
A Simultaneous Execution Scheme for Database Caching

Der Fakultät Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Steffen Jurk

geboren am 29. November 1974 in Apolda

Gutachter:

Prof. Dr. rer. nat. habil. Bernhard Thalheim

Prof. Dr. rer. pol. habil. Hans-Joachim Lenz

Prof. Dr.-Ing. Jens Nolte

Tag der mündlichen Prüfung: 12.12.2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/33427353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hiermit erkläre ich, dass ich die vorliegende Dissertation

selbständig verfasst habe.

Cottbus, den September 22, 2006 .

Steffen Jurk, Striesower Weg 22, D–03044 Cottbus

Email: Steffen.Jurk@gmx.de

ii

Abstract

Database caching techniques promise to improve the performance and scalability of client-

server database applications. The task of a cache is to accept requests of clients and to

compute them locally on behalf of the server. The content of a cache is filled dynamically

based on the application and users’ data domain of interest. If data is missing or concurrent

access has to be controlled, the computation of the request is completed at the central server.

As a result, applications benefit from quick responses of a cache and load is taken from the

server. The dynamic nature of a cache, the need of transactional consistency, and the complex

nature of a request make database caching a challenging field of research.

This thesis presents a novel approach to the shared and parallel execution of stored

procedure code between a cache and the server. Every commercial database product provides

such stored procedures that are coded in a complete programming language. Given a request

in form of such a procedure, we introduce the concept of split twin transactions that logically

split the procedure code into two parts, say A and B, such that A is executed at the cache

and B at the server in a simultaneous and parallel manner. Furthermore, we analyse the

procedure code to detect suitable parts. To the best of our knowledge, this has not yet been

addressed by any existing approaches.

Within a detailed case study, we show that our novel scheme improves the performance

of existing caching approaches. Furthermore, we demonstrate that different load conditions

of the system require different sizes of the parts A and B to gain maximal performance. As a

result, we extend database caching by a new dimension of optimization, namely by splitting

of the procedure code into A and B.

To solve this problem of dynamically balancing the code execution between cache and

server, we define the maximum performance of a database cache over time and propose a

stochastic model to capture the average execution time of a procedure. Based on the exe-

cution frequencies of primitive database operations, the model allows us to partially predict

the response times for different sizes of A and B, hence providing a partial solution to the

optimization problem.

iii

iv

Zusammenfassung

Datenbank-Cache-Techniken versprechen eine Verbesserung von Client-Server-Anwendungen

hinsichtlich Performance und Skalierbarkeit. Anfragen werden direkt an den Cache geleitet

und mit Hilfe lokal gespeicherter Daten ausgeführt. Der Cache-Inhalt wird dabei dynamisch

entsprechend dem Verhalten von Anwendungen und Benutzern gefüllt. Fehlen dem Cache

Daten oder erfordert die Ausführung der Anfrage die Prüfung transaktionaler Konsistenz,

wird die Anfrage vom Server vervollständigt. Anwendungen profitieren von schnellen Antworten

des Caches und der Entlastung des Servers. Das dynamische Umfeld, die transaktionale Kon-

sistenz und die Komplexität der Anfragen bilden zusammen einen interessanten Forschungs-

bereich f̈r Effizienzsteigerung von Client-Server-Systemen.

In der vorliegenden Arbeit wird eine neue Technik zur geteilten und parallelen Ausführung

von Prozeduren aufgezeigt. Nahezu jedes kommerzielle Datenbanksystem bietet heutzutage

derartige Prozeduren, die in einer vollständigen Programmiersprache implementiert sind und

auf der Ebene des Datenbanksystems ausgeführt werden. Als Erweiterung für Prozeduren

werden Geteilte Zwillingstransaktionen vorgestellt, die den Code logisch in zwei Teile A und

B teilen, so dass A vom Cache und B vom Server zeitgleich ausgeführt werden. Mögliche

Teilungen des Codes werden vorweg durch eine Code-Analyse ermittelt. Entsprechend meinen

Erkenntnissen wurde dieses Problem bisher von keiner der existierenden Techniken betrachtet.

In einer detaillierten Fallstudie wird die verbesserte Performance der hier dargestellten

Methoden aufgezeigt. Weiterhin wird gezeigt, dass verschiedene Lastbedingungen eine unter-

schiedliche Dimensionierung der Teile A und B zum Erreichen der maximalen Performance

erfordern. Somit eröffnet die richtige Wahl von A und B eine neue Dimension zur Optimierung

von Datenbank-Cache-Techniken.

Um das Problem des dynamischen Ausbalancierens der Code-Ausführung auf einem Cache

sowie dem Server zu lösen, wird die zeitabhängige maximale Cache-Performance und ein

stochastisches Modell zur Erfassung der durchschnittlichen Ausführungszeit von Prozeduren

definiert. Basierend auf Ausführungshäufigkeiten von elementaren Datenbankoperationen

ermöglicht das Modell die partielle Vorhersage von Antwortzeiten für verschiedene Dimen-

sionierungen von A und B. Somit wird eine partielle Lösung des Optimierungsproblems er-

reicht.

v

vi

Contents

Abstract iii

Zusammenfassung v

I Overview and Motivation 1

1 Introduction 3

1.1 Database Caching . 4

1.2 Problem Statement . 6

1.3 Outline . 8

2 Database Caching Techniques 9

2.1 The Need for Database Caching . 9

2.2 Database Cache Design . 12

2.3 Request Execution and Concurrency Control 15

2.4 Loading the Cache and Self-Adaptation . 18

2.5 A Classification of Caching Schemes . 20

2.6 Related Fields to Database Caching . 22

2.6.1 Mobile Databases . 22

2.6.2 Integrity Enforcement . 24

3 Problem Analysis 27

3.1 The Example . 27

3.2 Traditional Caching Schemes . 28

3.2.1 Avoidance-Based Protocols . 29

3.2.2 Detection-Based Protocols . 31

3.2.3 Discussion . 32

3.3 A Simultaneous Execution Scheme . 33

3.3.1 Twin Transactions . 33

3.3.2 Partial Execution and Re-Use of Query Results 34

3.3.3 The Run Time Optimization Problem 39

3.4 Summary and Discussion . 40

vii

II Split Twin Transactions for Database Caching 43

4 A Client-Server Database System for Twin Transactions 45

4.1 Overview . 45

4.2 Data Definition and Stored Procedures . 48

4.2.1 Tables and Constraints . 48

4.2.2 The Language of Stored Procedures 48

4.2.3 Low-Level Procedures . 50

4.3 The Execution Engine . 52

4.4 Table Fragmentation . 54

4.4.1 The Definition of Fragments . 54

4.4.2 Fragment Access of Queries and Low-Level Updates 55

4.4.3 The Management of Fragments . 57

4.4.4 Fragment Versions . 59

4.5 Fragment Replication and Synchronization . 61

4.5.1 Propagate Updates to Caches . 62

4.5.2 Receive Updates from the Server . 63

4.5.3 Dynamic Data Replication . 65

4.6 Executability of IO Statements . 65

4.7 Twin Transactions . 66

4.7.1 Unique Execution and Tuple Identifiers 67

4.7.2 Consistent Twin Transaction . 69

4.8 Related Work . 71

4.9 Summary and Discussion . 72

5 A Simultaneous Execution Scheme for Split Procedure Code 75

5.1 Split Twin Transactions — An Overview . 76

5.2 The Query Result Cache . 79

5.3 Execution at the Cache . 80

5.3.1 The Partial Execution Model . 80

5.3.2 Handling IO Statements . 83

5.3.3 Completing an Execution . 84

5.4 Execution at the Server . 84

5.4.1 Retrieving Query Results from the QRC 84

5.4.2 Handling IO Statements . 87

5.4.3 Verifying Query Results . 88

5.4.4 Completing an Execution . 88

5.5 Identify Dependencies within the Procedure Code 89

5.6 Correctness of Split Twin Transactions . 94

5.7 Related Work . 95

5.8 Summary and Discussion . 96

viii

6 Case Study — The ONE-System 99

6.1 Architecture . 99

6.1.1 Database Schema and Procedure Code 99

6.1.2 The Client-Server Database System 100

6.1.3 A Traditional Execution Scheme . 101

6.1.4 The Simultaneous Execution Scheme 103

6.2 Experimental Setup . 104

6.2.1 Used Hard- and Software . 104

6.2.2 Parameters of Experiments . 105

6.2.3 The Execution of Experiments . 106

6.3 Comparison of the Execution Schemes . 108

6.3.1 The Traditional Execution Scheme . 108

6.3.2 The Simultaneous Execution Scheme With Dependent Queries 113

6.3.3 The Simultaneous Execution Scheme With Independent Queries . . . 117

6.4 Other Related Experimental Results . 120

6.4.1 Performance of Slow Database Caches 121

6.4.2 Shared vs. Normal Mode . 122

6.5 Summary and Discussion . 125

III Self-Adaptive Load Balancing between Cache and Server 127

7 Dynamics, Performance and the Optimization 129

7.1 The Dynamics of Client-Server Database Systems 129

7.2 Cache Execution Performance . 133

7.2.1 Idle and Execution Time of IO statements 133

7.2.2 Minimal Processing Time . 135

7.2.3 Maximal Cache Utilization . 135

7.2.4 Maximal Code Balancing . 137

7.3 Cache Fragment Performance . 139

7.3.1 Fragment Access Frequency . 140

7.3.2 Dependent Queries in the Procedure Code 140

7.3.3 Fragment Efficiency . 142

7.4 The Optimization Problem . 143

7.5 Related Work . 148

7.6 Summary and Discussion . 149

8 Modeling the Process Time of the Simultaneous Execution Scheme 151

8.1 Problem Statement . 151

8.2 Valid Subsequences . 152

8.2.1 Implied Operations at the Cache . 153

8.2.2 Additional Operations at a Cache . 155

8.3 Capture the Run Time Behavior of Stored Procedures 159

ix

8.3.1 An Upper Bound for the Number of Valid Subsequences 159

8.3.2 Execution Histories of Stored Procedures 162

8.4 Modeling the Simultaneous Execution Scheme 163

8.4.1 Basic Execution Parameters . 163

8.4.2 A Model of the Simultaneous Execution Scheme 164

8.4.3 The Average Processing Time of a Procedure 166

8.5 Preciseness of the Model . 168

8.5.1 Evaluation Set . 168

8.5.2 Compare Observed and Calculated Processing Time 169

8.5.3 Analyse Frequency Density and Distribution 170

8.6 Summary and Discussion . 171

9 Run Time Optimization 173

9.1 Overview . 173

9.1.1 Problem Statement . 174

9.1.2 Problem Solution . 174

9.2 Simulate the Execution Behavior of Split Parameter 176

9.2.1 Motivating Examples . 176

9.2.2 An Algorithm for Modifying the Execution History 179

9.3 Capture Load-Dependent Basic Parameters 181

9.3.1 Determine the Load of a Configuration 182

9.3.2 Determine the Value of Load-Dependent Basic Parameters 183

9.4 Evaluation of the Prediction Technique . 185

9.5 Towards Solving the Dynamic Optimization Problem 188

9.5.1 The User-Provided Parameters of the Optimization Problem 188

9.5.2 A 2x2-Phase Greedy Optimization Algorithm 190

9.6 Summary and Discussion . 194

10 Conclusion 197

10.1 Summary and Contributions . 197

10.2 Open Directions for Further Work . 200

Bibliography 203

Notations 213

x

List of Figures

2.1 Multi-tier database applications . 10

2.2 A database cache at an end-user client or application server. 10

2.3 Three requirements of database caching. 12

3.1 Example of an avoidance-based concurrency protocol. 29

3.2 Example of a detection-based concurrency protocol. 31

3.3 Twin Transactions. Left: fast Client. Right: slow Client. 34

3.4 Partial execution and reuse of query results. 35

3.5 Different configurations of the simultaneous execution scheme. 40

4.1 Architecture of a Database Cache. 46

5.1 Architecture of a Database Cache. 75

5.2 Split Twin Transactions with passing a query result to the server. 77

5.3 Retrieve, verify and reuse query result from the query result cache handled by

the function evalS(.). 85

6.1 Diagrams for run time parameters and observed values. 108

6.2 ONE-System with one client and traditional execution scheme. Processing

time (left) and cumulated verification time (right) in ms. 109

6.3 ONE-System with one client and traditional execution scheme. Execution

scheme for the maximal processing time. 109

6.4 ONE-System with one client and traditional execution scheme. Reuse rate in

percent (left) and re-execution time (right) in ms. 110

6.5 ONE-System with four clients and traditional execution scheme. Processing

time in ms (left) and throughput (right) of one cache as number of calls. . . 111

6.6 ONE-System with four clients and traditional execution scheme. Reuse rate

in percent(left) and re-execution time (right) of one cache. 112

6.7 ONE-System with four clients and traditional execution scheme. Query time

in ms (left) and cumulated verification time (right) of one cache. 112

6.8 ONE-System with four clients and traditional execution scheme. Execution

scheme for the maximal processing time. 113

6.9 ONE-System with one client and simultaneous execution scheme without in-

dependent queries. Processing time in ms (left) and idle time (right). 114

xi

6.10 ONE-System with one client and simultaneous execution scheme without in-

dependent queries. Cumulated verification time in ms (left) and re-execution

time (right). 114

6.11 ONE-System with one client and simultaneous execution scheme without in-

dependent queries. Execution scheme for the minimal processing time. . . . 115

6.12 ONE-System with four clients and simultaneous execution scheme without

independent queries. Processing time in ms (left) and throughput (right) of

one cache. 116

6.13 ONE-System with four clients and simultaneous execution scheme without

independent queries. From left to right: cumulated verification, idle, re-

execution and query time. 116

6.14 ONE-System with four clients and simultaneous execution scheme without

independent queries. Execution scheme for the minimal processing time. . . 117

6.15 ONE-System with one client and simultaneous execution scheme with inde-

pendent queries. Processing time (left) and idle time (right). 118

6.16 ONE-System with one client and simultaneous execution scheme with indepen-

dent queries. Cumulated verification time (left) and re-execution time (right). 118

6.17 ONE-System with one client and simultaneous execution scheme with inde-

pendent queries. Execution scheme for the minimal processing time. 119

6.18 ONE-System with four clients and simultaneous execution scheme with inde-

pendent queries. Processing time (left) and throughput (right). 119

6.19 ONE-System with four clients and simultaneous execution scheme with inde-

pendent queries. From left to right: verification, idle, re-execution and query

time. 120

6.20 ONE-System with four clients and simultaneous execution scheme with inde-

pendent queries. Execution scheme for the minimal processing time. 121

6.21 ONE-System with four clients and simultaneous execution scheme with depen-

dent queries. Processing time (left) and throughput (right) for a slow cache. 121

6.22 ONE-System with four clients and simultaneous execution scheme with in-

dependent queries. Processing time (left) and throughput (right) for a slow

cache. 122

6.23 ONE-System with four clients and modified simultaneous execution scheme

with independent queries. Only shared mode. Processing time (left) and

throughput (right). 123

6.24 ONE-System with four clients and modified simultaneous execution scheme

with independent queries. Only shared mode. Reuse rate (left) and re-

execution time (right). 124

6.25 Throughput and processing time for the ONE-System with four clients and

three different execution schemes. 125

xii

7.1 Minimal processing time of the ONE-System for different load conditions

and types of requests (left: low-loaded server, middle: high-loaded server,

right:slow database cache). 131

7.2 Corrected idle time for a one (left) and four client (right) system with depen-

dent queries. 136

7.3 Processing time for a one (left) and four client (right) system with dependent

queries. 137

7.4 Corrected idle time for a one (left) and four client (right) system with inde-

pendent queries. 137

7.5 Processing time for a one (left) and four client (right) system with independent

queries. 138

7.6 Code balance (corrected cache and server idle time) for a one (left) and four

client (right) system with dependent queries. 139

7.7 Code balance (corrected cache and server idle time) for a one (left) and four

client (right) system with independent queries. 139

8.1 Calculating the processing time of the simultaneous execution scheme. 152

8.2 Example of execution histories. 161

8.3 Example of an execution history. The blue box represents the counter cexec,

the white box cinvalid and the green box a leaf node and cvalid. First (second)

sequence refers to lowest (highest) possible update delay. 169

8.4 Observed (left) and calculated (right) processing time for four clients with

dependent queries. 170

8.5 Observed (left) and calculated (right) processing time for four clients with

independent queries. 170

8.6 Frequency density (black) and distribution (blue) for simultaneous execution

scheme without (left) and with (right) independent queries (four clients). . . 171

9.1 Example for modifying the execution frequencies of a history. Left: All state-

ments are executed at the cache. Right: Three statements are removed from

the parameter split. 176

9.2 Example for modifying the execution frequencies of a history. Left: All state-

ments are executed at the cache. Middle: Four statements are removed from

the parameter split. Right: One statement with subsequent statements is

removed from the parameter split. 177

9.3 Example for modifying the execution frequencies of a history. 178

9.4 Query execution time ptS and server load mIOSt for a four-client system. . . 184

9.5 Query execution time ptC and cache load mIOCt for the four-client ONE-System.184

9.6 Observed (left) and predicted (right) processing time with four clients and

dependent queries. 186

xiii

9.7 Preciseness of the prediction technique of relative deviations (frequency density

and distribution) between the original observed and the predicted values for

dependent queries. 187

9.8 Observed (left) and predicted (right) processing time with four clients and

independent queries. 187

9.9 Preciseness of the prediction technique of relative deviations (frequency density

and distribution) between the original observed and the predicted values for

independent queries. 188

9.10 ONE-System. Left: fragment efficiency in seconds. Right: processing time of

a procedure in ms. 190

xiv

List of Tables

3.1 Characteristics of the proposed execution scheme. 42

6.1 Range (Domain) of static parameters. 105

6.2 Configuration of the tested client-server systems. 108

xv

xvi

Part I

Overview and Motivation

1

Chapter 1

Introduction

Data-intensive applications often make use of relational databases for maintaining huge

amounts of data efficiently. These applications range from small in-house solutions up to

global applications that operate on different internet-connected sites. Most of this applica-

tions run in a client-server configuration, where multiple clients connect to a central server

and initiate data requests. A client can be either a end-user machine or an application server,

web server, etc. The server provides techniques for shared data access, thus is responsible for

guaranteeing consistency of data. For such systems it is desired that a request is computed

quickly and that a high number of requests can be computed simultaneously.

The performance of a client-server database system is a crucial issue that depends on

numerous factors. Besides the used hardware these factors mainly cover the following areas:

1. Design and implementation of applications. Starting from the requirement analysis

and design of a database application, over its distribution among different sites and its

mapping to a physical schema, performance relevant issues can be found all over the

life-cycle of an application.

2. Run time behavior. A database system interacts with users and other applications. The

imposed load significantly determines the performance of the entire database system.

3. Facilities of the database management system. Research and industry have constantly

improved database technology to meet new requirements. Among many others, re-

lated topics are: internal data management, buffering, caching, query optimization,

integrity enforcement, data types, e.g., objects and XML, data replication, concurrency

protocols, etc.

This thesis deals with the latter area, especially with database caching techniques that aim

at combining traditional caching of elementary data items with database technology. The

dynamic nature of a cache, the need of transactional consistency and the complex nature of

a database request make database caching a challenging field of research.

3

1.1 Database Caching

In a typical client-server relational database environment, clients initiate processes at the

central server. The server executes them on shared data and passes the result back to clients.

Usually the client is only responsible for presenting results and for handling user input. This

is feasible for low-end clients (thin clients) with low computational power and low disk space.

However, due to the rapid development and decreasing costs in computer hardware, low-end

clients are replaced by more and more powerful clients and workstations. Hence, clients do

nothing while awaiting the result of the server, thus, leaving the computational resources and

available disk space in an idle state.

The situation is similar for multi-tier architectures, such as the one used by SAP R/3.

Here, clients are considered to be very thin and are only used for information display and user-

interaction. In the middle tier, application servers perform tasks such as session handling,

rendering of forms and HTML pages, and minor data modifications. Such modifications

are communicated to other application servers using proprietary synchronization protocols.

However, data-centric tasks are performed exclusively inside a central database. The sharing

of load between the middle tier and the database server is hard programmed, often leaving

the (powerful) application server hardware in an idle state.

In both cases, the central server clearly is a central bottleneck of the system, while at

the same time valuable resources at the client (or at the middle tier) are wasted. The basic

idea of database caching is to utilize these resources for client-side database computations

which requires a light or full database management system to be installed at a client. Then,

instead of being idle, a cache (partially) executes the initiated request. The requests, or parts

thereof, that can not be computed locally are sent to the server. Local computations reduce

network traffic and potentially improve the system’s response time and server throughput.

During the last decade numerous caching techniques, such as ([64, 29, 37, 52, 4, 5, 39, 54,

60]), have been proposed. Database caching techniques have to cope with the following main

problems:

1. Database Cache Design

Data of a cache has to be organized in some format. This can be data-oriented, such

as pages, objects, tuples, or result-oriented, such as full or partial query results. Cache

management on a pure tuple basis can be inefficient for databases with a high number

of tuples. To efficiently manage tuples, grouping is used to handle multiple tuples

at the same time. State-of-the-art are semantic grouping techniques that incorporate

dependencies among tuples that result from the database scheme, queries and access

patterns.

2. Request Execution

Caching schemes are often highly interwoven with the execution mechanism of a database

request. This affects the following instances of a database management system:

(a) Concurrency Control.

A database system always has to deliver consistent answers, as does the cache.

4

Hence, a cache cannot just return a local data item, but has to guarantee that it

is consistent w.r.t. concurrent access at the original data item at the server.

Most of the techniques apply an avoidance- or detection-based concurrency pro-

tocol. While the first ensures that data is always up-to-date, the second allows

the database cache to contain stale data which additionally requires a validation

of the data access at the cache.

(b) Execution Engine.

The execution engine is responsible for executing queries and updates, enforcing

integrity constraints and executing procedure code as used by stored procedures

and triggers.

Caching can be applied to elementary database operations, e.g., SQL queries and

updates, or to full requests. In the first case, a cache only looks at a single

operation and has to decide whether to execute it on local data or to send it to

the server. Thereby, the cache ignores the origin of the operation, e.g., stored

procedure, trigger. In the second case, a cache considers all such elementary

operations that result from the execution of related code of a database request,

e.g., stored procedures, triggers. Then, a cache has to handle multiple operations

at once and additionally has to decide which subset of these operations are to be

executed by itself or by the server.

The latter case requires a deep integration of a caching technique into the execution

engine of a database system.

(c) Query Processor.

For an initiated query at the cache there are three possibilities of its execution.

The first is to execute the query fully at the cache. The second is to execute the

request fully at the remote server, e.g., if data is not available at the cache.

The third, the mixed execution, requires a deep integration of the caching tech-

nique into the query processor. For this, the query is split into two sub-queries,

where one is executed locally at the cache and the other at the remote server.

After both results have been computed, a combination of both results might be

necessary.

3. Loading and Self-Adaptation

The traditional purpose of a cache is to provide efficient access to frequently accessed

data items. A cache has to detect such items and remove them if they are not up-to-date

or not required any more. Hence, a cache has to self-adapt its content dynamically.

Fresh data can be sent by the server to caches, or the cache itself can request new data

autonomously. Both are commonly known as push and pull strategy. Cached data can

be updated in an asynchronous manner apart from transactional boundaries or in a

synchronous manner within a transaction.

Early database caching techniques have emerged from techniques of database page buffering

and distributed databases, but there are still big differences.

5

A cache at a client machine differs from a server in a distributed database system in

the following issues. A server uses reliable hardware, maintains a static data schema and

hosts primary data. In general, clients (hosting a cache) are not reliable (user shutdown,

power safe mode, disconnect from network, etc.). Furthermore, a cache might not be able

to access the full computational resources (e.g. a cache at an application server under high

load) and, in case of web applications, the connection between cache and remote server might

be potentially unreliable concerning transfer rate and data throughput.

The main goal of database buffering is to provide efficient data access on primary memory

(RAM), instead of external memory (disk). Thus, buffering techniques cope with problems

of page management, such as pre-fetching of pages that are more likely to be accessed.

Beside these areas, database caching techniques benefit from a wide range of techniques in

the area of consistency control, data distribution and replication, as well as query planing and

optimization. Also, in the field of mobile databases, we identify similarities and overlappings

to database caching techniques. Mobile clients are autonomous, temporally disconnected

from the network and even desire to perform local operations while being off-line. Hence, a

similar situation occurs when secondary data is located at a cache that is used to perform

local computations under concurrent access. Among others, one vision is to design a local

thin database system (e.g. Oracle Light) that supports data access of applications running

at the mobile client and that synchronizes data during the next on-line period.

1.2 Problem Statement

This thesis addresses the problem of database caching specifically for the transactional ex-

ecution of stored procedures. We propose a new execution protocol for database caching

techniques that considers the very nature of stored procedures. The scheme aims at execut-

ing parts of the procedure code in a simultaneous and parallel manner between cache and

server which further improves the response time and throughput of a client-server database

system. To the best of our knowledge, this has not been addressed before.

Consider database applications where processes executed at the server are only imple-

mented as stored procedures, e.g., as pieces of database code executed under transactional

semantics. Normally, the client invokes a procedure at the server and awaits the result before

continuing. Analogously to existing techniques, a cache is placed between client and server,

and a call of a stored procedure is directly sent to the cache which will execute the code.

Essentially, our method works as follows: we automatically translate the code of a pro-

cedure into two versions, one installed at the server and one installed at the cache. These

two version differ such that the code is logically split into two parts, say A and B. When

the procedure is triggered in a cache, both versions start running simultaneously. The cache

actually performs the commands in part A and informs the server about doing so, while the

server performs part B, and only verifies the results passed over by the client for part A.

Only if this verification fails due to stale data, the server also executes part A.

Instead of handling each of the elementary database operations separately, as done by

existing techniques, we consider the entire code of a procedure as a whole, thus handle a set

6

A + B of database operations at the same time. In order to determine the right splitting of

the code, we apply an optimization technique that, at run time, tries to select the parameters

A and B that lead to the maximum performance of a cache.

Our method will not improve the performance of all applications; rather it relies on situ-

ations where other existing caching techniques have been proven successful. Our method will

only pay off if a significant amount of computations can be taken moved from the server to

the client. The part A has to be chosen carefully by the optimizer, such that the verification

of its results at the server succeeds in most of the cases.

In this thesis we work out a solution for the above problem that is divided into the following

areas:

• Client-Server Database System.

We define a client-server database system where each client is extended by a primitive

database management system. Furthermore, it defines how server data is fragmented

and dynamically replicated to those database systems. As a pre-stage of our novel

execution scheme it also defines Twin Transactions that represent the parallel execution

of the code fragments A and B. This system serves as a basis for our work and a

database at a cache is extended throughout this work towards a complete database

cache. The notion of a client and a cache are used interchangeable.

• Simultaneous Execution Scheme.

On top of the client-server system we define our novel execution scheme and the model

for logically splitting the procedure code into the parts A and B. All possible splits are

computed at compile time, such that at run time the optimizer has only to select an

appropriate split with maximal performance. We define how the execution engine at

a client and the server have to be modified. In detail, we define the partial execution

model of a stored procedure that is necessary to execute part A at a client and B

at the server. Furthermore, we elaborate the server-side verification for query results

that are delivered by a client during the execution of part A. Possible splittings of

the procedure code are investigated by analysing dependencies within the code and by

discovering independent queries.

• Run Time Performance of a Cache.

We look at the run time dynamics of client-server database systems and derive possible

measures to capture the run time performance of a cache. Based on such a measure, we

define the maximum cache performance as a continuous dynamic optimization problem.

The problem defines what data to replicate at a cache, how to dimension A, B and how

to adapt this setting over time for a changing environment.

• Run Time optimization.

To provide a partial solution for the optimization problem, we develop a stochastic

model for the simultaneous execution scheme that is based on the execution frequency of

7

elementary database operations. This model allows us to partially predict the response

time of a procedure for a specific split A, B.

1.3 Outline

This thesis is divided into three parts. The first part consists of the first three chapters, in-

cluding this introduction, provides an overview on current research in the field of caching and

motivates our approach by illustrating an example. The second part defines the client-server

system, the simultaneous execution scheme and presents a detailled case study to underline

the improved performance of our approach. In the third part we tackle the optimization

problem. We look at the dynamics of client-server database systems, define the maximum

cache performance and propose the model to predict the response time of procedures for

different splits of the code. In the following we briefly sketch the contents of each chapter.

Chapter 2 gives a detailled introduction to the topic of database caches and surveys current

techniques. We point to general problems in developing a database caching technique and

propose a classification of caching schemes to emphasis open gaps. Chapter 3 provides an

illustrating example of a web shopping application that we have analyzed. We compare the

performance of two traditional and our own execution scheme for database caching and point

to benefits of a simultaneous and parallel execution of the procedure code.

Chapter 4 defines the client-server system which includes our basic assumptions on the

underlying client-server database system, the pre-compilation of the procedure code, the

execution engine, data fragmentation and replication, and version management. Essentially,

this Chapter contains all issues that are not directly connected to the novel execution scheme.

Chapter 5 defines the novel simultaneous execution scheme that is based on the concept of split

twin transactions. Chapter 6 present the ONE-System that we have implemented to evaluate

our scheme. We perform numerous experiments and underline the performance improvements

as presented in Chapter 3. Further, Chapter 6 motivates the dynamic optimization problem.

Chapter 7 discusses the dynamics of client-server database systems, possible performance

measures and the dynamic optimization problem. Chapter 8 defines the stochastic model to

capture the simultaneous execution scheme. The preciseness of the model and its predicted

response time is again evaluated on the ONE-System. In Chapter 9 we extend the model

to partially predict the response time for different splittings of the procedure code. This

allows us to compute well-performing splittings in advance, thus providing a partial solution

for the optimization problem. The preciseness of this prediction is again evaluated on the

ONE-System.

Chapter 10 concludes the thesis with a summary and an outlook on future work.

8

Chapter 2

Database Caching Techniques

Efficient and distributed data management is one of the most important capabilities of future

applications. Technological advances in the development of computer hardware (notebook,

PDA, mobile phone), fast reliable networks and wireless technologies allow users to participate

in global applications independent from their physical location. The key is to access and

modify remote information anywhere, anytime, in any way. The development of such systems

requires powerful and distributed operating systems, as well as flexible database management

techniques. A central issue is efficient data access and semantic correctness of data, which is

the basis for collaborative work and transaction processing.

Next we summarize current research in the field of database caching that primarily aims

at efficient data access. In detail, we discuss database caching from different perspectives.

These are the architecture, design, concurrency control, execution, load and refresh of cache

data as well as self-adaptation of cache content. Additionally, we point to related works in

the fields of mobile databases and integrity enforcement that partially overlap with database

caching.

2.1 The Need for Database Caching

Client-server databases have been well established in modern applications. In a typical setup,

clients send requests for data retrieval and update to the server. The server executes them on

shared data and passes the result back to clients. The server provides concurrency control,

transaction management and recovery facilities for shared data. A client is either a single-

user machine for end-users or a multi-user or server-like machine, such as web, application,

secondary database servers, etc.

In general, there are three groups of applications as sketched at Figure 2.1. A 2-tier

application, e.g., small business software, normally runs in a local network. Internet appli-

cations are often implemented in 3-tier architectures where the application server also runs

as web server and handles remote requests from Internet users. Multi-tier applications, e.g.,

SAP/R3, are often uses by big companies that have to maintain data of their world-wide

branches efficiently.

9

Database
Server

Database
Server

Application
Server

Object
Manager

Application
Server

Application
Server

Web Server
Server

Client
Web

Client
Web

Client
Java

Client
Java

Client
Java

Database
Server

Application
Server

Client

3−tier

Database
Server

Client

2−tier multi−tier

...

...

Figure 2.1: Multi-tier database applications

Performance and scalability is important for such applications, since access time is a

crucial issue in a highly competitive environment. Static pages can be directly cached at a

client or at proxy servers that store frequently accessed pages, pictures and documents for a

set of clients, e.g. all web clients of a company. This way load can be taken from the server.

However, database applications can not be sufficiently handled by traditional static caching

schemes, since requests are complex, e.g. stored procedures or SQL queries, and have to be

evaluated at the server due to concurrent access and transactional consistency. To overcome

these problems, database caching techniques are proposed by database researchers. The

overall goal of a database cache is to improve response time and server throughput.

A database cache is a database system that is integrated between an end-user client,

respectively, application and database server (see Figure 2.2). A request from a client or

Cache

Client

Cache

Application
Server

Database
Server

Database
Server

network
local

network
local

2−tier 3−tier

Figure 2.2: A database cache at an end-user client or application server.

application server is first send to the database cache. instead to the server. From the clients

10

point of view the database cache acts exactly as the database server, t.i. processes requests

with the same result possibly in a shorter time. From the servers point of view a database

cache is a secondary database system with a partial or full copy of the servers data where

the server acts as the master and the cache as a slave on the same data schema. In the

best case, the database cache is able to compute the query consistently on local data and

only communicates with the server for concurrency control. In the worst case, however, the

request has to be redirected to the server. Clearly, the challenging issues are data consistency,

concurrency control and the amount of data to place at a database cache. In the following

sections we take a closer look at this scenario and highlight all relevant issues, including the

handling of updates and data synchronization.

The need of database caching technologies is mainly motivated by the following aspects:

• Increasing price drop in computer and network hardware.

End-user clients are only used for information display and user-interaction. Such a client

initiates a request at the database server and awaits the result. In the meantime the

client is idle. This is feasible for low-end clients (thin clients) with low computational

power and small disk space and web clients with an Internet connection of high latency.

However, due to the rapid development and decreasing costs in computer hardware,

low-end clients are replaced by more powerful clients and workstations. Hence, clients

do nothing than to wait for the result of the server, thus, leaving the computational

resources idle. The situation is similar for application servers in the middle tier where

a computation at the database often leaves the (powerful) application server hardware

in an idle state.

In both cases, the central server clearly is a central bottleneck of the system, while

at the same time valuable resources at the client (or at the middle tier) are wasted.

One of the keys of database caching is to utilize those resources for client-side database

computations. Then, instead of being idle, a cache (located at the client) is able to com-

pute the initiated request. Local computations reduce network traffic and potentially

improve the system’s response time and server throughput.

• Increasing complexity of applications.

As shown at Figure 2.1 complex applications can consist of multiple tiers (layers). Since

master data are normally located in the lowest tier, its access from upper tiers is often

costly. The main problem for such setups is to provide a hierarchical caching mechanism

across multiple tiers that provides transactional properties.

Often such applications are distributed over multiple locations and connected by a wide-

area network. The distribution can affect a single or multiple tiers, e.g., main database

server on different locations or distributed application server that connect to a central

database at one location. As a result, we need caching techniques to support fast local

networks as well as slower wide-area networks, c.f. Figure 2.3.

• Need for transparent and application independent solutions.

In the middle tier, application servers perform tasks such as session handling, rendering

11

hierachy
(multi−tier)

(local network)
short−distance

(wide−area network)
long−distance

Figure 2.3: Three requirements of database caching.

of forms and HTML pages, object management and minor data modifications. Such

modifications are communicated to other application servers using proprietary syn-

chronization protocols. However, data-centric tasks are exclusively performed inside a

central database. Often, the sharing of load between the middle tier and the database

server is hard programmed and application specific caching is used to provide efficient

data access across multiple tiers.

Such specific approaches are used for web page caching, proxy caches and mediators

([6, 15, 70, 2]), or by commercial products, such as EJB IBS WebSphere [95], BEA

WebLogic [94] and SAP R/3. A more detailled overview is given in [77, 78].

To avoid application-specific caching solutions, caching has to be integrated at the

data level. That is, application servers trigger requests to the database via a standard

interface, e.g., a locally installed SQL driver. Independent of the underlying database

system and its distribution, the interface might send the request to a remote database

or to a local cache that delivers the result. Thus, caching and therewith efficient data

access is transparent and independent of applications.

In this work, we cover hierarchical caching, long-distance caching and caching in object-

oriented databases only marginal and concentrate on database caching in local networks for

relational databases with SQL interfaces. The problem of hierarchical object caching has

been studied among other things by [55]. The problem of long-distance caching is mainly

relevant in mobile databases as we will point out in Section 2.6.1.

2.2 Database Cache Design

On an intuitive level we can easily sketch some implementations for database caching. So

called buttom-up approaches start with data of the database server, aggregate it in some

format and ship these data to the cache. Top-down approaches start at the user input level

which is the opposite to the data level.

• Page-Based Caching

At the lower level, each database system handles data in terms of pages that are read and

12

written to disk. A simple caching mechanism would be to replicate LRU (last recently

used) or MRU (most recently used) pages at the cache. However, such approaches are

not fine-grained enough and pages are replicated even if one single record is accessed

by the user.

• Full Table Caching

Another possibility is to use full table caching which, in a sense, is still attractive for

existing systems, e.g., Orcale, DBCache [52]. Again, the approach is not very useful,

since it is not fine-grained enough and, in the case of large tables, a high synchronization

effort is required.

• Query Result Caching

A cache could easily store all queries and their results as posted by users and applica-

tions. Whenever the same query is posted, the cache might check whether the previous

result is still valid and, if so, answers the query on local data. Whenever the server

modifies a table, all corresponding query results are removed from the cache. The prob-

lem with this approach is that syntactically different queries cause a new result to be

stored in the cache. The challenging issues here are query containment, matching of

sub-queries, etc.

State-of-the-art caching approaches combine the benefits of these three intuitive approaches

and provide the following properties:

• Tuple-Based

Tuples are the smallest meaningful data unit and allow data caching at a fine-grained

level. They also serve as a basis for query answering and integrity enforcement.

• Grouping

The management of a high number of tuples can lead to bad performance behavior, e.g.,

the checking or faulting of individual tuples causes a large number of small messages

between cache and server. For this, tuples have to be grouped meaningfully to be sent

from servers to caches into blocks.

• User-Access Driven

A cache should only contain relevant data that is often accessed by users and applica-

tions. For this, user-posted data requests have to be taken into account for filling and

matching cache content.

In the following we discuss two classes of tuple-based approaches with grouping.

Static Grouping

Client-side data caching has been proposed on the level of page or object identifiers ([42, 102,

106, 16]). Most of these schemes support only Read and Update operations in transactions on

pages and objects to store, retrieve and maintain cache objects. Due to the ID-based access,

they are also called navigation-based schemes.

13

The above mentioned, page-based caching can be considered as a static grouping of data.

Tables are clustered into blocks and sent to caches. However, in the worst case, a query

might retrieve only one tuple out of each block which would require all blocks to placed in

the cache. Hence, the problem is to find an optimal static clustering, such that a lowest

number of blocks has to be placed in a cache in order to answer frequent user request. In [65]

a hybrid system has been proposed to make caching less sensitive to static clustering. The

idea is to keep a mixture of pages and individual objects in the cache.

Alternatively, data can be grouped in terms of views. The declarative nature of views

allows a better grouping of data. A view, for example, can join together all relevant infor-

mation of a person that might be spread over multiple tables. Hence, cache data can be

built up in terms of materialized views. Materialized view maintenance has been well studied

in literature and a number of approaches, e.g., [48, 1, 23, 74], have been proposed. Also

academic and commercial database products, e.g., TimesTen Front-Tier [96], use such tech-

niques. However, although materialized views are declarative in nature, they are statically

defined, not adaptive and therefore hard to change at run time.

Dynamic Grouping

The major drawback of navigation-based schemes is the inability to handle associate queries

that use a predicate, an object class or a relation. Such predicates are very common

(e.g. SELECT * FROM Employee WHERE city=’Barcelona’ AND Salary>10.000) and rep-

resent accessed data in a declarative, rather then in a procedural manner.

Most of the recent research in literature deals with semantic caching which uses a collec-

tion of such predicates, derived from queries, to describe the cache content in form of dynamic

groups of tuples. Then, the data space of interest of an individual cache is represented by a

set of predicates that occur in the queries posted to the cache (query-shipping). Given a new

request, the cache observes collected predicates and tries to fully or partially execute a query

on local data. The query can be executed if (parts of) its predicates (and associated data)

are stored in the cache. In case data is missing in the cache, a query has to be executed by

the server. For example, the predicate city=’Barcelona’ AND Salary>10.000 and tuples

matching the predicates in the table Employee allow only to derive the query result for a

predicate city=’Barcelona’ AND Salary<20.000 AND Salary>15.000.

To our knowledge, the first semantic caching approaches has been suggested by [64, 29]

which started with primitive predicates that support projections and selections. These re-

strictions have been made to decide the implication problem on the predicate level, e.g., a

new posted query can only be answered locally if its predicate is implied by the existing

predicates in the cache.

