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Abstract

A two-dimensional model for extensional motion of a pre-stressed incompressible

elastic layer near its cut-off frequencies is derived. Leading order solutions for dis-

placement and pressure are obtained in terms of the long wave amplitude by direct

asymptotic integration. A governing equation, together with corrections for displace-

ment and pressure, is derived from the second order problem. A novel feature of

this (two-dimensional) hyperbolic governing equation is that, for certain pre-stressed

states, time and one of the two (in-plane) spatial variables can change roles. Although

whenever this phenomenon occurs the equation still remains hyperbolic, it is clearly

not wave-like. The second order solution is completed by deriving a refined governing

equation from the third order problem. Asymptotic consistency, in the sense that the

dispersion relation associated with the two-dimensional model concurs with the ap-

propriate order expansion of the three-dimensional relation at each order, is verified.

The model has particular application to stationary thickness vibration of, or transient

response to high frequency shock loading in, thin walled bodies.

1 Introduction

In this paper we seek to derive a lower dimensional model to describe long wave high fre-

quency motion in a pre-stressed incompressible elastic layer. Specifically, a two-dimensional
∗Author for correspondence
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model is derived through asymptotic integration of the three-dimensional equations for mo-

tion in the vicinity of the cut-off frequencies. The term high frequency is used to distinguish

between long wave motion associated with the fundamental mode, this usually being termed

long wave low frequency. Understanding of long wave high frequency motion is important

for elucidation of the dynamic response of thin walled structures, especially the response

to stationary thickness vibration or the transient response to high frequency shock loading.

Additionally, this type of motion provides some contribution to the transient response to any

kind of dynamic load. Amongst other noteworthy applications is fluid-structure interaction,

particularly jumps in radiation power and first order resonances of high frequency Lamb

waves in scattering, phenomena known to occur in the long wave high frequency region,

see for example Kaplunov & Markushevich (1993). We also note the possible dominance of

motions of this type in problems involving fixed faces, such problems being characterised by

the absence of fundamental modes, see for example Kaplunov (1995).

The specific constitutive model employed, namely an incompressible elastic solid, is

motivated through the increasing industrial usage of rubber-like material. Such material,

with its ability to withstand large deformation and support high external loads prior to

failure, has proved highly beneficial for vibration control devices, see Sheridan et al. (1992).

It is anticipated that the model presented will help elucidate the effects of pre-stress on

the dynamic material characteristics of incompressible elastic solids. Although pre-stress

may well be introduced during the manufacturing process, it is the aforementioned load

supporting scenario that mainly motivates this work. In view of the important applications

of this particular material model within such a context, a number a recent studies have

focused on various aspects of wave propagation and vibration in plates, half-spaces and

layered structures composed of such material, see for example Dowaikh & Ogden (1991);

Ogden & Roxburgh (1993); Ogden & Sotiropoulos (1995); Rogerson & Fu (1995); Rogerson

(1997); Rogerson & Sandiford (1997).

Direct asymptotic integration, in the vicinity of cut-off frequencies, was seemingly first

carried out within the framework of isotropic linear elasticity for stationary vibrations,

see Achenbach (1969). Later, the connection between the direct asymptotic integration of

static problems, see for example Goldenveiser (1962) and Goldenveiser (1966), and their dy-

namic counterparts was established, see Kaplunov et al. (1998), Kaplunov (1989) and Kap-

lunov (1990). All of the previously mentioned investigations are concerned with the appli-

cation of direct asymptotic integration to isotropic elastic bodies. In the case of pre-stressed

elastic bodies, relatively little work has been carried out in this area. Moreover, the work

that has thus far been carried out has been restricted to the simplified plane strain case,

see Kaplunov et al. (2000c) and Kaplunov et al. (2000b). The first of these concerns a long
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wave low frequency model, specifically associated with the fundamental mode of a plate at

low wave number, whilst the second relates to the simplified plane strain analogous case to

the present study.

This paper is organised as follows. In section 2 the three-dimensional equations for small

amplitude time-dependent motion super-imposed upon a homogeneous static deformation

in an incompressible elastic solids are reviewed. In order to simplify the analysis, attention

is restricted to extensional motion and the appropriate dispersion relation and eigenfunc-

tions, for the infinitesimal displacement components and pressure increment, are derived. In

section three an asymptotic analysis of the dispersion relation in the vicinity of the non-zero

cut-off frequencies is carried out. It is shown that for a layer composed of pre-stressed in-

compressible elastic material, two distinct families of cut-off frequencies exist. Expansions,

giving frequency as a function of wave number, are established in each case. These asymp-

totic expansions are also used to establish the relative orders of infinitesimal displacements

and pressure increment for motion in the vicinity of each family of cut-off frequencies. It

is shown that in both cases one of the in-plane displacement components is asymptotically

leading. The implication is that both families are associated with so-called thickness shear

resonance, the constraint of incompressibility precluding thickness stretch resonance.

In section 4 appropriate scales for space and time are introduced and asymptotically ap-

proximate equations established. A perturbation scheme is set up and systems of equations,

and corresponding boundary conditions, are obtained at each order. For both families of

cut-off frequencies, the leading order displacement components and pressure increment are

completely determined in terms of a single function. This function, termed the long wave

amplitude, is a function of the two in-plane spatial variables and time. In order to derive a

governing equation for the long wave amplitude the second order problem must be consid-

ered. This problem yields both the appropriate governing equation and a corrected solution

for the displacement components and pressure increment in terms of a corrected long wave

amplitude. A governing equation for the corrected long wave amplitude is derived from the

third order problem.

An interesting feature of the governing equation for the leading order long wave am-

plitude is a possible switching of the roles between time and one of the (in-plane) spatial

variables. Such a phenomenon will occur when one of the coefficients of the governing

equation for the long wave amplitude changes sign. Moreover, this will be associated with

certain pre-stressed states and may have an associated region of negative group velocity in

the vicinity for the cut-off frequency. However, the governing equation will always remain

hyperbolic. This contrasts with the plane strain case for which a similar switching of role

necessarily changes the character of the governing equation from hyperbolic to elliptic and
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an associated region of negative group velocity always exists, see Kaplunov et al. (2000b).

The paper is concluded in section 5 with illustrative numerical results for a Varga material.

2 Mathematical preliminaries

2.1 Basic equations and notation

We consider a body B composed of incompressible elastic material, possessing a natural

unstressed configuration B0. A purely homogeneous static deformation is imposed on B0,

resulting in a finitely deformed equilibrium state Be. Finally, a small amplitude time-

dependent motion is super-imposed on Be, with the final material configuration termed the

current and denoted by Bt. The linearised form of the equations of motion for a time-

dependent incremental motion super-imposed on a pre-stressed incompressible elastic ma-

terial have previously been derived, see e.g. Dowaikh & Ogden (1990), and take the form

Bmilkuk,lm − pt,i = ρüi , (2.1)

in which Bmilk are components of the elasticity tensor, u is the infinitesimal displacement,

ρ the material density, pt = pt(x, t) a time dependent pressure increment, a comma and

dot indicate differentiation with respect to a component of x, the spatial variable in Be,

and time t, respectively. We remark that in (2.1) use has been made of the summation

convention. Throughout this paper we will always explicitly state occasions where use of

this convention has been applied. A linearised measure of traction increment has also been

previously obtained in the component form

τi = Bmilkuk,lnm + p̄um,inm − ptni , (2.2)

where p̄ is a static pressure in Be, n the unit outward normal to a material surface in Be

and the summation convention is utilised, see for example Dowaikh & Ogden (1990).

We now wish to investigate the case in which B forms a layer of finite thickness 2h and

infinite lateral extent in Be. An appropriate Cartesian coordinate system is chosen coincident

with the principal axes of the primary deformation and such that the origin O lies in the

mid-plane, with Ox2 normal to the plane of the layer. For an incompressible (initially

isotropic) elastic material all non-zero components of the elasticity tensor B, referred to

the above coordinate system, have one of forms Biijj , Bijij and Bijji, where Biijj = Bjjii

and Bijji = Bjiij , (i, j ∈ {1, 2, 3}), see Ogden (1984). Accordingly, the three linearised

components of the equations of motion (2.1) may be written explicitly as

B1111u1,11 + (B1122 + B2112)u2,12+(B1133 + B3113)u3,13

+ B2121u1,22 + B3131u1,33 − pt,1 = ρü1 , (2.3)
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(B2211 + B1221)u1,12 + B2222u2,22 + (B2233 + B3223)u3,23

+ B1212u2,11 + B3232u2,33 − pt,2 = ρü2 , (2.4)

(B3311 + B1331)u1,13 + (B3322 + B2332)u2,23 + B3333u3,33

+ B1313u3,11 + B2323u3,22 − pt,3 = ρü3 . (2.5)

For a layer with outward unit normal to the upper surface in Be given by n = δi2, the

components of incremental surface traction (2.2) take the appropriate forms

τ1 = B2121u1,2 + (B2112 + p̄)u2,1 , (2.6)

τ2 = B2211u1,1 + (B2222 + p̄)u2,2 + B2233u3,3 − pt , (2.7)

τ3 = (B2332 + p̄)u2,3 + B2323u3,2 . (2.8)

The equations of motion (2.3)–(2.5) must be solved in conjunction with the linearised in-

compressibility constraint u1,1 +u2,2 +u3,3 = 0. Solutions of these equations are now sought

in the form of the traveling waves

(u1, u2, u3, pt) = (U1, U2, U3, kP )ekqx2eik(x1cθ+x3sθ−vt) , (2.9)

within which k is the wave number, v is the phase speed, q is to be determined and sθ = sin θ,

cθ = cos θ, where θ is the angle of wave propagation relative to the Ox1 axis. Kaplunov

et al. (2000b) have previously analysed the corresponding plane-strain problem, we therefore

seek to generalise the problem to the three-dimensional case and tacitly assume that sθ 6= 0

and cθ 6= 0. If solutions of the form (2.9) are inserted into equations (2.3)–(2.5), and the

linearised incompressibility condition, a system of four homogeneous equations is obtained.

