA makes strong assumptions on the input data, some authors tried to find
feature reduction mapping which were still linear, but that do not make such strong
assumptions on the data. In [KA98], for example, a generalization of LDA to the het-
eroscedastic case using the ML framework is proposed. The idea is basically to embed
the computation of the linear transform into the HMM training. Experiments were per-
formed on the isolated digit part of the TI-Digits database, and it was found that the
heteroscedastic transform is better than LDA, specially when the context of the actual
frame is used.

In another study [SPGC00], a generalization to the heteroscedastic case of Fisher’s dis-
criminant is proposed in order to find a linear feature reduction mapping, which is termed
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Fig. 4.2: A scatter plot of the classes in the normal code-book of an SCHMM computed on the
same features as in Table C.1. Classes are assumed to be normally distributed in the plot. Note
that the covariances of the classes are different.
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heteroscedastic discriminant analysis (HDA). Since no closed form solution to this problem
exists a quasi-Newton gradient descent procedure is used to iteratively approximate it. To
improve the adaptation of the reduced feature vector to the diagonal covariances used in
the acoustic modeling stage two different approaches are used:

• HDA with MLLT. A HDA transform followed by a maximum-likelihood linear
transform which adapts the reduced feature vector to the diagonal covariances.

• Diagonal HDA (DHDA). This transform includes in the criterion the adaptation
of the output vector to the diagonal covariances.

Experiments were performed on the databases Voicemail and Switchboard, and showed
the superiority of the combination of HDA and the MLLT transform with respect to LDA
and DHDA.

In [DDC99] the maximum mutual information (MMI) criterion between input and
output of the mapping is used to compute a linear discriminant transform. The advantage
with respect to LDA and HDA is that the classes can be mixtures of normal densities. As
in the HDA case, the optimum solution must be found iteratively. The target classes were
associated with the HMM states. The features were decorrelated after the MMI transform,
to improve the match to the acoustic model. Experiments were performed on the Resource
Management task, and showed a significant improvement with respect to LDA.

In [TRP00] the authors used the minimum classification error (MCE) criterion and
Gradient Probabilistic Descent (GPD) to find a linear transform. The approach is termed
extended linear discriminant analysis with model transformation (ELDA-MT), and the
essential assumption is that there is a dominant Gaussian mixture for each HMM state,
which is then associated with one of the classes in the mapping computation. Experiments
were performed on the Verbmobil corpus using context-independent HMMs, and showed
a significant improvement of the approach with respect to classical LDA.

All the previous approaches use a linear transform which is just optimum in the Bayes
sense when the classes are normally distributed and have equal covariance matrices. There-
fore some authors have studied the case where a non-linear transform is used and imple-
mented with ANNs. For example, in [RW98] the basic idea is to first train the HMMs
without frame context, and then use the trained HMMs to find a mapping (linear or
non-linear) between an extended feature vector with context and the original vector space
where the HMMs were trained. The training of the mapping is performed using the max-
imum mutual information (MMI) criterion, and the state density functions of the HMMs.
During the training of the mapping the parameters of the HMMs remain fixed. If the
original input space of the HMMs had N dimensions and the number of context frames
used is K, then the mapping transforms a (N × K)-th dimensional vector into a N -th
dimensional one. Experiments on the Resource Management task were conducted using a
linear transform, a Multi-Layer Perceptron (MLP) and an Recurrent Neural Net (RNN).
Experiments with more than one stream were also performed (cf. Chapter 6). For mono-
phone HMMs the performance was similar or just slightly better than classical LDA. For
triphone HMMs and 4 streams, in contrast, the recognition accuracy of the new system
was shown to be better than LDA.

Fontaine et al. [FRB97] use multi-layer perceptrons (MLP) of one and two hidden
layers to implement a linear and a non-linear discriminative transform, respectively. Both
kinds of MLPs are trained to approximate the class posterior probabilities, in the sense
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discussed later in this chapter. The classes are associated with the phonemes, and the
reduced features used for recognition are the outputs of the last hidden layer. Experiments
were performed on the PhoneBook database using context-independent GMM/HMM and
hybrid MLP/HMM acoustic modeling. For the first kind of models a relative improvement
of 25% was observed, whereas for the second kind the improvement was not so significant.
Although the motivation given by the authors to use non-linear mappings (LDA makes
strong assumptions on the data) is very interesting, there seems to be no result with
classical LDA in the study. Also, it would be interesting to study how the approach can
be extended to more complex context-dependent systems.

In [HES00] the tandem acoustic modeling approach is proposed, in which an MLP
is used to approximate the phoneme posterior probabilities. During recognition the pre-
nonlinearity outputs of the MLP are decorrelated using PCA and passed to the acoustic
modeling block. These two steps improve the match between features and CDHMM
acoustic modeling based on Gaussian mixture Models (GMM). Although in this work
the MLP indeed implements a mapping from a high dimensional space (frame context is
also used) into a low dimensional one (phonemes), the authors do not interpret it as a
feature reduction transform for classification. They rather prefer to interpret it as two
acoustic modeling blocks acting in tandem. According to the authors, the first (MLP)
magnifies and sensitively maps the boundaries between phones, but coarsely reflects the
mid-regions. This should be a desirable property of feature vectors, and can consequently
be easily modeled by the GMM/HMM acoustic model. However, this interpretation has a
weak mathematical background which may support further developments of the technique.
Therefore we prefer to interpret this technique as a kind of NLDA with another kind of
MLP topology. Experiments were performed on the AURORA 2000 database, and showed
a large improvement over the baseline system(35% relative). Results of the new approach
were also compared to those of a phonetic-based hybrid ANN/HMM system, and showed
also an improvement in accuracy with respect to those systems. However, we think that
this last difference is rather due to the whole-word acoustic modeling used by the tandem
system. In fact, the evaluation results presented in Chapter 3 seem to support this fact,
since the results of our whole-word hybrid ANN/HMM system were better than those of a
similar tandem system. In another set of experiments, the robustness of the new approach
to cross-corpus experiments was tested. It was found that the new approach is very sensi-
tive to a change in the task, although we think that this is also the case for classical LDA,
specially if the training corpus is rather small.

In [RHWR96] a similar approach to the tandem acoustic modeling is proposed. As
in the tandem system, an MLP with one hidden layer is used to implement the feature
reduction mapping. In contrast to the tandem system, however, the target classes for
the mapping are the states of phonetic HMMs (a total of 169 states). Since the resulting
number of outputs is too large to be used as a feature vector, a PCA transform is used
to further reduce the dimensionality. The topology of the MLPs used in the experiments
is also smaller than those in the tandem experiments. The input vector of the MLP is
built from a context of only 5 static frames or 3 static frames with appended dynamic
features. The hidden layer of the MLP has also only 100 or 50 units, which may be too
few to model the high-dimensional output space. As opposed to the tandem case, which
uses softmax units in the output layer, the units in that layer are sigmoidal. The acoustic
model used semi-continuous HMMs and the features were the scaled outputs of a Bark-
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scaled filter-bank of 20 filters. The energy of the frame was also added to the feature vector
resulting in a 21-dimensional vector. A particularity of the feature extraction is that the
filter-bank outputs are scaled to sum up to 1. The MLP is trained using the usual error
back propagation (EBP) algorithm and after MLP training the PCA matrix is trained
on the output vector of the MLP. Phone recognition experiments are performed on the
Diphone database in German. The results show an improvement in phone classification
for the non-linear mapping with respect to LDA, although the improvement is not very
large, and of course it does not imply that this improvement is also observed in a real ASR
task.

In the following section we discuss a common framework for feature reduction for
classification, of which classical LDA, NLDA and tandem are special cases.

4.3 Feature Reduction for Classification

The optimum feature reduction mapping for classification is one that is optimum in the
Bayes error sense. The Bayes error is the error probability of the best possible classifier, i.e.
the Bayes classifier. This Bayes classifier [Fuk90] is a central concept of statistical pattern
classification, and it simply states mathematically the intuitive notion that the class with
maximum probability should be chosen. Let x be the input vector and let {C1, . . . , CL} a
set of L labels each assigned to one of the L classes. The optimum class Copt in the Bayes
sense is then:

Copt = argmax
i=1,...,L

P (Ci|x) (4.1)

In Eq. 2.1 we have already used this rule to state the fundamental ASR problem of find-
ing the most probable word sequence Wopt. Having defined the Bayes decision rule, the
conditional Bayes error [Fuk90] is given by:

r(x) =
∑

Ci 6=Copt

P (ci|x) (4.2)

= 1−max
Ci

P (Ci|x)

and the Bayes error is then the expected value of this last quantity:

εb = E{r(x)} (4.3)

= 1−
L
∑

i=1

∫

x∈Ci

P (Ci|x)p(x)dx

= 1−
L
∑

i=1

P (Ci)
∫

x∈Ci

p(x|Ci)dx

A good feature reduction mapping for classification is one that leaves the Bayes error εb
as unchanged as possible after transformation. However, this definition is too loose to
be useful in practice, and what we need is some kind of criterion that a mapping should
satisfy to leave the Bayes error unchanged. As a first step toward this criterion, we define
what is an admissible transform or mapping:
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Fig. 4.3: A figure showing the distribution of the feature vectors for a three-dimensional problem
after transformation using the Bayes classifier.

Definition 4.1 (Admissible mappings)
Let C : R

n → R
m be a mapping. If y = C(x), εb = E{r(x)} and ε′b = E{r(y)} then the

mapping C is said to be admissible if:

C : ε′b = εb

that is, the Bayes error in the output space is the same as in the input space.

From a geometrical viewpoint an admissible mapping C preserves the relative class
separability or distances between classes in both spaces. Any invertible mapping C is
an admissible mapping. Another non-trivial example of admissible mapping is one that
maps the high dimensional input vector x into the a posteriori probabilities P (Ci|x) of
the relevant classes for our classification or pattern recognition problem. This is easily
understood if we consider the maximum term in Eq. 4.2 for the transformed feature vector
y, that is:

r(y) = 1−max
Ci

P (Ci|y)

since we know that the value of y already contains the class posteriors of the input frame
x, it is clear that P (Ci|y) = P (Ci|x), and consequently r(y) = r(x). This in turn implies
that the Bayes error is equal in both spaces.

The distribution of the feature vectors in the output space is illustrated in Fig. 4.3. We
can see that the vectors are distributed above the positive region of the hyperplane

∑m
i yi =

1, since posteriors are positive and must sum up to 1. Note also that if the Bayes error is
low, the reduced features tend to concentrate around the points (0, · · · , 0, 1, 0, · · · , 0).

In fact, it intuitively makes sense that the posterior probabilities of the classes are
the ideal features for classification since these features can be classified with the simplest
classifier (bisector classifier) as shown in Fig. 4.4.

From the discussion above, it can readily be seen that a first key problem of feature
reduction for classification is to define or find the classes relevant for the ASR problem.
From the viewpoint of feature reduction, it would be desirable to have as few classes as
possible in order to have a low-dimensional feature space. As already mentioned in the
introduction, these classes are usually associated with the HMM-states of our ASR system.
However, for ASR tasks with a large number of states the use of such a large feature vector
is prohibitive for the reasons already given in the introduction. It could well even be that
there are more states than dimensions in the input feature vector x, so that the admissible
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Fig. 4.4: A figure showing the bisector classifier in the transformed space.

mapping C is actually no feature reduction mapping at all, and therefore of no interest
for our purposes.

To overcome this problem, we have to re-interpret the admissible mappings C as map-
pings into a feature space where we are still able to classify the features as good as in
the original feature space x. This interpretation is mathematically stated in the following
theorem, which imposes a general condition on a mapping C to be admissible in the sense
of Definition 4.1 :

Theorem 4.1 (Generalized Admissibility [DGL96])
Let C : R

n → R
m and D : R

m → R
k be two multi-dimensional mappings. Furthermore let

x and z be the input vector and output vector of the mapping C respectively, and y the
output vector of the mapping C ◦D. The mapping C is admissible if and only if there is
another mapping D such that

(C ◦D)(x) = (P (C1|x), · · · , P (Ck|x))

with probability one, where the P (Ci|x) are the posterior probabilities of the classes.

Note that this last theorem combines a transform C and a classifier D that computes
the posterior probabilities of the classes P (Ci|x) from the transformed feature vectors
z = C(x). A trivial solution is of course C(x) = (P (C1|x), · · · , P (Ck|x)) and D = I, which
is consistent with our previous statement about the optimality of the posterior probabilities
of the classes. Note also that the mappings C andD are not unique, and further constraints
on the reduced feature vector must be imposed to find a unique solution [KAO94]. Whether
a dimensionality reduction mapping C (m < n) exists that is admissible in the sense of
Definition 4.1 is not stated in the previous theorem. Nevertheless, we can impose this
constraint on the mapping C and try to estimate the parameters of both mappings so as
to approximate the posterior probabilities of the classes. Although this does not in general
lead to a mapping C admissible in the sense of Definition 4.1, the estimated mapping C
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transforms the high-dimensional input space into a low-dimensional space where the Bayes
error is not much higher than in the original high-dimensional space x.

The previous theorem, however, just imposes a condition that mapping C must satisfy
in order to be admissible, but does not explain how to find it. Consequently, a second
problem of feature reduction for classification is to find a practical method to compute
the joint mapping F = D ◦ C. In many of the practical situations we normally have a
number of input-output vector data pairs, e.g. a segmentation into states S = {(xl,ql)},
and we want to find the underlying mappings C and D using the previous data pairs.
This kind of problem is formally equivalent to the problem of fitting a curve to a series
of observations, which can be solved using statistical regression theory. A well-known
result of statistical regression states that the absolute minimum of the approximation in
the minimum square error (MSE) sense is reached when the input-output mapping is the
conditional expectation of the output targets t given the input vectors x. More formally
we can write:

Theorem 4.2 (Optimum Regression Curve [Bis96])
Given the conditional distribution of the targets and the input vectors p(t|x), the optimum
regression curve Fopt : R

n → R
k in the minimum square error (MSE) sense is given by:

Fopt(x) = E{t|x}

that is, when the optimum mapping Fopt is the expectation of the output patterns condi-
tioned to the input patterns.

Using this last result and a particular kind of coding for the target vectors t associated
with the classes C, we can estimate the class posteriors at the output of the mapping. If
we let the target vectors t adopt the 1-of-c coding scheme, i.e. the k-th component is 1
and the others are zero, then the conditional density p(t|x) can be written in the following
form:

p(t|x) =
N
∑

l=1

δ(t− el)P (Cl|x) (4.4)

where el is the unit vector in the l-dimension. Substituting into Eq. 4.2 this results in:

F (x) = (P (C1|x) . . . P (CN |x))′ (4.5)

which is the desired output of the composed mapping (C ◦ D) in Theorem 4.1.

Although this equation shows that it is possible to estimate class posteriors using
the Theorem. 4.2, it is of little practical utility since the conditional density p(t|x) is
normally unknown. As already mentioned above, it is often the case in practice that
only a segmentation S of the training data is available to estimate the parameters of the
mapping. Moreover, since the number of available training samples in S is finite, we
must also substitute the expectation operator E. by the average over all training samples.
However, we know that Theorem. 4.2 is the solution to the approximation of the targets
in the MSE sense. Consequently, an equivalent formulation of estimating the optimum
mapping C in Theorem 4.1 is stated in the following definition:
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Definition 4.1 (Minimum Square Error Optimization)
Let F be a mapping that must approximate the posterior probabilities P (C|x) at its output
as in Theorem 4.1. If the targets tk associated with the classes Ck are coded in a 1-of-c
fashion, the optimum mapping Fopt can be found as:

Fopt = arg min
Θ

∑

∀l

‖ tl − F (xl,Θ) ‖2

that is, Fopt is the mapping that minimizes the global MSE over all training data points
between the 1-of-c coded targets and its outputs.

To be able to solve the previous optimization in practice, we usually make the following
assumptions:

1. Since the number of possible mapping types is theoretically infinite, we normally
restrict our solution to a family of mappings that can be represented using a certain
set of parameters Θ. A typical example of this restriction is LDA, since we assume
that the optimum mapping Fopt is linear, i.e. we assume that the relation between
input vector and posteriors is linear. However, this is only true when the classes have
normal distributions with equal covariance matrices [Fuk90]. If these conditions are
not met, then the mapping F found using LDA is not optimum in the Bayes sense.

2. The previous minimization problem, however, has rarely a closed form solution (with
the exception of F being linear as in LDA), so that we must use some kind of iter-
ative algorithm to approximate the solution. These multidimensional minimization
problems are usually very complex and have a large number of local minima, and as
a consequence it is difficult to find an optimal solution using an iterative algorithm.

Using the considerations above one can devise the following two strategies to find a
feature reduction mapping C:

• Class separability criteria. Define a class separability criterion in the output
vector space of C which is somehow related to the criterion in Definition 4.1, and
find the optimum C according to this criterion. This is the strategy used in LDA or
HDA to find a linear feature reduction mapping. The problem is the usual strong
assumptions made on the form of the mapping function. A second problem is that the
separability criterion is usually not directly related to the criterion in Definition 4.1,
and as a consequence the solution is sub-optimal in the Bayes sense.

• Direct approximation of the class posteriors. Estimate C and D simultane-
ously in order to directly approximate the posterior probabilities of the classes at
the output of (C ◦D) using the criterion in Definition 4.1. This is the strategy used
in the tandem and NLDA approaches, which use multi-layer perceptrons (MLPs)
and error back-propagation (EBP) to find a non-linear feature reduction mapping
C. The problem with these algorithms is the high complexity of the cost functions
in Definition 4.1, specially when the number of classes is large. These cost functions
have many local minima, and it is therefore difficult to find the optimum solution
using an iterative algorithm such as error back-propagation [RHW86, Bis96].

We see, therefore, that in the selection of the strategy to compute the mapping, we have
a basic compromise between the assumption made on the mapping and the complexity of
the cost function.
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4.4 Target Classes Selection for Feature Reduction

In the previous point we have already mentioned that the selection of the classes is the first
issue in feature reduction for classification. For some problems the selection of the classes
is obvious (as in medical applications where the decision is between normal and ill), but
unfortunately this is not so in ASR. A usual choice for the targets are the HMM states
in our acoustic model, since these are the classes whose probability is to be computed
in the probability computation step of an ASR system (cf. Sec. 2.5.2). However, the
HMM states are certainly not the only possible choice. In a recent paper [SKKW03] the
authors selected the Gaussian mixtures in the states as the classes for LDA, and obtained
a significant improvement over the state-based LDA.

The choices for the classes we have investigated in this thesis are:

• states of the HMMs,

• phonemes occurring in the given ASR task,

• clusters of HMM states. To cluster the states we use the clustering algorithm
proposed in [Lee90] and described in Appendix D. This clustering is based on a loss
of information measure when merging two states.

4.5 Class Separability Criteria

A class separability criterion J is a function of some parameters of the pdf of the classes—
normally just the means and covariances — so that it can be written as:

J = f(m1, . . . ,mN ,K1, . . . ,KN ) (4.6)

For these kind of methods the mean vector and covariance matrix of each class are com-
puted using the input-output data pairs S = (xl, tl) in the training set. The problem is
to find a mapping C (linear or non-linear) between a high dimensional space and a low
dimensional one that maximizes the separability criterion J in the low dimensional output
space. More formally we can define:

Definition 4.2 (Optimum Mapping for Class Separability Criteria)
Let J be a class separability criterion defined in R

m. An optimum feature reduction
mapping Copt : R

n → R
m in the sense of the criterion J is one that satisfies:

Copt = arg max
C

f(mm
1 , . . . ,m

m
N ,K

(m×m)
1 , . . . ,K

(m×m)
N )

where the mm
i and the K

(m×m)
i are the means and covariances of the classes in the m-

dimensional transformed space.

This criterion has in general no closed form solution and must be solved using numerical
methods such as gradient descent. Moreover, as in the case of Definition 4.1 the mapping
C is assumed to have a certain form, e.g. linear, to keep the optimization mathematically
tractable. If the classes in the previous criterion are assumed to be normally distributed
and with equal covariance matrices, this criterion can be greatly simplified. In fact, it
can be demonstrated that the optimum transform in that case is linear, and therefore this
kind of feature reduction is known as linear discriminant analysis (LDA). More about this
approach can be found in Appendix E.
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4.6 Neural Networks for Dimensionality Reduction

In this section we discuss the second kind of strategy which can be used to compute a
mapping for feature reduction. This strategy tries to simultaneously compute the mappings
C andD, so as to have an estimate of the class posteriors at the output of F = (C◦D). The
problem is that this computation leads to complex non-linear optimizations which cannot
be solved using common iterative algorithms. During the last decade, however, artificial
neural nets (ANN) have been successfully applied in hybrid MLP/HMM ASR systems
to estimate the posterior probabilities of the HMM states [BM94, BW90]. Since for the
problem at hand we must approximate posteriors as well, it seems logical to think that
MLPs could also be successfully applied. The idea is actually to use the MLP framework
to solve the optimization in Definition 4.1, and to use the MLP or a part of it as the
feature reduction mapping C.

The advantages of using an MLP for feature reduction are:

• No assumption is made about the pdf of the input data in the classes.

• Non-linear mappings can be easily computed, which are more suited to the statistical
distribution of the data vectors x in the classes Ci.

• Posterior probabilities can be approximated using more suitable criteria than MSE.

The problem of using the MSE criterion in Definition 4.1 is that it is just optimum in
the maximum likelihood sense when the class targets t are normally distributed [Bis96].
The class targets t coded using the 1-of-c coding scheme, however, are far from being
normally distributed since the components take just the values 1 or 0. A more suitable
density for each component would be in this case the Bernoulli discrete density. It can
be shown, that by applying the maximum likelihood principle to this last density the
minimum cross-entropy (MCE) criterion is obtained [Bis96]. The cross-entropy function
between two vectors t and y is defined as:

En = −
∑

∀k

tk ln yk(x
n) (4.7)

where tk and yk are the target variables and the corresponding actual outputs of the MLP,
respectively [Bis96]. If we have a set of N data points, the total cross-entropy can be
expressed as:

E =
∑

∀n

En = −
∑

∀n

∑

∀k

tk ln yk(x
n) (4.8)

Using the previous formulas, we can define the MCE optimization in the following way:

Definition 4.3 (Minimum Cross-Entropy Optimization)
Let Θ be the set of parameters of the mapping F , and S = {(xl, ql)} a segmentation into
states of the training data. If the states q are coded in a 1-of-c fashion, the optimum values
of Θ to approximate the class-posteriors at the output of F are found by minimizing:

Θopt = arg min
Θ

∑

∀l

− ln(fc(x
l,Θ))

where c is the index of the active component (the index of the associated state) for the
current frame xl, and fc is the c-th output of the mapping F .
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Note that the expression of the cross-entropy between targets t and outputs y has been
simplified in the problem above, since for 1-of-c coded targets the following equality holds:

M
∑

i=1

tk ln(
yk
tk

) = ln(yh)

The MCE criterion minimizes the relative error instead of the absolute error and is there-
fore more suitable than the MSE criterion for target functions such as the posterior prob-
ability functions, which have regions of low values. It can be as well demonstrated that
the optimum solution to the criterion in Definition 4.3 is also given by the regression curve
in Theorem 4.2. Therefore, by minimizing the cross-entropy between output and target
vectors we can also compute a mapping that estimates the posterior probabilities of the
classes. The weights of the MLP can be trained using the error back-propagation (EBP)
algorithm, which is a kind of gradient descent technique (cf. Sec. 5.5.1). More about
MLPs and EBP can be found in [RHW86, Bis96].

Depending on the number of classes considered in our feature reduction problem, we
propose two different MLP-based approaches each using a different kind of MLP: an MLP
with one hidden layer for low number of classes, and an MLP with two hidden layers for
large number of classes.

4.6.1 NN Topology for Low Number of Classes (Tandem)

If the number of classes is not very large, the output of the MLP can be directly used
as a feature vector, since we know from Sec. 4.3 that the posterior probabilities of the
classes are the optimum features. On the other hand, it has been shown that a one hidden
layer MLP can approximate arbitrarily well any continuous functional form, provided the
number of hidden unitsM is sufficiently large [HSW89]. Consequently, it can be interesting
to train an MLP as depicted in Fig. 4.5 to estimate the posteriors of the classes. During
recognition the units at the output layer are removed, and the activation of the output
layer are used as a reduced feature vector. This last step is needed in order to have features
more suited to the Gaussian mixture models in the states of the HMMs. Typically this
kind of topology is used when the classes are the phonemes in the ASR task, as in the
tandem original approach [HES00] or clusters of states. However, this topology has also
been used in an approach that first estimates the posterior probabilities of the states using
this MLP, and next applies a PCA to the high-dimensional output vector to further reduce
the dimensionality [RHWR96].

4.6.2 NN Topology for Large Number of Classes (NLDA)

When the number of classes in is large, we cannot directly use the class posteriors as the
reduced feature vector for the reasons already given in Sec. 4.3. An alternative is to split,
as in Theorem 4.1, the global mapping of the neural net F into two partial mappings C
and D (F = C ◦ D) which are trained simultaneously using the input-output data pairs
in the training set S = {(xl, tl)}. To perform the simultaneous training of both mappings
the MLP shown in Fig 4.6 can be used. In this topology, the feature reduction mapping
C is implemented by the first two layers of weights (outputs of C are the activation of the
second hidden layer), whereas the mapping D is implemented by the last layer of weights.
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Fig. 4.5: A one hidden layer MLP used for feature reduction in the tandem system. The reduced
feature vector is obtained from the pre-nonlinearity outputs.

As can be seen in the figure, the output z of the mapping C has less components than the
input vector x, and since we are able to correctly classify the classes using just the vector
z then we can say that the vector z has similar discrimination capabilities as the original
vector x. During recognition the mapping D and the units in the second hidden layer are
discarded, and the activations of the second hidden layer are then passed to the acoustic
modeling.

In this case the vectors handed to the acoustic modeling do not have a straightforward
interpretation. In [Bis96] it has been shown that each of the hidden layer outputs can
be interpreted as the probabilities that a certain characteristic is present in the current
feature vector. In fact, if the classes used to compute the NLDA mapping are phonemes, it
is tentative to interpret these outputs as the probabilities of the so-called binary distinctive
features [JH56] of a language. These features include categories such as ‘voiced’, or ‘nasal’.
From the point of view of phonetics these are theoretically the only features needed to
distinguish between two different phonemes.

This MLP with two hidden layers can be further generalized to an MLP with 3 hidden
layers, where the activations of the layer in the middle are used as feature reduced vectors.
The advantage of using such a topology is that the mapping between reduced feature space
and posterior probabilities is not necessarily linear. This imposes less restrictions on the
mapping (C ◦ D), and accordingly we may find a mapping more suited to the optimum
mapping Fopt in Theorem 4.1.

4.7 Summary

In this chapter we have discussed the principles of feature reduction for classification. We
have seen that the optimum feature reduction mapping in the Bayes sense is the optimum
Bayes classifier or a part of it. We have also seen that this optimum mapping can be
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Fig. 4.6: A two hidden layer NN used for feature reduction using non-linear discriminative analysis
(NLDA). The reduced feature vector is obtained from the pre-nonlinearity outputs of the 2nd hidden
layer.

found by approximating, in the MSE or MCE sense, the 1-of-c coded target classes. A
first fundamental question is to decide which are the ideal classes for the problem in
question, namely ASR in an HMM background, and a second question is the way the
coded targets should be approximated. This can be performed by defining a separability
criterion in the output space of the transform, e.g. LDA, or by directly approximating the
posterior probabilities of the classes as in the tandem or NLDA approaches. In Sec. 7.3.3
we show the results obtained for different choices of the classes and estimation approaches.





