
AN ALGEBRA OF FIXPOINTS FOR CHARACTERIZING

INTERACTIVE BEHAVIOR OF INFORMATION SYSTEMS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/33427549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN ALGEBRA OF FIXPOINTS FOR CHARACTERIZING

INTERACTIVE BEHAVIOR OF INFORMATION SYSTEMS

Der Fakultät für Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

vorgelegte Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von

Diplom-Ing. Srinath Srinivasa

geboren am 09. Mai 1973 in Bangalore (Indien)

Gutachter: Prof. Dr. Klaus Jantke

Gutachter: Prof. Dr. Bernhard Thalheim

Gutachter: Prof. Dr. Myra Spiliopoulou

Tag der mündlichen Prüfung: 26. April 2001

Abstract

The dynamics of an information system (IS) is characterized not only by its computa-
tional behavior, but also by its interactive behavior. Interactive dynamics forms an integral
part of most information systems. Despite this, an understanding of the interactive nature
of an IS is still low.

Interaction impacts expressiveness of an IS at such fundamental levels that Weg-
ner [Weg97, WG99a] came with a contention saying interactive behavior cannot be modeled
by Turing Machines (TMs). A TM is considered the foundational model of computation. It
models computable functions that map between problem and solution domains. However,
a TM models only non-interactive mappings. A mapping between a problem and a solu-
tion domain that is interactive in nature can change its direction of computation resulting
from intermediate interactions. Based on this contention, Wegner proposes interaction
(rather than computation) as the fundamental framework for IS modeling [WG99].

In this thesis, we address Wegner’s contention and the nature of interactive dynamics.
An information system is modeled as a collection of semantic processes or Problem Solving
Processes (PSPs). If these PSPs are interactive in nature, they are called open systems;
and if they are non-interactive, such an IS is called a closed system. Intuitively, open
system dynamics are known to be richer than closed system dynamics.

We make this distinction precise in this thesis. Interaction is shown to be made up of
three properties: computation, persistence of state across computations, and channel sen-
sitivity. Persistence of state and channel sensitivity each contribute to richer behavioral
semantics than just computation. This is shown by introducing a concept called the solu-
tion space of a semantic process. A solution space is the abstract domain characterized by
the process dynamics. Interactive solution spaces are found to be richer than algorithmic
solution spaces and also interactive solution spaces require at least a three-valued system
of logic for their characterization.

The earlier question of interactive behavior as applied to IS design is then revisited.
Interactive dynamics of an IS characterize the IS functionality. We call the solution space
of interactive IS behavior as its interaction space. The interaction space of an IS is con-
trasted with the object space of the IS which is concerned with the IS structure and state
maintenance dynamics. The interaction space has a degree of autonomy with respect to
the object space. This aspect is often not acknowledged in IS design, resulting in the
intermixing of structural and functionality concerns. Separating these concerns can avoid
certain conflicting problems in IS design, as well as provide better maintainability. We
call this the “dual” nature of open systems.

Based on this insight we propose an IS design paradigm called dualism, where an IS
model is made up of an object schema, characterizing the IS structure and an interaction
schema, characterizing the IS functionality. The interaction schema is characterized by a
three-valued system of logic, representing a set of obligated (or liveness) behavior, permitted
(or possible) behavior and forbidden behavior. The system should perform the obligated
behavior to be termed functional; it may perform any of the permitted behavior and it
may not perform forbidden behavior. An analysis of the dynamics of any real world system
can make these three-valued characteristics apparent.

Domain theory is used to propose solution space concept, and deontic logic is used to
represent the three modalities of interactive IS behavior.

Contents

1 Introduction 1
1.1 Open Systems and Interaction Space . 1
1.2 Interaction Modeling . 3
1.3 The Dual Nature of Open Systems . 4
1.4 Contributions of the thesis . 6
1.5 Organization of the thesis . 6

2 Models of Interaction 9
2.1 On the Notion of Interaction . 9
2.2 On the Notion of Problem Solving . 12

2.2.1 Connotations of problem solving . 12
2.2.2 Algorithmic and interactive problem solving 14

2.3 Algorithms . 16
2.3.1 Turing Machines . 17
2.3.2 Algorithmic systems . 18
2.3.3 Inductive domains . 19

2.4 Single-stream Interaction . 21
2.4.1 Monads . 23
2.4.2 SIM and PTM . 24
2.4.3 Labeled Transition Systems . 24
2.4.4 Streams . 25
2.4.5 Process calculus . 25
2.4.6 Coalgebras and coinduction . 26

2.5 Multi-stream Interaction . 32
2.6 On the Irreducibility of Interaction to Algorithms 35
2.7 A Taxonomy of Well-known Models of Computation 36

3 The Solution Space of an Interactive System 39
3.1 Background Concepts . 39

3.1.1 Domains . 40

i

3.1.2 Hypersets . 41
3.1.3 Deontic logics . 42

3.2 The Solution Space of a PSP . 43
3.3 Solution Space of an Algorithm . 45
3.4 Solution Space of Sequential Interaction . 46

3.4.1 System state vs interaction state . 47
3.4.2 Sketching the solution space of sequential interaction 48

3.5 Solution Space of Multi-stream Interaction 50
3.5.1 Sketching the solution space of multi-stream interaction 50
3.5.2 Three-valued logic for interaction spaces 53

3.6 A Fix-point Algebra for MIM Spaces . 54
3.7 Comparison with Process Calculus . 60

4 The Dual Nature of an IS 63
4.1 Contemporary Approaches to Interaction Modeling 63
4.2 IS = Database Systems + Interaction . 66
4.3 Statics and Dynamics . 68
4.4 Individualization . 69
4.5 Some Models of IS Interaction . 70

4.5.1 Patterns . 70
4.5.2 Actors and roles . 70
4.5.3 Stocks and Flows . 71
4.5.4 Speech-Act Formalisms . 72
4.5.5 Activity Schema . 72
4.5.6 Codesign . 72

4.6 The Dualism Model . 74
4.6.1 Dualism and codesign . 74
4.6.2 Dualism versus object-centrism and process-centrism 78

5 Dialogs and Interaction Schema 80
5.1 Dialogs . 80
5.2 Constrained Association . 85
5.3 Dialog Specialization . 89
5.4 Interaction Schema and Maintainability . 91

6 The Dualism Process Framework 95
6.1 The Dualism Pyramid . 95
6.2 Hazards from Translation . 98

6.2.1 The ideal translation . 99
6.2.2 Discrepancies between OS and OC 100

ii

6.2.3 Discrepancies between PS and PC 102
6.2.4 Discrepancies between OC and OI 104
6.2.5 Discrepancies between PC and PI . 105

6.3 The Story Space . 106
6.3.1 Structure of the story space . 106
6.3.2 Generalization mechanisms . 110
6.3.3 Identifying OPF modalities in an IS story 113

6.4 The Interaction Space . 113
6.4.1 Structure of the interaction space . 113
6.4.2 OPF modalities in the interaction space 116

6.5 The System Space . 118
6.5.1 Structure of the system space . 118
6.5.2 OPF modalities in the system space 120

6.6 Complexity and Decidability of Verifications 122

7 Conclusions 124
7.1 Lessons from Interaction . 124
7.2 Open Questions and Future Directions . 125

iii

List of Tables

2.1 Inductive vs coinductive modeling . 31
2.2 Algebras vs coalgebras . 32
2.3 A taxonomy of some well-known computational models 37

3.1 Behavioral abstractions of algorithms, single-stream and multi-stream in-
teraction . 52

4.1 Contemporary approaches to interaction modeling 64
4.2 The dualism model . 78

6.1 Three layers of a dualism pyramid . 98
6.2 Discrepancies between OS and OC . 102
6.3 Discrepancies between PS and PC . 104
6.4 Discrepancies between OC and OI . 105
6.5 Discrepancies between PC and PI . 106

iv

List of Figures

1.1 Evolution of IS Modeling Paradigms . 2
1.2 Vending Machine Example . 3

2.1 Images of Interaction . 11
2.2 Algorithmic computation . 17
2.3 An algebraic declaration of data type String 21
2.4 Single-stream Interaction . 22
2.5 Inductive and coinductive modeling . 27
2.6 Inductive modeling of ATM interaction . 29
2.7 Coinductive modeling of ATM interaction 30
2.8 Multi-stream Interaction . 33
2.9 Domains modeled by TMs and IMs . 35

3.1 Interactive streams as non-wellfounded sets 42
3.2 Algorithmic and Interactive Spaces . 44
3.3 Solution space of an algorithm . 46
3.4 Solution space of single-stream interaction 49
3.5 Channel sensitive behavior of a MIM . 50
3.6 Solution space of multi-stream interaction 52
3.7 Negative and affirmative constraints . 54
3.8 Three-valued logic for MIM spaces . 55

4.1 Databases vs Information Systems . 67
4.2 Dynamic modeling using stocks and flows 71
4.3 Codesign Framework . 73
4.4 Codesign Process Framework . 74
4.5 Dualism Framework . 75
4.6 Object-centric, process-centric and dualism Frameworks 77

5.1 Domain objects and dialogs . 82
5.2 An example dialog: AuthorSubmitsPaper 84
5.3 Constrained association between dialogs . 87

v

5.4 Constrained associations in the conference IS 88
5.5 Dialog Inheritance . 91
5.6 Object-based and object-oriented designs for the bank simulation problem . 93

6.1 The dualism process framework . 96
6.2 Ideal alignment of the three spaces . 99
6.3 Translation hazards between story and interaction spaces 103
6.4 Translation hazards between interaction and system spaces 107
6.5 DSL grammar . 108
6.6 Scenario construction . 111
6.7 Example translation between story and interaction spaces 117
6.8 The dialog presentation framework . 119

vi

Chapter 1

Introduction

What is laid down, ordered, factual is never enough to embrace the whole truth: life always spills over the

rim of every cup. –Boris Pasternak

1.1 Open Systems and Interaction Space

Information System (IS) design has evolved through various paradigms over the years.
They address dynamic systems which essentially have two dimensions of concern – the
static structure and dynamic behavior.

In early paradigms of IS design, static and dynamic aspects were modeled separately.
Static aspects were addressed by data and concept modeling paradigms like hierarchical,
networked, relational, ER, etc. Similarly, dynamic aspects were addressed by process
modeling paradigms like structured programming, modular design, data flow, etc.

With the proposal of object orientation, there were some claims that the above two as-
pects of system design have been unified. This is because of the encapsulation of structure
and behavior into a single abstraction called the object. Contentions were made that a
system is just a complex object, and system dynamics are simply the dynamics defined in
the object’s methods. However despite such a claim, current modeling paradigms can be
placed along two complementary streams called the “object centric” and “process centric”
streams respectively. In the object centric stream, a system is built from domain entities
(or objects, or actors [AMST92], or agents [AR96, Wei99]) which interact with one another
to achieve specific objectives. Interaction is defined “on top” of the domain entities. In
the process centric stream, a system is built from processes which achieve specific goals,
and which affect different shared variables of the system. Domain entities like objects or
actors exist in order to facilitate process execution. Some examples are use cases [UML],
workflows [Law97], process patterns [Cop98], etc.

Figure 1.1 depicts these streams schematically. A discernible split exists between object

1

Process Modeling

Data Modeling

Process-centric Modeling

Object-centric Modeling

Structured
programming

Modular
 design DFDs

Flowcharts

Hierarchical Networked

ER,
Relational

Object
based

Object
Oriented

Actors Agents

Workflows
Process
patterns

time

Figure 1.1: Evolution of IS Modeling Paradigms

centric and process centric streams despite the contention that a system is after all, just
an object.

The existence of such a split can be attributed to the open nature of IS dynamics.
Open systems are systems whose dynamics are defined not only by computations within
the system, but also by interactions with one or more environments. It is not only necessary
to specify and model the computational semantics, but the interactive semantics are also
important. Process centric streams regard interactive dynamics as fundamental, while
the object centric streams consider computational dynamics to be more fundamental than
interactive dynamics.

To better understand the nature of open system dynamics consider a simple example
of modeling a coffee vending machine. This is shown in Figure 1.2. The machine vends
different flavors of coffee and has a few other options like extra cream and extra sugar.
Each flavor of coffee and options come with their own cost. The task of the IS designer is
to create a software model that works according to the vending machine specifications.

A typical method of addressing such a problem would be to model the vending machine
as an object with its buttons and coin slots as the methods. This is shown in Figure 1.2(b).
The behavior of the vending machine is now said to be defined in its methods. However,
the functionality of the vending machine is not only dependent on its method behaviors,
but also on sequences of method invocation. For successful usage of the vending machine,
it is not only necessary to define method behaviors, it is also necessary to define correct
sequences of method invocations. Figure 1.2(c) shows some interaction sequences in bold
that would result in successful functioning of the machine, and few other sequences which
would not be successful. This interactive aspect makes it insufficient to represent a system
as an object, and its dynamics as the methods. We call the space of all such sequences
of interaction as the interaction space of the IS. While the example of a vending machine

2

is simple, the interaction space of any fairly large IS would be very complex. In fact,
an understanding of what constitutes an interaction space is still largely unclear in the
IS community. For this, we need to first understand the components that make up an
interactive activity, before being able to model an interaction space.

VendingMachine

int AmtPaid;
char Option;

int insert(int);
int CoffeeW();
int CoffeeB();
int Espresso();

int Cappuccino();
int ExtraCream();
int ExtraSugar();

(a)

(b)

insert(50) --> insert(100) --> ExtraSugar() --> CoffeeB();
insert(50) --> insert(50) --> CoffeeW();

insert(100) --> insert(100) --> Espresso();

insert(50) --> insert(50) --> Espresso();
insert(100) --> ExtraCream() --> CoffeeW();
insert(50) --> CoffeeB();

(c)

Figure 1.2: Vending Machine Example

Most real world information systems are interactive in nature. Interactive dynamics
that are “open” produce richer behavior compared to “closed” algorithmic dynamics.
Interaction is also a necessary ingredient for “intelligent” characteristics of information
systems like emergent behavioral properties, reflection, learning and evolution.

1.2 Interaction Modeling

Open systems are common in real life. Most information systems model open systems
having complex interaction spaces. Despite this, an understanding of the nature of
open systems is still low. Indeed, the term “open system” is itself defined with var-

3

ious connotations. It has been used to signify different properties like extensible de-
sign [Nut92], evolvability [AMST92], multiple interfaces [Awa93], and irreducibility to
functions [Mil96, WG99, WG99a, WG99b].

We formalize the notion of an open system by defining it as a system whose semantic
processes are interactive in nature. Open systems display complex interactive dynamics
in addition to computational dynamics.

In order to understand the nature of open system dynamics, it is necessary to un-
derstand what constitutes interactive behavior, and address interaction modeling in a
domain-independent fashion. Wegner [Weg97, WG99, WG99a] was the one of the first to
propose domain independent models of interaction in the form of Interaction Machines
(IMs). Interaction is claimed to be more powerful than algorithms, and interactive com-
puting is claimed to be irreducible to Turing Machines. IMs are proposed as an alternative
abstraction for open systems and “empirical computer science.”

In this thesis, we address Wegner’s contention, and domain independent models of
interaction to identify the essential ingredients that make up interaction. Some prelimi-
nary ideas proposed by Wegner are extended and formalized to show that interaction is
made up of three ingredients: computation, persistence of state and channel sensitivity.
By introducing a concept called the solution space of a semantic process, we show that
persistence of state and channel sensitivity each characterize progressively richer domains
than just computation.

1.3 The Dual Nature of Open Systems

With an insight into what constitutes interactive behavior, we return to the question of
modeling the interaction space of an IS. Open systems (most IS) that have interactive
dynamics are shown to have two kinds of behaviors. They may be termed the “database”
behavior and the “interactive” behavior respectively [GST00].

The “database” behavior of an IS concerns maintenance and updation of the system
state. The pertinent issues here include characterization of the system state, integrity
constraints on the IS structure, and reliable transitions between system states. Database
dynamics require ACID (atomicity, consistency, isolation, durability) properties.

On the other hand, an IS also has a functionality or “interaction” dimension to its
behavior. The interaction aspect of an IS concerns how semantic processes can be executed
by interacting with the IS. It has to address issues like dealing with divergent interaction
paths, coordination among multiple interactive processes and maintenance of the system’s
dynamic integrity. Interactive dynamics are not necessarily amenable to properties of
atomicity and isolation.

Interactive dynamics are autonomous to some degree with respect to database dynam-
ics. Different architectures for maintaining system state can adopt the same functionality;

4

and different functionalities can be manifested on a single structure. For example, an
interactive process for vending train tickets can be manifested in different ways: over the
counter where a human being represents the IS, over the WWW where a user interacts
with a WWW server, over telephone, etc. The different manifestations represent the same
functionality (vending tickets) and are bound by the same kind of integrity constraints (Ex.
no reservation before 60 days of planned departure, no refund if cancellation is done later
than 30 minutes before departure time, etc.) In different implementations, the system
state may be maintained in different ways like – a relational database, a flat file system,
or maybe simply as paper files in a cupboard. The “database” behavior of the IS in this
case concerns issues like how to efficiently maintain the reservation data; how to ensure
integrity of the data in case of updates and deletions; etc. The “functionality” aspect of
the IS concerns issues like designing different interaction protocols; enforcing policy de-
cisions regarding reservations and cancellations; coordinating between multiple requests;
optimizing the interactive process; etc.

We call this the “dual” nature of information systems. If the dual nature of IS concerns
are not recognized and treated separately, the IS designer may encounter problems that
pose contradictory requirements. Some examples are given below:

• Transaction processing in database design define transactions as “semantic pro-
cesses.” Traditionally, transaction processing addressed maintenance of database
consistency in the form of ACID properties. However when transactions are ex-
tended to long duration transactions, the “virtue” of ACID properties becomes a
“vice” in the form of rollback cost [GR93, Kim95]. We contend that this problem
occurs because a long duration transaction belongs to the functionality behavior of
an IS, rather than to the database behavior. Typical long duration transactions
are interactive in nature and address issues like coordination and collaboration. A
transaction is implicitly expected to exhibit algorithmic properties. However, a se-
mantic process can be interactive in nature where non conformance to atomicity and
isolation properties is not a vice, but could well be a requirement.

• The field of agent computing [AR96, ES99, SBD+00] has the problem of resolving
between agent autonomy vs system integrity. With the use of agent autonomy, com-
plex behavioral properties may be manifested using simple rules. However, arbitrary
behavior on the part of a system of autonomous agents cannot ensure integrity of the
system as a whole. This brings out the need for explicitly characterizing integrity of
system dynamics.

In this thesis, we propose a modeling paradigm called “dualism” that models the dual
nature of information systems. An IS is said to have two “spaces” of concern – the object
space represents the structural properties, and its dynamics alter the system state. The
interaction space represents interactive properties, and its dynamics manifest the system’s

5

functionality. The dynamics of an interaction space is shown to be characteristically
different from that of an object space. Interaction space dynamics require at least a three-
valued system of logic for their characterization. These are respectively called: obligated
or liveness behavior, permitted or possible behavior and forbidden behavior. An IS that
adheres to its dynamic integrity should perform the obligated behavior; may perform one
or more permitted behaviors and may not perform forbidden behaviors.

Theoretical underpinnings for the solution space of an interactive system are based on
domain theory, and logical underpinnings for the interaction space in a dualism model is
based on deontic logic. A process of specification, modeling and verification of a dualism
model is also proposed.

1.4 Contributions of the thesis

The contributions of the thesis may be enumerated as follows:

• Open systems are formalized by defining them as systems having interactive dynam-
ics

• Interactive behavior is identified to be made up of three properties: computation,
persistence of state and channel sensitivity

• A concept called the “solution space” of a problem solving process is proposed that
shows the rich nature of an interactive process as against an algorithmic process

• Interactive solution spaces are shown to require at least a three-valued logic for their
characterization

• Deontic constructs and assertions are proposed to characterize open system dynamics
and to reason about open system dynamics respectively

• An open system is shown to have a dualism of properties which have a degree of
autonomy with respect to the other. A modeling paradigm called dualism that
models an IS as a set of two schemata: an object schema modeling the IS structure
and an interaction schema modeling the IS functionality.

• A notion of inheritance of dynamics is proposed and contrasted with the conventional
notion of inheritance

• Paradigms for validating and limited verification of dynamic integrity are proposed.

6

1.5 Organization of the thesis

This thesis is organized into two parts. Part I of the thesis addresses the concept of inter-
active behavior. The driving force behind our approach is based on Wegner’s contention
and proposal of Interaction Machines. Interaction is shown to be made up of three prop-
erties, each providing greater expressiveness over the other. Different existing approaches
to model interactive behavior are considered and contrasted based on how they address
these three ingredients of interaction. A concept of solution space is also introduced to
formally characterize the behavior of interactive systems.

Part II of the thesis concerns modeling the interaction space of an information sys-
tem. The concept of a solution space introduced in Part I is used to propose a modeling
paradigm called dualism. The dualism paradigm models IS functionality in the form of
an interaction schema. Building blocks of an interaction schema called dialogs and con-
strained associations are introduced. A process framework addressing different stages of
interaction schema design like specification, modeling and implementation is also proposed.

7

Part I

Interaction Modeling

Understanding what is interaction

Chapter 2

Models of Interaction

In computer science, important concepts usually come with a plethora of alternative

characterizations. – Christos Papadimitriou

Information systems and computation are considered to be tools for “problem solving.”
The concept of computability addresses solvability of classes of problems by computation.
Problem solving is said to be computably tractable if there exists an algorithm for the
problem solving process.

In a natural way, concepts of problem solving and computability are extended to sys-
tems of computational processes as in IS design. However, as observed by Wegner [Weg97],
the behavior of an IS seems to be richer than the behavior of algorithms. The phrase “no
silver bullet” coined by Brooks [Bro95] to denote IS design complexity, has been inter-
preted by Wegner to mean IS processes cannot be reduced to algorithms. This is claimed
to be because of the interactive nature of IS processes.

This chapter addresses this claim. It provides an overview of various models of inter-
action that have been proposed in related literature and compares interactive behavior
against algorithms.

2.1 On the Notion of Interaction

Bob and Alice are attendees of the twentieth reunion of their old batch of engineering
classmates. One of the attendees hears the following two sets of conversation that involves
Bob and Alice.

Conversation 1:

Bob: Hi, how are you doing these days?

Alice: No, rain was predicted for today; but it didn’t rain.

Bob: And what happened to your plans of changing jobs?

9

Alice: Yes, even though it isn’t raining, there is a lot of humidity.

Bob: Oh, that sounds good. All the best in your new job.

Alice: Oh yes! That was very unexpected, I didn’t even have an umbrella.

Conversation 2:

Bob: Hi, how are you doing these days?

Alice: Well, nothing spectacular, but good enough.

Bob: And what happened to your plans of changing jobs?

Alice: I did change my job. And it has already been a month in my new job.

Bob: Oh, that sounds good. All the best in your new job.

Alice: Thanks. And tell me about yourself..

Even though both sets of conversations involve words spoken by Bob and Alice, the
listener would easily conclude that Bob and Alice were interacting in the second conversa-
tion, and not in the first. The second conversation involves a shared subject or state that
evolves throughout the interaction. Without the common evolving state, interaction can-
not take place. Not every sequence of activity (speech in this case) constitutes interaction.
Interaction requires a collective shared state which evolves through the process.

Consider now, Paul joining Bob and Alice. And two sets of conversation are again
overheard involving the three.

Conversation 1:

Bob: Hi, how’re you all doing?

Paul: Just great!

Alice: Same here...

Bob: Isn’t it great to be meeting after so long?

Alice: Yes, and I am having difficulties recognizing who is who.

Paul: Laura met me near the doorway, and believe it or not, I could not remember her name as long as we spoke!

Conversation 2:

Bob: Hi, how’re you all doing?

Paul: Just great!

Bob: And you Alice?

Alice: I’m fine too, thanks!

Bob: Isn’t it great to be meeting after so long?

Alice: Yes, and you have changed quite a bit Bob; but Paul still looks the same.

Bob: Really? (whispers to Paul) Oh my, I thought no one would notice my paunch.

Paul: And you seem to be getting younger Alice..

Alice: Now, now. Flattery will get you nowhere!

10

In the above two conversations, both constitute interaction since there is a shared
evolving state. However, the first conversation is distinctly different from the second. In
the second, there is an element of intended recipient in the statements. In the first conver-
sation, everything was said to everybody. It didn’t matter who answered a question posed
and who received a particular statement. The second conversation however is channel
sensitive. Even though all three are involved in the same conversation, there are some
specifics regarding the recepient of particular statements.

When everything is said to everybody, the shared state can be modeled as a set of
information that is duplicated with each participant, or as a broadcast media accessible
to all participants. All participants share the same set of information as far as this in-
teraction is concerned. But with a notion of intended recipient, modeling channels and
their interconnectivity also becomes important. Here, even though each participant is
involved in the same interactive process, the information that is maintained in each of
their shared states is different. One can think of such a model of interaction as a shared,
evolving state that is individualized for each recipient or channel. Figure 2.1 schematically
sketches the two images of interaction discussed above. In the first case, the state is shared
among all participants and every participant has access to every information in the shared
state. In the second case, the shared state is individualized among the participants. From
a database vocabulary, the participants in the second conversation maintain their own
views of the shared interaction state. The interacting participants may or may not be
aware of the global shared state that their individualized state is part of. And changes
in the global shared state affects the individualized state of the participants. Chapter 4
shows how dynamics of an IS can also be modeled by using above two paradigms.

(a) (b)
Shared state Shared individualized state

Figure 2.1: Images of Interaction

Of course, other factors like distribution in space and time also affect the interactive
process. However they do not affect what can be effectively achieved by interaction. Time
can affect what can be achieved by an interaction, if time is one of the determinant factors
of interaction, as in real-time interaction. However, we do not consider real-time inter-
action here, and restrict the subject matter of dynamic processes to temporal precedence
relationships. The emphasis is on modeling interaction sequences which can be temporally

11

ordered using any logical time rather than real time.
This chapter formalizes the above concepts of persistence of state and channel sensitiv-

ity which determine interaction. Interaction is assumed to be taking place “here and now”
so that distribution in space and time is abstracted away. The next chapter introduces a
concept called “solution space” of a dynamic process, and shows how each of the above
factors contribute to a richer domain than what can be achieved by computation alone.

2.2 On the Notion of Problem Solving

2.2.1 Connotations of problem solving

With a tenet that information systems are meant for “problem solving” we have to look
at what is meant by problem solving, to understand how interactive problem solving is
different from algorithmic problem solving. A notion of problem solving can be defined
along at least two different connotations:

Connotation 1: Provide an output “answer” or “solution” to an input “question” or
“problem”

An example of this connotation is a problem statement like “What is the square-root
of 81?” Problem solving of this connotation can be modeled by a function between two
domains, called the problem domain and the solution domain. The function takes an
input parameter (81 in this case) and maps it to the output result from the solution
domain. They are mathematically represented as f : I → O where I is the input problem
domain and O is the output solution domain.

Connotation 2: Find a means to change the state of a given system from the current
“problem” state to a desired “solution” state, under a set of constraints.

In this connotation, a system is given and the configuration of the system has to be
altered. The desired configuration is called the solution state, and the configuration where
the process starts is called the problem state. An example of the second connotation is a
problem statement like the following:

“Towers of Hanoi. The towers of Hanoi consist of three poles, where the first pole

has a set of n discs on it. The discs are arranged such that a disc of smaller diameter

is above a disc of larger diameter. The task is to move the set of discs to the third

pole with the following constraints: (a). only one disc may be moved at one time, and

12

(b). at any point in time no disc of larger diameter should be above a disc of a smaller

diameter on any pole.”

In this example, the system consists of n discs and three poles. To represent the state
of the system, consider that n = 3. Let the three discs be on the first pole, and let the
other two poles be empty. The system state can be represented as: [(3, 2, 1)00], which
shows the three discs on the first pole and none on the rest. It also shows the order in
which the three discs are on the pole. A disc with a bigger number (say 3) is assumed to
be bigger than a disc with a smaller number (say 1). And the top of the pole is assumed
to be the rightmost element in a list of disc numbers on a pole. Hence the representation
shows three discs on the first pole, with the largest disc being the lowest one and the
smallest disc being the highest one.

Problem solving now is to change the configuration to [00(3, 2, 1)], governed by a set
of constraints. The constraints say that (a). any state of the form [(1, 2)(3)0] which
shows a smaller disc below a larger disc is illegal; and (b). any transition of the form
[(3, 2, 1)00] → [(3)0(2, 1)] which shows more than one disc has moved simultaneously, is
illegal.

Mathematically, if S is the set of all states of the system, problem solving of this
connotation is a mapping of the form f : S → S. But this is inadequate since it does
not show the process of problem solving, and all the constraints that govern intermediate
state transitions.

An other means of representation is to associate a label with each state transition.
Thus S0

a→ S1
b→ S2 says that the transition from S0 to S1 is labeled a and the transition

from S1 to S2 is labeled b. The set of all such transitions is called the “action” set A.
We can now redefine problem solving of this connotation as follows: given a set of input
parameters, find a sequence of actions s ∈ A∗ that can take the process to a desired
solution state.

This would reduce the second connotation of problem solving to the first. The problem
solving now is a function f : I → A∗, where I is the domain of input parameters, and A∗

is the set of action strings that is the solution to the problem. In the above Towers of
Hanoi example, the input parameter is n the number of discs, and the output string is the
sequence that shows how discs are moved between poles.

Most real world problem solving that involve information systems, take on the sec-
ond connotation. For example, vending coffee from a machine, booking a flight ticket,
managing supply chains, etc. all involve problem solving processes that change the state
of a system from a given “problem” state to a desired “solution” state under a set of
constraints.

13

2.2.2 Algorithmic and interactive problem solving

Having defined a concise notion of what is problem solving, we can now define an
information system formally as a collection of problem solving processes. Each problem
solving process (PSP) defines specific functionality provided by the information system.
In the next chapter, we shall provide a more formal representation for a PSP which would
further formalize the following definition of an IS.

Definition 2.1: An Information System (IS) is a collection of semantic processes called Problem

Solving Processes (PSPs) each of which maps between a given problem state of the system to a

desired solution state. �

Now, in trying to define what is problem solving, there have however been some implicit
assumptions. Firstly, is it assumed that the state of the system does not change arbitrarily
unless changed by the process itself. Secondly it is assumed that the problem statement
and its governing constraints do not change midway during the process. Thirdly, it is
assumed that the desired solution state is known at the start of the process. For example,
in the Towers of Hanoi problem it is implicitly assumed that the discs don’t move by
themselves unless moved by the problem solving process itself; or that the user will not
change constraints midway, or choose a different state as the solution state. Specifically,
it is assumed that the transition from the problem state to the solution state takes place
in a closed atomic operation that is isolated from anything else happening in the system.
Hence, if the system is in state p ∈ S when the problem solving began; a desired solution
state s ∈ S is fixed before the problem solving begins. The problem solving process starts
at p and shuts off the world until it reaches s. Once the process is over, the system will
be either in state p or state s.