This system will have non-trivial solutions provided

γ21γ23q
6 +

(
(γ21 + γ23)v̄2 − c1

)
q4 + (v̄4 − c2v̄

2 + c3)q2 − (v̄2 − c4)(v̄2 − c5) = 0 , (2.10)

in which the scaled wave speed v̄2 ≡ ρv2,

c1 = (2β23γ21 + γ23γ31)s2
θ + (2β12γ23 + γ21γ13)c2

θ ,

c2 = (2β23 + γ21 + γ31)s2
θ + (2β12 + γ23 + γ13)c2

θ ,

c3 = (4β12β23 + γ21γ12 + γ23γ32 + γ13γ31 − µ2
13)s

2
θc

2
θ

+ (2β23γ31 + γ21γ32)s4
θ + (2β12γ13 + γ23γ12)c4

θ ,

c4 = γ32s
2
θ + γ12c

2
θ , c5 = γ31s

4
θ + 2β13s

2
θc

2
θ + γ13c

4
θ ,

and

γij = Bijij , i 6= j , 2βij = 2βji = Biiii + Bjjjj − 2Biijj − 2Bijji , i < j ,

µij = βij − βik − βjk , i < j , k /∈ {i, j} , i, j, k ∈ {1, 2, 3} .
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Apart from relating the parameter q and scaled wave speed v̄, the secular equation (2.10)

may be used to establish some necessary conditions on possible values of material param-

eters. In an attempt to ensure physically reasonable response, we therefore tacitly assume

that the speeds of all associated body waves are real. In the present context we only need

to consider possible restrictions on γ13 and γ31. To do this we consider waves propagating

in the (x1, x3) plane. Such wave solutions may be obtained by setting q = 0 in (2.9) and

equation (2.10) then reduces to

(v̄2 − c4)(v̄2 − c5) = 0 . (2.11)

The solutions of (2.11) yield the speeds of the two shear waves associated with propagation

along (cos θ, 0, sin θ). In order that these two wave speeds remain real for all θ we necessarily

require that

γ12 > 0 , γ32 > 0 , γ13 > 0 , γ31 > 0 . (2.12)

2.2 Dispersion relation

If the three (in general) distinct (non-zero) roots of the bi-cubic equation (2.10) are denoted

by q2
1 , q2

2 and q2
3 , the solutions of u1, u2, u3 and pt are obtainable as linear combinations of

the six linearly independent solutions. However, in this paper we restrict attention to the

case for which u2 vanishes at x2 = 0, solutions for u1, u2, u3 and pt then being obtainable

as linear combinations of only three linearly independent solutions. This type of motion is

usually referred to as extensional or symmetric motion and is equivalent to placing a layer of

thickness h on a rigid foundation. The equations of motion and incompressibility condition

may be used to establish solutions in terms of only 3 disposable constants, thus

u1 =
3∑

m=1

iqmU1(qm, v̄)cθ

V(qm, v̄)
Cm(x2)U

(m)
2 , u2 =

3∑
m=1

Sm(x2)U
(m)
2 ,

u3 =
3∑

m=1

iqmU3(qm, v̄)sθ

V(qm, v̄)
Cm(x2)U

(m)
2 , pt =

3∑
m=1

qmP(qm, ρv2)
V(qm, v̄)

Cm(x2)U
(m)
2 ,

(2.13)

within which Sm(x2) = sinh(kqmx2) , Cm(x2) = cosh(kqmx2) and

U1(qm, v̄) = γ23q
2
m + µ12s

2
θ − γ13c

2
θ + v̄2 , U3(qm, v̄) = γ21q

2
m − γ31s

2
θ + µ23c

2
θ + v̄2 ,

P(qm, v̄) = U1(qm, v̄)U3(qm, v̄) + (B2233 + B2332 −B1133 −B1331)U1(qm, v̄)c2
θ

+ (B1122 + B1221 −B1133 −B1331)U3(qm, v̄)s2
θ ,

V(qm, v̄) = (γ21s
2
θ + γ23c

2
θ)q

2
m + v̄2 − c5 .

It is worth noting that in obtaining of the above representation of P(qm, v̄) use has been

made of the fact that

q2
mU1(qm, v̄)U3(qm, v̄) = −(µ13q

2 + γ32s
2
θ + γ12c

2
θ − v̄2)V(qm, v̄) ,
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which may be established with use of (2.10). Corresponding representations of the traction

increments may be found by inserting the form of displacement components given in (2.13)

into equations (2.6)–(2.8), yielding

τ1

ik
=

3∑
m=1

T1(qm, v̄)cθ

V(qm, v̄)
Sm(x2)Ū

(m)
2 ,

τ2

k
=

3∑
m=1

qmT2(qm, v̄)
V(qm, v̄)

Cm(x2)Ū
(m)
2 ,

τ3

ik
=

3∑
m=1

T3(qm, v̄)sθ

V(qm, v̄)
Sm(x2)Ū

(m)
2 ,

(2.14)

where Ū
(m)
n = U

(m)
n exp(ik(x1cθ + x3sθ − vt)) and

T1(qm, v̄) = γ21U1(qm, v̄)q2
m + (γ21 − σ2)V(qm, v̄)

T2(qm, v̄) = (γ21 − σ2 − µ13)U1(qm, v̄)c2
θ − U1(qm, v̄)U3(qm, v̄)

+ (γ23 − σ2 − µ13)U3(qm, v̄)s2
θ ,

T3(qm, v̄) = γ23U3(qm, v̄)q2
m + (γ23 − σ2)V(qm, v̄) .

A dispersion relation associated with infinitesimal harmonic wave propagation in the

layer is now derived from equations (2.14) by applying traction free boundary conditions on

each free surface to obtain τ1 = τ2 = τ3 = 0 at x2 = ±h, thus

3∑
m=1

T1(qm, v̄)
V(qm, v̄)

Sm(h)U (m)
2 = 0 ,

3∑
m=1

qmT2(qm, v̄)
V(qm, v̄)

Cm(h)U (m)
2 = 0 ,

3∑
m=1

T3(qm, v̄)
V(qm, v̄)

Sm(h)U (m)
2 = 0 .

(2.15)

The condition that the system of equations (2.15) admit a non-trivial solution gives rise to

the dispersion relation associated with extensional waves, taking the form
∣∣∣∣∣∣∣∣∣

T1(q1, v̄)S1(h) T1(q2, v̄)S2(h) T1(q3, v̄)S3(h)

q1T2(q1, v̄)C1(h) q2T2(q2, v̄)C2(h) q3T2(q3, v̄)C3(h)

T3(q1, v̄)S1(h) T3(q2, v̄)S2(h) T3(q3, v̄)S3(h)

∣∣∣∣∣∣∣∣∣
= 0 , (2.16)

in which common non-zero multipliers have been omitted. Evaluating the determinant in

equation (2.16) and dividing by C1(h)C2(h)C3(h) leads to an explicit representation which,

after a little algebraic manipulation, is given by

(q2
2 − q2

3)T2(q1, v̄)H(q2, q3, v̄)q1T2(h)T3(h)− (q2
1 − q2

3)T2(q2, v̄)H(q1, q3, v̄)q2T1(h)T3(h)

+ (q2
1 − q2

2)T2(q3, v̄)H(q1, q2, v̄)q3T1(h)T2(h) = 0 , (2.17)
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in which Tm(h) = tanh(kqmh), m ∈ {1, 2, 3},

H(qi, qj , v̄) = γ21γ23H1(v̄)q2
i q2

j + (v̄2 − c5)(γ21γ23(γ23 − γ21)(q2
i + q2

j )−H2(v̄)) ,

H1(v̄) = (γ23 − γ21)v̄2 − (γ21(µ12 − γ23 + γ21) + γ23γ31)s2
θ

+ (γ23(µ23 + γ23 − γ21) + γ21γ13)c2
θ ,

H2(v̄) = γ23(γ21 − σ2)(µ23c
2
θ − γ31s

2
θ + v̄2)− γ21(γ23 − σ2)(µ12s

2
θ − γ13c

2
θ + v̄2) ,

with T2(qm, v̄) defined immediately below equations (2.14). We note that the dispersion

relation was seemingly first derived, in slightly different notation, by Rogerson & Sandiford

(1999).

3 Analysis of the dispersion relation

3.1 Approximation near cut-off frequencies

We now seek approximations for the frequencies, as functions of wave number, in the long

wave high frequency motion regime, i.e. in the vicinity of the non-zero cut-off frequencies.

It is known that for this type of motion v̄ →∞ as kh → 0, see for example Rogerson (1997).

Analysis of the relative orders of the coefficients of the secular equation (2.10) suggests

that two roots are of order O(v̄2), with the third root of order O(1). More specifically,

approximations for q2
1 , q2

2 and q2
3 are given by

q2
1 = − v̄2

γ21
+
Q(0)

1s s2
θ +Q(0)

1c c2
θ

γ21
−

(
Q(−2)

1s s2
θ +Q(−2)

1c c2
θ

) c2
θ

v̄2
+ O(v̄−4) ,

q2
2 = 1 + O(v̄−2) ,

q2
3 = − v̄2

γ23
+
Q(0)

3s s2
θ +Q(0)

3c c2
θ

γ23
−

(
Q(−2)

3s s2
θ +Q(−2)

3c c2
θ

) s2
θ

v̄2
+ O(v̄−4) ,

(3.1)

in which

Q(0)
1c = 2β12 − γ21 , Q(0)

1s = γ31 , Q(0)
3c = γ13 , Q(0)

3s = 2β23 − γ23 ,

Q(−2)
1s = γ31 − γ32 +

(µ13 + γ21)2

γ23 − γ21
, Q(−2)

3c = γ13 − γ12 − (µ13 + γ23)2

γ23 − γ21
,

Q(−2)
1c = 2β12 − γ21 − γ12 , Q(−2)

3s = 2β23 − γ23 − γ32 .