5. Radial Basis Functions for Hybrid ANN/HMM

Motivated by the excellent results of the hybrid ANN/HMM approach on the AURORA
2000 evaluation we present in this chapter a variant of the hybrid ANN/ HMM approach
based on radial basis functions (RBF) instead of Multi-layer Perceptrons (MLP). The ra-
tionale behind this is to find an approach which still performs reasonably well but needs
less training time, i.e. with less NN weights to estimate using Back-Propagation. Another
good reason is that our ASR system would need almost no modification to implement the
hybrid RBF/HMM approach. In fact, we will see in this chapter that our SCHMM ASR
system already uses an RBF to compute the state likelihoods. The difference with respect
to our intended hybrid RBF/HMM approach is the way the weights of the RBF have been
computed: in the SCHMM approach the weights are computed using the maximum like-
lihood (ML) principle whereas in the hybrid RBF/HMM approach weights are computed
using the maximum-a-posteriori (MAP) principle, i.e. using an inherently discriminative
principle. Furthermore, if certain constraints are met, the weights trained using the MAP
criterion can be interpreted as symbol emission probabilities, and accordingly they can
directly be used in semi-continuous HMM systems.

5.1 Introduction

In Chapter 2 we have used the maximum likelihood criterion to find estimation formulas for
the HMM parameters. However, this criterion is not well adapted, at least theoretically, to
the definition of the fundamental optimum word sequence (cf. Eq. 2.1 in Chapter 2). The
right criterion to find the optimum set of parameters Θopt for that problem is the maximum
a posteriori (MAP) criterion, which maximizes the posterior probability P (X|W,Θopt).
Using this criterion the optimization can be expressed in the following fashion. Let X =
(x1, . . . ,xT ) and W = (w1, . . . , wLi) be an observation sequence in the training set and
the associated word sequence, respectively. The maximum a posteriori estimate of the set
of parameters Θ is given by:

Θopt = arg max
Θ

P (W |X,Θ) (5.1)
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In fact, it is possible to relate the previous criterion to the maximum likelihood criterion of
Eq. 2.31 in Chapter 2. Using the Bayes rule the posterior of the right sequence of models
P (W |X,Θ) can be written as:

P (W |X,Θ) =
p(X|W,Θ)P (W,Θ)

p(X,Θ)
(5.2)

To obtain the ML criterion, the denominator term is assumed constant during training,
and it is accordingly discarded. This is clearly not true because the term p(X,Θ) changes
as the parameter values in Θ change.

To gain further insight into the differences between both criteria, we can express the
denominator term as:

p(X,Θ) =
∑

j

p(X|Wj ,Θ)P (Wj ,Θ) (5.3)

where the sum is over all possible model sequences. If we additionally assume that the
acoustic model parameters and language model parameters can be trained separately, and
since the p(X|Wj ,Θ) just depend on the parameters of the sequence Wj, we can write:

P (Wi|X,Θ) =
p(X|Wi,Θi)P (Wi)

∑

j p(X|Wj ,Θj)P (Wj)
(5.4)

Now substituting the previous result into Eq. 5.1 we obtain:

arg max
Θ

P (X|Wi,Θ) = arg max
Θ

p(X|Wi,Θi)P (Wi)
∑

j p(X|Wj ,Θj)P (Wj)
(5.5)

which is equivalent to the maximization of [BM94]

arg max
Θ

p(X|Wi,Θi)P (Wi)
∑

j 6=i p(X|Wj ,Θj)P (Wj)
(5.6)

where we clearly see that the MAP criterion imposes a joint optimization of the parameters
of the correct sequence of models against the parameters of all the incorrect sequences of
models. Thus MAP criterion imposes a concurrent optimization of the likelihood of the
correct sequence of models and the likelihoods of the incorrect sequences of models. The
first one is maximized whereas the other ones are minimized. This is clearly very different
from the ML criterion, since this latter criterion just maximizes the likelihood of the
correct sequence of models, but pays no attention to the likelihood of the incorrect model
sequences.

The estimation formula in Eq. 5.6, however, has no closed form solution, and an itera-
tive solution is only computationally feasible for isolated word recognition. For Connected
Word Recognition or Continuous Speech, the formula is impractical because the amount
of possible incorrect model sequences in the denominator is extremely large. A solution to
this problem is to take into account in the denominator of Eq. 5.6 just the sequences that
have a similar but smaller likelihood than the correct sequence. These sentences can be
found by running an ASR system in N-best hypothesis modus over the training database.
Another estimation criterion closely related to Eq. 5.6 is the maximum mutual information
criterion [BBdSM86, Val95], which iteratively maximizes the mutual information between
the sequence of words W and the observation sequence X.
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On the other hand, hybrid ANN/HMM tries to circumvent the difficulties of iteratively
optimizing Eq. 5.6 by decomposing the global posteriors P (Wi|X,Θ) in the criterion of
Eq. 5.1 into the local HMM-state posterior probabilities. As seen in Sec. 5.4, this decom-
position allows us to reduce the problem of global discrimination, i.e. sentence level, to the
simpler problem of local discrimination, i.e. state level. The state posterior probabilities
are then estimated using a Multi-Layer Perceptron (MLP). This is a kind of ANN which
has proved to be very useful in many classification problems [Lip87]. However, one of
the drawbacks of MLPs is the large amount of weights they need to approximate posterior
probabilities at the output, specially if the number of HMM-states is large. The number of
operations per input frame needed by conventional error back propagation (EBP) [RHW86]
to estimate the weights increases linearly with the number of weights [Bis96], which may
be prohibitive for large amounts of weights and training data.

On the other hand, radial basis functions (RBF) combine at their output units more
complex functions than the hyperplanes of the MLPs. This combination is for RBF usually
linear, but can be made non-linear as in our case. In theory, if these complex functions
match the data space of the input vector x, the same classification performance as with
MLPs may be expected but with less hidden units [BM94] and therefore less parameters.

Finally note that discrimination is rather a concept of parameter estimation, i.e. of
training. One can for instance train an NN to estimate the state posteriors and convert
those posteriors to normalized likelihoods using the prior probabilities. These state likeli-
hoods would have been thus discriminatively trained and of course would be very different
from the state likelihoods trained using the ML principle. Consequently, the discrimina-
tive properties of the hybrid ANN/HMM approach do not stem from the use of posterior
probabilities but rather from the training method employed [BM94].

As explained in the next points, the use of posterior probabilities instead of likelihoods
provides a relatively simply way to train the HMM parameters in a discriminative way.

5.2 Previous Work on Hybrid RBF/HMM

An study closely related to the one presented in this chapter has been carried out by Renals
et al. [RMB91], who have used a similar approach to compute the posterior probabilities
using an RBF. However, the normal kernel functions (cf. Sec. 5.3) of the RBFs were
assumed diagonal, which may partially explain why the recognition results were clearly
poorer than similar experiments with MLPs.

Another loosely related approach— without RBFs— was used in [BWK99] to discrim-
inatively train the mixture densities (or equivalently emission probabilities, cf. Sec. 2.5.2)
of context-dependent HMMs with tied mixtures.

In [SL92] a hybrid RBF/HMM is developed and its performance compared to a tied-
mixture recognizer. A separate set of Gaussian mixture models is used for the static,
1st derivative and 2nd derivative features. The posteriors or likelihoods of the three
mixture models are merged at the state level to obtain a single probability score per state,
i.e. the systems are multi-stream systems (cf. Chapter 6). For the hybrid system, the
normal densities are trained using the k-means algorithm whereas the mixture weights are
trained using gradient descent (cf. Sec. 5.5.1). The normal densities are diagonal with
the variances of the coefficients equal to the grand variance averaged over all words and
states. Results show a significant improvement of the hybrid system with respect to a
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tied-mixture system with a similar number of parameters. Once again, these experiments
use a very poor Gaussian mixture model for both systems, which may be the reason for
the good results of the discriminative approach.

The authors in [RR95] use a hybrid RBF/HMM to recognize the phonemes in the
PhonDat ‘Diphon’ database in German. As in the previous reference, the topology of the
RBF has separate sub-nets for the static, dynamic and energy features each with 256, 128
and 16 basis functions, respectively. The basis functions are multivariate Gaussian func-
tions without the normalization factor 1/

√

2π |K| and with diagonal covariance matrices.
The outputs of the basis functions are normalized to sum up to 1 over each sub-net. To
obtain the state posterior probabilities, the three sub-nets are combined using a sigmoidal
non-linearity, which forces the outputs of the RBF to be between 1 and 0. The targets
of the RBF are the states in the phonetic acoustic model which are a total of 169. The
particularities of this topology are that the sub-nets are combined using a sigmoidal non-
linearity, and since this sigmoidal already guarantees that the weights are between 1 and 0,
the weights of the RBF are not constrained to be between 1 and 0. The training procedure
is carried out in two stages. A first stage to estimate means, variances and weights of the
RBF is performed using the usual algorithms of hybrid ANN/HMM (cf. Sec. 5.5), but us-
ing the minimum square error criterion to approximate the state posteriors. A second stage
based on the minimum classification error criterion is used to improve the discrimination
of the weight estimates, especially between highly confusable phonemes. The phoneme
recognition results show that this second training stage significantly improves the perfor-
mance, and that the addition of more context frames in the input layer also improves the
performance.

In our experiments with the hybrid RBF/HMM approach in Sec. 7.3.4 we will use a
more sophisticated Gaussian mixture model with non-diagonal covariance matrices to see
if we can also make improvements with a discriminative approach.

5.3 Radial Basis Functions

Radial basis functions (RBF) were originally developed to exactly interpolate functions
[Pow85, Bis96] at a set of given data points. However, this is not our intended use of RBFs,
because we do not want an estimator that passes through all data points, but rather one
that generalizes the estimate to points not present in the training set (cf. Sec. 5.5.2). To
this purpose we use the following RBF network:

fk(x) =
∑

j

wkj φj(x) (5.7)

The functions φj are termed the kernels or basis functions of the RBF. The most usual
kernels found in the applications are the normal kernels:

φj(x) = c exp(− (x−mj)
′(x−mj)

2σ2
) (5.8)

which can be generalized to:

φj(x) = c exp(−1

2
(x−mj)

′K−1j (x−mj)) (5.9)
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Fig. 5.1: A radial basis function network.

where the c is a normalization constant which may depend on the input vector x. An
RBF is depicted in Fig. 5.1 where we can see that an RBF consists of one hidden layer of
non-linear units, each implementing one of the kernels φj, and an output layer of linear
units. In Sec. 5.4.2 we will see that it is possible to use non-linear units in the output layer
as well.

As explained in Sec. 5.5, the training of RBFs is usually carried out in two stages:

• A first stage to train the means mj and covariances Kj of the kernels φj using
supervised or unsupervised learning techniques (cf. Sec. 2.6.1).

• In a second stage the parameters of the kernels are kept fixed and the weights in the
2nd layer wkj are then estimated using some kind of supervised learning technique,
e.g. gradient descent.

If the minimum square error (MSE) criterion is used to approximate the targets and the
output units are linear, then the second stage can be solved using algebraic methods. If
another criterion is used, e.g. minimum cross-entropy (MCE), or the output units are
non-linear, then an iterative method such as gradient descent must be used to solve the
problem. The usual approach, and the one used in our study, is to use gradient descent to
find the iterative equations.

Links to SCHMMs and Hybrid ANN/HMMs

As already seen in Chapter 2, the state likelihoods in an SCHMM system are computed
using:

p(x|qk) =
∑

j

bj(k)N (x;mj ,Kj) (5.10)
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Fig. 5.2: Substitution of the usual MLP by an RBF network to compute the state posterior
probabilities in hybrid ANN/HMM.

where bj(k) is the probability of observing symbol j in state q = k and N (x;mj ,Kj)
is a Gaussian modeling the distribution of the data x for the symbol j. If we now take
wkj = bj(k) and φj(x) = N (x;mj ,Kj), then we can readily see that the state likelihoods of
an SCHMM are actually computed using an RBF, whose weights wkj have been computed
using the Baum-Welch algorithm, and whose kernel parameters have been estimated using
supervised or unsupervised learning (cf. Sec. 2.6.1). A problem with the Baum-Welch al-
gorithm is that it is based on the maximum likelihood criterion, and is therefore inherently
non-discriminative.

As seen in the following sections, a solution to this problem is to use the framework of
hybrid ANN/HMM to train the weights of the RBF discriminatively. The idea is simply
to substitute the usual MLP by an RBF to approximate the state posteriors P (qi|x) as
illustrated in Fig. 5.2. The main differences between RBFs and MLPs are [Bis96]:

• MLPs are said to be a form of distributed representation in the space of activation
values for the hidden units since, for a given input vector, many hidden units typically
contribute to the determination of the output value. The interference and cross-
coupling between hidden units results in a network training process which is highly
non-linear with problems of local minima or nearly flat regions in the error function,
which can lead to very slow convergence rates. By contrast, the kernels of the RBF
are a local representation, and accordingly for a given input vector just a few hidden
units are typically active, which may reduce the problem of slow convergence.

• if the form of the kernels is well-matched to the distribution of the data, and since
only a few hidden units are typically active for a given input vector, the number of
hidden units of an RBF is typically smaller than that of an MLP.

• additionally, all the parameters of an MLP are usually determined at the same time
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using some kind of supervised learning technique, whereas the parameters of an RBF
are estimated in two steps.

In the following sections we explain how the hybrid ANN/HMM approach works, and
how an RBF can be trained and used for this approach.

5.4 Hybrid ANN/HMM Acoustic Modeling Approach

In Sec. 2.4 of Chapter 2 we have seen that the statistical pattern recognition approach to
ASR can be mathematically expressed with the following equation:

Wopt = arg max
Wi

P (Wi|X) (5.11)

whereWi = (w1, . . . , wS) is one of the possible HMMmodel sequences andX = (x1, . . . ,xT )
is the observed sequence of features. We have mentioned in the introduction to this chap-
ter that the suitable training criterion for Eq. 5.11 is the maximum a posteriori (MAP)
criterion, i.e.:

Θopt = arg max
Θ

P (Wi|X,Θ) (5.12)

where it is implicitly assumed that the following constraint holds:
∑

i

P (Wi|X,Θ) = 1 (5.13)

In fact, this global constraint is what makes any approach trained using the above criterion
discriminative. This is clearly so, because when a certain word sequence Wi has a prob-
ability near to 1, then the others must be zero or near to zero to meet the constraint. A
problem is that the number of possible word sequences is very large, and it is consequently
difficult to use the previous constraint in practice. The difficulty is therefore to find an
expression for P (W |X,Θ) which meets the previous constraint, but without having to
consider all the possible word sequences.

Proceeding in a similar way as in Chapter 2 with the likelihood p(X|W ), we can
decompose P (W |X) as:

P (W |X) =
∑

∀Qi

P (W,Qi|X) (5.14)

=
∑

∀Qi

P (W |X,Qi)P (Qi|X)

where QT
i = (q1, . . . , qT ) is one of the possible HMM-state sequences of length T given the

sequence of HMMs W . Since given the sequence of states q1, . . . , qT the choice of the word
sequence W is independent of the observation sequence X, and since given the sequence
of states q1, . . . , qT it is possible to recover the sequence of models W that generated it,
the first term in Eq. 5.14 can be neglected.

The second term in the previous equation can be factored into a product of local
posteriors:

P (QT
i |X) = P (q1|X)P (q2|X, q1) . . . P (qT |X, qT−1, . . . , q1) (5.15)

=
∏

l

P (ql|X,Ql−1
i )
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Using the usual 1st order Markov assumption (current state depends only on the preced-
ing state), and setting the dependency of the context to just the current frame, we can
approximate:

P (ql|X,Ql−1
i ) ≈ P (ql|xl, ql−1) (5.16)

The posterior probability P (W |X) is thus:

P (W |X) =
∑

∀QT
i

∏

l

P (ql|xl, ql−1) (5.17)

If we now set the following local constraint on the posteriors:

∑

∀k

P (ql = k|xl, ql−1) = 1 (5.18)

then it can be demonstrated [BM94] that the global constraint in Eq. 5.13 is met. Therefore
under certain assumptions local discrimination, i.e. constraint on the state posteriors,
ensures global discrimination. The advantage of using local discrimination is that the
number of HMM states is usually much smaller than the number of possible sequences,
which greatly simplifies the constraint.

But before we deal with the training of a hybrid ANN/HMM system using the con-
straint in Eq. 5.18, let us explain how the optimum word sequence in Eq. 2.1 can be found
in the case of a hybrid ANN/HMM system.

5.4.1 Decoding Algorithm

An hybrid ANN/HMM system directly uses the Bayes classifier in Eq. 5.11 to find the
optimum word sequence Wopt. The main difference from the ASR systems described in
Chapter 2 is that posterior probabilities, e.g. P (W |X) are computed instead of likelihoods
p(X|W ). However, we will see in this point that the Viterbi algorithm can be used in this
case as well.

Assuming that the problem is to recognize isolated words, and that the usual Viterbi
approximation is also valid for the posteriors:

P (wi|X) =
∑

∀Qi(wi)

P (Qi, wi|X) ' max
∀Qi(wi)

P (Qi, wi|X) (5.19)

we can write Eq. 5.11 in the following form:

wopt = arg max
wi

P (wi|X) = arg max
wi

max
QT

i (wi)
P (QT

i , wi|X) (5.20)

Note the similarity with the criterion of Eq. 2.12 in Chapter 2. Furthermore, if analogously
to the derivation of the Viterbi algorithm in Chapter 2 we define:

δl+1(k) = max
q1,...,ql+1

P (q1, . . . , ql+1, wi|X) (5.21)
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then the Viterbi algorithm for hybrid ANN/HMM systems is:

Initialization δ0(k) = P (q1 = k) (5.22)

Recursion δl+1(k) = max
j

[δl(j) P (ql+1 = k|xl+1, ql = j)]

Termination P (wi|X) ' max
k

δT (k)

Decision wopt = arg max
wi

P (wi|X) (5.23)

Note that the recursion term in the previous algorithm contains the term P (q l+1 =
k|xl+1, ql = j), which depends on the previous state. To be able to use feed-forward
neural networks, e.g. MLPs and RBFs, the dependency on the previous state is usually
dropped,that is:

P (ql+1 = k|xl+1, ql = j) ' P (ql+1 = k|xl+1) (5.24)

Usually the context of the current frame xl (a window of 5 to 9 frames) is added to the
input feature vector of the NN to compensate for the last approximation. Note as well
that no transition probabilities are used in the previous algorithm. The dependency of the
previous state and the dependency of the current frame is jointly expressed in the term
P (ql+1 = k|xl+1, ql = j).

The optimum word sequence can be computed using an algorithm analogous to the
one-stage algorithm in Sec. 2.5.1, but using state posterior probabilities instead of state
likelihoods as in the derivation of the previous algorithm.

5.4.2 State Posteriors Computation Using RBFs

The next question we deal with is which topology should our RBF have to effectively
compute the posterior probabilities P (ql|xt) in Eq. 5.24. The use of an ANN to compute
the state posteriors is depicted in Fig. 5.3, where we see that each of the outputs is the
posterior probability of a certain state. Typically a single RBF computes the posteriors of
all the states, to ensure the local discrimination discussed in Sec. 5.4.

The posterior class probabilities can be expressed as a function of the class densities
using the Bayes rule:

P (qk|x) =
P (qk)p(x|qk)

∑

∀i P (qi)p(x|qi)
(5.25)

In Sec. 5.3 we have shown that RBFs can be used to approximate the state densities
p(x|q = k) as for instance in SCHMM systems:

p(x|qk) =
∑

∀j

bj(k)N (x;mj ,Kj), (5.26)

where bj(k) = P (sj |qk) is the probability of observing symbol sj in state qk, andN (x;mj ,Kj)
is a normal density associated with symbol sj. In hybrid ANN/HMM systems, however,
we want to approximate the posterior probabilities instead of the density functions.

If we substitute the previous equation in Eq. 5.25 we obtain:

P (qk|x) =
∑

∀j P (qk)bj(k)N (x;mj ,Kj)
∑

∀i

∑

∀j P (qi)bj(i)N (x;mj ,Kj)
(5.27)
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Fig. 5.3: An RBF computes the state posterior probabilities in the hybrid RBF/HMM approach.

If we now take

wkj = bj(k)P (qk) (5.28)

φj(x) = N (x;mj ,Kj)

then we can write the last equation as:

P (qk|x) =
∑

∀j wkjφj(x)
∑

∀i

∑

∀j wijφj(x)
(5.29)

Furthermore, if we define the Bayes non-linearity to be:

f(aok) =
aok

∑

∀i aoi
with aoi =

∑

∀j

wijφj(x) (5.30)

(the aoi are the activations at the output layer), then we obtain the following final expres-
sion for the posterior probabilities:

P (q = k|x) = f





∑

∀j

wkjφj(x)



 (5.31)

This expression is similar to the original expression of an RBF in Eq. 5.7, but with a non-
linearity in the output units instead. Actually, this non-linearity is a way to ensure that
state posterior probabilities meet the local constraint in Eq. 5.18. This is easily understood
if we note that the outputs of the Bayes non-linearity satisfy:

∑

∀i

f(aoi) = 1 (5.32)
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5.5 Estimating Hybrid RBF/HMM Model Parameters

A training criterion analogous to the Viterbi training in Eq. 2.32 can be used to train the
parameters of a hybrid RBF/HMM system, assuming that the maximum approximation in
Eq. 5.19 is true. Let X, W and (q1 . . . qT ) be as in the previous equations. The optimum
values for the parameters of the hybrid RBF/HMM system are found using the following
criterion:

Θ̃opt = arg max
Θ

max
q1...qT

P (q1, . . . , qT ,W |X) (5.33)

Note, however, that in contrast to Eq. 2.32 we intend to find an approximation Θ̃opt to
the optimum MAP parameters, i.e. in the sense of Eq. 5.1, instead of an approximation
to the optimum ML parameters.

It is also possible to devise an algorithm, analogous to the segmental k-means or Viterbi
training in Sec. 2.6.1, to train the parameters of an hybrid RBF/HMM system in the sense
of the criterion of the equation above.

1. Generate an initial segmentation of the training data into HMM-states, which assigns
to each training vector xl an HMM state ql. We can start for example with a flat
segmentation, which assigns the same number of frames to each HMM-state present
in an utterance. A better solution, if the HMM states model the phonemes, is to
use the average phoneme durations [BM94]. Alternatively, if a set of HMMs, with
the same topology as the ones to train, is available, we can use them to generate a
segmentation by performing a forced alignment.

2. Estimate the RBF parameters (weights {wkj}, means {mj} and covariances {Kj})
as explained in Sec. 5.5.1 using the last segmentation.

3. Use the new hybrid RBF/HMM system to perform another forced alignment on the
training data to generate a new segmentation into states. During the forced align-
ment compute some kind of score, usually an average of maxq1...qT P (q1, . . . , qT ,W |X),
to be able to make a decision in the next step.

4. If the score computed in the previous step is better than that of the last iteration,
then go to step 2 and repeat the process. Otherwise stop the iteration.

As in the case of SCHMM systems we have employed this algorithm with some par-
ticularities. First we have used a previously trained set of HMMs to compute the initial
segmentation into states. The second particularity is that we have just performed one
iteration of the algorithm, so that there was no need for steps 3 and 4.

5.5.1 Training of the RBF Parameters

In this section we discuss the problem in the second step of the previous algorithm, namely
the estimation of the RBF parameters. Let F : R

N → R
M be a mapping implemented

with an RBF with components F (x,Θ) = (f1(x,Θ), . . . , fM (x,Θ)). We want to estimate
the parameters Θ of the RBF, to approximate the posterior probabilities of the states
P (qi|x) at the output of F .

Some authors [RMB91] have attempted to train all the parameters Θ of the RBF
(means, covariances and weights) at the same time, using the gradient descent technique.
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However, the approach is prone to finding local minima, and it is at least as computation-
ally intensive as MLP training. For these reasons, and as already mentioned in Sec. 5.3,
the training of the RBF is usually performed, as the training of the SCHMM parameters,
in two sequential steps:

1. training of means and covariances (normal kernel parameters), which is equivalent
to the code-book training in SCHMM.

2. training of weights, which is equivalent to the estimation of the symbol emission
probabilities in SCHMM.

Normal Kernel Parameter Training

Since the normal kernels can be interpreted as the normal distributions of the symbols
in the code-book of an SCHMM system, we can use the training procedure described in
Sec. 2.6.1 to estimate the parameters of the Gaussian kernels. As already explained, this
training procedure consists of a first step where a segmentation into states S is generated
using a set of available HMMs with the same topology as the ones to train. Finally this
segmentation is used to compute the ML-estimate of the means and covariances of the
kernels in the RBF. At the end of this process we obtain the same code-book as used in
our SCHMM system. The outputs of the hidden layer are also obtained as in the VQ-step
of our SCHMM (cf. Sec. 2.5.2 and Sec. 7.3.1), i.e. they are obtained by first computing
the values of the normal densities in the code-book for the input vector, and then dividing
each of those values by the sum of all the values of the densities. This ensures that the
outputs of the hidden layer sum up to one and that the variance of each output component
is less than one.

Emission Probabilities/RBF Weights Training

To find an estimation formula for the RBF weights we proceed in a similar way as for
SCHMMs and assume that the hidden layer outputs yh are given by the functions found
in the previous step, so that the means mj and covariances Kj remain fixed during this
step. The outputs of the hidden layer yh are then used in the estimation algorithm of the
emission probabilities or RBF weights. As already shown in Sec. 4.6, the approximation
of the class-posteriors at the output of the mapping F can be solved by minimizing the
cross entropy between the outputs of F and the 1-of-c coded targets of the mapping 1, i.e.
the HMM states. In contrast to the problem in Sec. 4.6, however, we just have one layer
of weights to estimate and consequently we do not need error back propagation.

Instead, and since the output units of the mapping F are non-linear, a simpler gradient
descent technique than EBP can be used to numerically solve the problem. The idea behind
gradient descent is to update the weights wij in the direction of the steepest descent.

wl+1
ij = wl

ij +∆wl
ij , ∀i, j (5.34)

1 This means that the target outputs of the mapping F are vectors of the form t = (0, . . . , 0, 1, 0, . . . , 0)
with just one component set to 1 and the rest to zero. Therefore each state qk has a unique label vector
tk with a 1 in the k-th component
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The criterion functions E of the minimization criterion are given in Eq. 4.7 and Eq. 4.8.
Depending on the way weights are updated, there are two basic kinds of gradient descent
training.

• For the batch training:

∆wl
ij = −α

∂E

∂wij
= −α

∑

∀n

∂En

∂wij

∣

∣

∣

∣

wl
ij ,x

n

(5.35)

• For the sequential training:

∆wl
ij = − α

∂Et

∂wij

∣

∣

∣

∣

wl
ij ,x

n

(5.36)

In Eq. 5.35 weights are updated after the gradients at all training points xt have been
computed, i.e. after each training epoch, whereas in Eq. 5.36 weights are updated after
each training pattern xt has been presented to the algorithm. A compromise between both
kinds of weight updating is the ‘bunch’ training, where the weights are updated after a
bunch of n frames has been processed.

To estimate the weights we have explored the following two RBF topologies in our
experiments in Chapter 7.

• RBF with Bayes output units and weight constraint. In the first topology
the Bayes non-linearity is used at the output units as in Sec. 5.4.2, i.e.:

f(aok) =
aok

∑

i aoi
(5.37)

To obtain a simpler constraint for the weights 2 we factor them in two terms:

wkj = bkjP (q = k) (5.38)

and assume that the prior state probabilities P (q = k) are already given. The weights
bkj must satisfy the constraint imposed by Eq. 5.18, i.e. they must:

∑

∀j

bkj = 1 and 0 ≤ bkj ≤ 1 (5.39)

Using these constraints the outputs of the RBF are ensured to be positive and to
add up to 1.

This constraint can be imposed if the weights bkj are a function of the form:

bkj =
exp(ckj)

∑

j′ exp(ckj′)
(5.40)

As demonstrated in [RMB91] the gradient of the error function in the first approach
is:

∂En

∂ckj
=

1

aok
(yok − δkc)wkj(yhj − aok) (5.41)

2 Actually the weights wkj can be interpreted to be wkj = P (q = k, s = j) which is a joint probability
and must therefore meet the constraint

∑

k

∑

j
wkj = 1. See Chapter 8
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Note that since the weights bkj add up to 1, it is possible to interpret them as symbol
emission probabilities, and consequently it is possible to use them in our SCHMM
ASR system which decodes the likelihoods of the states.