Here is an example quotation from Gray and Reuter [GR93] about the expected be-
havior of functions.

“Consider, for example, an SQRT function invoked from a Pascal program. The

invocation is synchronous from the program’s point of view; that is, it waits until

the result has been computed. The function will either return the right value of the

square root, or it will return an error code, but it will not change any data structures

or parameters in an unpredictable way. Whether it does the computation using an

iterative algorithm, a table lookup, or by asking a number-crunching friend is irrelevant

to the caller; under no circumstances will it produce ”partial” square roots or otherwise

incorrect results. It will also not return somebody else’s square root if the function is

invoked by many programs at the same time.”

The database community adopts the above assumptions in the form of ACID trans-
actions on databases. A transaction over a database, models a problem solving process

14

that changes the state of the database from a given problem state to a desired solution
state [GR93, Kim95, RG00]. A transaction is expected to behave like a function having
the above properties. In order to maintain correctness of behavior in the face of multiple
transactions acting concurrently on the system, a transaction is designed to display the
following properties: atomicity, consistency, isolation and durability.

Atomicity requires that the transition between problem and solution states take place
as an atomic operation with respect to the outside world. A transaction should either leave
the database in the problem state or the solution state and not in any intermediate states.
Consistency requires that the solution state of the database satisfies integrity constraints
of the database. Isolation mandates that given any set of concurrent transactions, the net
effect of running those transactions will be the same as running those transactions in some
order. That is, each transaction should run in semantic isolation. Durability requires that
the effects of a transaction are “durable” – that is, the system has effectively changed
states after the transaction is complete. These four properties, collectively called the
ACID properties are adopted by database applications involving transaction processing.

But real world problem solving need not always have the above constraints in mapping
between problem and solution states. In a semantic process that changes between problem
and solution states, the problem solving process may sometimes interact with the user for
intermediate inputs or guidance regarding the next step. This makes each state transition
dependent on the external intermediate input. The external intermediate input may in
turn depend on the intermediate output provided by the problem solving process. In
addition, when problem solving involves coordination between multiple processes, the
system state can get changed by other processes acting on the system. The problem
solving process may also wilfully interact with multiple environments without one having
knowledge about the other.

The inadequacy of a closed, atomic paradigm of problem solving is apparent when
“long duration” transactions are considered. Long duration transactions are semantic
processes which can run for several seconds to several days or months. They might involve
other “high level” operations like coordination and collaboration [Kim95].

Traditional transaction processing uses locks to ensure atomicity and isolation prop-
erties of a transaction. In long duration transactions, the “virtue” of locks becomes a
“vice” because locks have to be held for long durations of time. In addition, the cost of a
rollback in the case of a failed transaction is high. Many approaches towards long duration
transactions have hence relaxed the ACID criteria. They have instead concentrated on
modeling and maintaining correctness at a semantic level [Beh99, Elm92, KR96, TS94].
Semantic processes are modeled as “transactional workflows” [SR93], consisting of a num-
ber of steps corresponding to database transactions. Correctness in the face of concurrent
workflows is maintained by logical dependencies between steps of different workflows.

However the field of workflows still lacks sound conceptual underpinnings. It is gener-

15

ally agreed that a set of workflows cannot adequately model the complex nature of actual
business processes. As a result issues like exception handling pose significant design com-
plexities [CP99].

A PSP that maps between problem and solution states in a closed atomic fashion is
said to be algorithmic in nature. In contrast, if a PSP is not amenable to properties of
atomicity and isolation, it is said to be interactive in nature. An IS which contains only
algorithmic PSPs is said to be a “closed” system, and one that contains interactive PSPs
is said to be an “open” system.

Definition 2.2: A “closed” system is a collection of algorithmic PSPs, while an “open” system

is a collection of PSPs where at least one of them is interactive. �

An open system can be of two kinds. A single-stream open system that interacts one
only one stream; and a multi-stream open system that can interact over more than one
streams. The difference between single-stream interaction and multi-stream interaction
has been first noted by Wegner [Weg97, WG99a]. In the following sections, we describe
each of the above three kinds of systems (closed, single-stream open, multi-strem open) in
detail.

2.3 Algorithms

An algorithm is the most fundamental form of interactive behavior. They model com-
putable functions of the form f : I → O that map between I and O in a closed fashion.
They have exactly one interaction with their environment1.

The behavior of an algorithm is schematically shown in Figure 2.2. It accepts an input
set of parameters and computes until it reaches the desired solution. If the algorithm
terminates, the output would be the result of the computation or an error code. A
problem solving process (PSP) that is algorithmic in nature starts by accepting a set of
input parameters. The PSP ends by outputting the solution. In the above figure, the
PSP begins the algorithmic process at state A and ends at state B. The start of problem
solving is denoted by the symbol SOP and the end of problem solving is denoted by the
symbol EOP .

Definition 2.3: An algorithmic problem solving process (APSP) is defined as a tuple,
1In common discourse, the term “algorithm” is loosely used to also include interactive protocols. How-

ever we use the term algorithms to mean a step by step procedure that models computable functions.

This entails mapping a given element from the input “problem” domain to an element from the output

“solution” domain in a finite number of steps – essentially non interactive once the process has begun.

Also, from the definition of a problem solving process, we in effect neglect algorithms that don’t terminate.

16

 A

SOP: Start of Problem solving, EOP: End of Problem solving

Computable function f: I --> O

Algorithmic Computation

B

A1

A2

An

 A

B

EOP

SOP

Figure 2.2: Algorithmic computation

APSP = 〈I,O, δ〉, where I is the “problem” domain depicting the set of possible inputs, O is the

“solution” domain depicting the set of possible outputs, and δ is a computable function of the

form δ : I → O, that maps input “problems” to output “solutions.” �

2.3.1 Turing Machines

The mathematical model of an algorithm is a Turing Machine (TM) (c.f. [HU79]). The
structure of a TM is as follows:

Definition 2.4: A Turing Machine (TM) is defined as TM = 〈S, T, s0, δ,H〉, where

• S is the set of TM states,

• T is a set of tape symbols,

• s0 is the start state

• δ is a mapping of the form δ : S × T → S × T × {L,R}, and

• H ⊂ S is the set of halt states.

�

17

TMs read input from a tape of infinite length, on which the input is provided in the
form of a finite sequence of tape symbols. They begin computation from an internal start
state s0 and at each computational step map the current input symbol x ∈ T to an output
symbol y ∈ T , and moves one step to the left or right on the input tape. In addition,
the internal state of the TM is altered by each computation step. The TM halts when it
reaches any halting state h ∈ H.

A TM is the most expressive model among a class of models representing computable
mappings. Some of these other models are: Deterministic finite automata, Nondetermin-
istic finite automata, Pushdown automata, Context-free grammars, etc.

A tape in a Turing Machine is the working memory of the TM. Expressiveness of
computational models depend on their representation of the working memory and in their
internal state transition primitives. For instance, a pushdown automaton maintains mem-
ory in the form of a stack where symbols can be placed only at the top and only the
topmost symbol can be read at any given instant. A TM, which is the most expressive, is
said to represent all mathematical processes of computation.

Despite the different kinds of computational models, all of them share a common
feature. This is explained in more detail below.

Postulate 2.1: Models for computational mappings have a generic form: MC = 〈s0, δ〉, where s0
is the “starting point,” and δ is a set of dynamics beginning from the starting point. Computation

always begins at s0 and proceeds based on the input parameters and δ. �

Computation always begins from a well known “start state” s0. Depending on the
particular model, the dynamics δ can have different levels of complexity. It could be
either monotonic or non monotonic, deterministic or non deterministic, memoryless or
may maintain memory or have any other property. However, the important aspect here
is that of the start state. This is important in order to distinguish algorithmic dynamics
from interactive dynamics.

2.3.2 Algorithmic systems

Functional programming: A system consisting of a collection of algorithms itself be-
haves as an algorithm. This forms the basis for functional programming paradigms [Hug89,
RL99, Ros82, Sab98]. Functional programming is a paradigm where computation is ex-
pressed declaratively in terms of functions. There are no side effects to a function’s evalua-
tion and a function will always evaluate to the same value for the same input. There are no
assignment statements or any other imperative constructs that specify actual procedures
in evaluating an expression.

An entire program can be considered to be a function, whose starting point is deter-

18

mined by some form of a “main” function. Examples of functional programming languages
include ML, Haskell and Miranda. The logical formalism for functional programming is
based on pure λ-calculus. Pure λ-calculus consists of only functions without other con-
structs like data types or constants. Imperative programming languages like Pascal and
C are also algorithmic paradigms that are based on the typed λ-calculus with constants.

λ-calculus: λ-calculus is a branch of mathematical logic developed by Alonzo Church,
that deals with the application of functions to their arguments. The pure λ-calculus
contains only functions and no constants or types. Computation as well as data types are
expressed as functions.

Functions in λ-calculus are represented by λ-abstractions. A λ-abstraction is of the
form λx.f(x). Here x is a bound variable and f(x) is a λ-expression. A λ-expression can
be either a λ-abstraction, a variable or a constant.

The λ-expression f(x) is called the body of the λ-abstraction. It denotes the expression
that is returned as an evaluation of the function. For example, a λ-abstraction of the form
λx.(x ∗ x) denotes a function, with x as its bound variable, and which returns x2 as the
result of the function.

Functions having multiple input parameters can be reduced to nested functions having
single parameters. Thus a λ-abstraction of the form λx.λy.(x ∗ y) can be reduced to a
function having two input parameters x and y. This can be rewritten as λxy.(x ∗ y).
The process of representing a function of the form (a, b) → c in an alternative form as
a → b → c is called “currying.” The reverse process illustrated above is a process of
uncurrying.

A detailed exploration into functional programming is beyond the focus of this work.
The emphasis here is on interactive behavior which displays properties that cannot be
directly reduced to a function.

2.3.3 Inductive domains

Recursively enumerable sets: An alternative representation of an algorithm is to
represent the set of all elements that can be generated by the algorithm. Hence, if an
algorithm models a function f : I → O, the set representation of the algorithm would be
the set of all pairs of the form (i, o) where i ∈ I and o ∈ O. Such a set, whose elements
are generatable by a TM is called a recursively enumerable set.

Definition 2.5: A set is said to be recursively enumerable (r.e.) if there exists a Turing Machine

that generates all elements of the set. �

A set that is r.e. has a one-one mapping to the set of natural numbers. However, even
if a set is r.e., it does not mean that the membership of a given element is decidable with

19

respect to the set. For any set S that is r.e. and that contains elements from a universe
U , the TM that generates elements of the set may fail to halt in determining membership
for some element u ∈ U, u 6∈ S [HU79].

Not all sets are r.e. Given that some functions are not computable, it follows that
there could be set representations whose elements cannot be generated by a TM [DeV98].
An example is the set of all real numbers.

Induction: Mechanisms for recursively generating the elements of a set, adopt a
principle of induction. A process of induction to generate elements of a set S from a
universe of elements U involves the following steps:

1. State a set of atoms ∈ U that belong to S,

2. State a set of operators that apply to elements of S and which select an element
from U as belonging to S

3. Recursively keep applying the operators to elements of S to generate further elements
of S

For example, the set of whole numbers W can be generated from the set of integers
I by the following pair: (0, succ()), where succ(n) = n + 1. Such a structure is also
called an algebra. Algebra is a well established part of mathematics and also of computer
science in abstract data type theory. An algebra is defined as follows:

Definition 2.6: An algebra is defined as Q = 〈A,A∗, δ〉, where A is the set of atoms, A∗ is the

carrier set or the set of unfolded strings, and δ : A×A∗ → A∗ is a set of production rules. �

A process of induction that generates a given abstract domain has the following prop-
erties:

1. Initiality: A set of elements are introduced as atoms of the algebra.

2. Iteration: A set of production rules determine how strings of the algebra are gen-
erated from the atoms and other generated strings of the algebra. The set of all
strings generated by an algebra is called the carrier set of the algebra.

3. Minimality: No other string, other than those generated by the algebra belongs to
the carrier set of the algebra.

The “constructivist” nature of an algebra make them minimalist in nature. A mini-
malist model is described by “initiality.” An initial algebra is the minimal set of elements
and production rules that are required to generate the entire set. Alternatively, an initial
algebra of a particular type is that subset that is necessarily present in every algebra of
that type.

20

String @ [\x20− \x7F]∗

{\0, addchar()}
addchar(s, c) = cs, s ∈ String, c ∈ [\x20− \x7F]

Figure 2.3: An algebraic declaration of data type String

Figure 2.3 shows an example declaration of the data type String using an algebra.
Here the universe of discourse is all the ASCII characters between 32 and 127 (denoted
by their hex equivalent). A String is a sequence of characters terminated by a null (\0)
character. Hence the null character forms the set of atoms for the algebra. The algebra
has a production rule called addchar() that adds a character to a previously generated
String. The set representing all strings generated in this way forms the carrier set of the
algebra.

Computational processes are also inductive in nature. As seen earlier, a computational
process can be represented as 〈s0, δ〉. Here, the set of actions A may be considered to be
the set of atoms, s0 is the start production rule and A∗ is the carrier set of the process.

2.4 Single-stream Interaction

In an interactive process, there are one or more intermediate interactions with an outside
environment in mapping between problem and solution states of a PSP.

Figure 2.4 depicts sequential, or single-stream interaction. The PSP is the transition
SOP → EOP . It begins at state A, and ends at state E. However, this transition
involves a number of intermediate interactions with the environment. The behavior of the
environment at any intermediate interaction is unknown at the start of the process. Also,
intermediate inputs from the environment may be coupled with previous intermediate
outputs from the computing machine. This makes it infeasible to provide all inputs from
the environment at the start of the process itself. In addition, the start state A may be the
result of earlier interactions, and would be different every time a new interactive process
begins.

Single-stream interaction is common in practice. For example, Figure 2.4 may represent
a user session in a database application. The state at which a user session starts is the
current state of the database, which is a function of interaction history. When a user
starts a session, the database cannot determine what the state would be at the end of the
session, since it may be affected by intermediate inputs.

Traditional transaction processing in databases performs the entire set of operations
between SOP and EOP as a single atomic operation. Computations and intermediate
interactions with the user are not committed to the database until it is sure that the end

21

SOP: Start of Problem solving, EOP: End of Problem solving

Computable function + persistence of state

A

B

C

A’

B’
B’’

A

B

C

SOP

InteractionSequential

E E

D D

EOP

Figure 2.4: Single-stream Interaction

of the process has been reached. The entire changes are then committed to the database
in one go. Hence, after the process is completed, the database is either in state A or in
state E.

However, this need not always be the case in real world processes involving interaction.
For example, if the first interaction involves actual physical operation (launch missile,
open dam sluice, destroy buildings, etc.) and subsequent interactions denote progressive
control of the operation; the semantic operation cannot be atomic. It may not be possible
to provide the second intermediate input until the first operation is done; and an operation
performed cannot be rolled back. Similarly, if the semantic process is spread over a period
of days, it is not possible to lock the contents of the database from changing over the
whole duration of the process. The lack of atomicity here is not a shortcoming of the
information system, but a part of the problem domain requirements.

In an interactive process, the computation between any two consecutive interactions
is algorithmic in nature. This mapping is described by a partial function of the form
(sk, ik) → (sk+1, ok), where sk is the state of the system at the kth interaction, ik is the
input provided at the kth interaction, ok is the output obtained after the kth interaction;
and sk+1 is the new system state. The behavior of the function is not only dependent on

22

the input, but also on the current state. On termination, the function not only produces
an output but also changes the system state. Such a partial function may be represented
as δ : S× I → S×O, where S is the state space of the system, I and O are the input and
output domains respectively.

Definition 2.7: A Sequential Interactive Process (SIP) is defined as SIP = 〈S, I,O, δ〉, where

S is the state space of the system, I and O are input and output domains respectively, δ is a

computable partial function of the form δ : S × I → S ×O. �

Postulate 2.2: The generic form of a sequential interactive process is represented as 〈S, δ〉, where

S is a set of system states and δ is the computational behavior defined from each state s ∈ S that

is executed when the system interacts with the environment from state S. �

Note the difference between the generic forms of sequential interaction and algorithmic
systems. Algorithmic systems have a unique start state and behavior defined from that
state. Sequential interaction has computational behavior defined from a number of states
on which interaction is possible. Later in this section we call this the “maximalist” nature
of interactive systems.

It is sometimes confusing to note that interactive processes like the above are also called
“concurrent” processes (Ex. [Mil89]). This is because, an interactive process maintains a
coroutine or a concurrent relationship with its environment, as opposed to a subroutine
or sequential relationship maintained by an algorithmic process. However, in our case,
we term this as a single-stream or a sequential interactive process to denote that the
interactive stream of inputs and outputs takes place in a sequential manner.

Sequential interaction is characterized by persistence of state in addition to compu-
tation. Sequential interaction is made possible by a persistent system state across com-
putations. Persistence of state is necessary for properties like history sensitive behavior,
learning, evolution, etc. It makes the behavior of an interactive process more expressive
than just a function. A function always produces the same output for the same input.
But the behavior of an interactive process is history sensitive.

Some models of sequential interaction in related literature are explored in the following
subsections.

2.4.1 Monads

Monads are a mechanism for incorporating persistent state into functional programming.
They have been used to incorporate a number of features like continuations, input-output
and exceptions into functional programming languages. They have also been used to model
interactions [Wad97].

23

A Monad consists of three parts [How93] 〈M,unitM, bindM〉. M is some function on
types. unitM converts a value of some type into monadic form of M . And bindM applies
a function to a monadic value. The monadic value models persistent state.

2.4.2 SIM and PTM

To represent sequential interaction, an abstraction called Single-stream Interaction Ma-
chine (SIM) was proposed by Wegner [WG99a]. A SIM interacts with a single environment
and its behavior is dependent on interaction history. A SIM models the behavior of an
object as against an algorithm.

Later on Goldin [GW98, Gol00] proposed an extension to TMs called the Persistent
Turing Machine (PTM) as a mathematical model for SIMs. A PTM is defined as follows:

Definition 2.8: A Persistent Turing Machine is of the form PTM = (W,TM), where W is a

worktape whose contents are persistent across computations. The TM part of a PTM begins each

computation from a state that is determined by the contents of W rather than the same start

state for every computation. �

Different kinds of PTMs are then defined: amnesic PTMs lose the contents of W after
each computation and are equivalent to TMs; finite-memory PTMs have a bound on the
number of internal states that the TM can have; and finite-state PTMs have a bound
on the size of W . Finite-memory PTMs are shown to have the same expressiveness as
finite-state PTMs.

2.4.3 Labeled Transition Systems

Reactive systems [JKSS90, MP92] address single-stream interaction. They represent
systems whose goal is to maintain an ongoing interaction with an environment. The
fundamental model of a reactive system (as well as of infinite state systems in gen-
eral [May97]) is a Labeled Transition System (LTS) which is defined as follows:

Definition 2.9: A Labeled Transition System (LTS) is of the form 〈S,A〉, where S is the set of

states and A is a set of “actions. ” At each state s ∈ S, an action a ∈ A takes the LTS to another

state s′ ∈ S. This is denoted by s a→ s′. �

In some definitions, an LTS is defined to also have a start state s0 from where it begins
computation. However, more generic models make away with the start state and define
behaviors from each state explicitly. The LTS would then be able to start from any state,
and the behavior of an LTS at any given instant would be determined from its current
state.

24

2.4.4 Streams

An other way of modeling persistent state in sequential interaction, is to consider the
system state as interaction history. Each interaction is of the form (i, o), where an output
is returned for an input. Hence interaction history or system state can be modeled as a
stream of the form (i, o)∗. Broy [Bro97] adopts such an approach to model interactive
behavior. Some pertinent definitions from this model are as follows:

Definition 2.10: A stream over a set M is a finite or an infinite sequence of elements from M .

The set of finite sequences are denoted by M∗ and the set of infinite sequences are denoted by

M∞. The empty sequence is denoted by 〈〉. �

Definition 2.11: The behavior of an interactive component is modeled by a timed stream. A

timed stream is an infinite stream of finite streams. Formally a timed sequenceMκ =def (M∗)∞. �

Each finite sequence of input-output represents an interaction session, and the infinite
sequence of all sessions represents the component’s behavior.

2.4.5 Process calculus

The calculus of communicating systems (CCS) or process calculus [Mil89] models inputs,
outputs, states and composition of communicating processes. A typical definition in CCS
is shown below:

C =def in(x).C ′

C ′ =def out(x).C
This denotes an interactive process where at state C, an input of x takes the system to

state C ′ and an output of x at C ′ takes the system to state C. Processes can be combined
by connecting input and output channels of different processes. A combination of processes
can be abstracted as a single compound process. In such processes the system state
may change because of internal interactions, even without interactions with the outside
environment. Such state change transitions are called τ -transitions. A τ -transition is not
observable by the environment.

Expressiveness of two or more systems is established by a process of bisimulation.
Bisimulation is based on a concept of observational equivalence of inputs and outputs.
Two systems SA and SB are said to be bisimilar until R if there exists a relation R ⊆ I×O
of inputs and outputs, such that for each input element in R, both SA and SB return the
same output.

25

2.4.6 Coalgebras and coinduction

A notion dual to the concepts of induction and algebras is gaining popularity in modeling
dynamic systems. This is the concept of a coalgebra and the associated proof principles
based on coinduction.

Coalgebras incorporate concepts from all the paradigms seen above, into a common
unifying framework. They can be used to specify, model and reason about (single-stream)
interactive behavior. A concise tutorial on coalgebras as applied to interactive IS behavior
is provided here. A more detailed tutorial on the concept of coalgebras is available by
Jacobs and Rutten [JR97].

Fundamentally, a coalgebra is the dual concept of an algebra. In an algebra the carrier
set is generated from a set of axioms and a set of production rules. In a coalgebra, the set of
axioms is generated from the carrier set using a set of abduction rules. Abduction implies
inference based on observation. While induction models the concept of construction (of
the carrier set from the set of axioms), coinduction models the concept of observation
(observing the carrier set and deducing its axioms).

An inductive process is minimalist in nature while a coinductive process is maximalist
in nature. As noted by Wegner [WG99a], in an inductive process “everything is forbidden
(to be included in the carrier set) other than what is allowed (by the algebra).” In
contrast, in a coinductive process “everything is allowed (to be included in the set of
possible observations) other than what is forbidden.”

The formal definition of a coalgebra is as follows:

Definition 2.12: A coalgebra is a tuple Q = 〈A,A∗, δ〉, where A is the set of observed axioms, A∗

is the carrier set and δ is a mapping of the form A∗ → A×A∗. �

Note the difference in the definition of δ. In an algebra, δ was a mapping into the
carrier set A∗, and in a coalgebra, δ is a mapping from the carrier set A∗. This change in
the definition of δ allows for modeling interactive paradigms like persistent state and lazy
binding of intermediate inputs [WG99b].

Coalgebras have also been attempted for describing reactive systems [Kie97]. Rut-
ten [Rut96] characterizes dynamical systems using coalgebras and goes on to claim that
coalgebras and dynamical systems are equivalent. The definition of a dynamical system
in the form of a coalgebra is as follows:

Definition 2.13: A F -coalgebra or an F -system is a tuple 〈S, αS〉, where S is the state space of

the system and αS is the set of system dynamics. αS is of the form S → F (S), which maps each

state S to a functor F (S) that defines dynamics from any given state. �

26

Depending on the definition of F (S) a coalgebra models different kinds of systems.
For example if F (S) = S, then system dynamics are modeled by S → S and the coalgebra
represents a deterministic state machine. If F (S) = P(A× S), then the coalgebra models
an LTS.

Lemma 2.1: The definition of a coalgebra as 〈S, αS〉 is equivalent to the definition of a coalgebra
as 〈A,A∗, δ〉.
Proof: The equivalence of the two definitions may be established by the fact that a state in a

dynamical system models interaction history or an element of the carrier set. Hence a mapping of

the form S → F (S) is equivalent to a mapping of the form A∗ → A×A∗. �

In modeling a dynamical system, the essential difference between an inductively defined
model and a coinductively defined model is shown in Figure 2.5.

s3

s0
s1 s2

a

b
c

s3

a

b

c

Definition of a state by induction Definition of a state by coinduction

(a) (b)

Figure 2.5: Inductive and coinductive modeling

An inductive definition models state transitions as δ : S ×A→ S, while a coinductive
definition models state transitions as δ : S → A× S.

In other words, a state in an inductive model is defined based on all the paths leading
to it. Each state is characterized by an action from an other state. A state that does not
require such a characterization would form the start state. Inductive characterization is
schematically depicted in Figure 2.5(a).

In contrast, a coinductive definition characterizes a state by the set of all behaviors
leading from it. The definition of a state is not dependent on another state, and this
obviates the need for a start state. In fact, a coalgebraic system can be considered to be
a collection of behaviors, each of which is abstracted by a state. A state in a coalgebra is
an abstraction that represents behavior from that point.

Coinductive modeling in practice: Inductive modeling is based on a notion of

27

“intended functionality.” An algebra for an interactive process represents a mechanism
for generating all valid interaction sequences.

Consider an example where a user interacts with an automatic teller machine (ATM)
to withdraw money. The set of intended functionalities of an ATM include the following
elements:

Vending money: achieved by the following activity sequence: {(insert card, insert PIN,
specify amount)}.

Cancelling a transaction: achieved by the following set of sequences: {(insert card,
cancel), (insert card, insert PIN, cancel)}.

handling erroneous inputs: The machine may be said to go into an error state if the
user enters a wrong PIN number thrice, or enters an invalid amount for the required
money.

The interactive process can be represented by a grammar whose atoms denote user
actions. The set of atoms are as follows: {C = insert card,

P = insert PIN,

N = insert invalidPIN,

A = specify amount,

I = specify invalidAmount,

X = cancel}.
The interactive process shown as a grammar is as follows:

<Start> ::= (null) | <Done>

<Done> ::= <Success> | <Fail> | <Cancel>

<Success> ::= <PIN> A

<PIN> ::= <Card> P | <N1> P | <N2> P

<N2> ::= <N1> N

<N1> ::= <Card> N

<Card> ::= <Start> C

<Fail> ::= <N2> N | <PIN> I

<Cancel> ::= <Card> X | <N1> X | <N2> X | <PIN> X

The grammar represents a mechanism for generating all the valid interaction sequences
that make up the process. Some of the valid strings that are possible from the specification
are – CX, CNPI, CPX, CPA, . . .

A grammar can be translated into a state machine representation by making all the non
terminal symbols like 〈Card〉, as states that are reached by following the input sequence of
operations. Hence 〈Start〉 forms the start state, where an action of inserting a card takes
the interactive process to the 〈Card〉 state. The state machine is shown in Figure 2.6. In

28

the diagram τ -transitions denote transitions between states without any observable action
taking place. It can be seen that, each state is defined based on the paths that lead to
it. For example, 〈PIN〉 is reached by action P from states 〈Card〉, 〈N1〉, or 〈N2〉. This is as
shown in Figure 2.5(a).

<Start>

<Card>

<Cancel>

<PIN>

<N1>

<N2>

<Fail>

<Success>

<Done>

C

P

P
P

N N

X

X

X

X

I

A

N

τ
τ τ

τ

Figure 2.6: Inductive modeling of ATM interaction

In contrast to inductive modeling, coinductive modeling is based on a concept of observ-
able behavior. Observations are carried out by a set of observer functions which determine
what outputs are generated for each input in each observed state. A coinductive defini-
tion of a function f is generated by specifying the values of all observer functions for all
outcomes f(x) [JR97].

Coinductive modeling of the ATM is carried out by defining the following observer
functions:

c() corresponds to observing what happens when the ATM card is inserted;

p() corresponds to observing what happens if the PIN number is entered;

n() which corresponds to observing what happens if an invalid PIN is inserted;

a() observing what happens when the required amount is specified;

i() observing what happens if an invalid amount is specified and

x() observing what happens when cancel is pressed.

From each state, the behavior of each observer function is defined which takes the
machine to another state. The modeling process ends when there is no undefined state
from any observer function and no undefined observer function from any state.

The resulting model is an LTS where each state has a mapping to other reachable
states following each kind of input. The LTS is partially shown in Figure 2.7. The set of
observations from the Start and the Card states would be as follows:

29

Start = {
c(Start) = (PIN entry field, Card)
p(Start) = (error msg, Start)
n(Start) = (error msg, Start)
a(Start) = (error msg, Start)
i(Start) = (error msg, Start)
x(Start) = (φ, Start)
}
Card = {
c(Card) = (φ,Card)
p(Card) = (Amount menu, P IN)
n(Card) = (error msg, N1)
a(Card) = (error msg, Card)
i(Card) = (error msg, Card)
x(Card) = (ATM card, Start)
}

<Start>

<Card>

<PIN>

<N1>

c()

x()

p(), n(),
a(), i(),
x()

a(), i()

n()

p()

Figure 2.7: Coinductive modeling of ATM interaction

In the above, an observer function of the form x(Card) = (ATM card, Start), indicates
that in the state Card, pressing cancel would return back the ATM card, and the machine
would go to the Start state. Semantically, rather than specifying how a particular state
is reached, coinduction specifies for each discerned state, the output behavior and the
resultant state following each type of input. This is as shown in Figure 2.5(b).

Canonical coalgebras: A coalgebra is said to embody a paradigm of maximal
fixpoints as against an algebra which embodies a paradigm of minimal fixpoints [Jac96].
This is evident from the process of coinduction that describes abduction, in contrast with
induction that describes construction. A process of coinduction is as follows:

30

Inductive modeling Coinductive modeling

The advantages and limitations of an inductive mod-

eling are as follows:

The advantages and limitations of a coinductive mod-

eling are as follows:

Because of a recursive specification based on intended

functionality, the state space is compactly described.

Observational closure ensures that no observable be-

havior is left unspecified. As in the earlier example,

when the 〈Lang〉 state is introduced, the model may

be made observationally closed by ensuring that no

observer function is left undefined in any state. The

dependency of 〈Cancel〉 on 〈Lang〉, can be discovered

when accounting for x(Lang).

However, induction represents a closed world, by its

criteria of minimality. Any change in specifications

has to be handled by changing the axioms. Consider a

new state called 〈Lang〉 (language selection) that needs

to be introduced after the 〈Start〉 state. This would

require a modification of the specification of the 〈Card〉
and 〈Cancel〉 states. While the modification of the

〈Card〉 state is evident, the modification requirement

for the 〈Cancel〉 state is implicit. It is based on the

notion that the user may cancel after selecting the lan-

guage. Since each state is defined by the paths leading

to it, handling changes is difficult since there is no al-

gorithmic method to determine implicit dependencies

among states.