Further investigation will also require expansions for q1, q2 and q3, these can be derived

from (3.1), yielding

q1 =
iv̄√
γ21

−
i
(
Q(0)

1s s2
θ +Q(0)

1c c2
θ

)

2
√

γ21 v̄
+ O(v̄−3) ,

q2 = 1 + O(v̄−2) ,

q3 =
iv̄√
γ23

−
i
(
Q(0)

3s s2
θ +Q(0)

3c c2
θ

)

2
√

γ23 v̄
+ O(v̄−3) .

(3.2)
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The secular equation (2.10) may also be used to obtain expansions for the scaled speed v̄

as function of q. In view of the fact that the v̄ →∞ as kh → 0, it can be deduced that the

only speeds of interest are those associated with the q1 and q3, see expansions (3.1), and

these speeds are given by the following relations

v̄2
1 = −γ21q

2
1 +Q(0)

1s s2
θ +Q(0)

1c c2
θ +

(
Q(−2)

1s s2
θ +Q(−2)

1c c2
θ

) c2
θ

q2
1

+ O(q−4
1 ) , (3.3)

v̄2
3 = −γ23q

2
3 +Q(0)

3s s2
θ +Q(0)

3c c2
θ +

(
Q(−2)

3s s2
θ +Q(−2)

3c c2
θ

) s2
θ

q2
3

+ O(q−4
3 ) , (3.4)

the speed associated with q2 being of O(1). The existence of one value of q2 that is O(1) is a

direct consequence of imposing of the incompressibility constraint, which disables thickness

stretch resonance. For an example of a similar leading order asymptotic analysis for an

unconstrained linear transversely isotropic material, for which thickness shear resonance

exists, the reader is referred to Kaplunov et al. (2000a).

At this stage it is convenient to introduce a small non-dimensional parameter η, defined

as the ratio of a layer half-thickness h to a typical wavelength l, so η = h/l = kh. Now

by inserting approximations (3.1) into the dispersion relation (2.17) we obtain the leading

order approximation of the dispersion relation, namely

iA1T2(h)T3(h)− v̄3T1(h)T3(h) + iA3T1(h)T2(h) ∼ 0 , (3.5)

A1 =
(2γ21 − σ2)2c2

θ√
γ21

, A3 =
(2γ23 − σ2)2s2

θ√
γ23

.

Hereafter, it is assumed that the functions of material parameters A1, A3 are generally O(1).

Since q2 = 1 + O(v̄−2), see (3.2), it is clear that T2(h) = O(v̄−1). This observation suggests

that terms on the left-hand side of the relation (3.5) can be asymptotically balanced only if

T1(h) = O(v̄−4) or T3(h) = O(v̄−4). In fact, each of these asymptotic relations corresponds

to the harmonics associated with one of the two possible families of cut-off frequencies.

We shall consider first the case in which T1(h) = O(v̄−4), the asymptotic order of T1(h)

then implying the following expansions

kq1h = i(πn + φ
e(4)
1 η4 + O(η6)) , T1(h) = iφ

e(4)
1 η4 + O(η6) , (3.6)

in which the function of material parameters φ
e(4)
1 is to be determined. In this case an

approximation for the wave speed is given by (3.3). We may invoke relations (3.2), and the

definition of Tm(h) given immediately after equation (2.17), to show that

q1 =
iΛe

1√
γ21 η

+ O(η3) , q2 = 1 + O(η2) , q3 =
iΛe

1√
γ23 η

+ O(η) ,

v̄ =
Λe

1

η
+ O(η) , T2(h) = η + O(η3) , T3(h) = O(1) ,

(3.7)
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within which Λe
1 =

√
γ21πn, n = 1, 2, 3 . . . are the associated cut-off frequencies. It is

now possible to determine an explicit expression for the function φ
e(4)
1 by utilising expan-

sions (3.6) and (3.7), together with the leading order approximation of dispersion rela-

tion (3.5), to obtain

φ
e(4)
1 =

A1

(Λe
1)3

. (3.8)

The desired approximation of scaled frequency ω̄ = v̄η of long wave high frequency motion

is finally derived from the wave speed approximation (3.3) and the expansion for q1 given

in (3.6), yielding

ω̄2 = (Λe
1)

2 +
(
E(2)
1s s2

θ + E(2)
1c c2

θ

)
η2 +

(
E(4)
1s s2

θ + E(4)
1c c2

θ

)
c2
θ η4 + O(η6) , (3.9)

E(2)
1s = Q(0)

1s , E(2)
1c = Q(0)

1c ,

E(4)
1s =

2(2γ21 − σ2)2 − γ21Q(−2)
1s

(Λe
1)2

, E(4)
1c =

2(2γ21 − σ2)2 − γ21Q(−2)
1c

(Λe
1)2

.

We shall now consider the second case T3(h) = O(v̄−4). Following the same procedure

we expand q3 to obtain

kq3h = i(πn + φ
e(4)
3 η4 + O(η6)) , T3(h) = iφ

e(4)
3 η4 + O(η6) , (3.10)

with the wave speed given by expansion (3.4). Introducing the second family of cut-off

frequencies Λe
3 =

√
γ23πn, n = 1, 2, 3 . . . , and utilising relations (3.2), the following approx-

imations can be derived

q3 =
iΛe

3√
γ23 η

+ O(η3) , q2 = 1 + O(η2) , q1 =
iΛe

3√
γ21 η

+ O(η) ,

v̄ =
Λe

3

η
+ O(η) , T2(h) = η + O(η3) , T1(h) = O(1) .

(3.11)

The function φ
e(4)
3 is now determined from (3.5), (3.10) and (3.11), thus

φ
e(4)
3 =

A3

(Λe
3)3

. (3.12)

Finally, through use of (3.4) and (3.10), the approximation of the scaled frequency associated

with the second family of cut-off frequencies is given by

ω̄2 = (Λe
3)

2 +
(
E(2)
3s s2

θ + E(2)
3c c2

θ

)
η2 +

(
E(4)
3s s2

θ + E(4)
3c c2

θ

)
s2

θ η4 + O(η6) , (3.13)

E(2)
3s = Q(0)

3s , E(2)
3c = Q(0)

3c ,

E(4)
3s =

2(2γ23 − σ2)2 − γ23Q(−2)
3s

(Λe
3)2

, E(4)
3c =

2(2γ23 − σ2)2 − γ23Q(−2)
3c

(Λe
3)2

.

3.2 Relative orders of displacements

Construction of the lower dimensional model requires knowledge of the relative orders of par-

ticle displacements for long wave high frequency motion. The boundary conditions (2.15)1,3
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may be used to represent U
(k)
2 , k ∈ {1, 2, 3}, in terms of single constant U

(0)
2 , yielding

U
(k)
2 =

(q2
i − q2

j )H(qi, qj , v̄)V(qk, v̄)
Sk(h)

U
(0)
2 , i < j , k /∈ {i, j} , i, j, k ∈ {1, 2, 3} . (3.14)

Substituting (3.14) into the displacement relations (2.13) we may compare the relative order

of displacement components. To do this we will have to estimate the orders of all functions

occurring in (2.13) and (3.14), and we begin with

S2(x2) = η
x2

h
+ O(η3) , C2(x2) = 1 + O(η2) . (3.15)

The remaining functions must be analysed separately for the motions in the vicinity of each

set of cut-off frequencies. It is also worth noting that subsequently we assume the value

x2/h to be O(1). In the first case (ω = Λe
1) the expansions (3.7) and (3.15), supplemented

by

S1(x2) = i sin
(

Λe
1x2√
γ21 h

)
+ O(η2) , C1(x2) = i cos

(
Λe

1x2√
γ21 h

)
+ O(η2) ,

S3(x2) = i sin
(

Λe
1x2√
γ23 h

)
+ O(η2) , C3(x2) = i cos

(
Λe

1x2√
γ23 h

)
+ O(η2) ,

S1(h) = i(−1)nφ
e(4)
1 η4 + O(η6) ,

reveal that the orders of displacements are distributed as follows

U1 ∼ O(P ) , U2 ∼ η O(P ) , U3 ∼ η2 O(P ) . (3.16)

We repeat this routine for the second case (ω = Λe
3), taking together

S1(x2) = i sin
(

Λe
3x2√
γ21 h

)
+ O(η2) , C1(x2) = i cos

(
Λe

3x2√
γ21 h

)
+ O(η2) ,

S3(x2) = i sin
(

Λe
3x2√
γ23 h

)
+ O(η2) , C3(x2) = i cos

(
Λe

3x2√
γ23 h

)
+ O(η2) ,

S3(h) = i(−1)nφ
e(4)
3 η4 + O(η6) ,

and approximations (3.11) to indicate that for the second family of cut-off frequencies

U1 ∼ η2 O(P ) , U2 ∼ η O(P ) , U3 ∼ O(P ) . (3.17)

The results (3.16) and (3.17) clearly indicate that in each case the leading order displacement

is one of the in-plane displacements. It is then inferred that there exist only so-called

thickness shear resonance, the existence of thickness stretch resonance being precluded by

the incompressibility constraint.

4 Asymptotically approximate equations

The deriving of the asymptotically approximate equations requires appropriate rescaling of

the spatial and time variables as well as particle displacements and pressure increment. We
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choose scalings of the spatial coordinates so as to balance x2 with half-thickness h and x1, x3

with with a typical wave length l

x1 = lξ1 , x2 = hζ = lηζ , x3 = lξ3 . (4.1)

Corresponding rescaling of time, displacements and pressure is best done separately for each

family of cut-off frequencies, these then being examined each in turn.

4.1 First family of the cut-off frequencies

For the motions in the vicinity of the first family of cut-off frequencies a typical wave travels

with the speed v ∼ Λe
1

η
√

ρ , see scaled speed v̄ approximation given in (3.7), covering the

distance of a typical wave length l in a time t ∼ l
η
√

ρ

Λe
1

. Upon invoking the definition of the

Λe
1, given immediately after (3.7), we therefore introduce the following scaling of time

t = lη

√
ρ

γ21
τ . (4.2)

The displacement components and incremental pressure are scaled according to their relative

orders, indicated in (3.16), yielding

um(x1, x2, x3, t) = lηm−1u∗m(ξ1, ζ, ξ3, τ) , m ∈ {1, 2, 3} ,

pt(x1, x2, x3, t) = γ21p
∗
t (ξ1, ζ, ξ3, τ) ,

(4.3)

in which superscript ∗ denotes non-dimensional quantities of the same asymptotic order.