Semantic caching has been continuously improved and concepts of semantic cluster, se-

mantic regions and cache groups have been developed. On one side, existing approaches are

too restrictive, since they did not address joins. The handling of joins has been discussed

by [51, 4, 54, 5]. On the other side, the grouping can be further improved by taking other

semantic knowledge into account. In [53, 33, 38, 51] caching is combined with query pro-

14

cessing by taking the semantics of an individual query into account to pre-cache data while

executing the query plan which represents the procedural execution of a query. As a result it

could be shown that different cache operators within query execution plans further improve

the execution time of a query.

2.3 Request Execution and Concurrency Control

In the field of client-server databases most of the caching techniques discuss the problem of

transactional cache consistency. That is, the client-server system has to guarantee transac-

tional properties in executing database requests. Hence, any usage of the cache does not

jeopardize the transactional correctness (ACID properties). We shortly discuss weak consis-

tency in transactions processing in Section 2.6.1. Some of the present caching schemes use

the built-in concurrency control mechanism of the underlying database system and others

propose alternative mechanisms that are often highly interwoven with the caching scheme

itself. In the following we discuss the execution of a user-posted request under transactional

semantics for the latter kind of caching schemes.

The following instances of a database management system (DBMS) are involved in the

execution of a request:

• Concurrency Control

The scheduler of a DBMS is responsible for the transactional execution of the request

– its serializability. For this, it uses different locking mechanisms and concurrency

protocols.

• Execution Engine

Once a request has been scheduled, the execution engine is responsible for computing

the request. This involves:

– Post queries to the query processor.

– Apply insert, delete and update of individual tuples. Note that SQL updates nor-

mally consists of a query, e.g., UPDATE Employee SET Salary=X WHERE <cond>.

Hence, the engine has to compute the query results and apply possibly multiple

updates of individual tuples.

– Schema constraints (e.g. primary and foreign keys), rules and trigger are defined

for queries and updates. The engine has to check these constraints and has to

execute the code of rules and trigger. This is also known as integrity enforcement

(see Section 2.6.2).

– Nowadays, every database product provides a procedural language (e.g. stored

procedures in Postgres pgplSQL [85], Oracle PL/SQL, etc.). The engine is respon-

sible for executing the code, thus has to handle local variables, recursive procedure

calls, exception handling, etc.

15

• Query Processor

Roughly spoken, a query is executed in the following phases: (1) Compute a query

execution plan which might already be known from previous executions. (2) Optimize

the plan. (3) Execute the plan on data.

In order to compute a request, a cache has to implement these instances (possibly in a light

version). We immediately conclude that concurrency control at a cache has to be done in

cooperation with the server. Further, the execution engine either sends updates always to the

server or applies them on cached data which requires to withdraw non-updated data or to

compute the update on local data (see Section 2.4). To guarantee a consistent database, the

data schema of a cache (including schema constraints and procedural code) must be equal to

that of the database server. Finally, the query processor has to implement the chosen caching

scheme.

Especially recent improvements in database caching benefit from further integrating the

caching problem into these instances. As a consequence, caching schemes are integrated

more and more into the architecture of database management systems. We outline such

integrations briefly.

Utilize the Query Engine to Improve Database Caching

As pointed out at end of Section 2.2, in [53, 33, 38, 51] caching is combined with query

processing. The idea is to apply caching during the execution of the query plan. The plan

precisely defines which tuples or objects have to be accessed in order to answer the query.

Hence, data can be pre-cached (pre-fetched) before the actual execution of the plan accesses

these data. As a result it could be shown that different cache operators within query execution

plans further improve the execution time of a query.

Concurrency Protocols for Database Caching

In [64] a predicate based caching scheme has been proposed that uses predicate locks for

concurrency control. Predicates are needed for their scheme anyhow, such that this ex-

tention seems natural. For example, an update UPDATE Employee SET Salary=X WHERE

YearOfBirth<1974 set a lock on the predicate YearOfBirth<1974 on table Employee. Hence,

all other queries and updates on this predicate are blocked.

However, a large number of concurrency protocols for database caching has been proposed

in literature. The key idea is that transactions are entirely executed at a cache and only

communicate with the server in terms of queries, updates, data items (objects, pages, tuples

for refreshing and filling the cache content) and concurrency control messages. The goal is

that no transaction that accesses stale data at the cache is allowed to commit. According to

[66, 41, 37, 39], existing approaches can be classified into detection-based and avoidance-based

algorithms. We outline them both and provide examples in Chapter 3.

• Detection-Based Protocols

These protocols allow the cache to host stale data. Whenever a query is executed by a

16

transaction on cached data, its result or the accessed data has to be validated by the

server. In case of invalid data, the server has to either re-execute the query on shared

data or to update the cache with fresh data, such that the cache is able to re-execute

the query on valid data.

Once an update is posted to the cache, it has to be registered at the server (e.g. write

indication and write lock). The server is responsible for making its decision (approve

write access) based on the behavior of other transactions, thus being able to guarantee

transactional access.

For committing a transaction, the commit at the cache has to be approved by the

server. The server can reject transactions in case already validated queries are spoiled

by intermediate updates at the server. This can be easily detected at the server, since

all approved queries from the cache and all performed updates at the server are known.

Hence, the advantage of detection-based protocols is its simplicity, since only a single

cache and the server are involved in concurrency control. The drawback is the greater

dependency on the server which might result in additional overhead, since additional

network traffic and validation checks at the server take place.

• Avoidance-Based Protocols

These protocols make it impossible for transactions to ever access stale (invalid) data in

their local cache. Invalid data is removed quickly, such that a transaction is prevented

from accessing inconsistent data.

For this, the server must be aware of the content of all caches and remove or update

cache data as soon it was modified. In order to do this consistently, a cache must be

able to actively take part in concurrency control. Hence, a cache performs read and

write indications and has to await the approval of the server. A commit is usually done

by a two-phase commit over all attached caches.

The advantage is that a result computed by the cache need not to be validated at the

server. The drawback is the complexity of the protocols, since all caches and the server

are involved at commit time.

In general the performance of both protocols depends on the application, complexity of data,

etc., such none of both can be ranked superior to the other. In our opinion, the difference

between both can be seen as follows: Detection-based protocols lead to explicit overhead

for (i) communication with the server, (ii) validation check at the server and (iii) possible

compensating actions (re-execution) in case of invalidity. Avoidance-based protocols lead to

implicit overhead that occurs during the execution of a transaction. That is (i) overhead by

lock management and (ii) possible idle times at the cache in order to await a read or write

approval. Detailled performance studies has been done by [41].

17

Utilize the Execution Engine for Database Caching

Current caching schemes utilize the execution engine only indirectly. For example, tuples are

grouped by considering referential constraints. Hence, if a tuple with a reference to other

tuples is loaded, the referenced tuples are also loaded into the cache. If referential constraints

are considered within grouping, the engine is able to perform integrity checks on local data.

However, to the best of our knowledge, the procedural code of rules, triggers and stored

procedures have not been utilized for improving caching schemes. In [29] the authors state:

”Obviously, it will only be beneficial to cache objects that are subsequently accessed

by the application program. Ideally, one would carry out a data flow analysis of

the application program [3] in order to determine which objects of the query result

are potentially accessed. Unfortunately, such data flow analysis are impossible in

many cases due to the separation of application logic and query processing and

interactive applications are totally unpredictable. Thus some heuristic approach

to identify the relevant objects is needed.”

In this work we close this gap and propose an execution scheme for database caching that

takes the code of stored procedures into account. We show how the execution engine has to

be adapted and show the feasibility of our approach within various experiments.

2.4 Loading the Cache and Self-Adaptation

Loading a cache with data is a crucial issue. On one side, the up-to-dateness determines

the effectiveness of local query answering. On the other side, data replication is costly and

therefore only frequently accessed data should be cached. Furthermore, data that was loaded,

but is not accessed any more (due to changing user access behavior), has to be removed from

the cache. Otherwise its synchronization is a waste of resources.

Caching is different to traditional data replication schemes, since a cache does not neces-

sarily have to host data and can always redirect a request to the server. Hence, a consistent

cache can easily be achieved by removing all stale data. The main approach, however, is to

keep cache data up-to-date by loading fresh data or applying updates.

In general, a portion of the server’s data is replicated to caches. Replication, however,

poses problems in guaranteeing consistency over all replicas. Existing approaches move from

pessimistic (eager) to optimistic (lazy) [45]. Pessimistic algorithms insist on a single-copy

semantics to the user and update all replicas at once by using locking mechanisms to avoid

conflicts, e.g., two-phase commit. Optimistic algorithms manipulate replicated data with

controlled inconsistencies. According to [89] optimistic algorithms can be classified by three

criteria:

• Single or Multi-Master Systems

We consider only single-master systems for database caching, since we target on systems

with one central database.

18

• Log-transfer or Content-transfer

Log-transfer algorithms are characterized by the propagation of changes in data (e.g.

updates) rather than whole replicas (e.g. objects, pages or tuples) as in content-transfer

algorithms. The advantage of log-transfer algorithms is that updates can be applied

to replicas as they are naturally posted by users. However, this might cause addi-

tional computational overhead in processing updates at remote sites. The advantage of

content-transfer algorithms is that pure data is replicated, such that no updates have to

be processed at remote sites. However, this might cause high communication overhead

in transferring big objects or pages. Hence, log-transfer is useful for updates with a low

computational overhead and content-transfer for small data units. Note that updating

one attribute of a big object would require copying the entire object to remote sites in

case of content-transfer.

• Push or Pull-Based Propagation

This criteria determines the directions of replication. In push-based schemes the server

initiates the replication to remote sites and in pull-based schemes the remote site re-

quests fresh data from the server.

Updating cache data is closely related to concurrency control which guarantees consistent

read and write access on cache and shared server data. Basically, we distinguish between

synchronous and asynchronous cache updates.

Synchronous Cache Updates

Given a request and the corresponding transaction of its execution, we speak of synchronous

updates if all updates on cache data are applied within the boundaries of this transactions.

This is mainly used by avoidance-based protocols which require consistent cache data at any

time and apply a global commit over all sites. Hence, a synchronous update guarantees that

all replicated data and shared server data are in a consistent state.

Instead of updating data of all involved caches, the server can also send notification hints

to mark cache data as invalid. This reduces the amount of cache data, but possibly speeds up

the global commit. A cache can update marked data within the next requests (transactions)

posted to it.

Asynchronous Cache Updates

If cache data is updated independently of transactional boundaries, we speak of an asyn-

chronous update. As a result cache data is potentially not up-to-date and the cache is

further responsible for validating local data. This only useful for detection-based protocols,

since in case of avoidance-based protocols all cache data has to be up-to-date.

Optimistic replication algorithms are suitable for such scenarios. Depending on data gran-

ularity (pages, object, tuples, etc.) a log- or content-transfer method can be used. Whenever

there is an update at the server it can be pushed to all caches or alternatively cache data

19

can be marked as invalid by notification hints. A pull-based propagation is useful for two

situations:

• Once the cache computes a query on local data and its validation at the server failed,

the cache can request fresh data and compute the query again on fresh data. As a

result local data has been updated.

• If prefetching is used by the cache, it can bring data into the cache before it is actually

accessed.

Self-Adaptation of Cache Content

An important issue, as we can find in many data-distributing systems, is that of self-

adaptation or dynamic adaptation of replicated data. The main idea is to make data replica-

tion sensitive to changing user behavior, load situations, network properties and topologies,

hardware, storage capacity, etc. That includes an ”intelligent” placement of new replicas and

the removal of unused replicas. In literature a variety of works deal with that problem (e.g.

[15, 5, 88, 62, 4, 87] and others) and self-adaptation turns out to be an important property

of data-distributing systems.

For loading and refreshing a cache with data the following criteria should be used:

• frequency of data access,

• amount of data to cache,

• synchronization costs for keeping cached data up-to-date and

• the server’s load.

The latter one is important, since data that is frequently read and written causes a high

synchronization effort, e.g., hot spots, and should not be replicated to caches. Further, it

does not always seem advantageous to execute a query at a cache if there is no load at the

server. Hence, a database caching approach has to provide an appropriate model for loading

and refreshing cache content that takes this criteria into account.

2.5 A Classification of Caching Schemes

Literature proposed different classifications [40, 54] and taxonomies for database caching

techniques and related algorithms. In this Section we summarize the classification criteria as

observed throughout this Chapter. The criteria are not always independent of each other,

such that some of the properties appear in more than one criteria. However, especially the

criteria Integration Level underlines the novelty of our approach. We classify our approach

at the end of Chapter 3 after presenting its main idea.

• Target Host

A cache can be located at single-user machines or multi-user server-like machines (e.g.

20

application and web server). In the latter, case a separate machine for the cache is also

possible.

• Transparency

An application that is accessing the database should not be aware of the existence of a

cache.

• Hierarchy Level

Caching can be flat or applied to several levels of a multi-tier application.

• Data Granularity

Data units of a cache can be data-oriented, such as pages, objects, tuples, or result-

oriented, such as query results. Both can be mixed as done by predicate-based ap-

proaches which keep the result of a query in terms of predicates and all tuples that are

relevant for answering the query.

• Grouping

To avoid cache management on a pure tuple basis, grouping is used to handle multiple

tuples at the same time. Grouping options are: no grouping, static grouping and

dynamic grouping. The latter is used by semantic caching approaches.

• Local, Mixed and Remote Execution

There are three possibilities of executing an initiated request at the cache. The first is

to fully execute the request at the cache. The second is a mixed execution at cache and

server. For this, the request (usually a query) is split into two sub-requests (sub-queries)

where one is executed locally at the cache and the other at the remote server. After the

both results have been computed a join of both results might be necessary. The third

is to fully execute the request at the remote server, e.g., if data is not available at the

cache. Note that a mixed execution is usually used by semantic- and predicate-based

approaches. A mixed execution is also known as probe and remainder query [29].

• Single- or Multi-Requests

Current approaches apply caching at the level of a query, an update or an object (single-

request). However, often a request or a transaction is of a complex nature, e.g., a stored

procedure, as very common in modern database applications (multi-request). However,

to the best of our knowledge, the properties and the structure of the procedure code

has not be considered by caching schemes yet.

• Concurrency Control

Avoidance-based protocols require that cached data is always up-to-date. Detection-

based protocols allow the cache to contain stale data which requires the validation of

computations of a cache.

• Load and Refresh

Cached data can be updated in an asynchronous manner apart transactional boundaries

21

or in a synchronous manner within a transaction. The underlying mechanism has to

automatically adapt the content of the cache for changing system and user behavior.

• Handling of Database Updates

Apart from loading and refreshing cached data, a cache either performs an update

request on local data or passes it directly to the remote server. Performing the update

at the cache improves locality, since a successive request can benefit from the up-to-date

cache data. Sending updates directly to the server without performing it on local data,

possibly produces stale data and requires a removal or refreshment of local data.

• Integration Level

Caching can affect different parts of the database management system. It can be

integrated into concurrency control, the query processor or the execution engine.

2.6 Related Fields to Database Caching

Generally, database caching overlaps with many other main research areas in databases.

Obviously, there is a close relationship to distributed databases, especially transaction

management, data replication and materialized view maintenance. A cache differs from

a server in a distributed database system in the following terms: A server uses reliable

hardware, maintains a static data scheme and hosts primary data. According to [38] client

caching can be seen as dynamic replication and second-class ownership. In general we cannot

assume that a machine that hosts a cache is active (e.g. user shutdown, power safe mode,

disconnect from network, etc.). This results from placing caches on end-user PCs or using

farms of applications servers, where one of them might crash. Furthermore, a cache might not

be able to access the full computational resources (e.g. cache at an application server under

high load) and in case of Internet-connected edge-servers the connection between cache and

remote server might be potentially unreliable concerning transfer rate and data throughput.

Another line of related technologies emerges from database internal buffer management.

The main goal of database buffering is to provide efficient data access on primary memory

(RAM), instead of secondary memory (disk). Thus, buffering techniques cope with problems

of page management and prefetching. The purpose of prefetching is to bring data into the

cache before it is actually accessed ([81, 27, 44]). As we have shown, first approaches to

database caching operated on low-level pages similar to buffering techniques.

Our work is especially influenced by the work in mobile databases and integrity enforce-

ment. We explain the main problems and refer to them in the course of this dissertation.

2.6.1 Mobile Databases

The development of fast and wireless communication networks (GPRS, UMTS, WLAN) and

small computing devices (e.g. PDA, mobile phone), founded a new field of reseach — mobile

databases. Existing solutions for distributed database could only be partially used and further

22

developments of existing techniques were necessary. Mobile applications have to cope with

the following problems:

• Autonomy of Clients

Clients enjoy a high degree of autonomy that has three dimensions: First, clients are

able to move between different access points. Second, disconnections naturally occur

(e.g. in order to save battery life time), and do not necessarily indicate a failure.

Third, a client should be able to provide local support for transactions and queries

independently from the other two criteria.

• Dynamic Network Environments

The dynamic behavior of clients yields a dynamic network topology. Additionally, since

lifetime of applications usually exceed that of hardware, also the capabilites of hosts

(CPU power, storage capacity, display) and networks (band width, speed, geographical

expansion) constantly increase. Consequently, mobile computing systems are charac-

terized by dynamic network topology and dynamic hardware equipment.

• The Consistency - Efficiency Tradeoff

Due to the mobility of data hosts and clients, and a possible low bandwidth communica-

tion network, data must be replicated, as to efficiently support local data management.

However, clients might be willing to trade the up-to-dateness of data for the efficiency

of its management. Consistency enforcement in mobile database systems concentrates

on achieving an “equilibrium” situation between semantic consistency and efficiency of

management.

These problems have a fundamental impact on the architecture and transaction processing

in mobile databases.

Transaction Processing

It is commonly accepted that traditional ACID properties (Atomicity, Consistency, Isolation,

Durability) are not suitable for supporting transactions in mobile environments. While dura-

bility is the most stable requirement, atomicity, consistency and isolation must be weakened

to support autonomy of clients and dynamic network environments. Atomic transactions

are problematic, since the distributed computation (supporting mobile hosts) is disturbed

by disconnected executions, long delays (movements of clients) and the interactive nature of

users at mobile hosts. Similarly, consistency of all replicas and integrity constraints must be

adapted to local consistency. As a consequence of weak atomicity and consistency, isolation

and concurrency control can also not be supported in the traditional manner.

There is a large body of research on the development of transaction models for mobile and

distributed environments [71]. Semantic-based models [100, 101] aim at increasing concur-

rency by exploiting commutative operations. An open-nested model [25] is used to represent

transactions as a set of sub-transactions, allowing disconnections and compensating actions.

23

In [84, 82] weak and strict transactions are proposed to support dynamic object clustering.

Tentative (proxy, twin) transactions are proposed in [45, 87, 26, 86] to capture disconnections.

Another important task of transaction processing is conflict resolution, as to ensure seri-

alizability of a set of transactions. Pessimistic strategies detect conflicts and resolve them by

aborting or rejecting transactions, thereby requiring transaction logs and recovery. Optimistic

strategies dominate in mobile environments which commit transactions and handle possible

conflicts afterwards. Hence, transactions can not be necessarily rejected. Here, popular tech-

niques are application-specific resolvers [79]. Another approach [100, 82, 45] is to execute

transactions locally and to verify them later at the server which might cause a re-execution

in cases of conflicts. Problems of re-execution issues are studied in [69]. The re-execution

mechanism is very close to the validation and re-execution step in detection-based protocols

for database caching techniques.

Architecture of Mobile Computing Systems

Mobile systems have to replicate data to improve both performance and availability. Repli-

cation, however, poses problems in guaranteeing consistency over all replicas. In a mobile

computing environment, optimistic algorithms are more suitable, since they allow for site

autonomy (requiring less coordination among sites), are less costly, and provide for flexibility

(in supporting slow and unreliable networks by propagating updates in the background).

Another important issue in replication is the capability to adapt dynamically to changing

network topologies and moving clients. That includes placement of new replicas (e.g. moving

clients, client increased storage capacity), removal of unused replicas, and adaptation of

background propagation to changing network facilities (e.g. band width or transfer time).

Replication techniques try to find optimized placements for replicas.

Architecture of mobile computing systems is often determined by the chosen replica-

tion scheme and model of transaction processing. In [45] a two-tier replication algorithm

is proposed that allows mobile applications to perform local tentative transactions that are

transferred to the server and applied to the master copy later on. They are used in the

projects Deno [21, 22] and Bayou [97, 35]. A different architecture that suggests clustering

of data according to semantic relationships is proposed in [84, 82]. The semantic clustering

(grouping) and the optimistic replication scheme is closely related to the above discussed

properties of database caching techniques.

2.6.2 Integrity Enforcement

In database systems, semantic properties of data are defined in terms of integrity constraints.

In dynamic situations where operations can violate necessary properties, the role of integrity

enforcement is to guarantee a consistent information base by applying additional repairing

actions. In the simplest case, such a repairing action is to reject a transaction and thereby

returning to the previous consistent state. Inconsistencies can also be removed by adding or

removing tuples from the database. However, for the latter kind of actions new problems

arise that deal with termination, null values, confluence, effect preservation, etc. (see also

24

[92, 99, 18, 67, 59]). A classification of research efforts in integrity enforcement appears in

[74]. Integrity enforcement has also been studied, to some extent, in the area of distributed

systems [49, 25, 63, 75].

Rule Triggering System (RTS)

Rules provide an expressive means for implementing database behavior: They cope with

changes and their ramifications. Rule mechanisms are used in almost every commercial

database system, using features such as CREATE TRIGGER or CREATE RULE. Rules are com-

monly used for Integrity enforcement, e.g., for repairing database actions in a way that

integrity constraints are kept ([104, 43, 105]).

For a given set of constraints and operations (events), consistency is enforced by creating

a set of Event Condition Action (ECA) rules. As stated by [104, 18, 92], the automatic

generation of such rules is limited for certain classes of integrity constraints.

Since a rule might be repeatedly applied, an application of a set of rules does not necessar-

ily terminate. Sophisticated methods [18, 19] deal with static rule analysis of rules to detect

termination problems. Furthermore, different orders of rule execution do not guarantee a

unique database state. This is the confluence problem of a RTS. Static analysis of confluence

in a RTS is studied in [99, 109].

Similar to stored procedures, triggers are implemented in a procedural language. Since a

trigger implements additional database behavior, it has to be carefully considered by database

caching approaches. We further discuss this issue in Section 4.9.

Effect Preservation

In Rule Triggering Systems a natural expectation is that a fact that was successfully added is

retrievable as long as it was not intentionally removed or updated. Such behavior is achievable

if contradictory updates that undo each other are avoided. RTS do not meet this expectation,

since it is possible that a rule application undoes the actions of previous rule applications in

a single repair transaction. The following example demonstrates the problem.

Example 2.1 Consider a database with a table T1 with two attributes A, B, a table T2

with an attribute C, and two integrity constraints: an inclusion constraint (A ⊆ C) and an

exclusion constraint (B ∩ C = ∅)1. The inclusion constraint is enforced by the rules:

R1 : ON insert(T1, (x,)) : IF (x) /∈ T2 THEN insert(T2, (x))

R2 : ON delete(T2, (x)) : IF (x) ∈ T1.A THEN delete(T1, (x,))

The exclusion constraint is enforced with the rules:

R3 : ON insert(T1, (, x)) : IF (x) ∈ T2 THEN delete(T2, (x))

R4 : ON insert(T2, (x)) : IF (x) ∈ T1.B THEN delete(T1, (, x))

1these constraints are simplified versions of possibly more natural constraints like f(A) ⊆ C and g(B)∩C =

∅, where f and g are some functions.

25

The following table show a possible execution of insert(T1, (a, a)). If a = b, the resulting

update undo the original update.

Rule Triggering Primitive Update T1 T2

− − (a, a) ∅

R1 insert(T1, (a, a)) (a, a) (a)

R4 insert(T2, (a)) ∅ (a)

R3 insert(T1, (a, a)) ∅ ∅

R2 delete(T2, (a)) ∅ ∅

2

A seemingly successful insertion update ends up in a state where the insertion is not per-

formed. Moreover, although the insertion actually failed, its repairing updates have taken

place. The problem is caused by allowing contradictory updates, e.g., updates that undo

the expected effects of each other, within the context of a successful repairing transaction.

Rather, the insertion insert(T1, (a, a)) must fail (be rejected) since there is no way to achieve

consistency together with effect preservation.

Yet, RTS fall short in enforcing effect preservation, e.g., guaranteeing that repairing events

do not undo each other, and in particular, do not undo the original triggering event ([91, 92]).

Solutions for the problem have been studied in [93, 68, 59, 58].

26

Chapter 3

Problem Analysis

The goal of all database caching techniques is to execute queries locally in the cache, thus

potentially improving the system’s throughput and response time. In this work we study

database caching with special emphasis on the execution of stored procedures.

This Chapter provides an example of our approach and compares it to two traditional

approaches. We discuss in detail the resulting run time performance and motivate a simul-

taneous execution between the cache and server. We address premises and drawbacks of our

approach and classify it according to the criteria of Section 2.5.

3.1 The Example

Consider a classical web shop with product groups, products, detailed product information, a

shopping cart, payment etc. and also with business processes, such as login, register, add-to-

cart, buy, clear-shopping-cart, browse catalog, etc. Also assume that session data is kept in

a Session table, availability of products in a Stock table, and the contents of the shopping

carts in a Cart table. Each user is identified by a session ID that might become invalid, if

the user has not logged out properly.

One of the business processes of the application deals with adding products to the shopping

cart. For a given user who wants to put n items of product p into the cart, it could operate

as follows:

1. Update the statistic which counts how often the product p has been requested.

2. Check the user’s session identifier. If it is invalid, abort the execution and return an

error message.

3. Check whether the requested amount n of the product p is currently available. If not

completely available, abort the execution and return an error message.

4. If so, add the item to the shopping cart.

Currently, it is very common to implement application behavior in terms of stored procedures

within databases. Stored procedures are provided by almost every database vendor and

27

represent complex database programs that can be written in different procedural languages.

For the following examples we use a pseudo code notation. A detailed procedural language

is introduced in Part II. The above business process could be implemented as follows.

Example 3.1 (The Stored Procedure AddCart) Numbers represent the line of code. sessID,

prodID and amount are parameters of the procedure and represent the user’s session identi-

fier, the product identifier, and the amount of requested items. Local variables are session

and inStock.

PROCEDURE AddCart(sessID,prodID,amount)

1 UPDATE Stock SET requests=requests+amount WHERE pid=prodID; U

2 session := (SELECT * FROM Session WHERE id=sessID); S

3 IF session is null THEN

4 RETURN Error;

5 inStock := (SELECT storage >= amount FROM Stock WHERE pid=prodID); A

6 IF NOT inStock THEN

7 RETURN Error;

8 INSERT INTO Cart VALUES(sessID,prodID,amount); I

9 RETURN SuccessCode

Symbols depicted on the right side represent the SQL queries and updates of the corresponding

line of code (query = rectangle, update = circle). They are used in the following to illustrate

the execution of the procedure.

In the following sections we consider the scenario where the procedure is executed in common

by a cache and a server. We do not consider executions that lead to an error, since they occur

rarely and therefore have little impact on the system’s performance, and we discuss only those

executions that lead to a sequence of SQL operations U S A I .

3.2 Traditional Caching Schemes

Assume that in our Internet application example each web and/or application server hosts a

database cache. Then, a database request initiated by the server is sent directly to the cache

instead of to the database. The cache is responsible for processing the entire procedure code.

In our example the cache executes the stored procedure statement by statement. Since

the queries S and A have only one predicate, they cannot be split into two sub-queries.

Hence, the cache can either perform the full query locally or send the query to the server

for execution. Since updates U and I must be applied on all data in the client-server

system, we assume for this example that updates are performed on cache and server data

during the procedure’s execution. Additionally, the server is responsible for propagating the

updates to other caches. As stated before in Section 2.4, there are different possibilities to

handle updates in caching systems.

28

The following subsections discuss the execution of the example for avoidance-based and

detection-based protocols (see Section 2.3) and motivate our simultaneous execution scheme.

3.2.1 Avoidance-Based Protocols

Avoidance-based protocols make it impossible for the execution at the client to ever access

stale data. Hence, the local execution of a query always results in consistent data and the

concurrency protocol guarantees this property among all caches that are associated with the

client-server database system.

Figure 3.1 depicts a possible execution of the AddCart procedure using such a protocol.

In detail the execution behaves as follows:

Client Cache Database

S

I

A

U

cache does
not execute
the query

U I

main execution path

U

I

send result

send query

write intention

permission

write intention

permission

REQUEST

commit

2PC with other caches

andon

RESPONSE

Figure 3.1: Example of an avoidance-based concurrency protocol.

1. A client initiates the procedure AddCart

2. Before the update U can be executed, the cache sends a write intention to the server.

Once the server gives permission, U is executed on cache and server data (line of code

1). The server is responsible for the update not interfering with other read and write

operations at the server until the procedure commits or aborts. For this, the server

normally applies a type of locking.

3. Assume that the session data is frequently updated and therefore not replicated to

29

a cache. Hence, the query S that is checking session data is sent to the server for

execution.

4. Once the server has retrieved the session data, they are checked (code line 3-4) and

the execution proceeds with query A . Assume that the stock data is available in the

cache, such that the query can be executed locally.

5. Check stock data (code line 6-7) and the execution proceeds with update I . The

cache also has to indicate a write operation to the server and to wait for permission,

before the update is applied on cache and server data.

6. The execution commits by sending an appropriate message to the server. Based on this,

the server removes possible read and write locks and applies both committed updates

to all associated caches that host the Stock and Cart tables. For this, it has to perform

a two-phase commit (2PC) with all the caches. Once a running transaction at these

caches has been interfered with the updates, it must be aborted in order to guarantee

consistency of the cache data.

Note that the execution at the cache might be aborted by the server before it is completed.

This might happen when another cache commits an update that interferes with query A ,

or more precisely, that changes the result of query A at the cache. Updates are propagated

to caches by a 2PC protocol. Once such an update occurs, the execution at the cache must

be aborted, since otherwise a consistent state cannot be guaranteed.

Let us have a look at the resulting total processing time of the procedure (PT = processing

time) and the work load at the server (ST = server load). For this, we use Net as network

latency (one direction) and WP as the time the server takes to give write permission. Note

that WP is usually implemented by locking. Thus, it causes some delay at the server, but

does not require many computational resources. Furthermore, we use U , S, A, I as the

processing time of the SQL operations and use subscripts C and D to indicate whether the

SQL operation has been executed at the cache or the server. We ignore the execution time

of the code in between the SQL operations and assume that AddCart commits properly. The

server’s committing and update propagation time is denoted as Commit2PC . According to

Figure 3.1, the run and server load is approximated as follows:

PTavoid = Net + WP + Net + UC + Net + SD + Net +

AC + Net + WP + Net + IC + Net + Commit2PC + Net

= UC + SD + AC + IC + 8 Net + 2 WP + Commit2PC (3.1)

STavoid = UD + SD + ID + 2 WP + Commit2PC (3.2)

In the best case the server gives write permission (WP ≈ 0) immediately and during the com-

mit process all updates can be applied on remote caches without aborting the transactions.

However, in the worst case the server can not give write permission (WP > 0), since data

is accessed (e.g. locked) by other transactions. Furthermore, a commit might abort several

30

transactions on remote caches, when their current execution is interfered with committed

updates.

We use this approximation later on in Section 3.3 to compare the avoidance-based execu-

tion protocol with the simultaneous execution protocol.

3.2.2 Detection-Based Protocols

Detection-based protocols, on the contrary, allow the cache to operate on state data. Hence,

the result of a local query might be inconsistent. Unlike avoidance-based protocols, detection-

based protocols require a validation check for each local read operation. Prior to a read

operation the cache connects the server and validates and possibly updates local data. The

server is responsible for guaranteeing that this data is valid until the transaction commits.

Figure 3.2 depicts a possible execution of the AddCart procedure by such a protocol. The

Client Cache Database

S

U

cache does
not execute
the query

I

A

I

U

main execution path

U Isend and

to all other caches

send result

send query

write intention

permission

REQUEST

write intention

permission

commit

validate data

data valid

RESPONSE local commit

Figure 3.2: Example of a detection-based concurrency protocol.

detection-based protocol differs from the avoidance-based protocol in Figure 3.1 as follows:

1. The validity check prior to query A requires additional network communication and

a time V C at the server to validate and possibly to update cache data if data at the

cache is not up-to-date.

31

2. The transaction is only locally committed at the cache and the server, but not at other

attached caches. Hence, no 2PC is performed on connected caches.

3. The update propagation after committing can be done in an asynchronous manner.

That is, updates are sent to remote caches and applied without further committing

which saves the expensive 2PC between caches.

The total processing time of a procedure (PT) and the server load (ST) can be approximated

by

PTdetect = Net + WP + Net + UC + Net + SD + Net + Net + V C + Net +

AC + Net + WP + Net + IC + Net + CommitLocal + Net

= UC + SD + AC + IC + 10 Net + 2 WP + V C + CommitLocal (3.3)

STdetect = UD + SD + ID + V C + 2 WP + CommitLocal (3.4)

We use CommitLocal to indicate that both protocols implement different committing schemes

which potentially lead to different run time behavior. Since the V C might include the shipping

of data to the cache, it also affects the work load STdetect of the server.

Again, we use this approximation later on in Section 3.3 for comparing the detection-based

and simultaneous protocol.

3.2.3 Discussion

After presenting avoidance- and detection-based protocols, the question arises immediately:

Which protocol performs best? This cannot be answered in general and depends on many

influencing factors. Intuitively, the processing time of the detection-based protocols seems

to be higher, due to additional communication for validation checks. However, in our rough

approximation the server run time differs only in the Commit2PC (avoidance-based) and

V C+CommitLocal (detection-based). When analyzing these values it is necessary to compare

the overhead in Commit2PC caused by the 2PC and the overhead caused by additional validity

checks (V C). We again point to [40] where a number of avoidance- and detection-based

protocols have been experimentally analyzed.

Leaving this problem aside, one can make the following observations about both types of

protocols that point us towards parallelism in database caching.

O1. In order to keep data consistent, updates have to be applied on cached and server data

anyhow, such that a stored procedure with updates naturally imposes cache-server

communication.

O2. An execution of a procedure at the cache handles resulting SQL operations in a pure

sequential manner. Those methods do not take into account that the procedure in most

cases executes multiple SQL operations as the four in our example.

O3. In order to guarantee transactional consistency, both protocols implement a concurrency

control mechanism that leads to high dependency on the server. In fact, a cache must

32

be located close to the server, otherwise a high latency slows the concurrency control

down further.

O4. Except SQL operations, the procedure code is executed entirely at the cache. Note that

the code is executed in the main memory and that the major overhead results from IO

traffic from executing SQL operations.

We favor the detection-based protocols, since in general a 2PC is expensive and leads to a

potentially high overhead during committing transactions between all the caches. For a high

number of caches the 2PC would be one of the central bottle necks.

3.3 A Simultaneous Execution Scheme

For the given example, we discuss a simultaneous execution scheme and look at how a poten-

tial improvement can be achieved by comparing the processing time PT and the server load

ST . For this we also take the observations O1 - O4 of Section 3.2.3 into account.

3.3.1 Twin Transactions

Our first key concept is twin transactions where cache and server execute the same transaction

in parallel. We elaborate on this concept and present a simple execution scheme. Note that

the concept of twin transactions is also used by [45, 87] in mobile transaction processing.

However, they use it in a sequential manner where a transaction is first executed at a mobile

host and later at the central server. We use the term to state that both transactions are

running in parallel at the cache and the server. Additionally, we use the term simultaneous

to indicate that both transactions run in parallel. In Section 3.3.2 we extend this scheme to

our simultaneous execution scheme.

Since updates have to be performed in any case at the database (observation O1) and the

transactional consistency requires a tight coupling between the cache and database (observa-

tion O3), we propose that besides the procedure at the cache, the same procedure is executed

at the database. Thus, both procedures are executed independently and in parallel — one

at the cache and one at the server. Figure 3.3 shows the corresponding twin transactions for

our example. Note that due to different hardware both transactions might require a different

execution time. Since we prefer to avoid a 2PC, we adhere to a detection-based scheme and

allow inconsistent data at the cache.

The synchronization of both transactions is handled as follows. The primary goal is data

consistency at the central database. When the server completes the execution of the trans-

action, it commits updates on server data independently of the execution at the cache. After

the commit, the server sends a completion message to the cache which stops its execution, if

still running, and rejects (undoes) all local applied updates. The server applies all committed

updates to all the other remote caches in an asynchronous manner (no 2PC), including the

cache that has rejected its updates. Intuitively, the execution scheme guarantees a consistent

33

Cache Database

U

I

A

S

Cache Database

U

S

A

I

U

S

A

I

commit or reject
updates at cache

U

A

S

I

main execution path

abort transaction
at the cache

commit or reject
updates at cache

Figure 3.3: Twin Transactions. Left: fast Client. Right: slow Client.

database and synchronization of cache data. Note that the scheme can be further optimized,

e.g. by committing updates also at a cache instead of rejecting them.

Clearly, the execution at the cache is redundant and the performance does not benefit

from the cache, since all queries are executed at the server. In the following section we extend

this primitive scheme with a partial execution of the procedure code and the server-side re-use

of the query results.

3.3.2 Partial Execution and Re-Use of Query Results

The other key concepts of our approach are

• a partial execution of procedures at the cache,

• the validation and re-use of the query results and

• independent queries in the procedure code.

In contrast to observation O4 (the server sends query results to the cache), we use the opposite

direction where the client delivers the query results (based on local executions) that are then

re-used in the execution of a transaction at the server. This is useful, since then the cache

is not involved in concurrency control and is only responsible for providing query results.

Again, according to the original spirit of database caching, queries are outsourced from the

server and performed at a cache.

Figure 3.4 depicts one possible execution of the AddCart in our simultaneous execution

scheme. We have chosen an example with similar behavior to avoidance- and detection-based

34

Cache Database

U

A

I

U

S

I

commit or reject
updates at cache

A

main execution path

result of query A

re−use query
result from
cache, no
execution

Figure 3.4: Partial execution and reuse of query results.

protocols where query S is executed at the database and query A at the cache. In detail

the execution behaves as follows. We first elaborate the partial execution at the cache and

then the execution at the server. After the procedure has started at the cache, it behaves as

follows:

1. Execute update U .

2. Do not execute query S . Hence the local variable session (code line 2) is not assigned

and the whole IF statement (code line 3-4) is not executed, since the condition of the

IF statement cannot be evaluated.

3. Execute query A in code line 5 and send the result of the query to the central database.

Note that the query does not depend on previous statements in lines 1-4, but only on

the input variables. Assign the query result to the local variable inStock and proceed.

4. Execute lines 6-7 and the update I in line 8.

5. Complete the execution in line 9.

Intuitively, this can be seen as a partial execution of the procedure code where some of the

SQL statements are left out. We define the partial execution model in Part II.

In parallel to the execution at the cache, the server behaves as follows:

1. Execute update U , query S and the entire IF statement (code lines 1-4). Note that

in the meantime the cache is executing update U and query A .

35

2. Before executing query A , check whether the cache has delivered a result for the query

and, if so, check whether the query result is valid. Otherwise wait for the result.

(a) If it is valid, re-use the result and assign it to the local variable inStock in line 5.

(b) If the result is invalid, or no result has been delivered, execute the query and assign

the result to the Stock.

3. Proceed with lines 6-9, including update I and commit.

4. Send updates U and I to all associated caches in the client-server database system.

Clearly, the key issues to make the approach work are an efficient validation technique,

a partial execution model for stored procedures, the existence of independent queries, and

delivery on-time. The latter is especially important, which leads to discussions about whether

the database should wait for a cache result and, if so, how long it should wait. We discuss

the problem further in Part II.

Let us have a look at the resulting total processing time (PT) and the server load (ST).

We use the same notations as those in Section 3.2. Similarly, as in the executions of procedures

at the cache, we ignore the extra time for executing the procedural code at the database

(excluding the execution of SQL statements).

Additionally, we use verify(A) to indicate the execution time for checking whether the

result of query A delivered by the cache is valid, and re(A) to indicate the possible re-

execution of an invalid query at the central database. Note that re(A) = 0 for a valid query

and re(A) = AD for an invalid query. Furthermore, we represent the idle time (waiting time

for the query results) by idle = AC − SD. Note that the server cannot wait a negative idle

time. A negative idle time states that the result of the cache has been delivered before the

server is accessing it. Hence, a negative idle time represents no idle time. Clearly, as we will

show in Part III, our scheme tries to maximize the re-use of the query results and to minimize

the idle time.

PTsim = UD + SD + verify(A) + re(A) + ID + 2 Net +

2 WP + idle + CommitLocal (3.5)

STsim = UD + SD + verify(A) + re(A) + ID + 2 WP +

CommitLocal (3.6)

We also use CommitLocal here, since our commit equals the one used by detection-based

protocols. Note that the server time does not include the idle time, since this does not

occupy computational resources.

Let us compare the processing time of the simultaneous scheme with those of the avoidance-

and detection-based protocols. Note that all approximations reflect best cases without abort

and re-scheduling of transactions. As a simplification for this comparison we also assume

that the execution time of the updates is similar at the cache and the database (UC ≈ UD,

IC ≈ ID).