However, a limitation of this process is that it is itera-

tive in nature, and there would be an explosion in the

number of paths to be explored when the number of

observers and states are high. Without a notion of in-

tended functionality, having a user specify observable

behavior in an iterative fashion would be impractical.

Table 2.1: Inductive vs coinductive modeling

Definition 2.14: A process of coinduction describes generation of a set of axioms or states A
by observation over a carrier set A∗. A set of observer functions δ is used for observation. The
coinductive process is described by the following steps:

1. Iteration: Start with any state x. Add x to A and describe the behavior of an observer
function δi ∈ δ from x whose behavior is as yet undefined for x. Let x′ be the new state
obtained after the process of observation using δi. Add x′ to A.

2. Maximality: Continue the process of iteration until every δi ∈ δ is defined for every x ∈ A.

�

Definition 2.15: A coalgebra 〈S, αS〉 is said to be canonical or final if for any s1, s2 ∈ S,

αS(s1) = αS(s2)⇒ s1 = s2. �

Canonical coalgebras can model interactive processes in a natural way. An interactive
process begins from any interaction state, and each interaction involves computation that
takes the process to another state.

A final coalgebra is in contrast to an initial algebra. An initial algebra represents the
smallest set of axioms that can generate the carrier set. A final coalgebra represents the
largest set of axioms required to account for every string in the carrier set.

31

Bisimulation: Equivalence of coalgebras are established by a process of bisimulation.
This is defined as follows:

Definition 2.16: Two coalgebras 〈S, αS〉 and 〈T, αT 〉 are said to be bisimilar until R, if there exists

a coalgebra 〈R,αR〉, such that the following homomorphisms exist: R→ S, R→ T , αR → αS and

αR → αT . �

The similarity between the above definition and the definition of bisimulation in CCS is
apparent by comparing definitions of Rutten [Rut96] and Milner [Mil89]. Based on these
concepts Rutten proposes “universal coalgebra” as a generic formalism for dynamical
systems.

Algebras Coalgebras

construction paradigm observation paradigm
δ : A×A∗ → A∗ δ : A∗ → A×A∗

inductive process of construction coinductive process of observation
Induction: initiality, iteration, minimality Coinduction: iteration, maximality

minimal fixpoints (algorithms) maximal fixpoints (interaction)
congruence of algebras bisimulation of coalgebras

initial algebras final coalgebras

Table 2.2: Algebras vs coalgebras

For every concept in an algebra its dual is present in a coalgebra. This is shown in
Table 2.2.

However, despite the comprehensive nature of coalgebras, they are still insufficient to
model IS behavior. Dynamical systems not only have persistent state but are also channel
sensitive. Channel sensitivity is a necessary ingredient for many kinds of IS processes like
coordination and collaboration. This is explored in more detail in the next section.

2.5 Multi-stream Interaction

When interactions take place over multiple streams, its behavior is not reducible to a single-
stream interaction. In addition to history dependent behavior resulting from persistent
state, open systems also exhibit a property of channel sensitivity.

Figure 2.8 depicts a multi-stream interactive process. Here, interaction takes place on
more than one stream simultaneously. The figure shows two processes being executed by
the machine concurrently. They share the same state space of the machine, and need not
be isolated from one another. While the internal state of the machine changes according to
the sequence ABCDEFG, the stream on the left hand side (SOP0 – EOP0) perceives the

32

change of system state to be BDEFG and the right hand side (SOP1 – EOP1) perceives
the change to be ACG respectively.

SOP: Start of Problem solving: EOP: End of Problem solving

Computable function + persistence of state + channel sensitivity

A

B C

D
E

F

Multi-stream (concurrent) Interaction

SOP1

B

G

F

E

D

EOP1
G

C

A

GEOP0

SOP0

Figure 2.8: Multi-stream Interaction

Multi-stream interactive processes are very common in practice. Tasks like coordi-
nation, resource sharing, multi-user applications, process management and workflows,
all address processes that interact with multiple streams simultaneously. However,
multi-stream interaction has received far less attention than is necessary, by the IS com-
munity. To the best of our knowledge, multi-stream interaction has not been explicitly
addressed as an issue in its own right in IS modeling. Issues related to multi-stream
interactions have surfaced in domains like coordination models, process management and
resource sharing. They have been mainly addressed as contention resolution problems
or consistency preservation problems. Some examples are multiplexing protocols like
token ring in networking, locks in databases and semaphores in operating systems.
However, multi-stream interaction goes beyond just contention resolution and consistency
preservation. It may consist of other issues like liveness, completeness, dynamic integrity,
etc. A separate inquiry into the nature of multi-stream interaction is required to compre-
hensively identify these issues. A formal definition of multi-stream interaction is as follows:

Definition 2.17: A Multi-stream Interactive Process (MIP) is defined as a 5-tuple 〈S, I,O, E , δ〉,
where S is the state space of the system; I and O are input and output domains respectively;

E = {E1, E2, . . . En} is a set of environments that are simultaneously interacting with the MIP,

and δ is a computable partial function of the form S × E × I → S × E × O; that, given an input

from a particular environment and the present state of the process, maps to an output on possibly

33

another environment and possibly changes the system state. �

The distinguishing factor between multi-stream and single-stream interactions is chan-
nel sensitivity of inputs and outputs. It is not sufficient to read inputs and determine
outputs for each interaction; it is also necessary to know on which channel input is to be
read from and to which channel the output is written.

In order to represent multi-stream interaction, Wegner and Goldin [WG99a] introduce
an abstraction called Multi-stream Interaction Machine (MIM). MIM is an extension of
SIM in that it interacts on multiple streams simultaneously. In contrast to the reducibility
of Multi-tape TMs to single-tape TMs, MIMs cannot be reduced to SIMs. However, unlike
the PTM which models a SIM, there is no mathematical model proposed for a MIM.

Theoretically, a MIM is a foundational model of an information system. Every IS
represents an interaction machine that is interacting over multiple streams simultaneously.
A formalism that defines a MIM would also form the underpinnings of activities like
coordination and collaboration (by considering each collaborating actor as an interaction
stream). But the MIM abstraction still lacks a complete formalism that can define all
capable behaviors of a MIM.

Some of the pertinent questions that need to be answered for finding theoretical models
for a MIM include the following:

1. What characterizes a MIM computation?

2. How can MIMs be compared? (Reactive systems use a concept of observational
equivalence to compare interactive systems. However, since MIM behavior can be
affected by unknown adversaries on other interaction channels, observational equiv-
alence may not be reliable),

3. Are there functions which are not computable by an algorithm but are computable
by a MIM? (MIMs can model Turing Machines with Oracles which are shown to be
more expressive than Turing Machines)

4. How can the complexity of MIM behavior be caliberated?

5. What are the boundaries of MIM computation?

6. What kind of systems can be built with MIMs? Are they defined by any specific set
of characteristics?

Channel sensitivity is not new to the IS modeling community. Many interactive models
assign labels to their interaction channels to explicitly involve them as part of the model.
Some examples are CCS [Mil89] and Broy’s components [Bro97]. Labeling interaction

34

channels do not model true channel sensitivity because they change the input and output
domains. An input at time k and channel p can be represented as ipk. But this would
place channels as part of the input-output domain and not as part of the computation
itself. If the input and output domains are I and O, and the set of channels is denoted by
E , then interacting over labeled channels amounts to mapping between I × E and O × E ,
rather than I and O. How channel sensitivity affects computation itself is apparent when
MIM computation is represented as a domain. As seen in the previous chapter, channel
sensitivity introduces individualized views from each channel over an interactive process.
This is explored in the next chapter.

2.6 On the Irreducibility of Interaction to Algorithms

Wegner’s work on interaction machines attracted a lot of attention because of its claim
that interaction cannot be modeled by a Turing Machine. Since a TM is considered as
a foundational model of everything that a computer can compute, such a claim has been
sought to be refuted.

Prasse and Rittgen [PR98] argue that interaction machines are not more expressive
than algorithms for a simple reason that they cannot compute something that an algorithm
cannot. For example, interaction machines cannot solve the halting problem which is
known to be an uncomputable function.

Single-stream interaction models partial functions while a TM models functions
that are r.e. Prasse and Rittgen place models described by TMs and IMs as shown in
Figure 2.9. The domain characterized by IMs is shown to encompass areas not covered
by a TM; however, the authors suggest that this area might be “potentially empty.”

 finitely definable tasks

tasks definable by
interaction machines partial

recursive
functional tasks

finitely
definable
functional
 tasks

Figure 2.9: Domains modeled by TMs and IMs

35

An alternative mechanism to reduce IM computations to that of a TM is to note the
mappings computed by a SIM and a MIM. While a TM depicts a computable function
between domains I and O, a SIM depicts a computable function between S×I and S×O;
and a MIM depicts a computable function between S × E × I and S × E × O. However,
considering S × I or S ×E × I as input domains would mean that the state of the system
(and the environment identifier, in the case of a MIM) have to be explicitly passed as
input from the environment during each interaction.

While this would reduce IS behavior to algorithmic behavior; it does not reflect how
IS behavior proceeds in reality. It would still be interesting to model interactive behavior
as they occur in practice – where persistence of state and channel sensitivity are part of
the problem solving system model and not outside of it.

For example, while it is not possible for an interaction machine to compute a non-
computable function, it is possible for a MIM to provide greater expressiveness than a TM.
MIMs can model Turing Machines with Oracles; and if the solution to a non-computable
function is available from the Oracle, a MIM would have effectively computed the function.

Persistence of state and channel sensitivity are properties that are distinct from com-
putation. Hence trying to reduce IMs to TMs would mean trying to reduce persistence of
state and channel sensitivity to functions. Our contention is that TMs, SIMs and MIMs
can be considered as foundational models for algorithms, single-stream interactive systems
and information systems respectively. While a TM defines what a computer can compute
a MIM defines what can be performed by an information system that not only consists of
computation, but persistent state and channel sensitivity.

In the next chapter we show that interaction characterizes a richer domain as compared
to algorithms. We call the domain characterized by a dynamic process as the solution
space of the process. We also propose an algebra based on fixpoints for characterizing
MIM solution spaces. This forms the formal underpinning for the dialogs model that is
proposed for modeling IS dynamics.

2.7 A Taxonomy of Well-known Models of Computation

After having divided IS processes into three kinds namely, algorithmic, single-stream in-
teractive and multi-stream interactive, it is pertinent to visit some well known models of
computation and place them is the above taxonomy.

Subroutines and procedures: Subroutines and procedures are algorithmic in nature.
They are not history sensitive or channel sensitive.

Functions with static variables: Static variables in a programming language like C are
variables which are stored in the process memory and not on the execution stack.
This makes static variables retain their values even after the function finishes its

36

TMs SIMs MIMs

functions, subroutines,
procedures

functions with static vari-
ables

objects group of objects sharing
class variables

read-only databases read-write single user
databases

read-write multi-user
databases

read-only transactions read-write serializable
transactions

read-write non-serializable
transactions

tuple-space coordination applications
using tuple space

Trained neural network Neural network under
training

Rule based reasoning (Possibly non-monotonic)
reasoning with rule up-
dates

Table 2.3: A taxonomy of some well-known computational models

execution. A function that uses static variables hence models persistence of state.
Its behavior is equivalent to that of a SIM.

Objects: Objects in object-orientation are history sensitive in their behavior. They have
persistent state, but they are not channel sensitive. The methods of an object cannot
distinguish between two or more processes that calls them. They are hence modeled
by SIMs. However, a group of objects belonging to the same class which has one
or more class variables behave collectively as a MIM. This is because, the behavior
of an object is not only dependent on its interaction history but also on changes in
class variables happening due to interactions on other interaction streams.

DBMSs: A DBMS behaves like an algorithm if the database is read-only. If the database
is read-write, and the DBMS does not maintain user-profiles and/or distinguish
between calling processes in any way, its behavior would be modeled by a SIM. Most
contemporary databases are much more complicated than that and provide support
for activities like coordination and collaboration which requires channel sensitivity.
Hence they are modeled by a MIM.

Database transactions: A series of (read-write) database transactions that are serial-
izable in nature are modeled by a SIM. If the set of transactions are not serializable,
then they are modeled by a MIM.

37

Tuple space: The Linda [CG89] paradigm for coordination models coordination with the
concept of a “tuple space.” Processes can write tuples of data into the tuple space,
and any process can read and/or remove tuples from the tuple space by providing a
query in the form of a tuple template. Fundamentally, a tuple space is not channel
sensitive; however it models persistent state. Hence it can be represented by a SIM.
Some coordination models built on top of Linda tuple spaces incorporate means for
authorizing tuples to be read and written by specific processes. This makes a tuple
space channel sensitive modeled by a MIM.

Neural Networks Neural networks (Ex. [Lip87]) are computational models that mimic
the process of learning by the human brain. An artificial neural network (ANN)
can learn the correspondence between two domains after encountering sufficient ex-
emplars of correspondence, and a suitable strategy of rewards and punishments by
a teaching algorithm. The behavior of a neural network during the learning pro-
cess is history sensitive. More learning results in richer behavior. Such a model
requires persistent state and is equivalent to a SIM. Once a neural network has fin-
ished learning, and assuming that it does not learn anymore, its behavior becomes
algorithmic.

Rule based systems: Expert systems that reason based on a set of rules can model
different kinds of behavior. If the set of rules is static and does not change with
usage, the behavior of such a system is algorithmic. On the other hand, if the set of
rules evolves over time with interaction, the expert system models a SIM behavior.

Table 2.3 summarizes the above paradigms along three models of interaction.

38

Chapter 3

The Solution Space of an

Interactive System

The difference between art and science is that science is what we understand well enough to

explain to a computer. Art is everything else. –Donald Knuth

For modeling interactive behavior in a domain independent fashion, we introduce a
concept called the “solution space” of a semantic process. A solution space is intuitively
the abstract domain characterized by a dynamic process. We show that interactive solution
spaces are richer than algorithmic solution spaces. Solution spaces are defined using
domain theory.

We also show that interactive solution spaces require at least a three-valued system of
logic for their characterization. The concept of a solution space and the three valued system
of interactive dynamics is very important in designing interactive IS dynamics. They
provide a domain independent fashion to conceptually represent interactive IS behavior.
They also provide a mechanism for representing and verifying integrity constraints on IS
functionality independent from the IS implementation.

3.1 Background Concepts

The underlying concept in this work is to represent interactive behavior in a domain in-
dependent fashion. To show that interactive behavior is more expressive than algorithmic
behavior, we show that interactive behavior characterizes a richer domain than algorithmic
behavior. This is done by introducing a concept called the solution space of a dynamic
process. The concepts presented here are based on domain theory. The domains repre-
senting solution spaces are modeled as lattices which have to be traversed for performing
any semantic process. From this perspective, algorithmic domains are shown to have a

39

characteristic pointed structure. Interactive domains on the other hand, have no charac-
teristic structure. They can also contain circular relationship chains of partial orderings
without any least elements. From a set theoretic perspective, such domains cannot be
represented by conventional sets that adhere to the axiom of foundation. They require
stronger models presented by non-wellfounded sets or Hypersets [Acz88, Len98].

In addition, we show that interactive solution spaces require at least a three valued
system of logic for their characterization. Conventionally, system dynamics are charac-
terized by rules that describe their liveness. However, interactive dynamics can have a
large amount of possible behaviors which are not decided by the program logic, but by the
environment. This requires categorization of system dynamics into at least three kinds of
behaviors. We find that deontic logics [MW93] provide intuitive mechanisms for modeling
such a domain.

3.1.1 Domains

Fundamental concepts of lattices and domain theory are reviewed here.

Definition 3.1: A domain or a lattice is defined as 〈X,v〉, where X is a set of elements (or

“points”) and v is a partial order among elements of S. In a lattice, any finite subset S ⊆ X is

characterized by a least upper bound and a greatest lower bound. �

Definition 3.2: The least upper bound (lub) of any two elements a, b is an element c such that

a v c, b v c; and if there exists any other upper bound c′, then c v c′. �

Definition 3.3: The greatest lower bound (glb) of any two elements a, b is an element c such that

c v a, c v b; and if there exists any other lower bound c′, then c′ v c. �

A domain X is said to be complete if the lub and glb requirements hold for any infinite
subset of X. A domain is said to be pointed if it has an element ⊥ such that for any
element x of the lattice ⊥v x. The element ⊥ is said to be the “bottom” element of the
domain.

The behavior of algorithms can be described using domains. This is called the deno-
tational semantics of an algorithm [How93]. Recall that the behavior of an algorithm can
be represented as a computable function f : I → O, where I and O are input and output
domains. An algorithm may be made of many functions and objects. In pure λ-calculus
everything is represented as functions. A domain representation of a set of functions of
the form I → O is a set 〈D,v〉, such that for any two functions f and g, f v g iff for
all x ∈ I, f(x) v g(x). The meaning of the algorithm is said to be the solution of the
equation D = D → D, which states that the domain D is isomorphic to some function

40

space from D to itself.

3.1.2 Hypersets

A domain can be represented as a set of elements such that, every point p in the domain
is a set whose elements are all other points x of the domain such that x @ p.

Consider a set X of sets. Let the relation ⊂ be defined over X. For any x1, x2 ∈ X,
define x1 ⊂∗ x2 if there exists a chain x1 ⊂ x′ ⊂ x′′ ⊂ . . . x2. The set X is said to be
wellfounded if there is no such x ∈ X such that x ⊂∗ x.

A wellfounded set adheres to the Axiom of foundation [How93] of the Zermelo-Fränkel
set theory. The Axiom of foundation prevents circular structures in definitions of sets
to eliminate paradoxes in set definitions. The axiom of foundation was developed as a
response to the Russel’s paradox that tries to define a set X as X = {x | x 6∈ x}. If X
contains itself, then by definition of X it should not contain itself; while if X does not
contain itself, by definition it should contain itself.

A paradox essentially has a circular structure. By making it mandatory for every set
to be distinct from its elements, the axiom of foundation forbids circular definitions.

However, not every circular structure is a paradox. A paradox is a circular structure
that evaluates to a contradiction. Hence, if a set X were to be defined as the set X =
{x | x ∈ x}; X can be termed to be an element of itself and there is no paradox. Because
of the elimination of the contradiction it forms a circular structure but not a paradox.

A set representation of a consistent circular structure is said to be a non-wellfounded
set, or a Hyperset. They were first proposed by Aczel [Acz88]. Circular structures and
circular phenomena are very ubiquitous. Barwise and Moss [BM96] and Lenisa [Len98]
explore circular structures in computer science, philosophy, dynamical systems, natural
processes and other disciplines.

Circular structures in computer science usually occur in the form of infinite data types
like streams. A stream has the form s = (a, s) where s is a stream, and a is the “head” of
the stream. A stream is defined as a head element followed by a stream.

Non-wellfounded sets can be defined in a natural fashion using coinduction. A defini-
tion of a set by coinduction defines the behavior of a set of “observer functions” for all
sequences of observation [Jac96, JR97]. Consider the coinductive definition of a stream
on the basis of the behavior of two observer functions head() and tail(). The coinductive
definition of a stream s is given as:
s = {head(s) = a;
tail(s) = s},
where a ∈ A is an element from the set of possible elements of the stream.

Milner [Mil89], Lenisa [Len98] and Wegner [WG99] have independently proposed the
use of hypersets to describe interactive processes. Figure 3.1 shows an example of an

41

1/0
0/1

0/0
1/1

S0 S1

{
 {(1,0)(0,0)(0,1)(0,0)(1,0)(1,1)(0,1)...}
 {(0,0)(1,0)(0,0)(0,1)(1,1)(0,1)(1,1)...}
}

(a) (b)

Figure 3.1: Interactive streams as non-wellfounded sets

interactive process represented as a circular phenomenon. The diagram in Figure 3.1(a)
describes a reactive machine in a switching circuit that alternates between two states and
accepts a bit as input and provides another bit as output. In state S0, the machine negates
the input, and in state S1 the machine reflects the input. Figure 3.1(b) depicts the machine
as two interaction streams – one of which begins when the machine is in state S0 and the
other begins when the machine is in state S1. Since it is possible for an interaction stream
to begin from any state, both states can be considered as start states. Defining the system
states S0 and S1 we obtain a circular definition: S1 = (S0, a→ ¬a) and S0 = (S1, a→ a)
where a ∈ {0, 1}. The interaction state S0 is defined in terms of S1, and S1 is defined in
terms of S0.

3.1.3 Deontic logics

System dynamics of most real world systems have a number of modalities like preferences,
priorities, obligations, permissions, authorities, etc. In order to define and reason about
such dynamics richer models of logic are required. Deontic logic is a branch of modal logic
that is concerned with describing normative behavior.

Deontic logic was first proposed in 1926, by the Austrian philosopher Ernst Mally
who introduced a modality “ought to be” towards a proposition (cf. [MW93]). Hence the
term Op denoted p ought to hold. Unfortunately, with a single norm, Mally’s system was
reducible to propositional logic by the simple assertion that Op → p. Although, Mally’s
system is no longer used, various other flavors of deontic logic have been proposed and
applied in different domains.

Normative behavior concerns “the way things should be.” It describes modalities of
behavioral policies or administrative decisions that make up real world systems. Deon-
tic logic has been used in domains like ethics, law, fault tolerance, computer security,
etc. [MW93], and more recently, in specification of agent behavior [ES99, SBD+00].

A system based on deontic logic is made of modalities of the form obligations,

42

authority, permissions, entitlement, etc. Deontic axioms relate the different modalities
and define deduction rules. Some example deontic axioms are given below:
Op⇒ ¬P¬p (obligation to p means no permission to not p)
p→ q ⇒ Op→ ¬Fq (if p leads to q then if p is obligated q should not be forbidden)
O(p ∧ q)⇒ Op ∧Oq (obligation to p and q implies obligation to p and obligation to q)
¬(Op ∧O¬p) (one cannot be obligated to do conflicting action)

In this work we use deontic logic to describe the behavior of multi-stream interaction.
We show that multi-stream interaction requires (at least) a three valued system of logic
that describes its behavior. Deontic logic with three norms called obligation, permission
and prohibition is used for this purpose.

3.2 The Solution Space of a PSP

A dynamic process can be seen as characterizing an abstract space of concern. This
domain represents transitions from problems to solutions. Characterizing these domains
mathematically shows how certain classes of processes are richer than other classes of
processes.

In an intuitive sense, it is easy to show that interactive spaces are richer than algorith-
mic spaces. Consider a system consisting of a set of algorithms or functions. Functions
maintain a subroutine relationship with their environment. They execute synchronously
with respect to their environment. As a result, a system of functions can be organized
in a hierarchical fashion where higher granule functions call lower granule functions. The
hierarchy is well defined and different levels of hierarchy can be maintained using stacks.
Figure 3.2(a) schematically depicts an algorithmic solution space.

An interactive process on the other hand, maintains a coroutine relationship with its
environment. A system of coroutines calling one another can no longer be expressed as
a well defined hierarchy. Figure 3.2(b) shows a system of coroutines interacting on a
single stream with the environment; and Figure 3.2(c) shows a system of multi-stream
interactive processes. As is evident here, incorporation of persistent state and channel
sensitivity breaks down hierarchical structures. In fact, there is no characteristic structure
of multi-stream interactive spaces.

Perhaps, this might be cited as the reason for the emergence of paradigms like design
patterns and frameworks [CNM95, GHJV95, Pre95], that seek to identify and document
recurrent characteristic structures of IS behavior.

Formal definition of a solution space: As seen in the earlier chapter, a TM, PTM
and MIM can be considered as foundational models for functional programs, single-stream
interactive systems and information systems respectively. The characteristic feature that
distinguishes an algorithmic and interactive system is the nature of their semantic pro-

43

Higher Level Process

Lower level
processes

Higher Level Process

Lower level processes

EnvironmentEnvironment Environment

Environment

(a) (b) (c)

Example: grep -i interaction *.tex Example: DOS command.com Example: Unix operating system

Higher Level Process

Higher Level (?) Process

Figure 3.2: Algorithmic and Interactive Spaces

cesses. The semantic processes that make up an algorithmic system (for example, the
Unix grep command) are algorithmic (functional) in nature. Similarly the semantic pro-
cesses that make up a sequential interactive system and general information systems are
single-stream interactive and multi-stream interactive respectively.

A semantic process that a system executes is called as a Problem Solving Process
(PSP). A PSP either changes the state of a system from a given “problem” state to a
desired “solution” state, or provides an output “solution” to an input “problem.” A PSP
is formally represented as follows:

Definition 3.4: A PSP is a set of strings of the form ⊥(i, o)∗>. The term ⊥ denotes the start

of the semantic process, > denotes the end of the semantic process, i refers to an input element,

and o refers to the obtained output. i and o range over their respective domains I and O. An

algorithmic PSP (APSP), has only one (i, o) element, while an interactive PSP has more than one

(i, o) element. �

The solution space of a PSP is the abstract domain characterized by a PSP. The
domain characterized by a PSP is represented by a lattice of fixpoints and an ordering
relationship between fixpoints. A fixpoint of a PSP is defined as follows:

Definition 3.5: Consider any PSP of the form ⊥(i, o)∗>. For the domain characterized by this
PSP, the following rules hold:

• A fixpoint of the PSP is defined as ⊥(i, o)∗, where (i, o)∗ is 0 or more occurrences of (i, o)
after the start of the PSP ⊥.

• ⊥ @ s where s is any fixpoint of the PSP.

44

• For any fixpoint s of the PSP, s v s(i, o).

• Any fixpoint s v >.

�

A dynamic system is a collection of PSPs. If the system is made up of solely algorithmic
PSPs, then the system is said to be an algorithmic system. If the system supports single-
stream interactive PSPs but not multi-stream interactive PSPs, then the system is said
to be a single-stream interactive system. A system that supports multi-stream interactive
PSPs is said to correspond to information systems in general.

The solution space of a system is the domain that is obtained by the combination of
the solution spaces of all PSPs that it supports. This is obtained by taking the union
of all fixpoints from all the different PSPs of the system. Fixpoints which correspond to
the same semantic state are combined. Using such a mechanism the solution spaces of
algorithmic, single-stream and multi-stream interactive processes are characterized in the
following sections.

3.3 Solution Space of an Algorithm

As seen in Chapter 2 the generic model of an algorithm is characterized by a start state
s0 and a set of dynamics defined from that state. A TM that models an algorithm starts
from the same state s0 for all PSPs, and ends when a solution state is reached.

An algorithmic system is made up of PSPs of the form ⊥(i, o)>. Each such PSP is
made up of two fixpoints corresponding to ⊥ and ⊥(i, o) respectively. The solution space
of an algorithmic system is hence a pointed domain where every process starts at a fixpoint
corresponding to s0 and ends in one of the fixpoints corresponding to one of the halt states.

Definition 3.6: The solution space of an algorithm is defined by the set STM = {s0h | s0, h ∈
S;h ∈ H}. This denotes sequences of state transitions for all problems solving processes executed

by the TM for the algorithm. �

Figure 3.3 schematically depicts the solution space of an algorithm. All PSPs begin at
a fixpoint corresponding to ⊥ or the start state s0; and end at a fixpoint corresponding
to one of the halt states h. The characteristics of such a domain are as follows:

• The domain is pointed, and every string that makes up the solution space begins
from s0.

• The fixpoint corresponding to s0 is the least element of the domain. This fixpoint
can be termed as the bottom element ⊥ for the entire solution space.

45

s0

h1 h2 hn

a b
== a < b

Figure 3.3: Solution space of an algorithm

• The solution space is wellfounded. In a canonical representation of STM , the bottom
element ⊥ forms the minimal fixpoint. The solution space can be defined by a
process of induction from the minimal fixpoint ⊥.

The significance of a fixpoint based representation would be apparent when abstraction
of a dynamic process is considered. The behavior of an algorithm (function) can be
abstracted by a declaration showing the function name and the input and output parameter
types. This is sufficient to abstract the behavior of a function because any function call
begins computation from the same fixpoint. For example, consider an algorithmic system
– the Unix grep command. The grep command computes an output solution in the
form of a set of strings that match the input problem specification in the form of a regular
expression. The grep command incorporates different PSPs like: regular expression match
ignoring case, match strings with context, match line numbers, etc. The grep command
is abstracted by its synopsis: grep [-CVbchilnsvwx] [-f file] files.

Such an abstraction is sufficient to represent the behavior of the command grep since
it encapsulates every parameter that determines the behavior of the command whenever
invoked. As we shall see in the subsequent sections, such a declaration is not sufficient to
represent the behavior of interactive processes.

3.4 Solution Space of Sequential Interaction

Single-stream interaction is characterized by persistence of state across computations. A
PTM which represents single-stream interaction begins computation from a state deter-

46

mined by the contents of its persistent worktape, rather than from the same start state
for every computation.

For a series of PSPs executed on a sequential interactive machine, the system state
transitions would be of the form ⊥(s0s1 . . . sn)>,⊥(snsn+1 . . . sn+k)>, The persistent
system state may determine where a new PSP begins and hence there may be no common
starting point for all PSPs.

3.4.1 System state vs interaction state

Persistent state may be defined in two ways: system state and interaction state. It
is important to distinguish between the two. The interaction state is specific to a
PSP and is determined based on how many interactions have taken place since the
start of the PSP. The system state is the state of the system itself. This is de-
termined based on the values of state variables, and is persistent across interactions
and across PSPs. Interaction state and the system state are formally contrasted as follows:

Definition 3.7: The kth interaction state of a PSP ⊥(i1, o1) . . . (in, on)> is defined as the stream

⊥(i1, o1) . . . (ik, ok). It is the semantic state of the interactive process reached after the first k

interactions. An interactive state is represented by a fixpoint in the interactive solution space. �

Definition 3.8: The system state of a dynamic system is defined as a function over the values of

a set of variables called the state variables of the system. �

Recall that a single-stream interactive process can be represented as a set of strings
of the form s1..sn where each si represents a fixpoint in the interactive behavior. An
interaction state is the same as a fixpoint that is reached after a series of interactions;
or alternatively, that defines a set of possible behaviors from that point. The system
state in contrast, is a function of the values of data elements stored in the system’s state
variables. The number of system states is usually infinite, even for very small systems. On
the other hand, the number of interaction states is finite. Interactive processes have to be
finitely specifiable so as to be implementable. The set of interaction states hence divide
(not necessarily partition) the set of system states into equivalence classes that associate
each interaction state with all possible system states that the system can be in, under this
fixpoint.