• RBF with softmax output units and no weight constraint. In the second
method we use a softmax non-linearity at the output units:

f(ak) =
exp(ak)

∑

i exp(ai)
(5.42)

As before we factor the weights in:

wkj = bkjP (q = k) (5.43)

In this case we assume that the activation functions of the output units approximate:

ak = log(P (q = k)
∑

j

bkjyhj) = log P (q = k) + log
∑

j

bkjyhj (5.44)

where the term log P (q = k) can be interpreted as the offset of the units in the
hidden layer. Using this assumption there is no need to constrain the weights since
the softmax ensures that the outputs of the RBF are positive and that they add up
to 1.

The gradients can be demonstrated to be [RMB91]:

∂E

∂wkj
= (yok − δkc)yhj (5.45)

5.5.2 Optimization in Practice

In this section we address two important practical questions to consider before training a
neural network. The first is the initial values to give to the weights wkj, since gradient
descent is a numerical approach and consequently in need of initialization. Most of the
current algorithms choose a set of random values for the weights, to avoid problems with
the symmetries in the neural network. Weight values are also chosen to be small to avoid
large values of the activation functions of the units, which may lead to saturations and
therefore to slow convergence. In fact, we would ideally like to have activation functions
with unit variance. Since the initial weights are random quantities, we have to make a
choice for the probability distribution of the initial weights, which is normally chosen to be
Gaussian. The components of the input vector have normally different variances, which
would force choosing different variances for the distribution of the weights if we are to
have activations with unit variance. A usual solution with MLPs is to normalize the input
components to have zero mean and unit variance, so that all weight distributions can be
chosen to have equal variances. In that case, the variance of the weight distributions is
only dependent on the number of components as σ ∝ d−1/2 with d being the number
of components in the input vector. In the case of our RBF, all the input components
(outputs of the hidden layer) are between zero and one, and consequently their means
and variances are not normalized to zero and unity, respectively. To initialize the weights
of the RBFs (emission probabilities) we have modeled the non-normalized weights ckj in



5.5. Estimating Hybrid RBF/HMM Model Parameters 95

the Bayes non-linearity case and the weights bkj using a uniform distribution distributed
between 0 and 1.

The second issue is the stop criterion for RBF training. Since gradient descent is an
iterative procedure we must use some criterion to know when to stop it. One may think that
the more iterations the better would be the approximation of the posterior probabilities.
In fact, if we measure the classification error on the training data we can observe that
the classification rate improves after each iteration. However, if we also measure the
classification rate after each iteration on an independent test set, we also observe that
after a certain number of iterations the classification rate on this test set decreases. This
phenomenon is called over-fitting and is a consequence of the so-called bias-variance trade-
off when approximating any function using a finite set of data points [Bis96]. In fact, we
are not interested in finding a classifier that perfectly classifies the data in the training
set, but rather in inferring a classifier from the training data that generalizes to unseen
data points. We know from the discussion in Sec. 4.3 that it is only possible to find the
optimum mapping Fopt when the conditional density of the targets t given the data vectors
x is known— or equivalently when an infinite number of data points is available—, and
that the mapping is given by Fopt = 〈t|x〉. Since the number of data points available is
finite, the output of the mapping F is not equal to the optimum, so that the error due to
the finiteness of the training set is:

ε(x) = ES{(F (x) − 〈t|x〉)2} (5.46)

where ES{.} is the expectation over all possible training sets. Note that F depends
on the training data set S. This error can be further decomposed in the following two
terms [Bis96]:

ε2bias(x) = (ES{F (x)} − 〈t|x〉)2 (5.47)

εvar(x) = ES{(F (x) − ES{F (x})2}
If we choose a mapping F to fit all the data points perfectly, the result would be a zero bias
error but a rather large error due to variance. Conversely, if we choose a fixed mapping F
independently of the training set S, the variance error is zero, but the bias error is large
because we have paid no attention to the training data. We see, therefore, that there is a
trade-off between both components of the error.

What we want to obtain is a good compromise between both components of error in
Eq. 5.46, so that the total error is minimized. This can be achieved for example with
early stopping techniques. An example of these techniques is hold-one-out validation or
cross-validation [Bis96, BM94] 3, which divides the training set into two sub-sets. The
large set with L−N training vectors is used to estimate the parameters and the smaller
set with N vectors is used after each training epoch to estimate the classification error of
the trained RBF. This evaluation is repeated after each epoch until the classification error
on the independent set of N vectors does not decrease.

To improve the efficiency of the EBP training, a technique can be used to avoid oscil-
lations around the minimum point, which may slow down the convergence rate of EBP 4.

3 Among speech researchers the hold-one-out method is also known as cross-validation, although strictly
speaking cross-validation splits the training set into N equal sub-sets, and trains the net N -times, each
time leaving one of the sub-sets from training and using it to compute the classification (generalization)
error of the net after each training epoch.

4 http://www.icsi.berkeley.edu/speech/faq/nn-train.html
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This technique works as follows: if after a certain epoch the cross-validation error is less
than 0.5% absolute better than in the previous epoch, then the learn-rate is decreased by
a factor of two after each epoch, until the difference in the cross-validation error between
consecutive epochs is once again less than 0.5% or the maximum number of training epochs
is reached (12 epochs).

Obviously, the phenomenon of the curse of dimensionality discussed in Sec. 2.6) may
also have an influence on the classification performance of the neural net, if the number
of training patterns is not large enough to reliably train the weights of the neural net.

5.6 Summary

In this chapter we have discussed the hybrid ANN/HMM approach. The advantage of this
approach is that it uses the maximum a posteriori (MAP) criterion to train its parameters,
and it is consequently a discriminative approach. The advantage of this approach as
compared to other discriminative approaches is that it attains global discrimination, i.e.
at the sentence level, by discriminating at the local level, i.e. at the HMM state level.
Normally MLPs are the ANN used in this approach, but we have explained in this chapter
the case of using RBFs instead. These ANNs have an structure similar to a GMM, and
are therefore easily implementable in the current acoustic modeling of our system based
on SCHMMs. We have also seen that the posterior probabilities at the output of a hybrid
ANN/HMM can also be decoded using the Viterbi algorithm, and that a combination of
the Viterbi training (segmental k-means) and gradient descent algorithms may be used to
train the parameters of the hybrid RBF/HMM system.



6. Combining Multiple Streams of Features

In this chapter we present the multi-stream approach to ASR. Broadly formulated,
this approach aims at improving the performance of classifiers by incorporating into the
recognition process different sources of information about the speech signal. In particular,
we devote this chapter to the study of combining different streams of feature vectors, each
obtained from a different feature extraction algorithm. As already seen in Chapter 3, this
approach obtained an excellent result on our AURORA 2000 evaluation, combined with
the hybrid MLP/HMM or the tandem approaches. A first objective of this chapter is to
understand how the multi-stream approach contributes to the excellent results. Another
objective is to study whether this approach can also improve the performance of our LDA-
based SCHMM system. We start the chapter with an introduction to the multi-stream
approach, and follow with an overview of past research on the topic. Next we explain the
multi-stream approaches tested in this thesis, which are the synchronous concatenation
of feature vectors, the concatenation of LDA-transformed feature vectors and probability
combination.

6.1 Introduction

The multi-stream recognizers discussed in this chapter combine different streams of fea-
ture vectors, extracted using different feature extraction algorithms, to obtain a better
performance than any of the one-stream recognizers. The approach is based on the obser-
vation that different representations of speech often lead to different kinds of errors. This
suggests that the errors of two classifiers using different feature extraction blocks are often
complementary, and it is therefore possible, at least theoretically, that one of the features
compensates for the errors of the other. Also, it has been shown [Rog94] that to achieve
complementarity of errors it is usually better to use different feature vectors than different
classifier architectures for each stream.

This complementarity of errors is mathematically formulated using the correlation of
the errors. In fact, it has been theoretically and experimentally found [TG96, KHDM98,
KB00, EB00] that the lower the correlation of the errors of two classifiers, the better is
the performance of the combined classifier. If two classifiers based using different feature
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Fig. 6.1: Feature concatenation of two streams of feature vectors.

extraction algorithms have highly correlated error patterns, it is very unlikely that their
combination improves the results of any of the features alone.

This last fact introduces the first aspect in multi-stream with different feature vectors,
namely the selection of the feature vectors to be combined. This is a very difficult point
because the correlation of the error patterns just give us an idea of the potential gain to
be expected, but not of the actual gain, since this also depends on other factors such as
combination method or higher classification stages. Normally the actual gain can only be
determined after performing a speech recognition test with the combined features.

The second important aspect is the way the streams of feature vectors are combined.
Depending on the nature of the feature vectors to be combined, the combination technique
can be:

• Asynchronous, if the streams are processed and decoded independently to a certain
level where they are merged to generate the final hypothesis.

• Synchronous, if the streams are combined at the frame level, i.e. every 10 ms.

In our experiments we have only considered synchronous combination of streams, be-
cause the available feature vectors were not inherently asynchronous. The two basic types
of synchronous combination strategies are:

• Feature concatenation, where the feature vectors are simply concatenated to form
an extended feature vector that is then further processed as a normal feature vector
as shown in Fig. 6.1.

• Probability combination, where the outputs of the probability computation of
both feature vectors blocks are combined somehow to obtain a single probability for
each HMM-state as shown in Fig. 6.2.

The motivations for multi-stream recognition are manyfold, but they can be basically
grouped into two classes [Hag01]: psycho-acoustic and engineering motivations. The for-
mer group includes all the motivation derived from human speech perception, whereas
the latter includes those derived from pattern recognition theory and praxis. Among the
psycho-acoustic motivations we can mention the following arguments:

• Integration of different time scales. As can be derived from a series of studies
on human speech perception [AG98, Ghi94], the robustness of speech to interferences
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Fig. 6.2: Probability combination of two feature streams.

seems to be a result of effective integration or combination of several different time
scales in the speech perception process. As a consequence, and since short-term
information is already exploited by current ASR systems, it would be interesting to
integrate long-term information into the ASR chain.

• Redundancy of speech perception. In another set of perceptual experiments
[Gre97], it was found that the human speech perception system is, as the speech signal
itself, highly redundant. This redundancy guarantees a high degree of robustness
when some region of the speech signal is corrupted by noise.

On the other hand, some of the arguments from a pattern recognition point of view are:

• Averaging of different classifiers. In [Bis96] it was theoretically demonstrated
that the averaging of the outputs of different classifiers can reduce the expected
squared error by a factor equal to the number of classifiers being used, if the errors
of the classifiers have zero mean and are uncorrelated. If these conditions are not
met, then the squared error is reduced as well but the reduction is not as large.

• Training on various environmental conditions. Using a set of classifiers each
trained on different conditions, e.g. trained on different noise conditions [Shi00], can
often improve the performance of a single recognizer trained on just one condition.
This is a way to increase robustness when the operation conditions of the recognizer
are not exactly known.

• Combination of various feature extractions. Another reason to use multi-
stream systems is the large number of different feature extraction, acoustic modeling
and training algorithms available in the speech recognition literature. It is often
the case, for example, that one of those algorithms works particularly well for cer-
tain environmental conditions. By combining several of those algorithms in one
single system, a better robustness to environmental conditions can theoretically be
achieved.

6.2 Prior Work on Multi-Stream ASR

In [KFS00] a comparison of different combination techniques using two different kinds of
feature vectors ( Articulatory Features and MFCCs ) is presented. The acoustic model-
ing used in the experiments was based on context-dependent SCHMMs. The size of the
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code-books used was 256 for the MFCCs and 324 for the articulatory features, and both
are therefore larger than the code-books used in most of our experiments (cf. Chapter 7.
The features are combined at three different levels: feature level, state level and word
level. Experiments were conducted on the Verbmobil corpus, and recognition tests were
performed on the official 1996 Verbmobil evaluation set. In a first set of experiments,
streams were combined at the state-level (probability combination) using product, mini-
mum, maximum and sum rules. Results show that product and minimum rule improve
the baseline results, whereas maximum or sum rule are worse than baseline. To combine
the streams at the word level, the ROVER algorithm was used [Fis97]. In feature level
combination, the dimensionality of the concatenated feature vector (65 components) was
reduced to 39 components by applying a heuristic dimensionality reduction algorithm.
The results of the different combination levels show that state-level and word-level combi-
nation improve the performance of the baseline and have a similar performance, whereas
feature-level combination does not significantly improve the baseline performance.

In another study [KB00], the authors argue that the added ensemble-incurred error
increases with the degree of classifier error correlation. A method to reduce this correlation
is to jointly train classifiers for multi-stream ASR. Since usual ‘hard’ rules, such as sum or
product rules, cannot be used to jointly train classifiers (not continuous and differentiable),
a family of ‘soft’ combination rules is defined and used to jointly train the classifiers.
These ‘soft’ rules are a generalization of the ‘hard’ rules. Experiments are conducted on
the OGI Numbers95 corpus using hybrid MLP/HMM acoustic modeling. In a first set of
experiments, the two MLPs trained on J-RASTA-PLP and MFCC feature are combined
using the conventional ‘hard’ techniques, and as expected the ‘AND’ rules are clearly
superior to the ‘OR’ rules. Varying the parameter of the parameter-dependent ‘soft’ rules
did not significantly change the performance. In a last set of experiments, it appears that
joint embedded training of the two MLPs using the ‘AND’ soft-combination together with
the ‘hard’ product rule during test significantly outperforms the product rule combination
of MLPs that have been independently trained. However, this difference, albeit significant,
is rather small and further experiments are needed to see if larger gains can be obtained.

As a justification of the results of the product rule, we can cite the result in [Kir99]
where it was found that the product rule increases discriminability for correct classifications
and decreases discriminability for incorrect classifications at the HMM-state level. This
fact has a positive effect at higher decoding levels (Viterbi).

In [CLA00] the authors explore the use of using different features for each sub-band in
multi-band ASR [BD96, BDR96, BDR97], and also the use of different full-band features
in multi-stream ASR. The combination rules used are the unweighed sum and product
rules. The combined feature vectors are the MFCC, PLP and J-RASTA-PLP features.
Experiments are performed on the NOISEX database with a vocabulary size of 32 words.
Results for multi-band ASR with different features per sub-band show a significant im-
provement with respect to the multi-band with the same features per sub-band. In the
multi-stream experiments, the performance of the combined multi-stream systems (het-
erogeneous) was compared to the performance of one-stream systems with a similar size to
the multi-stream systems (homogeneous). Results show that the product rule outperforms
the sum rule, and that the heterogeneous systems are better than homogeneous systems
in clean conditions. In noisy conditions, by contrast, the authors were not able to observe
a significant advantage of heterogeneous systems over to homogeneous systems.
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The authors of [SEK+00] analyze the combination of short-term features (PLP) with
long-term ( ∼ 1s) features (LDA-RASTA, MSG and TRAPS). Experiments are carried out
on the AURORA 1999 noisy digit recognition task. They use tandem feature extraction for
each feature vector to map it into a 24-dimensional space which is common to all reduced
features, since all tandem MLPs have been trained on the same phoneme segmentation.
Consequently, to combine the different 24-dimensional tandem feature vectors, they simply
take the average over all the vectors to be combined. The number of feature vectors
combined in that way are 2, 3 and 4 feature sets. The acoustic modeling used in these
experiments has been conventional whole-word GMM/HMMs with 16 states per model
and 3 mixtures per state. Results show that the non-linear transform (tandem) greatly
improves the results. In addition, multi-stream combination as described before improves
further the results of tandem. As in our experiments with PLP and MSG features and
a similar system, the improvement of adding the MSG features is about 1% absolute in
these experiments.

In a set of Large Vocabulary ASR experiments with the Broadcast News task, the au-
thors of [JEM99] compare the results of multi-stream systems with mono-stream systems
of similar size, i.e. of similar learning capacity. The acoustic modeling used is phoneme-
based hybrid MLP/HMMs, and the study is carried out using a combination of MSG and
PLP feature vectors. The sizes of the MLPs used are 344k and 758k parameters. Results
show that multi-stream obtains similar performance to mono-stream with a similar number
of MLP parameters. However, multi-stream can alleviate the memory requirements and
the computational cost, since both MLPs can be trained on different machines. An inter-
esting result on the 1998 Broadcast News evaluation is also presented, which shows that
multi-stream improves performance in unmatched test conditions but does not apparently
improve performance in matched test conditions.

In another study combining long-term and short-term features [HS99], a new kind of
long-term temporal pattern (TRAPS) is presented. The idea is simply to take slices across
the time axis of the filter-bank time-frequency representation of the signal. Therefore, if
we have L filter in the filter-bank then we obtain L sequences of TRAPS. Each of these
slices is mapped into 29 phonetic classes using an MLP to obtain the neural TRAPS.
To obtain a single stream of features from these 15 neural TRAPS, an MLP is used to
combine them. Experiments with these new kind of features are performed on the OGI
Stories and the OGI Numbers corpus. The acoustic modeling used hybrid MLP/HMMs.
The results clearly show that TRAPS alone do not improve baseline results, but combined
with baseline features improve baseline performance.

In an experimental analysis by [EB00] on the AURORA 2000 noisy digit recognition
task, the usefulness of conditional mutual information (CMI) to design feature combi-
nations is studied. The rationale behind this measure is that feature pairs with a high
CMI are highly correlated, and may therefore be more easily modeled using feature com-
bination, since this allows the modeling of the correlations. Conversely, classifiers trained
using different features whose outputs have a low CMI, are good candidates for probabil-
ity combination. The acoustic modeling used in the experiments is hybrid MLP/HMM.
The results reported in this work do not support the assumption that feature combination
should be favored when the CMI of the features is large. However, they clearly support
the assumption that low CMI between pairs of features is a good indicator of the benefit
of combining them. This agrees with the previous results in [KB00] where it was shown



102 6. Combining Multiple Streams of Features

that good-performing combinations have indeed low-correlated classifier outputs.
In [WKMG98] the combination of syllable-based and phoneme-based recognizers was

studied. As in previous attempts, the idea was to integrate short-term (phoneme) and long-
term (syllable) information in the ASR process. The syllable-based recognizer used MSG
features and hybrid MLP/HMM acoustic models trained to classify into 124 semi-syllabic
categories. The phoneme-based recognizer, in contrast, used log-RASTA-PLP features and
also hybrid MLP/HMM trained to classify into 32 phonetic classes. In contrast to previous
approaches, the combination of both recognizers was performed at the whole-utterance
level. This is performed by generating one N -best list for each recognizer and merging
both. For each hypothesis sentence in the merged list, two acoustic scores are generated by
performing a forced alignment on the sentence using both recognizers. The final score for
each sentence is obtained by a weighted sum of both scores and the language model score.
Results were obtained on the OGI Numbers corpus with a 32-word vocabulary, and show
that the combination of both recognizers is significantly better than any of the recognizers
alone. To demonstrate the result was not due to the larger number of parameters of the
combined system, tests using larger MLPs and one feature were also performed, but none
of the results was better than the combined system.

Finally, in a study by [Hag01] a new kind of combination rule for multi-stream sys-
tems is presented and evaluated: the full combination approach. Hybrid MLP/ HMM
acoustic modeling was used in all the experiments. In a first set of experiments, the new
rule is compared to the mono-stream systems and standard sum and product rules (cf.
Sec. 6.3.2). The streams used are formed from different feature vectors (PLP, MFCC and
J-RASTA-PLP) to achieve a good degree of complementarity. The results of this first
set of experiments show that neither the ‘standard’ nor the full combination multi-stream
approaches were significantly better than the ‘best’ mono-stream recognizer in any of the
tested noise conditions. In another set of experiments, diversity of streams was achieved by
computing the delta and delta-delta of the feature vectors. Experiments were carried out
using PLP and J-RASTA-PLP features, and show that for the PLP features results can
be greatly improved by using the full combination rule. For the J-RASTA-PLP features,
by contrast, no significant improvement was observed when using any of the variants of
the full combination rule.

6.3 Synchronous Combination of Streams

As already mentioned in the introduction, one of the two fundamental aspects in multi-
stream ASR is the way to recombine or merge the streams of features. In synchronous
combination of streams, the streams are combined at every frame, and must consequently
be generated with the same frame rate.

The objective of this section is to introduce the combination rules we have tested in our
experiments, with special emphasis on rules that may be used with LDA and tandem-like
feature vectors.

6.3.1 Feature Concatenation

This is the simplest way of combining two synchronous streams of features. As shown
in Fig. 6.1, feature vectors are concatenated into one single large vector, which is then
processed by a single classifier.
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Fig. 6.3: Concatenation of LDA feature vectors.

One of the disadvantages of this technique is that it leads to classifiers with a larger
number of parameters, and consequently longer training and processing times. Also, if
the amount of memory resources is limited, it could even be impossible to train such a
system [JEM99]. Moreover, if the amount of training data is small, the reliable estimation
of the large number of parameters can be very difficult due to the curse of dimensionality
(cf. Sec. 2.6).

A possible solution to the previous problem is to use some kind of dimensionality
reduction technique as explained in Chapter 4. If LDA is used to reduce dimensionality
of the single streams we can apply LDA to both streams independently, concatenate both
output vectors, and further reduce the dimensionality of the concatenated vector using a
third LDA transform as illustrated in Fig. 6.3.

6.3.2 Probability Combination

In this case, each of the input streams is independently processed by a specific classifier
to obtain a probability vector for each stream. These probability vectors are afterwards
recombined to have a single probability vector that is passed to the decoding stage (see
Fig. 6.2) or to another classifier, as in the tandem original approach (cf. Sec. 4.6.1).

In fact, from a pattern recognition point of view the probability combination approach
can be formalized and generalized using the concept of mixture-of-experts [Bou99, Bis96].
This approach was originally developed by [JJNH91] to model feature vectors that have
different distributions in different regions of the space. As shown in Fig. 6.4, the outputs
of the two classifiers are first weighted and then combined. The weights are controlled
by a gating network to force the use of the right classifier for the current input vector.
A training procedure exists to jointly optimize the parameters of both classifiers and the
gating network. As can be deduced, the main aspects in this mixture-of-experts approach
are the combination rule of the probabilities, the weighting method, and the optimization
of the classifier and gating network parameters.

Although the previous approach is applied to one single vector, it can obviously be
applied to our multi-stream problem as well. However, in our case we do not use any
weighting, nor jointly optimize the parameters of the different classifiers. The reason for
the first restriction is that in the case of multi-band ASR [Hag01] no improvement was
observed when using different weighting techniques for the sub-bands. Moreover, in the
same work, the author used relative frequency weighting in multi-stream experiments, but
no improvement was observed with respect to the equal weights combination. A reason for
the second restriction is also that just a small improvement was observed in [KB00] when
classifiers were jointly optimized. Consequently, we simply assume equal weights for all
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Fig. 6.4: The mixture-of-experts approach to model a feature vector that has different distributions
in different regions of the space.

streams, and we optimize each classifier independently, so that our multi-stream system
reduces to that already shown in Fig. 6.2.

The remaining question is, therefore, the kind of recombination rule to use. Many
different possibilities exist to combine the output probabilities of two classifiers— see for
example [Hag01]—, but all of them are derived from two basic types: the sum rule and
the product rule.

Sum Rule

As the name suggest, the basic idea of this rule is to add the probabilities of the different
classifiers. Depending on the kind of acoustic modeling, we have two versions of this rule:

• Posterior based systems (hybrid MLP/HMM) Let qk be the k-th HMM state
and xl the feature vector corresponding to stream l. Further, let us introduce a set
of mutually exhaustive random events {bl : l = 1, . . . , L}, each denoting the event
‘stream l is the most reliable stream AND the other streams are unreliable’. Using
those random events we can decompose the posterior probability P (qk | x1, . . . ,xL)
in the following way:

P (qk | x1, . . . ,xL) =
L
∑

l=1

P (qk, bl | x1, . . . ,xL)

=

L
∑

l=1

P (qk | bl,x1, . . . ,xL)P (bl | x1, . . . ,xL)

=

L
∑

l=1

P (qk | xl)P (bl | x1, . . . ,xL) (6.1)

The term P (bl | x1, . . . ,xL) denotes the reliability of the event bl. This reliability
can be interpreted as the outputs of the gating network in Fig. 6.4, whereas the
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Fig. 6.5: The full combination approach to solving the non-exhaustiveness problem. The input
to the combined classifier is the concatenation of both feature vectors.

posteriors P (qk | xl) would be the outputs of the classifiers in the same figure. If we
further assume that this reliability term is independent of the observation vectors xi
then we can write:

P (qk | x1, . . . ,xL) =
L
∑

l=1

P (qk | xl)P (bl) (6.2)

If we further assume that the bl are equiprobable then we can write:

P (qk | x1, . . . ,xL) =
1

L

L
∑

l=1

P (qk | xl) (6.3)

The assumption of exhaustiveness of the bl is however not true in general because
it can be that two or more streams are reliable at the same time. Therefore the
previous derivation is a kind of heuristic justification of the sum rule.

A possibility to circumvent the problem of non-exhaustiveness is to use the so called
full combination approach for the sum rule [Hag01, MHB99]. In this approach, a set
of random events {bi : 1 ≤ i ≤ 2L − 1} is also constructed, but each of the events
is associated with a group of streams instead of being associated with one single
stream. The events associated with the variables bi are of the form ‘streams in the
group i are reliable and the others are unreliable’. Since we have a set of L streams,
there are 2L possible sub-sets, and excluding the empty set we have 2L − 1 events.
These events are exhaustive, and it is therefore absolutely correct to write:

P (qk | x1, . . . ,xL) =
2L−1
∑

l=1

P (qk | x̂i)P (bi | x1, . . . ,xL) (6.4)

As seen if Fig. 6.5, the first particularities with respect to Eq. 6.1 is the number of
classifiers, which in this case is 2L− 1 because each classifier is, as before, associated
with one of the events bi. The second particularity is the input vector x̂i to these
classifiers, since this is formed by concatenating all the streams in the group i.
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Making the same assumptions as before, we arrive at a similar equation to Eq. 6.3:

P (qk | x1, . . . ,xL) =
1

2L − 1

2L−1
∑

i=1

P (qk | x̂i) (6.5)

A problem with this approach is the larger training and processing time, since the
number of classifiers needed grows exponentially with the number of streams.

• Likelihood based systems (SCHMM) Using the Bayes rule we can derive the
sum rule for likelihood based systems from the formulae derived in the previous point

p(x1, . . . ,xL | qk)
p(x1, . . . ,xL)

=
P (qk | x1, . . . ,xL)

P (qk)

≈
L
∑

l=1

P (qk | xl)
P (qk)

P (bl | x1, . . . ,xL)

=
L
∑

l=1

p(xl | qk)
p(xl)

P (bl | x1, . . . ,xL) (6.6)

Applying once again the assumptions of the previous point we obtain:

p(x1, . . . ,xL | qk)
p(x1, . . . ,xL)

=

L
∑

l=1

p(xl | qk)
p(xl)

P (bl) (6.7)

and finally:

p(x1, . . . ,xL | qk)
p(x1, . . . ,xL)

=
1

L

L
∑

l=1

p(xl | qk)
p(xl)

(6.8)

As before, the full combination approach can also be applied using a similar formula
to Eq. 6.8 but with supplementary terms:

p(x1, . . . ,xL | qk)
p(x1, . . . ,xL)

=
1

2L − 1

2L−1
∑

i=1

p(x̂i | qk)
p(x̂i)

(6.9)

Product Rule

As in the previous type of rule, we have different forms of the rule for likelihood-based and
for posterior-based ASR systems:

• Posterior-based systems (hybrid MLP/HMM). Using the same independence
assumption of the previous point, we can decompose the joint state-posterior prob-
ability of the streams into the product of state-posteriors of the single streams as
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follows:

P (qk | x1, . . . ,xL) =
P (qk)

p(x1, . . . ,xL)
p(x1, . . . ,xL | qk)

=
P (qk)

p(x1) · . . . · (xL)
L
∏

l=1

p(xl | qk)

=
P (qk)

p(x1) · . . . · (xL)
L
∏

l=1

P (qk | xl)p(xl)
P (qk)

=

∏L
l=1 P (qk | xl)
P (qk)L−1

(6.10)

If we now assume that all states have equal prior probabilities, the term in the
denominator can be discarded and the following product rule analogous to the one
for likelihoods is obtained:

P (qk | x1, . . . ,xL) =
L
∏

l=1

P (qk | xl) (6.11)

The full combination variant of previous rule is:

P (qk | x1, . . . ,xL) =
2L−1
∏

i=1

P (qk | x̂i) (6.12)

where we have assumed, as in the previous equation, that the states are equiprobable.