36

PTavoid > PTsim

UC + SD + AC + IC + 8 Net + > UD + SD + verify(A) + re(A) + ID +

2 WP + Commit2PC 2 Net + 2 WP + idle + CommitLocal

AC + 6 Net + Commit2PC > verify(A) + re(A) + idle + CommitLocal

As we show in Part II, the validation check can be done fast and therefore we assume

verify(A) ≈ 0. Furthermore, we assume that Commit2PC = CommitLocal + c with c > 0,

since in general a 2PC is more costly than a local commit. Hence, our scheme reduces the

execution time and we obtain:

PTavoid > PTsim

[Case A: valid query re(A) = 0, idle = 0]

AC + 6 Net + c > 0

[Case B: valid query re(A) = 0, idle > 0]

SD + 6 Net + c > 0

[Case C: invalid query re(A) = AD ≈ AC , idle = 0]

6 Net + c > 0

[Case D: invalid query re(A) = AD ≈ AC , idle > 0]

SD + 6 Net + c > AC

In the case that our scheme re-uses the query results, it performs at least AC (or SD for

idle > 0) faster than the avoidance-based protocols, since query A is executed in parallel

at the cache and therefore does not appear on the main execution path (see Figure 3.4). In

case of a re-execution of a query, we still save the network communication (Net) and possible

delays that are caused by giving write permissions (WP). Our scheme only takes more time

(Case D) if a very slow performing cache is used. Then, the execution of AC can take more

time than SD and network communication.

We have also compared our scheme to the detection-based protocol. Note that both

schemes use the same commit mechanism and verify(A) ≈ 0.

PTdetect > PTsim

UC + SD + AC + IC + 10 Net + 2 WP+ > UD + SD + verify(A) + re(A) + ID +

V C + CommitLocal 2 Net + 2 WP + idle + CommitLocal

AC + 8 Net + V C > verify(A) + re(A) + idle

In the best case, cache data is up-to-date and the validation check of the detection-based

protocol does not need to ship fresh data to the cache (V C ≈ 0) and our scheme re-uses

37

the query result (re(A) = 0). In the worst case, cache data is not up-to-date and the server

has to update the data in the cache (V C > 0) and our scheme has to re-execute the query

(re(A) = AS ≈ AC). Then, we obtain

PTdetect > PTsim

[Case A: valid query re(A) = 0, idle = 0]

AC + 8 Net > 0

[Case B: valid query re(A) = 0, idle > 0]

SD + 8 Net > 0

[Case C: invalid query re(A) = AD ≈ AC , idle = 0]

8 Net + V C > 0

[Case D: invalid query re(A) = AD ≈ AC , ilde > 0]

SD + 8 Net + V C > AC

Again, we notice that in the case of a re-use of a query result, our scheme performs faster.

In the case of an invalid query result at least the network communication and the validation

check is saved.

Similarly, we have compared the server load, which reflects the server’s load. Again, we

assume that Commit2PC = CommitLocal + c with c > 0 and verify(A) ≈ 0. In the following

we use the symbol X <> Y do denote that X < Y , X = Y or X > Y holds.

STavoid > STsim

UD + SD + ID + 2 WP + Commit2PC > UD + SD + verify(A) + re(A) + ID +

2 WP + CommitLocal

[Case A: valid query re(A) = 0]

c > 0

[Case B: invalid query re(A) = AD ≈ AC]

c <> AD

Note that the server load does not include the idle time which does not occupy computational

resources.

For a valid query our approach is preferable, since we can assume in general that the 2PC

is less efficient than a local commit. In case of an invalid query, both approaches could be

equally useful, depending on the complexity of the query and the number of caches involved in

the 2PC protocol. However, our scheme tries to minimize the amount of query re-executions

(Case B). Furthermore, our approach does not abort transactions as a result of an update

propagation, as in the case of avoidance-based protocols.

38

The comparison with the detection-based protocol shows that our approach leads to a

similar work load at the server.

STdetect ≈ STsim

UD + SD + ID + V C+ ≈ UD + SD + verify(A) + re(A) + ID +

2 WP + CommitLocal 2 WP + CommitLocal

Again, we have compared the best and worst cases. As stated earlier, consistent cache data

cause an efficient validation check (V C ≈ 0) and a re-use of the query result (re(A) = 0).

Inconsistent cache data, however, causes the server to ship data to the cache (V C > 0) and

in our scheme the re-execution of the query (re(A) = AD ≈ AC). Therefore we obtain

STdetect ≈ STsim

[Case A: valid query re(A) = 0]

V C ≈ 0

[Case B: invalid query re(A) = AD ≈ AC]

V C <> AC

Note again that our scheme tries to minimize Case B. However, for Case B each protocol

could outperform the other. V C < AC could be the case if only a few data have to be shipped

to the cache and the query is expensive. V C > AC could be the case if a huge amount of

data has to be shipped to the cache and the query is less expensive.

As shown in a specific example, our simultaneous execution protocol improves the response

time (PT) of a request and results in a nearly equal server load (ST). We have drawn this

evidence from our studies and experiments that are presented Chapter 6.

3.3.3 The Run Time Optimization Problem

As shown in Figure 3.5 the simultaneous execution scheme can be differently configured. Our

scheme can be considered as kind of load-balancing of procedure code execution between

cache and server.

Hence, the fundamental question is: Which statements should be executed at the cache

and which data should be replicated, such that the resulting execution time is minimal and

throughput is maximal with respect to the current load conditions? Recall from Section 2.4

that a caching scheme must consider frequency of access, size of cached data, synchronization

costs and server load for solving this problem. Further, it has to adapt its configuration

whenever the load conditions changes significantly. Due to this, a cache at run time is

responsible for deciding which data to replicate to the local database and, therefore, which

queries to execute locally.

In Part III we formulate this problem as a dynamic optimization problem and suggest a

partial model-based optimizer for solving it. The challenging issue of this problem is to take

the dynamic load conditions of a database cache and server at run time into account.

39

Cache Database

U

A

I

I

commit or reject
updates at cache

A

Cache Database

U

I

commit or reject
updates at cache

main execution path

S

S

S

Sresult of query A

result of query S

A

result of query S

Figure 3.5: Different configurations of the simultaneous execution scheme.

3.4 Summary and Discussion

In general, database caching techniques depend on certain assumptions about the underlying

application. Caching is useful under certain circumstances. According to literature these

assumptions are:

1. Locality: Users of the system access different portions of data. Only under this assump-

tion can a cache be loaded according to the user’s data space of interest and therefore

does not contain the full database.

2. Rare Conflicts: When data is cached and a query is executed locally, it should also be

valid (consistent) in most of the cases. This is only possible if the amount of updates

is low.

3. Query Size: Complex queries are sent directly to the server and not handled by the

cache, since they often operate on a large data set that is not necessarily available at a

database cache. Hence, the presented caching techniques are not useful for data mining

applications.

4. Reliable Network: Due to the high dependency on the server that is caused by the con-

currency control protocol, caches should be located close to the server and be connected

by a reliable network. In our opinion all of the above concurrency control protocols are

not useful for unreliable and high-latency networks, such as the Internet and wireless

networks. For these classes we have to weaken the transactional properties, as studied

in [71, 82].

40

5. Fat Clients: Caching is only useful if a cache can execute a query efficiently.

Considering the above example, our approach also relies on the following assumptions:

1. Stored Procedures: Our scheme is only useful for stored procedures that implement a

single transaction that consists of several SQL operations. It is not advantageous if

only simple operations are involved. Additionally, the partial execution of procedures

requires that the entire code is known in advance. Hence, the simultaneous execution

cannot be applied to adhoc queries.

2. Server-Side Result Cache: Since caches ship query results to the server, we rely on an

efficient server-side management for query results. For this, we introduce a query result

cache at the server that is responsible for maintaining intermediate query results from

caches. As a consequence, our approach is only useful in fast networks with a high

bandwith.

3. Compiled Time Analysis: Possible partial executions and the identification of simulta-

neously executable queries requires a compiled time analysis of the procedure code.

Our approach can be seen as an extention of detection-based protocols by reducing commu-

nication overhead and adding a new level of parallel executions. Independent queries can

be executed by cache and server in parallel which possibly reduces the total execution time.

Recall that the cache just sends the query result to the server and (without waiting) immedi-

ately continues with processing the procedure code. Hence, the verification and the possible

re-execution is done in the meantime in parallel by the server. As we will show in several

experiments, the new level of parallel executions further improves the performance.

According to the criteria of Section 2.5, we classify the proposed approach as shown

by Table 3.1. As pointed out be the previous sections, our main contribution results from

considering Multi-Requests and an integration of database caching into the Execution Engine

of a database management system.

41

Criteria Property Notes

Target Host client-side We assume that each client might differ in its

resources (CPU, disk, network, load) which has

to be considered by the caching technique.

Transparency yes -

Hierarchy Level none -

Data Granularity tuples -

Grouping horizontal table

fragments

We have chosen a simple technique, since data

granularity is not the main field of contribution.

Local, Mixed, Re-

mote Execution

local and remote We do not explicitly consider the split of queries.

Single- or Multi-

Request

Multi-Request We consider a single stored procedure as request.

Each procedure normally consists of multiple

read and write operations.

Concurrency

Control

extended

detection-based

protocol with

parallel verifica-

tion, re-execution

and simultaneous

query processing

-

Load and Refresh asynchronous,

push-based, run

time adaptive

Cache data is exclusively updated by the server.

Handling of Up-

dates

combined Cache and server directly apply updates on local

data.

Integration Level execution engine -

Table 3.1: Characteristics of the proposed execution scheme.

42

Part II

Split Twin Transactions for

Database Caching

43

Chapter 4

A Client-Server Database System

for Twin Transactions

This Chapter defines a client-server database system with data replication to database caches

at clients and the simultaneous execution of a stored procedure at the database cache and

the server without code splitting. For this we define the concept of twin transactions as a

preliminary stage of our novel execution scheme that, based on the underlying replication

scheme, allows to define conditions for which both executions are equal, t.i. have the same

effect on cache and server data. In detail we use the executed sequence of elementary database

operations, e.g. updates and queries, of stored procedures and the version number of table

fragments that are maintained by the replication scheme. On top of those fundamental

conditions we derive in Chapter 5 an efficient validation technique for client computations as

motivated in Part I. Further, we will extend in Chapter 5 the concept of twin transactions by

code splitting, such that the cache and the server share the execution of a stored procedure.

This Chapter is structured as follows: We first give an overview and state the desired

properties of such a client-server system. Then, we define the stored procedure language,

the execution engine, table fragmentation, version management and data synchronization.

Finally, we define twin transactions and the above mentioned fundamental conditions that

characterize the equal execution of a stored procedure at the database cache and server.

4.1 Overview

Consider a central server which is connected to multiple distributed clients. We assume

that the server is a standard database system with a data dictionary, a query processor, a

scheduler with concurrency control, a code execution engine, etc. We will only further define

these parts as they affect our approach. The server provides its functionality to clients only

by stored procedures. We do not consider client-side ad-hoc queries to the server, as these

can always be encapsulated in a parameterized procedure. In this setup, a client initiates

a procedure call, sends it to the server which executes it and passes the result back to the

client.

45

To such a system we apply the following extentions:

• Each client runs a standard database system that is used for caching server data and

executing stored procedures. Those database systems do not require advanced features,

such as multi-processor capabilities, recovery, or multi-user support. In following we

call those databases also client databases.

• For distributing data, tables at the central server are partitioned into fragments. A

subset of these fragments is replicated at associated client databases.

• Synchronization components at the server and associated clients are responsible for

updating replicated fragments. This is done by an optimistic log-transfer method as

described in Section 2.4. Hence, there might be a delay in propagating changes from

the server to client databases, so that those databases possibly operate on stale data.

• Replication is dynamic, so that the amount of replicated fragments can be adapted at

run time to meet the data interests of a client.

• Whenever a stored procedure is triggered at a client, it is immediately forwarded to the

server and both the client database and the server execute the procedure simultaneously

. As presented in Chapter 3, this corresponds to our notion of twin transactions. For

this the server and associated clients are extended by special execution engines.

According to those extensions a database cache is defined by a standard database system,

a replication compontent and an execution engine for twin transactions, c.f. Figure 4.1. In

Database Database

Replication Replication

Execution Engine Execution Engine

Database Cache

Procedure Call

Client

Server

Figure 4.1: Architecture of a Database Cache.

subsequent chapters we further extend this definition.

Desired Properties of the Reference System

To perform the extentions, our approach requires certain properties of the underlying database

system. We summarize them and give our motivations for using them. Primarily, we are in-

46

terested in integrating our approach into existing database systems using very little effort.

• Determinism

To obtain equal executions, a fundamental requirement is determinism. That is, equal

procedure code has to produce the same effect on data at a cache and the server.

For this, we place some restrictions on the stored procedure language. Furthermore, we

require equal data schemata of caches and the central server, including table definitions,

integrity constraints, stored procedures, etc.

• Version Management

Another requirement for equal executions is the equality of cache and server data con-

cerning the individual access of a stored procedure. To efficiently check this in our

optimistic synchronization scheme, we attach a version number to a fragment. We de-

velop a version management and synchronization scheme, so that a fragment at cache

and server with identical version number is also of equal content.

• Low-Level Updates

As proposed by literature (see Section 2.2), database caching should be done on a tuple

basis. This is useful for propagating elementary updates to caches and to detect the

individual tuple access of SQL statements. For this, we translate complex database up-

dates, such as UPDATE Stock SET amount=amount+x WHERE productGroupID=29, into

a query and a loop that for each record of the query result performs an update of a

single tuple.

• Side-Effects

A stored procedure is a piece of procedural code that is executed at the database. How-

ever, the data schema often contains enhanced concepts for integrity constraints (e.g.

keys, uniqueness constraints, tuple constraints, rules, triggers, etc.). These concepts

define additional database behavior that does not explicitly appear in the procedure

code. These constraints have to be considered, since they might access and modify

data.

We refer to these properties throughout this Chapter.

Notations

Below we list some naming conventions and common notions that are used in this and fol-

lowing chapters.

• For running indexes we use i, j, k, l, m.

• C denotes the set of all clients. Each client is denoted by C ∈ C or Ci ∈ C with

1 ≤ i ≤ |C|. We also use C and Ci for the database cache at a client.

• S denotes the set of all stored procedures. Each procedure is denoted by the letter S

with S ∈ S or Sj ∈ S with 1 ≤ j ≤ |S|.

47

• R denotes the set of all tables at the server. Each table is denoted by R ∈ R or Rk ∈ R

with 1 ≤ k ≤ |R|. A table R consists of columns or attributes A1, . . . , An of different

types. The domain of an attribute A is denoted by dom(A). An instance of a table R

is a subset r ⊆ dom(A1) × · · · × dom(An) of tuples t ∈ r. The value of an attribute A

in a tuple t is denoted by t(A).

• For table instances r, we use relational algebra expressions to define table fragments.

A projection is denoted by πA(r) and represents a set of all values of the column A of

table r, that is πA(r) = {t(A) | t ∈ r}. A selection is denoted by σϕ(r) and represents

all tuples in r that satisfy the condition ϕ, that is σϕ(r) = {t | t ∈ r ∧ ϕ(t) = true}.

4.2 Data Definition and Stored Procedures

We define the structure of tables and the stored procedure language. To avoid non-determinism

and side-effects, we pose certain restrictions on the language. This is useful in order to keep

the client-server system simple. At the end of this chapter, we briefly discuss how these

restriction may be relaxed.

4.2.1 Tables and Constraints

A table R consists of attributes A1, . . . , An of different types. Note that we ignore the

different types, since they do not affect our work. By default, each table has a column ID

which represents the primary surrogate key containing tuple identifiers. The surrogate key

is read-only and maintained by the database management system. Tables always correspond

to user or application tables and not to internal tables of the system. When we refer to a

system table, we explicitly name it as such.

We assume that there are no further constraints defined in the schema, e.g NULL, DEFAULT,

keys, etc., and no advanced concepts, such as triggers, sequences, etc. Hence, additional

requirements for data integrity have to be implemented within the code of stored procedures.

As an example, we will discuss the handling of uniqueness constraints below.

4.2.2 The Language of Stored Procedures

We assume that there is a stored procedure language like pgplsql used in PostgreSQL ([85])

or PL/SQL used in Oracle. Recall that the database provides its functionality only in terms

of stored procedures to users and applications. The syntax of a procedure is:

CREATE FUNCTION <name>(<param-list>)

RETURNS <type> AS

<head>

BEGIN

<body>

END

48

A stored procedure S consists of a name <name> and a set of parameters <param-list>,

each of some type. Beside the basic types, we also support a table type as return value. It

is denoted SETOF ROW and allows a procedure to return single tuple or a set of tuples. A

procedure call is the execution of a procedure for a given set of input parameters.

The head defines parameters and local variables:

DECLARE <var> ALIAS FOR $i;

DECLARE <var> AS <type>;

The first statement defines a local variable var for the i-th input parameter and the sec-

ond statement defines a local variable <var> of type <type>. Again we allow basic types and

a tuple type, denoted ROW.

The body contains the procedural code. Primitive statements are:

• UPDATE R SET A=<expr> WHERE <cond>,

• INSERT INTO R VALUES (<expr>,..,<expr>),

• DELETE FROM R WHERE <cond>,

• <var> := (SELECT <expr> FROM R1, . . . , Rn WHERE <cond>) that assigns1 the result

of the query to a local variable,

• the assignment <var> := <expr>, where the value of the expression is assigned to the

variable,

• the fail operator RAISE EXCEPTION that aborts the execution of a procedure and undoes

all applied updates,

• a return operator RETURN <expr> that terminates the execution and returns the eval-

uated expression,

• a return operator RETURN NEXT <expr> that does not terminate the execution and adds

the evaluated expression to the list of returned tuples.

Primitive statements are denoted as <stmt>. Composite statements <stmts> are:

<stmts> ::=

<stmt> | <stmt>;<stmts> |

IF <cond> THEN <stmts> ELSE <stmts> END IF |

IF <cond> THEN <stmt> |

FOR <var> IN <query> LOOP <stmts> END LOOP

1Commercial database systems us the notation SELECT <expr> INTO <var> FROM R1, . . . , Rn WHERE

<cond> to assign a local variable <var>.

49

The second IF statement is an abbreviation, if only one statement is used in the THEN part. For

<query> we allow any SELECT <expr>,..,<expr> FROM R1, . . . , Rn WHERE <cond> state-

ment with subselects <expr> and <cond>. The loop statement uses a local variable var of

the tuple type ROW. The expressions <cond> and <expr> are restricted to contain only

• local variables,

• constant values,

• basic operators according to the types used and

• column names of tables of the form R.A with R as table and A as column.

This prevents procedures to call other procedures or internal functions that are provided by

the database system (e.g. build-in functions). Hence, a procedure only accesses tables as

they occur in the procedure code.

4.2.3 Low-Level Procedures

As explained above, the procedure code contains INSERT, DELETE, UPDATE statements that

might affect multiple tuples of the underlying tables. To handle data modifications on a tuple

basis, we translate these statements into a loop and low-level updates.

Low-Level Database Updates

Low-level updates operate on a tuple basis. For a table R, a tuple t and a tuple identifier

tid, low-level database updates are:

• tid = insert(R, t) with tid as the new generated identifier,

• tid = insert(R, tid, t) with tid as the given tuple identifier and

• t = delete(R, tid) with t as the deleted tuple.

The unique tuple identifier tid is created by insert(R, t). Its creation is defined later on in

Section 4.7. The identifiers are kept in the read-only ID column of tables. Note, that we

might use low-level updates without considering their return value.

Translating Update Statements

The statements INSERT, DELETE, UPDATE only modify tuples of a single table R. The idea is

to replace each of them by: (1) a query that computes which tuples (including their tid) are

inserted or deleted and (2) a loop over these tuples that performs the corresponding low-level

updates.

For this, we assume that the query on a single table also returns the tuple identifier. We

use SELECT ID,* FROM R to indicate that the tuple identifier is part of the query result.

Note that in general queries on multiple tables cannot provide the tuple identifier, since (e.g.

50

a join) they mix up tuples. The result of each row is stored in a local variable row. We use

the same syntax row.ID and row.Aj to access an attribute of a tuple. For a table R with

n attributes Aj (1 ≤ j ≤ n), we provide the translation of the INSERT, DELETE and UPDATE

statements.

UPDATE R SET Aj=<arith-expr> WHERE <cond> is translated into:

FOR row IN SELECT ID,* FROM R WHERE <cond> LOOP

row.Aj =<arith-expr’>;

delete(R, row.ID);

insert(R, row.ID, (row.A1, . . . , row.An));

END LOOP

Where <arith-expr’> results from replacing each Aj in <arith-expr> by row.Aj .

DELETE FROM R WHERE <cond> is translated into:

FOR row IN SELECT ID,* FROM R WHERE <cond> LOOP

delete(R, row.ID);

END LOOP

INSERT INTO R VALUES (<expr>,..,<expr>) is translated into:

row:=(<expr>,..,<expr>);

insert(R, row);

The pre-compilation can be done at the creation-time of a procedure. We assume that the

resulting low-level procedure is kept within the code base of the caches and the server. In

the following we only consider low-level procedures for developing our approach. However,

for simplicity we also use the original code within examples.

An Example for Handling of Unique Constraints

As an example of handling schema constraints, that affect the execution of stored procedure

code, we discuss uniqueness constraints. Given a table R with the columns A1, . . . , An, a

uniqueness constraint on Ai (1 ≤ i ≤ n) requires that none of the values in Ai occur twice

for all instances r of R.

∀t, t′ ∈ r : t(Ai) = t′(Ai) ⇒ t = t′

A uniqueness constraint can only be violated by insert operations and not by delete opera-

tions. As in the above transformations, insert operations occur as insert(R, t) or

insert(R, tid, t). Let u denote both types of inserts and t = (v1, . . . , vn). Then, u is re-

placed by

51

IF (EXISTS SELECT Ai FROM R WHERE Ai=vi) THEN

RAISE EXCEPTION;

ELSE

u;

END IF;

If the value vi already exists in column Ai the update u is rejected. Otherwise the tuple is

inserted. Note that replacing the insert operations by handling uniqueness constraints can

be optimized further. If, for example, an UPDATE statement does not change the column Ai;

the replacement is not necessary.

4.3 The Execution Engine

We assume that the standard database systems at the clients and the server implement a

concurrency control mechanism for guaranteeing the execution of transactions, and that both

use the same type of execution engine for stored procedures. Concurrency control applies to

application tables R1, . . . , Rn and system tables. A procedure is always executed within a

transaction. We assume that each transaction is performed in three phases:

1. Starting Phase: The transaction has been scheduled, but no updates have been applied

to data yet.

2. Execution Phase: The procedure code is executed and all updates are applied to data.

3. Commit Phase: If no reject has been performed by the code, all updates are committed

to data.

In the following, we show how a procedure is executed by the engine and define execution

sequences for defining the effect of a procedure.

IO Statements

A low-level procedure interacts with data only in terms of low-level updates or queries which

we call IO statements. We uniquely identify the IO statements within the code of a low-

level procedure and use the resulting IDs for multiple purposes throughput this work, e.g.,

execution sequences, define the logical split of the procedure code, etc.

Definition 4.1 (Uniquely Identified IO statements) Let S be a low-level procedure. Each

query and low-level update in the low-level code of S is called an IO statement and assigned

a unique number s ∈ N. There are no two IO statements with equal identifiers. The set of

such numbers is denoted ID(S).

52

Execution of Stored Procedure Code

Intuitively, the execution of a procedure S at run time can be seen as follows. While executing

the code of S, the engine reaches an IO statement s (low-level update of query). First, the

engine instantiates s (resolve local variables, if any) to an executable IO statement, say

e. Next, it executes e on data. For this, we assume that the engine is using a function

val = eval(s,#s, e) (the parameter #s is defined below) that returns the result value val

(tuple or tuple identifier for low-level updates, a table for queries). By using val, the engine

further processes the code until the next IO statement is reached. And so forth.

In case of an exception, the execution is aborted and no updates are made persistent.

Otherwise the execution enters its commit phase, where all updates are permanentely written

to data and the execution is completed. In Chapter 5, we model the simultaneous execution

scheme mainly by providing different eval(.) functions for caches and the server.

Execution Sequences

We introduce the notion of execution sequence, which captures the sequence of executed IO

statements of a procedure.

Definition 4.2 (Execution Sequence) Let S be a low-level procedure. Its execution is

captured by the sequence

seq = (s1,#s1, e1, val1), . . . , (sn,#sn, en, valn)

with si ∈ ID(S), ei the instantiated IO statement and vali = eval(si,#si, ei) the result. The

#si denote the number of IO statements sj with j ≤ i and si = sj. For queries, vali is a

value, a tuple or set of tuples, and for low-level updates, the tuple identifier or the deleted

tuple.

The above execution sequence is used to capture the run time behavior of executions at

caches and the server. Note that in an instantiated IO statement ei, all variables have been

assigned. The value #si represents a counter for each si that is maintained by the engine and

is used to distinguish between different executions of an si during a loop. Thus, the pair of

numbers (s,#s) uniquely identifies an element of the sequence. In the case that an execution

performs a RAISE EXCEPTION, the execution sequence is empty.

In subsequent sections we use execution sequences for maintaining the versions of frag-

ments and for consistently updating replicated data at caches.

Underlying Assumptions

We have defined a primitive language and the execution engine of the client-server system.

The assumptions posed on the system are summarized as follows:

Assumption 4.1 Let S be a low-level procedure and R1, . . . , Rn the corresponding tables in

the procedure code of S.

53

1. S does only access the tables R1, . . . , Rn. Hence, there are no side-effects on other

tables.

2. S is deterministic.

(a) Let r1, . . . , rn, r′1, . . . , r
′
n and r′′1 , . . . , r′′n be instances of the tables. Let v1, . . . , vm

be a set of input values for S. Let further S(v1, . . . , vm) be executed twice on

r1, . . . , rn in different points of time and r′i and r′′i the resulting table instances.

Then, r′i = r′′i holds for all 1 ≤ i ≤ n. Hence, S is deterministic.

(b) Both executions on the ri perform the same execution sequence

seq = (s1,#s1, e1, val1), . . . , (sk,#sk, ek, valk) for m ≥ 0.

3. Each procedure call is executed as transaction that guarantees the ACID properties

(Atomicity, Consistency, Isolation, Durability).

We base our work on this assumption, since otherwise we would have to define the semantics

of the procedural language, which is beyond the scope of this work. In the following, we

consider only procedures that satisfy these assumptions. Note also that the determinism

affects the automatically created tuple identifier. Hence, both executions of S must produce

the same tuple identifier for newly added tuples. The maintenance of tuple identifiers is

discussed in Section 4.7.

4.4 Table Fragmentation

Tables are partitioned in non-overlapping horizontal fragments. We show how fragments are

managed by the server and how fragment access is determined for IO statements (queries

and low-level updates). A client and its local database cache is not involved in fragment

management. The replication of server data to a client is defined in Section 4.5.

4.4.1 The Definition of Fragments

We assume that administrators have provided a fragmentation column for each table. Then,

a fragment is defined as a selection on a table.

Definition 4.3 (Table Fragment) Let R ∈ R be a table, r an instance of R and A a

chosen column of R (fragmentation column). The table R is logically split into n (1 ≤ i ≤ n)

non-overlapping fragments

(R,A, ci) = σA=ci
(r)

with {c1, . . . , cn} = πA(r). The tuple (R,A, c) is called a table fragment.

The fragmentation is complete if each tuple in R appears in one of the fragments. That is,

r =

n
⋃

i=1

σA=ci
(r) and

n
⋂

i=1

σA=ci
(r) = ∅

54

holds. According to Definition 4.3 there are |πA(r)| different fragments for a table instance

r (1 ≤ i ≤ |πA(r)|). At run time, where operations on tables insert and delete tuples,

the number of fragments and the size of each fragment may vary. Note that by taking

the surrogate key column ID of a table as fragmentation column, the fragmentation can be

performed on a fine-grained tuple basis.

4.4.2 Fragment Access of Queries and Low-Level Updates

Before a given IO statement s (low-level update or query) is executed, the system must be

able to determine the fragment access of s in advance. This is necessary for the following

reasons:

• Before a cache executes an IO statement, it has to figure out if it can be executed on

local data. If data is missing, a query would yield a wrong result and an update would

not be performed at all.

• In order to load a cache with data, the server has to analyse the specific fragment access

of stored procedures.

For queries we detect fragment access by a syntactic analysis of the SQL expression. A query

might potentially operate on multiple fragments and/or full tables. Consider a SQL query q

on table R in the form

SELECT expr1, . . . , exprn

FROM R

WHERE ϕ1 AND . . . AND ϕm

with no sub-selects in any of the expressions expr1, . . . , exprn and conditions ϕ1, . . . , ϕm in a

conjunctive form. Note that by the restrictions of Section 4.2, the expressions and conditions

do not contain calls of internal functions nor stored procedures. Hence, these queries only

operate on the table R and, in the worst case, the query processor has to scan all tuples of

R to answer the query. Let A be the fragmentation column of R and c a constant value. If

there exists a ϕi (1 ≤ i ≤ m) with ϕi ≡ (R.A = c), the query processor only has to select

tuples t on R with t(A) = c and not to scan the entire table R to answer the query. All other

tuples with t(A) 6= c do not influence the result of the query. Consequently, the query only

operates on the fragment (R,A, c). The same argumentation applies for queries with a WHERE

clause, which is true.

On the basis of this observation, we present a primitive algorithm that computes the

fragment access for a SQL query on multiple tables including subselects. To denote full table

access, we use the notation (R,A, ∗) to represent all fragments of a table R.

Algorithm 4.1 (Fragment Access of a Query)

55

Syntax: fragDef(q)

Input: SQL query q

Output: set of fragments frag

Notes: the WHERE clause of a query is a conjunction of formulae ϕ1, . . . , ϕn,

Ai is the fragmentation column of a table Ri

1. frag = ∅

2. For all SELECT statements sel in q:

For all tables Ri in the FROM clause of sel:

If there exists a ϕ in the WHERE clause of sel with ϕ ≡ (Ai = c) for some

constant c, then add (Ri, Ai, c) to frag, else add (Ri, Ai, ∗) to frag.

3. Remove all tuples (R,A, c) from frag if (R,A, ∗) exists in frag.

4. Return frag

The algorithm passes all SELECT statements and tries to find conditions that restrict the

access on the selected tables. Step 3 is important to minimize the size of frag, since (R,A, c)

is already included in (R,A, ∗).

Example 4.1 (Fragment Access of Queries) Consider the following SELECT statements

and their fragment access. We use tables Product fragmented on column Group and Stock

fragmented on some column A.

1. Fragment access of the first query is (Product,Group,’Toys’), and

that of the second is (Product,Group,*).

SELECT * FROM Product WHERE Product.Group=’Toys’

SELECT count(*) FROM Product WHERE TRUE

2. Fragment access of the first query is (Product,Group,’Toys’), and

that of the second is (Product,Group,*).

SELECT * FROM Product WHERE Product.Group=’Toys’ AND Product.ID=23

SELECT * FROM Product WHERE Product.ID=23

3. Fragment access is (Product,Group,’Toys’),(Stock,Amount,*)

SELECT Product.Name, Stock.Amount FROM Product, Stock

WHERE Product.Group=’Toys’ AND Product.ID=Stock.ID AND

Stock.Amount>0

4. Fragment access is (Product,Group,*)

56

SELECT

Group,

count(*)/(SELECT count(*) FROM Product WHERE TRUE)

FROM Product

WHERE Product.Group=’Toys’

GROUP BY Group

The algorithm computes (Product,Group,*) for the first SELECT and

(Product,Group,’Toy’) for the second. In Step 3 the tuple

(Product,Group,’Toy’) is removed, since the full query already

operates on the full table Product.

2

Especially the second pair of queries in Example 4.1 shows that fragment access can be

improved if a query contains a condition on the fragmentation column in its WHERE clause.

Fragment access of insert operations can easily be identified, since the inserted tuple

contains the value for the fragmentation column. Note that an insert operation has to add a

full tuple to a table, due to the non-existence of null values in the database schema.

Let tid = insert(R, tid, t) and tid = insert(R, t) be both low-level updates for adding a

tuple t to a table R, and let A be the fragmentation column of R. Then, the updates operate

on the fragment {(R,A, c)} with c = t(A).

For a low-level update delete(R, tid) we cannot directly derive the accessed fragment on

a syntactical basis, since only the tuple identifier tid appears in the statement expression.

However, a delete operation results from the replacement of an UPDATE or DELETE statement

by a query and a loop of low-level updates (see Section 4.2.3). According to the replacements,

a delete operation always occurs in the form delete(R, row.ID) in the procedure code with

row.ID as the tuple identifier tid. Recall that the local variable row contains the values

of all columns of R. Hence, the fragment access of the low-level update is determined by

{(R,A, row.A)}.

Definition 4.4 (Fragment Access of IO Statements) Let S be a low-level procedure and

e the expression of an IO statement at run time. For the above notations the fragment ac-

cess of an insert operation is defined as fragDef(e) = {(R,A, c)}, for a delete operation, as

fragDef(e) = {(R,A, row.A)}, and for a query, as the result of Algorithm 4.1.

Clearly, an IO statement can only be executed at a client if the fragments have been replicated.

We follow this issue up in Section 4.6, when we define the replication of fragments to clients

(Section 4.5).

4.4.3 The Management of Fragments

The server maintains a system table F for collecting all fragment definitions. It is defined as

follows:

57

Definition 4.5 (Fragment Definition Table) Let R be a table with the fragmentation col-

umn A and let r be an instance of R. The fragment definition table F contains, for each

fragment (R,A, ci) = σA=ci
(r) with πA(r) = {c1, . . . , cn} and 1 ≤ i ≤ n, exactly one tu-

ple (id,R,A, ci, ver) with id as the internal identifier of the fragment and ver as its version

number.

The identifier is automatically generated by the system. The maintenance of the fragment

version is discussed in Section 4.4.4. Note that the definition allows tuples (id,R,A, c, ver) in

F with c /∈ πA(r) which represent empty fragments. However, F cannot contain two tuples

(id,R,A, c, ver) and (id′, R,A, c, ver′) with id = id′.

For simplicity, we introduce some conventions for the usage of fragments that apply to

the remaining part of this work:

• A fragment in F is identified by the letter F .

• Giving a F = (id,R,A, c, ver) ∈ F we also write F ∈ F . Analogously, we use a function

id(F) = id and write F instead of id.

• There is a function fragID(R,A, c) that retrieves the identifier F of the corresponding

fragment. If no such fragment is stored in F , the function returns undef .

• The content of a fragment F is denoted data(F). We always use data(F) within the

context of a table instance r, such that data(F) is an abbreviation for σA=c(r). Note

that all tables R contain a column ID that contains the surrogate key of a table and is

maintained by the database system. Hence, also data(F) contains this column.

• We say to access/modify a fragment F , but mean the access/modification of tuples in

data(F).

To access F efficiently, the server maintains indexes on its columns. In that case, accessing a

tuple in F is of logarithmic complexity. Since the server performs frequent access on F , we

also assume that it is kept in main memory.

The definition of F is based on the instances of tables. Since these are modified by low-

level updates, the size of F is variable at run time. Low-level updates add or remove a tuple

to/from a table, thus possibly creating a new or empty fragment. In the following, we only

consider the creation of new fragments in F . We do not consider the removal of fragments

in F , thus also keeping empty fragments in F .

Fragments in F are exclusively maintained by low-level insert operations at the server.

Let e be such an operation and fragDef(e) the fragment definition (R,A, c) that defines

its data access. We assume that the execution of e at run time checks whether a fragment

F = (id,R,A, c, ver) exists in F for some id and ver. If not, it is created with ver = 0 as the

first version of the fragment and a new identifier id. Recall that F is the fragment identifier

and automatically computed by the system. Furthermore, we assume that a newly added

tuple in F is persistent, even if e is later on rejected by a transaction. This is useful, since

the rejection of a transactions would remove already added tuples from F , whose identifier

might be already read by other statements.

58

4.4.4 Fragment Versions

The system keeps a version number for each fragment that is exclusively maintained by the

server. The overall idea behind versioning is to verify the up-to-dateness of cache data based

on versions.

Intuitively, we maintain versions as follows: Consider a stored procedure in its commit

phase that has modified the fragments F1, . . . , Fn. Note that multiple updates could have

been performed on each single Fi, since the code of a procedure can contain multiple updates

or loops. After all modifications have been applied, the version number ver of each fragment

Fi is increased by one and the transaction leaves its commit phase. Updating the version

number within a transaction guarantees its consistent change under concurrent executions at

the server.

Fragment Access History

Changes of fragment versions are tracked in the fragment access history (FAH). Since

updates are logged by database management systems anyway, e.g., for recovery, this can

be seen as an extention of the standard database log. In Section 4.5 we use the FAH to

consistently update replicated data at caches.

Given a fragment F of version ver, the FAH contains the sequence of updates U that

has been applied on F to get the next version ver + 1 of F . Therefore we define:

Definition 4.6 (Fragment Access History) The fragment access history is a system ta-

ble FAH of records (id(F), ver, U) where F ∈ F is a fragment, ver a version number and U

a sequence of low-level updates.

Low-level updates are kept as a sequence, since normally the order of their application is

important, e.g., the result of x = 0; x = x+1; x = x ·2 differs to the result of x = 0; x = x ·2;

x = x + 1.

Maintaining the FAH and Fragments in F

We present an algorithm that maintains both the fragment access history and the set of

fragments F . Recall that the algorithm is executed within the commit phase of a transaction

at the server, but not at the cache. Let

seq = (s1,#s1, e1, val1), . . . , (sn,#sn, en, valn)

be the resulting execution sequence of a procedure S. The algorithm firstly computes all

fragments F1, . . . , Fn that are modified by the low-level updates in seq, and secondly, it

increases the versions for each distinct Fi. Finally, it adds a new tuple for each distinct Fi

into the FAH.

59

Algorithm 4.2 (Maintenance of FAH and F)

Syntax: maintain()

Input: execution sequence seq = (s1,#s1, e1, val1), . . . , (sn,#sn, en, valn)

Output: none

Shared Data: FAH, F

External: fragDef(e) with e as a low-level update

Notes: local variables: fragment F , fragmentList as set of identifiers id(F)

1. fragmentList = ∅

2. For each low-level update ei in seq:

// Note that queries in seq are ignored by the Algorithm.

(a) fragmentList = fragmentList ∪ fragID(fragDef(e))

// Determine the accessed fragment definition of e and the resulting

// identifier in F . Note that e has been executed, hence

// an appropriate entry has been added to F . Note also that

// fragID(.) returns the identifier of a fragment.

3. For each F ∈ fragmentList:

// Note that fragmentList is a set.

// Since a fragment can be modified by multiple

// updates ei, |fragmentList| ≤ n holds.

(a) Let ver be the current version of F in F .

(b) Update ver = ver + 1 for F in F .

// F was modified and its version is increased by 1.

(c) Let U be the sequence of all low-level updates ei (1 ≤ i ≤ n) in seq with

fragID(fragDef(ei)) = F . Let the order of low-level updates in U preserves

their original order in seq.

// Derive all low-level updates that access F .

(d) Replace each low-level update ei in U of the form insert(R, t) by insert(R, tid, t)

with tid = vali.

// Records of the FAH are also used to synchronize data at caches.

// The above transformation guarantees that the execution of

// low-level updates in U will create the same tuple identifier

// at a cache. Note also that vali contains the result of a

// low-level update which, in case of an insert(R, t), is the

// generated tuple identifier.

(e) Add the new tuple (F, ver + 1, U) to the FAH.

// Note that in this algorithm F represents the identifier

// of a fragment in F .

60

Step 2 determines the accessed fragment identifier for each low-level update. We increase the

version for all distinct data fragments in Step 3 and add the sequence of low-level updates

U that has caused the new version to the FAH. Step 3c computes U by determining the

accessed fragment of each low-level update ei. It calls the function fragID(.) which will

always produce a fragment identifier, since the low-level updates ei have been executed and

an appropriate entry had been added to F . The replacement in Step 3d is necessary, since we

use the sequences U to update cache data later on. By using low-level updates of the form

insert(R, tid, t), the same tuple identifier is used at a cache.

As a result, the FAH contains the current and previous version numbers of all fragments

and the updates that have been applied to each version. Further, a version is consistently

updated, since it is done within a transaction at the server. In the following section we use

the FAH to consistently update cache data.

Transactions and Fragment Versions

The version of a fragment is always increased within the commit phase of a transaction. As

stated in Section 4.3, we assume that the server implements a standard concurrency control

mechanism. Then, the version number of a fragment and the corresponding data can only

be defined within the scope of a transaction.