It can be noted that for algorithmic systems which do not have persistent state across
computations, the system state and the computational state are the same.

47

3.4.2 Sketching the solution space of sequential interaction

Let SIM be the system whose behavior is single-stream interactive in nature. Let
PSP0 . . . PSPn be the set of all interactive PSPs that can be run on the system. Each
PSP can be defined as a set {s0..sm} of fixpoints that depict interaction states. Let S be
the set of all fixpoints from the set of all PSPs of SIM .

Each PSP has a number of interactions in mapping between ⊥ and >. At each in-
teraction, the computational behavior of the system is dependent not only on the input
provided, but also on the current fixpoint. The solution space is hence the set S and
an ordering relationship v among elements of S. Figure 3.4 schematically depicts such
a domain. The solution space is made up of fixpoints of all the PSPs adopted by the
system. Fixpoints from different PSPs may be identical and may be combined. Some
of the fixpoints in the domain depict the start of problem solving ⊥, of specific PSPs;
similarly few other fixpoints depict the end of problem solving > of specific PSPs. At any
given moment when the system is ready to interact, it is in any one of the fixpoints. On
interaction with the environment, the system computes its way to another fixpoint in the
domain. The ordering relationship @ is defined based on which fixpoints are reachable
from which other fixpoints. However, there is no specific characteristic of the ordering
relationship that is true for all single-stream interactive systems in general. The solution
space of sequential interaction can have arbitrary ordering relationships among fixpoints.
In fact, ordering relationship chains could also be circular such that some fixpoint s @∗ s.

In a formal sense, the solution space of sequential interaction is defined as follows:

Definition 3.9: The solution space of sequential interaction is defined by a set of strings of the

form: SSIM = {q | q ∈ S∗} where S is the set of fixpoints of the system. �

The notion of fixpoints is important for defining behavioral abstraction. As noted
in the previous section, the behavior of an algorithmic process can be abstracted by a
declaration of the function name and the input-output types. However, such an abstraction
is insufficient for the behavior of an interactive process. The behavior of a (single-stream)
interactive process is dependent not only on the method declaration, but also on the
current fixpoint.

A single-stream interactive process can be abstracted by a pair denoting a fixpoint
and the method declaration. This aspect is important in designing interactive behavior of
an IS. In the dialog model proposed in Chapter 5, fixpoints are modeled as fundamental
building blocks of an interactive process.

Lemma 3.1: The solution space of single stream interaction is richer than the solution space of
an algorithm.

Proof: SSIM contains strings of the form q ∈ S∗; while STM contains strings of the form

48

a b
== a < b

Figure 3.4: Solution space of single-stream interaction

s0hi, s0, hi ∈ S. SSIM hence may contain strings that are not possible in STM . �

The characteristics of a SIM solution space are as follows:

• There is no unique starting point that determines every string in the solution space.

• As a result, there might be no least elements in the domains.

• The partial ordering @ across fixpoints may be circular such that for any fixpoint s,
s @ s, making the domain non-wellfounded.

The non-wellfounded nature of interactive domains have been acknowledged by many
authors, prominent among them are Milner [Mil89], Wegner [WG99] and Lenisa [Len98].
The above authors have concentrated on proof principles and characterization mechanisms
for interactive domains based on their non-wellfounded nature. In this work, we address
the question of how such a characteristic affects behavioral abstraction and the design
process of an interactive information system.

A hyperset representation of a solution space is sufficient to describe only single stream
interactions where it is not important which channels inputs are read from and to which
channels outputs are given. In the following section we address how channel sensitivity
affects the solution space of interactive processes.

49

3.5 Solution Space of Multi-stream Interaction

The characteristic feature of multi-stream interaction is channel sensitivity. For defining
the solution space of multi-stream interaction, it is necessary to introduce the effect of
channel sensitivity into a non-well-founded set representation.

3.5.1 Sketching the solution space of multi-stream interaction

One way to represent channel sensitivity is to use a channel identifier for each input and
output element of a stream. Thus ip would denote input from the pth channel and oq

would denote output to the qth channel. However such a representation has changed the
input and output domains to I ×E and O×E respectively, and has taken channels out of
the model.

When channel sensitivity is introduced as part of the model, the input and output
domains of the model remains unchanged. For any user interacting with a MIM, the
behavior of the MIM as seen by the interaction channel of the user, is dependent not
only on the interaction history, but also on interactions taking place on other interaction
streams. For the user, the behavior seems to be affected not only by hidden variables, but
also by hidden adversaries [WG99a].

In order to explicitly introduce the effect of channel sensitivity onto an interactive
solution space, the notion of hidden adversaries is specified in the form of the following
axioms:

1. If a MIM has n interaction channels and behavior S, then the behavior on each
interaction channel at any point in time would be Si ⊆ S, i = 1..n.

2. At any point in time on any interaction channel i, the behavior Si on the channel is
influenced by behaviors Sj j = 1..n, j 6= i taking place on other channels.

S1

S0

S1

S0

Interface 1 Interface 0

Figure 3.5: Channel sensitive behavior of a MIM

Figure 3.5 shows an example. Consider a MIM from a switching circuit whose channel
insensitive behavior is described by the fixpoints S = {S0, S1}. The behavior from S0 is

50

defined as S0
a/a−→ S1. In other words, when the machine is at S0 it takes an input and

reflects the input as output, and moves to fixpoint S1. The behavior from the fixpoint S1

is defined as S1
a/¬a−→ S0. At S1, the machine accepts an input and outputs the negation of

the input and moves to fixpoint S0.
Let the machine have two interaction streams, I0, I1 which share S among them. At

any point in time, let a behavior be available to at most one stream. Thus, if S0 is
available to I0, it is not available to I1 and vice versa. The same is true for S1. Such a
constraint introduces channel sensitive behavior. The fixpoint (and hence the behavior of
the machine) available on any interaction stream is dependent not only on the interaction
history on this stream, but also on interactions taking place on the other stream.

The figure represents channel sensitivity by replicating S on both interaction streams
and associating them with a constraint relationship. The constraint relationship ensures
that at any given point in time, only one of the fixpoints is accessible from any interaction
stream. It also ensures that when behaviors change fixpoints on one stream, they also
change correspondingly on the other stream. Such a constraint is said to have modeled
the dynamic integrity of the MIM’s behavior.

To generalize on the above example, the solution space of a multi-stream interaction
(channel sensitive behavior) can be represented as an algebra over the solution space of a
single stream interaction (channel insensitive behavior). It can be modeled as a schema of
entities and relationships, where entities depict behavioral spaces on specific interaction
channels; and relationships are constraints showing how streams affect one another. These
constraints are also integrity constraints on MIM dynamics that specify correctness criteria
for the MIM’s channel sensitive behavior. Figure 3.6 depicts this domain schematically.

The pertinent question now would be: what is the nature of these constraints between
interaction channels? This question is addressed in more detail in the next subsection.
Before that, the solution space of a multi-stream interaction is formally defined as follows:

Definition 3.10: The solution space of a multi-stream interaction is defined as SMIM = 〈S,@, ψ〉
where S is the set of fixpoints of interactive behavior on any interaction stream, @ is an ordering

relationship between fixpoints; and ψ : P(S) → P(S) is a constraint relationship that determines

which fixpoints are available at which channel. �

Lemma 3.2: The solution space of multi-stream interaction is richer than the solution space of
single stream interaction.

Proof: SSIM can be obtained from SMIM if ψ is empty. �

The fixpoint representation of a MIM solution space again elucidates on the nature of
behavioral abstraction of a multi-stream interactive process. If the behavior of a MIM is
to be represented as an abstract data type on any of its channels, it is required to have the

51

Channel 0 Channel 1

Channel 2

Figure 3.6: Solution space of multi-stream interaction

Algorithm Single-stream interaction Multi-stream interaction

function declaration function declaration + fixpoint function declaration + fixpoint +

constraints

Example: int strlen(char *) @prepaid.order(Order) [O]@prepaid.order(Order)

The strlen function The order function at fixpoint

prepaid

The order function at fixpoint

prepaid when there is an obliga-

tion constraint.

Table 3.1: Behavioral abstractions of algorithms, single-stream and multi-stream interac-
tion

following necessary information: method signature, current fixpoint, constraints acting on
the fixpoint. It should be possible for program logic to invoke a multi-stream interactive
process “if it is at fixpoint x and the constraint y holds.” Table 3.1 compares behavioral
abstractions of algorithms, single-stream and multi-stream interactions.

Another pertinent question at this time is to ask whether behavioral abstractions of
interactive processes be reduced to that of an algorithm. After all, in the example given
in Table 3.1 the terms prepaid.order() and [O].prepaid.order() may be considered
as function declarations themselves. Such a question is analogous to the question of the
reducibility of an interactive process to an algorithmic process. It also asks whether
interactive solution spaces are reducible to algorithmic solution spaces.

In essence, it is true that interactive behaviors can be reduced to algorithmic behaviors
(by changing the input and output domains). In an analogous fashion it can be argued
that interactive solution spaces can be reduced to algorithmic solution spaces. However,
the resultant algorithm that models an interactive behavior would be much more complex.

52

In order to model interactive behavior algorithmically, it is necessary to compute the state
of the world and the interaction history. Wegner [Weg97] provides an example called
“driving home from work” as a task that can be tractable interactively, but very complex
algorithmically.

Referring back to the problem of fixpoints, it is insufficient to represent
prepaid.order() and [O].prepaid.order() as separate functions because, an interac-
tive program should be able to reason on an interactive functionality based on its fixpoint
and constraints.

Consider a functor called fixpoint(f) that returns the current fixpoint of an interac-
tive process f(). Thus fixpoint(@prepaid.order) = prepaid. An interactive software
should be able to adopt decision logic of the form if (fixpoint(order) == prepaid).
The same could be extended analogously to the constraint acting on the fixpoint. Such
a decision logic would not be possible if fixpoints and constraints were expanded to form
separate functions.

3.5.2 Three-valued logic for interaction spaces

In order to determine the nature of constraints that make up ψ we need to consider
different ways in which constraints on dynamic processes are specified.

One of the most common kinds of constraints on dynamics, is an exclusion constraint.
This is implemented in various forms like semaphores and monitors in process scheduling,
locks in databases, etc. An exclusion constraint forbids a process from performing a
specified activity. The negation of an exclusion is permission, so that if a process has no
exclusion constraint acting on it regarding any activity s, it is then said to be permitted
to perform s.

On the other hand are process specifications, that describe activities that have to be
performed by processes. A process that adheres to these specifications is expected to
necessarily perform the specified activities. Such a specification of a process can also be
considered as a “constraint” that obligates the process to perform certain activities, in
order to maintain specific (liveness) properties. In conventional process specification, if a
task s is not part of the specification, the process is said to be forbidden from executing s.
However, if s is part of the specification (and no optional condition is explicitly specified
regarding the execution of s), the process is said to be obligated to perform s.

As is evident here, both kinds of specification are constraints on an interaction space.
We call the former as negative constraints and the latter as affirmative constraints. Fig-
ure 3.7 schematically depicts interaction spaces in the face of negative and affirmative
constraints.

It is quite apparent that for a solution space of a system, either negative or affirmative
constraints by themselves is inadequate. In any interactive process, there is not only a

53

Specified
forbidden behavior

Unspecified permitted behavior

Specified
obligated behavior

Unspecified forbidden behavior

(a) (b)

Figure 3.7: Negative and affirmative constraints

requirement for liveness, there are also many different means for achieving this liveness. For
example, an environment that is interacting with any object may call any of the object’s
methods as part of an interaction. This specifies that any interaction may be represented
by many possible behaviors. However, if the interaction by the environment is part of a
PSP, there are usually certain sequences of methods that have to be obligatorily invoked to
complete the PSP. Similarly, integrity issues may forbid the invocation of certain methods
at certain interaction states.

The above elucidates the need for a three-valued logic to describe interactive spaces.
There are at least three dimensions to an interactive behavior: its liveness, the set of
possible behaviors and the set of forbidden or disabled behaviors. Usually, there are many
more dimensions in any real world information system. Some example dimensions are
behavioral priorities, rights, entitlements, etc. However, in this work we concentrate on a
three-valued logic that forms the basic framework of an interaction space.

The essential point here is that, MIM spaces cannot be adequately characterized using
two-valued logic, because of the large number of possible behaviors as against the required
liveness behaviors. The space of possible behaviors is also responsible for the richness
of open (interactive) system dynamics as against closed system dynamics. The next sec-
tion formalizes this notion of a three-valued logic and develops an algebra for describing
interaction spaces based on fixpoints.

3.6 A Fix-point Algebra for MIM Spaces

In this section we formalize on the ideas presented in this chapter. An algebra of fixpoints
is developed to characterize the solution space of a MIM. The solution space of a MIM is
considered to consist of a number of fixpoints. A fixpoint represents a point of interaction

54

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Forbidden behavior

Permitted
behavior

Obligated
behavior

Figure 3.8: Three-valued logic for MIM spaces

and encapsulates computational behavior to possibly another fixpoint in the solution
space. Each fixpoint can take on a truth-value in a three valued system of logic. The
algebra presented here adopts such a three-valued logic showing liveness properties,
possible behaviors and forbidden behaviors.

Deontic Axioms: Any formula in the MIM solution space can evaluate to a truth
value corresponding to one of the following: O (obligatorily true), P (permissively true),
or F (prohibitively true).

The relationship between O, P and F is schematically depicted in Figure 3.8.
Obligation and permission are both evaluated to “true” while a contradiction evaluates to
prohibition. The space of permitted behavior subsumes the space of obligated behavior
and is mutually exclusive from forbidden behavior. In a formal sense, the norms O, P
and F are related to one another by the following axioms:

1. Oa→ Pa (what is obligated is also permitted)
2. ¬Oa→ (¬Pa→ Fa) (what is not obligated is forbidden if it is not permitted)
3. ¬Oa→ (¬Fa→ Pa) (what is not obligated is permitted if it is not forbidden)
4. Pa→ ¬Fa (what is permitted is not forbidden)
5. Fa→ ¬Pa (what is forbidden is not permitted)

55

6. Oa ∧ Pa→ Oa (what is obligated and permitted if obligated)
7. Oa ∧ Fa→ Fa (what is obligated and forbidden is forbidden)
8. Pa ∧ Fa→ Fa (what is permitted and forbidden is forbidden)

Term elimination rules:
9. Oa ∧ Fb→ Oa

10. Pa ∧ Fb→ Pa

11. Oa ∨ Fb→ Oa

12. Pa ∨ Fb→ Pa

13. Oa ∨ Pa→ Oa (what is obligated or permitted is obligated)
14. Oa ∨ Fa→ Oa (what is obligated or forbidden is obligated)
15. Pa ∨ Fa→ Pa (what is permitted or forbidden is permitted)

16. Oa ∨ ¬Oa→ Oa

17. Pa ∨ ¬Pa→ Pa

18. Fa ∨ ¬Fa→ Pa

19. F (¬a)→ Oa (it is forbidden for a to not hold – a is obligated to hold)
20. P (¬a)→ Pa (it is permitted for a to not hold – it is permitted for a to hold)
21. O(¬a)→ Fa (it is obligated for a to not hold – it is forbidden for a to hold)

22. F (a ∧ b)→ Fa ∨ Fb
23. F (a ∨ b)→ Fa ∧ Fb
24. P (a ∧ b)→ Pa ∧ Pb
25. P (a ∨ b)→ Pa ∨ Pb
26. O(a ∧ b)→ Oa ∧Ob
27. O(a ∨ b)→ Oa ∨Ob

Some derivable theorems:
F (a→ b)⇒ Oa ∧ Fb (by expanding a→ b to ¬a ∨ b)
P (a→ b)⇒ Pa ∨ Pb
O(a→ b)⇒ Fa ∨Ob
Oa ∧ ¬Oa⇒ Oa

Pa ∧ ¬Pa⇒ Fa

Fa ∧ ¬Fa⇒ Fa

Oa ∧ ¬Pa⇒ Fa

Pa ∧ ¬Oa⇒ Pa

56

In the system specified above, contradiction equates to a prohibition. This is not an
exact interpretation in a semantic sense. A contradiction is something that is inconsistent
with the system of axioms while a prohibition is something that is explicitly forbidden by
the system. However, we equate contradiction to prohibition in order to retain simplicity.
To be precise however, a fourth norm called “unknown” (represented by U) may be
required. The norm U is defined as: ¬O ∧ ¬P ∧ ¬F → U . A model is said to be closed
if U is empty, or open ∃s ∈ S,Us. In this work we consider only closed worlds where
contradictions are equated with prohibitions.

Signature: A MIM specification is a signature σ over a finite set of constants called
“fixpoints” and an ordering relationship ≤ across fixpoints.

σ = (S,≤)

In the above, S denotes a set of constants of the solution space called fixpoints.
They represent points of interaction and encapsulate computational behavior from each
interaction point. ≤ is an “ordering relationship” over the set S. The relationship
≤ is defined as a set of pairs of the form (s1, s2) s1, s2 ∈ S. The relationship is also
represented as s1 < s2. If any fixpoint s ∈ S is said to “hold” then it is an assertion
that the MIM “behaves according to the behavior encapsulated by s on interaction with
some environment.” The signature of a MIM is also called its vocabulary that defines its
behavior.

Model: A model Mσ of a MIM is a structure based on a signature σ, a universe of free
variables X, a set of formulas R, and a traversal function call() that represents interaction
with the MIM. call() is also said to “traverse S.”

Mσ = (X,R, call, σ)

Atomic terms: An atomic term is any s ∈ S ∪X. The truth value of an atomic term
s may have three values and are respectively represented as: Os, Ps and Fs.

Term: A term is any atomic term or an atomic term with the application of the
traversal function call(). Let AtomsM be the set of all atomic terms over M . The behavior
of call() is defined as follows.

• For any s ∈ AtomsM and either Os or Ps holds, then call(s) = p1 ∨ · · · ∨ pn such
that p1 . . . pn ∈ S, and s < p1, . . . , s < pn.

• For any s ∈ AtomsM and Fs holds, then call(s) = φ the empty set.

The traversal function call() is defined over a fixpoint. For any fixpoint s, call(s)
returns the set of all fixpoints reachable from s by the ordering relationship <. If multiple
fixpoints are reachable from s, which fixpoint the system actually moves to would be

57

decided by the interaction and decision logic. We are not interested in the actual exchange
of inputs and outputs that constitute an interaction; but only on transitions between
fixpoints. So, the return value of call() is modeled as a disjunction of all possible fixpoints
that are reachable.

call() is said to traverse the solution space moving from one fixpoint to another. Traver-
sal through a fixpoint is possible only if the fixpoint is obligated or permitted. Traversal
through a forbidden fixpoint is not possible.

For any model Mσ, the set O(Mσ) ⊆ S ∪X denotes the set of all atomic terms that
are obligated. The sets P (Mσ) and F (Mσ) denote the set of all atomic terms that are
permitted and forbidden respectively.

Literal (Atomic formula): Let TermsM denote the set of terms on a model M . A
literal is either a term or a relationship r ∈ R of the form 〈p1, p2, . . . pn〉, where p1 . . . pn ∈
TermsM . Let the set of literals be denoted by LitM .

A relationship r = 〈p1, p2, . . . , pn〉 with arity n represents an condition of the form:
p1, p2, . . . , pn−1 → pn.

Formula: A formula in a model Mσ is defined as follows: (a). Any literal a ∈ LitM is
a formula. (b). if a and b are formulas, then so are a∧ b, a∨ b, ¬a, a→ b, ∀a, ∃a, call(a).
The behavior of call() on formulas is defined as follows: call(a ∧ b) = call(a) ∧ call(b),
call(a ∨ b) = call(a) ∨ call(b), call(a → b) = call(a) → call(b), call(∀a) = ∀a.call(a),
call(∃a) = ∃a.call(a)

Channel: A channel of the interaction machine is any set C ⊆ S ∪ X. For any
channel C, the following subsets are defined: OC = {s | s ∈ C,Os}; PC = {s | s ∈ C,Ps};
and FC = {s | s ∈ C,Fs}.

Theorem Proving: A given model Mσ is said to model a given formula ϕ given a
formula η, if ϕ can be derived from η. This is represented as Mσ(η) |= ϕ.

Channel sensitivity of a formula and a process of derivation is a projection of the
derivation process onto a channel. Hence for any s ∈ S ∪X, O(C)s holds if s ∈ C and Os
holds. The norms for P (C)s and F (C)s are defined analogously.

At any point in a process of derivation, a model Mσ is said to be deadlocked if O(Mσ) =
P (Mσ) = {}. A model Mσ is said to be idle if O(Mσ) = {}.

At any point in a process of derivation, a channel C is said to be disabled (not
necessarily deadlocked) if O(C) = P (C) = {}. A channel C is said to be idle if O(C) = {}.

Validation: For validation of system dynamics the following modal operators are
introduced on a formula: “next change” denoted by �, “previous change” denoted by ♦,

58

and “precedes” denoted by 4. An assertion like �Op means that the next change that
applies to p is an obligation to p. Similarly, an assertion like ♦Pp means that the previous
change that applied to p was a permission to p; and 4(Pp,Op) means that a permission
to p precedes an obligation to p.

Based on these modal operators, the following properties of a MIM behavior can be
validated:
Liveness: Op→ �call(Op) (whatever is obligated is done)
Consistency: call(p)→ ♦Pp (whatever is done is permitted)
Safety:
Fp→ ¬�call(p) (whatever is forbidden is not done)
4(Pp,Op) (a permission to p precedes an obligation to p)
summarily permitted)
Op→4(¬Op, Fp) (whatever is obligated is not summarily forbidden)

The salient features of the fixpoint algebra are explained below in an intuitive fashion.
The solution space of the interacting machine is made up of a set of “fixpoints”. Each
fixpoint represents a point of interaction and encapsulated computational behavior from
that point. The interactive behavior of the machine is defined in terms of first order logic
using free variables above fixpoints.

The domain representing channel insensitive behavior of the MIM is modeled by an or-
dering relationship ≤ on the set of fixpoints. The relationship < between fixpoints denotes
which interaction states are reachable from which other. The domain of fixpoints can be
traversed using the call() function on fixpoints. A call() corresponds to an interaction
with an environment that calls behavior from a particular fixpoint. call() is also defined
on free variables, and which behavior is invoked as a result of call() is determined by
which fixpoint is bound to the free variable. Process semantics and integrity constraints
are encoded into the set R that shows relationships across fixpoints.

Any fixpoint or variable evaluates to a truth value in a three-valued logic. A fixpoint
can be obligated, permitted or forbidden. Obligation and permission evaluates to true
and prohibition evaluates to false. An interaction with a fixpoint from the call() primitive
functions only if the fixpoint (or the variable representing the fixpoint) is obligated or
permitted. Traversal through the solution space (which is the same as interacting with
the MIM) fails at a fixpoint if it is forbidden.

Given a particular state of the system, any other assertion can be proved or refuted
by traversal and deduction. If an assertion evaluates to a contradiction it is said to be
forbidden. If it evaluates to true, it can either be obligated or permitted. Validation of
system dynamics can be carried out for certain assertions in a straightforward manner.
These are enumerated above and have been categorized into validation of system liveness,
consistency and safety.

59

3.7 Comparison with Process Calculus

Process calculus, also called the calculus of communicating systems was proposed by Mil-
ner [Mil89] for modeling communication behavior. Here, complete system dynamics are
represented in terms of interaction. This calculus has also been extended in various forms,
like the π-calculus for mobile systems.

It is hence a necessary question to address the need for a different paradigm like the
fixpoint algebra for modeling interactive systems. The concept of fixpoints is more abstract
than communication in CCS. In fact, the fixpoint algebra is not concerned with actual
data that is exchanged during an interaction. However, a concept of fixpoints addresses
the semantic nature of interaction spaces that aids in the design process of an open system.
Fixpoint algebra and process calculus are contrasted in a more detailed fashion below.

Simple interaction: In process calculus, interaction is modeled as handshake proto-
cols where state transition occurs on interaction with an environment. State transitions
may also occur due to internal interactions within the machine. For example:

C =def in(x).C ′(x)
C ′(x) =def out(x).C

Such a specification denotes a simple interacting machine which accepts an input at
state C and goes to C ′; and gives an output at state C ′ and reaches C.

In the fixpoint algebra, such a machine is represented as a set of fixpoints {C,C ′} where
call(C) = C ′ and call(C ′) = C. The call() function traverses the solution space from
each fixpoint. It may correspond to an interaction with an outside environment, internal
interaction, or maybe simply a synchronization mechanism with other process segments
with no exchange of data at all. The fixpoint algebra notation hence models a class of
interacting systems with two alternating fixpoints. In an implementation of this model,
input may be read from C ′ and output may be provided at C. Or multiple inputs (x, y)
may be read at C and maybe a single output y given out at C ′. Specific implementational
models may be inherited from the same abstract model {C,C ′}, call(C) = C ′; call(C ′) =
C specified above. Inheritance of interactive processes in introduced in a detailed fashion
in Chapter 5.

Composition: In process calculus, interacting agents are composed to form compound
agents with the operator |. Thus P |Q represents a compound agent obtained by the
combination of agents P and Q. Combination semantics are modeled by assigning the
output of one agent to the input of another.

In fixpoint algebra, composition is obtained by set union of fixpoints and definition of
the ordering relationship <. Thus if P = 〈{P1, P2}, <P 〉 and Q = 〈{Q1, Q2}, <Q〉, then
the combined system P ∪ Q = 〈{P1, P2, Q1, Q2}, <PQ〉. The redefinition of the ordering
operator < defines the combination semantics. In the definition of an interaction machine
that also contains a relationship set R, even this set is redefined for the combined system.

60

Expressiveness: The expressiveness of an interacting agent is determined from the
perspective of a user interacting with the agent. Expressiveness is based upon assertions
on observable behavior. Equality of interacting agents are established by the bisimilar until
assertion.

In fixpoint algebra, expressiveness of an interacting machine is established from a
designer’s perspective. It is based upon assertions on what should happen, what may
happen and what may not happen when the interacting machine is in operation. Equality
of interacting machines is established by a congruence of their solution spaces in terms of
fixpoints, ordering relationship and integrity constraints.

Modeling Paradigm: Process calculus takes an operational approach towards model-
ing interaction. Interactive activity is defined based on handshake protocols and reasoning
is carried out on what is observable by interaction. It is best suitable when protocols are
well known and complex.

Fixpoint algebra on the other hand, takes a semantic approach towards modeling. It
is directed towards IS design which is made up of many semantic processes or PSPs. The
goal here is to design IS interaction based on its functionality requirements. Reasoning
about a model is carried out by assertions that verify that functionality constraints are
not violated. For example, whatever is obligated is done, whatever is forbidden is not
done, whatever is forbidden is not summarily obligated, etc.

Part II of the thesis looks at interaction modeling from a more concrete perspective.
A paradigm called “dualism” is proposed to model information systems. This is based
on the tenet that interactive behavior which models IS functionality enjoys a degree of
autonomy over behavior that is oriented towards maintaining structural integrity of the IS.
The fixpoint algebra is used to propose a model called “dialogs” and “interaction schema”
to characterize interactive IS behavior.

61

Part II

Modeling Interactive IS Dynamics

Putting to use the insight that interaction is richer than algorithms

Chapter 4

The Dual Nature of an IS

Freedom from the desire for an answer is essential to the understanding of a problem. –

Jiddu Krishnamurti

Part II of the thesis is directed towards modeling interactive behavior in information
systems. Interaction is addressed in a more concrete fashion and issues like specification,
design complexity, maintainability and verification are addressed.

The interactive dynamics that an IS carries out with its environments are specified
based on functionality requirements. Characterization of interactive behavior implies defi-
nition and maintenance of integrity of IS functionality. In this work, we address interactive
IS dynamics by characterizing an “interaction space” of the IS, in the form of an “inter-
action schema.” The interaction space is the interactive solution space of IS dynamics.

An IS is said to have a dualism of properties that concerns structural integrity and
dynamic integrity. These are called the object space and the interaction space respectively.
Each space is semantically distinct from the other, and we argue that separating concerns
of the interaction space from that of the object space is important to avoid conflicting
problems that occur in IS design.

4.1 Contemporary Approaches to Interaction Modeling

Contemporary models for interactive IS dynamics can be divided into three categories.
They are respectively called: behavioral models, semantic models and hybrid models.

Behavioral models show how a process performs its task. They depict conditionals,
parallelism, synchronization and other related properties. Their generic mathematical
structure is a directed graph, where graph nodes depict tasks or activities and graph
edges depict control flow or dependencies. On the other hand, a semantic model depicts
the “what” of a process. They show semantic states of the process and how states are

63

Behavioral models Semantic models Hybrid models

Models the “how” of a pro-
cess

Models the “what” of a pro-
cess

Combines “how” and
“what”

Directed graph Directed graph Directed bipartite graph
nodes = tasks; nodes = state; nodes = tasks/state;
edges = dependencies or
flow

edges = transitions edges = flow/transitions

Examples: Examples: Examples:
Task-dependency graph,
workflow, flowcharts, ob-
ject interaction diagrams,
etc.

LTS, automata, Transduc-
ers, etc.

Petri nets, Predicate tran-
sition nets, etc.

Table 4.1: Contemporary approaches to interaction modeling

reachable from one another. Their generic model is also a directed graph, but here graph
nodes represent semantic states and edges represent state transitions.

A third category of models like Petri Nets are hybrid in the sense that they combine
both states and activities. Their generic model is a directed bipartite graph consisting of
two kinds of nodes representing tasks and states respectively.

In conceptual design of IS dynamics, it is sometimes desirable to separate control flow
semantics from functionality semantics [LLMT00]. This is because, different implemen-
tational situations require different control flow structures to achieve the same semantic
functionality. Functionality specifications encode policy and other behavioral constraints
on the dynamics. These constraints should be preserved in analogous forms for every
behavioral model of a semantic functionality. Customization of a semantic process to dif-
ferent behavioral structures is ubiquitous in large scale information systems like supply
chain management and organizational workflows.

Most contemporary IS design paradigms have separate models that show control flow
and functionality semantics. The different dynamic models provide different views onto
the space of IS dynamics. Some examples are considered below:

In the Object Modeling Technique (OMT) [RBP+90] IS dynamics are divided between
two models: the functional model and the dynamic model. The functional model specifies
“what happens.” It describes flow of data and control and constraints acting on them.
The dynamic model specifies “when something happens.” It identifies different events that
cause control flows in the system and relationships between events.