• Likelihood-based systems (SCHMM). The likelihood of the stream xl in the
state qk is p(xl | qk). If we now assume that the L streams are independent, the joint
state likelihood of the streams can be expressed as:

p(x1, . . . ,xL | qk) =
L
∏

l=1

p(xl | qk) (6.13)

This last equation is the product combination rule of streams for likelihood based
systems.

As can be deduced from the product rule, a single expert may prevent the recognition
of a certain state qk if the likelihood for the expert is sufficiently low. This kind of
combination rule, therefore, emphasizes the classes on which all the classifiers agree
but suppresses those on which the classifiers disagree, especially if some of them give
a very low likelihood to the class.

A problem with this rule is the independence assumption used in Eq. 6.13. When
the features are strongly correlated, we lose all the correlation information if we use
the previous equation to combine both streams. A possible solution is to use the
full combination approach, since this approach allows us to model the concatenated
vectors, and consequently the correlations between them. In this case, the form of
the full combination approach is

p(x1, . . . ,xL | qk) =
2L−1
∏

i=1

p(x̂i | qk) (6.14)
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As already seen in Sec. 6.2, several studies have empirically demonstrated the superi-
ority of the product rule compared to the sum rule for many ASR tasks [KFS00, KB00,
CLA00]. This is the reason why we have decided to use this rule in our experiments with
multi-stream in Chapter 7.

6.4 Summary

In this chapter we have introduced multi-stream ASR using different feature vectors. We
have seen in the literature overview that it is hard to tell from the correlation structure
of two feature vectors whether feature concatenation or probability combination is better.
Nevertheless, it is also clear that feature combination normally needs more hardware and
data resources than probability combination, so that probability combination is often
preferable. For this last kind of combination, if the correlation of the outputs of two
classifiers trained on different feature sets is low, then both classifiers are good candidates
for probability combination. In addition, several studies seem to show that the product
rule is better than the sum rule for probability combination.

A way to alleviate the resource problem of feature concatenation is to use an LDA
transform to reduce the dimensionality of the concatenated feature vector. We have seen,
as well, that probability combination can be formalized and generalized using the concept
of mixture-of-experts. For probability combination, we have discussed two sets of rules
namely the sum rules and the product rules. The problem with the first rule is the
exhaustiveness assumption, whereas the problem with the second is the independence
assumption. Theoretically, a solution to both problems can be to use the full combination
approach in both cases.



7. Experiments and Results

In this chapter we present the results obtained using the approaches discussed in the
previous three chapters. The ASR experiments have been performed on two different
speech databases: the AURORA 2000 digit recognition task and the UKKCP task. The
first database has a relatively small training data set, and has therefore been used as a
quick test bed. However, the noises in the AURORA task have been artificially added,
and the size of the vocabulary is too small. These facts limit the significance of the
results on this database for practical applications. For this reason we have also tested
the most promising approaches on our in-car ASR task UKKCP, which has been recorded
in a real in-car environment, and includes spelling and city names in the test set as well.
The chapter starts with an overview over the experiments. Next we describe the databases
used in our experiments: the AURORA 2000 database and the UKKCP car database. This
is followed by the experiments on the AURORA database, on which all the approaches
treated in the previous chapters have been tested. The second part is devoted to the
UKKCP experiments.

7.1 Introduction

Most of the experiments in this chapter have been carried out on the AURORA 2000
database, since this database has an small training set and the approaches to test can
consequently be trained very quickly. As already mentioned above, we have only tested
the best-performing approaches on the UKKCP database.

An overview of the groups of experiments carried out can be seen in Tab. 7.1. The
groups of experiments not performed on the UKKCP database are marked with a ’-’ in the
second column. In the optimum feature set experiments we have compared different fea-
ture reduction algorithms using various acoustic modelling approaches. In the experiments
with discriminative feature reduction we have compared the results of the different neural
net topologies and classes for feature reduction proposed in Chapter 4. In the hybrid
RBF/HMM experiments we have compared this system with two systems based respec-
tively on SCHMMs and hybrid MLP/HMMs. Finally, in the experiments with multiple
streams of features we have compared different feature combination strategies.
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AURORA UKKCP

Optimum
Feature Set

Sec. 7.3.2 -

Discriminative
Feature
Reduction

Sec. 7.3.3 Sec. 7.4.2

Hybrid
RBF/HMM
Systems

Sec. 7.3.4 -

Multiple
Streams of
Features

Sec. 7.3.5 Sec. 7.4.3

Tab. 7.1: Overview of the experiments with both databases.

7.2 Description of the Speech Databases

7.2.1 The AURORA 2000 Task

This database is a digit recognition task in American English derived from the TI-DIGITS
database [Leo84]. Since this database was originally designed to evaluate speech recog-
nition methods for mobile telephone applications, the original sampling rate of the TI-
DIGITS was reduced to 8 kHz, which is standard in those applications.

As shown in Table 7.2 this database has two training sets, one with noisy speech data.
The advantage of using noisy speech data (also known as multi-style training) is that the
parameters of the HMMs can be adjusted to model the effect of interfering noise. This
has been proven to be in practice usually better than clean training, even if the interfering
noise during recognition was not present in the training set [LMP87]. In addition clean
databases must be recorded in controlled environments, which is usually very expensive,
especially if the amount of speech data to record is large. In contrast, there is already a
lot of noisy recorded speech, which could be used with comparatively little cost and effort.
In our AURORA 2000 experiments we have trained the HMMs using the multi-condition
training set, because this kind of training data is more similar to that of our in-car UKKCP
database (cf. Sec. 7.2.2).

The confidence intervals for the experiments with this database can be extracted from
Fig. 3.4(a) and Fig. 3.5. In the first figure we can measure the confidence intervals for the
single recognition experiment results shown in Appendix A, whereas in the second figure
we can measure those of the mean results presented in this chapter. Thus for this figure
the curve with n = 10 corresponds to the results in the figures labelled with ‘SNR levels’,
the curve with n = 16 corresponds to the figures labelled with ‘test sets’, and the curve
with n = 40 corresponds to the mean results shown in the figures labelled with ‘test sets’.

7.2.2 The DaimlerChrysler In-Car Database: UKKCP

This large database was recorded to provide enough speech data for reliable training of the
speech models. Just a fraction of this huge database has been used in our experiments.
The main features of this database are summarised in Table 7.3.
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Database
description

It consists of digit sequences in American English of up to seven
digits, which have been corrupted with artificially added real
noises at different SNR levels.

Recordings Speech was sampled at 8 kHz rate. Sampled speech was passed
through a band-pass filter with frequency characteristics corre-
sponding to those of the G.712 ITU recommendation [HP00].
This filter simulates the frequency response of a typical PCM
transmission channel. Noises were first filtered with the G.712
filter, attenuated to achieve the desired SNR levels, and finally
added to the speech signal to obtain the noisy speech files. A
total of 8 different noises were added to the speech signal. These
noises were recorded in typical application scenarios for telecom-
munications terminals: suburban train, crowd of people, car, ex-
hibition hall, restaurant, street, airport, train station. All the
noises had a fairly low pass characteristic, and the recordings in
the street and at the airport contained non-stationary segments.

Speaker Male and female adult speakers.

Database
structure

Two training sets: multi-condition or multi-style training data
set, and clean training data set. The speech data in both sets
is exactly the same and contains a total of 8440 files with ap-
proximately 1.5 hours of speech. The speech data in the multi-
condition training set has been contaminated with four different
noises (suburban train, crowd of people, car and exhibition hall).
The test set is composed of three test sets: the matched test set
(test a), the unmatched test set (test b) and the distorted test
set (test c). The test a contains speech contaminated with the
same noises as those in the multi-condition training set, whereas
the speech in the test b has been contaminated with the noises
not present in the training set (restaurant, street, airport and
train station). In the test c the data contaminated with subur-
ban train noise and street noise have been further filtered using
the MIRS filter which simulates the frequency response of a typ-
ical telecommunication terminal for GSM [HP00]. Only 4 of the
7 possible SNR levels (0 dB, 10 dB, 20 dB and clean) were used
in our experiments. This resulted in a total of 16016 test files.

Tab. 7.2: Main features of the AURORA 2000 database.

The confidence intervals for the experiments with this database can be extracted from
Fig. 3.4(b), where the curves for the three tests are depicted.

7.3 Experiments on the AURORA 2000 Database

7.3.1 Baseline System Configuration

Feature Extraction

The first step in our baseline system is to employ spectral subtraction [Bol79, LB91] to
reduce the distortion due to additive noises. Our ASR system uses a feature extraction
algorithm based on a bank of filters distributed uniformly over the mel-frequency scale
described in Sec. 2.3, and in more detail in [RJ93]. However, those filters differ from
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Database
description

British English database that consists of digit sequences, alpha-
bet letters, short command sentences, e.g. ”radio off”, and city
names.

Recordings Recorded in real car environments at a sample rate of 16 kHz.
The noises present in this database come from a great variety
of sources such as rain or wipers. However, and as already ex-
plained in Sec. 1.2, the most important noise components are
due to motor, tires and aerodynamical phenomena.

Speaker Male and female native Britons. The sentences in the test set
were spoken by 16 women and 19 men.

Database
structure

A total of 32107 speech files were used for training which resulted
in nearly 10,000,000 training vectors after feature extraction.
The test set consisted of 3894 utterances spoken by 16 women
and 19 men. The test lexicon contained a total of 2827 words,
which were arranged into the following sub-lexicons:

• digits sub-lexicon (denoted as ’digmb’ in the experiments)
that uses whole-word HMMs to model the digits and the
words ‘hash’, ‘square’ and ‘star’.

• spelling sub-lexicon that also uses whole-word HMMs to
model the English alphabet letters.

• cities sub-lexicon that uses a mixture of context-
dependent, context-independent (phonetic) and whole-
word models.

For each file in the test set only one of the sub-lexicons was
active during the test to simulate the operating characteristics
in a spoken dialog system.

Tab. 7.3: Main features of the UKKCP car database.

the usual triangular response in that their response has been designed using perceptual
considerations. Since the sampling frequency of the AURORA-2000 database is 8 kHz, the
number of filters, or equivalently mel-filter coefficients used in our feature extraction is 16.
A discrete cosinus transform (DCT) is next applied to these coefficients to further reduce
the number of coefficients to 13. The feature extraction process of our baseline system is
depicted in Fig. 2.2 of Chapter 2.

To compensate for possible channel distortions, e.g. convoluted frequency response of
a microphone, we apply cepstral mean subtraction (CMS) on the cepstral vector. Since
CMS also eliminates the spectral tilt, which is highly speaker dependent, the mean cepstral
vector is just adapted during the speech segments to better adapt it to the characteristics
of the current speaker.

Acoustic Modeling

The topology of the HMMs are whole-word models of the English digits. These models
have a different number of states, between 8 and 15 states, to account for the different
length of the digits. A one state pause model and a noise model with 9 states are also
used to model the inter-word pauses and the noisy silences at both ends of the speech files,
repectively. The total number of HMM-states is 127.
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Fig. 7.1: Generation of the segmentation into states (ALI) by performing a forced alignment on
the speech files. The SCHMMs used in this forced alignment have been trained using unsupervised
clustering (LBG) and the Baum-Welch algorithm. The vector quantization (VQ) computes the
probabilities of the symbols in the unsupervised code-books. Cylinders represent a set of files
(PCM, feature, etc. . . ), rectangles a process and the clipped rectangles are the results of the
processes.

Training

Our training process basically consists of two steps: a first to generate a segmentation of
the training set into HMM states, and a second stage that used this segmentation to train
our final set of SCHMMs. The first stage is shown in Fig. 7.1. As can be seen in the figure,
the first step in this stage is to append the 1st and 2nd derivative vectors to the static
feature vector, resulting in a 39 component feature vector. Since our ASR system is based
on the semi-continuous HMM acoustic modeling approach described in Sec. 2.5.2, a second
step is to estimate a code-book to quantize the feature vectors. The estimation process
uses the Linde-Buzo-Gray (LBG) algorithm [LBG80], and the result of this process is a set
of mean vectors and covariances each associated with a symbol or class in the code-book.
In our case three separate code-books for the static, 1st derivative and 2nd derivative
feature vectors are estimated. The static code-book has a total of 512 symbols, and the
1st and 2nd derivative code-books 256 symbols, which results in a total of 1024 symbols.
The code-books obtained using the LBG algorithm are termed unsupervised code-books,
because there is no a priori association between feature vectors and symbols, as already
discussed in Sec. 2.6.1. After estimating the code-books, they are used to quantize the
feature vectors in the training set as described in Sec. 2.5.2. The particularities of our
vector quantization (VQ) are:

1. symbol likelihoods cannot fall under a certain minimum threshold below the maxi-
mum likelihood value.

2. a maximum of 10 symbols per code-book is allowed.
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3. the likelihood of the remaining symbols is normalized to sum up to one.

Since we have three different code-books, we obtain three different quantized feature vec-
tors per feature frame. Next the quantized feature vectors are used as input to the Baum-
Welch algorithm in Sec. 2.6.2, to estimate the emission probabilities of the symbols for
each HMM-state and code-book, and the transition probabilities between HMM-states al-
lowed by the HMM-topology. There are three different sets of emission probabilities for
each HMM state, one with 512 symbols for the static features, and two with 256 symbols
for the 1st and 2nd derivative features. To obtain a single likelihood per state, we first
compute the likelihood of each code-book/set of emission probabilities pair, and then we
multiply the partial likelihoods of each set, just as in multi-stream probability combination
discussed in Sec. 6.3.2, i.e.:

p(x1,x2,x3 | qi) =
3
∏

l=1

Kl
∑

k=1

bik gk(x) (7.1)

where the qi, bik and gk(x) are as before the state i, the emission probability of the symbol
k in state i and the normalized likelihood of symbol k for the input frame x. The last step
of this stage is to apply a Baum-Welch pass or forced alignment on the quantized feature
vectors, in order to obtain the desired segmentation into HMM states of the training data.
This step generates an alignment file (ALI) for each file in the training set, which contains
the state/frame associations.

The second and final stage of our training process is to estimate the final SCHMMs
as shown in Fig. 7.2. The first step is to compute a supervised code-book using the ALI
files computed in the previous stage. This code-book is calculated by first constructing a
context window of 9 frames around the current frame—four frames before and four frames
after— to form a single 117-dimensional feature vector. Since each of the code-book classes
is associated with an HMM state, the code-book means and covariances are computed by
averaging the high dimensional vector over all the frames assigned to the same state in
the ALI files. This results in a code-book with a total of 127 code-book symbols. For a
more detailed description of the computation of the supervised code-book see [CKRB93].
Afterwards linear discriminant analysis (LDA) is applied to reduce the dimensionality of
this code-book (cf. Chapter 4). Our LDA matrix projects the 117-dimensional space into
a 32-dimensional space. At the end of this process we have a 32-dimensional supervised
code-book with 127 symbols. This code-book is used together with the 117×32 dimensional
LDA-matrix to quantize the high-dimensional cepstral feature vector of 117 components
in the same way as in the previous unsupervised step. Finally the VQ feature vectors are
passed to the Baum-Welch algorithm to estimate the A-matrix (transitions) and the B-
matrix (emissions) of the SCHMMs. At the end of the training process, therefore, we have
a 117 × 32 dimensional LDA-matrix, a supervised code-book with 127 symbols and the
trained HMMs with a 127 × 1024 dimensional B-matrix of symbol emission probabilities
and 127 × 127 dimensional A-matrix of state transition probabilities which are later on
passed to the ASR system.

Recognition

Our ASR system is depicted in Fig. 7.3, where we can see the HMMs, code-book and
LDA matrix computed during the supervised training stage. As in the supervised stage
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Fig. 7.2: The supervised stage of the DC training system. The segmentation into states (ALI) has
been found in the unsupervised stage depicted in Fig. 7.1. The vector quantization (VQ) computes
the probabilities of the symbols in the supervised code-book. As before, cylinders represent a set
of files (PCM, feature, etc. . . ), rectangles a process and the clipped rectangles are a result of a
certain process.

of training, a high-dimensional vector of 117 components is constructed and transformed
into a 32-dimensional vector using the LDA-matrix computed during training. This last
vector is then quantized employing the supervised code-book of 127 classes, and a VQ
algorithm as the one used during training. Next the VQ vector is passed to the acoustic
modeling block, which computes the HMM-state likelihoods by multiplying the VQ-vector
by the B-matrix, which contains the emission probabilities of the code-book symbols bik
(cf. Sec. 2.5.2).

The decoding algorithm used is the one-pass (one-stage) algorithm explained in Sec.
2.5.1. No statistical language model or grammar has been used for this task, and conse-
quently any HMM can be followed by any of the HMMs. In addition, no pause or noise
models are forced at the beginning and end of the sentences, even though it would be ben-
eficial in the experiments with the AURORA database, since there are long non-speech
segments at the ends of the files in this database.

7.3.2 Optimum Input Feature Set

As a first step towards finding ASR techniques better than those used in our baseline
system, we have compared the results of our current feature extraction with those of other
state-of-the-art feature extraction algorithms. The algorithms we have compared are the
following:

• Perceptual Linear Predictive (PLP) features [Her90], which estimate the LP
all-pole model of the speech, but taking into account perceptual considerations such
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Fig. 7.3: A diagram of our baseline ASR system.

as critical-band spectral selectivity, equal-loudness curve and the intensity-loudness
power law. The input speech was first pre-emphasized using a high pass filter. As
in our baseline system, a Hamming window of 25 ms and a frame shift of 10 ms
was used to analyze the input speech. The power spectrum was computed using
an FFT of 256 samples. The critical band analysis is performed with a bank of 17
trapezoidal filters equally spaced in the Bark scale. The number of extracted PLP
cepstral coefficients per frame was 12 plus frame energy.

• The RelAtive SpecTrA (J-RASTA) PLP features [HM94] combine the per-
ceptual considerations of the PLP features, plus the fact that human perception
of speech-like sounds depend on the spectral difference between the current speech
sound and the preceding sound [SSN87]. From an engineering point of view, the
effect of J-RASTA processing is to eliminate the spectral components of the input
signal that vary more slowly or quickly than the speech itself. The advantage of
the J-RASTA processing is that it can remove both additive (noise) and convolutive
(channel) distortions. As in the PLP case, speech is pre-emphasized, and subse-
quently analyzed using a Hamming window of 25 ms and a frame shift of 10 ms. As
in the previous algorithm, the power spectrum was computed using an FFT of 256
samples, and the filter-bank is exactly the same as before. The number of J-RASTA
PLP coefficients is 10 plus frame energy, and the value of the J constant in the
non-linearity is 10−6, which remains constant, i.e. it is not adapted to the noise level
in the actual speech file.

• Modulation SpectroGram (MSG) features [Kin98] are also inspired by similar
perceptual considerations as the PLP and J-RASTA features, but other perceptual
phenomena, based on human perception of reverberant speech, are also taken into
account to obtain a representation of the speech which is stable across a range of
acoustic distortions. The MSG features are also spectral features which are further
processed in the modulation frequency domain 1. As before, the speech signal is

1 In the sense of this text, the modulation frequency domain is the Fourier transformed domain of
the time axis in a time-frequency representation of the speech signal. This implies that the modulation
spectrum is the Fourier transform of the time variation of a certain spectral, cepstral or PLP coefficient.
A global modulation spectrum can be obtained by averaging the modulation spectra of the coefficients.
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analyzed using a Hamming window of 25 ms and a frame step of 10 ms. The power
spectrum is computed using an FFT of 256 points. The filter-bank analysis of these
features used a bank of 14 triangular filters uniformly distributed in the Bark fre-
quency scale. In our experiments, we use 14 MSG coefficients to model the lower
modulation frequencies (0-8 Hz), and 14 coefficients to model the higher modulation
frequencies (8-16 Hz).

For more details about the previous algorithms see Appendix B. Two different kinds of
acoustic modeling approaches have been used to compare the performance of the feature
extraction algorithms:

• SCHMMs with LDA, as in our baseline system.

• hybrid MLP/HMMs.

The rationale behind these experiments across different acoustic modeling approaches was
to pinpoint whether the differences in performance of the features were partly due to
problems of matching with the acoustic modeling.

Experiments with SCHMMs

The acoustic modeling used in this set of experiments is the same as in our baseline LDA-
based ASR system (cf. Sec. 7.3.1). However, some minor changes in the LDA-matrix
computation have been carried out to adapt it to the different sizes of the feature vectors.
For the PLP and J-RASTA features the size of the context window of the LDA matrix
was 9 frames as in our baseline, but for the MSG features we reduced this size to 5 frames
due to the large size of the MSG vector. If we had used a 9 frame window, the size of
the covariance matrices of the supervised code-book would have been 252 × 252, which is
difficult to train reliably given the small amount of training data in the AURORA database
(cf. Sec. 2.6).

In a first set of experiments, we compared the features in their original non-normalized
form.

In Fig. 7.4 we can observe:

• The only competitive approach to our current baseline feature extraction is the
JRASTA approach. The other approaches (PLP and MSG) fall far behind our
baseline. This could be due to the fact that both our baseline and JRASTA perform
some kind of normalization or filtering on the feature vector, which makes them less
sensitive to the noises and distortions.

• JRASTA performance is significantly better for low or very low SNR (c.i. ±0.3% and
±0.7%, respectively), and in mismatched conditions (test b and test c with c.i. ±0.3%
for both sets), but worse in matched conditions (test a with c.i. ±0.3% as well) and
high SNR levels (c.i. ±0.1% and ±0.2% for clean and SNR 20 dB, respectively). The
reason for that is that the spectral subtraction and CMS approaches of our baseline
use silence detection, that partly relies on the assumption that the energy of the
speech signal is larger than that of the noise signal. This silence detection is used
to compute the mean noise spectrum and mean cepstral vector , respectively. If the

Further insight into the topic can be found in [Kin98, MN98, HM94]
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Fig. 7.4: Results of different feature extraction algorithms using SCHMMs. The full results can
be found in Appendix A in tables Tab. A.1, Tab. A.2, Tab. A.3 and Tab. A.4.

noise energy is comparable to that of the speech (very low SNR), then the spectral
subtraction may adapt the estimate of the noise spectrum in speech segments and
the CMS probably computes the mean of the cepstrum in non-speech segments,
which reduces the effectiveness of both approaches against noise and convolutional
distortions, respectively. On the other hand, the JRASTA algorithm just filters
out the spectral components of the input signal which vary slowly in time, e.g.
channel response, irrespective of the relation between noise and signal energy. This
filtering cancels out any signal components in the low modulation frequency region,
without making a distinction between noise and speech components. Consequently,
the performance of the approach is relatively bad in matched test conditions. In
unmatched conditions, however, this filtering is beneficial, since the noises in the
training and test sets are different. Moreover, since the approach does not rely on
the energy of the input signal, its performance in very low SNRs is clearly better
than that of our baseline.

• The MSG features perform rather poorly, which is somehow misleading, in view of
the excellent results of these features reported in [Kin98] on a similar digit task.
However, the acoustic modeling approach used in that work was completely different
(hybrid MLP/HMM) which may be crucial to obtaining good results with these
features. Later in this section we further investigate this fact by training hybrid
MLP/HMM system on the MSG features.

As derived from the previous experiments, the normalization or filtering of the feature
vectors can be of some advantage in noise. In fact, it has been shown in the past that
the effect of noise on the feature vectors is a shift in the mean value and a change in the
variance of the coefficients [MRGS98]. Therefore, it seems logical to devise some kind of
mechanism to compensate for both phenomena. This can be achieved by normalizing the
components of the feature vectors to approximately have null mean and unit variance. The
values of the mean and the variance can be basically computed in two ways: in off-line
modus or in on-line modus. If mean and variance are computed off-line, then the contents
of each file must in advance be read to compute the mean over all the frames in the file.
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This adds, at least, a factor of 1 to the Real Time Factor (RTF) defined in Sec. 3.3,
and consequently the efficiency of our algorithm decreases. Conversely, if the mean and
variance are computed on-line, the mean and variance are adapted each time a new frame
is read, which does not significantly increase the RTF. The price we pay is that the mean
and variance of the normalized features are no longer exactly 0 and 1, although this fact
is not very important as long as the values are near 0 and 1.

The normalization we have used is simply described with the following set of equations:

µn+1i = µni + a (xni − µni ) (7.2)

σn+1i = σni + b ((xni − µni )2 − σni )

ȳni =
xni − µni
√

σni
, ∀i, n

In our experiments we used a = b = 0.005 [TH97, HES00], so that the mean and vari-
ance were adapted quite slowly. The initial values for the means µi and variances σi were
computed by averaging over all the files in the multi-condition training set. These initial-
ization values are read for each file in the test set, and are not updated after each file has
been processed, that is, the initial values of mean and variance were equal for all the files
in the test set. This is clearly different from the adaptation of the cepstral mean used
in our baseline system, since in our ASR system the initialization values are different for
each file, because they depend on the previously read files. This last adaptation allows
for a better adaptation to the particular environmental conditions of a test file, if the files
previous to it have similar environmental conditions. However, if this condition is not met,
then a mean and variance adapted on different environmental conditions would be used
to normalize the feature vectors, which could distort them, especially if the adaptation
constants a and b are small. This situation occurs, for example, when we want to train an
MLP for a hybrid MLP/HMM ASR system with a set of speech files. The files are usually
listed in random order to avoid local minima and adaptation to a particular speaker or
noise condition, which may lead to slow convergence of the net weights. If these speech
files include a number of different noises and distortions, as in the AURORA database
case, then we have exactly the problem previously described.

A possibility to circumvent this problem is to use the normalization used in this point,
i.e. to use the same initial mean and variance vectors for all the files in the training set.
Because of its simplicity, we have used this normalization in all our experiments with
neural nets, and in the experiments in this point, although in this last case we could have
used a normalization analogous to our baseline system. A clear disadvantage of this simple
normalization is that the adaptation to the test conditions is rather poor, especially if the
adaptation constants a and b are small. Further discussion about this question can be
found in Chapter 8.

The normalization in Eq. 7.2 can also be interpreted as a filtering. This filtering is
non-linear, since the denominator term is changing with the signal as well. Nonetheless,
if we ignore this fact and assume that the standard deviation is approximately constant,
we have a linear IIR filter, with the following z-transform:

X̄i(z
−1) =

1

σi

1− z−1
1− (1− a)z−1 Xi(z

−1) (7.3)
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Fig. 7.5: Responses in the modulation frequency domain of the JRASTA (dashed line) and the
mean subtraction (solid line) filters. Note the higher attenuation (approx. 10 dB) of the JRASTA
filter in the low frequency region, and also of the frequencies above 20 Hz.

If we compare in Fig. 7.5 the response of this filter in the modulation frequency domain
with that of the JRASTA filter, we can see that the attenuation of the JRASTA filter
in the low-frequency region is about 10 dB better than that of our normalization. In
addition, the JRASTA filter attenuates the frequencies above 20 Hz, which may further
reduce any interference in this frequency region, that is, any time-varying components of
the interfering noise that vary with a period shorter than 0.05s.