Definition 4.7 (Fragment Version) Let a transaction access a fragment F with

(F,R,A, c, ver) ∈ F and r as an instance of the table R. Then the content of F of the

version ver is defined by σA=c(r).

Hence, each transaction that accesses in its starting phase a version number ver of F operates

on fragment data σA=c(r). Note that a transaction in its execution phase might perform

updates on σA=c(r), such that in this phase the content of a fragment of version ver can be

different from σA=c(r).

4.5 Fragment Replication and Synchronization

We have shown how server data is fragmented and how for each fragment a version number

is maintained. Data is replicated at the level of fragments to caches. The attribute mode

is used to define the synchronization mode of a replicated fragment that can be either an

incremental mode (mode = inc), where only updates are propagated to the cache, or a full

mode (mode = full), where the entire content of a fragment is copied to the cache. For

simplicity we also use the notation mode(F). The full mode is necessary, since all data of

a fragment must be copied to the cache if the fragment is replicated for the first time. The

full mode is also used in case a cache detects an erroneous synchronization, so that fragment

data have to be re-set (see below).

On an intuitive level a subset replC ⊆ F defines the fragments that are replicated to a

cache C. However, since F is a system table, the subset cannot be defined as such.

61

Definition 4.8 (Replicated Fragments) Let C be a database cache and F be the fragment

definition table at the server. A system table replC of tuple (id,mode) logically defines the

set of fragments F with id = id(F) replicated to C. We also use the notation F ∈ replC .

Hence, replC is a table of two columns with a referential key to the table F on the first place.

The definition as system table allows the system to change the set of replicated fragments

at any time. However, for simplicity we also use the notations replC ⊆ F and F ∈ replC in

following chapters to denote that F ∈ F is replicated at cache C.

Finding the right setting of replC is subject to the optimization problem as addressed in

Part III. For the remaining part of this Chapter, we assume that for each cache C, the table

replC is given.

For all fragments F ∈ replC , the server is responsible for replicating data in data(F)

consistently to the cache C. For this, we introduce an optimistic log-transfer scheme (see

[45, 89]) in the next sections that periodically reads low-level updates of the fragment access

history and applies them to cache data. It is optimistic, since updates are propagated in an

asynchronous manner beyond the boundaries imposed by transactions. As a result, there can

be stale data at a cache.

4.5.1 Propagate Updates to Caches

There is a synchronization process running at the server that is responsible for updating

fragments in replC for all database caches C. Intuitively, it behaves as follows: First, select

all new records (F, v, U) from the fragment access history. Second, propagate the sequence

U to caches C with F ∈ replC and set the version of data fragments at C accordingly.

Algorithm 4.3 (Synchronization Process at the Server)

Input: none

Output: none

Shared Data: FAH, replC for all C ∈ C

Note: the algorithm is a process that runs continuously at the server,

local variables F and F ′

1. Retrieve oldest non-synchronized entry (F, ver, U) in the FAH. If none exists, wait.

2. For all caches C with F ∈ replC :

(a) Let (F,R,A, c, ver′) be the corresponding tuple for F .

// Note that ver = ver′ does not necessarily hold, since a

// younger entry in the FAH could already have further

// increased the version of F .

(b) Let F ′ = (F,R,A, c, ver) with the version number as in the FAH.

(c) If mode(F) = full, send message (full, F ′, data(F)) to C.

Set mode(F) = inc.

// Synchronize full fragment and switch to incremental mode.

62

(d) If mode(F) = inc, send message (inc, F ′, U) to C.

// Apply only new updates to the fragment.

3. Start again with 1.

The algorithm checks the fragment access history and starts data synchronization as soon as

new fragment versions appear. Note that the retrieved tuples are processed in the same order

as they appear in the FAH. This is necessary in order to consistently update data according

to increasing version numbers.

Step 2 performs a loop over all caches that host a copy of the modified fragment. In Step

2c all tuples of a fragment are send to a cache. This is necessary, if data are replicated for

the first time, or if the cache has lost an intermediate update (see next Section). In Step 2d,

only low-level updates are propagated to the cache. Note that data(F) and U contain the

tuple identifiers. Hence, fragment data is properly replicated to caches.

Both Algorithm 4.2 for maintaining the FAH and Algorithm 4.3 for synchronizing cache

data, operate only on the FAH, replC and F . Both act consistently, since Algorithm 4.2 only

(i) inserts tuples into FAH, (ii) adds fragments to F and (iii) sets the version of fragments

F ∈ F . Algorithm 4.3 only retrieves tuples from FAH. Hence, they do not interfere in each

others operations on commonly used data structures.

4.5.2 Receive Updates from the Server

A database cache continuously awaits synchronization messages from the server and applies

them on local data. Similarly to the server, there is also a table F at the cache, that contains

all replicated fragments. There is one difference. The fragment identifiers (ID columns of

table F) are not set automatically, but correspond to the identifiers of the server. The table

is maintained exclusively by the cache by using the information of incoming synchronization

messages. Note that all notions that have been defined for the server, e.g., fragID(.),

fragDef(.), data(.), etc., also apply to the cache.

Consider a fragment F and its two successive versions ver and ver′ = ver + 1. As

mentioned above, ver′ might result from performing multiple low-level updates on ver. We

require that Definition 4.7 of a fragment also applies for transactions at the cache. Hence,

the synchronization algorithm at a cache has to block transactions at the cache until F is

completely updated from ver to ver′.

The following algorithm updates data at a cache according to the two synchronization

modes. Furthermore, it implements the removal of a fragment that is used by the optimizer

later on to remove data from a cache that is not needed any more.

Algorithm 4.4 (Synchronization Process at the Cache)

63

Input: none

Output: none

Shared Data: system table F that contains all fragment definitions, tables R

Note: The algorithm is a process that runs continuously at the cache. Recall

that the server sends messages of type message(type, F, data) to a cache

where data is either a sequence of low-level updates or the content of a

fragment.

1. Sleep until a message from the server arrives. Let mode be the type and F = (id,R,A, c, ver)

be the fragment of the message.

2. Start transaction.

3. If mode = remove then

(a) Delete corresponding fragment (R,A, c) from F .

// Maintain local fragment definitions.

(b) Delete all tuples t in R with t(A) = c.

// Update content of fragment F .

4. If mode = full then

(a) If exists fragment (R,A, c) in F , set its version to ver. Otherwise add F to F .

// Maintain local fragment definitions.

(b) Let data be the third parameter of the message. Delete all tuples t in R with

t(A) = c. Copy all tuples t ∈ data to R.

// Update content of fragment F .

5. If mode = inc

(a) Let U be the third parameter of the message. Perform the sequence of low-level

updates U on R and set ver′ = ver′ + 1 for F in F .

// Update content of fragment F .

6. Commit transaction.

7. Start with 1.

After receiving a message from the server, the algorithm checks its type. To remove a fragment

from the cache, the server sends a message (remove, F, .) that will remove all tuples that

belong to the fragment F . Furthermore, the cache applies all updates within a transaction,

to prevent other transactions at the cache from accessing partially updated fragments.

In case of type full, all tuples of a fragment are removed and the new ones are inserted.

This type is used for the first synchronization of a fragment. In case of type inc, only the

delivered updates are applied on the fragment. The version number is set appropriately for

both types.

64

The algorithm exemplifies a possible synchronization scheme for an incremental update.

Among others, a robust implementation of the algorithm for real-world systems requires the

integration of error control to check whether none of the incremental updates got lost. In

such a case, the incremental update would produce erroneous data in the cache. However,

we do not address these problems here.

4.5.3 Dynamic Data Replication

The client-server system is able to replicate data dynamically. Given a cache C and the set

of its replicated fragments replC , a fragment F is added to replC by the command

Add tuple (F, full) to the system table replC . This will cause the synchronization

Algorithm 4.3 to replicate F to C.

and it is removed from replC by the commands

Remove tuple (F, state) from the system table replC with state = full or state =

inc. This will cause the synchronization Algorithm 4.3 to stop the replication

F to C. Let F = (id,R,A, c, ver) be the corresponding tuple of F in F . The

replicated fragment and its data are removed from the cache by sending a message

(remove, F, .).

Both commands are used by the optimizer in Part III that dynamically sets replicated frag-

ments at run time.

4.6 Executability of IO Statements

As defined in Section 4.4, the function fragDef(.) returns the fragment definitions of the

form (R,A, c) or (R,A, ∗) for low-level updates and queries. The first case represents access

of a fragment and the second access of a full table. However, the above algorithms propagate

data at the level of fragments, such that a cache is not able to determine whether all fragments

of a table have been replicated or not.

To handle this case properly, we assume that the server is sending a message to each cache

C whenever all fragments of a table are replicated. These messages are sent asynchronously

beyond transactional boundaries. For this, we use a boolean function complete(R) at the

cache that indicates whether all fragments of R are available. The cache only executes a

query on a full table R, if complete(R) = true, otherwise the query is rejected due to missing

data. Note that in Section 5 we verify all query computations anyway, such that query

computations at the cache that are based on a wrong complete(R) state will be detected at

the server. However, since fragments are not placed and removed frequently, the value of

complete(R) is correct in most of the cases.

In the following we define a set-value function access(e) for an IO statement e that first

checks whether all data for the execution of e are available, and second returns all required

fragments and their version from table F . We use this function intensively in the remaining

65

part of this work to determine the fragment access of an IO statement. The function is used

at a cache and the server. Note that the property complete(R) is only required for executions

at the cache, since the server hosts all data.

Definition 4.9 (Fragment Access) Given an instantiated IO statement e, F and the func-

tion access(e) is defined as follows:

1. access = ∅

2. // compute all fragment-version pairs for access of a full table

For all (R,A, ∗) in fragDef(e):

(a) If access(e) is executed at the cache and not complete(R),

return undef , since table data is not completely replicated.

(b) Else access = access ∪ {(F, v) | ∃F, c, v : (F,R,A, c, v) ∈ F}

3. // compute all fragment-version pairs for access of a single fragment

For all (R,A, c) in fragDef(e):

(a) check whether a tuple (F,R,A, c, v) exists in F for some F and v.

(b) If it does not exists, return undef .

(c) Else access = access ∪ {(F, v)}

4. Return access

When executed at a client, the function returns an undef value if a full table (complete(R))

or a fragment is required by the execution of e, but not replicated. Executed at the server,

the function returns undef if (1) e is a low-level insert update that (2) operates on a new

fragment and that (3) has not been executed yet. Then, the execution of e has not yet added

an appropriate entry into F (see Section 4.4.3) and in Step 3a no tuple is found. Hence,

at the server the execution of access(e) is only feasible for already executed low-level insert

updates e.

4.7 Twin Transactions

In previous Sections we have defined an incremental data replication to clients that is based

on fragments and their versions. In the following, we define twin transactions and their

properties that utilize data at a client to execute a stored procedure.

Definition 4.10 (Twin Transactions) Let S be a low-level procedure that is triggered at

a client. We call S a twin transaction if S is executed as a transaction at the client and the

server simultaneously. At the end of the transaction at the client, all low-level updates are

canceled and not made persistent.

66

Note that forwarding the procedure call from the cache to the server takes time, such that

the start of the transaction at the server is delayed by the network communication time.

However, the focus is on the simultaneous execution of the procedure code. Hence, the

execution of S starts running in parallel at the client and the server. The server executes

the procedure code and the result of the execution at the client depends on the replicated

fragments. At a client, all low-level updates are canceled, since committed updates require an

additional synchronization with the server that we do not consider here. However, at the end

of Chapter 5 we discuss an extention of our scheme, where consistent updates are committed

at the client.

In the following, we look at the problem of global unique tuple identifiers that can be solved

by using twin transactions. Furthermore, we define conditions under which the execution at

the client produces the same result as the server.

4.7.1 Unique Execution and Tuple Identifiers

Twin transactions are identified by a unique global identifier eid that is generated by the

client. For this, we assume that each client (including its cache) is identified within the

client-server system by a unique client ID cid ∈ N. Furthermore, each client counts its

procedure calls by ncid ∈ N. Then, the global identifier eid is uniquely defined by the tuple

(cid, ncid).

Since a twin transaction executes the same procedure code at a client and the server,

we require that an operation tid = insert(R, t) creates the same tuple identifier tid at a

cache and the server. Recall that the synchronization process does not generate new tuple

identifiers at the cache, since only operations insert(R, tid, t) are performed. Only the direct

code execution at the cache (e.g. the execution of a twin transaction) can perform operations

insert(R, t). Unique tuple identifiers are important, since the SQL statements UPDATE and

DELETE utilize these identifiers within their execution. Non-unique tuple identifiers cannot

guarantee an equal execution of both SQL statements at a client and the server.

To obtain a globally unique tuple identifier, we use a combination of the execution iden-

tifier, the statement identifier and the statement counter. The latter two are defined by

execution sequences (see Definition 4.2).

Definition 4.11 (Unique Tuple Identifier) Let S be a low-level procedure, eid its execu-

tion identifier and seq = (s1,#s1, e1, val1), . . . , (sn,#sn, en, valn) a resulting execution se-

quence of its execution. Then, for all tid = insert(R, t) low-level updates ei in seq the tuple

identifier is defined by tid = (eid, si,#si).

From the definition we conclude that different twin transactions always generate different tu-

ple identifiers, since their eid is always different. As the tuple (si,#si) is unique within an ex-

ecution of a procedure and the resulting execution sequence, all operations tid = insert(R, t)

of a procedure generate different tuple identifiers tid. Note also, that the tuple identifier is

deterministic as required by Assumption 4.1.

67

As a result, we conclude that both executions of a twin transaction generate equal tuple

identifiers if they produce same sequence s1, . . . , sn of IO statements. Note that the sequence

determines the statement counters #s1, . . . ,#sn and therefore the tuple identifier.

Among others, the chosen tuple identification mechanism is important for another prop-

erty of IO statements — the locality of their execution. This property is important for the

main result below.

Proposition 4.1 (Locality of IO Statements) Let S be a twin transaction and let eid its

execution identifier. Let s be an IO statement in S that is executed with val = evalS(s,#s, e)

or val = evalC(s,#s, e) at the client or the server. Let further be

access(e) = {(F1, v1), . . . , (Fn, vn)} 6= undef

the accessed fragments and their versions of e. Then, the content of fragments F ∈ F with

F 6= Fi for 1 ≤ i ≤ n does not affect the computation of the result val of both function calls.

Proof: The statement s can be a query, a delete or an insert low-level update. In Section

4.4.2 and Definition 4.4 (function fragDef(.)) we have defined the set of fragment definitions

that are accessed by an IO statement. These definitions represent a fragment in a logical way.

In Section 4.6 and Definition 4.9 (function access(.)) we have defined how to determine the

fragment identifiers and their versions for a given set of fragment definitions. This function

checks whether the given fragment definitions are available, thus it checks whether the given

IO statement can be executed on local data. Note that all data is available at the server. We

use this function also for the server, to compare its fragment access with that at the cache.

Case I: s is a query

The function fragDef(e) returns a set of fragment definitions (R,A, ∗) and

(R,A, c). The first represents all fragments of a table, the second a single frag-

ment. The table R results from a FROM clause of the query and the fragment

(R,A, c) is only in the result set if the conjunctive WHERE clause of e includes a

condition A = c. The conjunctive form guarantees that A = c does not appear in

a negated context. As a result, the query processor has only to consider tuples t

in R with t(A) = c. If all these definitions are available, the function access(e)

returns a set {(F1, v1), . . . , (Fn, vn)} and undef otherwise.

Clearly, all fragments F that are defined on tables R′ that do not appear in

the FROM clauses of e, will not affect the result val, since by Assumption 4.1 a

procedure, and therewith a query, only operates on tables as they appear in the

procedure code. If F is defined on a table R that appears in the FROM clauses of

e, it can only affect val if e reads data from F . Let (R,A, c′) be the fragment

definition of F . From F 6= Fi for 1 ≤ i ≤ n we conclude that e does not contain

a predicate A = c′ in one of its conjunctive WHERE clauses and that e does not

operate on the full table R, but one a fragment Fi of R with a fragment definition,

say (R,A, c). Since the query processor only considers tuples t with t(A) = c the

68

computation of the query result val is not affected by tuples t with t(A) = c′.

Note that we only consider non-overlapping fragments, such that c 6= c′ holds.

Case II: s is a delete low-level update

A delete low-level update only removes a tuple from a fragment and has no side-

effects. Since only one tuple is processed, only one fragment can be modified. As

a result, the content of all other fragments does not affect the delete operation

which returns the deleted tuple as the result val.

Case III: s is a insert low-level update

An insert operation adds one tuple to one fragment F1 and returns the tuple

identifier as result val. It has two side-effects: The first is to maintain the fragment

definition table F if a new fragment is accessed. Since at most a tuple is added to

F the content of fragments F cannot affect the insert into F1. The second is the

creation of the unique tuple identifier. The identifier is only computed from the

values eid, s, and #s. Hence, it is not affected by the content of other fragments

F .

Note that this does not necessarily hold if the tuple identifier is computed on

a different basis. Consider the case where a new tuple identifier is computed

by taking the maximum identifier of a table increased by one. Consider a frag-

ment F /∈ {F1, . . . , Fn}, but that is defined on the same table R as one of the

{F1, . . . , Fn}. Assume that S performs an insert on R that generates a new tuple

identifier. Then, the generated identifier depends on the number of tuples in F ,

since each insert would increase the maximum identifier. Hence, the computation

of the result val would depend on the content of the fragment F .

2

4.7.2 Consistent Twin Transaction

As stated earlier, fragment versions have been introduced for verifying the up-to-dateness of

cache data. First, we show that equal version numbers of fragments at the client and the

server imply equal fragment content. Second, we show a consistent twin transaction where

both executions produce equal execution sequences.

Proposition 4.2 Let S be a twin transaction. Let both executions operate only on a single

fragment F . If the local versions numbers of F are equal, then also the local contents of F

are equal in the starting phase of both transactions.

Proof: Let FC and FS denote the fragments at the cache and the server. Let ver(FC),

ver(FS) denote the versions of the fragments and data(FC), data(FS) their content at the

starting time of both corresponding transactions.

69

By Algorithm 4.2 (maintenance of the fragment access history FAH) we conclude that

at the server the version ver(FS) has been set (Step 3b) and that a tuple (FS , ver(FS), U)

has been put into the FAH (Step 3c). Since this has been done within a transaction, both

changes have been committed at the server.

Note that we use a standard concurrency protocol at the server, such that the committed

updates are persistent and consistent under other concurrently running transactions at the

server. The committed changes allow S to access the fragment FS with its version ver(FS)

in its starting phase.

Since the cache accesses a version ver(FC) = ver(FS), the synchronization Algorithm 4.3

at the server has: (1) processed the tuple (FS , ver(FS), U) in the FAH and (2) sent a message

(full, t, data(FS)) or (inc, t, U) to the cache. The synchronization Algorithm 4.4 at the cache

has (1) performed Step 4 or 5, to set the local version ver(FC) and to update data(FC), and

has (2) committed these updates.

Again the committed changes allow S to access the fragment FC with its version number

ver(FC) = ver(FS). Note that the corresponding execution at the cache of a twin transaction

rejects all low-level updates. Hence, the fragment FC cannot be modified by local transaction,

but only by the synchronization Algorithm 4.4.

Hence, we have only to show that data(FC) = data(FS) holds after the commit of the

transaction of Algorithm 4.4.

Let us take a look at the Steps 4 and 5, and how data(FC) is set. Recall that the algorithm

propagates insert(R, tid, t) and no insert(R, t) operations, such that any insert at the cache

creates the same tuple identifier as the server. We consider both Steps independently:

• Step 4 (full update)

The server has sent the full fragment content and the local content of FC is set to

data(FC) = data(FS).

• Step 5 (incremental update)

The server has sent a sequence of updates U that is applied on FC at the cache. Prior

to an incremental update the server had sent the full content of FC . Then, all data

at the server has been propagated to the cache. Under the assumption that none of

the incremental updates gets lost, the content of FC at the cache must be equal to FS .

Hence, data(FC) = data(FS) holds.

For both Steps data(FC) = data(FS) holds which completes the proof. 2

Finally, we show that equal fragment versions at cache and server result into a consistent

twin transaction, where both executions produce the same execution sequence.

Proposition 4.3 (Consistent Twin Transaction) Let S be a twin transaction. Let both

executions of S operate on fragments of equal versions. That is,

m
⋃

i=1

access(ei) =
k
⋃

i=1

access(e′i) = {(F1, v1), . . . , (Fn, vn)} 6= undef

70

holds for all executed (but not committed) IO statements e1, . . . , em at the cache and e′1, . . . , e
′
k

at the server. Then, both executions of S produce the same execution sequence.

We refer to non-committed IO statements, since in the commit phase of a transaction the

version numbers of the modified fragments are increased. Furthermore, we refer to executed

IO statements, since only then the function access(e) produces meaningful results (see also

Section 4.6). For the same argumentation the set of fragment-version pairs is not undef ,

since this only can be the case for non-executed IO statements at the server.

Proof: Let R1, . . . , Rl be the tables as they appear in the procedure code of S. If the set

{(F1, v1), . . . , (Fn, vn)} contains all fragments of these tables, we conclude by Proposition 4.2

that the content of the fragments at cache and server is equal and therefore also the instances

of the tables R1, . . . , Rl are equal. By Assumption 4.1 we conclude that both executions

produce the same instance and the same execution sequence which includes the generated

tuple identifiers and query results.

If the set {(F1, v1), . . . , (Fn, vn)} does not contain all fragments of the tables R1, . . . , Rl,

there is a fragment F of these tables with F /∈ {F1, . . . , Fn}. According to Proposition 4.1,

however, the execution of the IO statements e1, . . . , em and e′1, . . . , e
′
k is not influenced by

the content of such fragments F . If the content of such fragments is irrelevant for the exe-

cution of S, we can assume any content for them for showing the Claim. Therefore, assume

that such fragments F have the same version number and content at the cache and the

server. Then, all fragments of the tables R1, . . . , Rl are replicated to the cache and therewith

the instances of these tables are equal. Again Assumption 4.1 applies and both executions

of S result into the same instances of R1, . . . , Rl and produce the same execution sequences. 2

Claim 4.3 is used in Chapter 5 to show the correctness of the simultaneous execution scheme.

4.8 Related Work

The concept of stored procedures is very popular and almost every database vendor provides

stored procedures for different procedural languages. In the literature, we can find similar

considerations. Knowledge Independence [20] has been proposed as a new design principle,

which implies extracting knowledge from applications and putting it into the schema, in the

form of trigger and rules (or stored procedures). In this way, knowledge is centralized and

becomes declarative, simplifying application design and evolution. The goal is to factor out

as much of the semantic knowledge that is encoded in the applications as possible, and place

it under the control of the database system itself, thereby enforcing it across all applications.

Within the pre-compilation of stored procedures, we have demonstrated how a uniqueness

constraint can be handled. Modern database systems provide a variety of integrity constraints

(e.g. primary key, foreign key, uniqueness, NULL values, default values, etc.) and advanced

active concepts, such as triggers and rules. However, adding extra code by pre-compiling it

into the procedure code to enforce the integrity constraints is not trivial and leads to well-

71

known problems, such as termination [92, 93, 105], confluence [99], computability [68], etc.

These problems have been studied by many authors. An overview is given by [73].

As mentioned in Section 2.2, most of the recent database caching schemes operate on a

tuple basis and apply a grouping mechanism. Grouping is used to reduce the maintenance

effort for replicating data to caches, and to capture semantic relationships among tuples.

In this work, we use fragmentation that does not consider semantic information. This is

feasible, since the performance improvement of our simultaneous execution scheme can be

shown independently of the underlying grouping mechanism.

In Section 2.4, we have summarized the problem of synchronizing replicated data. As

mentioned, we use an optimistic log-transfer protocol that manipulates replicated data with

controlled inconsistencies that must be resolved by the system. As shown by Claim 4.3,

we detect such inconsistencies by comparing the version number of fragments. Then, equal

versions represent the consistent case.

The concept of twin transactions has also been suggested for mobile environments ([26,

86]). However, they use it in the context of performing two similar transactions in a sequential,

rather than in a simultaneous manner. Their objective is to first perform a transaction on a

mobile device and then repeat its execution at the server later on during the next connection

phase of the device.

4.9 Summary and Discussion

We have presented a client-server database system that uses a database cache at each client.

The system provides twin transactions and dynamic data replication to caches.

A twin transaction characterizes two equal procedure calls where one is executed at the

cache and the other simultaneously at the server. We have shown that both executions lead

to the same effect on the underlying tables if both have operated on equal fragment version.

To achieve this, we had to adhere to deterministic procedure code and had to introduce

globally unique tuple identifiers that guarantee an equal creation of tuple identifiers during

the simultaneous execution. The concept of twin transactions is the basis for our simultaneous

execution scheme as defined in Chapter 5.

The chosen replication scheme allows us to dynamically replicate data at the level of table

fragments. This way, data can be placed at caches specifically to the access behavior of users,

and it can be adapted at run time whenever the access behavior changes. These issues are

discussed in Part III.

Compile Constraints and Trigger Code into Stored Procedures

Schema constraints (like foreign key on tables) and advanced concepts for integrity enforce-

ment (e.g. trigger) are not taken into account by the client-server system. As mentioned

above, the chosen language exemplifies our approach and the restrictions have been made

to keep the system simple. However, intuitively we can argue that an integration of these

concepts is feasible. Let us consider the trigger mechanism and let us assume that schema

72

constraints are internally mapped to triggers. A trigger is a piece of procedure code that

is executed for a certain event, e.g., insert a tuple into a table. A complier at the database

level can insert the entire trigger code into the original procedure code, and can further apply

translation rules, so that the code only performs low-level updates (see Section 4.2.3). Of

course, the compiler has to cope with termination and confluence problems ([92, 93, 105, 99]).

Hence, to some extent the advanced concepts can be handled at the compiler level. First

steps into this directions have been discussed in [59].

Sub-Procedure Calls and Internal Functions

Our language also imposes a restriction on sub-procedure calls and internal functions. As

long these occur in expressions of low-level updates, assignments and return operations, they

can be handled by the above mentioned compiler. If they occur within queries, e.g. in

PostgreSQL, a stored procedure can be used as a table in the FROM clause of a query. This

is more difficult, since they affect the query processor which includes query planing and

optimization.

Still, a subject of future work is the problem of integrating query execution plans partially

into the low-level procedure code. Our scheme could handle internal functions and sub-

procedure calls in queries. As a result, the low-level procedure contains the computation of

sub-queries, joins, etc. explicitly, which enables our scheme to handle partial query evaluation

at caches. However, this is only possible if intermediate query results, e.g., result of a sub-

query, are small enough for transferring them from the cache to the server. It is out of

question that the intermediate result of a cross join of big tables should not be transfered via

a network.

Fragment Access Detection

To exemplify our approach, we have introduced a primitive algorithm for detecting the frag-

ment access of an IO statement. It operates on a syntactical basis and detects only full table

access and the access of a single fragment for each table in the FROM clause of a query. Hence,

more work has to be done in providing techniques for an efficient and precise fragment access

detection, as shown by Example 4.1.

73

74

Chapter 5

A Simultaneous Execution Scheme

for Split Procedure Code

In Chapter 4 we introduced a client-server database system with data replication to caches at

clients and the concept of twin transaction for a simultaneous executing of a transaction at a

cache and the central server. Based on this, we define the concept of split twin transactions

in this Chapter. The main idea is to logically split the procedure code into two parts and to

assign one to the cache and the other to the server. When a twin transaction is executed,

the cache and server only execute their assigned parts of the procedure code. This way the

execution of a procedure call is distributed among cache and server in a parallel fashion. As

shown at Figure 5.1, we extend the database cache by a partial execution and the server by

a query result cache, a Result Verification and a component for Static Code Analysis. As

Database

forward
procedure

call

Verification
Result

Query
Result
Cache

Execution
Partial

Database

Analysis
Code

Server

Replication

Execution Engine

Procedure Call

Client

Replication

Database Cache

final
result

data

data
data

query
intermediate

results

read
write

read
write

Execution Engine

reuseable
results

Figure 5.1: Architecture of a Database Cache.

we will show in Chapter 6, our scheme further improves the performance w.r.t. traditional

execution for database caching.

75

5.1 Split Twin Transactions — An Overview

We demonstrate the concept of split twin transactions by an example. Consider again the

AddCart procedure in Example 5.1. The procedure adds a given number of product items to

the user’s shopping cart if available, otherwise an error message is returned to the user.

Example 5.1 (The Stored Procedure AddCart) The input parameters are the users ses-

sion identifier sessID, the product identifier prodID and the amount of requested items. The

procedure uses the local variables session and stock. Symbols depicted at the right side

represent the SQL queries and updates of the corresponding line of code (query = rectangle,

update = circle). They are used in figures and text that illustrate the execution of the proce-

dure.

PROCEDURE AddCart(sessID,prodID,amount)

DECLARE session, stock AS integer;

BEGIN

1 UPDATE Statistic SET requests=requests+amount WHERE pid=prodID; U

2 session := (SELECT * FROM Session WHERE id=sessID); S

3 IF session is null THEN

4 ...

5 RETURN Error;

6 inStock := (SELECT storage >= amount FROM Stock WHERE pid=prodID); A

7 IF NOT inStock THEN

8 ...

9 RETURN Error;

10 INSERT INTO Cart VALUES(sessID,prodID,amount); I

11 RETURN SuccessCode
END

In the following we only consider the main execution sequence of the procedure which is U

S A I . We neglect the other possibilities, since they only rarely occur at run time.

Figure 5.2 depicts the resulting split twin transaction. In twin transactions, cache and server

still execute the same low-level procedure code, but the cache can ’ignore’ certain statements

and the server can use query results from the server instead of performing them by itself. In

the example the database cache does not execute the code of line 2 to 5 and sends the result

of query A to the server. Note that the code in 1 to 5 does not affect query A . The server

executes the whole procedure code, but uses the query result of the cache in line 6 to assign

the local variable inStock. Finally, the query A is executed simultaneously by the cache

while the server is executing the lines 1-5.

Motivated by the above example, we define split twin transaction.

76

Cache Database

U

A

I

U

S

A

I

result of query A

re−use query
result from
cache, no
execution

Figure 5.2: Split Twin Transactions with passing a query result to the server.

Split Twin Transactions

Recall that the procedure code contains IO statements s1, s2, . . . that are uniquely identified

by number si ∈ ID(S) with i = 1, 2, . . . (see Section 4.3). Based on twin transactions (see

Definition 4.10) a split twin transaction is defined in the following by a subset split ⊆ ID(S)

of the IO statements (low-level updates and queries) of S that precisely defines which IO

statements are allowed to be executed at cache and server.

Definition 5.1 (Split Twin Transactions) Let S be a twin transaction and split ⊆ ID(S)

a subset of IO statements. We call S a split twin transaction if the cache executes at most

all statements in split, and sends the result of each query q ∈ split to the server. When the

server needs to process q while executing S, the delivered result of q is reused, if it is correct,

otherwise q is executed by the server.

The procedure code is logically split into two parts. At the cache, only the IO statements

in split are allowed to be executed, and all other statements are not. At run time, not all

IO statements in split are necessarily executed, since the cache might not reach the entire

procedure code. Consider the above example, where the line of code represents the statement

identifier. Assume line 6 ∈ split. If the RETURN in line 5 is executed, the query in line 6 is

not executed. Accordingly, the server tries to use a delivered result. Therefore it does not

necessarily execute all queries in a split.

In the remainding part of the Chapter, we consider only split twin transaction for one

cache and a central server and assume that for each procedure a split parameter is given. We

also write split(S), to denote the correspondence to a procedure S. In Part III we define a

run time optimizer that identifies split parameters with a high performance, e.g., execution

time.

77

The Simultaneous Execution Protocol

The definition of split twin transactions let arise further questions that will be elaborated

while sketching the underlying execution protocol for split twin transactions. Note that the

synchronization process at the server continuously updates replicated data at the cache. For

a given split ⊆ ID(S), a procedure call of S is executed as follows:

1. A client initiates a procedure call to the local database cache, which immediately passes

the call to the central server. The call is uniquely identified by the execution identifier

eid.

2. Directly after passing the call, without awaiting a response from the server, the cache

starts to execute the low-level procedure code of S. Analogously, the server starts to

execute the same procedure code.

3. The execution at the cache:

(a) The cache processes the code until the next IO statement s. In case s ∈ split

the statement is executed, otherwise it is not executed on data and ignored. We

propose a partial execution scheme that defines how to further process the code

once statements have been ignored.

(b) The result of each query is sent to the server. To handle these results for multiple

concurrent executions of the client-server system, we use a Query Result Cache

(QRC) at the server for keeping results until they are needed by the code execution

there. Note that the server might wait for a query result, or the result might be

delivered, before the server actually processes the appropriate query.

(c) The cache handles all following IO statements analogously and aborts if it receives

a completion message from the server. Thereby the server has already committed

the transaction and no more query results are needed from the cache.

(d) Once the execution at the cache has been aborted or completed, all computed

updates are undone and the cache awaits the next procedure call. We have chosen

this strategy, since a cache might have performed stale updates, and since the

synchronization process at the server propagates updates from the server to the

cache anyway.

4. The execution at the server:

(a) The server executes the procedure code and checks for every query in split, if there

is an appropriate result in the query result cache. If so, then the result is verified

and re-used within the execution. In that case, the query is not executed on server

data.

Not all delivered results can be used by the server, since an execution on stale data

at a cache might produce erroneous results. For this, we propose a verification

scheme that takes into account the version number of fragments and intermediate

updates that have been performed by the cache and the server.

78

(b) The server completes the execution and commits all updates on server data. Fi-

nally, it passes the result of the computation to the cache which undoes all updates

on cache data.

5. The result of the execution is sent to the client application that initiated the request.

As we want a simple integration of the new scheme into the execution engine of a database

system, we propose the following interfaces:

• The function eval(.) of the client-server system is replaced by the functions evalC(.)

(cache) and evalS(.) (server) to implement the specific behavior of the cache and the

server.

• Once a cache ignores the execution of an IO statement, the remaining code could

possibly no longer be processed properly, e.g., a local variable is not assigned. Therefore,

we define a set of rules that extend the execution engine to cope with partial execution.

• The commit phase at the server is equal to those of twin transactions and the commit

at a cache is extended by the undo of local updates.

In Section 5.2 we define the query result cache. The behavior of caches and the server is

defined in the Sections 5.3 and 5.4. In Section 5.5 we analyse the procedure code, identify

independent queries and discuss useful split parameters. We show the correctness of our

scheme in Section 5.6 and finally point to related work and discuss premisses, drawbacks and

possible extentions of our approach.

5.2 The Query Result Cache

Consider, for example, Figure 5.2. There, the result of query A is delivered while the server

is executing query S . For this, every query result is put into the servers query result cache

(QRC) and the server is accessing the cache whenever needed, e.g., after completing query

S and proceeding with the verification of query A . Of course, the delivery time matters

and the server might have to wait for a result.

Once a result is put into the QRC, the server must be able to precisely recognize its

origin. For this, the QRC has to include at least the unique execution identifier eid and

the identifier of an executed query statement s ∈ split. However, this information is not

sufficient, since a query might be executed multiple times within a loop, and since a query

might be differently instantiated by local variables. As defined by execution sequences, we

also add the instantiated IO statement e and the statement counter #s into the QRC. The

following example demonstrates the necessity of the counter.

Example 5.2 Consider the following piece of procedure code. Again lines of code represent

the statement identifiers.

79

1 FOR row IN SELECT * FROM R1 LOOP

2 IF row.A1>row.A2 THEN

3 INSERT INTO R2 VALUES (row.A1);

4 var := SELECT AVG(A1) FROM R2;

5 END LOOP

6 END FOR

The loop adds new tuples into table R2 and computes the average of each run over the column

A1. At run time the execution results in a sequence 1, 3, 4, .., 3, 4, .., 3, 4. Then the correspond-

ing execution sequence contains (among others) multiple tuples

(4, i, SELECT AVG(A1) FROM R2, val)

where 4 is the statement identifier, i the counter starting at 1 and val the average value

assigned to the local variable var. Hence, the same query is executed multiple times and

may result in a different result val each time. The only chance to distinguish between single

executions is the statement counter i. 2

Since the server has to verify a delivered query result (see Section 5.4), we additionally put

information about fragment versions and applied updates into the cache.

Definition 5.2 (Query Result Cache (QRC)) Let eid and seq result from an execution

of a low-level procedure S at the cache. The query result cache consists of tuples

(eid, s,#s, e, val, F, seq, state)

with s ∈ ID(S) as a query, (s,#s, e, val) ∈ seq, F as the result of access(e) at the cache and

seq as an execution sequence of low-level updates. The state contains additional information

about the execution of e at the cache.

The values eid, s and #s uniquely identify a tuple in the QRC. The read and write access on

the QRC and the attribute state are elaborated in subsequent sections. We restrict seq to

low-level updates only, since the sequence is used to capture executed updates at the cache.

As we show in Section 5.4, F and seq are sufficient to verify a query result at the server.

5.3 Execution at the Cache

In this section we define the behavior of a cache during the execution of split twin transactions.

This covers the partial execution model, the final commit of transactions and the evalC(.)

function that replaces the original function eval(.) of the system.

5.3.1 The Partial Execution Model

Given a procedure S and split ∈ ID(S), the basic idea of our scheme is that the function

evalC(s,#s, e) returns an undef value and does not execute the IO statement e on data for

all s /∈ split. We use the same mechanism for handling missing data at a cache. That is,

80

the function evalC(s,#s, e) returns undef , if the statement e could not be executed due to

missing fragments.

Clearly, the result delivered by eval(.) might be further used in the procedure code which

possibly prevents other IO statements from being executed. Our procedure language is af-

fected as follows:

• If the query at the right side of the assignment statement <VAR> := (SELECT .. FROM

.. WHERE ..) returns an undef , the local variable <var> cannot be assigned.

• If the query of a loop statement FOR <var> IN LOOP <query> LOOP <stmts> END

LOOP is not executed, the entire loop cannot be executed. This affects loops in the

original code as well as the loops that are used by the pre-compilation of INSERT,

DELETE and UPDATE statements.

Hence, a local variable might be of value undef or a loop statement is executed for an

undef value. Both cases might cause further conflicts in the code execution. For example, an

undef value is used within a query or low-level update SELECT * FROM R WHERE A=undef or

insert(R, (1, undef)) which is not defined on data. These and other conflicts will be handled

by our partial execution scheme.

In the following we define the partial execution by a set of rules that apply for the execution

of certain statements of the procedural language. We assume that the execution engine of

a cache implements these rules properly. Given a low-level procedure S and a parameter

split ⊆ ID(S), the rules are defined as follows:

Rule 1: The function evalC(s,#s, e) returns undef if the IO statement e cannot

be executed, due to missing data in the cache.

Rule 2: For all IO statements s /∈ split the function evalC(s,#s, e) returns

undef and e is not executed on data.

Rule 3: If the instantiated expression of an IO statement contains undef , it can

not be executed on data. For this, the function eval(s,#s, e) returns undef and

does not perform e on data.

Rule 4: An assigned variable <var> is of value undef , if the assigned expression

contains an undef value. This affects <var> := (SELECT .. FROM .. WHERE

..) and <var>:=<expr>.

Rule 5: Once the condition of an IF <cond> THEN .. ELSE .. END IF con-

tains an undef value, it can not be evaluated at run time and the program path

of the IF statement cannot be determined. All variables that are assigned in the

branches of the IF statement are set to undef and the IF statement, including

its branches, is not executed. The execution continues with the next statement

after END IF.

81

Rule 6: If the query expression of a loop statement yields undef , the body of

the loop is not executed. All variables that are assigned in the body are set to

undef and the engine continues with the next statement after END LOOP.

Rule 7: All statements RAISE EXCEPTION and RETURN in the original code are

ignored.

Rule 8: Whenever the execution engine jumps over an IF or LOOP statement

that contains a query s ∈ split, a notification with the state undef is put into

the query result cache (QRC) for s.

The rules cover all expressions <expr> and conditions <cond> of the procedure language, such

that all split ∈ 2ID(S) can be handled by the partial execution scheme. Furthermore, they

are very liberal and cause the engine to execute as much of the procedure code as possible.

Rules 1 to 3 have to be implemented by the eval(.) function and and rules 4 to 7 by the

underlying execution engine. Clearly, a partial execution might perform inconsistent updates

on data while operating on inconsistent data. Such cases are handled at committing time

where all local updates are rejected.

Note that the rules operate on a syntactical basis and do not consider semantic depen-

dencies in the procedure code. We demonstrate the issue with the following example.

Example 5.3 (Application of Rules and Code Dependencies) Consider the following

snippet of procedure code. Each table has one column, denoted by A.

1 INSERT INTO R2 VALUES (x);

2 var1 := SELECT count(*) FROM R1 WHERE TRUE;

3 var2 := var1 + 1;

4 var3 := SELECT count(*) FROM R2 WHERE A<var2;

Let the line of code represent the identifier of IO statements. Consider an execution of the

procedure with split = {1, 4}. Then, the first SELECT is not executed and by Rule 2, undef

is assigned to the variable var1. By Rule 4, undef is also assigned to var2. By Rule 3,

the execution engine does not perform the second SELECT, since its instantiated expression

contains an undef value and the query is not defined.