The equations of motion (2.3)–(2.5) can now be formulated in terms of the rescaled

non-dimensional variables, so that

γ21u
∗
1,ζζ + (Λe

1)
2u∗1 −

{
(Λe

1)
2u∗1 + γ21u

∗
1,ττ

}
+ η2

(
B1111u

∗
1,ξ1ξ1

+ γ31u
∗
1,ξ3ξ3

+ (B1122 + B1221)u∗2,ξ1ζ − γ21p
∗
t,ξ1

)
+ η4

(
B1133 + B1331

)
u∗3,ξ1ξ3

= 0 , (4.4)

B2222u
∗
2,ζζ + (Λe

1)
2u∗2 −

{
(Λe

1)
2u∗2 + γ21u

∗
2,ττ

}
+ (B1122 + B1221)u∗1,ξ1ζ

− γ21p
∗
t,ζ + η2

(
γ12u

∗
2,ξ1ξ1

+ γ32u
∗
2,ξ3ξ3

+ (B2233 + B2332)u∗3,ξ3ζ

)
= 0 , (4.5)

γ23u
∗
3,ζζ + (Λe

1)
2u∗3 −

{
(Λe

1)
2u∗3 + γ21u

∗
3,ττ

}
+ (B1133 + B1331)u∗1,ξ1ξ3

+ (B2233 + B2332)u∗2,ξ3ζ − γ21p
∗
t,ξ3

+ η2
(
γ13u

∗
3,ξ1ξ1

+ B3333u
∗
3,ξ3ξ3

)
= 0 , (4.6)

in which we use ,ξ1 , ,ζ , ,ξ3 and ,τ to denote differentiation with respect to ξ1, ζ, ξ3 and τ ,

respectively. These equations must be solved in conjunction with the appropriate form of

the incompressibility condition, namely

u∗1,ξ1
+ u∗2,ζ + η2u∗3,ξ3

= 0 , (4.7)
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and the incremental surface traction boundary conditions

γ21u
∗
1,ζ + η2(B1221 + p̄ )u∗2,ξ1

= 0 at ζ = ±1 , (4.8)

B1122u
∗
1,ξ1

+ (B2222 + p̄ )u∗2,ζ − γ21p
∗
t + η2B2233u

∗
3,ξ3

= 0 at ζ = ±1 , (4.9)

γ23u
∗
3,ζ + (B2332 + p̄ )u∗2,ξ3

= 0 at ζ = ±1 . (4.10)

We will seek solutions of the boundary value problem given by equations (4.4)–(4.6)

and (4.7), subject to (4.8)–(4.10), in a form of the power series

(u∗1, u
∗
2, u

∗
3, p

∗
t ) =

m∑
n=0

η2n
(
u
∗(2n)
1 , u

∗(2n)
2 , u

∗(2n)
3 , p

∗(2n)
t

)
+ O(η2m+2) . (4.11)

The result of substituting solutions (4.11) into the equations (4.4)–(4.10) is a hierarchical

system of equations and boundary conditions at various orders. To solve this system, it is

also necessary to utilise the fact that for the motion in the vicinity of the cut-off frequencies

γ21u
∗
m,ττ + (Λe

1)
2u∗m ∼ η2u∗m , m ∈ {1, 2, 3} , (4.12)

which can be verified with (3.9). This allows us to conclude that the quantities within

braces in the equations of motion (4.4)–(4.6) are, in fact, of order O(η2). Consequently,

the asymptotic solutions to the system (4.4)–(4.10) are obtainable by solving a sequence of

systems of essentially ordinary differential equations.

4.1.1 Leading order problem

At leading order our problem is given by the equations of motion

γ21u
∗(0)
1,ζζ + (Λe

1)
2u
∗(0)
1 = 0 , (4.13)

B2222u
∗(0)
2,ζζ + (Λe

1)
2u
∗(0)
2 + (B1122 + B1221)u

∗(0)
1,ξ1ζ − γ21p

∗(0)
t,ζ = 0 , (4.14)

γ23u
∗(0)
3,ζζ + (Λe

1)
2u
∗(0)
3 + (B1133 + B1331)u

∗(0)
1,ξ1ξ3

+ (B2233 + B2332)u
∗(0)
2,ξ3ζ − γ21p

∗(0)
t,ξ3

= 0 , (4.15)

and incompressibility condition

u
∗(0)
1,ξ1

+ u
∗(0)
2,ζ = 0 , (4.16)

which must be solved subject to leading order boundary conditions

γ21u
∗(0)
1,ζ = 0 at ζ = ±1 , (4.17)

(B2222 + p̄ )u∗(0)2,ζ + B1122u
∗(0)
1,ξ1

− γ21p
∗(0)
t = 0 at ζ = ±1 , (4.18)

γ23u
∗(0)
3,ζ + (B2332 + p̄ )u∗(0)2,ξ3

= 0 at ζ = ±1 . (4.19)

The solution of the boundary value problem (4.13), (4.17) may be represented in the form

u
∗(0)
1 = u

∗(0,0)
1 cos

(
Λe

1ζ√
γ21

)
, (4.20)
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where the function with double superscript is independent of ζ. Hereafter, all functions with

a double superscript will be assumed independent of ζ and therefore functions only of ξ1, ξ3

and τ . Specifically, the first superscript refers to the order of the approximation, explanation

of the second is deferred until later. Substituting the solution for u
∗(0)
1 from (4.20) into the

incompressibility condition (4.16) we obtain a differential equation for u
∗(0)
2 , indicating that

u
∗(0)
2 = u

∗(0,0)
2 sin

(
Λe

1ζ√
γ21

)
+ U

∗(0,0)
2 , u

∗(0,0)
2 = −

√
γ21

Λe
1

u
∗(0,0)
1,ξ1

. (4.21)

We now substitute the previously determined functions u
∗(0)
1 and u

∗(0)
2 , see (4.20) and (4.21),

into equation (4.14), which when solved subject to (4.18) yields

γ21p
∗(0)
t = p

∗(0,0)
t cos

(
Λe

1ζ√
γ21

)
+ ζP

∗(0,1)
t + P

∗(0,0)
t , (4.22)

within which

p
∗(0,0)
t = (γ21 −B2222 + B1122 + B1221)u

∗(0,0)
1,ξ1

, P
∗(0,1)
t = (Λe

1)
2U

∗(0,0)
2 ,

with the boundary condition (4.18) immediately revealing that

U
∗(0,0)
2 = 0 , P

∗(0,1)
t = 0 , P

∗(0,0)
t = −(2γ21 − σ2)u

∗(0,0)
1,ξ1

cos
(

Λe
1√

γ21

)
.

The leading order term of the third displacement component u
∗(0)
3 is governed by equa-

tion (4.15), subject to the boundary condition (4.19). In view of results (4.20), (4.21)

and (4.22), we seek the solution of (4.15) in the form

u
∗(0)
3 = v

∗(0,0)
3 cos

(
Λe

1ζ√
γ23

)
+ v

∗(0,1)
3 sin

(
Λe

1ζ√
γ23

)
+ u

∗(0,0)
3 cos

(
Λe

1ζ√
γ21

)
+ U

∗(0,0)
3 , (4.23)

in which

u
∗(0,0)
3 =

γ21(γ21 + µ13)
(γ21 − γ23)(Λe

1)2
u
∗(0,0)
1,ξ1ξ3

, U
∗(0,0)
3 = −2γ21 − σ2

(Λe
1)2

cos
(

Λe
1√

γ21

)
u
∗(0,0)
1,ξ1ξ3

,

and a glance at the boundary condition (4.19) shows that it can only be satisfied when

v
∗(0,0)
3 = 0 , v

∗(0,1)
3 = 0 .

We note that for the extensional (symmetric) motion the in-plane displacements u∗1, u∗3 and

pressure p∗t vary only as symmetric functions of the normal coordinate ζ, whereas the normal

displacement u∗2 is an anti-symmetric function. Our leading order solutions (4.20)–(4.23)

confirm this, and for the sake of brevity we will henceforth ignore terms of the solutions

which do not comply to these requirements.

In this section we have obtained leading order solutions for all displacement components

and pressure increment in terms of the function u
∗(0,0)
1 , or more specifically, as linear func-

tions of it and its derivatives. Since knowledge of u
∗(0,0)
1 completely determines the long

wave high frequency motion at leading order, it is usually referred to as the leading order

long wave amplitude, this being independent of ζ. However, this function itself can not be

determined without resorting to the higher order.
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4.1.2 Second order problem

The second order equations of motion are given by

γ21u
∗(2)
1,ζζ + (Λe

1)
2u
∗(2)
1 = −B1111u

∗(0)
1,ξ1ξ1

− γ31u
∗(0)
1,ξ3ξ3

− (B1122 + B1221)u
∗(0)
2,ξ1ζ + γ21p

∗(0)
t,ξ1

+ η−2
(
γ21u

∗(0)
1,ττ + (Λe

1)
2u
∗(0)
1

)
, (4.24)

B2222u
∗(2)
2,ζζ + (Λe

1)
2u
∗(2)
2 + (B1122 + B1221)u

∗(2)
1,ξ1ζ − γ21p

∗(2)
t,ζ = −γ12u

∗(0)
2,ξ1ξ1

− γ32u
∗(0)
2,ξ3ξ3

− (B2233 + B2332)u
∗(0)
3,ξ3ζ + η−2

(
γ21u

∗(0)
2,ττ + (Λe

1)
2u
∗(0)
2

)
, (4.25)

where we remark that the final terms in each case are of the same order as others, see (4.12).