In Fig. 7.6 we compare the effects of normalization on the performance of the different
features. There we can observe:

• After normalization the performance of the PLP features increases notably (on av-
erage 2.8% absolute). The improvement is noticeable for each test set, but it is
particularly large in the test b and test c sets, i.e. in the unmatched test condi-
tions. In clean conditions the performance of non-normalized and normalized PLPs
is identical, but in noisy conditions the normalized PLPs perform clearly better. This
confirms our assumption that normalization contributes greatly to the performance
in noise of feature extraction algorithms, especially in low SNR environments. In-
terestingly, the normalization does not reduce the performance in clean speech, and
it even increases the performance in matched test conditions. The performance
increase is consistently better across all noises in the test sets (cf. Tab. A.2 and
Tab. A.5 in Appendix A), which suggests that the normalization is beneficial for all
kind of noises. These results entirely agree with those presented in [TH97], where
the effect of mean and variance normalization on the PLP features was analyzed.
The authors also compare the performance of mean normalization with mean and
variance normalization, and show that the latter is especially beneficial in very low
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Fig. 7.6: Comparison of the results of normalized vs. non-normalized feature vectors using
SCHMMs. The detailed results can be found in Appendix A in Tab. A.2, Tab. A.4, Tab. A.5
and Tab. A.6.

SNR conditions.

• Compared to JRASTA, the normalized PLP features are superior in matched test
conditions (test a) but are just slightly better in unmatched (test b). In contrast,
their performance is worse than JRASTA when the input speech has been distorted
by a channel response (test c). This result suggests that the temporal filter used
in the JRASTA algorithm is more effective in eliminating the undesired distortion
than the normalization in mean and variance, which is a logical conclusion in view
of Fig. 7.5. Therefore, the added attenuation (approx. 10 dB) of the JRASTA
features in the low-frequency region is clearly beneficial in channel-distorted speech.
Moreover, street and airport noises in the test b set (noises N2 and N3 in the tables
of Appendix A) are fairly non-stationary [HP00], which may explain why the results
of JRASTA are better than those of the normalized PLP features for both noise
conditions (cf. Tab. A.3 and Tab. A.5 in Appendix A), since the JRASTA filter
eliminates any component varying with a period shorter than 0.05s.

• Normalization of the MSG features has no great effect on their performance, except
for the test c where it clearly improves. These results are logical in view of Fig. B.2
in Appendix B, where we see that the MSG features have been already normalized
in the feature extraction process.

Experiments with Hybrid MLP/HMM

As discussed in Chapter 5, the hybrid MLP/HMM approach uses an MLP to compute
the posterior probabilities of the HMM states. In the past, this approach has consistently
shown its superiority or at least its competitiveness with the usual CDHMM approach
based on Gaussian mixture models.

The PLP and MSG features used in these experiments are exactly the same as in the
experiments with SCHMM in the previous section. The MFCCs used in this section, on
the contrary, differ from those used in the previous, since no CMS has been applied to
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them. In other words, the MFCCs computation is identical to our baseline, but without
subtraction of the cepstral mean.

All input feature sets have been normalized as in the previous section, i.e. to have zero
mean and variance. However, the main reason in this case is to simplify the initialization
of the weights between the input and the hidden layers (cf. Sec. 5.5.2). As we have seen
in the previous section, this normalization has a great impact on the performance of a
given feature extraction in noise. As a consequence, any improvement observed in the
hybrid MLP/HMM experiments cannot be solely attributed to the modeling capabilities
of the MLP. Note also that this normalization is actually performing a kind of CMS on
the MFCC features (plus a variance normalization, of course), and they are therefore not
so different to the features used in our baseline system.

The MLPs used in the experiments have the following topology:

• One large hidden layer, and two layers of weights. This topology is depicted in
Fig. 4.5 of Chapter 4, and is known to be able to approximate any decision boundary
if the number of units in the hidden layer is sufficiently large [HSW89].

• The 1st and 2nd derivatives are appended to each PLP and MFCC feature frame,
and a context window of 9 extended frames is appended together to form the input
vector of the MLP. This resulted in a vector of 351 components for the MFCCs and
PLPs. In the MSG case the frame already contains context information, so that it
is no longer necessary to append 1st and 2nd derivatives. The extended vector of 9
context frames has 252 components in the MSG case.

• The units in the hidden layer use sigmoidal non-linearities, and the units in the
output layer use softmax non-linearities.

• The targets of the MLP are the 127 states of the whole-word HMMs. To define
the target output vector for each input data vector, we used the segmentation into
HMM states of the training data generated to compute the supervised code-book
(cf. Sec. 7.3.1). The states were then coded in a 1-of-c fashion (cf. Sec. 5.5.1) to
generate the final target vectors.

• The training criterion to approximate the 1-of-c coded targets is the minimum cross-
entropy (MCE) criterion introduced in Sec. 5.5.1.

• The MLPs are trained using the QuickNet toolkit of the International Computer
Science Institute (ICSI) at Berkeley. The package implements very efficiently the
error back-propagation algorithm commonly used to train MLPs. To avoid over-
fitting of the net weights to the training data, the package uses early stopping. This
technique is implemented using cross-validation, which splits the training set in two
sub-sets, the larger to train the weights and the smaller to estimate the classification
error (validation error) after each training epoch (cf. Sec. 5.5.2). To improve the
efficiency of EBP training and avoid oscillations of the algorithm around a minimum
point, the QuickNet package uses the technique already explained in Sec. 5.5.2. The
start learn-rate used in our experiments was 0.008. The net weights are adapted
neither in a sequential nor in a batch way, but rather in ‘bunch’ way (cf. Sec. 5.5.1).
This means that the global error function is actualized after a bunch of 16 frames



7.3. Experiments on the AURORA 2000 Database 123

0
2
4
6
8

10
12
14
16

 test a  test b  test c  mean 

W
E

R
 (%

)

(a) test set

0
5

10
15

20
25

30
35

40

 clean  20dB   10dB   0dB   

1510

1100

690

480

240

(b) SNR level

Fig. 7.7: Results of a hybrid MLP/HMM system using MFCC features. Performance for different
sizes of the hidden layer of the neural net is measured using the WER. More detailed results can
be found in Appendix A in Tab. A.7, Tab. A.8, Tab. A.9, Tab. A.11 and Tab. A.10.

has been read, and the difference between the actual and the previous ‘bunch’ error
is then used to actualize the net weights.

In a first set of experiments, we study the dependence between size of the MLP and
performance of the hybrid MLP/HMM system. These results are also interesting for our
feature reduction experiments in Sec. 7.3.3, because a similar MLP topology is used there
to reduce the dimensionality of the feature vector.

In the results shown in Fig. 7.7 and in Fig. 7.8 we can observe:

• Average WER improves only slowly with linearly growing number of hidden layer
units, i.e. with the size of the MLP, for both feature sets. This agrees with the
results presented in [EM99], where the dependence between MLP size, training data
size and recognition accuracy is studied. In this work the authors show that the
recognition accuracy of hybrid MLP/HMM systems grows slowly with the size of the
hidden layer, when the amount of training data available is restricted.

• The improvement with growing size of the MLP is significant for very low SNR, but
almost not noticeable for clean speech or high SNR. This observation makes sense
because the multi-condition training set does not include files with SNR of 0 dB.
Consequently, the complexity (size) of the MLP must grow to improve generalization
to noise levels unseen during training.

Since the training time grows linearly with the size of the net, a good compromise
between training time and performance is to choose a hidden layer size of 480 units. This
is the default size of the hidden layer that is used henceforth in our experiments with
MLPs.

In a second set of experiments, we compared the performance of the MFCC, PLP and
MSG features, using the ‘optimum’ size for the hidden layer found in the previous set of
experiments. The results of these experiments are shown in Fig. 7.9 where we can observe:
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Fig. 7.8: Results of an hybrid MLP/HMM system with PLP input features. Performance for
different sizes of the hidden layer of the neural net is measured using the WER. Detailed results
can be found in Appendix A in Tab. A.12, Tab. A.13, Tab. A.14 Tab. A.16 and Tab. A.15.
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Fig. 7.9: Comparison of the MSG,MFCC and PLP features using a word-based hybrid MLP/HMM
acoustic model. The size of the hidden layer of the neural net (480 units) is the same in all
experiments. Detailed results can be found in Appendix A in Tab. A.17, Tab. A.16 and Tab. A.10.
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• In contrast to the experiments with SCHMM, the MSG features are the best perform-
ing for any of the test sets and SNR levels. Compared to the results using SCHMMs,
the improvement in performance of the MSG features is striking (almost 7% absolute
average improvement) , which clearly indicates that our SCHMM acoustic modeling
has difficulties to model the distribution of the MSG features. This result agrees with
previous results in [Ell99] using CDHMM acoustic modeling with mixtures of diag-
onal covariance matrices. Since our SCHMM acoustic modeling uses full-covariance
matrices, it should be in principle able to model the high correlation between the
MSG coefficients. Therefore, the problem of the MSG features with our acoustic
modeling must be their highly non-normal nature.

• The three features have a similar performance in clean or high SNR speech, but differ
for low to very low SNRs.

• The features have similar performance in matched conditions (test a). In unmatched
test conditions, however, their performance differs significantly. Note the excellent
performance of the MSG features on the test c, which suggests a high degree of
robustness to convolutional distortions [Kin98].

• The PLP features perform clearly better than MFCC also in this case, especially on
the test b set. This agrees with the previous results obtained using SCHMMs, and
is actually surprising since the MFCC features used incorporate spectral subtrac-
tion in the algorithm, which should be more effective in noisy conditions than the
perceptually-inspired PLP features. However, a comprehensive comparative study
of the PLP and MFCC features publicized in [PMP01] shows that the performance
of normalized PLP features is superior to normalized MFCCs (without spectral sub-
traction) on a telephone task. This seems to confirm the validity of our conclusions,
although our results with MFCCs are still misleading, and seem to cast doubt on the
effectiveness of the spectral subtraction algorithm implemented in our ASR system.

• Comparing the performance of the hybrid ASR system with that of our baseline
ASR system, we find that the performance of the former is clearly superior, at
least on this simple digit recognition task. For instance, the performance of the
PLP features is 2% absolute better using hybrid MLP/HMM acoustic modeling.
This difference can only be attributed to the outstanding modeling properties of the
MLP, since the PLP features used are exactly the same for both acoustic modeling
types. The performance improvement is particularly large for the SNR conditions
‘seen’ by the MLP during training, i.e. for clean, 20 dB and 10 dB, for which the
relative performance improvement is over 40%. Incidentally, the improvement for the
unmatched test case (test b) is much larger than for the matched test case (test a),
although the noises in the test b set were not ‘seen’ by the MLP during training.
This observation, together with the previous one, seem to suggest that the level of
the noises present during training is more important for the final performance than
their actual spectral shape. Nevertheless, it can also be that this fact is exclusive to
the AURORA 2000 database, since the noises in it have similar long-term spectral
characteristics [HP00].
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Summary

In this section we have compared the performance of different feature extraction algorithms
on the AURORA 2000 database. Tests have been carried out using two different kinds of
acoustic modeling approaches: SCHMMs and hybrid MLP/HMMs. For both approaches,
we have found that the normalized (in mean and variance) PLP features are the best
performing on the task, with on average 1% absolute better performance than the other
features. Further, we have found that normalization can improve the performance of
feature extraction, especially in the PLP case with a 3% absolute improvement. Compared
to the performance of the same features using SCHMM acoustic modeling, the performance
of hybrid MLP/HMM is roughly 2% absolute better.

7.3.3 Discriminative Feature Reduction

In this section we present and discuss the experiments and results related to Chapter 4,
where the mappings for discriminative feature reduction are discussed. The tested feature
reduction approaches are the original tandem, the tandem clustering-of-states, the tandem
with PCA, and the non-linear discriminant analysis (NLDA) approaches.

In all the experiments of this section, we have used the PLP features as input features
to the feature reduction transforms. The configuration of the PLP feature extraction is
exactly the same as in the experiments of the previous section.

Tandem Experiments

The topology of the MLP used to reduce the dimensionality has one hidden-layer with
two layers of weights as shown in Fig. 4.5. As in the experiments with hybrid MLP/HMM
in Sec. 7.3.2, the input vector of the MLP is formed by appending delta and delta-delta
features to the static PLP vector, and taking a window of 9 consecutive extended feature
vectors to form an input vector of 351 components (9 × 3× 13). The hidden layer size is
chosen to be 480 units, because we have already obtained a satisfactory performance in
hybrid MLP/HMM with this size. The nonlinearity in the hidden units was a sigmoid.
The targets of the MLP were the English phonemes present in the digit corpus, which
resulted in a total of 24 output units each associated with a phoneme. The units in
the output used a softmax nonlinearity. To train the MLP, we used the same toolkit
and configuration as in the hybrid MLP/HMM case. As before, the input features were
normalized to have null mean and unit variance. The phonetic segmentation of the multi-
condition training of AURORA 2000 set was obtained from ICSI, and is therefore the same
as the one used in [SEK+00, EG01]. The tandem features were obtained from the pre-
nonlinearity outputs of the MLP, for the reasons already given in Sec. 4.6.1. As opposed to
previous implementations of the tandem approach, no decorrelation (PCA transform) of
the MLP outputs was necessary, because the normal densities in our code-books are full-
covariance matrices, i.e. they can model the correlation between the tandem coefficients.

In a first set of experiments, we generated the tandem features using the MLP described
above, and we used them to train two different acoustic models. The first is analogous to
the unsupervised code-book in our baseline system (cf. Sec. 7.3.1 and Fig. 7.1), whereas
the second is similar to the LDA-based supervised code-book of our baseline. For the first
we applied the LBG algorithm to the tandem features, in order to obtain an unsupervised
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Fig. 7.10: Comparison of supervised and unsupervised code-books using tandem with PLP fea-
tures. More detailed results can be found in Tab. A.18 and Tab. A.19 of Appendix A.

code-book of 512 classes. Next this was used to quantize the tandem feature vectors,
just as in our baseline system, and the quantized vectors were then used to train the
emission probabilities of the HMM states using the Baum-Welch algorithm. For the second
acoustic modeling, we used the segmentation into states obtained in our baseline training
to estimate a supervised code-book of 127 classes, each associated with an HMM state.
This code-book was directly computed on the 24-dimensional tandem features, which are
already dimensionality-reduced features analogous to 32-dimensional LDA vectors of our
baseline. Subsequently, we used the supervised code-book to quantize the tandem features,
and the quantized features were used to train, using once again the Baum-Welch algorithm,
the emission probabilities of the states (see Fig. 7.2).

In Fig. 7.10 we show the results of both systems. As can be seen in the figure, the
unsupervised code-book is consistently better than the supervised, across test sets and
SNRs, although the difference is not large. Moreover, the unsupervised code-book has
about 4 times more parameters than the supervised, which certainly contributes to the
performance differences.

If we compare the previous results with those in [EG01], we see that the results on
test a and test b are similar to ours, whereas on test b our results are worse. An important
difference with the results in the previous article is the kind of acoustic modeling used.
While the previous authors use CDHMMs, we use in our experiments SCHMMs. An-
other difference with respect to the mentioned authors could be the kind of normalization
applied to the input features of the MLP. In our MLP experiments, we have made use
of on-line normalization (cf. Sec. 7.3.2), but we believe that the previous authors have
used per-utterance feature normalization. This last kind of normalization may improve
the performance of the tandem system, especially in mismatched test conditions (test
b). To confirm this hypothesis, we have performed an experiment using per-utterance
normalization in a PLP tandem system.

The results of the same tandem system with per-utterance and with on-line normalized
features are shown in Fig. 7.11. The acoustic modeling used in this comparison is the same
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Fig. 7.11: Comparison of per utterance and on-line normalization of PLP features using tandem
with unsupervised clustering acoustic modeling. More details about these results can be found in
Appendix A in Tab. A.20 and Tab. A.21.

as the unsupervised code-book of 512 classes in the previous figure 2. As can be seen in
the figure, the differences in matched test conditions (test a) are not significant, but they
are quite large for unmatched test conditions (test b and test c). In the test b case the
difference is almost 3% absolute (21% relative). As already argued in Sec. 7.3.2, we think
that the problem is rather the way the on-line normalization is applied to the feature
vectors. For each test file, the means and the variances (computed over the whole training
set) of the coefficients are read, and adapted according to Eq. 7.2. If the values of a and
b in the equations are small (as is the case in our experiments), the means and variances
are adapted very slowly to the test conditions. Since for each new test file the initial
means and variances are read, which have been computed over the whole training set),
the adaptation to conditions unseen during training is bad. This is not the case for per-
utterance normalization, because the mean and variances are first computed over each test
file, and then used to normalize the feature vectors in the file. Of course, per-utterance
normalization cannot be used in real-time operation, because the whole sentence must be
read before recognition begins.

Tandem Clustering of States Experiments

We present in this section the experiments with the tandem clustering-of-states, which
uses clusters of states (cf. Sec. 4.4) to define the targets of the NN. As in the previ-
ous experiments, the input features are 13-dimensional PLPs, and the feature reduction
transform is implemented using an MLP of one hidden-layer with 351 units (9 × 3 × 13)
in the input layer and 480 units in the hidden layer. The difference with respect to the
tandem approach are the targets of the MLP, which are no longer phonemes, but clusters
of HMM states. The basis segmentation to train the MLP for these experiments is also
the segmentation into HMM states used to train the supervised code-book of our baseline

2 Note that results of the on-line-normalized system are different from the previous, because of a small
bug in the decoding stage. However, this is not relevant for this experiment, since we only want to establish
whether the per-utterance is better than on-line normalization
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Fig. 7.12: Comparison of supervised and unsupervised code-books using tandem-CofS with 24
clusters. More details can be found in Appendix A in Tab. A.22 and Tab. A.23.

system (cf. Sec. 7.3.1). To find the clusters of states we used the Lee clustering procedure
explained in Appendix D. The segmentation into the desired clusters is found by using
a cluster/state table to map the basis state segmentation into the cluster segmentation.
Once this is obtained, we train the MLP using EBP as in the previous experiments. After
MLP training, the tandem CofS features are obtained from the pre-nonlinearity outputs
of the MLP, and are used, as in the tandem original approach, to train the SCHMMs.

As in the previous experiments, our first step was to compare the results of supervised
and unsupervised SCHMMs using this feature reduction algorithm. The configuration of
both kinds of acoustic models is the same as in the tandem experiments. In Fig. 7.12 we
can see that the results of both kinds of SCHMMs are only marginally different across
different test sets. Across different SNRs, the unsupervised SCHMM are slightly better
for high SNR, whereas supervised SCHMM are better for low to very low SNRs.

In a second set of experiments with this approach, we tested the influence of the
number of clusters on the performance of the approach. We clustered the HMM states
in 16, 24 and 32 clusters, and modeled the resulting feature vector using an unsupervised
code-book. In Fig. 7.13 we can see that performance decreases with decreasing number
of clusters. However, the differences in performance between the systems using 24 and
32 clusters are not significant for any test set, and are only significantly different for very
low SNRs. In contrast, the differences between 24 and 16 clusters are significant for all
test sets and SNR levels, especially for low and very low SNR levels. It seems, therefore,
that 24 is a kind of optimum value for the number of clusters, and that further increasing
the number of clusters does not significantly improve the performance. Actually, this is
logical if we think of the clustering process as an algorithm to find similar states in the
HMMs of the words. These clusters of similar states should roughly correspond to the
phonemes in the vocabulary, which explains why 24 clusters is a kind of optimum value,
since the number of phonemes present in the digit corpus is also 24. The results shown in
Fig. 7.13 entirely agree with the results of similar experiments in [SH03], where the results
of different clustering approaches for the tandem CofS approach are compared.
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Fig. 7.13: Different number of clusters for tandem-CofS using an unsupervised code-book with 512
symbols. The detailed results can be found in Appendix A in Tab. A.24, Tab. A.23 and Tab. A.25.

Tandem with PCA Experiments

As suggested in Sec. 4.4 and by the authors in [ESS01, RHWR96], an alternative to
clustering could be to train the NN using the HMM states as targets and then apply
a linear feature reduction transform (PCA) to the high-dimensional output of the NN.
However, this method is certainly not optimum in a theoretical sense. Nevertheless, we
tried this approach on the AURORA 2000 database since in this case the training of the
NN is not very time consuming. The NN topology was the same as in the previous points
except for the number of output units which was set to the number of HMM states. The
targets of the NN were consequently the 127 HMM states coded using 1-of-c coding. After
training the NN in the same way as in the previous cases, the data in the training set was
input to the MLP to generate a set of 127 dimensional vectors. This data set was then used
to compute a PCA matrix to reduce the dimensionality to N components. Afterwards,
this N -dimensional vector was used to train the supervised SCHMMs as in the previous
tandem experiments. In Fig. 7.14 we can analyze the results of the described approach
using a different number of PCA coefficients. As can be seen, the performance improvement
with 32 PCA coefficients is small, and probably not statistically significant. This agrees
with the previous results using clustering-of-states, and demonstrates that PCA is actually
performing a kind of clustering as well, since in PCA analysis the principal axes of variation
are found. These principal axes are actually determined by the components of the 127-
dimensional vector (states) that are active at the same time. Each PCA coefficient is
coupled to one of these directions, and quantifies how much of its principal direction is
present in the actual 127-dimensional vector.

Non-Linear Discriminant Analysis Experiments

Finally, the last dimensionality reduction method used an NN with two hidden layers in
a bottle-neck topology as shown in Fig. 4.6. As already mentioned in Sec. 4.6, the idea is
to use an NN with two hidden layers to approximate the state posterior probabilities and
to use the pre-nonlinearity outputs of the 2nd hidden layer as NLDA features. The NN
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Fig. 7.14: Comparison of different size of PCA matrix (24 and 32) for tandem-PCA experiments
using supervised SCHMMs. More detailed results can be found in Appendix A in Tab. A.26 and
Tab. A.27.

targets of the MLP training were chosen to be the HMM states coded in the usual 1-of-c
coding, and consequently the baseline segmentation into states was used as well. The
units in the hidden layers were sigmoidal unit, whereas the units of the output layer used
softmax non-linearity. The MLPs were trained using, as before, the EBP algorithm, with
the techniques described in Sec. 5.5.2 to avoid over-fitting to the training data set. After
training, the N -dimensional pre-nonlinearity outputs of the second hidden layer were used
to train supervised SCHMMs as in our baseline system.

In a first set of experiments, we fixed the size of the 2nd hidden layer, and varied
the size of the first to observe the changes in recognition performance. In Fig. 7.15 and
Fig. 7.16 we can observe that:

• The performance in both cases reaches its maximum at 690 units, although the
average differences between different sizes of the first hidden layer is rather small. The
only noticeable difference is for the test c conditions, where the difference between
the best and the worst is about 2% absolute (17% relative), and for 10 dB SNR,
where the previous difference is 1% (17% relative). In contrast to the experiments
in Sec. 7.3.2, where the performance gradually increases with growing size of the
MLP, the performance for this kind of MLP (two hidden layers) and for this kind
of problem (dimensionality reduction) does not monotonically increase with the size
of the MLP. However, it is hard to tell with this limited amount of experiments, if
there is a clear trend or not in the evolution of the results. Since in most cases there
is no significant difference between 480 and 690 units in the first hidden layer, we
have decided to use 480 units in the first hidden layer in our further tests.

• Comparing the performance of both cases for equal size of the first hidden layer,
we see that the performance difference is on average small and not significant. This
agrees with the previous results of the other dimensionality reduction approaches,
which also did not show any rapid increase or decrease in the performance as the
size of the MLP changed. Moreover, similar experiments varying the size of the
second hidden layer were conducted in [FRB97] using phonetic targets instead of
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Fig. 7.15: NLDA experiments with 32 units in the 2nd hidden layer, and a different number of
units in the 1st hidden layer. More details about these results can be found in Appendix A in
Tab. A.31, Tab. A.32 and Tab. A.33.
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Fig. 7.16: NLDA experiments with 24 units in the 2nd hidden layer and different number of units
in the 1st hidden layer. More detailed results can be found in Appendix A in Tab. A.28, Tab. A.29
and Tab. A.30.
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Fig. 7.17: Comparison of different feature reduction approaches using the same kind of features
(PLP) and acoustic modeling (supervised training in Fig. 7.2). More detailed results in Appendix A
in Tab. A.5, Tab. A.19, Tab. A.26 and Tab. A.22 and Tab. A.30.

HMM states. The relative differences in performance observed by the authors are
similar to our results.

Comparison of Feature Reduction Approaches

In this section we compare the feature reduction approaches introduced in the previous
section, and the LDA-based feature reduction using normalized PLP features. To have a
high degree of comparability, all the compared systems use supervised SCHMMs trained
as in our baseline system. In Fig. 7.17 we observe that:

• All non-linear dimensionality reduction approaches have a similar performance, and
on average the differences in performance are not statistically significant. However,
we see that the NLDA approach is more effective in matched test conditions than in
unmatched. These results have also been reported in [MHC03], and seem to indicate
that the different approaches are actually performing a similar mapping.

• Compared to the LDA-based system using normalized PLP features, the non-linear
dimensionality reduction approaches consistently bring a performance improvement
for all test sets and SNRs. This improvement is specially large for low to very low
SNRs, and for the test sets test a and test c. These results agree with the previous
results reported in [EG01, SEK+00, HES00]. However, the reported improvements in
those contributions were larger than ours because the tandem results were compared
to the AURORA official baseline results [HP00], which used MFCC features without
any kind of normalization or LDA.

Although the previous partial conclusion agrees with our theoretical expectations, it
is also true that the improvement observed cannot be solely attributed to the improved
discrimination capability, since the input high-dimensional spaces of the LDA and the
non-linear approaches are different. In the LDA case, the context spans a time-window
of 90 ms, whereas in the non-linear cases the context is much larger due to the appended
delta and delta-delta vectors.



134 7. Experiments and Results

0

2

4

6

8

10

12

14

 test a  test b  test c  mean 

W
E

R
 (%

)

(a) test set

0

5

10

15

20

25

30

35

40

 clean  20dB   10dB   0dB   

9

13

17

(b) SNR level

Fig. 7.18: Results of the experiments with normalized PLP LDA-based recognizer using different
sizes of the context window (9, 13 and 17 frames). More detailed results in Appendix A in Tab. A.5,
Tab. A.34 and Tab. A.35.

To study the relevance of this difference, we increased the context window of LDA to
13 and 17 frames , respectively. This last number of frames is roughly equivalent to the
context used in the non-linear approaches, since the length of the delta analysis window is
5 frames. As already mentioned, this is obtained by appending the delta and delta-delta
coefficients to the static features to form an extended feature vector, and then combining
9 consecutive extended vectors into a high-dimensional vector. The reason why we do
not use delta and delta-delta coefficients in LDA is to avoid numerical problems in the
computation of the LDA matrix, since the delta and delta-delta coefficients introduce
obscure linear dependencies between the coefficient of the high-dimensional vector, which
may lead to non-invertible covariance matrices. In Fig. 7.18 we can observe that:

• The performance increases in average as the size of the context window increases,
especially in the unmatched test cases (test b and test c). In the matched test case
(test a) the improvement is not statistically significant (c.i. ±0.2 at 95% level).

• If the results of the 17 frames case are compared with those of the non-linear trans-
forms in Fig. 7.17, we see that the results of the non-linear approaches are clearly
better in the test a and test c sets, but very similar in the test b case. In the test a
case, the improvement is roughly 20% relative. In the test c set, the improvement is
much larger for the noise present in the training data (N1) than for that not present
(N2) (cf. Tab. A.19 and Tab. A.35), and the average improvement in this test set
is about 15% relative. Differences between the non-linear approaches and LDA are
only clear for very low SNR, where the non-linear approaches are clearly superior.

These observations suggests that non-linear dimensionality reduction is actually doing
its job, i.e. mapping into a space with optimum discrimination between the classes, in
matched test conditions, but it does not seem to work in unmatched test conditions. A
reason could be the already mentioned feature normalization process (cf. Sec. 7.3.2), which
does not guarantee a good adaptation to the test conditions in the unmatched test sets.
It could well be that the non-parametric MLP-based approaches are more sensitive to
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this problem than the parametric LDA approach. Alternatively, it could also be that the
problem is the training procedure of the MLPs, since it seems to adapt excessively to the
conditions of the training set. More about this point can be found in Chapter 8.