If we consider an execution with split = {2, 4}, both SELECT statements are executed by

the engine and the variable var2 is assigned. However, in this case the result of the second

SELECT on table R2 would be possibly erroneous, since the INSERT has not been executed on

table R2. 2

The example shows the necessity of verifying query results at the server which is discussed

in detail in Section 5.4. Semantic dependencies within the procedure code are discussed in

Section 5.5.

82

5.3.2 Handling IO Statements

The evalC(.) function at the cache is responsible for:

• Handling undef values that result from the partial execution rules.

• Sending intermediate notifications that inform the server of currently executed IO state-

ments. Such notifications are also put into the QRC.

• Putting query results into the QRC.

Assume the cache has partially executed the procedure code, thereby producing a sequence

seq = (s1,#s1, e1, val1), . . . , (sn−1,#sn−1, en−1, valn−1)

where each element represents a call of vali = evalC(si,#si, ei). Let evalC(sn,#sn, en) be

the next call that is performed by the execution engine. Then, the function evalC(.) is defined

as follows. The definition uses the function access(e) (see Definition 4.9).

Definition 5.3 (The evalC(.) Function at the Cache) Let the notions be as above.

Then, evalC(sn,#sn, en) is defined by:

1. If sn 6∈ split, return undef (Rule 2).

2. If sn is a low-level update

(a) If en contains undef , return undef (Rule 3).

(b) If access(en) = undef , return undef (Rule 1).

(c) Execute val = eval(sn,#sn, en).

3. If sn is a query

(a) If en contains undef , put (eid, sn,#sn, en, ∅, ∅, ∅, undef) into the QRC and

return undef (Rule 3).

(b) If access(en) = undef , put (eid, sn,#sn, en, ∅, ∅, ∅, undef) into the QRC and

return undef (Rule 1).

(c) Let seq′ = seq. Remove elements (s,#, e, val) from seq′ with (1) e as a query or

(2) e as a low-level update with access(e) ∩ access(en) = ∅.

// Note: As a result, only the low-level updates in seq′′ operate on the same

// fragments as the query en. Hence, they affect the computation of en.

(d) Put t = (eid, sn,#sn, en, undef, access(en), seq′, note) into the QRC

// Note: Informs the server that the cache is currently executing the query.

(e) Execute val = eval(sn,#sn, en).

(f) Update t in QRC. Replace undef by val and note by exec.

4. return val

83

Step 1 implements Rule 2 of the partial execution model which requires that statements in

ID(S)− split are not executed at the cache. In Step 2 a low-level update is only executed if

its expression does not contain undef values (Rule 3) and all data are available (Rule 1).

Recall that the Algorithm calls the original eval(.) function of the underlying system in Step

2c.

Step 3 handles queries as follows. The Steps 3a and 3b correspond to the Steps 2a and

2b, but additionally send a notification to the server that the cache could not execute the

query. For this, it puts a tuple into the QRC that contains the state undef . The execution

sequence seq′ (Step 3c) contains all low-level updates that affect the same fragments as query

en. These values are essential for the servers result verification (see Section 5.4.3). In Step

3d the server is informed that the cache has started the execution of the query. Fragments,

its versions and the sequence of executed low-level updates are also put into the QRC. If the

query has been computed, the result is put in to the QRC (Step 3f).

Note again that a cache at run time does not necessarily execute all s ∈ split, e.g., IF

<cond> THEN s1 ELSE s2 END IF with s1, s2 ∈ split executes either s1 or s2.

5.3.3 Completing an Execution

Within a split twin transaction, identified by eid, the cache and the server simultaneously

execute a procedure call. After the server has finished its execution, it sends the result r to

the cache which might either be a value (single value, a tuple or a table) or an error message,

in case the transaction at the server has been rejected.

While receiving this message, the cache might be either still executing the procedure code

or has already finished its execution. Independently from the execution at the cache, the

incoming commit of the server causes the execution at the cache to stop. Furthermore, none

of the low-level updates at the cache are committed. As a result, the execution at the cache

has not modified cache data.

In case the execution at the cache terminates and no commit has been received from the

server, the cache sends a completion message to the server. For this, the QRC is used again

and a message (eid, . . . , end) is put into the QRC. The message contains only the execution

identifier eid and a status end which indicates that no more query results are delivered by

the cache.

5.4 Execution at the Server

This Section defines the behavior of the server which is again integrated into the eval(.)

function of the system that is replaced by evalS(.) at the server.

5.4.1 Retrieving Query Results from the QRC

Each IO statement at the server is executed by the evalS(s,#s, e) function of the underlying

execution engine. For a query s that has been computed by a cache (s ∈ split), the server

checks the QRC for an appropriate result, thereby possibly waiting for a result to appear. If

84

a result was delivered, it is verified and, if valid, reused by the server and not executed. If

the result is invalid the server has to execute the query.

Before we define the function evalS(s,#s, e), we summarize its behavior on an intuitive

level. We distinguish between normal mode and shared mode. The first represents the case

where the server executes the procedure code without using query results from the cache,

and the second represents the continuous reuse of query results from the cache. A split twin

transaction is always started in shared mode. Figure 5.3 depicts the process of retrieving,

check for
unread
entries in
the QRC

retrieve
oldest
unread
entry

state=end
check check

s,#s,e

exists
not

check state
for undef,
note, exec

query
result

wait for

execute query
at the server

normal mode

execute query
at the server

normal mode

execute query
at the server

normal mode

reuse query result

shared mode

reuse query result

shared mode

verify
query
access

verify
query
accessexists

no match undef

note

exec

valid

invalid

valid

yes no match

invalid

await and
retrieve
new entry

start

Figure 5.3: Retrieve, verify and reuse query result from the query result cache handled by

the function evalS(.).

verifying and reusing a query result from the query result cache. Furthermore, it shows all

cases where the system switches to the normal mode. Intuitively, a query e is handled by

evalS(.) as follows:

1. Check whether there is an entry in the QRC that has not been retrieved yet.

(a) If none exists, wait until the cache adds a new entry and retrieve it.

(b) If an entry exists, retrieve the oldest unread entry. The oldest is important, since

a cache might already have performed multiple queries and thus might already

have put multiple entries into the QRC. Furthermore, the cache executes the same

low-level procedure code, hence it executes IO statements in the same order as the

server. Even if the cache does not execute some of the statements, the original

order is preserved. Therefore, the server always checks for the oldest entry.

2. The retrieved entry is in the form of (eid, s′,#s′, e′, val, access, seq, state). If state =

end, the cache has already finished its computation and no more query results are

delivered, allthough the server expects them. This can be the case if a cache followed a

85

different execution path in the procedure code than the server. In this case the server

executes e by itself and continues in normal mode.

3. In order to reuse a result, the cache must have performed the same query in the pro-

cedure code. This is the case if s = s′ (the statement identifier of the procedure code

is equal), #s = #s′ (the cache has performed the same number of repetitions of s)

and e = e′ (the cache has performed syntactically the same query expression). If these

values do not match, the cache has followed another path in the code. Hence, it is

not useful to consider more results from the cache. The server executes e by itself and

continues in normal mode.

4. Once the cache has processed the same query, the final step is to figure out its execution

state and to determine the reuse case.

(a) If state = undef , the cache could not execute the query due to missing data or an

undef value in the query expression. The server executes e by itself and continues

in normal mode.

(b) If state = note, the cache has started but not completed with the execution of

the query e (val = undef). However, as we show below, the cache has already

submitted all information that is required to verify the incoming query result.

Hence, the server can, in parallel to the cache, verify the incoming result.

i. If the incoming result is correct, the server awaits the result to appear in the

QRC, reuses it, completes the execution of evalS(s,#s, e) and continues in

shared mode.

ii. Otherwise the server executes e by itself and continues in normal mode.

(c) If state = exec, the cache has finished the execution of the query and has put the

result val into the QRC.

i. If the result is correct, the server reuses it, completes the execution of

evalS(s,#s, e) and continues in shared mode.

ii. Otherwise the server executes e by itself and continues in normal mode.

There are two wait phases (Step 1a and 4bi) that might cause a starvation. If a cache

performs properly, neither of both will occur. In Step 1a, there will be at least one entry with

state = end that is sent if the cache has finished. In Step 4bi the cache is already executing

the query. Hence, only a crash of a cache can cause starvation. In the following, we assume

a proper cache and do not further discuss starvation.

The above scheme only continues in shared mode if the delivered result was correct. This

results from the observation that an invalid result can cause more invalid results, due to stale

data, missing data or code dependencies in the procedure code. In Section 5.8 we discuss

alternatives to continue in shared mode even for invalid queries or syntactically different

queries.

86

5.4.2 Handling IO Statements

Based on the above process, we define the function evalS(.). For this, we assume that the

server has already executed the procedure code thereby producing an execution sequence

seq = (s1,#s1, e1, val1), . . . , (sn−1,#sn−1, en−1, valn−1)

where each element represents a call of vali = evalS(si,#si, ei). Let evalS(sn,#sn, en) be the

next call that is performed by the execution engine. Then, the function evalS(.) is defined

as follows. Again, the definition uses the function access(e) (see Definition 4.9).

Definition 5.4 (The evalS(.) Function at the Server) Let the notions be as above.

Then, evalS(sn,#sn, en) is defined by:

1. If sn ∈ split and en is a query and shared mode

(a) Check for unread tuples with eid in the QRC. If none exists, wait.

Retrieve oldest unread entry (eid, sn,#sn, e, val, access, seq′, state).

(b) If state = end, set normal mode and jump to 2.

(c) If not (sn = s and #sn = #s and en = e), set normal mode and jump to 2.

(d) If state = undef , set normal mode and jump to 2.

(e) Let seq′′ = seq. Remove elements (s,#, e, val) from seq′′ with (1) e as a query or

(2) e as a low-level update with access(e) ∩ access(en) = ∅.

// Note: As a result, only the low-level updates in seq′′ operate on the same

// fragments as the query en. Hence, they affect the computation of en.

(f) If state = note,

i. If access = access(en) and seq′ = seq′′,

wait for result val to appear in the QRC. Jump to 3.

ii. Else set normal mode and jump to 2.

(g) If state = exec,

i. If access = access(en) and seq′ = seq′′, jump to 3.

ii. Else set normal mode and jump to 2.

2. Execute val = eval(sn,#sn, en)

3. return val

Step 1 implements processes at sketch at Figure 5.3. As in the function evalC(.), the execution

sequence seq′′ (Step 1e) contains all low-level updates that affect the same fragments as the

query en. The verification is done in the Steps 1.e.i and 1.f.i which is explained in the next

Section.

We assume that a garbage collector is running in the background, cleaning the QRC.

That is, all entries are removed for a completed execution eid.

87

5.4.3 Verifying Query Results

Given an entry (eid, s,#s, e, val, access, seq′, state) and the function call evalS(sn,#sn, en),

we explain the correctness of the delivered result val. The full proof is given in Section 5.6.

As explained in Section 5.4.1, we apply the verification only to syntactical equal queries, that

is en = e holds.

The data access at the cache, while executing the query e, is determined by the value

access = {(F1, v1), . . . , (Fi, vi)} (i > 0) which contains the fragments Fj and their version vj.

Furthermore, the execution at the cache has produced a sequence seq′ of low-level updates

that affect the fragments in access. Note that by Definition 4.9, all fragments Fj are replicated

at the cache.

The data access at the server is determined before the query en is processed. Analogously

to the cache, it is computed by the function access(en) which analyses the query expression

en on a syntactical basis. Furthermore, the server might have performed a sequence seq′′ of

low-level updates during eid which affects the fragments in access(en).

Equal Fragment and Version Access

If access = access(en), then the server would access the same fragments and versions in the

starting phase of the transaction to execute en on server data. Since equal versions imply

equal data (see Proposition 4.2), the server would execute en on the same data as the cache.

Since en is deterministic (see Assumption 4.1), the execution of en would yield the same

result at the server.

Equal Sequence of Performed Low-Level Updates

However, both executions might have performed updates that can change the content of the

fragments in access. If cache and server perform different updates, fragment data would

be changed differently and we cannot necessarily conclude that the query was executed on

equal data. However, if both have performed the same modifications on data, denoted by

seq′ = seq′′, data has been equally modified and cache and server would compute the same

result for en. Note that seq′ and seq′′ also contain the generated tuple identifiers. Hence,

both sequences have also generated equal identifiers.

5.4.4 Completing an Execution

After the completion of a procedure execution, the server enters its commit phase. Recall

from Section 4.4.4 that the Algorithm 4.2 is performed within the commit phase of each

transaction at the server. The algorithm increments the version of each modified fragment

and puts executed low-level updates into the fragment access history that is the base for the

synchronization scheme.

Finally, the server sends the result of the execution to the cache and the execution is

completed. The result is either a value (single value, a tuple or a table) or an error message

in case the transaction has been rejected.

88

5.5 Identify Dependencies within the Procedure Code

As pointed out in Section 5.3.1, the partial execution at the cache is very liberal and tries to

execute as many of the statements of a given split parameter as possible. The scheme is able

to handle all split ⊆ ID(S) parameters. However, due to dependencies in the procedure code,

some of the split parameters may cause undef values to be assigned to local variables which

can prevent queries in split from being executed. In these cases, no query result is delivered

to the server, although expected. Furthermore, such dependencies could cause invalid query

results to be sent to the server. The following examples show such dependencies.

Consider for example the AddCart procedure from our web shopping application. The

procedure increases the request counter for a product, checks the session and aborts the

execution in case of invalid sessions. We add some extra code that counts the clicks for

prime users (e.g., that might get a special discount for the number of clicks per month). The

available amount of the product is checked and, if available, the product is added to the

shopping cart. Otherwise the procedure aborts.

PROCEDURE AddCart(sessID,prodID,amount)

1 UPDATE Statistic SET requests=requests+amount WHERE pid=prodID;

2 session := (SELECT * FROM Session WHERE sid=sessID);

3 IF session is null THEN RETURN Error;

4 IF session.userType=’PrimeUser’ THEN

5 UPDATE User SET clicks=clicks+1 WHERE uid=session.userID;

6 inStock := (SELECT storage >= amount FROM Stock WHERE pid=prodID);

7 IF NOT inStock THEN RETURN Error;

8 INSERT INTO Cart VALUES(sessID,prodID,amount);

9 RETURN SuccessCode

We discuss the dependencies of the procedure code on the basis of the resulting low-level

procedure where INSERT, DELETE and UPDATE statements have been replaced accordingly (see

Section 4.2.3).

PROCEDURE AddCart(sessID,prodID,amount)

89

1 FOR row IN SELECT ID,* FROM Statistic WHERE pid=prodID LOOP

2 row.requests=row.requests+1;

3 delete(Statistic,row.ID);

4 insert(Statistic,row.ID,row);

5 END FOR;

6 session := (SELECT * FROM Session WHERE sid=sessID);

7 IF session is null THEN RETURN Error;

8 IF session.userType=’PrimeUser’ THEN

9 FOR row IN SELECT ID,* FROM User WHERE uid=session.UserID LOOP

10 row.clicks=row.clicks+1;

11 delete(User,row.ID);

12 insert(User,row.ID,row);

13 END FOR;

14 END IF

15 inStock := (SELECT storage >= amount FROM Stock WHERE pid=prodID);

16 IF NOT inStock THEN RETURN Error;

17 insert(Cart,(sessID,prodID,amount));

18 RETURN SuccessCode

In total there are 9 IO statements. Again, we use the line of code to identify them. Hence,

ID(AddCart)= {1, 3, 4, 6, 9, 11, 12, 15, 17}. A partial execution at the cache is defined by any

split ⊆ ID(AddCart). We discuss the most representative settings of the split parameter and

the resulting problems with code dependencies.

• split = {11}: The cache only has to execute 11. However, 11 is never executed, since

the 6 and 9 are not executed. If 6 is not executed, undef is assigned to the variable

session and the entire IF statement (line 8-14) will be not executed by the engine. If 9

is not executed, the entire loop (line 8-13) is not executed. Hence, all split parameters

that include 11, but not 6 and 9 are equal to split = ∅.

• split = {12}: Analogously to split = {11} but with an additional data dependency,

since 12 operates on the same table (possibly fragment) as 11.

• split = {6, 9, 11, 12}: No conflicts. However, the execution might already be aborted

at line 7. Since the cache ignores these aborts (see Rule 7 in Section 5.3.1), it might

perform erroneous updates on local data in line 11 and 12. Recall that those conflicts

are detected by the verification scheme that takes performed low-level updates at cache

and server into account. Furthermore, after an execution completes at a cache, all

updates are undone. Hence, none of the erroneous updates are applied to cache data.

• split = {1, 6, 9, 15}: The cache would execute all queries and send the results to the

server. Note that the result of 9 and 15 are not considered by the server, if the execution

is aborted at line 7.

• split = {15}, split = {6, 9, 15}: Analogously to split = {1, 6, 9, 15}.

90

We are interested in those split parameters which cause the smallest possible number of

undef values in the procedure code and that execute queries in split at the cache. Note that

we cannot determine the precise number of undef values at run time, since their occurrence

also depends on the user input (input parameters of stored procedures) as shown by the

following piece of procedure code:

1 IF <cond1> THEN

2 SELECT ID INTO var1 FROM R1 WHERE <cond2>;

3 ELSE

4 SELECT ID INTO var1 FROM R2 WHERE <cond3>;

5 END IF;

6 SELECT ID INTO var2 FROM R3 WHERE var1=<expr>;

The IF statement assigns each branch a local variable var1 that is used by the query in

line 6. Again the IO statements are identified by the line of code they appear in. Consider

split = {2, 6}. Clearly, whenever <cond1> returns true, the query in line 6 is properly

executed and no undef value is assigned to var1. However, in case <cond1> returns false,

the query in line 4 is not executed and undef is assigned to var1. Hence, for split = {2, 6}

the number of undef values at line 6 depends on the evaluation of <cond1> at run time.

Since the evaluation of <cond1> can also depend on the input parameters of a procedure call,

the number cannot be predicted in advance. Hence, the split {2, 6} is only useful if the first

branch of the IF statement is executed frequently at run time.

The example has shown code dependencies and their impact on undef values at run

time. However, there are also dependencies among the IO statements (low-level updates and

queries). The above example with split = {12} demonstrates such a case, where the statement

12 depends on 11, since both operate on the same table and possibly on the same fragment

(depends on the chosen fragment column). However, the following example demonstrates

more precisely how these dependencies can cause invalid query results. Consider

1 insert(R,(var1));

2 insert(R,(var2));

3 SELECT count(*) INTO var3 FROM R;

which inserts the tuples (var1) and (var2) into the table R and finally counts all tuples in

R. Query 3 never causes an undef value, since it is neither related to input parameters nor

to local variables. However the result of query 3 is only correct if the inserts 1 and 2 are

performed. That is, the parameters split = {1, 3} and split = {2, 3} will always produce an

erroneous query result at the cache which will be detected by the servers evalS(.) function in

the Steps 1.f.i and 1.g.i. In these Steps, the server checks whether a cache has also performed

all low-level updates that influence the result of the query (seq′ = seq′′). For the parameters

split = {1, 3} and split = {2, 3}, this will not be the case, since the delivered result is always

invalid at the server. Hence, the split parameters {1, 3} and {2, 3} are not useful.

91

Possibilities for Detecting Code and Data Dependencies

As the examples have shown, not all split parameters in 2ID(S) are useful for split twin

transactions. We are looking for a set Z ⊆ 2ID(S) of split parameters that causes a small

number of undef values and erroneous queries. In general there are three options to determine

the set Z. These are:

1. Use a given set Z that is provided by the administrator and developers.

2. Derive Z from a static analysis of the procedure code.

3. Obtain Z by a run time analysis.

Clearly, the second requires a semantic analysis of the procedure code which is almost impos-

sible due to the complexity of current stored procedure and query languages. Furthermore,

input parameters of procedures cannot be predicted. In the following, we show how to im-

plement a run time analysis.

Run Time Analysis

Intuitively, a run time analysis can be performed as follows: Given a procedure S and the set

2ID(S) of all its split parametes, S is executed multiple times for each split ∈ 2ID(S) and for

different input parameters. For each split we observe the number of undef values (Steps 2a

and 3a of evalC(.)) and invalid queries (Steps 1gi and 1fi of evalS(.)) at run time. Finally, we

filter out all these split parameters with a high number of undef values and invalid queries.

To perform this analysis, the cache must be set to a testing mode (non-production mode)

where:

• All fragments are replicated in a transactional manner to the cache. Hence, all data is

available and up-to-date. No undef values occur at the cache that result from missing

data and no invalid queries occur that result from stale data.

• The normal daily work load is applied to the cache, such that all procedure calls are

performed with real parameters. As shown by above examples, the input parameter

can affect the resulting number of undef values. Furthermore, the repeated execution

of procedures captures the different execution paths at run time, e.g., branches of IF

statements, number of loop repetitions.

While running the testing mode, no optimization is applied. Note that the testing mode does

not affect the execution at the server as defined in Section 5.4.

Assume that such a test has been performed and each procedure has been executed

multiple times for all possible split parameters. For each procedure S and each split ⊆ ID(S)

we obtain a function fS,split : split 7→ [0, 1] that assigns each IO statement s ∈ split a

frequency of undef values, and a function gS,split : split 7→ [0, 1] that assigns each query in

s ∈ split a frequency of invalid query results.

92

Definition 5.5 Let S be a procedure and a split ⊆ ID(S) parameter. Let S be executed

multiple times for different input parameters. Let s ∈ split be an IO statement and ns > 0 be

the resulting total number of functions calls evalC(s,#s, e) for some #s and e. Let further

be 0 ≤ n′
s ≤ ns be the number of calls where evalC(s,#s, e) returns undef in Step 2a or 3a.

Then,

fS,split(s) =
n′

s

ns

and fS,split(s) = 1 for ns = 0.

The case ns = 0 means that s has never been executed during the whole test. One reason for

this might be that the path with s has never been followed through the procedure code or s

is part of an IF or LOOP statement which was not executed due to previous undef values. In

the first case, s has no impact on the systems performance and the second case is caused by

undef values. Hence, for ns = 0 we set fS,split(s) = 1 which means that s is treated as an

undef -causing statement which therefore is not desired.

Consider again the example at the beginning of this Section. For split = {11} we get

fS,split(s) = 1, since 11 cannot be executed due to an undef value in the condition of line

8. For split = {15} we expect fS,split(s) = 0, since the query can always be executed

independently from the previously executed code.

Definition 5.6 Let S be a procedure and a split ⊆ ID(S) parameter. Let S be executed

multiple times for different input parameters. Let s ∈ split be a query and ns > 0 be the

resulting total number of functions calls evalS(s,#s, e) for some #s and e, where the Steps 1fi

or 1gi are performed. Let furthermore 0 ≤ n′
s ≤ ns be the number of calls where evalS(s,#s, e)

determines an invalid query result in these Steps. Then,

gS,split(s) =
n′

s

ns

and gS,split(s) = 1 for ns = 0.

The definition only considers the Steps 1fi or 1gi of evalS(s,#s, e), since they determine the

correctness of a query result. Note that a call of evalS(s,#s, e) does not necessarily execute

these Steps in case of undef values. The transactional data replication guarantees that each

query at the cache is executed on actual data, hence access = access(en) holds in both Steps

1fi or 1gi. The correctness of a query is only determined by the evaluation of seq′ = seq′′.

Again, we treat queries that have not been executed as invalid queries, since such queries

have no impact on the system’s performance. Consider again the above example with the

split parameters {1, 3} and {2, 3}. For both we expect gS,split(s) = 1 for the query 3.

Filtering the Set of Possible Split Parameters

Based on the observed run time statistics, we define the set of relevant split parameters of a

procedure.

93

Definition 5.7 (Relevant Set of Split Parameters) Let S be a procedure and fS,split,

gS,split the functions as defined above. Then, the set of relevant splits of S is defined by

Z(S) = {split | split ⊆ ID(S) ∧

∀s ∈ split : fS,split(s) < α ∧

∀s ∈ split : s is a query ⇒ gS,split(s) < β}

with α and β as a user-defined upper bounds for the frequencies of undef values and invalid

queries.

Note that we use this filter as a preselection for dropping useless split parameters which are

mainly those with fS,split(s) ≈ 1 and gS,split(s) ≈ 1. For this a range of (0.9, 1) is sufficient

for setting the bounds. In Part III we show how to select split parameters out of Z(S) that

yield optimal run time performance.

5.6 Correctness of Split Twin Transactions

In Section 4.7, we have shown that a twin transaction produces equal execution sequences on

cache and server, if both executions operate on equal fragment versions. Since a twin transac-

tion executes the entire procedure code, we cannot directly apply the resulting Propositions

for a split twin transaction that partially executes the code at the cache.

However, on an intuitive level, the execution scheme is correct if an execution with a

database cache produces the same effect on server data as an execution without a database

cache. Without our scheme, the server executes a function eval(.) that processes individual

IO statements. We have replaced this function by evalS(.) which adds additional behavior

during the execution of a low-level procedure. Since the additional behavior in evalS(.) does

not change the content of the user tables R1, . . . , Rn, we only have to show that evalS(.)

produces the same result as eval(.).

Proposition 5.1 (Correctness) Let evalS(s1,#s1, e1), . . . , evalS(sn,#sn, en) be all func-

tion calls at the server within a split twin transaction. Then, evalS(si,#si, ei) = eval(si,#si, ei)

holds for all 1 ≤ i ≤ n.

Proof: Given a call evalS(si,#si, ei) with 1 ≤ i ≤ n (see also Section 5.4.2), we distinguish

between the following two cases: In the first case, evalS(si,#si, ei) performs neither Step

1.f.i nor 1.g.i. Then, no query result is reused and evalS(si,#si, ei) returns the result of

eval(si,#si, ei). Hence, evalS(si,#si, ei) = eval(si,#si, ei) holds.

In the second case, evalS(si,#si, ei) performs either Step 1.f.i or 1.g.i. Then, the query

ei is executed by the cache, its result is reused by the server and access = access(ei) and

seq′ = seq′′ holds. We use the notations seq′ and seq′′ as they appear in the function evalS(.).

In the remaining part of the proof we show that indeed evalS(si,#si, ei) = eval(si,#si, ei)

also holds for the second case.

94

The condition access = access(ei) states that the query ei at the cache has been exe-

cuted on the same fragments and their versions, say {(F1, v1), . . . , (Fm, vm)}, as the server

is accessing in its execution of evalS(.). Hence, if the server would have executed the query

ei, it would have executed ei on the same data. The condition seq′ = seq′′ states that the

cache and the server have executed the same low-level updates on the fragment {F1, . . . , Fm}

during the twin transaction before ei was executed.

We conclude that both executions of the twin transaction have been started on the frag-

ments and their versions {(F1, v1), . . . , (Fm, vm)} and that the cache and the server applied

the same low-level updates on these fragments. Hence, on an intuitive level cache and server

execute the query ei on identical data and the result will be equal.

To show this property by using Proposition 4.3, we construct the following low-level

procedure S (we omit the declaration and head part):

BEGIN

u1;

..

uk;

FOR row IN ei LOOP

..

END LOOP

END

It consists of low-level updates u1, . . . , uk that have been applied by the cache and the server

and the query ei that is executed by the cache, but not by the server. Note that the sequence

of low-level updates u1, . . . , uk represents the partial execution at the cache.

By Proposition 4.3 we conclude that the execution of S as a twin transaction yields equal

execution sequences at the cache and the server. Since these sequences also include the result

of the query ei, both executions of S must have produced the same result for ei. Hence,

the query result that is delivered by the cache corresponds to the execution of the function

eval(.) at the server and evalS(si,#si, ei) = eval(si,#si, ei) holds for the second case. 2

5.7 Related Work

Simply speaking, the cache delivers a query expression e and a result val for e, and the server

has to verify if val is a correct result for e at shared server data. Among other tests, the

function evalS(.) also checks if cache and server have executed the same low-level updates on

data. These updates are captured by the execution sequence seq′′ (see Step 1e in evalS(.)).

The more precise the impact of these updates on the result val is known, the less noise

appears in seq′′ and the more query results can be reused by the server.

This problem is well-known in the field of materialized view maintenance, wherein e is a

view definition and val represents the materialized view. For a given set of updates on data,

the problem is to determine whether val still represents the result of e or if val has to be

recomputed. A simple mechanism is to check table access. If the updates have been applied

95

on tables that are not in the view definition e, the result val is still correct. However, as

summarized by [48], a semantic analysis of e and the updates further improves this check.

For example, an UPDATE on table R is independent of the query SELECT count(*) FROM R,

allthough both operate on the same table. INSERT and DELETE statements however are not.

These techniques usually provide different solutions for different types of queries, since in

general, not all types can be handled correctly, e.g., aggregations and sub-queries impose

limitations.

Our verification scheme can be further improved by integrating those techniques in Step

1e in evalS(.) where the updates seq′′ are computed that affect the result (or view).

We have chosen a partial execution scheme that relies on a split of the procedure code.

Hence, our scheme does not require transforming the original procedure code. However, in

literature, similar problems have been studied in the field of parallel processing for multi

processor systems and compiler construction, e.g., [3, 7, 103]. These methods could be used

for improving the partial execution and for determining relevant split parameters. In the field

of rule triggering systems we have discussed in [57] independencies within the trigger code.

5.8 Summary and Discussion

On top of the client-server database system, we have developed split twin transactions and

a simultaneous execution scheme for its proper execution. The scheme partially executes a

low-level procedure at a cache and the server simultaneously, whereby the cache sends the

result of each query to the server. The server tries to re-use these results instead of executing

them by itself. Thus, the execution of these queries has been shifted from the server to

the cache. The amount of computation at a cache is controlled by the split parameters for

each procedure. Thus, allowing to dynamically balance the load at run time by varying the

setting of the split parameters. In Section 6 we study the impact of different settings on the

performance of the client-server system. In Part III we define the performance and propose

a run time optimizer that identifies the optimal setting of the parameters.

In the following we discuss the open issues that arise in the course of this Chapter.

Early Notifications

The cache puts a notification into the QRC before a query is executed. Based on this

notification, the server verifies the incoming result, thus being able to decide whether to use

the incoming result or to execute the query by itself. Since the server itself might wait for a

notification to appear in the QRC, it also waits for a possible wrong result. In that case, the

resulting idle time would be a waste of resources at the server.

Hence, the earlier a notification is sent, the earlier the server can determine the correctness

of an incoming query result. Consider again the low-level procedure in the beginning of

Section 5.5. As we have argued, the query on table stock in line 15 only depends on the

input parameters. Hence, the execution at the cache can already send the notification of

that query at the beginning of the execution. To determine the fragment access, it only has

96

to instantiate the query expression. As a result, the notification is put into the QRC at

the beginning of an execution and the server does not have to wait for it. The reduction of

idle time at the server further improves the total execution time. An implementation of this

technique requires performing look-aheads while executing the procedure code.

Normal Mode versus Shared Mode

A split twin transaction starts in shared mode that causes the server to consider delivered

query results from the cache. Furthermore, setting a new version requires all updates on a

fragment to be equal to the servers execution. However, we switch to normal mode if an

invalid result has been delivered. As a result, the server does not consider any more delivered

results until the split twin transaction is completed. We have chosen this behavior, since

an invalid query result, that results from missing or stale data at the cache, can cause more

invalid query results to be delivered to the server.

Alternatively, the server can always run in shared mode, so that for each query the

QRC is checked for an appropriate result. However, the server then has probably to wait for

notifications and results even if they are invalid. To consider alternative settings of the shared

mode, we would have to investigate the probability of valid query results that are delivered

after an invalid query has already been delivered. Again, this depends on the dependencies

in the procedure code. Since we have not performed such an analysis, we stick to the above

setting of the shared mode.

Commit or Reject Updates at the Cache?

Our scheme undoes all updates that have been made during an execution at a cache. This is

useful, since a cache might have performed erroneous updates which can cause inconsistencies

at the cache. However, if a cache has operated on the same fragment version as the server

and has performed exactly the same updates as the server in its execution, these updates can

be committed and cache data is consistently updated.

Such a scenario requires an extension of the commit phases at cache and server, as well

as the synchronization process at the cache. The commit at the server has to send all applied

updates to the cache, so that the cache is able to compare these updates to its performed

updates. Furthermore, the synchronization process at the server must be aware of these

applied updates, so that once these updates are propagated by the server, they are not

applied at the cache again. This extention can be easily integrated into our scheme. The

commit at the cache would increase the local version numbers as done by the server and the

synchronization process at the cache only has to check the local version of a fragment before

updates are applied. If the version at a cache is already up-to-date, updates are not applied.

This commit possibly further improves the up-to-datedness of cache data, since then

propagated updates are not delayed by the optimistic synchronization scheme for correct

transactions.

97

Keep Query Results in the QRC

After a split twin transaction terminates, all corresponding entries are removed from the QRC.

Furthermore, an execution at the cache only considers query results from the corresponding

twin transaction. A possible extention of our scheme can consider the QRC in a wider scope.

Hence, executions at the server might also use query results from previous executions, if

correct, or even results that have been put by other caches in the meantime. Of course, this

would increase the search time for valid results in the QRC, but the number of reuse cases

could potentially be increased.

Effect on the Procedure Code

An interesting question is whether our approach affects the programming of the procedure

code by developers. To support our scheme, developers can code a procedure in two sequential

parts, say A and B. Part B is designed, so that it does not depend on part A, hence can

be computed independently by a cache. Furthermore, developers can provide possible split

parameters.

Since our scheme detects fragment access on a syntactical basis, all queries in the proce-

dure code, if possible, should contain the fragmentation attribute of the involved tables. Con-

sider the following query on a table R with a fragmentation column productGroup: SELECT

productName INTO <var> FROM R WHERE productID=1. Since the query does not contain

the fragmentation column, our scheme assumes full table access. However, a single tuple in R

always determines the value, say x, for the fragmentation column, such that fragment access

can be improved by adding productGroup=x into the WHERE clause.

98

Chapter 6

Case Study — The ONE-System

The goal of this Chapter is to show that a simultaneous execution scheme yields a better

performance than the traditional detection-based protocol. The ONE-System is a prototype

implementation of the simultaneous execution scheme. We run various experiments that

analyse the relationship between the configuration (split) parameters and the response time

and throughput of the system.

This Chapter is structured into four parts. First, we present the architecture of the ONE-

System and explain how it is implemented. Second, we define the experimental setup which

includes the execution of experiments. Third, we compare both schemes for a one-client and

a four-client system by analysing several experiments. Finally, we discuss the performance

of a slow database cache and the performance of a modified version of our scheme that does

not switch to normal mode for invalid queries.

6.1 Architecture

The ONE-System is a minimal system, since it allows only one stored procedure. We show

how the detection-based and the simultaneous execution protocol are implemented and give

details of the query result verification technique and data replication.

6.1.1 Database Schema and Procedure Code

The database system consists of a single table R which contains tuples (objID,data,version),

with objID as a primary key, data as a binary representation of the object and version as

the version number of the object starting with 0. Each update of an object will increase the

version number by one. R is split into fragments where each fragment contains exactly one

object. Hence, fragment access is detected in terms of object identifiers. For R we define the

following parameters:

1. objectSize - size of an object (column ”data”) in Byte

2. tableSize - number of tuples in R

99

For simplicity we assume that the identifiers of the objects are in a range from 1 to tableSize.

In experiments we vary this parameters to study its impact on the systems performance.

There is one stored procedure S that operates on R. It consists of 20 sequential steps.

According to the input parameter, each step selects an object ID and retrieves the binary

object from R. Finally, S passes back all 20 binary objects. To simulate an expensive query,

we perform a join on R. The procedure code is:

CREATE PROCEDURE S(o1,..,o20) RETURNS ROW AS

DECLARE o1,..,o20 AS integer;

DECLARE d1,..,d20 AS blob;

BEGIN

SELECT t1.data INTO d1 FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=o1;

SELECT t1.data INTO d2 FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=o2;

..

SELECT t1.data INTO d20 FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=o20;

RETURN d1,..,d20;

END

The code contains 20 statements (queries) that are enumerated from 1 to 20. Hence ID(S) =

{1, . . . , 20}. Obviously, all queries are independent and can be executed in any order without

spoiling the final result. Therefore, S can be executed for all possible combinations given by

split ⊆ ID(S).

6.1.2 The Client-Server Database System

The server is connected with up to four clients, each running a database cache. Procedure calls

are exclusively triggered at clients. The server is responsible for modifying and replicating

objects in R.

Data Modification at the Server

There is a special server process that constantly generates updates on R. We use the param-

eter updateLoad to simulate a predefined frequency of updates. It defines the sleep time in

milliseconds between two updates of R.

This process picks randomly an object in R, modifies its binary representation and in-

creases the version number by one. Each update u is registered in the table LOG by adding

a tuple

(objID, u)

Note that we neglect the syntax of updates since it does not affect the experimental analysis.

This log is also accessed by the synchronization process and the query result verification.

100

Procedure Calls at a Client

Each client is a single user machine that constantly initiates the procedure S in a sequential

manner. To vary the load of the system, we use a parameter execLoad that specifies the idle

time in milliseconds between two procedure calls. The database cache at a client executes S

either with a traditional or the simultaneous execution protocol.

Data Replication

The ONE-System is primarily used to investigate the impact of different split parameters on

the system’s performance. Therefore, all data is replicated, such that each procedure call can

be executed on its own cache data.

For the experiments in this Chapter, we use a modified version of the synchronization

process. In contrast to the original process, as proposed in Chapter 4, updates are not

immediately propagated, but are delayed for a given period. We use this modification to

vary the number of inconsistent objects at a cache. The larger the delay, the higher is the

number of inconsistent objects at the cache. The smaller the delay, the faster are updates

propagated.

To control the frequency of the synchronization and the resulting impact on the consis-

tency of cache data, we use the parameter updateDelay that defines the sleep time in mil-

liseconds between the synchronization phases of the process. A phase is defined as follows.

First, it reads and removes all tuples from the log. If such tuples exist, the corresponding

updates are applied to the cache data in the same order as they appear in the log. After a

period of updateDelay, the next phase is triggered. Depending on the setting of updateLoad,

new tuples will be added by the load-generating process at the server.

Hence, a low value indicates frequent synchronization with a low number of updates to

propagate and a high value indicates less frequent synchronization with a high number of

updates. Note that updates do not reside for long in the log and that the size of the log is

rather small. Further, we do not need to run a transaction for operations on the log, since the

load process only adds tuples and the synchronization process only removes tuples. Hence,

there can be no conflicts. As a result, we expect fast operations on the log table.

6.1.3 A Traditional Execution Scheme

In Chapter 3 we have introduced two traditional execution schemes for database caching.

In the following, we present a primitive implementation of a detection-based protocol. Such

protocols execute the entire code sequential at the cache and decide for each query, if it is

executed locally or send to the server. Since we use a detection-based protocol, each computed

query at the cache is verified by the server.

Such a protocol is implemented by the following procedure code for a given a split pa-

rameter. We use the notation < EXECUTE ON SERVER: SELECT .. INTO x FROM .. > to

denote that a cache sends a query for execution to the server and that the assigned variable

x is send back to the cache. We present only the code for one step out of the 20. The others

101

follow analogously. The variable i runs for 1 to 20 and split ⊆ {1, . . . , 20}, such that the code

block between the .. is repeated 20 times.

CREATE PROCEDURE S(o1,..,o20) RETURNS ROW AS

// Define local variables.

DECLARE o1,..,o20,counter AS integer;

DECLARE d1,..,d20 AS blob;

DECLARE mode AS {shared,normal};

BEGIN

mode=shared;

..

IF i ∈ split AND mode=shared THEN

SELECT t1.data INTO di FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=oi;

EXECUTE ON SERVER: // Retrieve number of updates on the object.

SELECT count(*) INTO counter FROM LOG WHERE objID=oi;

IF counter>0 THEN

// When the object was updated, data at the cache are not

// consistent and the query is re-executed at the server.

EXECUTE ON SERVER:

SELECT t1.data INTO di FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=oi;

mode=normal;

// When a re-execution has been taken place, the execution

// mode is changed to "normal mode" where the server does

// not reuse query results from the cache within the current

// execution of the procedure S.

END IF

ELSE

EXECUTE ON SERVER:

SELECT t1.data INTO di FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=oi;

END IF;

..

RETURN d1,..,d20

END

When a query i appears in split, it is executed at the cache. The result is verified by

checking whether the log table contains an update (which has not been propagated yet) that

has modified the data of object oi. If such an update exists, cache data is inconsistent and

the query is sent to the server for execution. If a query does not appear in split, it is also

executed by the server.