We need not consider the third equation of motion (4.6) to derive the third order model,

which is the reason why it is omitted here. Equations (4.24) and (4.25) must be solved

subject to the second order incompressibility condition

u
∗(2)
1,ξ1

+ u
∗(2)
2,ζ = −u

∗(0)
3,ξ3

, (4.26)

and boundary conditions

γ21u
∗(2)
1,ζ = −(B1221 + p̄ )u∗(0)2,ξ1

at ζ = ±1 , (4.27)

(B2222 + p̄ )u∗(2)2,ζ + B1122u
∗(2)
1,ξ1

− γ21p
∗(2)
t = −B2233u

∗(0)
3,ξ3

at ζ = ±1 . (4.28)

The first equation of motion (4.24), when examined in conjunction with the leading order

solutions (4.20)–(4.23) and subject to the boundary condition (4.27), indicates that

u
∗(2)
1 = u

∗(2,0)
1 cos

(
Λe

1ζ√
γ21

)
+ U

∗(2,0)
1 , (4.29)

U
∗(2,0)
1 = −2γ21 − σ2

(Λe
1)2

cos
(

Λe
1√

γ21

)
u
∗(0,0)
1,ξ1ξ1

,

within which the function u
∗(2,0)
1 can not be determined without considering the third order

problem. The solution (4.29) is only valid provided

γ21u
∗(0,0)
1,ττ + (Λe

1)
2u
∗(0,0)
1 − η2

(
E(2)
1c u

∗(0,0)
1,ξ1ξ1

+ E(2)
1s u

∗(0,0)
1,ξ3ξ3

)
= 0 . (4.30)

Since the displacement component u
∗(0)
2 is a linear function of u

∗(0,0)
1 (and its derivatives),

see (4.21), it will also satisfy equation (4.30). This fact may be used to dispose of the term

of O(η2) in the second equation of motion (4.25) and determine solutions for u
∗(0)
2 and p

∗(0)
t ,

these being given by

u
∗(2)
2 = u

∗(2,0)
2 sin

(
Λe

1ζ√
γ21

)
+ ζU

∗(2,1)
2 , (4.31)

γ21p
∗(2)
t = p

∗(2,0)
t cos

(
Λe

1ζ√
γ21

)
+ ζ2P

∗(2,2)
t + P

∗(2,0)
t , (4.32)
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where

u
∗(2,0)
2 =

√
γ21

(
γ21(γ21 + µ13)

γ23 − γ21

u
∗(0,0)
1,ξ1ξ3ξ3

(Λe
1)3

− u
∗(2,0)
1,ξ1

Λe
1

)
, U

∗(2,1)
2 =

2Γe(2)
1

(Λe
1)2

,

p
∗(2,0)
t = (γ21 −B2222 + B1122 + B1221)u

∗(2,0)
1,ξ1

− γ21Q(−2)
1c

(Λe
1)2

u
∗(0,0)
1,ξ1ξ1ξ1

− γ21

(Λe
1)2

(
(γ21 + µ13)(γ21 −B2222 + B2233 + B2332)

γ23 − γ21
+ γ31 − γ32

)
u
∗(0,0)
1,ξ1ξ3ξ3

,

P
∗(2,0)
t = Γe(2)

1

(
2
γ21 − σ2 + B2222 −B1221

(Λe
1)2

− 1
)
− 1

(Λe
1)2

{
(Λe

1)
2(2γ21 − σ2)u

∗(2,0)
1,ξ1

+
(

B2233(2γ21 − σ2)− γ21

(
(γ21 + µ13)(γ23 + γ21 − σ2)

γ23 − γ21
+ γ31 − γ32

))
u
∗(0,0)
1,ξ1ξ3ξ3

+
(
B2211(2γ21 − σ2)− γ21Q(−2)

1c

)
u
∗(0,0)
1,ξ1ξ1ξ1

}
cos

(
Λe

1√
γ21

)
,

and

P
∗(2,2)
t = Γe(2)

1 =
2γ21 − σ2

2

(
u
∗(0,0)
1,ξ1ξ1ξ1

+ u
∗(0,0)
1,ξ1ξ3ξ3

)
cos

(
Λe

1√
γ21

)
.

We shall now take a closer look at the equation (4.30). Returning back to the original

non-scaled variables and introducing u(0)(x1, x3, t) ≡ u
∗(0,0)
1 (ξ1, ξ3, τ) yields

ρh2 ∂2u(0)

∂t2
+ (Λe

1)
2u(0) − h2

(
E(2)
1c

∂2u(0)

∂x2
1

+ E(2)
1s

∂2u(0)

∂x2
3

)
= 0 , (4.33)

in which E(2)
1c and E(2)

1s are the functions of material parameters and pre-stress defined im-

mediately after expansion (3.9). It was mentioned previously that the solution of the two-

dimensional equation (4.33), termed the leading order long wave amplitude, will completely

determine the extensional long wave high frequency motion of the layer at leading order.

Moreover, if this equation is satisfied, then the second order problem will also be satisfied.

We also remark that the associated dispersion relation, derived by substituting the solution

of the form (2.9) into the equation (4.33), will match the first two orders of the frequency

expansion (3.9), effectively demonstrating a high level of consistency of the model.

It is worth noting, that when the coefficients E(2)
1c and E(2)

1s are positive, equation (4.33) is

hyperbolic. However, it is possible to find stable pre-stressed states for which the coefficient

E(2)
1c becomes negative, note that (2.12) indicates that E(2)

1s must always be positive. In such

a case equation (4.33) still stays hyperbolic, but it is not a proper wave equation, in a sense

that time t and third spatial variable x3 swap roles. This result complements a previous

observation in a plane strain case, for which a similar change of the coefficient sign leads

to loss of hyperbolicity, see Kaplunov et al. (2000b). This behaviour is also related to the

possible existence of harmonics with negative group velocity at low wave number.
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4.1.3 Third order problem

We will not solve the third order problem completely, but merely derive a refined govern-

ing equation for the long wave amplitude. Accordingly, we only consider the third order

approximation of the first equation of motion, namely

γ21u
∗(4)
1,ζζ + (Λe

1)
2u
∗(4)
1 = −(B1133 + B1331)u

∗(0)
3,ξ1ξ3

−B1111u
∗(2)
1,ξ1ξ1

− γ31u
∗(2)
1,ξ3ξ3

− (B1122 + B1221)u
∗(2)
2,ξ1ζ + γ21p

∗(2)
t,ξ1

+ η−2
(
γ21u

∗(2)
1,ττ + (Λe

1)
2u
∗(2)
1

)
, (4.34)

subject to the appropriate order boundary condition

γ21u
∗(4)
1,ζ + (B1221 + p̄ )u∗(2)2,ξ1

= 0 . (4.35)

Substituting the functions on the right hand side of the equation of motion (4.34) with

their solutions (4.23), (4.29), (4.31) and (4.32), which were obtained in previous sections,

we observe that the solution for u
∗(4)
1 has the general form

u
∗(4)
1 = u

∗(4,0)
1 cos

(
Λe

1ζ√
γ21

)
+ ζu

∗(4,1)
1 sin

(
Λe

1ζ√
γ21

)
+ ζ2U

∗(4,2)
1 + U

∗(4,0)
1 . (4.36)

Utilising the boundary condition (4.35), and the restriction on u
∗(0,0)
1 imposed by (4.30),

the following solutions for the coefficients of the (4.36) are derived

u
∗(4,1)
1 = −2

2γ21 − σ2√
γ21 (Λe

1)3
Γe(4)

1 , U
∗(4,2)
1 =

Γe(4)
1

(Λe
1)2

cos
(

Λe
1√

γ21

)
,

U
∗(4,0)
1 =

1
(Λe

1)4

{
γ21(2(2γ21 − σ2) +Q(−2)

1c )u∗(0,0)
1,ξ1ξ1ξ1ξ1

− (2σ2 + 2γ21 + (Λe
1)

2)Γe(4)
1

− (Λe
1)

2(2γ21 − σ2)u
∗(2,0)
1,ξ1ξ1

+
(

γ21

(
(γ21 + µ13)(γ23 + γ21 − σ2)

γ23 − γ21
+ γ31 − γ32

)

+ (2γ21 − σ2)(γ23 − µ13)
)

u
∗(0,0)
1,ξ1ξ1ξ3ξ3

}
cos

(
Λe

1√
γ21

)
,

within which

Γe(4)
1 =

2γ21 − σ2

2

(
u
∗(0,0)
1,ξ1ξ1ξ1ξ1

+ u
∗(0,0)
1,ξ1ξ1ξ3ξ3

)
.

The general solution (4.36) will only satisfy the equation of motion (4.34) provided

γ21u
∗(2,0)
1,ττ + (Λe

1)
2u
∗(2,0)
1 − η2

(
E(2)
1c u

∗(2,0)
1,ξ1ξ1

+ E(2)
1s u

∗(2,0)
1,ξ3ξ3

− E(4)
1c u

∗(0,0)
1,ξ1ξ1ξ1ξ1

− E(4)
1s u

∗(0,0)
1,ξ1ξ1ξ3ξ3

)
= 0 , (4.37)

this may be used together with equation (4.30) to refine the leading order long wave ampli-

tude u∗(0). To do this we multiply equation (4.37) by η2 and add the result to equation (4.30),

which upon the introduction of the non-scaled and scaled long wave amplitude expansions

u = u(0) + u(2)η2 + O(η4) , u∗ = u∗(0) + u∗(2)η2 + O(η4) , (4.38)
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gives the following governing equation

γ21u
∗
,ττ + (Λe

1)
2u∗ − η2

(
E(2)
1c u∗,ξ1ξ1

+ E(2)
1s u∗,ξ3ξ3

)

+ η4
(
E(4)
1c u∗,ξ1ξ1ξ1ξ1

+ E(4)
1s u∗,ξ1ξ1ξ3ξ3

)
= 0 , (4.39)

where notation introduced immediately after (3.9) has been utilised. This equation can be

expressed in terms of the original (non-scaled) variables, giving

ρh2 ∂2u

∂t2
+ (Λe

1)
2u− h2

(
E(2)
1c

∂2u

∂x2
1

+ E(2)
1s

∂2u

∂x2
3

)
+ h4

(
E(4)
1c

∂4u

∂x4
1

+ E(4)
1s

∂4u

∂x2
1∂x2

3

)
= 0 . (4.40)

When this is satisfied, all the equations of third order problem will also be satisfied. It

is easy to see from our solutions, that each displacement component and the pressure in-

crement are represented as linear functions of u
∗(0,0)
1 and u

∗(2,0)
1 . Moreover, the functions

u
∗(2m,0)
1 , m = 0, 1, 2 . . . will all satisfy each of the boundary value problems posed for

u
∗(0,0)
1 , . . . u

∗(2m−2,0)
1 , indicating that the displacement components and pressure increment

are linear functions of the long wave amplitude and its derivatives. We may, as we did it

for the second order governing equation for the long wave amplitude (4.33), substitute the

solution of the form (2.9) into the (4.40) and derive the corresponding dispersion relation.