Summary

In this section we have tested different configurations of some non-linear dimensionality
reduction approaches, and we have compared their performance to the usual LDA. Results
show that the differences between the different non-linear approaches are on average not
significant. Compared to the usual LDA approach, however, the non-linear approaches
bring a significant performance improvement, although this improvement is mostly for
very low SNR levels and matched test conditions. In unmatched noise conditions, the
advantage of using non-linear feature reduction is not clear. This could be due to an
overfitting of the MLP to the noises of the training set, which may be compounded by a
poor normalization of the feature vectors. It seems, therefore, that the striking advantage
of the tandem approach over our baseline found in Chapter 3, is not only due to the non-
linear feature reduction, but rather due to a series of factors— PLP features, normalization
in mean and variance, larger context window and non-linear transform— that add up to
the excellent result obtained in Chapter 3.

7.3.4 Hybrid RBF/HMM Systems

In this section we present the results using hybrid RBF/HMM acoustic modeling as dis-
cussed in Chapter 5. The purpose of these experiments is to establish whether the discrim-
inative training of the emission probabilities (weights between the hidden and the output
layer of the RBF) improves recognition performance.

The RBF topology has been chosen to be:

• 32 input nodes, because the features at the input of the RBF are the output of
a 32x117-dimensional LDA transformation matrix. As in the Feature Reduction
Experiments with PLP features, a 9-frame time context window of 13- dimensional
PLP feature vectors is used.

• 127 hidden nodes, because supervised clustering is used to compute the Gaussian
basis functions in the hidden layer (cf. Sec. 5.5.1). This supervised clustering pro-
cedure is analogous to the one used in our LDA-based baseline system, and assigns
a multidimensional full-covariance normal density of 117 components to each HMM
state. As a consequence, the number of Gaussian basis functions is equal to the num-
ber of HMM states. As in our baseline, these high-dimensional densities are used
to estimate the LDA matrix, and this again is used to reduce the dimensionality of
the densities to 32 components. These 32-dimensional full-covariance normal den-
sities are chosen to be the basis functions of our RBF. To compute this supervised
code-book, we have used a different segmentation into states from that used in the
PLP LDA-based system in Section 7.3.2, i.e. the segmentation used in our base-
line LDA-based system. Instead, we have trained unsupervised SCHMMs, as in our
baseline system in Section 7.3.2, using the PLP feature vectors. These unsupervised
SCHMMs have been used in a forced alignment to obtain a segmentation into HMM
states. This new segmentation is used to obtain the desired supervised code-book
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as in the previous experiments. We divide the output of each basis function by the
sum of the outputs of the other basis functions in order to have hidden layer outputs
that sum up to 1. This normalization was reported to improve the results in [SL92],
and is actually what the vector quantization of our baseline system is performing.
Moreover, this normalization makes the initialization of the hidden layer weights
easier, since it suffices to choose random values between 0 and 1.

• 127 output nodes, since this is the number of states in the HMM acoustic modeling. It
has been shown in Sec. 5.5.1 that it is possible to approximate HMM state-posterior
probabilities using this topology, either by using the Bayes or the softmax non-
linearity in the output units. In both cases, to compute the posterior probabilities,
the state-prior probabilities of the classes are needed. In all our experiments with
hybrid RBF/HMM, it has been assumed that all the prior probabilities are equal.

Since the mean vectors and covariance matrices are found by a supervised clustering,
the only parameters that have to be trained using the gradient descent algorithm are the
mixture weights between hidden and output units, that is 127 * 127 = 16129 weights to
train. The number of weights to train by gradient descent has thus been considerably
reduced in comparison with the hybrid MLP/HMM system in the experiments of the
previous sections. This results also in a considerable reduction of training time as com-
pared to the hybrid MLP/HMM system. The weight estimation equations can be found
in Sec. 5.5.1. The targets used in the gradient descent training were based on the seg-
mentation into HMM states used in our LDA-based baseline system. Note that this is not
the same segmentation as the one used to estimate the parameters of the basis functions,
since this is based on unsupervised SCHMMs trained on the PLP features.

As already mentioned in the previous paragraphs, two variants of the previous topology
have been tested. These variants use the following two different kinds of non-linearity in
the output layer:

• A softmax non-linearity which converts the log-likelihoods at the input of the out-
put layer into posterior probabilities. The advantage of assuming log-likelihoods at
that point is that there is no need for constraints on the values of the weights wij,
because the softmax non-linearity ensures that the outputs of the RBF are positive,
and between 0 and 1. This fact greatly simplifies the derivation of the estimation
equations, as can be seen in Sec. 5.5.1.

• A Bayes non-linearity with weight constraints that ensures that the RBF outputs
are true posterior probabilities. To perform this experiment we used the same NN
topology as in the previous experiment, but we forced the weights between hidden
and output layer to be greater than zero and to sum up to one. As explained in
Sec. 5.5.1, this was achieved by defining a set of ‘dummy’ weights that were passed
through a softmax non-linearity to obtain the true constraint-compliant weights wij.

To learn more about both variants we refer to Section 5.5.1.
In Fig. 7.19 we show the results of the experiments with the hybrid RBF/HMMcan

approach. Interesting points about these results are:

• Comparing both hybrid RBF/HMM variants, we observe that using a Bayes non-
linearity and weight constraint is on average better than using a softmax non-linearity
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Fig. 7.19: Comparison of different results using Hybrid RBF/HMM with an SCHMM system
using the same input PLP features. More details about these results can be found in Appendix A
in Tab. A.36, Tab. A.37 and Tab. A.38.

in the output units. In particular, we see that the former approach is 10% relative
better for the test a and 7% relative for the test c.

• Discriminative acoustic modeling is better for clean speech or mismatched noise
conditions. In Tab. A.36, Tab. A.37 and Tab. A.38 of Appendix A we can find
the detailed results where the previous trend can be better identified. The previous
trend can also be observed in the results of test c, since the results for N2 (not
present in training) are better than in the conventional approach, and conversely
the results for N1 (present in training) are worse. This trend is also observed in the
hybrid MLP/HMM results of Sec. 7.3.2, where the improvements for mismatched
test conditions and SNR levels present in the training set were clearly larger (25%
relative on average).

• For very low SNR (0 dB) and matched test conditions the discriminative approaches
are worse than the conventional approach (see Tab. A.37 and Tab. A.38). For high
SNR (20 dB) or low SNR (10 dB) conditions and matched test conditions, the results
of both approaches are on average similar. This contrasts with the results of hybrid
MLP/HMM, since the improvement using this approach, although not so large as in
the unmatched case, was significant (16% relative on average).

It is difficult to tell why hybrid RBF/HMM is just a little better than a similar SCHMM
system. Among the suspected causes we can mention:

• The segmentation used to estimate the supervised code-book is not the same as the
one used to estimate the weights using EBP. This may have caused ‘blurred’ outputs
because during EBP training the unit with maximum output in the hidden layer
(hidden layer outputs are normalized to sum up to one) may not correspond to the
unit in the output layer with the ‘one’.

• In these experiments we have used the hybrid RBF/HMM approach which directly
inputs the posteriors to the Viterbi decoding for posterior-based systems described
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in Section 5.4.1. Alternatively, we can normalize the posteriors by the a priori
probabilities of the states to obtain normalized likelihoods, and use these likelihoods
and the state transition probabilities of the SCHMM system, to decode the sentence
using the Viterbi algorithm for likelihood-based systems described in Section 2.5.1.
Actually, in [RMB91] it has been argued that it is usually better in practice to
normalize the posteriors by the state prior probabilities. As further discussed in
Chapter 8, a first reason is that large differences in the prior probabilities of the
states cause the infrequent states to be ignored during classification. Therefore,
a normalization of the posteriors by the priors usually helps to reduce this effect.
A second reason is simply that the state prior probabilities are usually different
in the training and the test set. Since discriminative training implicitly includes
the prior probabilities of the states in the training data, the use of non-normalized
posteriors can lead to poor performance in certain test sets. Moreover, in [SL92] the
normalization of the posteriors significantly improved the performance. However, in
our case the posterior probabilities of the states in training and test are very similar
(in both cases we have only sequences of digits).

• During EBP training we have assumed that the HMM states were equiprobable,
i.e. equal prior probabilities, although the state in the pause model, must have a
different prior to the states in the digit models. As further discussed in Chapter 8
it is possible to include the prior probabilities in the training by using a different
constraint on the weights.

Summary

In the experiments of this section we have compared different topologies of the RBF for
hybrid RBF/HMM. The topology using the Bayes non-linearity at the output performs
best, although its performance is just slightly better than the performance of a similar
SCHMM system.

7.3.5 Multiple Streams of Features

We have basically carried out two sets of experiments with the multi-stream approach
presented in Chapter 6:

• Multi-stream together with feature reduction approaches and SCHMM.

• Multi-stream with hybrid MLP/HMM

The reason for applying multi-stream on different systems was to see if improvements were
consistent across different kinds of acoustic modeling approaches.

Multi-stream with SCHMM Systems

In a first set of experiments, we have tested the effectiveness of the multi-stream approach
when used together with LDA for dimensionality reduction. Three different kinds of
combination have been tested, namely:

• concatenation of the LDA vectors, followed by feature reduction using LDA, as shown
in Fig. 6.3.
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• product of likelihoods as described in Sec. 6.3.2.

• full combination approach using the product of likelihoods rule, as described in
Sec. 6.3.2 and shown in Fig. 6.5.

The systems we have combined are our LDA-based baseline system (cf. Fig. 7.4), and the
LDA-based system using MSG features (cf. Fig. 7.6), both described in Sec. 7.3.2.

To train the SCHMMs for the concatenation of LDA vectors, we have first generated
the LDA vectors for each of the files in the training set and systems to be combined.
Next, for all the frames in the training set, we have concatenated the LDA vectors of both
systems on a frame by frame basis to form a large 64-dimensional LDA vector. Some
experiments were also carried out using a context window of concatenated LDA vectors
(3 frames), but the results were almost the same as without any context. Consequently,
we have used the 64-dimensional concatenated feature vector to generate a code-book
using the baseline segmentation into HMM states and the same supervised clustering
algorithm as in our baseline system. From this code-book, we have estimated the LDA
transform that has been used to reduce the dimensionality of the concatenated vector
from 64 to 32 dimensions. Next the 32-dimensional feature vectors are soft-quantized
using the estimated supervised code-book, and the quantized vectors are used to estimate
the emission probabilities of the HMM states as in our baseline system (cf. Sec. 7.3.1).

To train SCHMMs using the product of likelihoods rule, we have simply used the same
procedure as in the 3 code-book system of our baseline (cf. Sec. 7.3.1), but with just 2
code-books. Hence, we have quantized the feature vectors using the code-books of each of
the systems to be combined, and subsequently we have simply concatenated the quantized
vectors of both code-books. Finally, the concatenated vector was used to estimate two sets
of emission — one for each code-book — and the transition probabilities of the SCHMMs
using the Baum-Welch algorithm. Since we have in this case 2 supervised code-books, the
number of emission probabilities per state to estimate using Baum-Welch is 2 × 127. To
obtain a single likelihood per state, we first compute the likelihood of each code-book/set
of emission probabilities pair, and then we multiply the obtained likelihoods as shown in
Eq. 7.1.

Similarly, to estimate the emission and transition probabilities of the full combination
system using the product of likelihoods rule, we have used the LDA-baseline code-book,
the LDA-MSG code-book and the code-book of the first multi-stream system (feature con-
catenation of LDA vectors followed by LDA dimensionality reduction) to obtain three sets
of vector-quantized features. As before, we have concatenated the three quantized vectors,
and we have used the concatenated vectors to train emission and transition probabilities
using Baum-Welch. The number of emission probabilities to be trained in this case is
3 × (127 × 127). To obtain a single likelihood per state we use the same procedure as in
the previous system. The results of the experiments are shown in Fig. 7.20 where we can
observe:

• Feature concatenation followed by feature reduction with LDA (LDA-baseline | LDA-
MSG LDA) significantly improves (cf. Fig. 3.5) the performance of the baseline
(LDA-CMF) for all test sets, especially for the test c where the improvement is clearly
over the significance threshold (c.i. ±0.5%). For high SNR levels, the differences
between this approach and the baseline are not significant, but for low SNR levels
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Fig. 7.20: Comparison of different multi-stream approaches using LDA dimensionality reduction
and SCHMMs. The operator ‘∗’ stands for product of likelihoods, the ‘|’ for feature concatenation
(followed in this experiment by LDA reduction), and ‘#’ for full combination using product of
likelihoods. More detailed results can be found in Appendix A in Tab. A.1, Tab. A.41, Tab. A.40
and Tab. A.39.

the feature concatenation approach is significantly better, both for 10 dB SNR (c.i.
±0.5%) and 0 dB SNR (c.i. ±1.4%).

• Probability combination using the product rule (LDA-baseline ∗ LDA-MSG) is also
better than our baseline for all test sets. Compared to the previous multi-stream
approach, this approach is clearly better for the test b set, and just above the thresh-
old of significance for the test a set. For the test c, in contrast, the difference is not
statistically significant (c.i. ±0.5%). As in the previous case, the differences for high
SNR with the baseline are not statistically significant (c.i. ±0.3%), but for low SNR
the improvement with respect to the baseline and the previous approach is clear.

• On the other hand, the full combination approach using the product rule (LDA-
baseline # LDA-MSG) does not bring any significant performance improvement over
simple probability combination for any of the test sets or SNR levels. These results
seem to suggest that our baseline features (mel-cepstral coefficients) and the MSG
features have rather uncorrelated errors, and there is consequently no need to add a
model of the concatenated feature vector.

In another set of experiments, we have tested the performance of the combination of
multi-stream with non-linear feature reduction approaches. In a first experiment, we have
combined two tandem systems (cf. Sec. 7.3.3) one using PLP features and the other MSG
features. An MLP has been trained for each of the feature types, as explained in Sec. 7.3.3.
Next the pre-nonlinearity outputs of the MLPs are added (pre-nonlinearity outputs are
log-probabilities) to obtain a single dimensionality-reduced feature vector for each input
frame. This feature vector is afterwards used to train a supervised code-book and the
SCHMMs as already explained in Sec. 7.3.3. Two different non-linear dimensionality
reduction approaches have been compared: the first is the tandem original approach, and
the second is the tandem clustering-of-states approach (cf. Sec. 7.3.3). In Fig. 7.21 the
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Fig. 7.21: Comparison of different multi-stream approaches using non-linear feature reduction
approaches and SCHMMs. In this case, the operator ‘∗’ stands for the sum of pre-nonlinearity
outputs of the neural nets. The detailed results can be found in Appendix A in Tab. A.19, Tab. A.42,
Tab. A.22 and Tab. A.43.

results of the two previous systems and the tandem original system using only PLP features
are shown. In this figure we can observe:

• The multi-stream tandem original approach (PLP-TAN ∗ MSG TAN original) is sig-
nificantly better for all tests and SNR conditions than the tandem original approach
with one feature stream. The improvement is especially large in unmatched test
conditions (test b and test c), and in low SNR levels.

• Similarly, the multi-stream tandem clustering-of-states approach (PLP-TAN ∗MSG-
TAN CofS) improves the performance of the same approach using only one feature
stream. The improvement is significant but not very large for the sets test a and test
b, but is fairly large for the test c set. A significant improvement is also observed
for all SNR levels, especially in the low SNR region.

Multi-stream Experiments with Word-Based Hybrid MLP/HMM

In a further set of experiments with the multi-stream approach, we have used a word-
based hybrid MLP/HMM system to test whether the improvements were consistent across
different kinds of acoustic modeling techniques.

As in our previous experiments with hybrid MLP/HMM systems (cf. Sec. 7.3.2),
the PLP feature vector has 13 components, and the delta and delta-delta coefficients are
appended to the static features. The input layer of the MLP for the PLP features has, as
before, 351 units, the hidden layer 480 units, and the output layer 127 units, one for each
state in the HMMs. The MLP for the MSG features is also the same as in the previous
experiments, and has 252 input units, 480 hidden units and 127 output units.

In these experiments we have simply combined the outputs of the two nets using the
product rule, as explained in Sec. 6.3.2, to obtain one vector of posterior probabilities.

From Fig. 7.22 we can deduce:
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Fig. 7.22: Tests of multi-stream combination using the product rule. The operator ∗ stands for
the product of posterior probabilities. The acoustic modeling approach used in this experiment
is word-based hybrid MLP/HMM. More details about the results can be found in Tab. A.14 and
Tab. A.44.

• Probability combination using the product rule with both MLPs significantly im-
proves the performance for all test conditions and SNR levels (20% on average).
This improvement is especially large in unmatched test conditions and low SNR
levels.

• Compared to the previous results with multi-stream and SCHMMs, these results are
on average significantly better than the previous. However, the results for test c are
significantly worse than the best results in Fig. 7.21, but the results for test b are
much better (around 30% relative). For the test a the results are not significantly
different. This trend is also observed in the results with just one stream of features
(cf. Fig. 7.10 and Fig. 7.9).

Although the last results seem to be consistent with the previous results with just
one feature stream, it was reported in [HES00] that the ‘tandem acoustic modeling’ out-
performs hybrid MLP/HMM acoustic modeling. In that study, the authors support the
thesis that the superiority of a tandem system derives from the double acoustic modeling
performed by the MLP and the CDHMM— from here the name tandem. We believe, how-
ever, that the reason for this discrepancy with our results is the different kind of acoustic
model used by those authors in the tandem and hybrid MLP/HMM experiments. In the
former, word-based SCHMMs were used, whereas in the latter case phone-based HMMs
were used. Since it is well known that, given a sufficient amount of training material,
word-based HMMs are superior to phone-based HMMs, it could well be that the ‘supe-
riority’ of the tandem approach is just due to the more accurate acoustic model. This
belief is confirmed by the previous experiments, since they show that a word-based hybrid
MLP/HMM system is superior to the tandem system.
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Summary

We have seen in this section that the use of multiple streams improves the performance
in about 10-20% relative. However, and as already commented in Chapter 6, the number
of parameters of the multi-stream system is larger than that of the system using just one
stream. This may be the reason for the positive results obtained in the previous section, as
already reported in some of the studies reviewed in Sec. 6.2. In spite of that, multi-stream
is still interesting because it provides a way to save training time and hardware resources.

7.4 Experiments on UKKCP

7.4.1 Baseline System Configuration

Feature Extraction

Our feature extraction for this database uses a similar configuration to the experiments
with the AURORA database (cf. Sec. 7.3.1). The main differences between the feature
extractions are due to the higher sampling rate in the UKKCP database (16 kHz vs.
8 kHz in the AURORA database). As before, the speech signal is first denoised using
spectral subtraction. Next the denoised speech is analyzed using a Hamming window of
22 ms, which is shifted every 10 ms. The spectrum of the windowed frame is computed
using a 512 point FFT. As in the AURORA experiments, a filter-bank is applied to the
computed spectrum to obtain 19 filter-bank coefficients (in the AURORA experiments we
have used a bank of 16 filters). Once computed, a logarithmic compression is applied to
these coefficients to reduce their dynamic range. A 19 point Discrete Cosine Transform
(DCT) is applied to the compressed coefficients to obtain 13 cepstral coefficients. As
in the AURORA experiments, Cepstral Mean Subtraction is used to cancel any channel
distortion.

Acoustic Modelling

This set of HMMs consists of 70 whole-word models, 81 phonetic, 136 context-dependent,
plus one pause model and 8 HMMs to model non-linguistic phenomena (noise, breathing,
etc. . . ). The most frequent words are modelled using whole-word models, whereas the
others are modelled using a mixture of context-independent and context-dependent models.

Training

The training process of the HMM parameters has, as in the AURORA experiments, two
well-differentiated parts: a first is carried out to compute, in an unsupervised fashion, a
segmentation into HMM states (Fig. 7.1), and a second part that uses this segmentation
to estimate, in a supervised way, a set of SCHMMs (Fig. 7.2). Although the procedure is
similar to the training process in the AURORA experiments, there are some peculiarities
owing to the context-dependent acoustic models used in these experiments. In the first
training part and after computing the unsupervised code-books, the parameters of the
whole-word and phoneme SCHMMs are estimated, and the latter models are then used
to initialize the parameter values of the context-dependent SCHMMs [CKRB93]. Next,
these context-dependent models are jointly trained with the phoneme and whole-word
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models to obtain the final set of SCHMMs. This final set of models is used to generate a
segmentation into HMM states of the training data, which is utilized in the second part to
generate a supervised code-book. This code-book is generated in a similar fashion to the
AURORA experiments, the only difference being the classes used in the code-book. These
are no longer HMM states, but rather clusters of HMM states obtained by clustering
the states using the Lee clustering algorithm (cf. Appendix D). In our case, the total
number of states is 1496, which are clustered into 1024 clusters. As in the AURORA
baseline, a multidimensional normal distribution is used to model each of these clusters.
The modeled vector consists of 9 contiguous cepstral frames appended to form a large
117-dimensional feature vector. This code-book is used to compute an LDA transform,
to reduce the vector dimensionality of the code-book to 32 dimensions. After estimating
the supervised code-book, and quantizing the feature vectors using the LDA transform
and the reduced code-book, the whole-word and phoneme SCHMMs are trained using the
Baum-Welch algorithm. The parameters of the phoneme models are used to initialize the
context-dependent models, which are in a second step jointly trained with the phoneme
and word models using the Baum-Welch algorithm as well.

The obtained HMMs (a total of 296 word, context-independent and context-dependent
models) are then used in our ASR system as in the AURORA experiments (cf. Sec. 7.3.1).
Unlike those experiments, however, the lexicon is no longer a simple list of word models,
but rather a lexicon tree whose branches are the models of the words constructed by
concatenating context-independent or context-dependent HMMs— except words having
their own HMM—, as was explained in Sec. 2.4.2. Although the structure of the lexicon
is different, the decoding algorithm is also the one-pass (one-stage) algorithm. Since in
most of the in-car applications an ASR system inputs data to a dialogue system, the ASR
system knows in advance which group of words are a valid input to the actual state of the
dialog system. This enormously restricts the size of the lexicon for a given sentence, and
consequently speeds up the recognition time (the search space is reduced considerably).
Consequently, we have grouped the words in the lexicon into three groups (sub-lexicons),
namely cities, digits and spelling. The first consists of city names in the UK, the second
of whole-word digit models plus models for the words ‘hash’ ‘square’ and ‘star’, and the
third of whole-word models of the alphabet letters (spelling).

7.4.2 Discriminative Feature Reduction

Tandem Experiments

The feature vector used for the tandem system is exactly the same as in the baseline
system, i.e. a mel-cepstral coefficients using spectral and cepstral mean subtraction. As
in the AURORA experiments, the training process of this system consists of three parts:
segmentation into phonetic classes of the training data, training of the NN using the
previous segmentation, and finally training of the SCHMMs using the pre-nonlinearity
outputs of the NN. The tandem system uses a set of 54 phonemes as the target classes
of the feature reduction transform. The segmentation into the phonetic classes has been
obtained by training unsupervised phonetic SCHMMs and using them to automatically
segment the training data. Since the feature vector is the same as in the baseline, the
unsupervised code-books were also the same as in that system, and consequently the
quantized feature vectors were also the same as in our baseline. The main difference with
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respect to the segmentation part of our baseline is the absence of whole-word HMMs, and
that no segmentation step with context-dependent models is performed. We have used
a set of HMMs consisting of 54 phoneme models plus one pause model and 8 HMMs to
model different non-linguistic phenomena. Note that the number of phonemes is less than
the number used in the baseline system. The reason is that the number of phonemes used
in the baseline (81 phoneme models) is too large to be used as a feature vector. Hence,
we have only selected the 54 most frequent phonemes. Since no word models were used,
the digits and alphabet letters in the training lexicon have been transcribed using these
54 phonemes as well. The set of 63 HMMs (54 + 8 +1) was trained using, as in our
baseline, the Baum-Welch algorithm. After that a segmentation into HMM states (ALI
files in Fig. 7.1) is generated using the trained HMMs. This segmentation into states is
afterwards mapped to a segmentation into 56 phonetic classes which are the 54 phonemes
plus the pause and a class representing all the non-linguistic HMMs.

Once the segmentation into classes has been obtained, the next step is to estimate the
weights of the NN. The topology of the NN used is as shown in Fig. 4.5, and has 351 input
units, 480 hidden units, and 56 units in the output layer. Note that the topology is the
same as that used in the AURORA experiments, except for the number of units in the
output layer. The input vector of the NN is formed by concatenating 8 context frames
to the actual frame (4 before and 4 after), where the frames are the static feature vectors
with appended delta and delta-delta vectors (a 39-dimensional vector). The weights of the
NN are also trained in this case using the error back-propagation algorithm.

After training the NN, the next step was to generate the reduced 56-dimensional fea-
ture vectors using the trained NN. The 56-dimensional feature vectors were then used to
train supervised HMMs as was done in our baseline system. To estimate the supervised
code-book, we used the segmentation into state clusters (a total of 1024) already used
in our baseline. In this case, however, there was no need for an LDA transform because
the feature vector had already been reduced. Each of the normal distributions in the
supervised code-book was therefore 56-dimensional. As before, this code-book was used
to quantize the feature vectors as explained is Sec. 7.4.1, and the quantized vectors were
used subsequently to estimate the parameters of the SCHMMs using the Baum-Welch
algorithm. The topology of the SCHMMs was exactly the same as in our baseline, i.e. it
was a mixture of context-independent, context-dependent and whole word models with a
total of 296 HMMs. The experiments with this system are shown in Fig. 7.23 where we
can observe:

• As opposed to our experiments with the AURORA database, the results on the
digit sub-task using the tandem original approach are significantly worse than our
baseline (c.i. ±0.4 at 95% confidence level). A similar trend is observed in the
‘spelling’ sub-task (c.i. ±1.1), where the HMMs are also whole word models.

• The difference between the baseline and the tandem approach is also significant in
the ‘cities’ sub-task (c.i. ±3.75), where most of the words are modeled using context-
dependent HMMs.

We believe that these disappointing results are due to the following factors:

• The most probable cause of this result is the mismatch between the target classes
of our NN (phonemes) and the classes used in our acoustic modeling which include
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Fig. 7.23: A comparison on the UKKCP database between our baseline system and the original
tandem approach for dimensionality reduction (cf. Sec. 4.6.1). The LDA feature vector has 32
dimensions whereas the tandem feature vector has 56 dimensions.

context-dependent, context-independent and whole word HMMs. As already pointed
out in [ESS01], this mismatch increases the overlap between the HMM states, be-
cause each NN output (phone target) may be shared between some HMM states. The
number of states sharing the same NN output grows with the increasing number of
HMM states, and consequently the overlapping between them also grows. Since the
number of states (127) was rather small in the AURORA experiments, the overlap-
ping between states was not very large. Therefore, discriminating between HMM
states was not difficult, and the key factor for the success of this approach on the
AURORA database was rather the improved statistical modeling of the classes for
feature reduction (cf. Sec. 4.6). In contrast, the number of states in the UKKCP
experiments is rather large (1496), and the overlapping between them after tandem
feature reduction is consequently larger than that in the LDA output space. Also,
the confusability between words of the ‘spelling’ and ‘cities’ test sets is much larger
than that of the digits. Moreover, in the ‘cities’ test set the models of the words
are constructed using context-dependent and context-independent models, which are
shared across different words. An increase in the overlap at the state or model level,
therefore, has also more impact on the confusable sets. Theoretically, a solution to
this problem is to use NLDA as in the AURORA experiments, because this feature
reduction approach uses the HMM states or code-book classes as classes for fea-
ture reduction, and is therefore somehow matched to the classifier in the acoustic
modeling.