In UML [UML], there are many different facets for representing interactive dynamics.
An interaction is defined in UML as the “dynamic behavior of the message sequences
exchanged among objects to accomplish a specific purpose.” From this definition, inter-

64

action is represented in two forms – as a collaboration diagram and a sequence diagram.
A collaboration diagram shows the static collaboration structure among domain objects
for a particular interactive process. A sequence diagram depicts the dynamic unfolding of
the interaction sequence in executing a process. In addition, behavior is also represented
in terms of state charts and activity diagrams which denote semantic states of the actual
process itself. An activity diagram represents activities as action states, the completion
of which would involve a transition.

Similarly, many other approaches to IS design have multiple models that depict differ-
ent views on IS dynamics. However, such approaches have a few disadvantages:

• Without a common framework that defines the boundaries of IS dynamics it is hard
to reconcile between the different models;

• Dynamic models are tightly bound to domain objects. But in reality, there exists
a degree of independence between IS processes and the roles and activities carried
out by domain objects. The same process may need to have different specialized
implementations. Process semantics in such cases have a lot of autonomy with
respect to domain objects or their roles.

• With most contemporary approaches it is difficult to encode policy constraints that
determine interactive dynamics, and flexibly manipulate them;

• It is difficult to identify relationships across processes and constraints that may be
implicit in the face of multiple processes.

We propose a different approach towards IS design based on a conception of IS dualism.
In this model, an IS is considered to be a collection of semantic processes or PSPs. The
IS may have different structural designs and implementations which ultimately have to
adhere to the functionality specifications of the PSPs. Functionality issues have a degree
of independence with respect to structural issues.

The abstract space of IS functionality is called the interaction space of the IS. Semantic
processes are usually interactive in nature. This can be either single-stream or multi-
stream interaction. The interaction space of an IS is the solution space of the set of PSPs
that make up the IS. In the dualism model, the interaction space of an IS is characterized
by an interaction schema.

The interaction space is supported by an IS implementation that has a specific struc-
tural design. Dynamics of the IS structure is oriented towards maintaining the system
state. Such dynamics are called the “database” dynamics of an IS. And the space of IS
structure is called the object space.

The object space maintains structural integrity and the interaction space maintains
dynamic (functional) integrity of the IS. Such an approach reconciles different views of

65

IS dynamics under a common framework of the interaction space. It also addresses and
solves the shortcomings presented above. The bottom line of a dualism model may be
summed up by the following equation: IS = Database systems + Interaction. Inter-
action modeling is often addressed as part of database design; and issues that relate to
interactive integrity are often clubbed together with issues that relate to data integrity.
The dualism model advocates separation of these two concerns. The next section intro-
duces the philosophical underpinnings for the dualism model and it’s bottomline equation.

4.2 IS = Database Systems + Interaction

An information system (IS) is a generic term referring to software systems that provide
information-based services. The notion of an IS has been addressed from various per-
spectives such as managerial, technical, organizational, etc. [Alt96, Sen97]. However, even
with active research communities studying IS design, the term information system still
lacks precise formal underpinnings. Unlike for say, databases, there is no agreement on
what constitutes “principles of information systems.”

Any significantly advanced IS contains some kind of a database system. As a conse-
quence, IS design addresses a number of database issues like conceptual modeling, meta-
data management, etc. On the other hand, any large contemporary database system
is actually an IS, providing additional services beyond simply storing data and running
queries and updates. As a result, the distinction between a database and an IS tends to
be blurred, and in common discourse it is not clear that the principles underlining the
study of information systems should be different than those for databases.

As an example, Loucopoulos [LZ92] defines information systems as “systems which are
data-intensive, transaction-oriented, with a substantial element of human-computer inter-
action.” It could well be argued that contemporary database research defines a database
system in a similar fashion.

However, from a historical sense, information systems and databases began from dif-
ferent concerns. The term information system was coined from a managerial and orga-
nizational perspective. It addressed issues like systems analysis and design, requirements
engineering, data flow design, system development life cycles, etc. Over time, many of
these ideas became more formalized. Many paradigms and tools were developed to sup-
port life cycle models. In addition, other aspects of IS design like organizational mod-
els, process models, coordination and collaboration came to be treated in mathematical
terms [MC94, Law97, JL96].

In contrast, database systems began by addressing problems of data management.
Early database systems were built over flat file systems of data. For many years, the main
set of problems addressed by database research concerned efficient storage and retrieval
of data. However database systems have now progressed greatly to include a number of

66

schema design

concurrent transaction handling

knowledge representation
evolution issues

Data/metadata
management

Data integrity
maintenance

Information Systems

Databases

Systems analysis/design

Life-cycle models

 process/workflow

 modeling

coordination/

collaboration
modeling

roles modeling

OLTP

OLAP/DSS Data analysis

query optimization

Sequential interactive
services

Interactive queries

Requirements Engg.

Figure 4.1: Databases vs Information Systems

other issues. Contemporary database systems are no longer just sophisticated file systems;
they are actually information systems that provide different kinds of specialized services
like transaction processing, data mining, analytical processing, etc.

The expansion of concerns in both information systems and databases is schematically
depicted in Figure 4.1. The inner ellipse in the figure shows how database concerns have
changed over the years; and the outer ellipse shows how IS concerns have changed over
the years. The expansion of concerns have blurred boundaries between information sys-
tems and databases. In common discourse it is sometimes difficult to distinguish between
approaches that address database design and those which address IS design.

However, at the level of foundations the outlook is very different. Research on princi-
ples of database systems is well-defined, at least since the middle ’80s [Ull88]. It includes
issues such as schema design, data modeling, query evaluation and expressiveness, and
dependency preservation. On the other hand, as far as we know, there is no consensus
on what are principles of information systems, and there are no accepted formalisms for
studying them.

The distinction between a database and an IS is best appreciated when we consider
their function, or “job.” The “job of a database” is to store data and answer queries.
This entails addressing issues like data models, schema design, handling distributed data,

67

maintaining data consistency, query evaluation, etc.
On the other hand, the job of an IS is to provide a service, which entails considerations

that span the life cycle of the larger system. Some examples are: a service for train
reservation, a catering service, a service for calendar management, etc. Services over time
represent semantic processes and determine IS functionality. They are usually interactive
in nature, involving user sessions with one or more users, and are specified by models of
interaction.

The concept of a job drives design decisions and models. The following subsections
show how a change in emphasis from data management to service provision can affect
design models and processes.

4.3 Statics and Dynamics

An IS is defined within an organizational context or some larger system framework. The
static structure of an IS is a conceptual schema of the larger system. In order to implement
the job of an IS, static structures meant to provide services have to address issues like
the following: (a). the relevance of structural elements to the semantic service, (b). the
comprehensiveness of the structural description, (c). the robustness of the conceptual
structure in the face of changes.

On the other hand, the job of a database is to manage data and handle queries. The
static structure of a database is oriented towards handling queries and updates efficiently.
They address issues like the following: (a). indexing (b). normalization (c). anamoly
detection and correction (d). computation of (materialized) views, etc. A database schema
that is normalized for efficient queries and updates, may not always reflect the users
perspective of the conceptual structure of the larger system.

A description of the “job” also illustrates the kind of dynamics that is characteristic
of databases and of information systems. Database dynamics are algorithmic in nature.
Answering queries are modeled by functions that return an answer to the input problem.
Updates are modeled by partial functions which represent transitions from one valid system
state to another in atomic steps.

The dynamics of an IS are usually interactive in nature. Services may involve interac-
tion with one or more environments. They are driven by policy specifications governing
IS functionality. Some examples of policy specifications are:

• A reservation process for a train may not be run before 60 days of the departure
date;

• Payment by credit card requires an interaction session with the bank to check validity
before delivery, etc.

68

Services have to model interaction protocols, integrity constraints on interactive dy-
namics and enforce policy decisions that govern interactive processes. Many rules of
database dynamics like atomic transitions and isolation may be violated in IS dynamics
in order to maintain integrity in providing services.

As noted in Chapter 3, interactive dynamics characterize richer domains than algo-
rithms. Interactive behavior has its own set of concerns that are independent of database
integrity concerns.

4.4 Individualization

Users of IS services play much more of a role than just supplying queries. For a database,
everything that is required by the environment is assumed to be encapsulated as part of
the database query. Ideally the database does nothing else other than answering queries.
Hence in the absence of updates, a query evaluates to the same result every time it is
called.

For information systems, user interaction is much more complicated. A user uses
the IS in order to obtain a semantic functionality. There are many different aspects
that need to be modeled – the most fundamental being the reconciliation of “semantic
functionality” between the user and the IS. In addition, other characteristics of the user
like observations (what the user should see), intentions (what the user wants) and beliefs
(what are the implicit user knowledge that affects interaction) impact the design of an
interactive service [Lew00].

Hence, tasks like user modeling and maintaining user profiles or individualization forms
an important aspect in the design of IS dynamics. Individualization can be viewed as a
projection of the IS onto the user’s space, tailoring available services to user preferences
and characteristics. Examples are: (a) List the current valuation for all houses on my
street and, (b) Supply purchase recommendations for me based on my purchase history.

Individualization requires awareness of user characteristics and user preferences, as well
as of the history of user interaction with the system. To individualize information services,
an IS must be able to create and maintain user profiles with the relevant information. Some
user characteristics are fixed (such as gender) while others may be reset by the user (such
as their nickname). Some characteristics are never set by the user explicitly; these include
simple facts (such as the user’s software version number) as well as facts that are derived
directly from the interaction history (such as the user’s interests and patterns of behavior).
The latter category of user preferences is the most interesting, from a research point of
view.

Individualization of interactive services can be considered dual to the concept of views
in database design. Database views are static individualized structures, while IS indi-
vidualization also involves dynamics. However individualization of dynamics has some

69

characteristic differences from computing database views. Database views contain data
from the central database, but with possibly a different schematic structure. Individual-
ized IS views may contain information about user preferences and interaction history that
are not part of the larger IS. A database view is a subset of the larger database; but an
individualized service may have a set of completely different or new services that are not
part of the larger IS.

A simple example of individualization of services concerns how services need to be
redefined for different target platforms [LS00]. The same service (for example, train reser-
vation) may need to have very different interaction protocols on different target platforms
(for example, telephone, over the counter, WWW browser, etc.) that the user is interacting
on. All of them represent the same service, but may have different interaction sequences
and may maintain vastly different sets of data items for carrying out the process. But a
given policy decision on the semantic process affects all the different interaction protocols
in the same way.

4.5 Some Models of IS Interaction

Some existing paradigms of IS modeling are reviewed in this section with emphasis on
how they address the interactive nature of IS dynamics. The approaches presented is
by no means comprehensive. The emphasis here is on the contrasting models in related
literature that concern interactive dynamics of an IS.

4.5.1 Patterns

Patterns are a first step towards addressing the complex nature of interactive solution
spaces. Since there is no characteristic structure of interactive solution spaces, pat-
terns capture and document recurring structures of interaction. Patterns record both
static structure (relationship between objects) and behavioral structure (interaction se-
quences and protocols). Patterns address different stages of a life cycle model like
analysis patterns [Fow96], design patterns, process patterns [Cop98] and organizational
patterns. Some well known patterns of behavior in information systems include the
Model/View/Controller framework, the Publisher-Subscriber pattern, and the Observer
pattern [GHJV95, Pre95]. The handbook of patterns by Gamma et. al [GHJV95] doc-
uments a number of other patterns which have been popularly used in real life design
problems.

However, patterns as a paradigm for modeling interactive IS behavior lacks precise
definition and notational semantics, which impedes the formalization and automatization
of their usage.

70

4.5.2 Actors and roles

Actors [AMST92] are autonomous objects of a system, whose behavior at any given instant
is determined by the role that they have adopted. This paradigm has also been used to
model use cases [Fow97] and in Artificial Intelligence (AI) [AR96]. The evolution in AI
from logic and search to agent-oriented models is not a tactical change, but a strategic
paradigm shift to more expressive interactive models [Weg96]. IS modeling based on
actors has extended to different related paradigms like mobile agents and collaborative
agents [Wei99, HSG98]. Actors also have been formalized using underpinnings from process
calculi and deontic logics [AMST92, ES99].

While the actor and agent paradigms provide an intuitive way of modeling IS dynamics,
they are object centric in nature. That is, domain entities or actors form the building
blocks of the model, and system dynamics are represented “on top” of the system of
actors. An object centric approach towards IS design makes it difficult to encode integrity
constraints that are characteristic of the interaction space. For example, in a system of
actors that form an IS, it is difficult to difficult to flexibly manipulate policy decisions on
IS services, and translate them automatically to the roles of actors.

4.5.3 Stocks and Flows

Stocks and flows is a formalized model of managerial and organizational perspectives on
IS design [HR94]. In this model, a system consists of static elements called stocks and
dynamic elements called flows. A system of stocks and flows interact with one or more
environments. Stocks are called the “nouns” of the system and represent the system state,
and flows are called the “verbs” of the system and represent system dynamics. Stocks are
represented by variables and flows are represented by difference equations over stocks,
flows and environments.

Population

Birth rate

Immigration rate

Death rate

Emigration rate

Figure 4.2: Dynamic modeling using stocks and flows

71

Figure 4.2 illustrates a typical stocks and flows model that shows population dynamics.
Boxes represent stocks that maintain the system state, arrows represent flows or system
dynamics and clouds represent environments. Control variables shown as circles with
knobs affect the flows. Stocks and flows modeling provides an intuitive abstraction for IS
design. However, it lacks mechanisms for abstraction, reasoning, and integrity checks on
the system that are required for evaluation and verification.

4.5.4 Speech-Act Formalisms

IS modeling based on speech-act formalisms [Joh95] considers IS dynamics to be made up
of interrelated events. Events are formalized using speech-act theory [Sea69]. Speech acts
are classified into different types such as assertive, commissive, directive, declarative and
expressive, that affect actions. The IS in a speech-act model is made up of events and
discourses. Discourses are speech acts that connect events which comprise IS dynamics.
Discourses also connect events with objects that comprise the IS statics. The logical
formalisms for such a model are based on deontic logics.

Like stocks and flows, IS modeling based on speech-acts provides an intuitive mech-
anism to reconcile between semantic services and IS processes. However, there does not
seem to be a clear separation between structural concerns and service concerns. This
would hamper the manipulation of service concerns in a flexible manner.

4.5.5 Activity Schema

Liu and Meersman [Liu96] build an “activity schema,” to model IS dynamics. In an activ-
ity schema, each object in the schema represents a semantic process. The approach here
is based on object-oriented concepts. Activities are related by two kinds of relationships –
specialization and aggregation. An activity is an encapsulation of a sequence of messages
exchanged between objects to achieve a particular semantic process. They are governed
by local and global constraints and pre and post conditions. Verification and reasoning
about the activity schema is done using first order temporal logic.

The approach presented in our work is similar to the above; however with a number
of new concepts that form the underpinnings of an activity schema. Firstly, constraints
acting on an activity are made explicit and represented in terms of three deontics; secondly,
an activity (an interactive process) is defined in terms of fixpoints that introduces specific
semantics into activity specialization; and thirdly, translation of an activity (interaction)
schema into an entity schema is done using translation rules that resolves contentions
between actor autonomy and system integrity.

72

static dynamic

global

local

database
schema

information
units

dialogues

processes
enabled
processes

enabled
manipulation
requests

filtration

scaling

summarizatin

information
containers

supplied
processes

Figure 4.3: Codesign Framework

4.5.6 Codesign

Codesign [CT97] is a paradigm proposed for IS design that addresses the design of both
statics and dynamics in a concurrent and autonomous fashion. Global and local (individ-
ualized) views are also defined for the dynamics, analogous to corresponding paradigms
regarding the statics. Codesign addresses system design in a unified manner by handling
the design of data, views, processes and human-computer interaction autonomously but
inside an integrated framework [Lew00]. Figure 4.3 illustrates the overall framework of
the codesign model.

Codesign divides IS design into four different aspects of concern. These are: individual-
static, individual-dynamic, global-static and global-dynamic. The individual-static aspect
concerns database views and their computation. They model different user perspectives
of the IS static structure. The global-static aspect concerns design of the database schema
and the IS conceptual model. They model IS static structure from the IS service provider’s
perspective. The local-dynamic aspect addresses human-computer interaction. It models
semantic IS processes that make up the IS functionality. The global-dynamic aspect ad-
dresses IS dynamics from a designer’s perspective. It constitutes designing the dynamics
of application programs that are developed as part of the IS.

The four aspects of a codesign model are used throughout the IS life cycle and not

73

Idea
conception

Business-user
Layer

Conceptual
Layer

global

individualized

static

dynamic

Layer
Implementation

Figure 4.4: Codesign Process Framework

just during design or implementation. A process framework is defined for the codesign
paradigm that incorporates these four dimensions into the design process.

Figure 4.4 illustrates the codesign process framework. The IS lifecycle is organized as
a “pyramid” where the tip of the pyramid represents the idea conception that starts the
entire project. The pyramid starts from the tip and finally reaches the implementation,
progressively increasing in its complexity and the scope of issues that have to be addressed.

The pyramid is considered to be made up of different layers representing different
phases of the process. The business-user layer, concerns requirements elicitation and
design of the IS from the user perspective. The conceptual layer of the codesign model
contains the design model of the IS as decided by the designers; and the implementation
layer of the model addresses implementational issues of the IS. Any process model that
adopts the codesign paradigm may define additional layers specific to its requirements.

Each layer in a codesign process adopts the four dimensions of the codesign model.
For example, the global-static aspects of the business-user layer would specify the scope of
the project, different kinds of users, the customer profile, etc. The local-dynamic aspect of
the implementation layer would address the design of user interfaces in terms of HTML or
Tcl-Tk, etc. The global-static aspect of the conceptual layer addresses the IS conceptual
schema from the designer’s perspective.

74

4.6 The Dualism Model

4.6.1 Dualism and codesign

The IS design model proposed in this work is part of the codesign approach. This model
is called the dualism model and concentrates on modeling IS interactive dynamics. The
dualism model is based on the following axioms:

• IS functionality is defined by semantic processes that are interactive in nature rather
than algorithmic,

• Interaction is richer than algorithms and needs to be addressed separately,

• The interactive (functionality) concerns of an IS have a degree of autonomy over the
structural (state maintenance) concerns, and

• Interaction space of an IS requires at least a three valued logic for characterization
and reasoning.

static dynamic

global

local

database
schema

information
units

dialogues

interaction schema

Object
Space

Interaction
Space

Figure 4.5: Dualism Framework

Figure 4.5 shows how the dualism model relates to the codesign framework. The
codesign “square” is divided into two halves that are named the object space and the
interaction space respectively. The object space concerns everything that deals with the

75

structural aspects of the IS. The object space also has a set of associated dynamics. These
are called “database” dynamics whose main function is to modify the system state.

The interaction space addresses IS functionality. Dynamics of the interaction space
characterizes behavior that defines IS functionality. The local-dynamic parts of the in-
teraction space are semantic processes of the IS based on its functionality specifications.
These are called “dialogs.” (A different spelling “dialogs” is used to differentiate between
the dualism dialog that is based on fixpoints and a codesign dialogue). The global-dynamic
aspect of the model is called an “interaction schema” that characterizes the functionality
dynamics of the entire IS. An interaction schema models relationships between dialogs and
integrity constraints on IS dynamics.

In the rest of the thesis, a running example of an IS meant to handle activities of a
conference, is used as an example to illustrate different aspects of the dualism model. The
requirements of this IS are intuitively introduced below. They will be introduced in a
more formal manner in Chapter 6 when the dualism process framework is introduced.

A committee for conducting a technical conference requires an information system that
can handle all activities of the conference as comprehensively as possible. This includes
handling submissions of technical papers, posters and software which sets the ball rolling
for the conference; to end conference activities like negotiating a committee for the next
conference, announcing a preliminary call for papers, online sale of conference proceedings,
etc.

There are different kinds of actors who make up the conference system like the PC chair,
reviewers, authors, advisory committee, support team, etc. Each of them have different
roles at different point in time. They interact with other actors and infrastructure that
make up the conference system to perform semantic activities that makes up the conference
functional.

The dualism designer who is asked to design an IS for such a system maintains
a two-way perspective of the system throughout the lifecycle. The designer catego-
rizes any given requirement or constraint into either a structural requirement/constraint
or a functional requirement/constraint. As an example, consider the following constraints:

C0: An author may not submit a paper after the submission deadline is over.

C1: Every author entry in the list of authors should be associated with at least one paper
in the list of papers.

C2: An author cannot be the reviewer of his own paper.

C3: An author is not intimated of the status of his/her paper before the announced date
of intimation.

76

C4: A reviewer should have a minimum of one paper assigned for review and a maximum
of four papers.

C5: The PC chair should send out a general call for reviewers on internet forums if all
papers have not been assigned by three working days after the deadline for paper
submissions.

C6: Any move towards extending the deadline for paper submissions should take place
before the close of the current deadline.

C7: Paper submission deadline can be extended at most three times.

C8: A student delegate is entitled to attend the conference dinner for free

Constraint C0 is a functionality constraint. It represents an constraint on dynamics
resulting from functionality requirements. On the other hand, constraint C1 is an integrity
constraint on the system’s state. It represents constraints on data items that make up
the system state. The dualism designer places C1 into the object space and C0 into the
interaction space.

In a similar sense the other constraints are assigned as follows. C2 belongs to the
object space, C3 belongs to the interaction space, C4 belongs to the object space, C5,
C6 and C7 belong to the interaction space, and C8 belongs to the object space.

The dualism designer strives to maintain a degree of autonomy between the object
space and the interaction space. The effects of changes and enhancement requests are
localized to the space in which they originated. To what extent concerns of the object
space and the interaction space can be kept separated is a philosophical question which
is addressed in more detail in the next chapter. The dualism model also incorporates the
codesign process framework pyramid, where dualism of concerns is maintained in every
layer of the pyramid. Different kinds of support in the form of languages and tools are
proposed for the different layers of the dualism pyramid. The dualism process framework
is addressed in detail in Chapter 6.

4.6.2 Dualism versus object-centrism and process-centrism

Figure 4.6 compares the dualism model with “object-centric” and “process-centric” mod-
els. Most current approaches to IS design may be categorized to be either object-centric
or process-centric in nature.

In an object-centric model, the system is considered to be made up of domain entities
(or objects or actors or agents). System dynamics are defined on top of the domain entities
in the form of various interaction protocols or roles. Figure 4.6(a) shows an object-centric
model. A UML model may be considered object-centric in nature. The building blocks

77

System is made up of interrelated

objects (actors, agents).

System is made up of

collection of processes.

(b). Process centric paradigm(a). Object centric paradigm

Object space

Object schema

Interaction space

Interaction schema

System Model
either object or process

centric

(c). Duality Paradigm

Collaboration diags,

Activity diags, etc.

System Model

Contention resolution,
Priorities, scheduling,
etc.

System Model

Figure 4.6: Object-centric, process-centric and dualism Frameworks

Object space Interaction space

Represents system structure Represents system functionality
Depicts domain objects and relationships Depicts semantic processes and relation-

ships
Maintains integrity constraints on system
state

Maintains integrity constraints on system
dynamics

Has algorithmic dynamics that query and
update system state

Has interactive dynamics that constitute
semantic processes

Dynamics are ACID in nature Atomicity and isolation no longer neces-
sary conditions

Characterized by object schema Characterized by interaction schema

Table 4.2: The dualism model

of the model are domain objects that make up the system’s actors and infrastructure.
System dynamics is defined by a variety of dynamic models like collaboration diagrams,
activity diagrams, etc. on top of the domain objects.

In a process-centric paradigm, a system is considered to be made up of processes each
of which achieve specific functionality. Domain entities are meant to facilitate execution of
processes. They are dynamically allocated to processes based on different strategies. The
characteristics of domain entities are defined based on the underlying process semantics.
Figure 4.6(b) shows a process-centric model. Process centric models have been used for
organizational workflows, business process engineering, job shop scheduling and other
areas.

Both object-centric and process-centric approaches have their own set of advantages
and limitations. These have already been addressed in Chapter 1. By dividing IS concerns

78

into an object space and an interaction space, the dualism model also solves conflicting
problems like actor autonomy vs system integrity. In addition, by formulating functional
dynamics in the form of a schema maintainability of the dualism model is also high. These
issues are addressed in more detail later in the thesis. Table 4.6.2 contrasts the object
space and the interaction space of a dualism model.

In this work we concentrate only on the interaction space of a dualism model. The
interaction space is characterized by an interaction schema. The next chapter introduces
the building blocks of an interaction schema.

79

Chapter 5

Dialogs and Interaction Schema

Fundamental ideas play the most essential role in forming a physical theory. Books on physics

are full of complicated mathematical formulae. But thought and ideas, not formulae, are the

beginning of every physical theory. – Albert Einstein

This chapter explains the dualism model in detail. The dualism model divides an IS
into an object space and an interaction space. The object space is concerned with struc-
tural properties of the IS and carries out state maintenance operations. The interaction
space is the solution space of IS functionality dynamics. The two spaces are characterized
using an object schema and an interaction schema respectively.

Modeling of conceptual structures and state maintenance dynamics have been exten-
sively addressed in the field of databases. These include areas like ER modeling, database
design and transaction processing. In this work we concentrate only on the interaction
space. An interaction schema is used to model the interaction space. The interaction
schema is based on an underlying formalism of fixpoints representing interaction and a
three-valued logic for representing obligated, possible and forbidden behaviors.

5.1 Dialogs

An interaction schema is a semantic model that characterizes the interaction space. It
models the “what” of the interaction space showing semantic states, state transitions and
integrity constraints on states and transitions. The “how” of the semantic processes may
be vastly different depending on the particular implementation. In an object-oriented
model, the “how” would be represented by message sequences between domain objects.
Similarly in an implementation based around an RDBMS, the “how” is represented by a
series of queries and updates. The interaction schema models dynamic concerns that are
independent of the behavioral dynamics. Such a separation of functional semantics from
behavioral semantics is a conscious decision to maintain a degree of autonomy between

80

the interaction space and the object space; and to separate description of IS functionality
from their implementation.

For our purposes, we define the generic structure of an interaction schema in the
following form:

Definition 5.1: An interaction schema is defined as S = 〈E,R〉, where S is the schema, E is a

set of entity types or semantic process types in the schema, and R is a set of relationship types

that relates entities of the schema. �

In some approaches, integrity constraints are introduced as a separate element that
make up the conceptual schema. In our model, we consider an integrity constraint as a
type of relationship.

The entity types or the types of semantic processes that make up an interaction
schema called “dialogs.” A dialog is a semantic process type or a PSP, that is part of the
IS functionality. In contrast to a dialog, an entity type that belongs to the object space
is called a “domain object.” Both the terms dialog and domain object refer to classes
(types) and not instances.

Definition 5.2: A dialog is an entity type that exists in the interaction space. It represents a

semantic interactive process that a domain object (an object of the object space) or a group of

domain objects (a subsystem) carries out with their environment. �

Figure 5.1 schematically depicts a dialog as opposed to domain objects. A domain
object can be identified in any static snapshot of the problem domain even without a
clear definition of the functionality of the system. Some examples of domain objects
are: Account, Transaction Log, User, etc. in a banking setting; Airplane, Control Tower,
Runway, etc. in an air traffic control setting; and PC Chair, Author, Paper, PaperDB,
etc. in the conference IS example.

A dialog on the other hand, can be identified only from descriptions of the system’s
intended functionality. It may be attributed to a single domain object as in Figure 5.1(a),
or to a group of domain objects (a subsystem) as in Figure 5.1(b). The “environment” of
a dialog may be an other dialog within the IS; or it may be the larger environment outside
of the IS.

Examples of dialogs are objects like OpenNewCreditAccount, OpenNewDebitAccount
and MoneyTransfer, in the banking situation; or objects like LandingProtocol, TakeoffPro-
tocol and CruiseControlProtocol in the air traffic control scenario; or objects like Callfor-
Papers, SubmitPaper, ReviewProcess, etc. in the conference example. Each of the above
dialogs involve one or more domain objects like User, Teller, Account; or Airplane, Con-
trolTower; or PC Chair, Author, PaperDB, etc. and interact with a larger environment.

81

Time

X

Y

Domain object

Interaction object or dialog (a semantic interaction process)

Z

Interactions among domain objects and with the outside world

Entity space of the information system

Domain Object

O1 method(I1)
O2 method(I2)

Domain Object

O1 method(I1)
O2 method(I2)

Domain Object

O1 method(I1)
O2 method(I2)

Domain Object

O1 method(I1)
O2 method(I2)

...

n

time

1
2

3 ...

SOI

EOI

Dialog
Object

(a)

(b)

Figure 5.1: Domain objects and dialogs

A dialog is said to “represent” one or more domain objects; and the domain objects
are said to have (jointly) “adopted” the dialog.

A dialog is a semantic characterization of functionality dynamics. It does not represent
any specific sequence of tasks. It can be visualized as characterizing a subspace of the
interaction space, representing all possible task sequences that can take place as part
of a semantic activity. Also, a dialog does not distinguish between two or more agents
(environments) which are interacting with it. It reads all its inputs from a single input
port and provides all its outputs on a single output port. Hence by itself, it can model
only single-stream interaction and not multi-stream interaction.

As seen in Chapter 3, single-stream interaction is modeled by a set of interaction
states or fixpoints each of which represents a point of interaction and encapsulates
computational behavior to another fixpoint. The formal model of a dialog follows a
similar design and is introduced as follows:

Definition 5.3: A dialog is a 3-tuple D = 〈A,M,S〉, where:

• A is the set of domain objects that the dialog represents, and is called the attribute set of
the dialog.

• M is a set of method interfaces for the dialog which can be invoked from the dialog’s envi-

82

ronment.

• S is the interaction state space, or the set of fixpoints.

Each method mi ∈M has a behavior in each fixpoint s ∈ S that can take the dialog from s to

any other fixpoint s′ ∈ S. mi : S → P(S). �

Each dialog is modeled by a set of interaction states or fixpoints S and the set of
methods are defined in each fixpoint that maps to possibly another fixpoint. Although,
the definition of dialog behavior looks similar to the behavior of an object in conventional
object-orientation; the definition of a dialog has some important differences. In a con-
ventional object, the object state is defined as a function of the object’s attributes; in
a dialog, the interaction state is a fundamental construct of the dialog that represents
computational behaviors unfolding from that point. In a conventional object, method be-
haviors determine the object’s state; in a dialog, the interaction state determines method
behaviors. In a conventional object, the behavior of a method is abstracted by method
interfaces; in a dialog, the behavior of a method is abstracted by a pair (s,m), where s ∈ S
and m ∈M , which is a combination of interaction state and method interface. Behavioral
abstraction of single-stream interaction that was introduced in Chapter 3 may be recalled
here. The fundamental nature of an interaction state in defining a dialog will be more
apparent when dialog specialization is introduced.

Some more rules that hold for dialogs in the dualism model are as follows:

• The interaction schema is considered to represent the entire set of IS dynamics.
Hence in a dualism model, any message passing among domain objects is always
qualified within the context of some dialog.