Note that our simultaneous execution scheme distinguishes between shared and normal

102

mode (see Section 5.4.1). The testing mode is not considered here, since it only affects the

run time optimization as explained in Part III. A server in shared mode awaits query results

from the cache and in normal mode no more results are considered by the server. We have

chosen this strategy, since in general an invalid query result at the cache can cause more

invalid results.

We have added this behavior to the above procedure code, to make the traditional and

our scheme comparable. Then, both schemes behave similarly on invalid queries. However,

as we will discuss in Section 6.4 we achieve the same experimental results if the schemes do

not switch to normal mode.

6.1.4 The Simultaneous Execution Scheme

In Chapter 5 we have defined the simultaneous execution scheme where cache and server

execute a procedure in parallel. Given the parameter split, the cache executes only queries

in split and passes the result of the computation to the server which reuses the result instead

of computing it.

For the experiments we use a simple version of our scheme that does not use notifications

to indicate the start of a query execution at a cache. This is feasible, since the given proce-

dure executes all queries in a sequential manner in any case, and since this implementation

is sufficient to outperform the traditional scheme. Note that we expect a better performance

with notifications, since the server can start the verification before the result has been deliv-

ered to the server. Hence, the server can already re-execute the query, while the cache is still

executing the comming invalid result. However, we further discuss this issue in Section 6.4.

We use the notation < SEND TO SERVER: (i,oid,data) > where i ∈ ID(S), oid an object

ID and data the result of a query. Note, that we add the client identification number to the

message if more than one client is attached to the server. However, we provide the procedure

code for one client only.

Again, we present the code for one step i out of 20 and omit the declaration part that is

equal to that of the traditional scheme. A procedure code at the cache is defined as

BEGIN

..

IF i ∈ split THEN

SELECT t1.data INTO di FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=oi;

SEND TO SERVER: (i,oi,di);

END IF;

..

RETURN

END

The server checks for each query in split whether an appropriate result has been delivered by

the cache. If not, it waits for the result. The result is verified and reused if correct. Otherwise

the query is re-executed at the server.

103

BEGIN

mode=shared;

..

IF i ∈ split and mode=shared THEN

WAIT FOR MESSAGE (i,oi,di) FROM CACHE;

SELECT count(*) INTO counter FROM LOG WHERE objID=oi;

IF counter>0 THEN

SELECT t1.data INTO di FROM R AS t1, R AS t2

WHERE t1.objID=t2.objID=oi;

mode=normal;

END IF;

END IF;

..

RETURN d1,..,d20

END

The verification is performed analogously to the traditional scheme by checking the log table

for updates. Again, we use the switch to the normal mode if an invalid query has been

delivered to the server.

6.2 Experimental Setup

This section defines the experimental setup which includes the used hard- and software, the

setting of parameters, the execution of experiments, and the performance measures of an

experiment.

6.2.1 Used Hard- and Software

As we choose a machine with 2x800MHz CPU and 1024 MB main memory. The experiments

use one or four clients which are also machines with up to 1GHz CPU and up to 1024MB

main memory. All machines are connected by a 100MBit network and run with Linux. As

a database system, we have tested DB2, Postgres and MySQL. We will not compare the

performance of these systems. Rather, we present only experimental results for one of these

systems in subsequent sections. The other systems yield similar results as presented in this

chapter.

For implementing stored procedures on top of the database system, we have used PHP

script that performs the SQL statements at the database. Note that PHP is only used

to perform these SQL statements, to start and commit transactions, and to measure the

performance, e.g., processing time of a procedure. Within the execution of a single procedure

we have observed a maximal overhead of 2-4ms for executing the PHP code.

104

6.2.2 Parameters of Experiments

In Section 6.1 we have defined parameters for configuring the ONE-System. During the

execution of experiments, we distinguish between two types of parameters. Static parameters

are initially set at the beginning and not changed during an experiment. Run time parameters

are changed during the experiment, since we want to observe their impact on the systems

performance.

Static Parameters

The parameters objectSize, tableSize, updateLoad and execLoad are fixed. Alltogether

we have performed over 100 experiments with different settings of these parameters, see Table

6.1. In subsequent experiments we present only two of these combinations.

Parameter # Values

objectSize 8 1, 5, 10, 50, 100, 500, 1000, 5000 KB

tableSize 8 1000, 2000, 5000, 10000, 50000, 100000, 500000,

1000000 records

updateLoad 5 0 ms, 200ms, 500ms, 1000 ms, 2000 ms

execLoad 4 0 ms, 50 ms, 100 ms, 500 ms

waitingTime 1 5 sec

triggerPeriod 1 80 sec

Table 6.1: Range (Domain) of static parameters.

Note that it is not the scope of these experiments to identify situations where database

caching is useful. Rather, we consider situations where the traditional scheme improves the

performance and compare the resulting performance to our scheme. However, as expected,

database caching is not useful for small values of updateLoad and less complex queries (e.g.

small table size). In the first case there is a high synchronization effort and a high number

of invalid queries and in the second case the server can always perform such queries very

efficiently.

Run Time Parameters

In the experiments we analyse the impact of two run time parameters on the system’s per-

formance. As mentioned in previous chapters, the main parameters of the simultaneous

execution scheme is the split of the procedure code that is captured by split ⊆ ID(S) of a

low-level procedure S, and the amount of replicated data that is captured by a set of fragments

repl. However, for the ONE-System we only analyse the impact of the split parameters. We

distinguish between two groups of split parameters — without and with independent queries.

The first group is used for testing the traditional and our scheme for a sequential compu-

tation of the procedure code. Hence, the cache cannot ’jump’ over queries and has to execute

105

all queries as they appear in the procedure code. For this we will consider split parameters

of ∅, {1}, {1, . . . , i} with 2 ≤ i ≤ 20.

The second group is only used for our scheme with independent queries. Hence, the cache

can ’jump’ over certain queries of the procedure code. For this we use ∅, {20}, {i, . . . , 20}

with 1 ≤ i ≤ 19. Consider for example split = {18, 19, 20}. The cache only executes the

queries 18,19,20 and sends their results to the server. The server executes queries 1 to 17 in

parallel to the cache and reuses the results of 18,19,20 after it has completed the queries 1 to

17.

Additionally, we use updateDelay as run time parameter. The parameter is used for

varying the amount of valid query results that are delivered to the server. Recall that data

replication within the simultaneous execution scheme is asynchronous. Hence, updates are not

performed within transactional boundaries and as a consequence a cache can operate on stale

data. The amount of valid query results is controlled by 13 possible levels of updateDelay.

These are: 100ms, 150ms, 200ms, 300ms, 500ms, 750ms, 1sec, 2.5sec, 5sec, 10sec, 15sec,

20sec, 25sec. The time specifies the idle time between synchronization phases. For high

delays we expect a low number of valid results and for low delays a high number of valid

results.

As explained in the next section, we measure the systems behavior for each combination

of split and updateDelay. Alltogether we have 273 possible combinations for the first and

second group.

6.2.3 The Execution of Experiments

All experiments are executed under equal conditions: The machines exclusively run the

experiments and there is no relevant traffic on the network. The server constantly performs

updates with a delay of updateLoad. The synchronization process periodically propagates

all new updates to caches. Each experiment is executed as follows:

1. Choose a split parameters out of the 21 possible levels.

2. Choose an updateDelay parameter out of the 13 possible levels.

3. Wait waitingTime (5 seconds).

4. Each cache triggers the stored procedure S(v1, . . . , v20) sequentially over a period of

triggerPeriod (80 seconds). Between each call there is a pause of execLoad. For each

call, the values v1, . . . , v20 are randomly computed with 1 ≤ vi ≤ tableSize.

5. Goto 1, as long there is a combination of split and updateDelay that has not been

tested yet.

The break of 5 seconds is used to allow the synchronization process for small values of

updateDelay to perform intermediate synchronizations with the new parameter. This is

necessary, since a high value might cause a high number of inconsistencies that would be

taken over into the next test and lead to wrong experimental results.

106

Performance Characteristics

For each combination of split and updateDelay, we observe the following values in Step 4

within the trigger period of 80 seconds:

• The processing time of S is defined as the average time between the initiation of a

procedure call and arrival of its final result at the cache.

• The cumulated verification time is defined as the average execution time of the query

SELECT count(*) INTO ci FROM LOG WHERE objID=oi. In the following experiments

we only use the cumulated verification time which is the sum of all query verifications

during the execution of a procedure.

• The query time is defined as the average execution time of a single query SELECT

t1.data INTO di FROM R AS t1, R AS t2 WHERE t1.objID=t2.objID=oi at a cache

or the server.

• The split parameter defines which queries are executed at the cache. However, the

server re-executes these queries if the delivered result was invalid, or if the server has

switched to normal mode where no more delivered results are used. The re-execution

time is defined as the average execution time of all such re-executions at the server

during an execution of S.

• The throughput is defined as the number of calls of S during the test (80 seconds) of a

combination of split and updateDelay.

• The idle time is defined as the average time the server has to wait during the execution

of a procedure. This includes all WAIT statements.

• The reuse rate is defined as the percentage of valid queries of an execution of S. 100%

states that all results of queries in split have been reused at the server, and 0% states

that none of the results could be reused. The higher the number of consistent objects

at the cache, the higher the reuse rate.

Illustration of Plottings

In the subsequent experiments we show how the performance depends on the run time pa-

rameters. We use a 3-dimensional diagram as depicted by the right side of Figure 6.1. The

X-axis represents the different settings of the split parameter, or more precisely, the number

|split| of queries that are executed by the cache. The Y-axis represents the settings of the

updateDelay parameter as defined above. The Z-axis represents the observed performance

value. The buttom of the diagram shows the contour lines and the appropriate value of the

Z-axis. More precise, denote the maximal value between two contour lines.

The left side of Figure 6.1 depicts the same data, but only the area with the contour line

rotated by 90◦. To improve the readability, we only use such diagrams in the remainding

part of this work where we name the name of the performance value (Z-axis) in the top of

the diagram.

107

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 160

 166

 169

 172

 172

 169

 163

time in ms

| split |

updateDelay

processing

 155

 160

 165

 170

 175

 160 163

 166
 169

 169

 172

 0

 10

 20

 5

 15

 100 ms
 200 ms 500 ms 1000 ms 5 sec 15 sec 25 sec

Figure 6.1: Diagrams for run time parameters and observed values.

6.3 Comparison of the Execution Schemes

We perform three types of experiments that show the behavior of (1) the traditional execution

scheme and the simultaneous scheme (2) without independent queries and (3) with indepen-

dent queries. For each type we show the performance behavior for a one- and a four-client

system. The configuration of all tested systems is shown by Table 6.2.

Parameter Values

objectSize 100 KB

tableSize 5000 records

updateLoad 1000 ms

execLoad 100 ms

waitingTime 5 sec

triggerPeriod 80 sec

Table 6.2: Configuration of the tested client-server systems.

The goal of the section is not to investigate different setups where database caching im-

proves the performance. Rather, we start with setups where the traditional caching improves

the performance and show that for such situations the simultaneous scheme yields equal or

even better performance.

6.3.1 The Traditional Execution Scheme

We measure the performance of the traditional scheme for a one- and a four-client system.

108

Low Load at Server and One Client

A query of the procedure code is executed at the cache in about 7.5ms and the server in about

7.7ms. The resulting processing time is depicted at Figure 6.2. As we can see, the minimum

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 160

 166

 169

 172

 172

 169

 163

u
p

d
a

te
D

e
la

y

| split |

cumulated verification time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 2

 4 6 8

 10
 12

 14

Figure 6.2: ONE-System with one client and traditional execution scheme. Processing time

(left) and cumulated verification time (right) in ms.

processing time is about 160ms which represents 20 query executions of 7.7ms each at the

server (denoted tserver), the network communication between cache and server (0.2ms for

both directions, denoted tnet) and the overhead of executing the PHP script (about 2-4ms,

in average 3ms, denoted tphp). Figure 6.3 depicts the resulting execution scheme where the

1

20

Cache Network

7.7ms0.2ms

0.2ms 7.7ms

Server

Figure 6.3: ONE-System with one client and traditional execution scheme. Execution scheme

for the maximal processing time.

109

box represent the execution of a query. The processing time is computed by the formula

ttotal ≈ tcache + tnet + tverify + tre + tserver + tphp

= 0 + 20 · 0.2ms + 0 + 0 + 20 · 7.7ms + 3ms

= 161ms

where tcache is the processing time at the cache, tverify the cumulated verification time and

tre the re-execution time at the server which in all cases is 0, since all computations take

place at the server.

Note that the computation is based on values taken from diagrams, such that the resulting

processing time represent an approximate value.

The processing time is maximal in the upper and lower right with about 172ms. Let

us first explain the upper one. Consider Figure 6.4 which depicts the reuse rate and the

corresponding re-execution time. The higher the number of queries in split and the higher

u
p

d
a

te
D

e
la

y

| split |

reuse rate time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 99

 95

 90

 80 70

 60
 50

up
da

te
D

el
ay

| split |

re−execution time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 2

 5

 10

 20

 30
 40

 50 60 70

Figure 6.4: ONE-System with one client and traditional execution scheme. Reuse rate in

percent (left) and re-execution time (right) in ms.

the value of updateDelay, the lower is the reuse rate. Recall that the server switches to

normal mode in case of an invalid query, hence, no more query results are then considered

by the server which further decreases the reuse rate. The upper maximum can be roughly

approximated as follows: The reuse rate is about 55%, hence the cache deliverers about 11

(55% of 20) valid results and the 12-th result is invalid and re-executed by the server that

also executes the remaining 9 queries. The 172ms result from 12 · 7.5 = 90ms (queries at the

cache), 4ms for all network communication, about 5ms of verifying the 12 results (see Figure

6.2), a re-execution time of 70ms (see Figure 6.4) and the PHP overhead of 2-4ms. This is,

ttotal ≈ tcache + tnet + tverify + (tre + tserver) + tphp

= 12 · 7.5ms + 20 · 0.2ms + 5ms + (70ms) + 3ms

= 172ms

110

where the 70ms re-execution time corresponds to 11 query executions a 7.7ms at the server.

The maximum of the lower right results from the high verification time (see Figure 6.2).

For a reuse rate of 99% all results are verified and almost all of them are valid. The lower the

reuse rate, the fewer queries are verified due to the switch to normal mode. The 172ms result

from 20 queries at 7.5ms at the cache (due to 99% reuse rate), 4ms network communication

for all 20 queries, 12ms of verification, about 3ms of re-execution time, and the PHP overhead

of 2-4ms. This is,

ttotal ≈ tcache + tnet + tverify + +tre + tserver + tphp

= 20 · 7.5ms + 20 · 0.2ms + 12ms + 3ms + 0 + 3ms

= 172ms.

We observe that database caching has almost no effect for a low-loaded system.

High Load at the Server and Multiple Clients

In the following we show how our implementation of a traditional scheme behaves in case

of a high-loaded four-client system. A query at the cache is executed within 5.8ms and at

the server in a range of 6-16ms, depending on its load. Note that all clients run the same

combination of the split and updateDelay parameters. We did not evaluate settings with

different combinations among clients, since it would not influence our observations. Therefore,

we only show the behavior of one of the four caches.

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 138

 140

 160
 180

 210

 240 270

 300

 330

 300

u
p

d
a

te
D

e
la

y

| split |

throughput

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 330

 320
 300 280 260

 240

 220 200

 180

 160

 180

 200

Figure 6.5: ONE-System with four clients and traditional execution scheme. Processing time

in ms (left) and throughput (right) of one cache as number of calls.

Figure 6.5 shows the resulting execution time and throughput. Recall that the throughput

shows the number of procedure calls that have been triggered at one client in a test phase of

80 seconds. The faster an execution at the cache, the earlier the next procedure call can be

triggered. Hence, the maximum throughput is achieved for the lowest processing time. As

111

u
p

d
a

te
D

e
la

y

reuse rate in percent

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 20

 30 40 50 60

 70

 90

 80

 95

 99

u
p

d
a

te
D

e
la

y

re−execution time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 2 5
 10

 40

 70

 100

 130

 160 190 220

Figure 6.6: ONE-System with four clients and traditional execution scheme. Reuse rate in

percent(left) and re-execution time (right) of one cache.

we can see, the processing time is minimal with about 138ms, if all queries are executed at

the cache.

Figure 6.6 depicts the reuse rate and the resulting re-execution time. Due to the higher

processing time, we observe a lower reuse rate as in the one-client system. The higher the

processing time, the more delayed updates can affect the processing and therewith cause more

invalid queries. Additionally, the synchronization of four caches further delays the optimistic

replication scheme.

up
da

te
D

el
ay

| split |

query time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 2 4 6 8 10 12 14 16 18

 8

 10

 12 14

 14

 16

 16

 6

u
p

d
a

te
D

e
la

y

| split |

cumulated verification time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 5

 10

 15

 20

 25

 30

Figure 6.7: ONE-System with four clients and traditional execution scheme. Query time in

ms (left) and cumulated verification time (right) of one cache.

Figure 6.7 shows the resulting query and verification time. Since queries are more expen-

sive at the server, each execution of S with a high number of query executions at the cache

yields a better processing time. The more queries are executed at the cache, the more load

is taken from the server which results in a decreasing query time at the server. Analogously,

112

1

20

2

Cache Network

5.8ms

0.2ms

0.2ms

verify 0.5ms

verify 0.5ms

5.8ms

5.8ms

Server

Figure 6.8: ONE-System with four clients and traditional execution scheme. Execution

scheme for the maximal processing time.

the verification time decreases for an increasing number of valid queries. However, for a low

reuse rate the server still has to perform most of the queries, such that there is almost no

improvement for high updateDelay values.

The appropriate execution scheme for the minimal processing time of 138ms is depicted

by Figure 6.8. This is,

ttotal ≈ tcache + tnet + tverify + +tre + tserver + tphp

= 20 · 5.8ms + 20 · 0.2ms + 8ms + 6ms + 0 + 3ms

= 137ms.

The processing time of 330ms in the lower left results from 20 queries at 16ms, network

communication of 4ms and the PHP overhead of 2-4ms. This is,

ttotal ≈ tcache + tnet + tverify + +tre + tserver + tphp

= 0 + 20 · 0.2ms + 0ms + 0ms + 20 · 16ms + 3ms

= 323ms.

We observe that database caching doubles the throughput for the four-client system.

6.3.2 The Simultaneous Execution Scheme With Dependent Queries

We repeat the experiments from Section 6.3.1 for the simultaneous execution scheme without

independent queries. Hence, all queries are executed in the order as they appear in the

procedure code. The difference to the traditional scheme is that the server performs queries

and the verification in parallel to the computations at the cache, hence reducing the processing

time.

113

Low Load at Server and One Client

Figure 6.9 shows the resulting execution and idle time. Again, a query is executed in 7.5ms

at the cache and in 7.7ms at the server. We observe a processing time in a small range of

154-158ms. However, the more queries are executed at the cache, the more the server has to

wait for the results. As we can see, the total idle time increases with an increasing number

of queries at the cache.

up
da

te
D

el
ay

| split |

processing time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

154

155

156

156

157

157

158

up
da

te
D

el
ay

| split |

idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 20 40 60 80 100 120
 140

Figure 6.9: ONE-System with one client and simultaneous execution scheme without inde-

pendent queries. Processing time in ms (left) and idle time (right).

up
da

te
D

el
ay

| split |

cumulated verification time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 2
 4

 6

 8
 10

 12 14

u
p

d
a

te
D

e
la

y

re−execution time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 2

 5

 10

 20

 30
 40

 50 60
 70

Figure 6.10: ONE-System with one client and simultaneous execution scheme without inde-

pendent queries. Cumulated verification time in ms (left) and re-execution time (right).

Figure 6.10 shows the verification and re-execution time that are almost equal to the

traditional scheme. Recall from Chapter 5 that a cache sends a query result asynchronously

to the server, without waiting for a response. Instead the cache continues with the execution

of a stored procedure. Therefore, the network communication time, the verification time and

114

the re-execution time does not necessarily affect the total processing time.

Figure 6.11 depicts the minimal processing time (154ms) that has been observed for 18-20

queries at the cache and an updateDelay of 100-1000ms. The cache performs 20 queries at

1

2

20

Cache Network

7.5ms

7.5ms

7.5ms

wait

verify 0.7ms
wait

verify 0.7ms
wait

verify 0.7ms

0.1ms

0.1ms

0.1ms

1

2

20
0.1ms

Server

Figure 6.11: ONE-System with one client and simultaneous execution scheme without inde-

pendent queries. Execution scheme for the minimal processing time.

7.5ms. Sending the last result to the cache costs about 0.1ms. When the last result arrives,

the server has already verified all previous results. The verification is about 0.7ms and sending

the final result back to the cache is about 0.1ms. The re-execution time is about 1ms. This

is,

ttotal ≈ tcache + tnet + tverify + +tre + tserver + tphp

= 20 · 7.5ms + 2 · 0.1ms + 1 · 0.7ms + 1ms + 0 + 3ms

= 154, 9ms.

Note that the time for sending intermediate results as well as their verification (about 14ms

in total) does not affect this computation, since these are done in parallel to the computations

at the cache.

As a result, we observe that the processing time in the minimum case is almost equal to

the traditional scheme. However, the simultaneous scheme also reaches this minimum, even

if all queries are executed at the cache.

High Load at the Server and Multiple Clients

For one of the four clients the resulting processing time and throughput is depicted at Figure

6.12. Analogously, the cache performs a query with 5.8ms and the server in a range of

6-16ms. Compared to the traditional scheme the processing time reduces from 138ms to

120ms. By the achieved reduction of the processing time, we observe a throughput of about

360 procedure calls which improves the traditional scheme by 30 calls.

115

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 120

 125

 130

 140

 150

 180
 210 240

 270

 300

 330

u
p

d
a

te
D

e
la

y

| split |

throughput

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 360

 340

 320

 300

 280

 260 240
 220

 200

Figure 6.12: ONE-System with four clients and simultaneous execution scheme without in-

dependent queries. Processing time in ms (left) and throughput (right) of one cache.

In Figure 6.13 we show the resulting verification, idle, re-execution and query time. For

some of the graphics we have skipped the observed values, since they are similar to previous

figures or are not related to the maximum case. We observe the same effect on the query

cumulated verification time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 5
 10

 15

 30

 20

 25

 15

 10

 10

| split |

idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 10 12 14 16 18 20

 90

 100

 80

 70 60 50

 40

 30

 20

| split |

re−execution time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 10 12 14 16 18 20

2

5

10

40

70

 220

100

130

160
190

| split |

query time in ms

u
p

d
a

te
D

e
la

y

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 10 12 14 16 18

 6

 8

 10

 12

 14

 16

Figure 6.13: ONE-System with four clients and simultaneous execution scheme without in-

dependent queries. From left to right: cumulated verification, idle, re-execution and query

time.

and verification times as for the traditional scheme. The more load taken from the server,

the faster the execution of queries and the verification of results.

Figure 6.14 shows the resulting execution scheme of the minimal processing time. The

value of 120ms results from 20 queries at 5.8ms at the cache, 0.2ms of network communication

(0.1ms for delivering the last result and 0.1ms for passing back the final result of the server),

116

and 0.5ms for verifying the last delivered result. This is,

ttotal ≈ tcache + tnet + tverify + +tre + tserver + tphp

= 20 · 5.8ms + 2 · 0.1ms + 1 · 0.5ms + 2ms + 0 + 3ms

= 121, 7ms.

Again, the verification of previous results does not affect the processing time. Taking the

1

2

20

Cache Network

5.8ms wait

verify 0.5ms
wait

verify 0.5ms
wait

verify 0.5ms

0.1ms

0.1ms

0.1ms

1

2

200.1ms

5.8ms

5.8ms

Server

Figure 6.14: ONE-System with four clients and simultaneous execution scheme without in-

dependent queries. Execution scheme for the minimal processing time.

100ms idle time (see Figure 6.13), there are about 16ms of computations left at the server.

These are about 10ms for the verification and the PHP overhead of 2-4ms.

6.3.3 The Simultaneous Execution Scheme With Independent Queries

Again, we repeat the experiments from Sections 6.3.1 and 6.3.2, but also allow independent

queries. Instead of the sequential split parameters ∅, {1}, {1, . . . , i} with 2 ≤ i ≤ 20, we use

parameters with independent queries ∅, {20}, {i, . . . , 20} with 1 ≤ i ≤ 19. Hence, the cache

can ’jump over’ the first queries in S. The X-axis of subsequent figures depicts the number

of query executions at the cache. Intuitively, it can be read as follows. Let i = 0, . . . , 20 be

a value of the X-axis. Then, the server executes the queries 1 to 20 − i of the sequence and

the cache 20 − i + 1 to 20. Clearly, when the server has executed its queries, some results of

the cache have already been delivered, such that the server does not have to wait for them.

Low Load at Server and One Client

As shown by Figure 6.15, the processing time decreases to a minimum of 85ms for computing

10 queries at the cache and the remaining ones at the server. The speedup is mainly obtained

by executing the queries at cache and server in parallel. There are no idle times until the

117

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 86

 90

 110

 100
 100

 110

 120

 130 140
 150

 160

 120

 130

 140

 150

up
da

te
D

el
ay

| split |

idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 1

 20 50 80 120

Figure 6.15: ONE-System with one client and simultaneous execution scheme with indepen-

dent queries. Processing time (left) and idle time (right).

value 10 at the X-axis, since the server executes more queries than the cache. As a result, all

results have been delivered, when the server has completed its queries.

As show by Figure 6.16, the verification and re-execution time is again similar to the

traditional and simultaneous scheme without independent queries.

up
da

te
D

el
ay

| split |

cumulated verification time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

2

4

6

8

10

12

14

u
p

d
a

te
D

e
la

y

| split |

re−execution in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 2
 5

 10

 30

 20

 40 50

 60 70 80

Figure 6.16: ONE-System with one client and simultaneous execution scheme with indepen-

dent queries. Cumulated verification time (left) and re-execution time (right).

Figure 6.17 shows the execution for the minimum of about 85ms. By taking Figure 6.16

into account, it results from 10 queries at 7.7ms at the server, 0.2ms network communication

and 4ms verification of 10 results (0.4ms each). This is,

ttotal ≈ tcache + tnet + tverify + +tre + tserver + tphp

= 10 · 7.5ms + 2 · 0.1ms + 10 · 0.4ms + 3ms + 0 + 3ms

= 85.2ms.

118

1

Cache Network

7.5ms

7.5ms

7.5ms

0.1ms

20

12

11

2

verify 0.4ms

7.7ms

7.7ms

7.7ms10

0.1ms

0.1ms

20

verify 0.4ms11

0.1ms

Server

Figure 6.17: ONE-System with one client and simultaneous execution scheme with indepen-

dent queries. Execution scheme for the minimal processing time.

As expected by the parallel execution of 10 queries, the processing time is about half as

much as the processing time of the minimal processing time of the traditional scheme.

High Load at the Server and Multiple Clients

By the results of the one-client experiment, we also except an improvement for the four-

client experiment. For one of the four clients the resulting processing time and throughput is

depicted at Figure 6.18. Analogously, the cache performs a query with 5.8ms and the server

in a range of 6-16ms. The minimum is about 95ms, which improves the minimum of the

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 95

 100

 130 160

 190 220 280

 250

 310

up
da

te
D

el
ay

| split |

throughput

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 400

 380

 360

 330

 300 270

 240

 210

 240

 270

 300

 330

Figure 6.18: ONE-System with four clients and simultaneous execution scheme with inde-

pendent queries. Processing time (left) and throughput (right).

119

traditional scheme by about 40ms and the simultaneous scheme without independent queries

by 25ms. The throughput could be increased by 70 compared to the traditional execution

scheme and increased by 40 compared to our scheme without independent queries.

Figure 6.19 depicts the verification, idle, re-execution and query time which is again

| split |

cumulated verification time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 5
 10

 15

 20

 15

 10
 25

| split |

idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 10 12 14 16 18 20

 2
 5

 10

 20

 40

 60

 80

 100

| split |

re−execution time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 10 12 14 16 18 20

 5

 10

 20

 40

 70

 100

 130

 160 190
 220

| split |

query time in ms

u
p

d
a

te
D

e
la

y

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 10 12 14 16 18

 8

 12

 10

 14

Figure 6.19: ONE-System with four clients and simultaneous execution scheme with inde-

pendent queries. From left to right: verification, idle, re-execution and query time.

similar to the traditional scheme and the simultaneous scheme without independent queries.

Note that due to the parallel execution at cache and server, there are no idle times for less

than 10 queries at the cache.

Figure 6.20 depicts the execution scheme for the minimum of 95ms. It results from 15

queries at 5.8ms at the cache, 0.2ms of network communication and 1.5ms of verification for

the last delivered result. This is,

ttotal ≈ tcache + tnet + tverify + +tre + tserver + tphp

= 15 · 5.8ms + 2 · 0.1ms + 1 · 1.5ms + 3ms + 0 + 3ms

= 94.7ms.

Since the server has to wait for some of the results, it can perform the verification in parallel

to the cache, such that these overhead does not affect the processing time.

As a result, we conclude that the best performance results from an optimal balancing of

the procedure code that is influenced by the query time, the verification time, the re-execution

time, and the existence of independent queries in the procedure code.

6.4 Other Related Experimental Results

In the following we investigate two more experiments. First, we show the effect of a slow

database cache. Second, we discuss a modification of the simultaneous execution scheme

which continuously uses the shared mode.

120

1

Cache Network

6ms
0.1ms

27

6

5

9ms

20

verify 1.5ms

0.1ms

0.1ms
6ms

6ms 9ms

9ms

verify 1.5ms
wait

6

200.1ms

Server

Figure 6.20: ONE-System with four clients and simultaneous execution scheme with inde-

pendent queries. Execution scheme for the minimal processing time.

6.4.1 Performance of Slow Database Caches

We repeat the four-client experiment with one slow database cache. The following figures

refer to the observed performance of procedures that have been triggered at this cache. Again,

the server performs its queries in a range of 6-16ms. However, the cache executes a query in

12ms. Figure 6.21 shows the resulting performance with dependent queries and Figure 6.22

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 225

 230

 250 270

 290

 310

u
p

d
a

te
D

e
la

y

| split |

throughput

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 250

 240

 230 220

 210

 200

 200

 190

Figure 6.21: ONE-System with four clients and simultaneous execution scheme with depen-

dent queries. Processing time (left) and throughput (right) for a slow cache.

the performance for independent queries.

As expected, the processing time and the throughput decrease and the cache performs less

queries as its fast conterparts (see Sections 6.3.2 and 6.3.3). Without independent queries,

121

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 160

 190 210

 240

 270

 300

 330

 270

 240

 210

 190

u
p

d
a

te
D

e
la

y

| split |

throughput

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 310

 300

 270

 240

 210

 190

 270
 240

 210

Figure 6.22: ONE-System with four clients and simultaneous execution scheme with inde-

pendent queries. Processing time (left) and throughput (right) for a slow cache.

the caches performs about 8 queries less and with independent queries, about 5 queries less.

Clearly, the slower the cache, the more queries have to be executed at the server, to obtain

a minimal processing time.

We conclude that the simultaneous execution scheme also benefits from slow database

caches. More generally, a database cache is useful as long as query executions at the cache

improve the processing time.

6.4.2 Shared vs. Normal Mode

As mentioned at the beginning of this Chapter, we discuss a modification of our scheme that

now always runs in shared mode. Hence, the server does not switch to normal mode and tries

to use the delivered results independently of previous invalid results. First, we look at the

pure sequential case where no independent queries exists in the procedure code, and second,

we discuss the modification for independent queries.

Shared Mode and No Independent Queries

Let us consider the ONE-System and a cache that has to execute the queries q1, . . . , qn

sequentially and to deliver the results to the server. If the result of a query qi with 1 ≤ i ≤ n

is invalid, the results of qi+1, . . . , qn are also invalid due to the non-existence of independent

queries. If the server does not switch to normal mode, it would still wait for these invalid

results, verify, and re-execute them. As a result, the server performs additional idle times and

verifications that would not have been performed by switching to the normal mode. Hence,

the modified scheme would yield a lower performance.

However, the original scheme as defined in Section 5 additionally uses notifications to

inform the server that the cache is currently executing a query. Therefore, the server can

already perform the verification and execute the query by itself before the cache has even

122

delivered the invalid result. Still, the server performs additional waiting phases (for notifi-

cations) and verifications that would not have been performed by switching to the normal

mode. Again, the modified scheme would yield a lower performance.

Shared Mode and Independent Queries

The picture is different for independent queries in the procedure code. In the same situation,

one or multiple results of the queries qi+1, . . . , qn can still be valid, since they do not depend

on q1, . . . , qi. By switching to normal mode, the server might reject valid results. When the

server keeps the shared mode, instead of switching to normal mode, it can possibly use more

delivered results, such that there are less re-executions of queries at the server. As a result,

the performance can be further improved as underlined by the following experiment.

We run the four-client experiment with independent queries for the modified scheme.

The resulting processing time and throughput are depicted at Figure 6.23. Compared to the

results of the original scheme (see Figure 6.18), we obtain a similar minimal processing time

(about 95ms) and a similar throughput (about 400 procedure calls in 80 seconds). However,

the optima within the diagrams cover a larger area. Consider the region of 130ms and 330

procedure calls. Both are twice as big as for the original scheme that switches to normal

mode.

up
da

te
D

el
ay

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 95

 100

 130
 160 190

 210

 240

 270

 300
up

da
te

D
el

ay

| split |

throughput

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 400

 390

 360
 330 300

 270

 240

 210

 400

Figure 6.23: ONE-System with four clients and modified simultaneous execution scheme with

independent queries. Only shared mode. Processing time (left) and throughput (right).

This effect can be explained as follows. The synchronization process at the server propa-

gates updates in a delayed manner. The delay is specified by the parameter updateDelay. A

given value of updateDelay causes a certain number of inconsistent data objects at the cache

that is independent of the used split parameter. While performing the modified scheme, this

independence of the split parameter must be reflected by the reuse rate, since each delivered

result is verified by the server.

Figure 6.24 depicts the resulting reuse rate and re-execution time. As expected, the reuse

rate that is almost constant for a fixed value of updateDelay.

123

u
p

d
a

te
D

e
la

y

reuse rate in percent

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 99

 95

 90

 85

 80

 75

 70

u
p

d
a

te
D

e
la

y

re−execution time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 2

 5

 15

 25

 35 45

Figure 6.24: ONE-System with four clients and modified simultaneous execution scheme with

independent queries. Only shared mode. Reuse rate (left) and re-execution time (right).

The higher reuse rate is causing a larger optimum within the diagrams. Consider again

the processing time of 130ms. In Figure 6.24 it corresponds to a reuse rate of about 70%.

If we look at the processing time of the original scheme at Figure 6.18 and its reuse rate at

Figure 6.6, we realize that the 130ms of the original scheme also correspond to a reuse rate

of about 70%. The increasing reuse rate also decreases the re-execution time as shown by

the Figures 6.24 and 6.19.

From the experiments with the modified scheme, we conclude that depending on the

amount of independent queries in the procedure code, the performance either gets worse (in

case of dependent queries) or improves (in case of independent queries). However, we consider

the proper handling of shared and normal mode as fine-tuning of our approach which would

also require a precise detection of independent queries. Since we show only the existence of

such queries, we push this problem to further extentions of our scheme and consider instead

the primarily proposed scheme that switches to normal mode whenever an invalid queries

occurs.

Shared Mode and the Traditional Protocol

For this experimental analysis we have modified the traditional protocol to switch to normal

mode in case of invalid queries. The modification was necessary to make both protocols

compatible. However, as shown by the experiments in this chapter, the improvement of the

performance results mainly from parallel performed verifications, less network communication

and independent queries. Hence, our scheme outperforms the original one if the shared mode

is used.

124

6.5 Summary and Discussion

To analyse the performance of the simultaneous execution scheme, we have defined the ONE-

System that executes a single stored procedure related to one table. As we have shown,

our implementation of the simultaneous scheme outperforms the detection-based traditional

scheme. Figure 6.25 summarizes the comparison of the traditional and our novel scheme.

It shows the throughput and processing time for one of the four clients. For our specific

traditional
scheme

novel
scheme

queries

novel
scheme

denpendent
queries

with

throughput (procedure calls per second)

processing time in ms

without
denpendent

 4

 5

 100

 140

 120

 80

 4.5

 4.1

 138

 4.5

 119

 5.0

 94

Figure 6.25: Throughput and processing time for the ONE-System with four clients and three

different execution schemes.

example the throughput could be improved by about 10% with dependent queries and by

about 22% by taking independent queries into account. The increasing throughput results

from a faster processing time of procedures that allows the computation of more procedure

calls per time unit. The processing time could be reduced by (1) performing the verification

in parallel, (2) by reducing network communication, and (3) by taking dependent queries

within the procedure code into account.

Further, we have shown that independent queries and the correct handling of the shared

mode further improves the performance. For all experiments we could show that small update

delays (range of 100ms to 1000ms of the parameter updateDelay) have only a minor impact

on the maximal performance. Hence, the use of an optimistic synchronization protocol for

propagating updates is feasible.

However, the experiments have been performed in a narrow scope and a complete com-

parison of both schemes requires further:

• to embed and test the scheme into the execution engine of a real DBMS, e.g., an open-

source DBMS, such as Postgres,

125

• to study the performance for a high number of connected caches and determine scala-

bility limits,

• to analyse experimentally the best performing switching rules for the shared and normal

mode, and

• to implement and test the full scheme that includes the concept of notifications.

Open Questions

We have used the updateDelay parameter for simulating the amount of data inconsistencies

at the cache. In all experiments the server performs one update per second (the parameter

updateLoad is always set to 1000ms), such that we expect a high performance for all settings

of updateDelay that are smaller than 1000ms or slightly above that value. This has been

confirmed by all experiments.

Intuitively, we expect the best performance for updateDelay=100ms, since then the prob-

ability of data inconsistencies is very low at the cache. However, for some of the experiments

the maximal performance is located above that value (e.g. Figures 6.15 and 6.23). As we can

see from the reuse rate of these experiments, the number of data inconsistencies is higher for

these maxima than for the setting of updateDelay=100ms. This means that the number of

data inconsistencies is not minimal for the best performance, allthough a higher number of

inconsistencies causes more overhead for verification and re-execution.

Finally, we could not clarify whether this phenomenon results from hidden overhead of

our synchronization process or from measurement errors. We ignore this problem in the

following, since these displacements of extreme values do not influence the major result of

the experiments.

126

Part III

Self-Adaptive Load Balancing

between Cache and Server

127

Chapter 7

Dynamics, Performance and the

Optimization

Performance is key issue for client-server database systems. Beside hardware equipment,

user activities and amount of data, etc., it also depends on the optimal configuration of the

database management system itself.

In Part II we have defined a client-server database system with a database cache at each

client and a simultaneous execution scheme that allows us to split the procedure code into

two parts and to execute both simultaneously at cache and server. At a cache, the scheme is

controlled by two configuration parameters: (1) the size of data that is replicated at a cache

and (2) the split of the procedure code. In various experiments we have shown the impact of

these parameters on the systems performance.

As mentioned in Part I, one of the major requirements of a database cache is its capability

to autonomously adapt the caching to load conditions and user activities changing over time.

Therefore, a cache runs an optimizer that is responsible for maximizing cache performance

by continously adjusting the configuration parameters during run time.

In this Section, we define the optimization problem which the optimizer has to solve. We

look at the dynamics of a client-server database system and show that various influencing

factors cause a time-varying optimum. Furthermore, we define a set of performance measures

that are used to define the objective function and additional important restrictions.

7.1 The Dynamics of Client-Server Database Systems

First, we motivate the optimization problem by looking at the dynamics of a client-server

database system caused by various time-dependent factors. From the view of a single cache,

we observe the following factors:

• Requests

At the client site, users and application programs initiate procedure calls that are

simultaneously executed by the cache and the central server. The frequency and type

of procedure calls have a significant impact on the system’s performance. In general,

129

the work load profile of such systems is not predictable. There are cyclic access patterns

over time that represent the daily work load. The number of users is not constant. The

behavior of individual users can differ. Users change their access behavior over time,

e.g., they complete projects and start new ones, etc. Furthermore, procedures might

be changed, added or removed by administrators.

• Resources

If a cache is running on an autonomous machine, it normally has full access to the

computational and storage resources. However, a cache at a client or application server

does not have full access. Concurrent applications can further occupy computation,

storage and network resources that cannot be utilized by the cache. These applications

again depend on user activities and their precise impact on cache performance cannot

be predicted in advance.

Another important resource is the central server. From a cache point of view, it is a

computational resource that accepts query results, computes requests and notifies the

cache about the final result of a procedure call. Alltogether, the performance of the

server depends on (1) triggered procedure calls from all caches and clients, and (2) the

amount of code that is assigned by the settings of split parameters.

Resources are also subject to change. Over the life time of a client-server system,

hardware is replaced or upgraded, for example disk space at clients and application

servers, main memory, etc. However, such a change can even not necessarily detected

by a cache, since a faster performing server can either result from a lower load or a

hardware upgrade.