The refined result will match our expansion for the scaled frequency expansion (3.9) exactly.

4.1.4 Higher order approximations

For certain problems it may be useful to derive even higher order approximations. Generally,

the equations of motion of fourth and higher order (m > 2) are given by

γ21u
∗(2m+2)
1,ζζ + (Λe

1)
2u
∗(2m+2)
1 = −B1111u

∗(2m)
1,ξ1ξ1

− γ31u
∗(2m)
1,ξ3ξ3

− (B1122 + B1221)u
∗(2m)
2,ξ1ζ

+ γ21p
∗(2m)
t,ξ1

+ η−2
(
γ21u

∗(2m)
1,ττ + (Λe

1)
2u
∗(2m)
1

)
− (B1133 + B1331)u

∗(2m−2)
3,ξ1ξ3

, (4.41)

B2222u
∗(2m+2)
2,ζζ + (Λe

1)
2u
∗(2m+2)
2 + (B1122 + B1221)u

∗(2m+2)
1,ξ1ζ − γ21p

∗(2m+2)
t,ζ = −γ12u

∗(2m)
2,ξ1ξ1

− γ32u
∗(2m)
2,ξ3ξ3

− (B2233 + B2332)u
∗(2m)
3,ξ3ζ + η−2

(
γ21u

∗(2m)
2,ττ + (Λe

1)
2u
∗(2m)
2

)
, (4.42)

γ23u
∗(2m+2)
3,ζζ + (Λe

1)
2u
∗(2m+2)
3 + (B1133 + B1331)u

∗(2m+2)
1,ξ1ξ3

+ (B2233 + B2332)u
∗(2m+2)
2,ζξ3

− γ21p
∗(2m+2)
t,ξ3

= −γ13u
∗(2m)
3,ξ1ξ1

−B3333u
∗(2m)
3,ξ3ξ3

+ η−2
(
γ21u

∗(2m)
3,ττ + (Λe

1)
2u
∗(2m)
3

)
, (4.43)

these must be solved in conjunction with the incompressibility condition

u
∗(2m+2)
1,ξ1

+ u
∗(2m+2)
2,ζ = −u

∗(2m)
3,ξ3

, (4.44)

and subject to the boundary conditions

γ21u
∗(2m+2)
1,ζ = −(B1221 + p̄ )u∗(2m)

2,ξ1
at ζ = ±1 , (4.45)

(B2222 + p̄ )u∗(2m+2)
2,ζ + B1122u

∗(2m+2)
1,ξ1

− γ21p
∗(2m+2)
t = −B2233u

∗(2m)
3,ξ3

at ζ = ±1 , (4.46)

γ23u
∗(2m+2)
3,ζ + (B2332 + p̄ )u∗(2m+2)

2,ξ3
= 0 at ζ = ±1 . (4.47)
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It is possible to specify the general solution for this problem, so that the process of solution

will simplify to a system of algebraic equations, the general solutions of which may be

represented in the following form

u
∗(2m+2)
i =

m+1∑
n=0

u
∗(2m+2,n)
i ζn cos

(
πn

2
+

Λe
1ζ√
γ21

)
+

m+1∑
n=0

U
∗(2m+2,2n)
i ζ2n

+
m∑

n=0

v
∗(2m+2,n)
i ζn cos

(
πn

2
+

Λe
1ζ√
γ23

)
, i ∈ {1, 3} , (4.48)

u
∗(2m+2)
2 =

m+1∑
n=0

u
∗(2m+2,n)
2 ζn sin

(
πn

2
+

Λe
1ζ√
γ21

)

+
m∑

n=0

U
∗(2m+2,2n+1)
2 ζ2n+1 +

m∑
n=0

v
∗(2m+2,n)
2 ζn sin

(
πn

2
+

Λe
1ζ√
γ23

)
, (4.49)

p
∗(2m+2)
t =

m+1∑
n=0

p
∗(2m+2,n)
t ζn cos

(
πn

2
+

Λe
1ζ√
γ21

)

+
m+1∑
n=0

P
∗(2m+2,2n)
t ζ2n +

m∑
n=0

p̃
∗(2m+2,n)
t ζn cos

(
πn

2
+

Λe
1ζ√
γ23

)
, (4.50)

in which arguments of sines and cosines are chosen to ensure that the solutions will have

appropriate symmetric or anti-symmetric structure. Though possible, the solving of the

fourth or higher order problem will face severe algebraic difficulties. However, with the

advent of modern computer algebraic manipulation packages such a method is possible and

such problems are mathematically tractable.

4.2 Second family of the cut-off frequencies

It follows from the approximations (3.11), that for the motions in the vicinity of second

family of cut-off frequencies a typical wave travels the distance of a typical wave length l in

a time t ∼ l
η
√

ρ

Λe
3

, so the suitable rescaling of time is

t = lη

√
ρ

γ23
τ . (4.51)

Motivated by the estimations (3.17) we rescale the displacements and pressure so that

um(x1, x2, x3, t) = lη3−mu∗m(ξ1, ζ, ξ3, τ) , m ∈ {1, 2, 3} ,

pt(x1, x2, x3, t) = γ23p
∗
t (ξ1, ζ, ξ3, τ) .

(4.52)

19



When appropriately rescaled, the equations of motions (2.3)–(2.5) are given by

γ21u
∗
1,ζζ + (Λe

3)
2u∗1 −

{
(Λe

3)
2u∗1 + γ23u

∗
1,ττ

}
+ (B1122 + B1221)u∗2,ξ1ζ

+ (B1133 + B1331)u∗3,ξ1ξ3
− γ23p

∗
t,ξ1

+ η2
(
B1111u

∗
1,ξ1ξ1

+ γ31u
∗
1,ξ3ξ3

)
= 0 , (4.53)

B2222u
∗
2,ζζ + (Λe

3)
2u∗2 −

{
(Λe

3)
2u∗2 + γ23u

∗
2,ττ

}
+ (B2233 + B2332)u∗3,ξ3ζ

− γ23p
∗
t,ζ + η2

(
(B1122 + B1221)u∗1,ξ1ζ + γ12u

∗
2,ξ1ξ1

+ γ32u
∗
2,ξ3ξ3

)
= 0 , (4.54)

γ23u
∗
3,ζζ + (Λe

3)
2u∗3 −

{
(Λe

3)
2u∗3 + γ23u

∗
3,ττ

}
+ η2

(
(B2233 + B2332)u∗2,ξ3ζ

+ γ13u
∗
3,ξ1ξ1

+ B3333u
∗
3,ξ3ξ3

− γ21p
∗
t,ξ3

)
+ η4

(
B1133 + B1331

)
u∗1,ξ1ξ3

= 0 , (4.55)

these must be solved together with the incompressibility condition

u∗2,ζ + u∗3,ξ3
+ η2u∗1,ξ1

= 0 , (4.56)

subject to the boundary conditions

γ21u
∗
1,ζ + (B1221 + p̄ )u∗2,ξ1

= 0 at ζ = ±1 , (4.57)

(B2222 + p̄ )u∗2,ζ + B2233u
∗
3,ξ3

− γ21p
∗
t + η2B1122u

∗
1,ξ1

= 0 at ζ = ±1 , (4.58)

γ23u
∗
3,ζ + η2(B2332 + p̄ )u∗2,ξ3

= 0 at ζ = ±1 . (4.59)

As we did in the previous case, we may utilise the fact that

γ23u
∗
m,ττ + (Λe

3)
2u∗m ∼ η2u∗m , m ∈ {1, 2, 3} , (4.60)

to reconsider the order of terms in the braces in the equations of motion (4.53)–(4.53).

4.2.1 Leading order problem

For the leading order problem we are picking up the leading order terms of the equa-

tions (4.53)–(4.59), yielding the equations of motion

γ21u
∗(0)
1,ζζ + (Λe

3)
2u
∗(0)
1 + (B1122 + B1221)u

∗(0)
2,ξ1ζ

+ (B1133 + B1331)u
∗(0)
3,ξ1ξ3

− γ23p
∗(0)
t,ξ1

= 0 , (4.61)

B2222u
∗(0)
2,ζζ + (Λe

3)
2u
∗(0)
2 + (B2233 + B2332)u

∗(0)
3,ξ3ζ − γ23p

∗(0)
t,ζ = 0 , (4.62)

γ23u
∗(0)
3,ζζ + (Λe

3)
2u
∗(0)
3 = 0 , (4.63)

and the leading order incompressibility condition

u
∗(0)
2,ζ + u

∗(0)
3,ξ3

= 0 . (4.64)
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Equations (4.61)–(4.64) must be solved in conjunction with the leading order boundary

conditions, given by

γ21u
∗(0)
1,ζ + (B1221 + p̄ )u∗(0)2,ξ1

= 0 at ζ = ±1 , (4.65)

(B2222 + p̄ )u∗(0)2,ζ + B2233u
∗(0)
3,ξ3

− γ23p
∗(0)
t = 0 at ζ = ±1 , (4.66)

γ23u
∗(0)
3,ζ = 0 at ζ = ±1 . (4.67)

The solution for the system (4.61)–(4.67) is readily established in the following form

u
∗(0)
1 = u

∗(0,0)
1 cos

(
Λe

3ζ√
γ23

)
+ U

∗(0,0)
1 , u

∗(0)
2 = u

∗(0,0)
2 sin

(
Λe

3ζ√
γ23

)
,

u
∗(0)
3 = u

∗(0,0)
3 cos

(
Λe

3ζ√
γ23

)
, γ21p

∗(0)
t = p

∗(0,0)
t cos

(
Λe

3ζ√
γ23

)
+ P

∗(0,0)
t ,

(4.68)

in which

u
∗(0,0)
1 =

γ23(γ23 + µ13)
(γ23 − γ21)(Λe

3)2
u
∗(0,0)
3,ξ1ξ3

, U
∗(0,0)
1 = −2γ23 − σ2

(Λe
3)2

cos
(

Λe
3√

γ23

)
u
∗(0,0)
3,ξ1ξ3

,

u
∗(0,0)
2 = −

√
γ23

Λe
3

u
∗(0,0)
3,ξ3

, P
∗(0,0)
t = −(2γ23 − σ2)u

∗(0,0)
3,ξ3

cos
(

Λe
3√

γ23

)
,

p
∗(0,0)
t = (γ23 −B2222 + B2233 + B2332)u

∗(0,0)
3,ξ3

.