• A dialog may send messages to other dialogs, but may not send messages to other
domain objects that are not in it’s attribute set. A dialog can communicate with
another domain object only through some other dialog that represents the domain
object.

Figure 5.2 shows an example declaration of a dialog from the running example of the
conference IS. The dialog is called AuthorSubmitsPaper, and represents a semantic process
in the conference IS. It describes a process by which an author may submit a paper to
the conference. The dialog has four interaction states and six method interfaces. The
methods are defined for each interaction state and takes the dialog to possibly another
interaction state. The dialog represents four domain objects namely: WebSite, Paper,
AuthorDatabase and PaperDatabase. The attribute set of the dialog indicates specific
instances of the domain objects rather than the classes themselves. This is indicated by a
declaration of the form AuthorDB : AuthorDatabase which says that the dialog applies
to an instance of AuthorDatabase that is named AuthorDB inside the dialog. This means

83

Dialog AuthorSubmitsPaper

attributes // Domain objects adopting the dialog

ws : WebSite;

ps : Paper;

AuthorDB : AuthorDatabase;

PaperDB : PaperDatabase;

end attributes

states

NOLOGIN; // dialog is in this state if userid is not known

NOPAPERID; // userid is known and paper id is not known

PAPERID; // both userid and paperid are known and no paper matching paperid is in PaperDB

UPLOADED; // userid, paperid are known and there is a paper matching paperid in PaperDB

end states

methods

String login(String, String);

String setPaperID(String);

Boolean newSubmission();

Boolean upload(String, Paper);

Paper check(String);

String logout(String);

end methods

startstates

NOLOGIN, NOPAPERID;

end startstates

obligations

UPLOADED;

end obligations

prohibitions

end prohibitions

definitions

@NOLOGIN login() : {...} // checks userid and passwd and takes to either NOPAPERID or NOLOGIN

setPaperID(), newSubmission(), upload(), check(), logout(): {} // disabled

@NOPAPERID login(), upload(), check() : {} // disabled

setPaperID() : {...} // takes a paper id as parameter; sets paper id if it matches paper entry for userid in AuthorDB;

destination state is either PAPERID, if no entry for paperid exists in PaperDB; or UPLOADED if paperid exists in

PaperDB; or NOPAPERID if failure

newSubmission() : {...} // Generates a new key for paper id and takes dialog to PAPERID

logout() : {...} // unsets userid and changes state to NOLOGIN

@PAPERID login(), check() : {} // disabled

setPaperID() : {...} // tries to set paper id to the new value provided as parameter. Changes state to NOPAPERID,

PAPERID or UPLOADED.

newSubission() : {...} // generates a new key for paper id; destination state is PAPERID.

upload() : {...} // accepts uploaded paper and adds to PaperDB and makes entry in AuthorDB; destination state is

UPLOADED.

logout() : {...} // unsets userid and changes state to NOLOGIN

@UPLOADED login() : {} // disabled

setPaperID() : {...} // tries to set paper id to the new value provided as parameter. Changes state to NOPAPERID, PA-

PERID or UPLOADED.

newSubission() : {...} // generates a new key for paper id; destination state is PAPERID.

upload() : {...} // accepts uploaded paper and adds to PaperDB and makes entry in AuthorDB; destination state is UP-

LOADED.

check() : {...} // returns paper matching paperid for checking.

logout() : {...} // unsets userid and changes state to NOLOGIN

end definitions

end Dialog

Figure 5.2: An example dialog: AuthorSubmitsPaper

84

that a different AuthorSubmitsPaper dialog would interact with a different instance of the
same set of domain objects. This is analogous to class variables versus instance variables
in conventional object orientation. A formal description language for dialogs called the
“Dialog Description Language (DDL)” is introduced later in the thesis.

A dialog also has other declarations that determine it’s correspondence to the semantic
process. The dialog may begin in any interaction state that is specified in the list of
“startstates” in the definition. The dialog is said to have successfully executed the semantic
process if it’s traversal contains at least one of the strings in the set of “obligations” of the
dialog. In this example, the only obligation is the UPLOADED fixpoint. The dialog is said
to have successfully executed the semantic process of paper submission if it’s execution
contains at least one traversal through this fixpoint. This means that there should be
at least one upload as part of the process to call it a successful execution. The set of
“prohibitions” denote sequences of fixpoints which indicate a failure in the execution of
the semantic process. In this case there are no entries in the prohibitions declaration.
An execution of AuthorSubmitsPaper process where there are no paper uploads cannot
be termed to be successful executions; however, they also cannot be termed as “failed”
executions.

The interaction state in which a dialog starts execution can be provided as an argument
to its constructor function. Alternatively, the constructor function can have a decision tree
which decides the starting fixpoint based on the states of the dialog’s attributes.

5.2 Constrained Association

In Chapter 3, channel sensitivity in multi-stream interaction was modeled by constraint
relationships that related interactive behaviors on each channel of a MIM. The constraint
relationship was shown to need at least a three valued system of logic.

The same approach is used in the interaction schema. A dialog models single-stream
interaction. In order to model multi-stream interaction, a relationship type called con-
strained association is introduced that specifies how the behavior of one dialog may affect
the behavior of another. These are also called the integrity constraints of system dynamics.

In real world information systems semantic processes often affect the functioning of
one another. However, IS models that characterize systems of multiple dynamic processes,
often do not adequately address integrity constraints on system dynamics. Inter-process
constraint relationships proposed in current paradigms can be categorized into either min-
imalist constraints that specify required behavior and forbids the rest; or maximalist con-
straints that specify forbidden behavior and permits the rest. A minimalist constraint tries
to specify the exact sequence of activities that determine how processes affect one another.
On the other hand, a maximalist constraint specifies the set of forbidden sequences of ac-
tivities in a system of multiple processes in order to maintain system integrity.

85

In the dualism model a more general approach is adopted. Constrained association
combines minimalist and maximalist constraints into a three-valued system of constraints.

Constrained association is in the form of one or more constraint equations that holds
across one or more dialogs. These constraint equations are in the form of M [head]← body,
which is read as: if body holds, then head has a modality of M . The modality M can
take on three values, namely, (a). Obligation, that requires head to hold, (b). Permission,
that permits head to hold, and (c). Prohibition that forbids head to hold. The formal
definition of a constrained association is as follows:

Definition 5.4: A constrained association between n dialogs is an n-ary association denoted by
R(D1..Dn) = 〈ψ,D1, D2, . . . , Dn〉, where D1..Dn are n dialogs, and ψ is a set of one or more
constraint relationships.

A constraint relationship ψi ∈ ψ is in one of the following forms:

• ψi : O(head)← body, which says head is obligated to hold if body holds;

• ψi : P (head)← body, which says head is permitted to hold if body holds;

• ψi : F (head)← body, which says head is forbidden to hold if body holds.

head and body are made up of predicates of the following form:

1. d : dialog (O: should exist, P : may exist, F : may not exist)

2. d.s : dialog state (O: set state to, P : may be in, F : may not be in)

3. ∧, ¬, applied to the above in body

4. ∨, ¬, applied to the above in head

�

Figure 5.3(a) shows a simple example of constrained association. It depicts a constraint
between two dialogs called “MovePiece” of opposing players in a board game. MovePiece
specifies an interactive process by which a player moves his/her piece on the board. The
dialog has two states labeled C0 and C1 that determine whether it is the user’s turn to
play or not. The constraint specifies that both users should never be in the same state
simultaneously. Figure 5.3(b) depicts this relationship in a more intuitive fashion.

A constrained association between dialogs incorporates channel sensitivity into single-
stream interaction. A set of dialogs and constrained associations between them can be
collectively considered to be a multi-stream interactive process. In the example above,
the pair of MovePiece dialogs along with the constrained association forms a single multi-
stream interactive process – that of the board game. The board game can be considered
to be a single process that not only interacts with the players, but is also channel-sensitive
in its interaction.

86

MovePiece
 Player1;

MovePiece
 Player2;

Player1 Player2

MovePiece1
MovePiece2

Board

(a)

(b)

time

O[C(Player1).C0]
<-- [C(Player2).C1]

O[C(Player1).C1] <--

[C(Player2).C0]

Figure 5.3: Constrained association between dialogs

Dialogs and constrained association are concerned with types and not instances. In
order to represent specific instances of dialogs, constraint equations can contain free
variables and inhabitation of variables into types.

Example: The MovePiece dialog in a two-player board game has to be always in pairs. It
is meaningless to have a single MovePiece dialog with no complementary dialog representing the
other player’s move. A constrained association that relates MovePiece dialogs of opposing players
can be represented as follows:

R = 〈ψ,MoveP iece〉
ψ = {
O[(Player1 : MovePiece).C0]← (Player2 : MovePiece).C1

O[(Player2 : MovePiece).C0]← (Player1 : MovePiece).C1

}
In the above example, Player1 and Player2 are free variables that are inhabited into

the MovePiece type. State C0 specifies that it is the player’s turn to play, and state C1
specifies that it is the other player’s turn to play. The constrained association ensures that
states C0 and C1 are always pairwise symmetric between the two players.

In a constraint equation, a predicate that is specified over a type, applies to all

87

ConferenceProcess

AuthorSubmitsPaper

AssignReviewers

ReviewProcess

P O

P

F

F

CfP Review Intimate

Neg Assgn

Neg Dwnld

PC Chair

PC Chair

Reviewer

Author

Figure 5.4: Constrained associations in the conference IS

instances of the type; while a predicate that is specified over a variable of a type, applies
to a specific instance of a dialog that has been bound to the variable.

Example: Let state c of dialog D represent a critical section such that at most one dialog
may be in that state at any given time. This can be represented as follows:
CriticalSection = 〈ψ,D〉

ψ = P [(d : D).c]← [¬D.c]

The constraint ψ is read as follows: when it is not the case that any dialog instance of
type D is in state c, then it is permitted for some instance d to be in state c.

Constrained association can be used to coordinate between different activities of
the IS at different levels of granularity. They represent coordination semantics that are
characteristic of the IS rather than the objects or actors of the IS. Returning to the
running example of the conference IS, some constrained associations that can coordinate
activities of the IS are as follows:

P [AuthorSubmitsPaper]← ConferenceProcess.CfP (If ConferenceProcess is in state CfP, it is

permitted to start an AuthorSubmitsPaper dialog)

O[AssignReviewers] ← ConferenceProcess.Review (If ConferenceProcess is in state Review, it

is obligated to start a dialog to assign reviewers)

F [AuthorSubmitsPaper] ← ConferenceProcess.Review (If ConferenceProcess is in state

Review, it is forbidden to start a AuthorSubmitsPaper dialog)

Figure 5.4 schematically depicts constrained associations in the conference IS. The

88

entire process of the conference is modeled as a dialog called ConferenceProcess. The
PC chair interacts with this dialog. This dialog has many fixpoints like CfP, Review,
etc. Each fixpoint denotes certain behavioral properties of the conference process. Each
fixpoint also has constrained associations which control other dialogs in the conference.

5.3 Dialog Specialization

Semantic processes often occur in the form of families, where many processes specialize
on a single general process. For example, a semantic process like AuthorSubmitsPaper

explained earlier, may be enacted in different ways. An author may submit a paper over
the internet; or the paper may be submitted by post; or perhaps by hand. Each of the
above process may have very different operational structure; but they form the same
semantic process.

Such a scenario is not different from the generalization-specialization relationships
encountered in classifying domain objects. Each of the above processes are specialized
variations of the same semantic process for an author submitting a paper.

Specialization is modeled by inheritance. The specialized class inherits properties of the
general class. By identifying properties that hold on a general class, the entire subdomain
that the general class represents, is addressed. A good illustration of how inheritance helps
bring down design complexity is shown by Haythorn [Hay94].

While inheritance is widely used to classify domain objects, inheritance in the dynamic
domain has not been understood very well. There have been some approaches to introduce
inheritance in workflows [Aal99]. However, it is still unclear what are the semantics of
such an inheritance and how exactly can they mitigate design complexity.

The conventional notion of object inheritance is insufficient for dialog inheritance
since it does not characterize interactive dynamics. The behavior of a dialog is abstracted
both by state and method interface, than just method interface in conventional objects.
Based on this, dialog specialization is introduced as follows:

Definition 5.5: A dialog D′ = 〈A′,M ′, S′〉 is said to be a specialization of another dialog D =
〈A,M,S〉 if:

1. S ⊆ S′

2. M ⊆M ′

3. |A| ≤ |A′|

4. ∀a ∈ A, ∃a′ ∈ A′, such that either a = a′ or a is a superclass of a′.

�

89

In a dialog inheritance, the specialized class inherits interaction states in addition to
attributes and method interfaces from the general class. This is because, a state in an
interactive process is a basic construct that encapsulates computational behavior from
that point. Interaction state is necessary for behavioral abstraction of an interactive
process. The specialized class may change definitions of computational behavior, and may
also add more interaction states and method interfaces. It may also override behaviors
from states. The specialized dialog represents the same domain objects as the general
dialog. However it can represent subclasses of domain objects of the general dialog, and
can add some more domain objects to its attribute set. Specialization of a dialog is said
to perform two kinds of behavioral specialization:

Specialization of interactive behavior: A specialized interactive behavior is obtained
by the addition of new fixpoints in the specialized dialog. A dialog D′ = 〈A′,M ′, S′〉
is said to specialize on the interactive behavior of another dialog D = 〈A,M,S〉, if
S ⊂ S′.

Specialization of computational behavior: Computational behavior is specialized by
overriding method definitions from fixpoints. A dialog D′ = 〈A′,M ′, S′〉 is said to
specialize on the computational behavior of another dialogD = 〈A,M,S〉, ifM ⊂M ′

or if M 6= M ′.

In addition to the above, any constraints that apply to the general dialog or its
fixpoints, apply correspondingly to the specialized dialog. A dialog may not override
constraints acting on its fixpoints. Constraints are a characteristic of the IS and not
completely in control of the dialog.

Example: Dialog StudentSubmitsPaper is a specialization of AuthorSubmitsPaper. It repre-
sents a semantic process for submission of a student paper. A student paper is authored completely
by students and is eligible for a student award. A separate database called StudentDB keeps track
of student submissions.
StudentSubmitsPaper is defined as 〈A′,M ′, S′〉 where A′ = A ∪ {StudentDB}; M ′ =
M ∪ {newStudent()}; S′ = S ∪ {NOSTUDENTID}. The method definitions for
StudentSubmitsPaper is the same as for AuthorSubmitsPaper, except for the following changes:

NOSTUDENTID dialog is in this state if userid is known and both paperid and student id are
unknown
login(), upload(), check() : disabled
newStudent() : generates a new key for studentid and takes dialog to state NOPAPERID
setPaperID() : takes a paper id as parameter; sets paper id if it matches paper entry for
userid in AuthorDB; destination state is either PAPERID, if no entry for paperid exists in
PaperDB; or UPLOADED if paperid exists in PaperDB; or NOPAPERID if failure
newSubmission() : Generates a new key for paper id and takes dialog to PAPERID

90

Specialization of interactive behavior (new fixpoints) Specialization of computational behavior (redefinition of fixpoint behaviors)

Figure 5.5: Dialog Inheritance

logout() : unsets userid and changes state to NOLOGIN

NOPAPERID dialog is in this state if userid is known and paperid is unknown, and studentid
is known (or is assumed non student)
login(), upload(), check(), newStudent() : disabled
setPaperID() : takes a paper id as parameter; sets paper id if it matches paper entry for
userid in AuthorDB; destination state is either PAPERID, if no entry for paperid exists in
PaperDB; or UPLOADED if paperid exists in PaperDB; or NOPAPERID if failure
newSubmission() : Generates a new key for paper id and takes dialog to PAPERID
logout() : unsets userid and changes state to NOLOGIN

In all other states method newStudent() is disabled.

Figure 5.5 depicts dialog inheritance in a schematic fashion. Inheritance may either
add more fixpoints thus specializing interactive behavior, or may override behaviors from
fixpoints thus specializing computational behavior.

Inheritance, along with constrained association can mitigate a lot of design complex-
ity of IS dynamics. Constrained associations represent integrity constraints on system
dynamics. These are constraints posed by the IS itself, and are independent of any imple-
mentation of the IS. With the use of inheritance, different levels of characterization may
be obtained without having to rewrite semantic states and integrity constraints.

5.4 Interaction Schema and Maintainability

A modeling paradigm is considered beneficial based on the perspectives it provides into
the system being modeled. Application domains in IS design problems are very complex
which makes it difficult to precisely define what kinds of perspectives are better.

Nevertheless, different modeling paradigms are preferred for different domains because
of the support they provide to mitigate design complexity specific to that domain. The

91

dualism paradigm offers many advantages over object-centric or process-centric models.
In particular:

• The dualism model provides sound logical underpinnings for the interactive behavior
of an IS. The formalism based on fixpoints are used to specify integrity constraints
on dynamics, behavioral specialization and also theorem proving and verification of
properties which will be introduced in the next chapter.

• By separating the structural concerns from the dynamic concerns of an IS, con-
straints that affect one dimension need not hamper the other. For example, agent
based modeling have used deontic constructs like obligation, permission, priority,
etc. [SBD+00]. Behaviors of agents in such a system are determined by the deontic
constructs associated with each of the agents. However, this makes it difficult to
determine whether a constraint that hampers agent behavior is due to the agent or
is a constraint of the IS itself. Identifying this becomes even more difficult when the
number of agents in the system and interactions between agents increase.

• In process-centric modeling, specifics of the structural properties of the system are
not explored in detail. This would increase design complexity when a given behavior
needs to be specialized for implementation over multiple structures. Presently this
is achieved by redefining behavioral processes and semantic conversion between pro-
cesses. But such a conversion may not be possible between every pair of processes,
and is likely to be inefficient in performance.

In addition to the above points, a large part of design complexity comes in the main-
tainability of the design. Software systems are generally employed for much longer periods
than their initial estimated lifetime. The maintenance period of a software system is many
times larger than the design period. During this time, maintainability of the running sys-
tem is heavily dependent on how flexible and scalable is the design. Bad designs can result
from any modeling paradigms. Good designs in terms of flexibility and scalability is often
dependent on the designer’s decisions. However, good designs also depend to a large part
on the support provided by the underlying modeling paradigm.

In this regard, Haythorn [Hay94] provides an illustration how object orientation ame-
liorates design by providing better maintainability. Here, we consider Haythorn’s example,
and show that in addition to object orientation, Haythorn’s model is also a dualism model.
We show that dualism in the design has contributed as much towards maintainability as
object orientation.

In order to create an argument for good designs, Haythorn provides an example prob-
lem of simulating the working of a bank. This consists of simulating customer arrival, and
one or more tellers. The system is then designed using structured (modular) design, object-
based and object-oriented designs. An object-based design was defined to be one which

92

Bank

Tellerlist Customer

Teller CustomerQ

Event EventQ
happen()

CustArrives TellerServe TellerFinish

(a) (b)

CustNode

WorkUntil()
report()

new(), report()

new()

avail()

serve()status()
finish()

accept()

next()

new()

schedule()

happen()

Figure 5.6: Object-based and object-oriented designs for the bank simulation problem

merely identified domain objects and interactions among them, and an object-oriented
design was one which made use of inheritance and polymorphism.

The soundness of the three designs is then evaluated by enumerating a series of an-
ticipated changes and measuring the impact of the changes on the designs. The calibra-
tion used is the percentage of code that was needed to be studied for incorporating the
changes. While structured design and object-based design were shown to perform poorly,
true object-oriented design was shown to reduce the impact of changes by almost half.

The essential differences between object-based and object-oriented design for the par-
ticular simulation problem are illustrated in Figure 5.6. The figure has been reproduced
directly from [Hay94] which was published before standard notations for objects existed.
In the figure, rectangles depict objects that have been identified, and directed lines among
objects indicate associations between objects. Inheritance is depicted in Figure 5.6(b) by
the triangle. Figure 5.6(a) depicts object-based design and Figure 5.6(b) depicts object-
oriented design. Object-oriented design consists of polymorphic behavior by the Event
class. There are also some domain objects in this design, which are not shown in the
figure. Object-based design on the other hand, consists solely of domain objects and
interactions among them.

The object-oriented design was shown to be robust in the face of the listed changes.
The average amount of code that needed to be studied for incorporating a change was
brought down by half in the object-oriented design relative to the object-based design.
Haythorn attributed better maintainability of object-oriented design to polymorphism.
But the paper also notices that the class Event is a “non-intuitive” class. Haythorn
then proceeds to ask how to find these “great” classes in a given problem domain. A
methodology is then proposed to find such “great” classes. It consisted of listing the set

93

of all enhancement requirements that could be anticipated, and to identify commonalities
in the changes, which could bring out the need for an abstraction like Event.

However, the above argument is somewhat unsatisfactory because there are no reliable
means to anticipate in a general sense, the kinds of requirement changes that could occur.
And even if a set of anticipated changes are listed, there are no general techniques by
which an appropriate abstraction may be found which would encompass the changes.

Also, by looking at the class structures involving Event and EventQ in Figure 5.6(b),
it is not apparent that those classes were identified based on a set of anticipated changes.
In fact, the schema of classes consisting of Event, EventQ and associated subclasses ac-
tually portray an interaction schema. They represent interactions among entities of the
bank, rather than any domain object per se. Haythorn’s object-oriented model is actu-
ally a dualism model. An event schema is a rudimentary form of an interaction schema.
An event like TellerServesCustomer encapsulates interactive behavior among domain
objects. Sketching an event schema is now popularly used for IS design [SHF00].

We contend that, more than just polymorphism, it is also the interaction schema
that has contributed towards maintainability. This is because, inheritance may also be
introduced in Figure 5.6(a) for achieving polymorphic behavior in the domain objects, but
without achieving the same kind of robustness arising from a class like Event.

In order to test our hypothesis, we separated the object-oriented design of Haythorn
into an object schema and interaction schema. The object schema consisted of all domain
objects like Teller, Customer, CustomerQ, etc., and the interaction schema consisted of
classes like Event, EventQ, etc. The 8 design changes identified by Haythorn required a
total of 341 lines to be modified. The paper also details how many lines in each class were
affected. By categorizing these changes into object and interaction schema, we found that
the interaction schema required 158 lines of change among the total of 341 lines. Also, 7
new subclasses were created of which 4 subclasses belong to the interaction schema.

As is evident here, with just polymorphism among domain objects and without an
interaction schema, almost half of the changes could not have been incorporated in a
straightforward manner. The changes would have been distributed across the domain
objects and would have required workarounds to implement them.

This chapter introduced the main aspect of the dualism paradigm. The interactive
behavior of the IS is modeled by an interaction schema. The interaction schema models
IS functionality concerns independent from the implementational structure. Policy de-
cisions on IS functionality may be embedded into the interaction schema in the form of
constraints and may be flexibly manipulated. The next chapter introduces the dualism
process framework. The dualism outlook is used throughout the process lifecycle. The
chapter also proposes mechanisms for specification and verification of interaction spaces.

94

Chapter 6

The Dualism Process Framework

If the Tao is great, then the operating system is great. If the operating system is great, then

the compiler is great. If the compiler is great, then the application is great. If the application

is great, then the user is pleased and there is harmony in the world.

The Tao gave birth to machine language. Machine language gave birth to the assembler.

The assembler gave birth to the compiler. Now there are ten thousand languages.

Each language has its purpose, however humble. Each language expresses the Yin and Yang

of software. Each language has its place within the Tao.

But do not program in COBOL if you can avoid it.

– Geoffrey James, ”The Tao of Programming”

The dualism approach to IS design is based on a paradigm of reconciling between
functional semantics (business logic) and operational semantics (structure and behavior),
all the while maintaining a degree of autonomy between the two issues. The dualism per-
spective of an IS is not limited to conceptual modeling alone, but is important throughout
the life cycle of an IS. In this work we also propose a process framework for the dualism
model. This is based on the codesign “pyramid” framework. Dualism in IS concerns is
addressed along three levels in the framework – specification, conceptual modeling and
implementation. Three languages are proposed: Dialog Specification Language (DSL) for
the specification layer, Dialog Description Language (DDL) for the conceptual layer, and
the Dialog Presentation Framework (DPF) for the implementational layer.

6.1 The Dualism Pyramid

The dualism process framework is shown in Figure 6.1. The framework is the same pyramid
as of codesign, introduced in Chapter 4. The figure depicts the pyramid plan – as seen
from above.

An IS project begins with the idea conception at the top of the pyramid. The idea grows
in scope until it is finally implemented at the base of the pyramid. The process framework

95

Idea
conception

The
story
of
the
IS

Actors
and
infrastructure
of
the
IS

Business-user layer

computation

Views

schema
Object

Database

design

Interaction
schema

Dialog
design

Dynamic
constraints

Conceptual layer

DSL

DDL

Object schema implementation

implementation

Database

DBMS

Prog.
lang.

Distribution

Hetero-
geniety

Interaction schema implementation

GUI,
widgets
programming

Interaction
engine

WWW
servers

Protocol
design

Distribution

Heterogeniety

DPF

Fault tolerance, recovery, ... Fault tolerance, recovery, ...

Implementation layer

Figure 6.1: The dualism process framework

96

proposes three layers of concern between idea conception and implementation. These are
respectively called: Business-user layer, Conceptual layer and the Implementation layer.
Since this a process framework, there are no definite rules as to how these layers are
interlinked. They might be cascaded like in a waterfall process model or may be executed
in an iterative fashion as in a spiral model (c.f. [Som00] for process models). Any particular
project may also define other intermediate layers.

Business-user layer: The business-user layer is the specification layer of the IS. The
perspective of the IS in this layer is through the eyes of the business users. This layer
is a direct expansion of idea conception. This layer is addressed by the system analyst.
The role of the analyst in this layer is to capture and formalize user requirements in a
comprehensive fashion.

IS dynamics in this layer is specified in the form of a “story” of the IS. The IS story
specifies different “actors” and “infrastructure” that make up the IS. In addition, the IS
story consists of many scenarios that describe different aspects of the story.

In the dualism paradigm, the IS story belongs to the interaction space and actors and
infrastructure of the IS are documented in the object space. At this layer, the interaction
space is called the “story space” of the IS.

Definition 6.1: The story space in a dualism model is the set of specifications that describe

interactive behavior of the IS. �

Conceptual layer: Conceptual layer of the dualism pyramid is in the IS designer’s
realm. It describes the conceptual model of the IS that is consistent with the IS story.
This layer consists of an object schema and an interaction schema. The object schema
describes the domain of actors and infrastructure. The interaction schema encodes the IS
story into dialogs, and associations between dialogs. Dialogs model interaction states and
constraints across interaction states. Processes that make up the IS story are translated
into roles of domain objects and interaction sequences among them.

The interaction schema in the conceptual layer is described by a language called the
dialog description language (DDL).

Implementation layer: The implementation layer of the dualism pyramid is in the
realm of the developer. This layer consists of the implemented system that has to be
consistent with the conceptual model. Implementation is concerned with a number of
practical constraints arising from distribution, heterogeneity, crashes, etc.

In addition to the above, modalities like obligation, permission and prohibition have
to be translated into corresponding implementational paradigms. Depending on the im-
plementational paradigm, these modalities may mean different things. For example, in
a networked environment, an obligation for a dialog may be implemented as an email
message sent to the concerned actor to start a particular activity. In a GUI environment,

97

Business-user layer Conceptual layer Implementation layer

Specification Conceptual modeling Implementation
System analysts concern System designers concern Developers concern

IS story Interaction schema IS implementation
Actors, infrastructure, scenarios Dialogs, deontic constraints objects, messages, etc.

Table 6.1: Three layers of a dualism pyramid

an obligation may result in a popup window that prompts the user towards the specified
interactive activity. Similarly, in a service environment like a hospital, an obligation may
be displayed on a public terminal or a voice message.

Similarly, the presentation component for dialogs may vary considerably depending on
the implementation. The IS is accessed by users over different target platforms. Depending
on what kind of support is provided by these target platforms, the same dialog may have
to be implemented using different sequences of activities.

Implementational layer is hence the largest layer of the pyramid. The scope of issues
it has to address is much larger than either the conceptual layer or the business-user
layer. The interaction space of the IS in the implementational layer is called the “system
space.” The three spaces are summarized in Table 6.1.

Definition 6.2: The system space of an IS in a dualism model is the set of all interactive

behaviors that is performed by any given implementation of the IS. �

6.2 Hazards from Translation

The complexity of interactive dynamics comes from their three-valued system of descrip-
tion. An interactive process is not just described by liveness properties, but also by a set of
possible behavioral properties. Any consistent instance of an interactive process displays
it’s set of obligated properties and zero or more of the permitted properties. Emergent
behavior that is characteristic of open systems may be attributed to a large space of
it’s possible behaviors as against it’s liveness behaviors. The space of possible behaviors
may also result in inconsistent or unsafe behaviors if their correspondence to interaction
specification is not exact.

To identify such modeling hazards, the dualism paradigm addresses interaction space
from the three layers separately. The interaction schema at the conceptual layer must
be consistent with the IS story at the business-user layer; and the IS implementation in
the system space should be consistent with the interaction schema. Because of the three-
valued nature of interactive spaces, it is possible to encounter different kinds of hazards

98

while translating between the three spaces. These hazards are explored in this section.

6.2.1 The ideal translation

The following notation is used to represent the three modalities (obligation, permission
and prohibition) from the three layers (business-user layer, conceptual layer, implemen-
tation layer): S for the business-user layer or story space, C for the conceptual layer
or the interaction space, and I for the implementation layer or the system space. Thus
OS , PS and FS denote the three modalities for the business-user layer; OC , PC and FC

denote modalities of the conceptual layer; and, OI , PI and FI denote modalities of the
implementation layer.

O P

F

O P

F

O P

F

Story space

System space

Interaction space

Figure 6.2: Ideal alignment of the three spaces

Figure 6.2 shows how the three spaces should be ideally aligned. In an ideal situation
OS = OC = OI ; PS = PC = PI and FS = FC = FI .

Specification paradigms at the business-user layer usually specifies only obligated be-
havior. The set of possible behaviors of the IS is implicit in the specifications. They
have to be derived from generalizations over user specifications. Whatever is not specified
and cannot be implied from generalizations, may be considered forbidden. In an ideal de-
sign and implementation, the set of all obligations in the interaction schema corresponds
to the set of all specified behavior; the set of all permitted behavior in the interaction
schema corresponds to the set of all generalizations made from the story space. The set
of all prohibitions would correspond to the unspecified behaviors in the story space. Sim-
ilarly, whatever is necessarily done by an implementation engine corresponds to the set

99

of all obligations in the interaction schema; whatever can be done by an implementation
corresponds to the set of all permissions; and whatever cannot be done corresponds to
prohibited behavior.