• The NN for dimensionality reduction has been trained on the whole training set, in
which all the possible targets of the NN (56 phonetic targets) occur. In the ‘digmb’
and ‘spelling’ test sets, by contrast, some of the targets (outputs of the NN) do
not occur, and consequently some outputs of the NN should be always zero during
testing. Although those outputs are zero or near to zero during training, this is
probably not the case during testing, which further introduces confusability during
classification in the 56-dimensional feature space. A possible solution would be to use
a technique similar to missing data theory in the acoustic modeling (cf. Sec. 3.5.1),
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Fig. 7.24: Experiments on UKKCP using the tandem CofS approach.

since we know for each test set which are the valid outputs, and it is therefore possible
to marginalize the normal densities.

• Another factor that could have influenced the performance of this approach could
be the difference in the a priori probabilities of the phonetic classes. The most
frequent class occurs 44.5% of the time, whereas the less frequent only 0.022% of the
time. By contrast, the same frequencies of occurrence in the analogous AURORA
experiment (cf. Sec. 7.3.3) were respectively 22% and 1.3%, which explains why in the
AURORA case this effect was not so important. As is further explained in the point
where the NLDA experiments are discussed, these large differences in the frequency
of occurrence may cause the rare classes to be ‘ignored’ during classification.

Tandem Clustering of States Experiments

To see if we could improve the match between the classes in the acoustic model and those
used in dimensionality reduction, we have clustered the states of the HMMs as was done
in Sec. 7.3.3 in the experiments with the AURORA database.

The topology of the NN used in these experiments is very similar to that used in the
previous point— a one hidden layer MLP—, the only difference being the number of units
in the output layer, which is equal to the number of state clusters used. As before, the
number of input and hidden units is 351 and 480, respectively.

The clusters of states are obtained using the same procedure as in the AURORA
experiments, i.e. the Lee clustering algorithm (cf. Sec. D). However, the reduction in the
number of classes is in this case much larger, because the number of states is 1496 and the
number of clusters lies between 16 and 56. This strong reduction may cause the clusters
to greatly overlap, and consequently discrimination between them becomes difficult.

The segmentation into state clusters of the training data is obtained from the segmen-
tation into HMM states used to estimate the LDA transform in our baseline system. This
is simply done by mapping a given HMM state into the corresponding cluster.

Once this segmentation has been obtained, the weights of the NN are estimated, also
using the EBP algorithm and the same configuration as in the previous cases.

In Fig. 7.24 we can observe:
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• For the ‘digits’ test set the difference between our baseline and the tandem sys-
tem with 32 clusters (TAN CofS 32) is not statistically significant (c.i. ±0.3%).
In contrast, the difference with the tandem system with 48 clusters is statistically
significant.

• In the ‘spelling’ sub-task the differences with respect to the baseline are statistically
significant for both cases, although the differences between both tandem results are
not statistically significant (c.i. ±1.2%).

• Finally, for the ‘cities’ test set the differences between the tandem approaches and
the baseline are also statistically significant (c.i. ±4%).

Interestingly, and in contrast with the analogous experiments on the AURORA data-
base (cf. Fig. 7.13), no improvement is obtained when using the tandem Clustering of
States approach. On the contrary, it seems from this limited set of experiments that the
performance even decreases as the number of clusters grows. The explanation for the
bad results compared to our baseline is similar to the one given in the tandem original
approach experiments above. The only difference is that the intrinsic cause of the failure
is no longer the mismatch between acoustic modeling and feature reduction classes, but
rather the large overlapping between the clusters (clusters are obtained in this case by
clustering the 1496 states into 32 or 48 classes). By contrast, in the AURORA experi-
ments the reduction in the number of classes was rather small (127 states to 16, 24 or 32
classes), and in addition the number of words in the vocabulary was only 11.

On the other hand, the performance decrease with increasing number of clusters seems
to support the thesis explained in the previous point about the redundant number of
outputs in the ‘digmb’ and ‘spelling’ test sets. The results show indeed that a reduction of
the number of clusters— and consequently of the redundant outputs— is only beneficial
in those test sets.

Non-Linear Discriminant Analysis Experiments

Since none of the tandem feature reduction approaches brought any improvement on
UKKCP, we decided to also test the NLDA approach already used in the AURORA exper-
iments. The advantage of using this approach is that the classes used for dimensionality
reduction are the same as those used in the acoustic modeling (states). According to the
theoretical discussions in Chapter 4, this should result in a better discrimination in the
dimensionality-reduced space. In fact, and as already discussed in the mentioned chapter,
this approach uses the same classes as LDA but makes weaker assumptions on the data—
classes are not assumed to be normal — and uses a non-parametric method to find the
mapping.

The used NNs had two hidden layers and the same input space as the NN in the
previous tandem experiments, i.e. 351 input units. The first hidden layer had 480 units,
and the second hidden layer 32 units. Since we have used two different kinds of targets,
the number of units in the output layer has 1496 or 1024 units. In the first case, the
targets of the NN are the states in the acoustic modeling, whereas in the second case the
targets are the classes associated with the symbols in the code-book of our baseline system
(1024 symbols). To train the first NN we have used exactly the same segmentation into
states as in the baseline system. For the second NN we have used a segmentation into
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Fig. 7.25: Experiments on UKKCP using different variations of the NLDA approach.

clusters derived from the previous segmentation into states by simply mapping each state
into its corresponding cluster. Both NNs have been trained using the usual EBP algorithm
configured in the same way as in the previous experiments.

As before, after training an NN we generate the reduced feature vectors of the training
set by inputting the high-dimensional input vector into the NN. The difference with the
tandem approach is that the 32-dimensional reduced feature vector is generated at the
output of the second hidden layer instead of at the output layer.

The set of feature files with the 32-dimensional vectors is then used to train the
SCHMMs as in the tandem approach. Using the results shown in Fig. 7.25 we can see
that:

• The NLDA approach using state targets to train the NN is significantly worse than
the LDA baseline for all test sets. The difference is well above the confidence level
(c.i. ±0.3%) in the ‘digmb’ test set, and just outside the confidence interval in the
‘spelling’ and ‘cities’ sets (c.i. ±1.2% and ±4%, respectively).

• When clusters of states are used as targets, the results are also worse than our
baseline system for all test sets. Compared with the previous approach, the results
seem to improve for the ‘digmb’ set, but at the same time the performance apparently
deteriorates for the other two sets. Nevertheless the differences between both target
types are just slightly above the significance limit in each test set, which casts doubt
on the statistical significance of these differences.

These results with the NLDA approach are disappointing because we hoped to obtain
a non-linear mapping to a reduced space with better discrimination properties, since no
assumption on the statistics of the feature vectors in the clusters is made. Clearly, there
are other disadvantages that counteract the assumed benefits. We believe that the poor
results are caused by a mixture of the following problems:

• The prior probabilities of the states show a lot of variation. As shown experimen-
tally in [BB93], this differences cause the number of training samples for each class
to vary significantly, which leads to worse classification performance for the rarer
classes. In [BCH98] it was also observed that classes with a low prior probabilities
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were ‘ignored’ during test. The authors in [LBB+98] show that the cause of this
phenomenon is the use of techniques such as early stopping or weight decay, which
lead to ‘smoother models’ with better generalization to unseen data [Bis96]. This
bias towards ‘smoother’ solutions, however, leads to inaccurate fitting of the opti-
mal function, and the result is a tendency to ‘ignore’ the classes with low frequency.
In fact, the classes in the segmentation used to train the NN for feature reduction
have extremely different frequencies of occurrence. These frequencies range from the
4078130 times of the pause model to 5 times the 3rd state in the model ‘aUl’. As
a consequence, our NN for NLDA is strongly biased towards classifying the input
frame as a pause frame, which clearly has an effect on the structure of the reduced
feature space of 32 dimensions (2nd hidden layer output). Furthermore, this problem
is difficult to trace if we only look at the overall target classification rate, because
this rate in the training and cross-validation sets can be large, in spite of the fact
that there are classes— namely the less frequent— which are not recognized at all. A
number of solutions to this problem are also proposed in [LBB+98], and are further
discussed in Chapter 8.

• Also related to the previous problem is the fact that the large number of classes
(1496 or 1024) leads to very complex decision boundaries in the input space. Since
techniques to improve the generalization of the net, such as early stopping, tend to
find ‘smoother’ solutions, it is very difficult to find an accurate solution when the
decision boundaries are very complex. A possible simple solution would be to relax
the ‘smoothness’ constraints, but this could result in over-fitting to the training data.
Another more complex alternative would be to build a hierarchical classification
space, and use a hierarchical NN to classify the reduced feature vector [Sch96, FF98],
instead of using just one layer of weights— and therefore a simple linear classifier—
between the reduced feature vector (outputs of the 2nd hidden layer) and the outputs
of the NN. The idea is to keep the topology of the NN for NLDA in its non-linear
transform part (the first two layers of weights), and use a hierarchical NN between
the 2nd and the output layers.

• Although to train the NN we have used the same segmentation into HMM states
as in our LDA baseline, it could well be that NN training using EBP needs a more
accurate segmentation to attain a high classification accuracy. In fact, by using the
segmentation into HMM states we assume that it contains a kind of ‘ground truth’,
i.e. frames are assigned to the right classes, although we know that the segmen-
tation has been obtained using imperfect models [RMB91]. Moreover, the larger
the number of classes to be discriminated the more uncertain are the assignments
in the segmentation, because the distance between the classes decreases. When
LDA is used, errors in the class-assignment of a given frame have little effect on the
means and covariances of the code-book (and therefore on the LDA matrix), since
both mean and covariance of a class are obtained by averaging over all the frames
assigned to that class. In contrast, when EBP is used to train an NN for feature
reduction the frames are individually input to the NN to obtain the output, compute
the error and adapt the weights of the NN. Although, this case would correspond to
the pure sequential training of the net (cf. Sec. 5.5), which has not been used in our
experiments, the influence of a single misclassified frame is still strong if we, as in
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our case, only adapt the weights after accumulating the errors of 16 frames (bunch
training).

• Finally, a last reason for the deceiving results could be differences in the a pri-
ori probabilities of the classes in training and test. In fact, this could be our case
since our test lexicon includes three different sub-lexicons (digits, spelling and cities),
which are separately activated to account for the different stages in the dialog (cf.
Sec. 7.4.1). When one of the sub-lexicons is activated, only the classes (states or
clusters) present in that sub-lexicon have a prior probability of occurring. As demon-
strated in [BM94, pg. 181], the mismatch between test and training priors leads to
poor recognition performance when NNs are used as classifiers in hybrid ANN/HMM
speech recognizers. In that case, a successful solution to the problem is to normalize
the posterior probabilities, i.e. the outputs of the NN, by the a priori probabilities
estimated on the training data set [BM94]. This normalization converts the pos-
teriors to normalized likelihoods, which can then be used as normal likelihood in
standard GMM/HMMs. In our case, however, the NN is not used as a classifier but
rather as a mapping function between two feature spaces. Therefore, it is not possible
to normalize the outputs of the NN without distorting the low-dimensional feature
space. One possible solution is to use one of the methods suggested in [LBB+98]
(used in the first point to equalize the prior probabilities of the different classes) to
adapt during training the prior probabilities of the classes to those in the test set.
However, this requires the retraining of both the NN and the HMMs, which is too
cost-intensive. Furthermore, at training time of the HMMs it is often the case in
practice that the a priori probabilities in the training set cannot be determined.

Summary

In this section we have investigated the performance of some alternative feature reduction
approaches on the UKKCP database for in-car applications. We have found that none
of the new approaches improves the performance of a similar system using conventional
LDA feature reduction. For the tandem systems, the main reason seems to be the inherent
mismatch between the classes for feature reduction, and the classes used in the acoustic
modeling. For the NLDA system, there seem to be multiple reasons that contribute to the
disappointing results: large differences in the a priori probabilities of the classes, errors in
the segmentation into classes, and differences between the a priori probabilities of training
and test.

7.4.3 Multiple Streams of Features

In a last set of experiments, we have tested the performance of the multi-stream speech
recognition, applied together with the LDA and tandem approaches, on the UKKCP data-
base.

A first experiment was to test the performance of a multi-stream system resulting from
the probability combination of two LDA-based systems, since this approach significantly
improved the performance of our AURORA baseline (cf. Sec. 7.3.5). A first step was
thus to generate the MSG features for the second system. Since the sample rate of this
database is larger than in AURORA (16 kHz vs. 8 kHz in the latter), the number of
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Fig. 7.26: Performance comparison on UKKCP of a multi-stream system combining two LDA-
based systems (LDA-baseline ∗ LDA-MSG), and a multi-stream system combining two tandem
systems (CEP-TAN ∗ MSG-TAN CofS). The results of the baseline system, and those of a similar
system using MSG features are also given for comparison.

filters in the bank-of-filters used in the MSG analysis is 18 instead of 14. This increase in
the number of filters results in an MSG feature vector of 36 dimensions. After generating
the feature vector, the next step was to train an LDA matrix, code-book and HMMs for
this system. We performed the same steps as in our baseline system (cf. Sec. 7.4.1), with
the particularities that the number of context frames used as input to the LDA matrix is
just three. This resulted in a 108 × 32 dimensional LDA matrix. Once the MSG system
was trained, we combined this system with our baseline using probability combination
in a similar fashion to the analogous AURORA experiment. The main aspect in this
experiment is the large number of state emission probabilities needed for the combined
system (2048 emissions per state) since each code-book had 1024 classes.

The second multi-stream system combined two tandem systems. One was the CofS
tandem system with 32 targets discussed in Sec. 7.4.2, whereas the other is a similar system
that used MSG instead of cepstral features. The input to the NN was a window of 9 MSG
frames, and as a consequence the input layer of the NN had 324 units. As before, the
hidden and the output layers had 480 and 32 units, respectively. After training both NN,
we combined their pre-nonlinearity outputs to obtain the final reduced feature vector, just
as in the AURORA experiments of Sec. 7.3.5. Subsequent steps were also analogous to
those performed for the CofS tandem system with 32 clusters in Sec. 7.4.2. In Fig. 7.26
we can observe:

• As expected, the results of the MSG system lay far beyond those of our baseline
since MSG features are ill-adapted to GMM modeling (cf. Sec. 7.3.2).

• In contrast to the AURORA experiments the LDA-based multi-stream system per-
forms worse than the LDA baseline, although the differences are only significant
for the ‘cities’ test set (c.i. ±4%). For the other test sets, the differences lay near
or inside the significance interval (c.i. ±0.2% and ±1% for ‘digmb and ‘spelling’,
respectively).

• As for the multi-stream system, the results show a significant improvement in the



7.5. Summary 153

AURORA UKKCP

Optimum
Feature Set

normalized PLPs are on average
9% relative better than MFCC-
based baseline.

-

Discriminative
Feature
Reduction

Non-linear approaches better
than LDA in matched test
condition but with similar
performance in unmatched.

Non-linear approaches are not
better than LDA.

Hybrid
RBF/HMM
Systems

Hybrid RBF/HMM only slightly
better than SCHMM and worse
than hybrid MLP/HMM.

-

Multiple
Streams of
Features

Adding the MSG feature stream
improves performance in about
10-20% relative.

Addition of the MSG feature
stream does not significantly im-
prove performance.

Tab. 7.4: Overview of the main results with both databases.

‘spelling’ test set (c.i. ±1.1%), but not significant for the other test sets.

It seems, therefore, that the clear benefit of using this approach observed in the AURORA
experiments is not clear in this case. The disappointing results with the LDA-based
systems could be due to the following factors:

• The large number of emission probabilities to be trained (1496 × 2048 parameters)
in the multi-stream system, and the limited number of training data, lead to a ‘curse
of dimensionality effect (cf. Sec. 2.6). This results in lower performance, especially in
the test set ‘cities where the units with the lowest occurrence in the training set (and
consequently those having poorly-trained parameters) are used. A solution would
be to use more training data, to see if the results significantly improve.

• Another reason for the results could be also the bad matching between MSG features
and GMM acoustic model. Although this mismatch was also present in the AURORA
experiments, it may be further aggravated by the complex decision space of the
UKKCP task. In fact, the results in the previous figure show a large performance
degradation of 70% relative for the MSG features, whereas the degradation was only
of 23% relative in the AURORA case.

Summary

The results of using multi-stream speech recognition for the UKKCP task are not as
conclusive as for the AURORA task. Although a certain improvement was observed when
multi-stream was used in tandem systems, a significant degradation (especially in the
‘cities’ test set) was observed in LDA-based systems.

7.5 Summary

An overview of the main results obtained in this chapter is shown in Tab. 7.4. We have seen
that the evaluation results obtained by the tandem system in Chapter 3, are a contribution
of:
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• the normalized PLP features in mean and variance,

• the non-linear feature reduction using neural nets (tandem),

• the use of multiple streams of features with the MSG as complementary features to
the PLP.

On the other hand, the test RBF/HMM system obtained a slightly better performance than
a similar system based on SCHMM, although its performance was clearly worse than that
of a similar hybrid MLP/HMM. Finally, we were not able to observe any improvement
on the UKKCP car database using non-linear feature reduction or multiple streams of
features.
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As already mentioned in Chapter 1 a central problem in ASR is of handling the huge
variability of the speech signal. One of the sources of this variability is the noise or
distortion that distorts the speech signal in the course of the recognition process. This
thesis has been devoted to the study of techniques that improve the performance of ASR
in noisy environments (noise robustness). A first part of this thesis has been devoted to
evaluation of ASR systems and techniques and to conduct an experimental evaluation of
some ASR techniques (Chapter 3), whereas a second part has been devoted to the study
of the best techniques in the previous experimental evaluation (Chapters 4,5 6, and 7).

8.1 Conclusions

In the first part, we have discussed concepts of user-centered evaluation and technology
evaluation. Also, we have described the elements of technology evaluation, and put special
emphasis on the measures used in evaluation of ASR systems. As explained the WER is
the most common measure for ASR performance. This measure is a statistical quantity
since it is measured on a finite set of speech files. Consequently, some methods are needed
to establish the statistical significance of the differences between two or more WER values.
Basically, we have two kinds of methods:

• Confidence intervals. We have proposed in Section 3.3 a new statistic for the WER
based on the Poisson distribution, which also takes the insertion errors into account.
We have seen in the same section that the length of the confidence interval for
the WER increases monotonously with the WER. This is different from the usual
model using the Binomial distribution, since in that case the length of the confidence
interval reaches a maximum at WER of 50%. Nevertheless, the differences between
both models are small for low WER, which is usually the case for any practical
system.

• Statistical tests, such as the McNemar’s test.

A second objective of this first part was to devise a methodology to evaluate ASR tech-
niques that guarantee a high degree of comparability of the different assessments. To this
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end we have interfaced the ASR systems of our project partners and ours at two interface
points, namely:

• feature interface,

• state likelihoods/posteriors interface,

By interfacing at the feature interface we have ensured that the probability computation
and decoding blocks are the same as in our baseline system, and by interfacing at the
state likelihood interface we have ensured that at least the decoding block is the same as
in our baseline system. The evaluation experiments in Section 3.6.1 using the previous
methodology show:

• Performances of the different techniques evaluated are very different. These range
from 19.2% average WER of the missing-data system in Section 3.5.1 to the 7.9%
average WER of the hybrid MLP/HMM multi-stream system in Section 3.5.3. Our
baseline system described in Section 7.3.1 achieved a 12.8% average WER.

• Best systems over all test sets and SNR levels are the tandem multi-stream (55%
relative WER improvement over our baseline system) and the hybrid MLP/HMM
systems (63% relative WER improvement).

Since the differences in performance cannot be solely attributed to a particular technique,
we decided to devote the 2nd part of this thesis to the tandem, the hybrid ANN/HMM and
the multi-stream approaches to understand the reasons for the good performance observed
in the evaluation.

In our first experiments in Chapter 7, we have compared the performance of different
feature extraction algorithms, namely our baseline based on mel-cepstral (MFCC), per-
ceptual linear predictive (PLP), relative spectral PLP (JRASTA-PLP) and modulation-
filtered spectrogram (MSG) features. The rationale behind these experiments was to
understand how important was the use of PLP features in the results of the tandem and
hybrid MLP/HMM system of the evaluation. Experiments with the different feature vec-
tors showed:

• filtering or normalization of the feature components along the time axis is important
to improve noise robustness. As the results on the PLP features show, normalization
in mean and variance improves the average results by about 20% relative. Since
the MSG features are already normalized (cf. Sec. B.3), a further normalization has
almost no effect on the results.

• The normalized PLP features are significantly better than our baseline over all test
conditions of the AURORA database. The improvement on average is about 8%
relative. In contrast, the MSG features perform worse than our baseline features
when GMM/HMMs are used, but perform clearly better than our baseline feature
when the MLP/HMMs are used. This result suggests that the MSG features are
ill-matched to GMM/HMM modeling.

In the first chapter of the second part, we have discussed the general framework of fea-
ture reduction for classification to understand the similarities and differences between LDA
and non-linear approaches such as tandem or non-linear discriminative analysis (NLDA).
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The most interesting theoretical result in Chapter 4 is that the optimum mapping for
feature reduction is related to the Bayes classifier, and that a mapping for feature reduc-
tion can be theoretically found by simultaneously optimizing two mappings C and D to
approximate the posteriors of the classes at the output of the composed mapping (C ◦D).
This is actually what LDA essentially does, and this is also what the tandem and NLDA
approaches do. After the theoretical discussion two questions arise:

• which are suitable classes for feature reduction?

• how should the posteriors be approximated?

In our experiments in Section 7.3.3 and in Section 7.4.2, we have used three different
kinds of classes namely states, phonemes and clusters of states. To approximate the state
posteriors we have used matrices and discriminability criteria, as in LDA, and MLPs and
direct approximation of posteriors using the MCE criterion, as in the tandem and NLDA
approaches. The results show that:

• the use of per-utterance normalization is crucial to obtaining a high performance in
mismatched test conditions. When using our on-line normalization (cf. Sec. 7.3.2),
the performance in mismatched test conditions is not as good as with per-utterance
normalization. The reason seems to be the weak adaptation of the on-line normal-
ization algorithm to the environmental conditions during test.

• The class choice (states, cluster of states of phonemes) does not seem to have a great
impact on the results. Differences in the results on the AURORA database are on
average not significant (less than 2% relative), and on the UKKCP database the
differences are on average small (less than 10% relative).

• Using the same kind of features, feature normalization and a similar size of the
context window, the approaches using a non-linear feature reduction mapping are
only superior to LDA in matched noise conditions. On average, however, the perfor-
mance of the non-linear approaches is 10% relative better than that of LDA on the
AURORA database.

• When the complexity of the task and correspondingly the complexity of the acoustic
modeling grow, the MLP-based approaches seem to have problems finding a feature
reduction mapping that does not increase the overlapping between the states in the
acoustic modeling. Possible causes are:

– Phonetic classes, as in the tandem approach, are not suitable as a feature re-
duced space because they increase the overlapping between the states in the
acoustic modeling, which is especially detrimental when the number of states
is large.

– The great differences in the frequency of the targets cause the infrequent targets
to be ignored during recognition.

– High complexity of the classification boundaries in the case of NLDA, due to
the large number of target states in the output layer.

– Sensibility to errors in the ‘ground truth’ of the segmentation, which has been
obtained using non-discriminative HMMs.
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We have also presented the hybrid RBF/HMM, as a compromise between SCHMM
and hybrid MLP/HMM. As in hybrid systems the emission probabilities are trained dis-
criminatively, but the normal densities in the code-book are trained as in SCHMM. In
contrast to previous authors [RMB+94, SL92, RR95], we have performed our experiments
with full covariance normal densities in the RBF. The results in Chapter 7 show that:

• Imposing constraints on the weights (Bayes nonlinearity) works better than imposing
no constraint at all on the weights (softmax nonlinearity.

• Improvement with respect to a similar SCHMM is small (only 5% relative on aver-
age). Moreover, in matched conditions the SCHMM performs better (8% relative),
but in mismatched conditions the hybrid system outperforms the SCHMM system
(17% relative).

A reason for this small improvement could be that the greatest potential for discriminative
training is in the kernel functions and not in the weights of the RBF. In addition, it could
be that a normalization of the state posteriors by the state priors is needed to obtain a
good result, or that the posterior probabilities of the states must be considered in the
training process.

In Chapter 6 we have also discussed multi-stream speech recognition, as a comple-
mentary approach to feature reduction or hybrid acoustic modeling, which may further
improve the performance of the whole system. A new technique has been presented that
concatenates the LDA vectors obtained from different feature vectors and further reduces
the dimensionality of the concatenated vectors using LDA (cf. Sec. 6.3.1). We have also
tested the probability combination at the state level (SCHMM and hybrid MLP/HMM)
and at the feature level with tandem systems. The experiments with mel-cepstral and
MSG features show that:

• The new multi-stream technique with LDA improves the performance of our baseline
system about 9% relative.

• With the mentioned features, probability combination is superior to feature concate-
nation (8% relative on average on AURORA).

• Probability combination at the state-likelihood level may improve the performance of
a system, if there is sufficient training data available to train the additional emission
probabilities. In the UKKCP experiments multi-stream was not able to improve the
result of our baseline due to the additional large number of emission probabilities to
be trained.

• Probability combination at the feature level with tandem systems improves the per-
formance, although the improvement is much larger on AURORA (on average 17%
relative improvement) than on UKKCP (8% average relative improvement).

8.2 Future Research

We begin our suggestions for future research with a series of possible improvements to our
current NN training method,
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• Since we have only randomized the order of the files in the training file list, and
randomization of the training data is important to obtain an NN that generalizes to
unseen data [BM94, pg. 167] using EBP, a better approach would be to randomize
the order of the input-output data pairs presented to the neural net. For this purpose
we must create a data set of high dimensional input data vectors, e.g. the 351-
dimensional input vector in our experiments with PLP features, and randomize it.

• Prior probabilities of target classes (states, phonemes, etc. . . ) are usually very dif-
ferent in ASR, which causes infrequent classes to be ‘ignored’ during classification
(cf. Sec. 7.4.2). Possible solutions to this problem are:

– Prior scaling. In the minimum cross-entropy error function in Definition 4.3 we
can introduce a scaling factor sc for each class Cc:

sc = 1− α
(

1− 1

P (Cc)N

)

(8.1)

where P (Cc) is the prior probability of class Cc and N is the number of classes.
Changing the α factor (0 ≤ α ≤ 1) we can control the amount of prior scaling.
The criterion in this problem is thus:

Θopt = arg min
Θ

∑

∀l

−sc ln(fc(xl,Θ)) (8.2)

– Probabilistic sampling, whereby the training patterns in the training set are
chosen at random in the following way: a class is chosen randomly with the
probability of choosing each class Ci being (1−α)P (Ci)+

α
N , and then a training

sample is chosen at random among the training patterns associated with class
Ci.

– Post scaling of posteriors. As already mentioned in Sec. 7.3.4, the normaliza-
tion of the outputs of the neural net by the prior probabilities of the classes
may improve the recognition performance during recognition. However, this
technique can only be applied when the neural net performs as a classifier.

– Equalization of class memberships. The simplest method to equalize the class
prior probabilities is to reduce the number of patterns associated with each class
or to duplicate the samples in each class.

More information about the previous techniques and some results on ECG (electro-
cardiogram) classification tasks can be found in [LBB+98].

• The segmentation S used to train the neural nets for hybrid system or feature re-
duction may contain errors, because it has been obtained using HMM models which
are not discriminative in nature (cf. Sec. 5.1). This is specially important when
the number of classes in the problem is large, since their overlapping is then also
stronger. A solution would be to use more than one iteration of the Viterbi training
algorithm in Section 5.5 to obtain a better segmentation after each iteration.

• A good feature normalization of the input features is also important to ensure that
the components are between 0 and 1, and to obtain a good performance in mis-
matched conditions. As already mentioned in Section 7.3.2 and in Section 7.3.3,
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the feature normalization used in our experiments does not sufficiently adapt to the
conditions in the test environment, which reduces its effectiveness in unmatched test
conditions. Our feature normalization approach reads the average mean and vari-
ance vectors, computed over the whole training set, for each new test file. This
was done to simplify the normalization of files in a randomized training list. An
improved method would be to first normalize before randomizing the training data
as already explained in the first point. By first normalizing, we can adapt the means
and variances after each training file has been read, and then use the adapted means
and variances to initialize the adaptation of the next file, which should improve the
adaptation to the actual environmental conditions.