To determine the function u
∗(0,0)
3 we have to resort to higher order. For the considered case

u
∗(0,0)
3 plays role of the leading order long wave amplitude, so every function in (4.68) is the

linear function of u
∗(0,0)
3 and its derivatives.

4.2.2 Second order problem

In order to derive the leading order governing equation for the long wave amplitude, and its

correction at third order, we need only consider the appropriate second and third equations

of motions

B2222u
∗(2)
2,ζζ + (Λe

3)
2u
∗(2)
2 − (B2233 + B2332)u

∗(2)
3,ξ3ζ − γ23p

∗(2)
t,ζ = −γ12u

∗(0)
2,ξ1ξ1

− γ32u
∗(0)
2,ξ3ξ3

− (B1122 + B1221)u
∗(0)
1,ξ1ζ + η−2

(
γ23u

∗(0)
2,ττ + (Λe

3)
2u
∗(0)
2

)
, (4.69)

γ23u
∗(2)
3,ζζ + (Λe

3)
2u
∗(2)
3 = −γ13u

∗(0)
3,ξ1ξ1

−B3333u
∗(0)
3,ξ3ξ3

− (B2233 + B2332)u
∗(0)
2,ξ3ζ + γ23p

∗(0)
t,ξ3

+ η−2
(
γ23u

∗(0)
3,ττ + (Λe

3)
2u
∗(0)
3

)
, (4.70)

and incompressibility condition

u
∗(2)
2,ζ + u

∗(2)
3,ξ3

= −u
∗(0)
1,ξ1

, (4.71)

which are to be considered in conjunction with the second and third second order boundary

conditions

(B2222 + p̄ )u∗(2)2,ζ + B2233u
∗(2)
3,ξ3

− γ23p
∗(2)
t = −B1122u

∗(0)
1,ξ1

at ζ = ±1 , (4.72)

γ23u
∗(2)
3,ζ = −(B2332 + p̄ )u∗(0)2,ξ3

at ζ = ±1 . (4.73)
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The solution for the system (4.69)–(4.73) is given by

u
∗(2)
2 = u

∗(2,0)
2 sin

(
Λe

3ζ√
γ23

)
+ ζU

∗(2,1)
2 ,

u
∗(2)
3 = u

∗(2,0)
3 cos

(
Λe

3ζ√
γ23

)
+ U

∗(2,0)
3 ,

γ23p
∗(2)
t = p

∗(2,0)
t cos

(
Λe

3ζ√
γ23

)
+ ζ2P

∗(2,2)
t + P

∗(2,0)
t ,

(4.74)

this solution only being valid provided

γ23u
∗(0,0)
3,ττ + (Λe

3)
2u
∗(0,0)
3 − η2

(
E(2)
3c u

∗(0,0)
3,ξ1ξ1

+ E(2)
3s u

∗(0,0)
3,ξ3ξ3

)
= 0 . (4.75)

Substituting the solutions (4.74) into the equations (4.69)–(4.73) the following representa-

tions can be derived

u
∗(2,0)
2 =

√
γ23

(
γ23(γ23 + µ13)

γ23 − γ21

u
∗(0,0)
3,ξ1ξ1ξ3

(Λe
3)3

− u
∗(2,0)
3,ξ3

Λe
3

)
,

U
∗(2,1)
2 =

2Γe(2)
3

(Λe
3)2

, U
∗(2,0)
3 = −2γ23 − σ2

(Λe
3)2

cos
(

Λe
3√

γ23

)
u
∗(0,0)
3,ξ3ξ3

,

p
∗(2,0)
t = (γ23 −B2222 + B2233 + B2332)u

∗(2,0)
3,ξ3

− γ23Q(−2)
3s

(Λe
3)2

u
∗(0,0)
3,ξ3ξ3ξ3

− γ23

(Λe
3)2

(
(γ23 + µ13)(γ23 −B2222 + B1122 + B1221)

γ23 − γ21
+ γ12 − γ13

)
u
∗(0,0)
3,ξ1ξ1ξ3

,

P
∗(2,0)
t = Γe(2)

3

(
2
γ23 − σ2 + B2222 −B2332

(Λe
1)2

− 1
)
− 1

(Λe
3)2

{
(Λe

3)
2(2γ23 − σ2)u

∗(2,0)
3,ξ3

+
(

B1122(2γ23 − σ2) + γ23

(
(γ23 + µ13)(γ23 + γ21 − σ2)

γ23 − γ21
+ γ12 − γ13

))
u
∗(0,0)
3,ξ1ξ1ξ3

+
(
B2233(2γ23 − σ2)− γ23Q(−2)

3s

)
u
∗(0,0)
3,ξ3ξ3ξ3

}
cos

(
Λe

3√
γ23

)
,

and also

P
∗(2,2)
t = Γe(2)

3 =
2γ23 − σ2

2

(
u
∗(0,0)
3,ξ1ξ1ξ3

+ u
∗(0,0)
3,ξ3ξ3ξ3

)
cos

(
Λe

3√
γ23

)
.

This derivation again utilises the fact, that every displacement component u
∗(0)
m (m ∈ {1, 3})

is a linear function of the leading order long wave amplitude u
∗(0)
3 and its derivatives, which

guarantees that the equation (4.75) is also valid for each of the displacement components.

Rescaling (4.75) back to the original variables we obtain the governing equation for the

leading order long wave amplitude

ρh2 ∂2u(0)

∂t2
+ (Λe

3)
2u(0) − h2

(
E(2)
3c

∂2u(0)

∂x2
1

+ E(2)
3s

∂2u(0)

∂x2
3

)
= 0 . (4.76)

It is again remarked that the dispersion relation associated with this equation matches first

two orders of the expansion (3.13).
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4.2.3 Third order problem

At third order the third equation of motion is given by

γ23u
∗(4)
3,ζζ + (Λe

3)
2u
∗(4)
3 = −(B1133 + B1331)u

∗(0)
1,ξ1ξ3

− (B2233 + B2332)u
∗(2)
2,ξ3ζ

− γ13u
∗(2)
3,ξ1ξ1

−B3333u
∗(2)
3,ξ3ξ3

+ γ23p
∗(2)
t,ξ3

+ η−2
(
γ23u

∗(2)
3,ττ + (Λe

3)
2u
∗(2)
3

)
, (4.77)

with the associated boundary condition

(B2332 + p̄ )u∗(2)2,ξ3
+ γ23u

∗(4)
3,ζ = 0 , (4.78)

The problem posed by (4.77) and (4.78) is all that is needed to derive a corrected governing

equation for the long wave amplitude. Inserting solutions derived at the previous orders into

the right hand side of the equation (4.77) we observe the following form of general solution

u
∗(4)
3 = u

∗(4,0)
3 cos

(
Λe

3ζ√
γ23

)
+ ζu

∗(4,1)
3 sin

(
Λe

3ζ√
γ23

)
+ ζ2U

∗(4,2)
3 + U

∗(4,0)
3 , (4.79)

which together with the boundary condition (4.78) yields

u
∗(4,1)
3 = −2

2γ23 − σ2√
γ23 (Λe

3)3
Γe(4)

3 , U
∗(4,2)
3 =

Γe(4)
3

(Λe
3)2

cos
(

Λe
3√

γ23

)
,

U
∗(4,0)
3 =

1
(Λe

3)4

{
γ23(2(2γ21 − σ2) +Q(−2)

3s )u∗(0,0)
3,ξ3ξ3ξ3ξ3

− (2σ2 + 2γ23 + (Λe
3)

2)Γe(4)
3

− (Λe
3)

2(2γ23 − σ2)u
∗(2,0)
3,ξ3ξ3

−
(

γ23

(
(γ23 + µ13)(γ23 + γ21 − σ2)

γ23 − γ21
+ γ12 − γ13

)

− (2γ23 − σ2)(γ21 − µ13)
)

u
∗(0,0)
3,ξ1ξ1ξ3ξ3

}
cos

(
Λe

3√
γ23

)
,

where

Γe(4)
3 =

2γ23 − σ2

2

(
u
∗(0,0)
3,ξ1ξ1ξ3ξ3

+ u
∗(0,0)
3,ξ3ξ3ξ3ξ3

)
.