Hence, the frequency and type of requests, as well as the availability and amount of resources

for its execution vary over time.

Time-Varying Optimum

The time-dependent influencing factors may cause a non-static optimum of the performance.

This has been confirmed by the experimental analysis of Chapter 6 where we have investigated

the performance of the ONE-System for different setups. In Figure 7.1 we present again some

of the experimental results. The X-axis represents the split parameter, i.e. the amount of

queries executed at the cache. The Y-axis represents the synchronization frequency of cache

data. The lower the frequency, the higher the error rate and number of re-executions. The

left diagram represents a system with a low-loaded server where a procedure call achieves a

minimal processing time of 85ms for 10 queries. The diagram at the middle shows the same

situation for a high-loaded server which results into 95ms for 15 queries. A slow database

cache is depicted at the right which achieves 225ms for 12 and 13 queries. Note that a slow

cache may either result from poor hardware equipment or from other applications that utilize

the client and thus the database cache.

From these observations we conclude that the optimizer of a database cache must revise

decisions. That is to say, it has to cope with a moving optimum at run time.

130

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 86

 90

 110

 100
 100

 110

 120

 130 140
 150

 160

 120

 130

 140

 150

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 95

 100

 130 160

 190 220 280

 250

 310

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 225

 230

 250 270

 290

 310

Figure 7.1: Minimal processing time of the ONE-System for different load conditions and

types of requests (left: low-loaded server, middle: high-loaded server, right:slow database

cache).

Capture Run Time Behavior of a Cache

When we have to deal with a time-varying problem, we have to chose an appropriate model

for capturing time. We observe the behavior of a cache at time points

t1, . . . , ti, ti+1, . . .

selected with equal length |ti − ti−1|, i > 0. Each ti is a point in time and the i-th stage is

defined from ti−1 to ti. In the following we use ti to denote the i-th stage and t to denote an

arbitrary stage. If we consider the 24-hour cycle of most client-server database applications,

the length of a stage should be in a range of 1-10 minutes. For shorter sampling intervals,

the stage management can possibly cause a bottle neck and longer stages provide only a few

possibilities to change the systems configuration. For example, a length of 1 hour allows 24

changes of the system’s configuration. In our experiments we have chosen a sampling interval

of 80 seconds.

A database cache as a time-varying system can be described by a model

yt = f(xt, θt, t) + φt

where

• xt is a vector of configuration parameters, e.g., split and replication parameters,

• θt is a time-varying ”environmental” parameter vector, e.g., user behavior, availability

of resources, etc.,

• φt is the noise and

• yt is a system behavior vector that characterizes the run time behavior during stage t,

e.g., response time of procedure, throughout, etc.

However, it is almost impossible to develop a static model that characterizes the function

f , since we neither are able to capture all influencing factors in θt, nor its variability over

131

time. Thus we view the behavior of a cache as a black box system with an input and an

output. Then, the behavior of a specific cache C is represented by a function

yt = fC(xt, t)

where xt is the input, yt is the output and t is a stage. Again, xt denotes the vector of

configuration parameters and yt the vector of values that reflect the behavior of C in t.

Hence the function value of fC(xt, t) represents a measurement of the cache behavior in t.

Therefore, we define in the Sections 7.2 and 7.3 the observed cache behavior in y by a set

of measures. All of these are denoted in the form

mLabel

where the letter m indicates a measure and Label its name. To underline the membership of

a measure mLabel to a function value y = fC(x, t), we either write y.mLabel or mLabelt.

Objective Function to be Minimized

Given a stage t with yt = fC(xt, t), we define in Section 7.4 the objective function

g(xt, yt)

that values the configuration x against the behavior of the cache in stage t. The performance

in stage t is optimal iff g(xt, yt) is minimal.

The optimizer of a cache observes the behavior yt1 , . . . , yti and sets the configuration xti+1

based on these observations, i.e.

xti+1
= xti+1

(yt1 , yt2 , . . . , yti).

Consequently, it has to apply an appropriate on-line (or real-time) optimization technique

that continuously analyses the observed behavior and tries to identify an optimal configura-

tion for ti+1.

The underlying assumption is that the behavior during a stage is almost constant and

that the behavior of the stage ti+1 is mostly “similar” to previous stages. Otherwise the

observations of previous stages could be applied to ti+1. Under this Markov assumption the

configuration function reduces to

xti+1
= xti+1

(yti).

Continuous Optimization

Continuous optimization problems have been well studied in literature and have their origins

in on-line or real-time optimization of industrial processes, e.g., chemical processes which

depend on time-varying process conditions. Thus, the goal is not longer to find the precise

optima, but to track their movement through the space as closely as possible. In Section 7.5

we give an overview on the main research directions. For a cache the appropriate continuous

optimization problem is defined in Section 7.4.

132

7.2 Cache Execution Performance

In this Section we define the execution-performance of a cache C which captures the effi-

ciency of executing procedure code by the simultaneous execution scheme. In Section 7.3 we

define the fragment-performance which captures the impact of replicated fragments on the

performance of a cache, hence defining fragments that are suitably for replication.

As shown by the experiments in Chapter 6, the processing time of a procedure is a

feasible measure of the system’s performance. We shall define two alternative measures for

the execution-performance that aim at a maximal cache utilization and a maximal balance

of code execution among cache and server respectively.

7.2.1 Idle and Execution Time of IO statements

As defined in Part II, we capture the execution of a procedure by execution sequences (see

also see Definition 4.2). We define an extended version of execution sequences that are used

to capture the execution time and resulting idle times of IO statements as well as their mode

of execution. That is,

seq = (s1,#s1, e1,mode1), . . . , (sn,#sn, en,moden)

with

• si ∈ ID(S) as the statement identifier,

• ei the statement expression,

• #si as the number of IO statements sj with 1 ≤ i ≤ n and j ≤ i, si = sj and

• modei as the mode of execution that can take the values undef , exec, invalid and

valid.

Note that during a simultaneous execution, the executions at cache and server normally result

in different sequences. We explain the mode for both cases.

Consider a procedure S, the parameter split ⊆ ID(S) that defines its simultaneous exe-

cution and an IO statement si of the above sequence seq. The possible modes at the server

are:

• Mode exec:

The mode of si is exec if si is a low-level update, or if si is a query that is not indented

to be executed at the cache, e.g., si /∈ split.

• Mode invalid:

The mode of a query si ∈ split is invalid if the function

evalS(si,#si, ei) did execute ei on server data and hence did not receive or reuse the

result delivered by the cache. Recall from Chapter 5 that the server can switch to nor-

mal mode where also no more query results are considered. Thus, all following results

are also treated as invalid.

133

• Mode valid:

Similar to invalid, but with a correct query result that the server could use instead of

computing it.

The possible modes at the cache are:

• Mode exec:

The mode is exec if si is a low-level update that has been successfully executed on cache

data. Note that all low-level updates are rejected at a cache during the final commit.

Cache data is exclusively updated by the synchronization process. However, the cache

still has to perform these intermediate updates to guarantee a consistent execution of

queries in the procedure code.

• Mode invalid:

The mode of a query si ∈ split is invalid if the function evalC(si,#si, ei) has deliv-

ered a notification and a result to the server, but the server did not reuse the result.

Note that due to stale data, a cache can follow a different path in the procedure code

than the server. Hence, for a function call evalC(si,#si, ei), there is not necessarily a

corresponding evalS(s′,#s′, e′) with s′ = si and #s = #si.

• Mode valid:

Similar to invalid, but with a correct query result that the server could use instead of

computing it.

• Mode undef :

For all remaining cases the mode of si is undef . This mainly includes cases where the

evalC(.) function at the cache returns undef .

In the following we only refer to the cases invalid and valid. Note that for both cases the

corresponding query has been executed on cache and/or server data, and hence has occupied

computational resources.

For a query s with a resulting execution mode of invalid or valid, we define its execution

and idle time as follows.

1. The execution time of s is denoted ptC(s) at the cache and ptS(s) at the server. Both

are defined by the execution time of the system function eval(), which is used by the

underlying execution engines at the server and caches to execute s, pore precise: evalC()

the cache and evalS() by the server, see also Sections 5.3 and 5.4.

2. The idle time of s is denoted idle(s). At the cache the idle time is always 0, as a cache

during execution never waits for the server. At the server the idle time summarizes the

waiting time for an entry in the query result cache (QRC) and for the result to appear

in the QRC. This concerns the Steps 1a and 1fi in the function evalS(.) in Section 5.4.2.

In the following we assume that for all completed executions both execution sequences and

the corresponding execution and idle times of their statements are available.

134

7.2.2 Minimal Processing Time

In Chapter 6 we have shown that a minimal processing time of a procedure indicates a per-

formance with minimal response time and maximal throughput. The first measure for the

cache-execution performance aims at minimizing the total processing time of stored proce-

dures.

The processing time PT (SC) of a procedure call SC is measured at the database cache

and defined as the period between its initial call and the arrival of the final result that has

been sent to the server. Let t be a stage, S a procedure and SC
(t)
1 , . . . , SC

(t)
n all calls of S that

have been triggered at the cache during t, where n ∈ N represents the number of procedure

calls. The first measure for the execution-performance is based on the average processing

time of a procedure S in t. It is defined by

mPTt(S) =
1

n
·

n
∑

i=1

PT (SC
(t)
i) (7.1)

The goal is to minimize mPTt(S) for all procedures S.

7.2.3 Maximal Cache Utilization

The second measure aims at a maximal cache utilization. That is, during the simultaneous

execution of a procedure, the idle time at the cache should be minimal. We first define the

idle time, then the corrected idle time that does not take invalid queries into account and

finally, give an alternative definition for the execution-performance.

Consider a simultaneous execution of a procedure call SC and its termination at a cache.

The execution is either interrupted by the server or puts a notification into the QRC to

indicate its termination. In the first case there will be no idle time at the cache and in the

second the cache is idle until the server sends its completion message. Then,

idleC(SC) ≥ 0 (7.2)

represents the idle time at the cache during the execution of the procedure call. More precise:

idleC(.) represents the time between the initiation of a procedure call at the cache until the

server passes back its final result.

The goal is to maximize the cache utilization, and hence to minimize the idle time at the

cache. However, a low idle time can be easily achieved by setting split = ID(S). Thus, all

the procedure code is executed at the cache independently of valid or invalid query results.

Therefore we correct the idle time by putting a penalty for each executed query with

mode invalid. Let SC be a procedure call of type S and

seq = (s1,#s1, e1,mode1), . . . , (sn,#sn, en,moden)

the resulting sequence at the cache. Furthermore, let Qinvalid be all pairs (si,#si) with

modei = invalid. We use pairs, since due to loops an IO statement can occur multiple times

135

in seq. A pair (si,#si) uniquely identifies an element in seq. The corrected idle time is

defined as

idleC+(SC) = idleC(SC) +
∑

(si,#si)∈Qinvalid

ptC(si) (7.3)

which adds the execution time of all queries that did not produce a valid result. Hence, it

does treat these queries as unexecuted at the cache. A value of idleC+(SC) ≈ 0 indicates

that the cache during the entire execution of the procedure call is either executing low-level

updates or queries that produce a valid result. However, a value of idleC+(SC) = 0 is not

possible if the cache ends its execution with a query. Then, the result has to be delivered,

verified and the server has to commit the transactions. During this period the cache is idle.

Then, the second measure for the execution-performance is defined by

mIdleC+
t (S) =

1

n
·

n
∑

i=1

idleC+(SC
(t)
i) (7.4)

for a procedure S, a stage t and the procedure calls SC1, . . . , SCn of type S during t. Again,

the goal is to minimize mIdleC+
t (S) for all procedures S.

We compare the minima of mPTt(S) and mIdleC+
t (S) based on the experiments that

have been made in Chapter 6. For dependent queries Figure 7.2 shows the corrected idle

u
p

d
a

te
D

e
la

y

corrected idle time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 40 60 80 100
 120 140

 20

u
p

d
a

te
D

e
la

y

corrected idle time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 20

 50
 100

 150
 200 250

 300

Figure 7.2: Corrected idle time for a one (left) and four client (right) system with dependent

queries.

time mIdleC+
t (S). Clearly, the corrected idle time mIdleC+

t (S) aims at a maximal cache

utilization, such that its value decreases for an increasing number of valid queries. As we can

see, the measure correlates to the processing time mPTt(S) as shown at Firure 7.3 according

to our observations in Section 6.3.2. The minima of both measures are almost identical.

The situation is different if we look at independent queries. Figure 7.4 shows the cor-

responding corrected idle time mIdleC+
t (S). According the the figure the performance is

maximal if a split of size 13 (one client system) or of size 19 (four client system) repsectively

136

up
da

te
D

el
ay

| split |

processing time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

154

155

156

156

157

157

158

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 120

 125

 130

 140

 150

 180
 210 240

 270

 300

 330

Figure 7.3: Processing time for a one (left) and four client (right) system with dependent

queries.

up
da

te
D

el
ay

corrected idle time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 5

 10

 20

 50 80 110 140

u
p

d
a

te
D

e
la

y

corrected idle time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 10

 25

 50 100
 150

 200

 250
 300

Figure 7.4: Corrected idle time for a one (left) and four client (right) system with independent

queries.

is used. As a result, a minimal corrected processing time does not necessarily indicate a

minimal processing time for independent queries. The main reason is that the idle time at

the server is not considered by the measure as we will see within the next section.

7.2.4 Maximal Code Balancing

The third measure for the execution-performance respects the very nature of the simultaneous

execution scheme by balancing the code execution equally among cache and server. The main

goal is to minimize the idle time at cache and server during a simultaneous execution.

The total idle time at the server

idleS(SC) ≥ 0

137

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 86

 90

 110

 100
 100

 110

 120

 130 140
 150

 160

 120

 130

 140

 150

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 95

 100

 130 160

 190 220 280

 250

 310

Figure 7.5: Processing time for a one (left) and four client (right) system with independent

queries.

for a procedure call SC is defined by the sum of idle(s) for all invalid and valid queries s.

Since a high number of re-executions causes almost no idle time at the server, we again put

a penalty on invalid queries.

The corrected idle time at the server is defined by

idleS+(SC) = idleS(SC) +
∑

(si,#si)∈Qinvalid

ptS(si) (7.5)

and the code execution balance of a procedure call SC by

idleCS(SC) = idleC+(SC) + idleS+(SC) (7.6)

The minimum of idles(SC) ≈ 0 represents the situation where both the cache and the server

almost produce no idle times. Hence, all query results at the cache are valid and reused, such

that there are no re-executions at the server. Further, both executions are almost of equal

length, since otherwise one has to wait for the other. Hence, the code is optimal balanced

among cache and server.

The third measure for the execution-performance is defined by the average code balance

mIdlet(S) =
1

n
·

n
∑

i=1

idleCS(SC
(t)
i) (7.7)

for a procedure S, a stage t and the procedure calls SC
(t)
1 , . . . , SC

(t)
n of type S in t. Again,

the goal is to minimize middlet(S) for all procedures S.

Again we have compared the minimal code balancing with the minimal processing time.

Figure 7.6 shows the code balancing with dependent queries and Figure 7.7 for independent

queries As we observe the code balancing measure does respect more the execution of inde-

pendent queries, since it overlaps with the minimal processing time (see Figures 7.3 and 7.5).

Furthermore, it is very close to the minimal processing time of the sequential case where no

independent queries are executed.

138

up
da

te
D

el
ay

| split |

corrected cache and server idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 150

 160

 170
 190

 230 210

 145

 145 145

u
p

d
a

te
D

e
la

y

| split |

corrected cache and server idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 120

 130

 150
 200

 250 300

 350

 400 450

Figure 7.6: Code balance (corrected cache and server idle time) for a one (left) and four client

(right) system with dependent queries.

u
p

d
a

te
D

e
la

y

| split |

corrected cache and server idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 15

 40
 70

 100
 130

 160

 40
 70

 100
 130

 160

u
p

d
a

te
D

e
la

y

| split |

corrected cache and server idle time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 2 4 6 8 10 12 14 16 18 20

 50

 150
 100

 200 250

 300
 350 400 450

Figure 7.7: Code balance (corrected cache and server idle time) for a one (left) and four client

(right) system with independent queries.

7.3 Cache Fragment Performance

The execution-performance alone is not sufficient to capture all performance issues of a cache.

To maximize the cache performance, we also have to consider the performance of fragment

placements. We introduce two types of measures. The first captures the access frequency

of a fragment. It is used to identify fragments for replication, e.g., a fragment that is less

frequently written, but frequently read. The second type is used to validate an already

replicated fragment, or in other words, to measure its effectiveness. Intuitively, a fragment F

should only be replicated if executions on F at the cache yield valid query results that can be

reused by the server. For the second, we carefully investigate dependencies of the procedure

code, since, for example, a query computation on a fragment F ′ can access a local variable

that was earlier computed on another fragment F . Then, the computation on F ′ somehow

139

has to be considered by the effectiveness of F . We elaborate this example in Section 7.3.2.

7.3.1 Fragment Access Frequency

We capture the access frequency by two measures — the read and write frequency of a

fragment. Consider a cache and all procedure calls at stage t. To process these calls, the

evalS(s,#s, e) function at the server is called in total n times. Let t′ > 0 be the length of a

stage in seconds and m ≤ n be the number of calls that operate on a fragment F . According

to the evalS(s,#s, e) function as defined in Section 5.4.2, fragment access is detected by

F ∈ access(e). Then, we define

mReadt(F) =
r

t′
(7.8)

as the read frequency of F in t where r ≤ m is the number of calls of evalS(s,#s, e) on F

where e is a query, and

mWritet(F) =
w

t′
(7.9)

as the write frequency of F in t where w ≤ m is the number of calls of evalS(s,#s, e) on F

where e is a low-level update.

In Section 7.4 we restrict fragment replication by providing upper and lower bounds for

both measures.

7.3.2 Dependent Queries in the Procedure Code

Before we define the efficiency of a fragment, we analyse and define dependent queries in the

procedure code.

Assume we want to collect the fragment-efficiency as the total execution time of all valid

queries that have been executed on a fragment. The following example demonstrates the

impact of code dependencies on this collection.

Example 7.1 Consider the following piece of procedure code. All identifiers starting with sp

are local variables and this month() is a function defined on date.

..

SELECT * INTO sp customer FROM customer WHERE customer id=sp id;

IF sp customer.total sales>100.000 THEN

SELECT * INTO sp benefit FROM extras WHERE month=this month();

UPDATE customer benefit SET benefit=sp benefit

WHERE customer id=sp id;

END IF;

..

The code retrieves some customer data and if the customer has a certain amount of total

sales, he gets some benefit, e.g., a gift coupon.

140

As the example shows, all statements inside the IF statement depend on the first query.

If a cache is configured not to execute the first query, the second query can never be executed.

Let us assume that the first query operates on fragment F1 and the second on F2 and that

both have been replicated at the cache. Assume further that the execution times of the queries

are pt1 and pt2 respectively. To respect the code dependencies, we set the fragment-efficiency

of F1 to pt1 + pt2 and of F2 to t2. Thus, we add the execution time of all queries (here the

second one) that benefit from another query (here the first one). 2

Hence, the proper computation of the fragment-efficiency requires the knowledge of all queries

q′ in the procedure code that depend on a given query q.

Consider again the run time analysis in Section 5.5. Given a stored procedure S, we have

computed a set Z(S) that contains all relevant splits of S. These are all those splits that

cause ”fewer” undef values and invalid query results at run time. To compute Z(S), we had

to execute S on real data for different input parameters. Let SEQS be the set of all execution

sequences at the server that result from the run time analysis of a procedure S.

First, we define a partial ordering on top of SEQS for all queries in the procedure code.

The partial ordering defines which query is execution ”after” another query. For simplicity

we assume that all sequences in SEQS are a list s1, . . . , sn of identifiers si ∈ ID(S).

Definition 7.1 (Partial Order on Queries) Let S be a procedure, SEQS the set of all

execution sequences and s, s′ ∈ ID(S) two queries. The partial order is defined by (SEQS , <E

), where s <E s′ holds if there exists a sequence s1, . . . , sn in SEQS with si = s, sj = s′ and

1 ≤ i < j ≤ n.

The order is partial, since two queries of the procedure code are not necessarily executed

sequentially at the server. Consider an IF statement with a query in each branch. Then, at

run time only one of the queries is executed, such that no ordering exists. Note that due to

loops in the procedure code, a query s can be executed multiple times. Hence, s <E s and

s <E s′ ∧ s′ <E s occur naturally. However, a query s′ can only depend on a query s, if s is

executed before s′, denoted by s <E s′.

The second step for capturing dependent queries is filtering out all independent queries.

Given a query s, we want to figure out all queries s′ that can be executed independently from

s and that are executed after s, hence s <E s′ holds. We take the set Z(S) of ”relevant”

splits into account.

Definition 7.2 (Independent Queries) Let S be a procedure, Z(S) all relevant splits of

S and s ∈ ID(S) be a query. The set of independent queries of s is defined by

IND(s) =
⋃

{s′ | s′ ∈ split ∧ split ∈ Z(S) ∧

s <E s′ ∧ s /∈ split}

Independent queries of s occur in split ∈ Z(S) parameters that themselves do not contain s

(s /∈ split). Further, the splits in Z(S) contain queries s′ that are executed after s (s <E s′).

As all splits were executed by the run time analysis, indeed such queries s′ exist.

141

Based on the partial order (SEQS , <E) and the set of independent queries IND(s), we

define the set of dependent queries. Given a query s, all queries s′ that are executed after s

and that are not independent are called dependent queries.

Definition 7.3 (Dependent Queries) Let S be a procedure and s ∈ ID(S) be a query.

The set of dependent queries of s is defined by

DEP (s) =
⋃

{s′ | s, s′ ∈ split ∧ split ∈ Z(S) ∧

s <E s′} − IND(s)

Since we define IND(s) and DEP (s) on data from the run time analysis, both are not

necessarily precise. Hence, there can be more or less dependent queries. However, for defining

a performance measure, the obtained dependencies are sufficient. Note that IND(s) and

DEP (s) can be computed at compile time, hence they have only to be computed once.

7.3.3 Fragment Efficiency

As motivated by Example 7.1, we define now the efficiency of a fragment. Again we define

it on top of execution sequences as defined in Section 7.2.1. That is, a procedure call SC

produces a sequence

seq = (s1,#s1, e1,mode1), . . . , (sn,#sn, en,moden)

at the cache. In Section 5.3.2 we have defined the function evalC(si,#si, ei) that is responsible

for executing each si (1 ≤ i ≤ n). For each si, the function computes the set of accessed

fragments that is denoted by access(ei). In the following we extend the execution sequence

by these sets and write

seq = (s1,#s1, frag1,mode1), . . . , (sn,#sn, fragn,moden)

instead and ignore the values of ei, since they are not needed for computing the fragment-

efficiency.

The fragment-efficiency of a proceduce call SC is computed by the following algorithm

that collects the execution time of all valid queries on a given fragment, as well as the

execution time of dependent queries.

Definition 7.4 (Fragment-Efficiency of a Procedure Call) Let SC be a procedure call,

seq the resulting execution sequence at the cache (as above), and F a fragment. The fragment-

efficiency result eff (F, SC) is defined as

1. result = 0

2. For all (si,#si, fragi,modei) ∈ seq

(a) If modei = valid and F ∈ fragi, then

i. result = result + ptC(si)

142

ii. For all (sj ,#sj, fragj,modej) ∈ seq with j > i

A. If modej = valid and sj ∈ DEP (si),

then result = result + ptC(sj)

3. Return result

Given a cache in stage t and all procedure calls SC1, . . . , SCn that are performed in t, the

fragment-efficency of a fragment F in t is defined by

mEfft(F) =
n
∑

i=1

eff (F (t), SC
(t)
i) (7.10)

The measure respresents the total execution time at a cache for valid queries. The higher

its value, the more query executions that affect F have been saved at the server. Note that

the measure cannot be computed for fragments that are not replicated. For such fragments

we set mEfft(F) = undef .

Recall that a replicated fragment F at a cache is synchronized which causes an additional

overhead at the server. Intuitively, the savings in mEfft(F) should exceed the costs for

synchronizing F , since otherwise the server would spend more computation resources into

the synchronization than it saves by valid query results on F . In Section 7.4 we provide a

lower bound for mEfft(F) that defines which fragments are useful for replication.

7.4 The Optimization Problem

In this section we give an overview on the model of the client-server system and summarize

all underlying assumptions. For this, we split the model in different categories and present

each in an own subsection starting with a captial letter M. Finally, we present the dynamic

optimization problem that defines the optimal performance of a stage.

M1 - The Server

The server is a multi-user system where transactions of different clients are executed con-

currently on shared data. We assume that the server has enough storage capacity to host

user and application data. Further, we assume that the server is always able to execute the

requests imposed by clients, possibly with a low performance. The server might also run

other applications, such that the remaining CPU power and main memory varies over time.

M2a - Caches at Clients

The server is connected to a set of C clients, each hosting a database cache. The number

of clients can vary over time. A client is either a single-user system, e.g., a user PC, or a

multi-user system, e.g., a web server.

143

M2b - Capture the Behavior and Performance of a Cache

In previous sections we have shown how to capture the behavior and the performance of a

cache along stages t1, . . . , ti by a function fC

yt = fC(xt, t)

that returns a vector yt of the performance measures

execution-performance: mPTt(S), mIdleC+
t (S), mIdlet(S)

fragment-performance: mEfft(F), mReadt(F), mWritet(F)

storage space: mDiskt, mSizet(F) (see below)

At each stage t a given configuration xt is running and we can exactly measure one value of

yt.

We assume that the value of all basic measures, t.i. ptC(s), ptS(s), and idle(s) for a query

s, are observed by taking the start and the end time of an action, e.g., an execution of a query

by the eval(.) function or an idle time. Hence, the measures do not consider intermediate idle

times that might occur if the underlying scheduler of the system assigns the CPU to another

process, or if a process is waiting for a data item that is read from the disk.

M2c - Properties of a Cache

A database cache at a client provides a variable disk space mDiskt ∈ N in KB. Note that

mDiskt denotes the disk space of a specific cache and that the space can differ among caches.

Note that a client can also host and run other applications. Hence, the available CPU power

of a cache can also be variable.

M3 - The Network

Each client is connected by a high-speed network with the server. This is necessary as the

intermediate communication of our simultaneous execution scheme requires a fast message

exchange. The network can also be used by other applications. Hence, the bandwith and

network speed can vary over time.

M4a - Fragments

The server operates on a set Ft = {F1, . . . , Fi} of fragments. Each fragment F ∈ Ft is of size

mSizet(F) (in KB). Size and number of fragments cannot be predicted and can change over

different stages, since they depend on user and application specific data (see Definition 4.4).

M4b - Replication of Fragments

A subset of the fragments in Ft is replicated to a cache. These fragments are periodically

updated by the server. The server applies an optimistic update strategy without concurrency

control, such that caches might operate on previous (wrong) versions of fragments. Such

144

errors are detected by the verification step of the simultaneous execution scheme. The set of

replicated fragments is set by the optimizer for each stage t.

M5a - Procedures

The server implements a set of St = {S1, . . . , Sn} stored procedures. A procedure call is

defined by a type S and a number of input parameters. The procedure code contains IO

statements s (SQL select, insert, delete or update). For a procedure S, each s is uniquely

identified by a number. Let ID(S) ⊂ N be the set of identifiers for S. The total number of

procedures is variable at run time (denoted by the subscript t) since database administrators

might remove and add procedures. Procedures are free of side-effects (see Assumption 4.1).

Procedures are exclusively invoked by clients.

M5b - Split of Procedures

A split of a procedure S is defined by split ⊆ ID(S). All possible splits of S are computed in

advance at compile time and denoted by Z(S) ⊆ 2ID(S). The split parameters are set at run

time by the optimizer at each cache independently. Note that ID(S) and Z(S) are constant

unless a stored procedure is not changed by the administrator. If the code of a procedure S is

changed at run time, then we assume that S is removed and the changed procedure appears

as a new one S′ in S. In addition, the sets Z(S′) and DEP (.) have to be computed for a

new procedure (see Sections 5.5 and 7.3.2).

M6 - Configuration Space of a Cache

Given the set of stored procedures St = {S1, . . . , Sn} of a stage t, the set of all possible

configurations of their split parameters is defined by

Zt = Z(S1) × · · · × Z(Sn)

The set of replicated fragments at a cache is defined by the parameter repl ⊆ Ft. Thus, the

configuration space (search space) of a cache is defined by

Zt × 2Ft

Thus, an element of the configuration space fully characterizes (1) the procedure execution

at a cache and the server, and (2) the set of replicated fragments. Given the behavior

yt = fC(xt, t) of a cache, the configuration vector xt is a tuple (zt, replt) of the configuration

space.

The size of the configuration space is approximated by

2|Ft| · | Z(S1) | · ... · | Z(Sn) |

≤ 2|Ft| · 2|ID(S1)| · ... · 2|ID(Sn)|

≤ 2|Ft|·|St|·m

with m = max(| ID(Si) |) over all Si ∈ St.

145

M7 - User-Provided Parameters

The goal is to determine a configuration (z, repl) dynamically at run time by the optimizer of

a cache. The administrator of the client-server system has only to define basic configuration

parameters that serve as general conditions for the optimizer.

For each fragment F , the parameter minEff defines the minimal amount of execution time

that results from computing valid query results on F at the cache. Hence, each replicated

fragment has to fullfill the condition

mEfft(F) ≥ minEff (7.11)

If the observed value mEfft(F) is below minEff, the fragment does not produce sufficient valid

query results, and thus should not further be replicated.

The parameters minRead and maxWrite define the read and write frequency of replicated

fragments. That is, only fragments with a read frequency of

mReadt(F) ≥ minRead (7.12)

and a write frequency of

mWritet(F) ≤ maxWrite (7.13)

are considered for replication.

Intuitively, good candidates for replication are fragments with a high read and a low write

frequency. The setting depends heavily on the system architecture, e.g., network speed and

computational power. In our experiments we found out that maxWrite should be at most 1

updates per second and minRead at least greater than maxWrite. The value of minEff can

be obtained by an experimental analysis of the synchronization effort of fragments. It should

reflect the average total execution time of a stage t at the server to replicate a fragment.

M8 - The Objective Function

We have introduced 3 measures for the execution-performance of a cache. For a procedure

S, these are the average processing time mPTt(S), the average corrected idle time at the

cache mIdleC+
t (S), and the average code balancing mIdlet(S). In the following we use

mPerft(S) that represents one of these measures. As shown by the experiments in Chapter

6 and the comparisons in Section 7.2, the performance of a cache is optimal if the value of

these measures is minimal.

Given a cache in stage t, its configuration xt = (zt, replt) and its behavior yt = fC(xt, t),

the objective function is defined by

g(x, y) =
∑

S∈St

y.mPerft(S) (7.14)

which values the used configuration against the resulting behavior of the cache. By applying

the following substitutions

mPerft(S, zt, replt) = y.mPerft(S)

g(zt, replt) = g(xt, yt)

146

we get a more convenient and readable form of the objective function

g(zt, replt) =
∑

S∈St

mPerft(S, zt, replt) (7.15)

Then, the minimum of gt(z, repl) represents the configuration (z∗, repl∗) with the optimal

performance in stage t.

M9 - Optimal Performance of a Stage

Intuitively, the optimization problem is formulated as follows: Find a configuration (zt′ , replt′)

for a next stage t′ > t which minimizes g(zt′ , replt′) with zt′ ∈ Zt, replt′ ⊆ Ft and all F ∈ repl

comply with access, efficiency and storage restrictions in t.

For a stage t′ the optimal configuration (z∗, repl∗) is defined as

(z∗, repl∗) = arg min
∑

S∈St

mPerft′(S, zt′ , replt′)

zt′ ∈ Zt

replt′ ⊆ Ft

subject to

∀F ∈ repl : mReadt(F) ≥ minRead (7.16)

∀F ∈ repl : mWritet(F) ≤ maxWrite (7.17)

∀F ∈ repl : mEfft(F) ≥ minEff ∨ (7.18)

mEfft(F) = undef
∑

F∈repl

mSizet(F) + ǫ ≤ mDiskt (7.19)

where ǫ is additional disk space that is reserved for replicated fragments that increase their

size during a stage. Its value depends on the data scheme and the type of data, e.g., numerical

or multi-media data.

M10 - Placement and Removal of Fragments

According to the above optimization problem a fragment is removed from a cache in the

following cases:

• It does not fit onto the disk any longer or a new fragment has been replicated, such

that due to the disk limit already replicated fragments have to be removed.

• The read and write access on a fragment does not correspond to the user-defined limits.

This can be the case if users change their access behavior.

• All queries on a fragment do not produce the user-defined minimal execution time of

computing valid query results. This will be the case if the error rate increases, e.g., due

to a higher system load or if the split parameters in z have been chosen not to execute

queries on that fragment any more.

147

A fragment is placed at a cache if its access frequency is above/below the user-defined access

limits and if it fits onto the disk of the cache.

However, after a fragment has been placed for the first time in stage t, it can already

be removed in the next stage if its fragment-efficiency is below the limit minEff. To avoid

frequent placements and removals of fragments, we can modify the constraints 7.16, 7.17 and

7.18 to consider more than one previous stage. We provide an example for constraint 7.18.

The others are analogously.

Let the above stage t′ be the i-th stage, say ti. Then a fragment is only removed if its

fragment efficiency is below the given limit for the m last stages.

∀F ∈ repl :

m
∑

j=1

1

m
· mEffti−j

(F) ≥ minEff ∨ (7.20)

mEffti−1
(F) = undef

As a result, fragments are placed and removed less frequently, but also poorly-performing

fragments are kept longer at a cache. The parameter m has to be set by administrators upon

a careful observation of re-placements of fragments. Note that the behavior of the systems

changes over time. Hence, a fragment that has been removed in stage t can be replaced in a

later stage t′ and even can produce the required amount that is defined by minEff.

7.5 Related Work

Continuous optimization problems have attracted many authors and a variety of solutions

have been proposed. Many authors argue that most of the real-world problems are non-

stationary and that the goal is no longer to find the optima, but to track their movement

through the search space as closely as possible.

Initial approaches have been proposed for on-line or real-time optimization of industrial

processes, e.g., [28, 30]. During the last decade, some of the static optimization techniques

have been extended to cope with dynamic environments, e.g., Dynamic Response Surface

Method (DRSM) [34], Adaptive Simulated Annealing [76], Dynamic Simplex Method [107].

Current reseach proposes evolutionary approaches to solve non-stationary problems, e.g.,

[46, 98]. The author of [13] surveys techniques that make evolutionary algorithms suitable

for changing optimization problems. To cope with cyclic and repetitive pattern in the search

space, these algorithms have been enhanced by dynamic and case-based memory models,

e.g., [36, 11], that allow to keep track of bad choices during the search and to remember good

decisions.

Existing techniques can be grouped into the categories of model-based, direct-search (or

heuristic-search) and hybrid approaches. Model-based approaches aim at deriving a process

model by analysing the input/output behavior of a system. However, whenever an accurate

process model is difficult to obtain or a measurement is expensive or time-consuming, as in

our case, direct-search, heuristic or hybrid techniques are more applicable.

148

We do not suggest a specific technique to solve our optimization problem. The proper

choice of an appropriate technique requires the implementation and a comparison of different

approaches which is beyond the scope of this work.

Instead, we propose a model in Chapter 9 to partially compute good-performing config-

uration parameters. That is, given a stage t and a obtained measurement yt = fC(xt, t) we

develop a stochastic model of the simultaneous execution scheme that allows us to compute

y′t = fC(x′
t, t) offline for all x′

t < xt on a partial ordering (Zt × 2Ft , <) Due to the partialness

of the model, the optimizer still has to apply another search strategy on the remaining part

of the search space, but can use the model to quickly compute alternative good-performing

configurations.

7.6 Summary and Discussion

The dynamics of client-server database systems causes a non-stationary optimization problem

and therefore requires a real-time (on-line) optimization technique for setting the configura-

tion parameters. The dynamics depends on various time-varying influencing factors on the

request and resource level that make it impossible to predict user behavior and the load-

conditions of the system.

To measure the performance we have introduced a couple of measures for the execution

of stored procedures and the placement of fragments. We define the execution-performance

in terms of the minimal processing time of a procedure, the maximal utilization of a cache

or the maximal code balancing of an execution between cache and server. The fragment-

performance is defined in terms of access frequencies for the read and write access, and the

fragment-effectiveness that reflects the frequency of valid queries computations at the cache.

We model the behavior of the system in stages of equal length. The dynamic optimization

problem defines the optimal performance of a stage by taking the behavior of previous stages

into account. The task of the optimizer is to detect changes in the environment, such as user

behavior or load-conditions, and to track the optima accordingly.

The presented performance measures and the resulting optimization problem can be ex-

tended into the following directions.

Proper Measurement of Synchronization Costs

The synchronization of a replicated fragment causes additional effort at the server. Given a

fragment F , intuitively, the savings that are gained by executing queries on F at the cache

should exceed its synchronization costs. Only then is the placement of the replicated fragment

cost-effective.

To obtain such a situation, we have introduced the notion of fragment-effectiveness

mEff(F) and the user-defined parameter minEff. Then, a fragment is only further repli-

cated if mEff(F) ≥ minEff holds. However, to set the parameter minEff manually by the

administrator, a precise observation of the synchronization effort is required.

149

To overcome this limitation, a cost model has to be developed that on the one side captures

the precise synchronization effort of a fragment and on the other side allows its comparison

to the savings of a fragment, e.g., mEff(F). By such a model, the user-defined parameter

minEff is not necessary and the optimization problem can be extended by a condition of the

form

∀F ∈ repl : mEfft(F) ≥ mSyncCostst(F) ∨

mEfft(F) = undef

where mSyncCostst(F) captures in some format the total processing to synchronize the

fragment F . Then, the problem is define mSyncCostst(F) in such a way that it is comparable

to mEfft(F).

Local vs. Global Optimization

From the perspective of a cache, the server is just a resource that, due to different load-

conditions, computes requests with a different efficiency. However, the load of the server also

depends on the optimization decisions of all connected caches. If caches perform most of the

procedure code by themselves, there is only a little load at the server and vice versa. Hence, a

better efficiency can be achieved by a global optimizer that for the entire client-server system

establishes the setting of the replication and split parameter.

A global optimization seems very promising, but it also requires the optimization of

multiple caches at the same time. Furthermore, the optimizer should not run on the server

which is often the central bottle neck of such systems. Instead, the optimization tasks should

be performed by the database caches that communicate with each other. In all a difficult,

but challenging task.

150

Chapter 8

Modeling the Process Time of the

Simultaneous Execution Scheme

The simultaneous execution scheme performs the procedure code at cache and server in a

parallel manner. As shown in Chapter 6, the resulting processing time depends on the split of

the code, the frequency of valid query results, and the execution time of IO statements. Based

on these parameters, we define a model for the simultaneous execution scheme that allows to

predict the resulting processing time. We estimate these parameters from a completed stage,

since according to Chapter 7 our model is of Markovian type . The feasibility of the model

is evaluated on experimental data of the ONE-System. In Chapter 9 we will introduce an

optimization technique in order to find a configuration at run time with best performance.

8.1 Problem Statement

Given a database cache and a completed data set at stage t, the first problem is to find

a suitable data structure which captures all relevant IO statements that are executed by a

procedure S in t. IO statements are relevant inasmuch as they affect the total processing

time of S.

Intuitively, these are all IO statements at the server and all query results that are delivered

by the cache and reused by the server. In Section 8.2 we look at these statements and define

the fundamental notion of a valid subsequence. It captures a subsequence of a execution

sequence at the server, where for all queries a valid result has been delivered by the cache. We

show that these subsequences reveal almost complete information about the code execution

at the cache that affects the processing time of S. Based on valid subsequences, we define in

Section 8.3 a tree-based execution history for capturing all executions of S in t.

In Chapter 6 we have roughly calculated the processing time of a procedure as depicted

in Figure 8.1. The idea is to compute the interweave of the code execution and therewith

the processing time of a procedure by taking basic parameters as the execution time of IO

statements, network communication time, verification time, etc. into account.

The second problem is to find a model that allows us to precisely calculate the average

151

1

Cache Network

6ms
0.1ms

27

6

5

9ms

20

verify 1.5ms

0.1ms

0.1ms
6ms

6ms 9ms

9ms

verify 1.5ms
wait

6

200.1ms

Server

Figure 8.1: Calculating the processing time of the simultaneous execution scheme.

processing time of S in t. Such a model has to consider the waiting times for query results

at the server which depend on the interweave of the execution.

In Section 8.4 we define all basic parameters that influence the processing time of the

simultaneous execution scheme and provide an algorithm that computes the average process-

ing time by simulating the behavior of the evalS(.) function at the server. Based on the

experimental data of the ONE-System, we evaluate the preciseness of the model in Section

8.5. We show that there is a low deviation between the original observed and the calculated

processing time.