For the non-linear discriminant analysis (NLDA) approach discussed in Sections 4.6.2,
7.3.3 and 7.4.2 we can suggest the following investigations:

• In our experiments with feature reduction with neural nets, we have used the per-
cent correct classified frames in the cross-validation set as a stop criterion for the
training. Although this criterion is suitable for classification tasks, it may be too
coarse for NLDA, since it does not suffice that the correct class obtains the best
posterior probability. Feature reduction is a mapping between two feature spaces,
and it is consequently important that all the components of output feature space
are approximated correctly. An alternative stop criterion would be to measure the
average cross-entropy in the cross-validation set, and to stop the training when the
cross-entropy increases.

• In our experiments with the NLDA approach we have used an MLP with two hidden
layers, and we have used the pre-nonlinearity outputs of the 2nd hidden layer as the
reduced feature vector. This assumes, however, that the mapping between the re-
duced features and the class posteriors is relatively simple— just one layer of weights
—, which may not be sufficient in practice. As already mentioned in Section 7.4.2,
when the number of states in the acoustic modeling is large, the number of classes
in NLDA is also large, which leads to very complex decision boundaries. Therefore,
it could be interesting to test other topologies for the MLP with more than 2 hidden
layers, to allow for more complex mappings between the reduced vector space and
the class posteriors.

• Since in our experiments on UKKCP we have seen that the nonlinear feature reduc-
tion approaches seem to work well on small tasks, e.g. digits or spelling, it could be
interesting to use a different feature reduction mapping for each of the test sets in
UKKCP. This is possible because we know at each dialog step in our UKKCP task—
and in any in-car task in general— which HMM models are active for the given step.
Therefore we just need to discriminate between these models, i.e. between the digits
or the alphabet letters. An interesting practical solution would be to use two non-
linear transforms for the digits and spelling sub-sets and an LDA transform for the
cities test set.

Further suggestions for future research on hybrid ANN/HMM systems are:

• Since the discriminative training of the emission probabilities of the code-book sym-
bols does not bring a large performance improvement, it would be interesting to try
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an approach that trains the parameters of the code-book in a discriminative way.
An attempt in this direction is the tied posterior approach [SRR00], which uses an
MLP to compute the symbol probabilities, and the usual Baum-Welch algorithm to
train the emission probabilities of the symbols in the states. The approach is based
on the observation that the state likelihoods:

p(x|qi) =
K
∑

k=1

bik p(x|sk) (8.3)

can be converted to posterior probabilities by dividing by p(x) and using the Bayes
rule:

P (qi|x) =
K
∑

k=1

bik
P (sk|x)
P (sk)

(8.4)

In this approach, the symbols sk are the phonetic classes in the vocabulary, and the
posteriors P (sk|x) are computed using an MLP as in hybrid MLP/HMM systems.

• To estimate the weights in our hybrid RBF/HMM approach, we have factored the
weights as in Eq. 5.38 and assumed that the prior state P (qk) probabilities were
already given and fixed. However, the weights in the RBF wij may be interpreted
as the joint probability wij = P (q = i, s = j) which leads to the general constraint
for the weights:

∑

i

∑

j

wij = 1 (8.5)

The estimation formulae using this constraint are different from those derived in
Section 5.5.1, and may lead to better recognition results.

• To estimate the parameters of the normal kernels we have assigned each code-book
symbol to an HMM state, assumed that the statistics of each code-book symbol
can be modeled using a single normal density, and computed the parameters of
the densities using supervised clustering (cf. Sec. 5.5.1). However, and as seen in
Appendix C, the distribution of the data in the code-book classes is not normal.
Therefore, it would be interesting to use a mixture of supervised and unsupervised
to model each code-book symbol with a mixture of normal densities. The idea is to
group the training vectors into as many sub-sets as classes in the code-book using
supervised training. Then we apply a clustering algorithm, e.g. LBG, to the data
in each sub-group to find a set of normal densities for each class in the code-book.
After this process we have an extended set of normal kernels in the RBF, which can
be used to improve the accuracy of the modeling.
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A. Full Results on AURORA 2000

In this appendix we show the detailed or full tables of results of the experiments on
AURORA 2000. As already mentioned in Chapter 7, we have not experimented with all
SNR levels (clean, 20 dB,15 dB 10 dB, 5 dB, 0 dB and -5 dB) available in the database, since
this would have been time consuming, and has little influence on the drawn conclusions.
The selected SNR levels are clean, 20 dB, 10 dB and 0 dB. For each experiment, i.e. for
each noise/SNR pair, there are 1001 test files, and consequently there is a total of 16016
files.

The tables of results are structured in the following way:

• the rows contain the results across different noises and test sets for a given SNR
level. The last row contains the mean results over all SNR levels.

• the columns contain the results across different SNR levels for a given noise or test
set. The last column contains the mean results over all noises and test sets.

The appendix is divided in four sections each corresponding to one of the subsections
of Sec. 7.3: optimum feature set, feature dimensionality reduction, hybrid RBF/HMM and
Multiple Feature Streams.
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B. Feature Extraction Algorithms

B.1 Perceptual Linear Prediction

Perceptual linear prediction (PLP) technique is a combination of spectral analysis and lin-
ear prediction coding (LPC) analysis, that was first introduced by Hermansky in 1990 [Her90].
The main idea of this technique is to take advantage of three characteristics derived from
the psycho-acoustic properties of the human ear for estimating the audible spectrum, which
are spectral resolution of the critical band, equal-loudness curve, and intensity-loudness
power law [Her90].

The algorithm of the PLP technique, which is illustrated in Figure B.1, is briefly
described here:

1. The time-frequency analysis is identical to the feature extraction of our baseline
system (cf. Sec. 7.3.1). The speech signal is framed with a Hamming window of 25
ms that is shifted every 10 ms. The spectrum of each frame is computed using an
FFT of 256 points, and finally squared to obtain the power spectrum of the frame.

2. Analogous to the mel scale in MFCC, the power spectrum is convolved with a bank
of filters using bark scale, where it defines the critical bandwidth as 1 bark, and

bark(fc) = 6sinh−1(
fc
600

). (B.1)

3. Next step is conversion of the power spectra to a loudness scale, using a transfer
function which is an approximation to the non-equal sensitivity of human hearing
at different frequencies and simulates the sensitivity of hearing at about the 40 db
level.

4. This is followed by reduction of the spectral amplitude variation with intensity-
loudness power-law, using the cubic root amplitude compression.

5. Then, the operation uses autoregressive (AR) modeling to apply standard LPC
analysis [RJ93]. The outputs are the vector ak containing the predictor coefficients.

6. The AR coefficients are then transformed using the cepstral recursion into cepstral
coefficients cn.
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A n a l o g  S p e e c h  S i g n a l

1 3  c o m p o n e n t s
P L P  F e a t u r e  V e c t o rX t = [ c 1 , c 2 , . . . c 1 3 ]

E q u a l  L o u d n e s s  P r e - E m p h a s i s

S h o r t - t i m e  F o u r i e r  P o w e r  S p e c t r u m

C r i t i c a l - b a n d  F i l t e r i n g  ( B a r k  S c a l e )

A u t o r e g r e s s i v e  ( A R )  M o d e l i n g

C e p s t r a l  R e c u r s i o n

I n t e n s i t y  L o u d n e s s  C o n v e r s i o n

L o w p a s s  F i l t e r ,  S a m p l i n g  a n d  F r a m i n g

Fig. B.1: The algorithm of PLP feature extraction technique. It generates a 13-dimensional
feature vector for each frame.

B.2 J-RASTA PLP

The J-RASTA PLP technique is an extension of the PLP with the aim of improving
the robustness of PLPs to unknown spectral shaping (convolutive distortion) and noise
(additive distortion) [HM94]. This is achieved by filtering the time-sequence of filter-bank
coefficients, so as to remove the components of the input signal that vary more slowly or
quickly than the speech signal. The algorithm comprises the following steps:

1. Compute the critical-band power spectrum, using the same configuration as in PLP.

2. Transform spectral amplitude through a compressing static nonlinear transformation.
For the J-RASTA processing, the transform is chosen to be the Lin-Log transform:

y = ln(1 + J x)

that is linear for Jx ¿ 1 and logarithmic for Jx À 1. The rationale of using
this transform is to have a characteristic with which both additive and convolutive
distortions can be eliminated [HM94]. Although the value of J can be adapted during
recognition to account for the different noise levels, we have used a fixed value for J
(J = 10−6) to avoid the complexity of having to train the recognizer with different
values of J [HM94].
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3. Filter the time trajectory of each transformed spectral component. The filter used
in our experiments has the following Z-transform:

H(z−1) = 0.1z4
2 + z−

1 − z−3 − 2z−4

1− 0.94z−1
(B.2)

The frequency response of the filter in the modulation filtering domain is shown in
Fig. 7.5. This filter is a band-pass filter, with low-pass cut-off frequency of 0.956 Hz
and a zero at 29.02 Hz. The modulation frequencies below and above the previous
frequencies is effectively removed by the J-RASTA filter.

4. Transform the filtered speech representation through expanding static nonlinear
transformation. This expanding transform is:

x =
exp(y)

J
(B.3)

which is not exactly the inverse of the compressing transform to avoid negative
coefficients.

5. As in conventional PLP, multiply by the equal loudness curve and raise to the power
0.33 to simulate the power law of hearing.

6. Compute an all-pole model of the resulting spectrum, as in conventional PLP feature
extraction.

B.3 Modulation-Filtered Spectrogram

Modulation-filtered spectrogram (MSG) was originally developed by Brian E.D. Kings-
bury [Kin98]. The objective is to generate visual displays of speech that are stable across
a range of acoustic distortion, and to model the long term properties of speech. The MSG
algorithm, which is illustrated in Figure B.2, is described as follows [Kin98]:

1. The speech signal is analyzed every 10 ms using the same time-frequency analysis as
in the previous feature extraction algorithms, i.e. windowing with a 25 ms Hamming
window, , FFT of 256 points and squaring to obtain the power spectrum of the
windowed frame.

2. The power spectrum of each frame is convoluted with a bank of fourteen overlapping,
triangular filters that are equally spaced in the Bark scale.

3. The critical-band power spectrum is converted into an amplitude spectrum by taking
the square root of the filter bank output.

4. The time sequence of critical-band amplitude signals is then filtered by two different
finite impulse response filters in parallel: a lowpass filter with a 0-8 Hz pass band
and a bandpass filter with an 8-16 Hz pass band. It has been shown that the primary
carrier of linguistic information in the speech signal are the changes in its spectral
structure at rates between 1 and 16 Hz.
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Fig. B.2: The algorithm of the MSG feature extraction technique. A 28-dimensional feature
vector is generated for each input speech frame.
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5. Both the low-pass and band-pass streams are processed through two feedback auto-
matic gain control (AGC) units where the first AGC has a time constant of 160 ms
and the second has a time constant of 320 ms. This AGC is essentially a square root
compressor with a variable gain that depends on the dynamic of the input.

6. All features are normalized to have means of zero and variances of one using an on-
line normalization procedure. The feature means and variances are adapted online
using single pole lowpass filters with a time constant of 2 seconds.

The MSG feature vector used has thus 28 components. These 28 components, which
are fourteen lowpass feature components and fourteen bandpass feature components, cor-
respond to one point in a 28-dimensional continuous space. This vector being a function
of time, it may be plotted for convenience reasons on a time-frequency plane, with bi-
linear smoothing used to produce the final image. The image, called the modulation
spectrogram, is a visual representation of the speech signal and might be compared to
the classical time-frequency Fourier transform, or wide-band spectrogram, under different
signal to noise ratio (SNR) and reverberation conditions. It has been experimentally ob-
served that the MSG is much less sensitive to noise and reverberation compared with a
wide-band spectrogram [Kin98].





C. The Multivariate Omnibus Test

This statistical test for multivariate distributions is extracted from [DH94]. Let X ′ =
(X1, . . . , Xn) be a p× n matrix of n observations on a p-dimensional vector with sample
mean and covariance X̄ = n−1(X1 + . . . + Xn) and S = n−1X̌X̌ where X̌ = (X1 −
X̄, . . . ,Xn − X̄).

Create a matrix with the reciprocals of the standard deviation on the diagonal:

V = diag(S
−1/2
11 , . . . , S−1/2pp ) (C.1)

and form the correlation matrix C = V S V . Define the p × n matrix of transformed
observations:

R′ = H Λ−1/2H ′ V X̌ ′ (C.2)

with Λ = diag(λ1, . . . , λn), the matrix with the eigenvalues of C on the diagonal. The
columns of H are the corresponding eigenvectors, such that HH ′ = Ip and Λ = H ′ CH.
Using population values for C and V , a multivariate normal of p-dimensions can thus be
transformed using the transform in Eq. C.2 into p independent normal random variables
ri.

Next the univariate skewness and kurtosis of the p normal random variables are com-
puted. The univariate skewness and kurtosis are defined as:

√

b1i =
E{r3i }

(E{r2i })3/2
b2i =

E{r4i }
(E{r2i })2

(C.3)

where the expectation operator E{.} is substituted by the average over the samples in the
matrix R.

Now defining B ′1 = (
√
b11, . . . ,

√

b1p), B
′
2 = (b21, . . . , b2p) and ι as a p-dimensional

vector of ones, the test statistic used to test the normality of the samples is:

t =
nB′1B1

6
+
n (B2 − 3ι) (B2 − 3ι)

24
∼ χ2(2p) (C.4)

which is approximately true if the number of samples n is large.
To test this statistic at a given confidence level α, we first compute the α-quantile of

the χ2(2p) distribution. If the value of the first term in Eq. C.4 is less than the α-quantile,
then the hypothesis ‘the samples X are normally distributed’ (H=0) is accepted, otherwise
the hypothesis is rejected (H=1). To have an idea of the reliability of the test, we also
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compute the probability (SIG) that the values of the random variable t are larger than
the observed value τ . A small value of this probability casts doubt on the null hypothesis
(H=0).

This test has been applied to a sample of 10000 99-dimensional frames each obtained
by concatenating 9 consecutive cepstral frames (cf. Sec. 2.3) as in our AURORA baseline
system. The idea was to test whether the high-dimensional vectors assigned to each HMM
state during segmentation were normally distributed or not. This question is important
because we model the distribution of the high-dimensional vectors in each state with a
normal distribution. This is done so as to easily compute the LDA matrix. Moreover,
LDA is only optimum when the classes in the problem are normally-distributed with equal
covariance matrices. If classes are not normal, then a non-linear transform, such as tandem
or NLDA, may be more suitable for the problem (cf. Chapter 4).

As we can see in Tab. C.1, the null hypothesis, i.e. ‘the samples X are normally
distributed’, is rejected for all the states in the acoustic model.

Tab. C.1: Results on the AURORA task of the omnibus test for multivariate normality applied
performed for each of the HMM states of our AURORA baseline system (cf. Sec. 7.3.1).

index H SIG τ index H SIG τ

1 1 0.000 18803.334 2 1 0.000 214.922
3 1 0.000 142.968 4 1 0.000 257.532
5 1 0.000 186.802 6 1 0.000 399.140
7 1 0.000 464.147 8 1 0.000 336.830
9 1 0.000 319.347 10 1 0.000 738.060
11 1 0.000 1088.001 12 1 0.000 2849.041
13 1 0.000 649.269 14 1 0.000 491.176
15 1 0.000 1647.328 16 1 0.000 2167.772
17 1 0.000 2926.284 18 1 0.000 3088.197
19 1 0.000 1207.500 20 1 0.000 1612.405
21 1 0.000 1382.024 22 1 0.000 2055.311
23 1 0.000 2340.929 24 1 0.000 961.823
25 1 0.000 290.990 26 1 0.000 5707.109
27 1 0.000 8145.369 28 1 0.000 582.506
29 1 0.000 4403.377 30 1 0.000 3947.823
31 1 0.000 5350.831 32 1 0.000 10121.061
33 1 0.000 6730.448 34 1 0.000 1205.426
35 1 0.000 684.989 36 1 0.000 709.152
37 1 0.000 3103.205 38 1 0.000 1363.626
39 1 0.000 1834.836 40 1 0.000 3223.378
42 1 0.000 1565.325 43 1 0.000 416.695
44 1 0.000 706.375 45 1 0.000 2190.368
46 1 0.000 2497.844 47 1 0.000 6321.939
48 1 0.000 434.474 49 1 0.000 402.830
50 1 0.000 1183.904 51 1 0.000 8900.903
52 1 0.000 8063.188 53 1 0.000 4423.925
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index H SIG τ index H SIG τ

54 1 0.000 996.764 55 1 0.000 284.626
56 1 0.000 2157.040 57 1 0.000 640.780
58 1 0.000 1589.951 59 1 0.000 5967.369
60 1 0.000 4470.749 61 1 0.000 3782.581
62 1 0.000 3882.799 63 1 0.000 3906.436
64 1 0.000 1401.568 65 1 0.000 637.178
66 1 0.000 5424.541 67 1 0.000 590.326
68 1 0.000 1470.743 69 1 0.000 3482.925
70 1 0.000 4038.993 71 1 0.000 4851.352
72 1 0.000 5340.950 73 1 0.000 3528.198
74 1 0.000 2424.902 75 1 0.000 693.144
76 1 0.000 1216.653 77 1 0.000 2580.229
78 1 0.000 1848.289 79 1 0.000 3412.022
80 1 0.000 19601.690 81 1 0.000 7759.270
82 1 0.000 3133.072 83 1 0.000 1154.494
84 1 0.000 831.406 85 1 0.000 1044.084
86 1 0.000 455.494 87 1 0.000 699.777
88 1 0.000 536.077 89 1 0.000 1849.438
90 1 0.000 1337.177 91 1 0.000 383.292
92 1 0.000 2215.499 93 1 0.000 1548.559
94 1 0.000 339.748 95 1 0.000 2186.692
96 1 0.000 1062.868 97 1 0.000 503.406
98 1 0.000 307.032 99 1 0.000 1548.478
100 1 0.000 3994.566 101 1 0.000 1853.915
102 1 0.000 1153.358 103 1 0.000 1308.439
104 1 0.000 2946.047 105 1 0.000 2648.991
106 1 0.000 1363.743 107 1 0.000 1348.794
108 1 0.000 4594.557 109 1 0.000 51272.300
110 1 0.000 8451.115 111 1 0.000 4782.682
112 1 0.000 870.844 113 1 0.000 1118.097
114 1 0.000 1897.745 115 1 0.000 8802.870
116 1 0.000 4270.577 117 1 0.000 1890.686
118 1 0.000 1758.572 119 1 0.000 1246.749
120 1 0.000 1514.934 121 1 0.000 1883.521
122 1 0.000 2218.971 123 1 0.000 1098.081
124 1 0.000 1176.425 125 1 0.000 1068.061
126 1 0.000 926.954 127 1 0.000 1149.767





D. The Lee Clustering Algorithm

This algorithm uses the entropy of the states and of the merged states to measure the
information lost in the clustering process. To compute the entropy of the states we use
the counts of the code-book symbols in a state qi Ni(k). These counts have been found
during Baum-Welch training (cf. Sec. 2.6.2). The total number of counts in a state qi is:

Ni =
∑

k

Ni(k) (D.1)

The emission probabilities of the code-book symbols in the states are obtained by normal-
izing the symbol counts, that is:

bi(k) =
Ni(k)

Ni
(D.2)

The entropy of state qi can be computed using the emission probabilities:

Hi =
∑

k

bi(k) ln(bi(k)) (D.3)

If we merge two states qi and qj, the counts of the code-book symbols in the merged state
qi′ are simply:

Ni′(k) = Ni(k) +Nj(k) (D.4)

The entropy of the merged state qi′ can also be computed as before. The information lost
when merging the two states qi and qj can be computed as:

L(qi, qj) = Ni′Hi′ −NiHi −NjHj (D.5)

This measure is used in the clustering procedure to decide which states or clusters must be
clustered. The clustering procedure is an iterative procedure that stops when the desired
number of clusters is reached. The algorithm is sketched in the following steps:

1. an M × M table with the states in the rows and columns containing the loss of
information L(qi, qj) when states qi and qj are merged in each cell.

2. for each state qi find the state qj that minimizes the loss L(qi, qj), and merge both
states to form the cluster ci.

3. compute an M/2 ×M/2 table containing the losses of information L(ci, cj) when
clusters ci and cj are merged.
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4. for each cluster ci find the cluster cj that minimizes the loss L(qi, qj), and merge
both cluster to form the cluster ci.

5. stop if the desired number of clusters is reached, otherwise return to step 3 and
repeat the process.



E. Linear Discriminant Analysis (LDA)

If the classes used for discriminative feature reduction have equal covariance matrices, it
can be shown [Fuk90] that class separability criteria can all be written in the following
form:

J = tr(S−11 Sb) (E.1)

where Sb is the generalized inter-class scatter matrix [Fuk90], and S1 can be the within-
class scatter matrix Sw or the mixture scatter matrix Sm.

In the usual linear discriminant analysis (LDA) the matrices S1 and Sb are defined as:

S1 = Sw =
N
∑

i=1

P (Ci) Ki (E.2)

Sb =

N
∑

i=1

P (Ci) (mi −m0)′(mi −m0)

where the P (Ci) are the prior probabilities of the classes Ci. It can be shown [Fuk90]
that the optimum linear mapping C for the criterion in Equation E.1 in the sense of
Definition 4.2 using the matrices in E.2 is the solution to the following eigenvalue problem:

(S−1w Sb)C = CΛ (E.3)

where Λ is a diagonal matrix that contains the eigenvalues of the S−1m Sb matrix, and the
matrices Sm and Sb are defined in the n-dimensional input space of the mapping C. The
differences between the projections of the LDA and PCA is illustrated in Fig. E.1 where
two normal densities with different means and equal covariance matrices are depicted. We
can clearly see that the overlapping between the densities in the LDA case is smaller than
in the PCA case. In fact, the common area under both normal distributions, i.e. the
overlapping, is the Bayes error, and the LDA projection leads, in the depicted case —-
normal densities with equal covariances—, to the optimum mapping in the Bayes sense.
In [Fuk90] it has been demonstrated that the optimum mapping for the criterion J in
Eq. E.1 over all possible mappings is given by the a posteriori probabilities of the classes,
which implies that the criterion J in Eq. E.1 is consistent with the general criterion in the
previous point.

If the clusters do not have equal covariance matrices but the data is still normally-
distributed, then the optimal transform in the Bayes sense can be shown to be a quadratic
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d i s c r i m i n a n t  p r o j e c t i o n

n o n - d i s c r i m i n a n t  p r o j e c t i o n
Fig. E.1: Difference between PCA and LDA. The area under both distributions is the Bayes error,
and as can be readily seen this area is much larger for the PCA than for the LDA transform.

transform [Fuk90]. However, a linear transform is still preferred, e.g. HDA, in those cases
due to its simplicity. In Fig. E.2 we can see a two-class problem where the normally-
distributed classes have similar mean vectors but different covariance matrices. In this
case the LDA criterion in Eq. E.1 does not work, since the classes are not separated by
the scatter of means but rather by the scatter of covariance matrices. A possible solution
is to use a different criterion which takes into account this last fact. A good criterion
for the case in Fig. E.2 is the Bhattacharyya Distance criterion [Fuk90] which finds the
directions along which the variances of the two classes are different, as can be seen in
Fig. E.2. However, this criterion is only valid for two class problems, and is therefore not
useful for feature reduction in ASR.

E.1 Relation Between LDA and Optimum Features

Actually it is possible to link the class separability criterion in Eq. E.1 to the MSE criterion
in Definition 4.1. As demonstrated in [AO89] the class separability criterion in Eq. E.1
is equivalent to approximating in the MSE sense the posterior probabilities of the classes.
To briefly explain this last assertion, let C : R

n → R
m, D : R

m → R
k, and F = (C ◦D)

be three multidimensional affine (linear) mappings. If we want to compute the posterior
probabilities of the classes at the output of F we can approximate the 1-of-c coded targets
t as in the criterion of Definition 4.1, i.e.:

(C,D) = arg,min
C,D

E{‖ t−D(C(x)) ‖2} (E.4)

The solution to this criterion is not unique and some restrictions on the affine mappings
must be imposed. This is clear since, assuming that both mappings are invertible, the
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L D A  p r o j e c t i o n
H D A  p r o j e c t i o n

Fig. E.2: Comparison of LDA with HDA. As in Fig E.1 the area under both distributions is the
Bayes error. Note that this area is smaller in the HDA case.

solutions (C,D) and (AC,DA−1) are both solutions of the problem. Consequently, let us
impose that the output u of the mapping C has null mean and identity covariance matrix,
i.e.:

µu = 0

Ku = I (E.5)

Our affine mappings are therefore:

C(x) = A′(x−mx)

D(x) = B′u+ µy (E.6)

where the matrix A must satisfy the equation:

A′KxA = I (E.7)

Using the Lagrange Multipliers method it can be found [AO89] that the matrices A and
B must satisfy:

KxyKyxA = KxAΛ

B = KyxA (E.8)

If we now assume that the covariance matrix of the input data is non-singular we can
write:

K−1x KxyKyxA = AΛ (E.9)
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which is formally equivalent to the solution in Eq. E.3. Clearly, the total covariance of
the input data Kx is equal to the inter-scatter matrix of the classes Sm in Eq. E.1. The
difference lays in the matrix S̃b which can be demonstrated to be equal to:

S̃b = KxyKyx =
1

N

N
∑

i=1

N2
i (mi −m0)′(mi −m0) (E.10)

As can be seen this introduces an emphasizing factor (N 2
i ) which clearly emphasizes the

classes appearing with higher frequency. As shown in Chapter 7 this emphasizing factor
may be a problem when the prior probabilities of the classes are very different. It is in
fact possible to extend this last result or interpretation to the case where the mapping D
is still linear and C non-linear [Bis96, AO89].



List of Abbreviations

A

A/D Analog to Digital.

ANN Artificial Neural Network.

ARPA Advanced Research Projects Agency.

ASR Automatic Speech Recognition.

C

CDHMM Continuos Density Hidden Markov Models.

CMI Cumulative Mutual Information.

CMS Cepstral Mean Subtraction.

D

DCT Discrete Cosinus Transform.

DP Dynamic Programming.

DSR Distributed Speech Recognition.

E

EBP Errror Back Propagation.

ELRA European Language Resources Association.

EM Expectation-Maximization.

ETSI European Telecommunication Standards Institute.

F

FFT Fast Fourier Transform.



198 List of Abbreviations

G

GMM Gaussian Mixture Model.

GPD Gradient Probabilistic Descent.

H

HDA Heteroscedastic Discriminant Analysis.

HMM Hidden Markov Models.

I

I/O Input/Output.

ITU International Telecommunications Union.

L

LBG Linde-Buzo-Gray.

LDA Linear Discriminant Analysis.

LDC Linguistic Data Consortium.

LPC Linear Predictive Coding.

M

MAP Maximum a Posteriori.

MCE Minimum Cross-Entropy.

MDT Missing Data Theory.

MFCC Mel-filter Cepstral Coefficients.

ML Maximum-Likelihood.

MLLT Maximum Likelihood Linear Transform.

MLP Multi Layer Perceptron.

MMI Maximum Mutual Information.

MSE Minimum Square Error.

MSG Modulation SpectroGram.
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N

NIST National Institute for the Standardization of Technology.

NLDA Non-Linear Discriminant Analysis.

NN Neural Network.

O

OOV Out-of-Vocabulary.

P

PCA Principal Components Analysis.

PCM Pulse Codede Modulation.

PLP Predictive Linear Prediction.

PMC Parallel Model Combination.

PSD Power Spectral Density.

R

RASTA RelAtive SpecTrAl.

RBF Radial Basis Function.

RIL Relative Information Loss.

RTF Real Time Factor.

S

SCHMM Semi-Continuous Hidden Markov Models.

SLP Spoken Language Processing.

SNR Signal to Noise Ratio.

STT Speech-to-Text.

W

WER Word Error Rate.
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