Real life IS designs do not have such ideal mappings. In even fairly trivial implemen-
tations, discrepancies arise in translating specification to implementation. The nature of
these discrepancies and what do they mean are explored in more detail below.

6.2.2 Discrepancies between OS and OC

If OC ⊂ OS , then the conceptual model of the IS is said to be incomplete. The IS does
not perform all obligated behavior specified by the user. If OS ⊂ OC , then the IS model
is said to be malicious. It (obligatorily) performs semantical activities that have not been
specified by the user.

Example: Consider the running example of the conference IS. Let there be a specified
obligation that the PC chair should start assigning papers to reviewers once the deadline
for paper submission is over. This would be manifested in the interaction schema as a con-
straint of the form O[AssignReviewers] ← [ConferenceProcess.Review]. Refer to Fig-
ure 5.4 for a pictorial representation of a part of the interaction schema. AssignReviewers
is the dialog that represents the assignment process and ConferenceProcess represents
the overall conference process where Review is a fixpoint representing IS behavior after
the paper submission is closed. If the design does not have this constraint it is said to be
incomplete.

In the AuthorSubmitsPaper dialog the only fixpoint that is obligated is the
UPLOADED fixpoint. Every instance of the dialog should result in at least one upload.
It is not obligated for the author to login at this dialog, if the author has already logged
into the system. If the conceptual layer includes the LOGIN fixpoint as the set of
obligated strings, it is said to be malicious. It is obligating something that has not been
specified as an obligation. �

If (OS −OC) ⊂ PC , then the IS is said to be conceptually inefficient. There are some
specified activities that are not incorporated by the IS model, but it is possible to perform
them anyway. If (OC − OS) ⊂ PS , then the IS is said to be conceptually overloaded. It
obligatorily performs some activities that are only implied from generalizations over the
user specifications not explicitly specified.

Example: In the conference IS, if the interaction schema contains a constraint
P [AssignReviewers]← [ConferenceProcess.Review] instead of O[AssignReviewers]←
[ConferenceProcess.Review], the interaction schema is conceptually inefficient. When

100

the ConferenceProcess reaches the Review fixpoint, it is permitted, but not required
for the PC chair to start the AssignReviewers dialog. However, the design is not incor-
rect since there is nothing to prevent starting the AssignReviewers dialog at the Review
fixpoint.

Similarly, the above case where the fixpoint LOGIN was included in the success
string represents a conceptually overloaded design aspect. User login is permitted by the
design although it is not obligated for the dialog to succeed. �

If (OS −OC) ⊂ FC , then the IS is said to be incorrect and incomplete. The IS design
prevents the IS from performing certain obligated behavior. If (OC −OS) ⊂ FS , then the
IS is said to be incorrect and malicious. The IS necessarily performs some activities that
are forbidden by the specification.

Example: In the conference IS, if no constraint of either of the following forms
O[AssignReviewers] ← [ConferenceProcess.Review] or P [AssignReviewers] ←
[ConferenceProcess.Review] exist in the interaction schema the dialog AssignReviewers
evaluates to F (contradiction = prohibition). This forbids the chair from starting the as-
signment process after the paper submission process deadline. The design is said to be
incorrect and incomplete.

Let the dialog AssignReviewers have a fixpoint called negotiate which is defined as fol-
lows: AssignReviewers.negotiate(negiotiate with reviewers for assigning papers) →
AssignPapers. The negotiate fixpoint represents a process where the PC chair nego-
tiates with reviewers to assign papers to them. After the negotiation process is over,
AssignReviewers moves to fixpoint AssignPapers, where reviewers can download pa-
pers assigned to them. Another dialog called Review represents the review process as seen
from the reviewer’s end. It consists of the following fixpoints: Negotiate where the re-
viewer negotiates with the PC chair for papers, Download where the reviewer downloads
papers for review, and UploadReview, where the reviewer uploads his review.

The following constraints hold between AssignReviewers and ReviewProcess:
F [ReviewProcess.Download] ← [AssignReviewers.Negotiate], and
P [ReviewProcess.Download] ← [AssignReviewers.AssignPapers]. This prevents
the reviewer from downloading a paper prematurely, and allows downloads after the
negotiation process is over. In such a case, if the designer mistakenly also includes a
constraint of the form O[ReviewProcess.Download] ← [ConferenceProcess.Review],
the design is incorrect and malicious. It obligates the reviewer to start his paper download
even before AssignReviewers has reached it’s AssignPapers fixpoint. �

A summary of the hazards arising from discrepancies between OS and OC are shown
in Table 6.2.2.

101

Hazard Discrepancy

Incomplete OC ⊂ OS

Malicious OS ⊂ OC

Conceptually inefficient (OS −OC) ⊂ PC

Conceptually overloaded (OC −OS) ⊂ PS

Incorrect and incomplete (OS −OC) ⊂ FC

Incorrect and malicious (OC −OS) ⊂ FS

Table 6.2: Discrepancies between OS and OC

6.2.3 Discrepancies between PS and PC

There are only two kinds of hazards resulting from discrepancies between PS and PC .
These are as follows: if PS ⊂ PC or (PC − PS) ⊂ FS , then the IS design is said to
be unsafe. It is possible to perform certain interactive activities from the IS which are
forbidden by the specification. Note that since O ⊆ P and P ∩ F = φ, any discrepancies
between PS and PC will always lie in the forbidden region.

If PC ⊂ PS or (PS−PC) ⊂ FC , then the IS design is said to be conceptually inefficient.
The design has not taken into consideration implicit generalizations that could be made
from user specifications.

Example: In the conference IS, once the call for papers is closed and the review process
has begun, it is forbidden to receive any more submissions from authors. In the interaction
schema this is modeled by having the following constraints: P [AuthorSubmitsPaper] ←
[ConferenceProcess.CfP] that permits an author to submit a paper when the call for
papers is still open, and F [AuthorSubmitsPaper] ← [ConferenceProcess.Review] that
forbids the author to submit a paper once the call for papers is closed. However, if the
latter constraint is missing from the interaction schema, it would permit an operation
(submission of papers) that is forbidden, making the conceptual model unsafe.

In the AuthorSubmitsPaper dialog, the semantic process is said to have succeeded
if there is at least one upload as part of the process. This is modeled by including the
UPLOADED fixpoint in the set of success strings. On the other hand, an author may
login into the conference IS to submit a paper and decide to logout without submitting a
paper. This is a perfectly permitted operation. Although it does not constitute a successful
execution of the process, it also does not mean a failed execution of the process. However,
if the interaction schema specifies strings not containing the UPLOADED fixpoint as the
set of failure strings of the dialog, it is conceptually inefficient. The interaction schema
places unnecessary prohibitions on it’s interactive processes. �

Table 6.2.3 summarizes the hazards resulting from discrepancies between PS and PC .
Figure 6.3 pictorially depicts translation hazards between story and interaction spaces.

102

Ps, Pc Oc
Os Ps, Pc Oc

Os

Incomplete, conceptually inefficient model Malicious, conceptually overloaded model

Oc

OsPs, Pc

Fs

Incorrect and malicious model

Os

OcPs, Pc

Fc

Incorrect and incomplete model

Hazards in modeling interaction spaces

Unsafe model

Ps

Pc

Ps

Pc

Conceptually inefficient model

Figure 6.3: Translation hazards between story and interaction spaces

103

Hazard Discrepancy

Unsafe PS ⊂ PC , (PC − PS) ⊂ FS

Conceptually inefficient PC ⊂ PS , (PS − PC) ⊂ FC

Table 6.3: Discrepancies between PS and PC

6.2.4 Discrepancies between OC and OI

Hazards resulting from discrepancies between OC and OI are analogous to those resulting
from discrepancies between OS and OC .

If OI ⊂ OC , the implementation is said to be unreliable. It does not perform some
obligated activities in the IS design, and so may fail at a crucial time. If OC ⊂ OI , then
the implementation is said to be malicious. It performs activities that are not part of the
IS design.

If (OC−OI) ⊂ PI , then the IS implementation is said to be unreliable, but safe. The IS
implementation does not perform some obligated activities, but it is possible to do them
with the current implementation. If (OI −OC) ⊂ PC , then the implementation is said to
be overloaded and inefficient. It necessarily performs activities that it need not perform.

If (OC − OI) ⊂ FI , then the IS implementation is said to be unreliable and unsafe.
The implemented IS may fail at a crucial stage by failing to perform obligated activities,
and with no alternative means to perform the obligated activities. If (OI − OC) ⊂ FC ,
then the IS implementation is said to be malicious and unsafe. The implementation
performs activities that are forbidden by the design.

Example: Modalities like O, P and F have different kinds of implementation depend-
ing on the implementation context. For example, in the conference IS, an obligation for
the PC chair to start the AssignReviewers dialog may be manifested by sending an email
to the PC chair to begin the dialog. Suppose in an implementation the email is not sent
but the AssignReviewers dialog is simply permitted to run when ConferenceProcess

reaches the state Review, the implementation is said to be unreliable, but safe. The IS
cannot be relied upon to let the PC chair know his obligations, but the PC chair can
perform them anyway.

On the other hand, let this obligation to start the AssignReviewers dialog be imple-
mented by sending an email to the PC chair that contains an access code. The access code
is required to start the dialog without which it is forbidden to run the dialog. In such a
case, if there is a bug in the sending of the email, the implementation would be unreliable
and unsafe. It does not perform it’s obligations, and nor does it allow the actors of the IS
to perform the required obligatory behavior.

Let the conference IS be implemented as a website powered by CGI or PHP scripts.

104

Hazard Discrepancy

Unreliable OI ⊂ OC

Malicious OC ⊂ OI

Unreliable, but safe (OC −OI) ⊂ PI

Overloaded and inefficient (OI −OC) ⊂ PC

Unreliable and unsafe (OC −OI) ⊂ FI

Malicious and unsafe (OI −OC) ⊂ FC

Table 6.4: Discrepancies between OC and OI

When an author visits the website, he is presented with a front page and a number of
links like the conference venue, call for papers, registration, etc. The author may visit
any of these links, and some of the links require the author to login with a username and
password. In order to facilitate the author to do this, the front page also contains a form
for username and password that allows the author to login. It is not obligated for the
author to login whenever visiting the web site. But if the implementation does not do this
and instead shows a login page as the front page of the website, it is in effect obligating
the user to login every time when visiting the web pages. Such an implementation is said
to be overloaded and inefficient; it is obligating a task that is only permitted. �

Hazards resulting from discrepancies between OC and OI are summarized in Ta-
ble 6.2.4.

6.2.5 Discrepancies between PC and PI

Similar to the hazards between PS and PC , there are only two kinds of hazards resulting
from discrepancies between PC and PI .

If PC ⊂ PI or (PI − PC) ⊂ FC , then the implementation is said to be unsafe. It is
possible to do certain forbidden activities by interacting with the IS implementation. If
PI ⊂ PC or (PC − PI) ⊂ FI , then the implementation is said to be a no-frills (but safe)
implementation. The IS implementation does not support added features and activities
that may be performed as per the IS design.

Example: In the conference IS, it is forbidden for authors to submit papers after the
call for papers is closed. This is modeled by the constraint F [AuthorSubmitsPaper] ←
[ConferenceProcess.Review] in the interaction schema. In the implementation of the IS
as a website, this can be implemented by disabling the hyperlink from the main page to
the paper submission page after the call for papers is closed. If this is not done, then the
implementation is said to be unsafe. It permits operations that are forbidden.

Similarly, the interaction schema allows a reviewer to start a ReviewProcess dialog
right after the ConferenceProcess has reached the Review fixpoint. However, the
reviewer is not allowed to download papers until the negotiation process is over in the

105

Hazard Discrepancy

Unsafe PC ⊂ PI , (PI − PC) ⊂ FC

No-frills implementation (safe) PI ⊂ PC , (PC − PI) ⊂ FI

Table 6.5: Discrepancies between PC and PI

AssignReviewers dialog. This can be implemented by enabling the link that allows
reviewers to check on the submitted papers right after the call for papers is closed. But if
the implementation has this link disabled until the negotiation is over, the implementation
is said to be no-frills but safe. It forbids operations which are permitted but not obligated.
�

Hazards resulting from discrepancies between PC and PI are summarized in Table 6.2.5.
Figure 6.4 pictorially depicts translation hazards between interaction and system spaces.

6.3 The Story Space

6.3.1 Structure of the story space

The IS story specifies dynamic properties of the IS. There are many specification languages
that have been proposed in IS literature. Hence we do not concentrate on developing
a detailed specification language. The endeavor in the dualism framework is to show
how to divide a story space into three sub spaces depicting obligations, permissions and
prohibitions respectively. Obligated space represents behavior which have been specified
explicitly. Permitted space consists of implications and generalizations made from the
specifications. Prohibited space consists of everything that is not obligated or permitted.

For specifying IS dynamics, we propose a specification language called the Dialog
Specification Language or DSL. Figure 6.5 shows the logical structure of a DSL story. In
the figure, the following convention is used to represent the DSL grammar. Non terminal
symbols are enclosed within angular brackets < and >. The definition of a non terminal
is denoted by the symbol ::=. Terminal symbols are denoted without any surrounding
structure. A domain whose terminal symbols may be too long to list is specified within
parenthesis, for example (set of integers). When parenthesis is part of the syntax, it is
preceded by a backslash. Control characters are indicated with a backslash and a following
letter. For example, \n represents the newline character and \s represents a white
space.

The IS story consists of a set of actors of the IS, who use a set of infrastructure that
make up the IS. The story is organized as a set of scenarios. Each scenario is enacted
by a set of actors, who use one or more of the IS infrastructure. Scenario dynamics are

106

Pc, Pi Oi Pc, Pi Oi
Oc

Oi

OcPc, Pi

Fc

Malicious and unsafe implementation

Oc

OiPc, Pi

Fi

Unreliable and unsafe implementation

Hazards in implementing interaction spaces

Oc

Malicious, overloaded and inefficient implementationIncomplete, unreliable, but safe implementation

Unsafe implementation

Pc

Pi

Pc

Pi

No-frills implementation (safe)

Figure 6.4: Translation hazards between interaction and system spaces

107

<Story> ::= start <name> <delim> <actors> <infrastructure> <scenarios>

endstory <delim>

<actors> ::= actors <delim> <actor_description> end actors <delim>

<actor_description> ::= <actorname> <delim> (textual description)

endactor <delim> <actor_description> | (null)

<actorname> ::= <name>

<infrastructure> ::= infrastructure <delim> <infrastructure_description>

end infrastructure <delim>

<infrastructure_description> ::= <infrastructurename> <delim>

(textual description) end <infrastructurename>

<delim> <infrastructure_description> |

(null)

<infrastructurename> ::= <name>

<scenarios> ::= <scenario> <scenarios> | (null)

<scenario> ::= scenario <name> <delim> <sdescription> endscenario <delim>

<sdescription> ::= <actordecl> <infdecl> <trails>

<actordecl> ::= <actorname> <delim> <actordecl> | (null)

<infdecl> ::= <infrastructurename> <delim> <infdecl> | (null)

<trails> ::= <trail> <trails> | (null)

<trail> ::= SOP <eventlist> EOP <delim>

<eventlist> ::= <levent> | <levent> + <eventlist> | (null)

<levent> ::= <label> | <event> | (.and. <levent> <levent>) |

(.or. <levent> <levent>)

<event> ::= <label>: <action> | <action>

<action> ::= do(interaction_expression) | sync() | <action> & <action> | NOP

<label> ::= <name>

<name> ::= (string of alpha numeric characters)

<delim> ::= ;\s*

<num> ::= (natural number)

Figure 6.5: DSL grammar

108

represented as trails that make up the scenario.
Each trail consists of a beginning label called SOP and an end label called EOP.

Between SOP and EOP, the trail consists of a sequence of labeled events. Event sequences
may have branches, loops and parallel structures. Branching is represented by two kinds
of constructs: .and. and .or. The .and. construct specifies concurrent execution of
branches; and the .or. construct specifies decision making. A special event called sync()

joins multiple paths in a synchronized fashion. At any place where an event is expected,
a label of a previously declared event may be specified. This way loop structures are
introduced.

Each event is described by a do() construct containing an interaction expression be-
tween domain objects (actors and infrastructure). An event may also be a compound
event consisting of a conjunction of do() constructs. In DSL, there is no syntax for the
interaction expression. It could be in the form of a textual description that describes the
action.

Consider the running example of the conference IS. The semantic process that depicts
paper submission by an author has many possible interaction sequences. The author may
create a new account, before submitting a paper; the author may submit multiple papers in
the same process, the author may replace a paper already uploaded with a newer version,
etc.

The simplest way a user can specify such a semantic process is to list out as many
interactive sequences as possible that make up the process. Here are an example set of
DSL sequences that make up the process of paper submission:

SOPdo(login) + l1 : do(newSubmission) + do(upload) + (.or.l1do(logout))EOP
SOPdo(login) + do(replace old submission) + do(upload) + do(logout)EOP
SOPdo(newSubmission) + do(upload) + do(checkSubmission) + do(newSubmission) +
do(upload)EOP

User specification typically starts with the most obvious interaction sequence. In this
case, the interaction sequence that is most common (and is most likely to be specified
first) is do(login) + do(newSubmission) + do(upload) + do(logout). This represents one
behavioral sequence that makes up the AuthorSubmitsPaper process. Depending on how
comprehensively the requirements elicitation process is carried out, the user may explicitly
think of the other sequences that make up the process, or of constructs like parallelism,
branches and loops.

The task of the system analyst is to recognize that different sequences specified by the
user make up the same semantic process. The analyst should generalize on these sequences
and create a scenario that comprehensively describes the semantic process.

A scenario so specified can depict either an algorithmic, single-stream interactive or

109

multi-stream interactive behavior. It is easy to identify whether a scenario represents
an algorithmic activity. In this case, all trails in the scenario will have only one do()

construct in their specification.
If a scenario represents sequential interaction, it can be modeled as a dialog. If it

represents multi-stream interaction, it has to be modeled as a set of dialogs and constrained
associations. In order to determine whether a scenario depicts multi-stream interaction,
the following question needs to be asked: In this scenario semantics, what forms the
environment of the scenario and what forms the IS part of the scenario? And, when a
message is sent by the IS part of this scenario, is it important to which environment it
is sent? In other words, is the input-output behavior of the scenario channel-sensitive?
In the example for paper submission, the environment is the Author. The interactive
behavior that is specified is not channel sensitive.

It is not a straightforward task to map between DSL scenarios and dialogs. How hard
it is to design an interaction schema from a DSL specification would depend on how well
the specification has classified semantic processes into scenarios and trails. In addition,
no simple means exist to identify process families and build generalization-specialization
relationships. For a large part, the soundness of a dualism conceptual model would still
depend on the designer’s skills.

Figure 6.6 shows part of the AuthorSubmitsPaper scenario as a combined DSL specifi-
cation which has integrated all the three trails specified above. A pictorial representation
of the scenario is also shown.

6.3.2 Generalization mechanisms

The task of the analyst during requirements elicitation is to identify that different se-
quences specified by the user belong to the same semantic process. The analyst should
then combine the trails and perform generalizations on them to form a scenario. Gen-
eralization helps the analyst identify loops and branching structures which the user may
not have specified explicitly. Some generalization mechanisms require domain knowledge,
while a few other mechanisms may be applied without any explicit domain knowledge.

Generalization involves identifying a general process structure from specific substruc-
tures or execution exemplars. In a formal sense, this is a mapping from a carrier set
Σ∗ to a set of axioms Σ. Problems of this nature have been addressed in “grammatical
inference” [MH96] that infers a grammar by looking at example sentences. Generalization
of dynamic processes have also been addressed by Cook and Wolf [CW98], who build a
state machine by looking at an example set of execution data. In [SS00], we compare these
different approaches and present a mechanism of generalization by discerning patterns in
transaction logs.

Combining trails: Trails of interaction sequences specified by the user have to be

110

Scenario AuthorSubmitsPaper
Actors: WebSite, Author;
Infrastructure: PaperDB, AuthorDB;

AuthorSubmitsPaper

login

newSubmission

setPaperID

upload check logout

setPaperID

logout

SOP

SOP

SOP

EOP

EOP

EOP

EOP

(b)

(a)

[T1,T2,T3]SOP [T1,T2](.or. do(login) [T3]l2: newSubmission) +
 (.or. [T1]l1: do(newSubmission) [T2] do(setPaperID) [T3] do(upload)) +
 (.or. [T1,T2] do(upload) [T3] do(check)) +

 (.or. [T1] (.or. l1, do(logout)) [T2] do(logout) [T3] (.or. l2, NOP))[T1,T2,T3]EOP

[T1,T2]SOP do(login) + (.or. [T1]l1: do(newSubmission) [T2] do(setPaperID)) + do(upload)
 + (.or. [T1] (.or. l1, do(logout)) [T2] do(logout)) [T1,T2] EOP

Figure 6.6: Scenario construction

111

combined to form a scenario. Combination of trails is achieved in DSL as follows:

• A trail is first unfolded to form a sequence of the form SOP (event)∗ EOP . This
sequence is the unfolded set of all activities in the trail. Hence loops and branches
are unfolded to form a long string of sequences.

• Consider a trail SOP (event)1 . . . (event)nEOP consisting of n events. Assign a logi-
cal timestamp to each event that shows it’s temporal dependency with it’s neighbor-
ing events. Hence if event i has a logical time stamp t (represented as (event)t

i), then
event i+ 1 would have a logical time stamp t+ 1 if there is a temporal dependency
between events i and i+ 1. If event i+ 1 can be performed concurrently with event
i, then it is given the same logical timestamp t.

• A trail is now considered as a sequence SOP Et0 . . . Etm EOP , of m compound
events. Each compound event Etk is of the form Etk = e1 ∧ e2 ∧ . . . where ∧ is
logical conjunction of all events having the same logical timestamp.

• Prefix each event of a trail with a label showing the name of the trail. Hence if trail
T1 contains events Et1 . . . Etm , then every Eti = e1 ∧ e2 · · · ∈ T1 is represented as
[T1]e1 ∧ [T1]e2

• Combine different trails by performing a logical disjunction among events having
the same logical time. Hence if [T1]Et1 = e1 ∧ e2 and [T2]Et1 = e2 ∧ e3, then
[T1, T2]Et1 = e2 ∧ ([T1]e1 ∨ [T2]e3). Note that since e2 is necessarily performed in
both T1 and T2, e2 has no prefix label, while e1 and e3 have a prefix label which
shows the trail context in which they are defined.

In the combined set of trails, the analyst can remove trail labels based on domain
knowledge. Any event which has no attached trail label is applicable to all trails. For ex-
ample, in Figure 6.6(a), the second trail depicts a combination of the three specified trails.
Some labels that may be removed in this combined trail are as follows: [T1,T2]upload

can be changed to upload since it is possible for a user to invoke upload twice. Similarly
[T2]logout can be replaced with logout since a user may logout regardless of whichever
is the current trail.

Loop structures in the combined trail may be identified by generalizing on regular
expressions. A regular expression represents a string of characters with constructs that
support repetitions. For any sequence of events Et1 . . . Etk , a generalized event sequence is
obtained by building an automaton that recognizes this generalized sequence. Construct-
ing automata from carrier sets is again a deeper issue which have been addressed in detail
elsewhere [SS00]. A generated automaton is characterized between two boundaries – “most
general” and “most specific”. A “most general” automaton contains only one state and

112

recognizes every string sequence. A “most specific” automaton recognizes only those set
of strings which have been presented to it and nothing else. Generalization mechanisms
fall somewhere between these extremes. The reader is refered to [MH96] and [SS99] for
detailed approaches into generalization mechanisms.

6.3.3 Identifying OPF modalities in an IS story

Based on the DSL syntax and the combination of trails, the story space of an IS is defined
formally as follows:

Definition 6.3: The story space of an IS is a tuple Story = 〈E,C, SOP,EOP 〉, where E is a

set of events of the form etk , where tk is the logical timestamp associated to them. Each event in

the story has one of the following constructs: do(), sync(), .and., .or., or NOP. C is a set of

relationships across events which are of the form etk
1 ∧ e

tk
2 , etk

1 ∨ e
tk
2 , or etk

1 + e
tk+1
2 . Relationships ∧

and ∨ are defined on events having the same logical timestamp; and + is defined on events having

consecutive timestamps. SOP denotes the head or start of a process and EOP denotes the tail

or end of a process. �

Walks in the story space: A walk in the story space, is any event sequence of
the form SOPe∗EOP , where e ∈ E and for any pair of consecutive events e1, e2 ∈ E,
e1 + e2 ∈ C.

A walk is said to be an obligated walk if there is no event of the form .or. in the
walk. It means that, if a semantic process that corresponds to the walk begins the walk
at SOP , it will obligatorily result in the sequence denoted by e∗ till EOP .

A sequence is said to be permitted if there exists at least one .or. event in e∗.
This means that a semantic process that contains this walk may produce the sequence
represented by the walk.

For verification of an interaction schema against the IS story walks in the story space
are used as specifications of functionalities. Any walk in the story space is placed in one of
three sets describing their modalities. These sets are named OC , PC and FC respectively.

6.4 The Interaction Space

6.4.1 Structure of the interaction space

The interaction space contains the conceptual model of the IS. It is characterized by an
interaction schema. The components of an interaction schema include dialogs modeled by
a set of interaction states or fixpoints; constrained associations and dialog specialization
relationships.

113

Interaction schema is modeled by the Dialog Description Language (DDL). The gram-
mar describing DDL is shown below.

<InteractionSchema> ::= <Dialogs> <Relationships>

<Dialogs> ::= <Dialog> <Dialogs> | (null)

<Dialog> ::= Dialog <DialogName> <delim> <Attributes> <MethodInterfaces>

<Fixpoints> <DialogDefinition> <Startstates> <Obligations>

<Prohibitions> End Dialog

<DialogName> ::= <name>

<Attributes> ::= attributes <AttributeDescription> end attributes <delim>

<AttributeDescription> ::= <Object> : <Type> <delim>

<AttributeDescription> | (null)

<Object> ::= <name>

<Type> ::= <name>

<MethodInterfaces> ::= methods <MethodDeclaration> end methods <delim>

<MethodDeclaration> ::= <Type> <MethodName>\(<Params>\) <delim>

<MethodName> ::= <name>

<Params> ::= <Type> | <Type>, <Params> | (null)

<Type> ::= <name>

<Fixpoints> ::= states <FixpointDeclaration> end states <delim>

<FixpointDeclaration> ::= <fixpoint> <delim>

<fixpoint> ::= <name>

<DialogDefinition> ::= definition <FixpointDefinition> end definition

<delim>

<FixpointDefinition> ::= @<fixpoint> <MethodDefinitions>

<FixPointDefinition> | (null)

<MethodDefinitions> ::= <MethodDefinition> <MethodDefinitions> |

(null)

<MethodDefinition> ::= <MethodName> {} | <MethodName> { <intexp> }

<intexp> ::= <delim> | <varname> = <callexp> | return <callexp> |

return <varname> | if (<intexp>) {<intexp>} else

{<intexp>} | while (<intexp>) {<intexp>} | (null)

<callexp> ::= call <Object>.<name>(<name> (,<name>)*) <delim>

114

<Startstates> ::= startstates <Statelist> end startstates <delim>

<Statelist> ::= <fixpoint> , <Statelist> | <fixpoint> <delim> | (null)

<Obligations> ::= obligations <ODefinition> end obligations <delim>

<ODefinition> ::= <fixpoint> , <ODefinition> |

<fixpoint> <delim> <Odefinition> | <delim>

<Prohibitions> ::= prohibitions <PDefinition> end prohibitions <delim>

<PDefinition> ::= <fixpoint> , <PDefinition> |

<fixpoint> <delim> <PDefinition> | (null)

<Relationships> ::= <Constraint> <Relationships> | <Specialization>

<Relationships> | (null)

<Constraint> ::= constraints <vardecl> <constraintdecl> end

constraints <delim>

<vardecl> ::= <Varname> : <DialogName> <delim> <vardecl> | (null)

<constraintdecl> ::= <consequent> \<-- <antecedent> <delim>

<constraintdecl> | (null)

<consequent> ::= <deontic>[<Varname>] |

<deontic>[<Varname>.<fixpoint>] |

<deontic>[<DialogName>] |

<deontic>[DialogName>.<fixpoint>] | (null)

<deontic> ::= O | P | F

<antecedent> ::= <Varname> | <DialogName> | <antecedent> &&

<antecedent> | (null)

<Specialization> ::= specialization <SpecializationRel> end

specialization <delim>

<SpecializationRel> ::= <DialogName> \<-- <DialogName> <delim>

<SpecializationRel> | (null)

<name> ::= (alphanumeric string)

<delim> ::= ;\s*

As shown in the grammar, an interaction schema involves description of the dialogs
in the schema and relationships across dialogs. Dialog relationships can be of two kinds:
constrained association or dialog specialization. While the concept of a dialog relationship

115

is more general, DDL allows only the above two kinds of relationships.

6.4.2 OPF modalities in the interaction space

In order to identify obligated, permitted and forbidden parts of the interaction space, we
provide a redefinition of the interaction space as follows:

Definition 6.4: The interaction space is represented as 〈D,S,@, C〉, where D is the set of all

dialog names, S is the set of fixpoints from all dialogs and all instances of dialogs active in

the interaction space; @ is the traversal relationship across fixpoints; and C is the constraint

relationship across fixpoints. �

Procedures: A procedure in the interaction space is a sequence of fixpoints of the
form seq ∈ (S ∪D)∗, such that for any s ∈ seq either of the following holds:

• s ∈ D, or

• ∃p before s such that p @ s, or

• ∃p1, p2, . . . pn before s such that s← p1 ∧ p2 ∧ · · · ∧ pn ∈ C

A procedure represents any interactive activity performed by the IS on one or more
channels. A procedure traverses through the interaction space based on the traversal
relationship @ and on constraints between interaction states.

A procedure P is said to be obligated if: (a). At least one dialog name s ∈ D present
in the procedure P is obligated; and (b). For every dialog s in P , at least one of it’s
obligated string of fixpoints is also present in P .

A procedure P is said to be permitted if: (a). 6 ∃s ∈ P , such that s ∈ D and Os. That
is, there are no obligated dialogs which have been involved as part of the procedure; and
(b). P does not end with any forbidden elements.

A procedure P is said to be forbidden if P ends on forbidden elements. That is,
the procedure is given up because it encounters forbidden fixpoints and cannot proceed
further.