Equation (4.77) may only be satisfied provided

γ23u
∗(2,0)
3,ττ + (Λe

3)
2u
∗(2,0)
3 − η2

(
E(2)
3c u

∗(2,0)
3,ξ1ξ1

+ E(2)
3s u

∗(2,0)
3,ξ3ξ3

− E(4)
3c u

∗(0,0)
3,ξ1ξ1ξ3ξ3

− E(4)
3s u

∗(0,0)
3,ξ3ξ3ξ3ξ3

)
= 0 , (4.80)

which upon multiplying onto η2, adding to the (4.75) and rescaling to the original variables

gives the governing equation for the long wave amplitude

ρh2 ∂2u

∂t2
+ (Λe

3)
2u− h2

(
E(2)
3c

∂2u

∂x2
1

+ E(2)
3s

∂2u

∂x2
3

)
+ h4

(
E(4)
3c

∂4u

∂x2
1∂x2

3

+ E(4)
3s

∂4u

∂x4
3

)
= 0 , (4.81)

in which u is defined by (4.38).
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4.2.4 Higher order approximations

Once again, we will only provide the necessary information for deriving higher order ap-

proximate equations for the second family of the cut-off frequencies for completeness. The

equations of motion for fourth or higher order (m > 2) are generally given by

γ21u
∗(2m+2)
1,ζζ + (Λe

3)
2u
∗(2m+2)
1 + (B1122 + B1221)u

∗(2m+2)
2,ζξ1

+ (B1133 + B1331)u
∗(2m+2)
3,ξ3ξ1

− γ23p
∗(2m+2)
t,ξ1

= −B1111u
∗(2m)
1,ξ1ξ1

− γ31u
∗(2m)
1,ξ3ξ3

+ η−2
(
γ23u

∗(2m)
1,ττ + (Λe

3)
2u
∗(2m)
1

)
, (4.82)

B2222u
∗(2m+2)
2,ζζ + (Λe

3)
2u
∗(2m+2)
2 − (B2233 + B2332)u

∗(2m+2)
3,ξ3ζ − γ23p

∗(2m+2)
t,ζ = −γ12u

∗(2m)
2,ξ1ξ1

− γ32u
∗(2m)
2,ξ3ξ3

− (B1122 + B1221)u
∗(2m)
1,ξ1ζ + η−2

(
γ23u

∗(2m)
2,ττ + (Λe

3)
2u
∗(2m)
2

)
, (4.83)

γ23u
∗(2m+2)
3,ζζ + (Λe

3)
2u
∗(2m+2)
3 = −(B2233 + B2332)u

∗(2m)
2,ξ3ζ − γ13u

∗(2m)
3,ξ1ξ1

−B3333u
∗(2m)
3,ξ3ξ3

+ γ23p
∗(2m)
t,ξ3

+ η−2
(
γ23u

∗(2m)
3,ττ + (Λe

3)
2u
∗(2m)
3

)
− (B1133 + B1331)u

∗(2m−2)
1,ξ1ξ3

, (4.84)

and must be solved in conjunction with the incompressibility condition

u
∗(2m+2)
2,ζ + u

∗(2m+2)
3,ξ3

= −u
∗(2m)
1,ξ1

, (4.85)

subject to appropriate boundary conditions

γ21u
∗(2m+2)
1,ζ + (B1221 + p̄ )u∗(2m+2)

2,ξ1
= 0 at ζ = ±1 , (4.86)

(B2222 + p̄ )u∗(2m+2)
2,ζ + B2233u

∗(2m+2)
3,ξ3

− γ23p
∗(2m+2)
t = −B1122u

∗(2m)
1,ξ1

at ζ = ±1 , (4.87)

γ23u
∗(2m+2)
3,ζ = −(B2332 + p̄ )u∗(2m)

2,ξ3
at ζ = ±1 . (4.88)

The general solution for this system can be written in the form

u
∗(2m+2)
i =

m+1∑
n=0

u
∗(2m+2,n)
i ζn cos

(
πn

2
+

Λe
3ζ√
γ23

)
+

m+1∑
n=0

U
∗(2m+2,2n)
i ζ2n

+
m∑

n=0

v
∗(2m+2,n)
i ζn cos

(
πn

2
+

Λe
3ζ√
γ21

)
, i ∈ {1, 3} , (4.89)

u
∗(2m+2)
2 =

m+1∑
n=0

u
∗(2m+2,n)
2 ζn sin

(
πn

2
+

Λe
3ζ√
γ23

)

+
m∑

n=0

U
∗(2m+2,2n+1)
2 ζ2n+1 +

m∑
n=0

v
∗(2m+2,n)
2 ζn sin

(
πn

2
+

Λe
3ζ√
γ21

)
, (4.90)

p
∗(2m+2)
t =

m+1∑
n=0

p
∗(2m+2,n)
t ζn cos

(
πn

2
+

Λe
3ζ√
γ23

)

+
m+1∑
n=0

P
∗(2m+2,2n)
t ζ2n +

m∑
n=0

p̃
∗(2m+2,n)
t ζn cos

(
πn

2
+

Λe
3ζ√
γ21

)
, (4.91)

and corresponding functions u
∗(2m+2,n)
k , U

∗(2m+2,n)
k , v

∗(2m+2,n)
k , p

∗(2m+2,n)
t , P

∗(2m+2,n)
k and

p̃
∗(2m+2,n)
k are to be identified upon insertion into the system (4.82)–(4.88).
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5 Illustrative numerical results

Numerical results are now presented in respect of the Varga strain energy function

W (λ1, λ2, λ3) = µ(λ1 + λ2 + λ3 − 3) , (5.1)

where µ is the shear modulus and λm, m ∈ {1, 2, 3} are the principal stretches of the

initial static deformation. For this material, the components of the elasticity tensor can be

represented in terms of the principal stretches as follows

Bijij =
µλ2

i

λi + λj
, Bijji = − µλiλj

λi + λj
, i 6= j , i, j ∈ {1, 2, 3} . (5.2)

The material parameters used in figures 1–5 are summarised in table 1. Figure 1 shows

(a)
µ λ1 λ2 λ3 σ2 θ

2.5 0.6 1.6 1.04 1.0 15◦
(b)

µ λ2 σ2 θ

2.5 1.6 1.0 15◦

Table 1: Parameters used in generating graphs. Table (a) contains data for figures 1–3,

table (b) specifies parameters used for figures 4–5, unless otherwise stated on graph.

the scaled group velocity v̄g of the first six harmonics (three for each of the two families of

cut-off frequencies) for propagation along θ = 15◦ against the scaled wave number kh, v̄g

being defined by

v̄g =
∂ω̄

∂(kh)
, (5.3)

in which ω̄ is the scaled frequency. An interesting feature of this graph is the strongly

linear behaviour of the group velocity associated with each harmonics within the low wave

number region, especially noticeable for those associated with the second family of cut-off

frequencies. To analyse this we consider, as an example, the frequency expansion (3.9),

which may be represented as

ω̄2 = (Λe
1)

2 + E(2)
1 η2 + O(η4) , E(2)

1 = E(2)
1s s2

θ + E(2)
1c c2

θ . (5.4)

Using (5.3) we are able to conclude that

v̄g =
E(2)
1

Λe
1

η + O(η3) , (5.5)

indicating low wave number linear variation with an O(η3) correction.

A further interesting feature of figure 1 is the possible existence of negative group velocity

at low wave number. For the chosen parameters, this is specifically associated with the

first family of cut-off frequencies and is evident in figure 1 for the first three harmonics.

Plots depicting the scaled frequencies of these three harmonics, and showing numerical and
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Figure 1: Group velocity for the first six harmonics in low wave number regime, θ = 15◦.
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Figure 2: Frequencies of the first three harmonics, associated with the first family of cut-off

frequencies.

asymptotic solutions, are presented in figure 2. Negative group velocity corresponds to the

decreasing of frequency as the wave number increases and indicates that certain modes may

have frequencies below the cut-off. In order for this phenomenon to manifest itself it is

necessary that E(2)
1 < 0. When this occurs it is clear that the third order correction term

must be used to adequately approximate the numerical solution in all but the very lowest

wave number region. We note that in general the asymptotic frequency approximations

improve as n, the harmonic number, increases, the third order term being O(n−2). The

harmonics associated with the second family of cut-off frequencies have no negative group

velocity. For these the second order approximation is almost indistinguishable from the

third order, as illustrated in figure 3.

As previously mentioned, the existence of negative group velocity is connected with

the change of sign of E(2)
1c or E(2)

2s in the governing equation (4.33) or (4.76), respectively.
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Figure 3: Frequencies of the first three harmonics, associated with the second family of

cut-off frequencies.

E(2)
1

-1

-0.5

0

0.5

1

1.5

2

2.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2

θ=15˚
θ=30˚
θ=45˚
θ=60˚
θ=75˚

λ1

E(2)
1c

-1

-0.5

0

0.5

1

1.5

2

2.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2

λ2=1.6
λ2=1.0
λ2=0.6

λ1

Figure 4: Dependence of the second order frequency expansion term E(2)
1 and governing

equation coefficient E(2)
1c on the change of in-plane deformation, shown for the motions

associated with the first family of cut-off frequencies.

When this occurs there is a significant change in the character of the appropriate governing

equation. In particular, time and one of the in-plane spatial variables swap roles. In fact,

it was shown by Kaplunov et al. (2000b) that in the plain strain case a similar change of

the coefficient sign changes the analogous equation from hyperbolic to elliptic. In the plain

strain case this change of sign is always synonymous with the existence of negative group

velocity. However, in the present case it is quite possible for time and one of the in-plane

spatial variables to swap roles and the group velocity remain positive, see figure 4. In this

figure the left hand graph shows the dependence of the second order term of the frequency

expansion on in-plane deformation, with fixed normal deformation. The sign of this term

indicates the sign of the group velocity, see equation (5.5). We note that this phenomenon
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Figure 5: Dependence of the second order frequency expansion term E(2)
3 and governing

equation coefficient E(2)
3c on the change of in-plane deformation, shown for the motions

associated with the second family of cut-off frequencies.

is most likely to occur for propagation along a principal direction. The right hand graph

shows the behaviour of E(2)
1c , the sign of which triggers the role change of the spatial variable

and time previously mentioned. Since E(2)
1c is independent of θ, and E(2)

1s always positive, a

value of θ may always be chosen such that vg > 0.

Similar comments may also be made for the coefficients associated with the second

family of cut-off frequencies, corresponding numerical illustrations being shown in figure 5.

For example, an initial pre-stress arising from the principal stretches λ1 = 1, λ2 = 1.6

renders the coefficient E(2)
3c negative, see the right hand graph, the governing equation not

being a typical hyperbolic equation. However, the left hand graph shows that for the angles

of propagation θ > 45◦ the group velocity of the harmonics still remain positive.
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