Any procedure in the interaction space is placed in one of three sets describing their
modalities. These sets are named OC , PC and FC respectively. Verification of a conceptual
model against a specification is made by establishing a mapping between the story space
and the interaction space. An ideal mapping is bijective between OS and OC and between
PS and PC . Mappings which are not bijective lead to translation hazards which have been
discussed earlier in this chapter.

Example: Refer to the interaction schema of the conference IS from
Figure 5.4. In this interaction, the following sequence forms a procedure:
ConferenceProcess . CfP . AuthorSubmitsPaper . login . newSubmission

116

. upload . logout. Every element of this sequence is related to it’s previous
element either by the traversal relationship @ or a constrained association. For example
P [AuthorSubmitsPaper] ← [ConferenceProcess.CfP] and login @ newSubmission.
If the dialog ConferenceProcess is considered obligated (it is obligated to run the
conference!) then the above procedure forms an obligated procedure, else the above
procedure is a permitted procedure.

do(PC chair negotiates with reviewers) do(reviewer negotiates with PC chair)

do(PC chair sends out a call for more reviewers)

do(PC chair assigns papers)

do(reviewer downloads paper)

do(reviewer uploads review)

SOP

SOP

.or.

EOP

Call for reviewers

Assign papers

Negotiate

O F

Negotiate Download

Upload
review

AssignReviewers Dialog

Review Dialog

(a)

(b)

Obligation strings:
 AssignPapers

Obligation strings:
 Download . UploadReview

Figure 6.7: Example translation between story and interaction spaces

Translation Example: Consider the specification of a review scenario depicted pic-
torially in Figure 6.7(a). The scenario is a combination of many trails which specify how
a PC chair performs the review process. This scenario is channel sensitive. It interacts
with two environments – the PC chair and the reviewer and it is important which task
is done by whom. Figure 6.7(b) shows part of the interaction schema that models this
scenario. It consists of two dialogs and constraints between them. The dialogs are named
AssignReviewers and Review respectively. AssignReviewers interacts with the PC chair
and is used to negotiate with reviewers, call for new reviewers and assign reviewers. Review
is used by the reviewer to negotiate with the PC chair and to review papers. The obligated
string of interaction states for AssignReviewers is the lone state AssignPapers since the

117

only thing that is expected of this process is that it assigns papers to reviewers. The
obligated string for the Review dialog is Download · UploadReview.

In order to validate the interaction schema against the DSL scenario, the fol-
lowing test is performed: any walk in the DSL scenario contains a corresponding
procedure in the interaction schema and vice versa. The following is an obli-
gated walk of the scenario: SOP + do(PC chair negotiates with reviewers)
+ do(reviewer negotiates with PC chair) + do(PC chair assigns papers) +
do(reviewer downloads paper) + do(reviewer uploads review) + EOP . The cor-
responding procedure in the interaction schema is as follows: AssignReviewers .

Review . PCNegotiate . ReviewerNegotiate . AssignPapers . Download .

UploadReview. In order for this procedure to be an obligated procedure, at least one
of the dialogs that begin this procedure should be obligated. This is verified by looking
at the larger interaction schema from Figure 5.4 where the AssignReviewers dialog is
obligated when the ConferenceProcess dialog reaches the Review state. �

6.5 The System Space

6.5.1 Structure of the system space

The system space is in the realm of the IS developer. It concerns implementational aspects
and has to address many practical issues like distribution, heterogeneity, efficiency, etc.

The number of issues that have to be addressed in this space is too numerous to be able
to address them comprehensively with one implementational language for dialogs. Hence
we propose an implementational framework that guides the developer to implement a
given interaction schema.

This framework is called the Dialog Presentation Framework (DPF) and is depicted
schematically in Figure 6.8. The interaction schema is stored in a database which is
accessed by one or more constraint manager processes. Constraint managers act as local
servers on different locations which provide IS functionality. Dialogs may be started on
any local server and the dialog is managed by the local constraint manager. The constraint
manager keeps track of the states of each of it’s dialogs and propagates constraints to other
managers when necessary.

Since the interaction schema is shared by all constraint managers, locks are maintained
in the central database where the interaction schema is stored. Locks ensure that any given
constraint is managed by at most one constraint manager.

The life cycle of a dialog in this framework is as follows:

• When a dialog Dl is started on any local server l, it registers itself with the local
constraint manager Cl.

118

User

Another IS

Constraint
Manager

Constraint

Manager

Constraint

Manager

Constraint

Manager

Constraint
Manager

Interaction
Schema

Dialog

Dialog

Dialog

Dialog

Dialog

Dialog Dialog
Dialog

Dialog

Figure 6.8: The dialog presentation framework

• The constraint manager Cl checks the central database whether Dl is free of any
constraints acting on it.

• If constraint ψ contains the dialog in head part of the constraint, then Cl tries to
lock the constraint.

• If no other constraint manager has already held ψ, the lock is granted to Cl.

• If some other constraint manager Ck has already held the lock for ψ, then Cl registers
itself with Ck. Whenever the status of the body of ψ changes, Ck would now inform
Cl, which in turn would propagate the constraint to Dl.

• The process by which a dialog finishes execution is also achieved by an analogous
process of intimations and release of locks.

For a dialog itself, there are certain aspects which have to be implemented by the
developer. These concern handling OPF modalities for the dialog and each of it’s fixpoints.

119

The developer needs to decide what is performed when the dialog or any of it’s fixpoints
are respectively obligated, permitted or forbidden. For example, in some cases, obligation
towards a dialog may mean sending an email to the concerned people to start those
dialogs. In some other cases, an obligation to a dialog may simply mean displaying a
pop-up window on a user’s terminal. The DPF framework hence requires the developer
to fill in a template for each dialog in the system that specifies how each of the dialog’s
modalities are presented. The syntax of the template is as follows:

<DPFDescription> ::= Dialog <DialogName> <delim> <DO> <DP> <DF>

<FM> End <DialogName> <delim>

<DialogName> ::= <name>

<DO> ::= O { <command> }

<DP> ::= P { <command> }

<DF> ::= F { <command> }

<FM> ::= @<fixpoint>.O { <command> } <FM> | @<fixpoint>.P { <command> }

<FM> | @<fixpoint>.F { <command> } <FM> | (null)

<command> ::= (string of commands in implementation language)

<fixpoint> ::= <name>

<name> ::= (alphanumeric string)

<delim> ::= ;\s*

In addition to the above, each implementation of a dialog should implement the fol-
lowing methods:

set(fixpoint, modality) This function is invoked by the constraint manager to change
the modalities of the dialog’s fixpoints. Modalities that apply to the dialog itself
(dialog is obligated, dialog is permitted, etc.) are maintained by the constraint
manager.

schedule() This function determines the order in which a dialog performs it’s obligations.

6.5.2 OPF modalities in the system space

The system space concerns implementational aspects. Behavioral semantics of the
system space depends on the implementational paradigm. For example, the behavior
of an RDBMS that implements the IS would be very different from the behavior of
a set of objects. But from a generic sense, the system space dynamics are actually

120

the database dynamics of the IS. While the implemented system functions to execute
semantic processes, it’s own dynamics are characterized by transitions across system
states. The formal definition of system space dynamics is as follows:

Definition 6.5: The system space is represented as 〈S,→〉 consisting of an infinite set of states

S and a transition relationship → among states of the state space. �

Identifying OPF modalities in the system space is achieved by mapping these modal-
ities from the interaction space onto the set of system states. We propose to do this by
executing queries on the system space that look for violations of dynamic integrity. A set
of queries called verification queries are designed to look for violations of specific modali-
ties. These queries are run on the database or set of databases that maintain the system
state.

Dialog trace: In order to be able to run verification queries it is required to store
execution traces of dialogs in the system space. The execution trace of a dialog is a
sequence of the form 〈id, s∗〉 where id is a unique process id that identifies the specific
instance of the dialog, and s is one of the following: the name of the dialog, or the name
of one of it’s fixpoints, or the name of one of it’s methods, or constraint actions.

Example: The following sequence represents a trace of the dialog Review.
〈 10124, Review . Negotiate . O(Negotiate) . F(Download) . Download .

UploadReview〉. The trace represents a particular execution with id 10124 of the Review

dialog. The trace records only those operations that have happened after the dialog has
started. Refer to Figure 6.7 which shows two constraints on this dialog. The constraints
O[Review.Negotiate] and F [Review.Download] hold when AssignReviewers.Negotiate

holds. The execution trace records execution after this constraint has held. During the
execution, AssignReviewers.Negotiate no longer holds and so the above constraint too
ceases to hold. �

Analogous to a dialog trace is a trace of a constrained association. This records when
constraints across dialogs were activated and which dialogs were affected as a result. The
trace is of the form: 〈id, head, body〉, where id is the unique process id of the constraint
process, head and body are constraints where the name of the dialog is replaced with their
process ids. An example of the trace of a constrained association would be an entry of
a tuple of the form: 〈23529, O[10124.Negotiate], 7893.Negotiate〉. This entry captures
the execution of a constrained execution between dialogs AssignReviewers and Review

concerning their Negotiate fixpoints.
Verification Example: Consider the example procedure visited before:

AssignReviewers . Review . PCNegotiate . ReviewerNegotiate .

AssignPapers . Download . UploadReview

In order to verify it’s correspondence in the system space, some of the verification queries
that are designed are as follows.

121

SELECT Review.id FROM Review, AssignReviewers, Constraints WHERE

O[Review.id.Negotiate], [AssignReviewers.id.Negotiate]

IN Constraints AND NOT (Review.id, Negotiate IN Review)

The above query searches for instances of the dialog Review which have violated
their obligations to be in fixpoint Negotiate when the AssignReviewers dialog was in
Negotiate. The above query assumes that dialog traces are placed in a table with the
same name as the dialog; and constraint traces are placed in a common table called Con-
straints.

The following constructs are also proposed on top of standard SQL constructs to query
dialog traces: a BEFORE b, a AFTER b, NEXT(a,b). They respectively match cases where a
comes before b, a comes after b and where b comes right after a.

The following query returns all instances of the dialog Review which has violated the
prohibition constraint from the AssignReviewers dialog.

SELECT Review.id FROM Review, AssignReviewers, Constraints WHERE

F[Review.id.Download], [AssignReviewers.id.Negotiate]

IN Constraints AND Download BEFORE ~F(Download) IN Review.id

6.6 Complexity and Decidability of Verifications

Verifications of translation correctness between the story, interaction and system spaces
were presented in this chapter. Verification techniques proposed here are limited in scope
and are based on a paradigm of sequence matching.

Verification technique between the story space and the interaction space is summarized
as follows. Given a pair (wi, pi) consisting of a walk and a procedure, an assertion is made
that they are equivalent. Verifying this assertion entails proving that pi can produce wi

and both pi and wi have the same modality.
This technique can be used to identify hazards like incomplete models (where pi cannot

produce wi) and malicious designs (where pi produces more than wi). Similarly if the
modality of wi and pi is P , the above verification can detect hazards leading to unsafe
models and conceptually inefficient models. The verification is based on stream matching,
whose complexity is O(mn) where m is the number of elements in wi and n is the number
of elements in pi.

Verification of arbitrary subspaces between the story and interaction spaces involves
determining equivalence between two possibly infinite streams. This is a known non-
decidable problem.

Verification between the interaction space and the system space is carried out by
querying the system space for violations of constraints. A summary of this technique is as

122

follows: given a pair (pi, Q) consisting of a procedure pi and a set of queries Q that seek
to refute pi, prove that Q addresses all constraints present in pi and Q produces an empty
set when run on the system space.

Execution traces in the system space is assumed to be organized as tables correspond-
ing to dialogs and one table corresponding to the set of all constraints. The complexity of
evaluating a particular query is dependent on the number of joins required for answering
the query. However, a procedure can be potentially infinite in length which makes the
verification problem undecidable. But for any finite length of the procedure, the verifica-
tion problem is decidable, albeit dependent on the number of dialogs and constraints in
the procedure for its complexity.

123

Chapter 7

Conclusions

I’ve found my niche. If you’re wondering why I’m not there, there was this little hole in the

bottom ... – John Croll

7.1 Lessons from Interaction

This thesis addressed two aspects of interaction modeling: (a). Modeling interactive
behavior as a domain independent issue of concern, and (b). Modeling the dynamics of
open (interactive) information systems.

In modeling interactive behavior as a domain independent issue of concern, the follow-
ing insights were obtained:

• Interaction is made of three components: computation, persistence of state and
channel sensitivity.

• Interactive domains have non-wellfounded structures

• To describe properties of an interactive domain, it requires at least a three-valued
system of logic.

By applying the above to information system design, the following insights were ob-
tained:

• Information system dynamics are not only described be computational processes
that change the system state, but also by sequences of interaction.

• Interactive sequences represent functionality dynamics.

• The interaction space of an information system represents dynamic integrity of the
information system based on it’s functionality semantics.

• Functionality dynamics of an information system are autonomous to some degree
with respect to state maintenance or structural dynamics.

124

• Interaction spaces are described by a three-valued system of logic whose modalities
are named obligations, permissions and prohibitions respectively.

• Many semantic errors in information system design may be attributed to mismatches
between these modalities across specification, design and implementation.

7.2 Open Questions and Future Directions

A concept of solution space of a dynamic process only scratches the surface of what is
likely to be a much deeper issue. There are many open questions concerning interaction
modeling. The recognition that information systems can be modeled as a collection of
semantic processes or PSPs, is significant. It shows in a formal fashion how interactive
PSPs (and hence open systems) are richer than algorithmic PSPs (or closed systems).

A significant insight is also about the constituents of interaction: computation, per-
sistence of state and channel sensitivity. Persistence of state introduces properties like
evolution, learning and history dependent behavior into a computational system. Chan-
nel sensitivity introduces possibilities for coordination, collaboration and networking of
computational systems. It is also significant to note that open systems can be modeled
fundamentally by a MIM which consists of all the above three properties. However, the
entire range of characteristics resulting from these properties are still largely unexplored.

In Chapter 2 a few questions were posed about MIMs. Some of these were:

1. What characterizes a MIM computation?

2. How can MIMs be compared?

3. Are there functions which are not computable by an algorithm but are computable
by a MIM?

4. What are the boundaries of MIM computation?

5. What are the characteristics (like complexity, decidability, etc.) of problems that
are solvable by a MIM?

This thesis has perhaps partially answered the first and the second questions. MIM
computations are characterized by three kinds of behaviors: liveness or obligated behav-
iors, possible or permitted behaviors and forbidden behaviors. However, this is just most
general characterization of MIM computations. There could be other properties like pri-
oritized behavior or evolution of behaviors, which have not been addressed here.

MIMs can be compared by sketching their solution spaces of interactive fixpoints. This
is again based on the model of a solution space presented in this thesis. Such a model
is nowhere comprehensive since it reduces MIM computation into only three behavioral
deontics.

125

The rest of the questions are still open and there are likely to be more such questions
regarding MIM computation.

A concept of interaction modeling in a domain independent fashion also can open new
paradigms of designing and managing open systems. The term “open system” gets a formal
definition and legitimacy from interaction modeling. Interaction modeling also helps in
separating the functionality concerns of an open system from the structural concerns. Such
a separation of concerns helps in better portability and maintainability of information
systems.

However, the formal definition of an open system also brings in a number of open
questions. Some of these are as follows:

1. What properties about open systems can be formally proved?

2. Is it possible to formalize the design complexity of an open system in a domain
independent fashion?

3. Does interaction modeling bring down design complexity?

4. Is interaction modeling the elusive “silver bullet” [Bro95] of software engineering?

An exploration into some of the above questions may perhaps become imminent as
interaction modeling is better understood and applied to practical problems.

126

Bibliography

[Aal99] W.M.P. van der Aalst. Generic Workflow Models: How to Handle Dynamic
Change and Capture Management Information? Proc. of Fourth IFCIS Int’l Conf
on Cooperative Information Systems (CoopIS), Edinburgh, IEEE Computer Society
Press, Sep 1999.

[AC96] Martin Abadi, Luca Cardelli. A Theory of Objects. Springer-Verlag, New York
1996.

[AGM92] S. Abramsky, Dov M. Gabbay, T.S.E. Maibaum (Eds.). Handbook of Logic in
Computer Science. Oxford Science Publications. 1992.

[Acz88] Peter Aczel, Non Well-Founded Sets, CSLI Lecture Notes #14, Stanford, 1988.

[AMST92] Gul Agha, Ian A. Mason, Scott Smith, Carolyn Talcott. Towards a Theory
of Actor Computation. Proc of CONCUR ’92, R. Cleaveland (Ed.), LNCS 630, pp.
565-579, Springer-Verlag, 1992.

[AR96] Philip E. Agre, Stanley J. Rosenschein. Computational Theories of Interaction
and Agency. MIT Press, 1996.

[AB71] C. E. Alchourrón, E. Bulygin. Normative Systems. Springer, 1971.

[Alt96] Alter, S. Information systems: A Management Perspective. Benjamin/Cummins,
1996.

[Awa93] Elias M. Awad. Systems Analysis and Design. Irwin Publishers, 1993.

[BM96] John Barwise, Lawrence Moss. Vicious Circles: On the Mathematics of Non-
Wellfounded Phenomena. CSLI Lecture Notes, No. 60. 1996.

[Beh99] Mohsen Beheshti. A High-Level Language for Object-Oriented Transactions. Proc.
of the Ninth International Conference on Heterogenous and Internet Databases, Hong
Kong, July 1999.

[Bro95] Friedrick Brooks. The Mythical Man-Month, The Twentieth Anniversary Edition.
Addison-Wesley Publishing Company, Reading, Mass. 1995.

127

[BC96] Mark A. Brown, Jose Carmo (Eds.). Deontic Logic, Agency and Normative Sys-
tems, Springer, 1996.

[Bro97] Manfred Broy. Compositional Refinement of Interactive Systems. Journal of the
ACM, Vol. 44, No. 6, Nov 1997, pp. 850-891.

[CG89] N. Carriero, D. Gelernter. Linda in Context. Communications of the ACM, Vol.
32, No. 4, 1989, pp 444–458.

[CP99] Fabio Casati, Giuseppe Pozzi. Modeling Exceptional Behaviors in Commercial
Workflow Management Systems. Proc. of Fourth IFCIS Int’l Conf on Cooperative
Information Systems (CoopIS), Edinburgh, IEEE Computer Society Press, Sep 1999.

[CT97] Wolfram Clauß, Bernhard Thalheim. Abstraction Layered Structure Process
Codesign. Proceedings of the 8th International Conference on Management of Data
(COMAD ’97), Narosa Publishers, Chennai, India, 1997.

[CNM95] P. Coad, D. North, M. Mayfield. Object Models: Strategies, Patterns and Ap-
plications, Prentice Hall, Englewood Cliffs, 1995.

[CW98] J. E. Cook and A. L. Wolf. Discovering models from software processes from
event-based data. ACM TOSEM, Vol. 7, No. 3, July 1998, pp 215–247.

[Cop98] James O. Coplien. A Generative Development Process Pattern Language. In
Linda Rising, (ed.), The Patterns Handbook: Techniques, Strategies, and Applica-
tions, pp. 243-300. Cambridge University Press, New York, January 1998.

[DeV98] Richard W. DeVaul. Decidability – Truth or Turing? Technical Report, Aesthetics
and Computation Group, MIT Media Lab, June 1998.

[DC95] Prasun Dewan, Rajiv Choudhary. Coupling the User Interfaces of a Multiuser
Program. ACM Transactions on Computer Human Interaction, Vol. 2, No. 1, Mar
1995, pp. 1-39.

[ES99] T. Eiter and V. S. Subrahmanian. Deontic Action Programs. In K.-D. Schewe,
T. Ripke and T. Polle, (Eds.) Fundamentals of Information Systems: Selected Papers
presented at the 7th International Workshop on Foundations of Models and Languages
for Data and Objects (FoMLaDO 98), October 5–8, 1998, Timmel, Germany, pages
37–54. Kluwer, 1999.

[Elm92] A.K. Elmagarmid (Ed). Transaction Models for Advanced Database Applications.
Morgan-Kaufmann, 1992.

128

[GST00] Dina Goldin, Srinath Srinivasa, Bernhard Thalheim. IS = DBS + Interaction:
Towards Principles of Information Systems. Proc. of ER 2000, Salt Lake City, USA,
Oct 2000.

[Fow96] Martin Fowler. Analysis Patterns: Reusable Object Models, Addison-Wesley, 1996

[Fow97] Martin Fowler. UML Distilled: Applying the Standard Object Modeling Language,
Reading, MA: Addison-Wesley 1997.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GW98] Dina Goldin, Peter Wegner. Persistence as a Form of Interaction. Technical Report
CS 98-07, Brown University, March 1998.

[Gol00] Dina Goldin. Persistent Turing Machines as a Model of Interactive Computation.
Proceedings of the FoIKS 2000, Burg, Germany, Feb 2000.

[GR93] Jim Gray, Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[HR94] B. Hannon, M. Ruth. Dynamic Modeling. Springer-Verlag 1994.

[HS98] H. Haugeneder, D. Steiner. Co-operating Agents: Concepts and Applications.
in [JW98], pp 174–202.

[Hay94] Wayne Haythorn. What is Object-oriented Design? JOOP, March 1994.

[HU79] John Hopcroft, Jeffrey Ullman. Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

[How93] Dennis Howe. Free Online Dictionary of Computing. http://www.foldoc.org/

[HSG98] M. N. Huhns. M. P. Singh. Les Gasser (Eds.). Readings in Agents. Morgan Kauf-
mann Publishers 1998.

[Hug89] John Hughes. Why Functional Programming Matters. The Computer Journal,
Vol. 32, No. 2, 1989, pp. 98-107.

[Jac96] Bart Jacobs. Coalgebraic Specifications and Models of Deterministic Hybrid Sys-
tems. In M. Wirsing and M. Nivat (Eds.) Algebraic Methodology and Software Tech-
nology (AMAST 1996), Springer LNCS 1101, Berlin, 1996, pp. 520–535.

[Jac96a] Bart Jacobs. Objects and Classes, Co-algebraically. In B. Freitag, C .B. Jones,
C. Lengauer, and H.-J. Schek (Eds.) Object-Orientation with Parallelism and Per-
sistence Kluwer Acad. Publ., 1996, pp. 83–103.

129

[JR97] B. Jacobs, J.J.M.M. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. Bul-
letin of EATCS, Vol. 62, 1997, pp. 222–259.

[JKSS90] H.-M. Järvinen, R. Kurki-Suonio, M. Sakkinen, and K. Systä. Object-oriented
specification of reactive systems. Proceedings of ICSE 1990, pages 63-71. IEEE Com-
puter Society Press, 1990.

[JW98] Nicholas R. Jennings, Michael J. Wooldridge. (Eds.) Agent Technology. Founda-
tions, Applications and Markets, Springer, 1998.

[JL96] Y. Jin, R. E. Levitt. The Virtual Design Team: A Computational Model of Project
Organizations. Computational and Mathematical Organization Theory Vol. 2, No. 3
1996, pp. 171-196.

[Joh95] Paul Johannesson. Representation and Communication – A Speech Act Based
Approach to Information Systems Design. Information Systems Vol. 20, No. 4, 1995,
pp. 291–303.

[KR96] Mohan U. Kamath, Krithi Ramamritham. Correctness Issues in Workflow Man-
agement. Distributed Systems Engineering (DSE) Journal : Special Issue on Workflow
Management Systems, Vol 3, No 4, Dec 1996, pp. 213-221.

[Kie97] Richard Kieburtz. Reactive Functional Programming. Technical Report, Oregon
Graduate Institute of Science and Technology, CS-97-008, 1997.

[Kim95] Won Kim. Modern Database Systems. ACM Press, 1995.

[Kow92] James A. Kowal. Behavior Models: Specifying User’s Expectations. Prentice Hall,
1992.

[Len98] Marina Lenisa. Themes in Final Semantics. PhD Thesis, Dipartimento di Infor-
matica, Universita‘ di Pisa, March 1998.

[LS00] Jana Lewerenz, Srinath Srinivasa. Abstraction of the Interaction Properties of an
Information System for Achieving Target Platform Independence. Proc. of Model-
lierung 2000, St. Goar, Germany, April 2000.

[Lew00] Jana Lewerenz. Human-Computer Interaction in Heterogenous and Dynamic En-
vironments. Phd Thesis, BTU-Cottbus, Germany, 2000.

[Lip87] Richard P. Lippman. An Introduction to Computing with Neural Nets. IEEE
ASSP Magazine, April 1987.

[Liu96] Ling Liu, Robert Meersman. The Building Blocks for Specifying Communication
Behavior of Complex Objects: An Activity-Driven Approach. ACM Transactions on
Database Systems, Vol 21, No 2, June 1996, pages 157-207.

130

[LZ92] Loucopoulos, P., Zicari, R. (eds.). Conceptual Modeling, Databases and CASE.
John Wiley & Sons, (1992).

[MC94] Thomas Malone, Kevin Crowston. The Interdisciplinary Study of Coordination.
ACM Computing Surveys Vol. 26, No. 1 1994, pp. 87-119.

[MP92] Zohar Manna, Amir Pnueli. The Temporal Logic of Reactive and Concurrent Sys-
tems, Springer-Verlag 1992.

[May97] Richard Mayr. Decidability and Complexity of Model-Checking Problems for In-
finite State Systems. PhD Thesis, Technical University of Munich, Munich, Germany,
1997.

[MW93] John-Jules Ch. Meyer, Roel J. Wieringa (Eds). Deontic Logic in Computer Sci-
ence: Normative System Specification. John Wiley and Sons, 1993.

[MH96] L. Miclet and C. de la Higuera (Eds.). Grammatical Inference: Learning Syntax
from Sentences. Lecture Notes in Artificial Intelligence #1147, 1996.

[Mil96] Dale Miller. Logical Foundations for Open System Design. ACM Computing Sur-
veys, Vol 28, Dec 1996.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mor99] Gareth Morgan. Images of Organization. Sage Publications, May 1999.

[LLMT00] Annette Laue, Matthias Liedtke, Daniel Moldt, Ivana Tričković. Modeling
Intra- and Inter-Object Control Using Reference Nets. Proceedings of Modellierung
2000, St. Goar, Germany 2000.

[Law97] Peter Lawrence (ed.). Workflow Handbook. Workflow Management Coalition,
1997.

[Nut92] Gary J. Nutt. Open Systems. Prentice Hall, New Jersey, 1992.

[Pit93] Andrew M. Pitts. Bisimulation and Co-induction (tutorial). Proceedings, Eighth
Annual IEEE Symposium on Logic in Computer Science, Montreal, Canada, June
1993. IEEE Computer Society Press.

[PR98] Michael Prasse, Peter Rittgen. Why Church’s Thesis still holds - Some Notes on
Peter Wegner’s Tracts on Interaction and Computability, Computer Journal Vol. 41
(1998) No. 6, pages 357-362

[Pre95] Wolfgang Pree. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

131

[RL99] Fethi Rabhi, Guy Lapalme. Algorithms: A functional programming approach.
Addison-Wesley, 1999.

[RG00] Raghu Ramakrishnan, Johannes Gehrke. Database Management Systems (2nd Edi-
tion). McGraw Hill, 2000.

[RC96] Krithi Ramamritham and Panos K. Chrysanthis. Advances in Concurrency Con-
trol and Transaction Processing. IEEE Computer Society Press, September 1996.

[Ros82] J. Barkley Rosser. Highlights of the history of the lambda-calculus. ACM Lisp
and Functional Programming, 1982.

[RBP+90] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
William Lorensen. Object-Oriented Modeling and Design, Prentice Hall, 1990.

[Rut96] J.J.M.M. Rutten. Universal Coalgebra: a theory of systems. Technical Report,
CS-R9652, Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands, 1996.

[Sab98] Amr Sabry. What is a purely functional language. Journal of Functional Program-
ming. Vol 8, No 1, pp 1-22, Jan 1998.

[SHF00] Heinz Schweppe, Annika Hinze, Daniel Faensen. Event-based Notification on
the Web. Tutorial at the 9th International World Wide Web Conference (WWW9),
Amsterdam, 2000.

[Sea69] J. Searle. Speech Acts – An Essay in the Philosophy of Language. Cambridge
University Press 1969.

[Sen97] James A. Senn. Information Technology in Business: Principles, Practices, and
Opportunities. Prentice Hall 1997.

[SR93] A. Sheth, M. Rusinkiewicz. On Transactional Workflows. Bulletin of the Technical
Committee on Data Engineering, Vol 16, No 2, June 1993, IEEE Computer Society.

[Som00] Ian Somerville. Software Engineering (6th Edition), Addison-Wesley, 2000.

[SS99] Srinath Srinivasa, Myra Spiliopoulou. Analyzing Transaction Logs for Building
Coordination Models. Technical Report 12/99, BTU-Cottbus, Cottbus, Germany, Dec
1999.

[SS00] Srinath Srinivasa, Myra Spiliopoulou. Discerning Behavioral Properties by An-
alyzing Transaction Logs. Proceedings of ACM Symposium on Applied Computing
(SAC’00), Como, Italy, March 2000.

[SBD+00] V. S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus,
Fatma Ozcan, Robert Ross. Heterogenous Agent Systems. MIT Press, 2000.

132

[Tha00] Bernhard Thalheim. Entity-Relationship Modeling: Foundations of Database
Technology, Springer Publications, Berlin, 2000.

[TS94] Roshan K. Thomas, Ravi S. Sandhu. Conceptual Foundations for a Model of Task-
Based Authorizations. IEEE Computer Security Foundations Workshop, Franconia,
New Hampshire, June 1994.

[Ull88] Jeffrey Ullman. Principles of Database and Knowledge-Base Systems. W. H. Free-
man & Co. 1988.

[UML] UML Resource Center. http://www.rational.com/uml/index.jtmpl

[Vel94] D. Velleman. How to Prove It. Cambridge University Press, New York, 1994.

[Wad97] Philip Wadler. How to declare an imperative. ACM Computing Surveys, Vol 29,
No 3, pp 240-263, Sep 1997.

[Wei99] Gerhard Weiss. Multiagent Systems : A Modern Approach to Distributed AI.
MIT Press, 1999.

[Weg96] P. Wegner. Interactive Software Technology. CRC Handbook of Computer Science
and Engineering, 1996.

[Weg97] Peter Wegner. Why Interaction is More Powerful than Algorithms? Communi-
cations of the ACM, May 1997.

[WG99] Peter Wegner, Dina Goldin. Interaction as a Framework for Modeling. In LNCS
#1565, 1999.

[WG99a] Peter Wegner, Dina Goldin. Mathematical Models of Interactive Computing.
Technical Report, Brown University, Jan 1999.

[WG99b] Peter Wegner, Dina Goldin. Coinductive Models of Finite Computing Agents.
Electronic Notes in Theoretical Computer Science, Vol 19, Elsevier, 1999.

133