8.2 Valid Subsequences

Given a simultaneous execution, the resulting execution sequences at cache and server pre-

cisely capture the set of executed IO statements. Execution sequences are initially defined

by Definition 4.2 and further extended in Section 7.2.1. In the following we use execution

sequences that consists of elements (s,#s,mode) where s is the statement identifier, #s the

statement counter, and mode ∈ {exec, undef, invalid, valid} the resulting execution mode.

The server constantly tries to use query results that are delivered by the cache. When an

invalid result has been delivered, the server switches from shared to normal mode. Then, the

remaining part is entirely executed at the server without considering any more results from

the database cache. As a result, the execution sequence at the server can be viewed in two

sequential parts — one for the shared mode and one for the normal mode.

Definition 8.1 (Valid Subsequence) Let

seq = (s1,#s1,mode1), . . . , (sn,#sn,moden)

152

be an execution sequence of a simultaneous execution at the server. A valid subsequence is a

subsequence of seq for m ≤ n, if

1. modei 6= invalid for 1 ≤ i < m, sm is a query with modem = invalid and the server

switches to normal mode in sm, or

2. modei 6= invalid for 1 ≤ i < m, sm is a query with modem = valid and modei 6= valid

for m + 1 ≤ i ≤ n, or

3. m = 0 with modei /∈ {valid, invalid} for 1 ≤ i ≤ n

Valid subsequences with modem = invalid (case 1) represent the switch to normal mode,

while executing the query sm and those with modem = valid (case 2) are used to represent

executions where all query results are valid. We also allow a null subsequence (case 3), since

a split can be chosen such that no query is executed at the cache. Hence, the modes valid

and invalid can not occur in such sequences.

8.2.1 Implied Operations at the Cache

A valid subsequence represents the execution of IO statements at the server. In the following

we take such a subsequence and reveal all information about the execution at the cache that

follow from the simultaneous execution scheme.

The following claim defines this information. We refer to the eval(.) which describes

how IO statements are executed on data. Recall that the functions evalC(.) and evalS(.)

have been introduced in Chapter 5 to implement cache- and server-specific behavior of the

simultaneous execution scheme. Both functions call the original function eval(.) that executes

an IO statement on data. The claim is applicable to all procedures types and is independent

of the chosen split parameter.

Claim 8.1 Let S be a procedure with split ∈ Z(S) ⊆ 2ID(S) and

seq = (s1,#s1,mode1), . . . , (sn,#sn,moden)

a valid subsequence. If si ∈ split the following properties hold for 1 ≤ i ≤ n:

1. For a query si the cache executes eval(.) with modei = valid to execute si on cache

data.

2. For delete(.) operations si the cache executes eval(.) to execute si on cache data.

3. For insert(.) operations si it is unknown if the cache has executed eval(.).

Proof:

Property 1:

According to the function evalS(.) (see Section 5.4.2) a query is only valid if the cache

has executed and delivered a correct query result. To execute the query, the cache

performs Step 3e of the function evalC(.) which calls the original function eval(.).

153

Property 2:

A delete(.) operation only results from DELETE and UPDATE statements in the original

procedure code that have been replaced by a query q and a loop of low-level updates

(see Section 4.2.3).

The statement UPDATE R SET Aj=<arith-expr> WHERE <cond> is translated into:

FOR row IN SELECT ID,* FROM R WHERE <cond> LOOP

row.Aj =<arith-expr’>;

delete(R, row.ID);

insert(R, row.ID, (row.A1, . . . , row.An));

END LOOP

Where <arith-expr’> results from replacing each Aj in <arith-expr> by row.Aj .

The statement DELETE FROM R WHERE <cond> is translated into:

FOR row IN SELECT ID,* FROM R WHERE <cond> LOOP

delete(R, row.ID);

END LOOP

The query q is necessary to retrieve the tuple identifiers tid that are required by the

low-level updates.

If q is not executed at the cache, delete(R, row.ID) also cannot be executed. Recall

from the run time analysis in Section 5.5 that we do not consider split parameters that

contain delete(R, row.ID) but not q. Hence, there is a query si ∈ split (i < n) in the

valid subsequence that corresponds to q with modei = valid. Its mode must be valid,

since as per the definition of a valid subsequence only the last element sn can be an

invalid query.

For the valid query q the cache has executed the corresponding loop. Since the result

of q is equal at cache and server (valid query), the cache also has performed the same

number of loops. The loop assigns each row of the result of q to a local variable row.

Hence, the cache calls evalC(.) for each delete(R, row.ID) with the same parameters

as the server.

The function evalC(.) (see Section 5.3.2) performs the Steps 2a, 2b and 2c. In Step 2a

the statement delete(R, row.ID) is checked for undef values. Since row is assigned by

the loop and not further modified by the loop body, there can be no undef values. In

Step 2b the availability of data is checked. The operation delete(R, row.ID) is always

executable on cache data, since it accesses a fragment that has already been used for

q. Finally, Step 2c executes delete(R, row.ID) on cache data by calling the function

eval(.).

Hence, for delete(.) operations si with si ∈ split, the cache executes eval(.) to execute

si on cache data.

154

Property 3:

The insert(R, row.ID, t) operation results only from UPDATE statements and the

insert(R, t) only from INSERT statements. For both, an execution at the server does

not necessarily imply an execution at the cache by the following observation:

The value t in insert(R, row.ID, t) is affected by computing

row.Aj =<arith-expr’>;

in the loop of the replaced UPDATE statement (see above). The assigned expression can

contain local variables that have not been assigned by the cache due to the partial exe-

cution. Hence, the expressions can be of value undef . Recall that the partial execution

depends on the chosen split parameter. Hence, an operation insert(R, row.ID, t) is not

executed in case of undef values and executed in case all variables in <arith-expr’>

have been properly assigned.

The same argumentation holds for operations insert(R, t) that result from replacing

INSERT INTO R VALUES (<expr>,..,<expr>) by

row:=(<expr>,..,<expr>);

insert(R, row);

Each expression potentially contains undef values.

Hence, the execution of eval(.) for insert operations is unknown. 2

8.2.2 Additional Operations at a Cache

Given a valid subsequence, Claim 8.1 shows the resulting executions of IO statements at a

cache. However, to estimate the execution-performance we also have to show that the cache

does not necessarily execute more than these statements. Consider, for example, the following

IF statement that is executed between two valid queries of a valid subsequence.

IF <cond> THEN

FOR row IN SELECT * FROM R LOOP

..

END LOOP

END IF

If the server derives the condition false and the cache true, the cache can execute much more

IO statements. Claim 8.1 only states which executions at the cache follow from executions

at the server, but it does not show the completeness of these executions.

In the following we show that the cache does not execute additional queries, delete(R, tid),

or insert(R, tid, t) operations. However, it can execute additional insert(R, t) operations.

Recall from Section 4.2.3 that delete(R, tid) and insert(R, tid, t) result from DELETE and

UPDATE statements and insert(R, t) from the INSERT statement.

155

First, we define the scope in which we view an execution at the cache as ”additional”.

Then we make an appropriate claim. Finally, we discuss possible modifications of the function

evalS(.) at the server that detect additionally executed insert(R, t) operations at the cache.

Last Considered Notification

We only consider executions at the cache as long they affect the processing time of a proce-

dure. According to Definition 8.1 (valid subsequence), the server does not consider further

notifications after all IO statements of a valid subsequence seq have been executed at the

server. Hence, only the execution of IO statements of a valid subsequence affect the processing

time at the server.

Consider the last element of the valid subsequence seq. If it is a invalid query q, then

exactly one notification is considered by the server. This notification indicates that the

result of q will be invalid. If the last element is a valid query, two possible notifications are

considered. The first indicates that the cache is going to execute the query and the second

delivers the result of q. However, the server can also skip the first notification (see Section

5.4.2).

In the following we call the first notification of the last element in seq the last considered

notification. There are three possibilities at the cache to send this notification:

1. Step 3 of the evalC(.) function puts a notification into the query result cache (QRC) if

(1) a query expression contains an undef value (e.g. caused by a variable that has not

been assigned, but used in the query expression), (2) data is not available or (3) the

query is going to be executed, but its result has not been delivered yet.

2. At the end of each execution at the cache, a notification end is put into the QRC. It

indicates that for the current execution no more query results will be delivered.

3. Whenever the execution engine at the cache jumps over a query that is intended to be

executed (q ∈ split), a undef notification is put into the QRC (see Section 5.3.1). Then

the server is informed that for this query no result will be delivered. The execution at

a cache jumps over a query if the query is part of a branch of an IF statement whose

condition is undef , or if the query is part of a body of a loop whose query is undef

(see also Section 5.3.1).

No Additional Operations at the Cache Except Insert Operations

Claim 8.1 lists all executions at the cache that can be derived from a valid subsequence. The

following claim states that at a cache there can be additional insert(R, t) operations, but not

additional queries, delete(R, tid) and insert(R, tid, t) operations.

Claim 8.2 Let S be a procedure that is simultaneously executed for a split ∈ Z(S). Let

seq be the resulting valid subsequence. Let evalC(s,#s, e) be a call at the cache with s ∈

split that does not send the last considered notification and that is executed before the last

156

considered notification has been sent. Then, (s,#s,mode) ∈ seq holds for all such s for

mode ∈ {exec, valid}, except when e is an insert(R, t) operation.

We do not consider the function call of evalC(.) that sends the last notification, since the no-

tification is transmitted before the query in evalC(.) is executed. Hence, the query execution

time does not affect the processing time at the server.

Proof: We separately prove the claim for queries and low-level updates.

Case I: Queries

Assume there is a call of evalC(s,#s, e) at the cache with (s,#s,mode) /∈ seq for

mode ∈ {invalid, valid}. Then, independently from the execution of Step 3 in evalC(.),

at least one notification will be sent to the server that documents the execution of the

query s at the cache.

As soon as there is a notification that is not expected by the server or that does not

correspond to the query that is currently processed, the server switches to normal

mode and ignores all of the following notifications including query results. Recall from

function evalS(.) (see Section 5.4.2) that the server always selects the oldest entry from

the QRC.

Case IA: s is executed before a valid query in seq

Consider one of the queries q in seq with mode valid. If the cache executes

another query s ∈ split before q is executed, and also the server does not execute

q, a notification of s appears before q in the QRC. Since the server always selects

the oldest entry, s is retrieved instead of q. Hence, while executing q, the server

detects an invalid query, since s does not correspond to the query q.

Since by the definition of a valid subsequence the result of q is valid, the server

must have retrieved the correct entry for q from the QRC. Hence, the cache has

not performed evalC(s,#s, e) before a valid query in seq.

Case Bib: s is executed after the last valid query in seq

Consider the last valid query q in seq and the query s (as above) that is executed

after q at the cache. Again the execution of s causes an entry in the QRC with

the statement identifier of s.

Let q′ be the invalid query in the valid subsequence. In order to verify q′, the server

retrieves the oldest entry of the QRC and compares the statement identifiers. Since

s has been put first, it retrieves s instead of q′. As both are different, the server

detects an invalid query and switches to normal mode. Hence, the query s itself

causes the last considered notification. Since the Claim excludes calls of evalC(.)

that send the last considered notification, such a s does not exist.

Case II: Low-level updates

157

We separately consider the three types of low-level updates. Let evalC(s,#s,mode) be

a call of a low-level update s with mode = exec.

Case Ilia: s is an delete(R, tid) operation

As argued in the Proof of Claim 8.1, an delete(R, tid) operation results from a

DELETE or UPDATE statement that requires a query q to be executed at the cache.

Hence, the cache must have called evalC(.) for q. According to the Claim the call

does not send the last considered notification. By the results of Case I the query

q and the is either not executed, or the query q has also been executed at the

server. In the latter case, both results at cache and server must be equal. Thus,

cache and server perform the same loop body and the server also executes the

same delete(R, tid) operation. Hence, (s,#s,mode) ∈ seq.

Case Ii: s in an insert(R, tid, t) operation

As argued in the Proof of Claim 8.1, an insert(R, tid, t) operation results only

from an UPDATE statement that requires a query to appear in a valid subsequence.

Analogously to Case Ilia, (s,#s,mode) ∈ seq.

Case Ii: s is an insert(R, t) operation

For an insert(R, t) no extra query is required at the cache. We show the exis-

tence of additional insert(R, t) operations by the following example. Consider the

procedure code

1 SELECT <attar> INTO var1 FROM R1 WHERE <cond>;

2 var2:=true;

3 IF var1 THEN

4 var2:=false;

5 END IF;

6 IF var2 THEN

7 INSERT INTO R2 VALUES (’error’);

8 END IF;

The line of code represents the statement identifier. Assume the procedure is

executed with split = {7} and that the local variable var1 is set to true.

The server executes the first query and both assignments on var2. Hence, var2

is false and the server does not execute the insert operation. The cache does

not execute the first query, since 1 /∈ split. Hence, var1 is set to undef and the

assignment var2:=false is not executed. As a result, var2 is true and the cache

does execute the insert operation.

Note that the cache can only execute additional insert operations in branches

that do not contain queries, delete(R, tid), or insert(R, tid, t) operations, since

according to Case I, Case Ilia and Case Ii the cache does not execute additional

queries, delete(R, tid) and insert(R, tid, t) operations.

158

2

In the following subsections we suggest two modifications of the function evalS(.) that reduce

the number of additionally performed insert operations at the cache.

Detect Additional Operations For Each Delivered Query

For each query at the server for which a delivered result is considered, we perform an addi-

tional test to check if the cache has executed additional insert operations. For this, we add

the following code between Step 1e and 1f of the evalS(.) function (see Section 5.4.2).

Let (s,#s, e, val) be an entry in the execution sequence seq′ delivered by the cache

with e as an insert(R, t) operation. If there is no element (s′,#s′, e′, val′) in seq

with s = s′, set normal mode and jump to 2.

This modification checks whether the cache has executed insert operations that have not

been executed by the server. For this, we simply check the execution sequence seq′ that is

delivered by the cache.

As a result, a valid query can also be rejected at the server if the cache has performed

additional insert operations. Thus, by considering a valid subsequence, the only possibility

for additional insert operations at the cache is in between a valid and invalid query. Between

two valid queries, say q1, q2, there can be no such insert operations, since the call of evalS(.)

for q2 at the server would detect the additional insert operations and q2 would be invalid.

Additional Notifications For Insert Operations

Another possibility is that a cache sends a notification for each insert operations by using the

query result cache (QRC). Whenever the server is informed about an insert operation that it

has not executed, it switches to normal mode. However, this would require a major change

of our execution protocol. The advantage of this modification is that an additional insert is

immediately known by the server.

In the following, we consider the first modification and accept possible additional inserts

at a cache.

8.3 Capture the Run Time Behavior of Stored Procedures

At run time the execution of a procedure produces different execution sequences and therefore

different valid subsequences. First, we discuss an upper bound for the number of different

valid subsequences, then we define a tree-based run time history of stored procedures.

8.3.1 An Upper Bound for the Number of Valid Subsequences

At run time a stored procedure S produces an execution sequence

seq = (s1,#s1,mode1), . . . , (sk,#sk,modek)

159

of executed IO statements (queries and low-level updates) at the server. Based on this we

define an execution path through the procedure code of S by the sequence

path = (s1,#s1), . . . , (sk,#sk)

which only contains the nodes ni = (si,#si) with the statement identifier si ∈ ID(S) and

the number #si of repetitions of si for all 1 ≤ i ≤ k.

Given a split ∈ Z(S) ⊆ sID(S), the server starts the execution of S in shared mode. In

this phase of the execution, the modei of all queries si ∈ split is valid and that of all other

IO statements si is exec. Once an invalid query has been delivered by the cache, the server

switches to normal mode. Then, the modei of all queries si ∈ split is invalid and that of all

other IO statements si is exec.

Given an execution path of length k, the different combinations of the values of modei

can be characterized by

(valid | exec)(0,a), (invalid | exec)(0,k−a).

It represents all possible sequences of the execution mode for the sequence seq. Cardinalities

are denoted by (0, a) or (0, k − a) with 0 as minimal number and a as maximal number of

repetitions. The left expression represents the shared mode and right one the normal mode.

Let m ≤ k be the number of queries of path. There are exactly m possible sequences

with invalid on the i-th query for 1 ≤ i ≤ m, and there is one sequence where all queries are

valid. Hence, there are m + 1 ≤ k + 1 possible valid subsequences for an execution path of

length k.

At run time a procedure produces different execution paths. We summarize these paths

by a tree-based execution history. The tree is a special directed acyclic graph. There is

exactly one node (root node) that has no incoming edges and several nodes (leaf nodes) that

have no outgoing edges. A path in the tree is a sequence of nodes n1, . . . , ni (i > 0) of the

graph where each node nl is a direct predecessor of node nl+1 (1 ≤ l ≤ i−1). There is exactly

one path from the root node to each other node of the graph. A path from the root node to

a leaf node is called root-path. Given a node n and a path p starting at n, we denote both

as n; p.

Definition 8.2 (Execution History) Let t be a stage, S a procedure and path1, . . . , pathk

all resulting distinct execution paths in t. The execution history with a root node r and leaf

nodes n1, . . . , nk is denoted histt(S) and there is exactly one and only root-path in histt(S)

for each triple ((r; pathi);ni) (1 ≤ i ≤ k).

The root node of histt(S) is not part of an execution path. We had to add this root node as

two different execution paths do not necessarily start with the same IO statement. Consider,

for example, the following piece of procedure code:

BEGIN

IF <cond> THEN

160

INSERT INTO R1 VALUES (a);

ELSE

INSERT INTO R2 VALUES (a);

END IF

..

END

Both insert operation have a different identifier. Hence, execution paths can have different

first elements. The corresponding graph of the execution history is shown at the left side of

Figure 8.2.

Further, we had to add extra leaf nodes that also are not part of an execution path, since

an execution path might fully include another execution path, such that both paths cannot

be distinguished. Consider, for example, the following piece of procedure code:

BEGIN

SELECT ID INTO var1 FROM R1 WHERE <cond>;

IF var1>0 THEN

RETURN;

END IF

SELECT ID INTO var2 FROM R2 WHERE <cond>;

RETURN

END

At run time there are two possible execution paths. The corresponding graph of the execution

history is shown at the right side of Figure 8.2. The first includes only the first query and the

second both. Hence, the second path fully includes the first. The extra leaf nodes represent

both RETURN statements and allow us to distinguish between both paths in the execution

history.

node
leaf

node
leaf

node
leaf

root

node
leaf

root

SELECT

SELECT

INSERT INSERT

Figure 8.2: Example of execution histories.

The definition of the execution history only considers distinct execution paths path1, . . . ,

pathk. As a result, the last node of an execution path is always connected to a single leaf

node nk. If such a last node would be connected to more than one leaf node, then by the

definition of the history there must be two paths pathi = pathj with i 6= j. Then, pathi and

pathj are not distinct. Hence, a leaf node represents exactly one execution path.

161

Let split ∈ Z(S), k be the number of nodes in histt(S) and m ≤ k be the number of

nodes in histt(S) that represent a query in split. Then, each path from the root node of

histt(S) to one of the m nodes represents valid subsequences, where the last node of the valid

subsequence represents the invalid query. Hence, in histt(S) there are at most m ≤ k valid

subsequences that end with an invalid query.

Leaf nodes represent valid subsequences, where all queries are valid. In a tree with k nodes

there are at most k leaf nodes which do not correspond to nodes that represent queries. Hence,

there are at most k valid subsequences in a history and each valid subsequence is represented

by a single node in the tree.

8.3.2 Execution Histories of Stored Procedures

The execution history hist(S) of a procedure S is the fundamental data structure by which

we define a model for estimating the performance related to different split parameters. In

the following paragraphs we extend the history step by step and add more information about

the run time behavior of a procedure.

We assume that the resulting execution sequence of the server is sent to the cache after the

execution of a procedure has been completed. The cache adds the resulting execution path

to the history, if it does not exist yet, e.g. added by a previous execution of a procedure that

has followed the same path. Additionally, the cache maintains several counters as explained

below. Thus, the history is automatically updated by the cache during run time.

I. Capture Frequency of Valid Subsequences

As noted above, an execution history with k nodes represents at most k valid subsequences.

For collecting the frequency of these different subsequences at run time, we add the following

counters to those nodes.

Let n be a node that represents a query. The counter cinvalid(n) captures the number of

valid subsequences during stage t of which the query is invalid. Recall that when this query is

executed the server switches to normal mode, where no more delivered results are considered.

The counter cvalid(n) is added to leaf nodes. It captures the number of valid subsequences

during a stage t where all queries are valid. Recall that after s the server expects no more

results from a cache. Hence, the cache has delivered only valid results during the entire

execution of a procedure.

II. Execution Frequency of IO Statements

Besides valid subsequences, we capture the execution frequency of IO statements on different

execution paths at the server. Each non-leaf node n of the tree is extended by a counter

cexec(n). For each execution path at run time at the server, the counter cexec(n) is incremented

by one for each node on the path. Hence, it is increased for each call of the function evalS(.).

For the root node r of histt(S), the value cexec(r) represents the total number of executions

of S in stage t.

162

Let n be a node that represents a query. Additionally, we add the counter creuse(n) ≤

cexec(n) which is increased whenever the function evalS(.) has reused the delivered result

instead of executing the query on server data.

III. Frequency of Insert Operations

As shown by Claim 8.1, a valid subsequence does not reveal the number of executions of

insert operations at the cache. Only the execution of queries and delete operations is known.

For nodes that represent an insert operation, we add a counter cinsert(n) that captures the

number of executions at the cache. It is increased whenever the insert operation on the

execution path is also executed by the cache.

8.4 Modeling the Simultaneous Execution Scheme

Given a procedure S, statements s ∈ ID(S) and the execution history histt(S), we can model

the resulting processing time PT which includes idle times at the server.

8.4.1 Basic Execution Parameters

Our model used the following basic parameters.

1. ptC(s) - Processing time of statement s at the cache.

2. ptS(s) - Processing time of statement s at the server.

3. tcache - Access time of the query result cache (QRC).

4. tnet - Network communication time between cache and server.

5. tverify - Verification time at a cache during a call of evalC(.). It includes the function

calls of access(.) that determine the fragment access (see Definition 4.9).

6. tverify - Verification time at the server during a call of evalS(.). It includes the function

calls of access(.) and the comparison of the execution sequences (see Step 1f and 1g of

Definition 5.4).

7. tfinal - Additional overhead of an execution. This includes the commit phase and the

execution of procedure code that does not contain IO statements.

The first two parameters are related to each procedure, while the others apply to all executions

at a cache.

The parameters represent averages in stage t. Since the verification includes a comparison

of fragment versions and update sequences, we assume that it is independent from the query

and its result. Further, we do not distinguish between read/write access of the QRC and the

size of the read or written result.

163

The final commit is captured within tfinal. We summarize each commit by this time and

do not consider the issue that a different number of updates can cause different commit times.

For a node n = (s,#s) in the execution tree we also use ptC(n) instead of ptC(s) and

ptS(n) instead of ptS(s).

8.4.2 A Model of the Simultaneous Execution Scheme

First, we present the basic model for capturing the simultaneous execution scheme. We

consider a procedure S with its execution history histt(S) of length k and a valid subsequence

(s1,#s1,mode1), . . . , (si,#si,modei)

with 1 ≤ i ≤ k, modei ∈ {invalid, valid} and modej ∈ {exec, valid} for 1 ≤ j ≤ i − 1. Note

that the execution path does not include the root node and leaf nodes.

We calculate the processing time of n1, . . . , nk in two steps:

• First, we compute the execution time of the valid subsequence n1, . . . , ni at the server

which represents the shared mode and includes the idle times.

• Second, we compute the execution time of ni+1, . . . , nk where all remaining IO state-

ments are processed at the server without considering delivered query results from the

cache.

1. Processing Time of a Valid Subsequence

The execution time of a valid subsequence n1, . . . , ni is calculated by the following algorithm.

It simulates the behavior of the evalS(.) function at the server and includes waiting times.

We have to carefully handle waiting times as the following observation demonstrates.

Let t1 be the time when a cache has delivered a result and t2 the time when the server

expects the result. The waiting time at the server is computed by t1 − t2. A positive

waiting time means that the server has to wait. A negative waiting time means that a cache

has delivered the result before it is required by the server. However, in the latter case the

effective waiting time at the server is 0, since the result has already been delivered.

Algorithm 8.1 (Processing Time of a Valid Subsequence)

Syntax: PTsub(split, (n1, . . . , ni),mode), nj = (sj ,#sj), 1 ≤ j ≤ i

Input: split parameter, valid subsequence, execution mode of last query of valid

subsequence

Output: processing time in shared mode, PTS

Local Variables: PTC processing time at the cache, PTS processing time at the server

1. // Initialize, the processing time at cache and server.

PTC = PTS = 0

2. // Compute the processing time stepwise for each element of the valid subsequence.

// The last query ni is handled separately.

For j = 1 to i − 1 do

164

(a) // The cache does not execute IO statements that do not appear in split.

// Hence, PTC does not change.

// At the server we add the execution time of the IO statement sj.

If sj /∈ split then PTS = PTS + ptS(sj) endif

(b) // A delete operation in split at the server is according to Claim 8.1 also

// executed at the cache. Additionally the cache has to determine

// the fragment access tverifyC for sj.

If sj ∈ split and sj is a delete operation then

PTS = PTS + ptS(sj)

PTC = PTC + tverifyC + ptC(sj)

endif

(c) // Analogous to delete operations we handle insert operations.

// The factor represents the average ratio of inserts and executions

// at the cache. It is used, since according to Claim 8.1 the

// executions of inserts is unknown and according to Claim 8.2

// there can be further inserts.

If sj ∈ split and sj is an insert operation, then

PTS = PTS + ptS(sj)

PTC = PTC + tverifyC +
cinsert(nj)

cexec(nj)
· ptC(sj)

endif

(d) // For queries in split waiting times have to be computed.

If sj ∈ split and sj is query then

// The cache checks if sj can be executed and

// sends a message to the server.

PTC = PTC + tverifyC

// The server checks the QRC.

PTS = PTS + tcache

// If no entry exists, it has to wait for the message.

// Note that the messages is delayed by tnet.

PTS = PTS + wait(max{PTC + tnet − PTS), 0}

// The server checks the fragment access and verifies the query.

// Note that up to ni−1 all queries are valid.

PTS = PTS + tverifyS

// In the meantime the cache executes the query and

// delivers the result.

PTC = PTC + ptC(sj)

// The server has possibly to wait for the result.

PTS = PTS + wait(max{PTC + tnet − PTS , 0})

endif

endfor

165

3. // If the last query si is invalid, wait at most for the first message.

// Check fragment access, verify the query and execute si at the server.

If mode = invalid then

PTC = PTC + tverifyC

PTS = PTS + tcache

PTS = PTS + wait(max{PTC + tnet − PTS , 0}) + tverifyS + ptS(si)

endif

4. // If the last query si is valid, proceed analogously to Step 2d.

If mode = valid then

PTC = PTC + tverifyC

PTS = PTS + tcache

PTS = PTS + wait(max{PTC + tnet − PTS , 0}) + tverifyS

PTC = PTC + ptC(si)

PTS = PTS + wait(max{PTC + tnet − PTS , 0})

endif

5. Return PTS

Our model does not consider insert operations that have been executed at the cache, but not

at the server. Further, we do not distinguish whether the last invalid query is detected in the

Steps 1b-1d or 1f-1g of the evalS(.) function. Only the latter two steps cause a verification

time tverifyS . However, to show the feasibility of our approach the above model is sufficient.

2. Processing Time of an Execution Path

Given the above execution path n1, . . . , nk with n1, . . . , ni as the valid subsequence, the total

processing time is calculated by the following formula.

PTsub(split, (n1, . . . , ni),mode) =

PTsub(split, (n1, . . . , ni),modei) +

k
∑

j=i+1

ptS(nj) + tfinal

For the remaining part of the execution we simply add the execution time of all IO state-

ments and the additional overhead as the commit time. Recall that after executing a valid

subsequence, the server runs either in normal mode where no computations of the cache are

taken into account, or the server does not expect more queries. In both cases there is no

waiting time and no additional overhead that is caused by accessing the query result cache

or verifying query access.

8.4.3 The Average Processing Time of a Procedure

We have shown the calculation for a single execution path. However, at run time a procedure

S produces different execution paths with different frequencies. In the following we determine

the average processing time over all execution paths that have been recorded in histt(S).

166

Consider a valid subsequence for S that ends with a node n. The node n can be connected

to multiple child nodes in histt(S) that represent different execution paths that are executed

after n. Clearly, the processing time of the valid subsequence depends on the path from n to

a leaf node that is chosen at run time. Let Nsub(n) be the set of nodes that can be reached

by following the outgoing edges of n. The node n is executed cexec(n) times at run time. A

node n′ in Nsub(n) is executed at most as much as n, hence cexec(n
′) ≤ cexec(n) holds.

Let n1, . . . , nk with k > 0 be a valid subsequence in histt(S) without the root node at the

beginning, nk a node that represents a query and an execution mode mode ∈ {invalid, valid}

of node nk. Then, its average processing time over all possible paths in Nsub(nk) can be

approximated by

PTsub(split, (n1, . . . , nk),mode) +
∑

n′∈Nsub(nk)

cexec(n
′)

cexec(nk)
· ptS(n′) + tfinal (8.1)

We add the execution time of all corresponding IO statements in Nsub(nk) and weight it by

the execution frequency

cexec(n
′)

cexec(nk)

of a node n′. Note that the execution time of nk is considered within PTsub(.).

Then, the average processing time of a procedure results from summing the processing

time over all valid subsequences w.r.t. to their execution frequencies. Given the total number

cexec(r) of executions of a procedure with r as the root node of the history, the execution

frequency of a valid subsequence, represented by a node n, is defined by

cinvalid(n)

cexec(r)

cvalid(n)

cexec(r)

where n represents either a query or a leaf node with cexec(r) > 0. Since an execution must

result into a valid subsequence, the sum over the counters cinvalid(n) and cinvalid(n) is cexec(r).

The following Algorithm computes this average processing time according to Equation

8.1.

Algorithm 8.2 (Average Processing Time of a Procedure)

Syntax: PT (split, histt(S))

Input: split parameter, execution history of a procedure S, tfinal

Output: average processing time in stage t

Side Effects: returns undef for cexec = 0

1. // initialize processing time

PT = 0

2. // for all valid subsequences with an invalid query at the end

For all distinct root-paths r, n1, . . . , nk

167

with r at the root node and cinvalid(nk) > 0:

PT = PT +
cinvalid(nk)

cexec(r)
·

(

PTsub(split, (n1, . . . , nk), invalid) +
∑

n′∈Nsub(nk)

cexec(n
′)

cexec(nk)
· ptS(n′)

)

3. // for all valid subsequences without invalid queries

For all distinct root-paths r, n1, . . . , nk, nleaf

with r at the root node, nleaf a leaf node and cvalid(nleaf) > 0:

// determine the last valid query in the path

Let nq = (s,#s) be the last node in n1, . . . , nk with s as query and s ∈ split

PT = PT +
cvalid(nleaf)

cexec(r)
·

(

PTsub(split, (n1, . . . , nq), valid) +
∑

n′∈Nsub(nq)

cexec(n
′)

cexec(nq)
· ptS(n′)

)

4. Return PT + tfinal

8.5 Preciseness of the Model

We have evaluated the preciseness of our estimation procedure and the correctness of our

model within various experiments of the simultaneous execution scheme. Therefore we com-

pared the observed and calculated processing time of stored procedures.

8.5.1 Evaluation Set

In Chapter 6 we performed experiments with one- and four-client systems. Each experiment

has been run for a single stored procedure that is executed for 273 different configurations:

21 different values of the split parameter and 13 different values for the delay of the synchro-

nization of cache data. Recall, that the latter parameter is used to generate different error

rates. For each of the 273 configurations the procedure has been executed 150-420 times

within a stage. The number of executions depends on the number of clients and the chosen

split parameter which balances the code between cache and server.

Each execution of the procedure for a specific configuration produces an individual execu-

tion history. We present two such histories in Figure 8.3 that correspond to the experiment

at Figure 6.18. Recall that the procedure is a sequence of 20 queries. Hence, its execution

history contains only a single execution path. Both sequences show the configuration where

the server executes the queries 1 to 5 and the cache 6 to 20. The first sequence refers to

the lowest possible update delay and the second for the highest. While the first shows that

almost all 15 query executions are valid (green box), the second produces a high number of

168

server cache

2 3 4 65 7 8 9 11 12 13 14 151root 10

226

16 17 18 19 20

0 0 0 0 0 8 1 6 7 03 6 2062 49 25 19 17 13
8

2 3 4 65 7 8 9 11 12 13 14 151root 10

406

16 17 18 19 20

cacheserver

0 0 0 0 0 1 0 0 1 00 1 2 0 0
393
20 2 22

Figure 8.3: Example of an execution history. The blue box represents the counter cexec, the

white box cinvalid and the green box a leaf node and cvalid. First (second) sequence refers to

lowest (highest) possible update delay.

invalid queries (white boxes). We have skipped other counters at the nodes, since their value

follows from the presented ones due to the single path in the history. The counter cexec at

the root node represents the total number of executions which is equal to the values of all

other counters cexec.

As a result of the experiment, we obtain for each of the 273 configurations a process-

ing time, an execution history, and the values of the basic parameters. Each value of the

processing time represents the average over all executions within the 80 seconds. The basic

parameters are (see also Chapter 6):

1. ptC = 5.8ms is constant for all configurations,

2. ptC ranges from 5ms to 16ms according to the configuration,

3. net = 0.1ms,

4. tverifyS ranges from 0ms to 2ms according to the configuration,

5. tverifyC , tcache have been set to 0, since the ONE-System does not implement fragment

detection and a query result cache and

6. tfinal = 3ms represents the average observed overhead of 2-4ms.

Given this information, we are able to compute the average processing time according to

Algorithm 8.2 for each of the 273 configurations.

8.5.2 Compare Observed and Calculated Processing Time

Figures 8.4 and 8.5 show the observed and calculated processing time of the experiments in

the Figures 6.12 and 6.18. As the figures show, both values are very close even in case of

a high error rate. Since the Figures do not reveal the precise deviation of the observed

169

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 120

 125

 130

 140

 150

 180
 210 240

 270

 300

 330

u
p

d
a

te
D

e
la

y

| split |

calculated processing time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 125

 120

 130

 140

 150

 180 210

 240

 270

 300

 330

 270

 300

Figure 8.4: Observed (left) and calculated (right) processing time for four clients with de-

pendent queries.

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 95

 100

 130 160

 190 220 280

 250

 310

u
p

d
a

te
D

e
la

y
| split |

calculated processing time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 95

 100

 130 160

 190
 220

 250
 280

 300

Figure 8.5: Observed (left) and calculated (right) processing time for four clients with inde-

pendent queries.

and calculated values, we take a closer look at the frequency density and distribution of the

deviation in the next Section.

8.5.3 Analyse Frequency Density and Distribution

As result of the above calculation we get a set of tuples (obsi, cali) with 1 ≤ i ≤ 273, obsi as

the observed and cali as the calculated processing time. To analyse the deviation of observed

and calculated values, we define two characteristics — the frequency distribution F (x) and

the frequency density f(x) for the error rate

1 −
obsi

cali
.

170

The first represents the frequency of error rates below a given x. For −∞ < x < ∞ and

1 ≤ i ≤ 273 it is defined as

F (x) =
1

273
·

∣

∣

∣

∣

{

(obsi, cali)
∣

∣

∣
1 −

obsi

cali
≤ x

}
∣

∣

∣

∣

(8.2)

Note that F (−∞) = 0 and F (∞) = 1.

The frequency density f(x) tells us how the different values of x (deviations) are dis-

tributed over the 273 pairs. It is defined as a proxy of F (x).

Figure 8.6 shows the resulting frequency density and distribution for the experiments

of Figures 8.4 and 8.5. The dotted box marks the deviation of the interval [x1, x2] with

fr
eq

ue
nc

y

deviation

density

distribution

 0

 1

−0.1 −0.05 0.05 0.1
 0

 90% 90%

deviation

fr
eq

ue
nc

y

density

distribution

 0

 1

−0.1 −0.05 0.05 0.1
 0

Figure 8.6: Frequency density (black) and distribution (blue) for simultaneous execution

scheme without (left) and with (right) independent queries (four clients).

f(x1) = 0.05 to f(x2) = 0.95. It shows that the deviation is in a range of -5% and 5% for

over 90% of the observations.

8.6 Summary and Discussion

Given a cache, a server and a load at stage t, we have developed a model that calculates

the average processing time of a procedure executed in t. The model requires the parameter

split of the procedure code at t, the execution frequencies of valid subsequences and a couple

of basic parameters. The preciseness of the model has been evaluated with respect to error

rates of observed and computed performance averages.

Algorithm 8.2 computes the average processing time for the given split. A challenging

question arises when running the algorithm with split′ 6= split. In this situation, Algorithm

Algorithm 8.2 computes the average processing time for the behavior of a procedure, but for

a another split of the procedure code. Intuitively this allows to compute the processing time

(performance) of different split parameters. However, there are some hidden problems that

we discuss in detail in the next Chapter. Furthermore, we show how the model can be used

to provide a partial soultion of the optimization problem as defined in Chapter 7.

171

Extensions

A weakness of our model is the separate handling of insert(R, t) operations, whose execution

at a cache is not fully captured by an execution history. Therefore, we use a special counter

cinsert that represents those cases. At the end of Section 8.2.2 we have discussed possible

extentions of the simultaneous execution scheme to overcome this limitation.

As mentioned in Section 8.4.2, the model of calculating the processing time of a valid sub-

sequence can be improved by mapping the behavior of the function evalS(.) more accurately.

This concerns the handling of the first invalid query of a valid subsequence which results

from two cases. The first detects an invalid query on the read entry of the query result cache

(Step 1b-1d of evalS(.)) and the second requires the determination of the fragment access of

queries and low-level updates at the server which cause additional computational overhead

(Step 1e of evalS(.)). Currently, our model only covers the second case. If both cases are

handled properly, we expect an improved precisness of the model.

Besides the processing time of a procedure, we have defined in Section 7.2 alternative

performance measures for a maximal cache utilization and a maximal code balancing between

cache and server. To calculate the measures, both require the idle time of a cache during

an execution of a procedure. This time can only be determined if the total processing time

of a procedure at the cache is known. Hence, the calculated processing time is a base for

calculating both measures.

The computation of the processing time mPT (.) of a procedure is the base for computing

the other performance measures that target on a maximal cache utilization and maximal code

balancing between cache and server. As defined in Section 7.2, both require the idle time of

a cache during an execution of a procedure. This time can only be determined if the total

processing time of a procedure at the cache is known.

Limitations

The use of execution frequencies for queries and low-level updates requires a reasonable high

amount of executions at run time. Obviously, the model will be imprecise if only a few

executions took place. In this case, the counters measure badly the average behavior of a

procedure.

172

Chapter 9

Run Time Optimization

In Chapter 8 we have defined and evaluated a model for a simultaneous execution scheme

that allows us to calculate the resulting processing time of a procedure. The model uses run

time data of a completed stage. In this chapter we use the model to predict the execution-

performance of a cache, hence allowing us to predict the processing time of procedures given

alternative configurations. As we will show, the model provides a partial solution to the

optimization problem, too. Furthermore, we evaluate the precision of the prediction technique

and discuss a greedy algorithm as an example for integrating the prediction technique into

an optimization algorithm.

9.1 Overview

In Chapter 7 we have formulated the optimization problem that has to be solved by the

optimizer of a database cache: Given a database cache that is connected to a server, a set

St of stored procedures, run time data of a completed stage t and unknown future load

conditions in t′ > t, find a configuration (zt′ , replt′) for the next stage t′ which minimizes the

execution-performance mPerft′(.) for all stored procedures St

(z∗, repl∗) = arg min
∑

S∈St

mPerft′(S, zt′ , replt′)

zt′ ∈ Zt

replt′ ⊆ Ft

subject to access, efficiency and storage restrictions on the fragments in replt′ . The restric-

tions are defined in Section 7.4. Recall that Zt × Ft is the configuration space where Ft

represents the set of all fragments and Zt all combinations of split parameters for the proce-

dures in St. As discussed in Section 7.2, the execution-performance mPerft′(.) can be defined

in terms of the (1) processing time mPTt′(.), (2) cache utilization mIdleC+
t′ (.) or (3) code

balancing mIdlet′(.). In this Chapter we only deal with (1) and set mPerft′(.) = mPTt′(.).

Given t, the behavior of a cache is captured by a function yt = fC(xt, t) where yt is a

vector of run time measures (see also Chapter 7) and xt the configuration xt = (z, repl). As

173

stated in Section 8.3 the run time behavior of the stored procedures St = {S1, . . . , Sk} is

captured by execution histories. Therefore we have available

(

hist
(i)
t (Si)

)

i=1,...,k
(9.1)

where we also use the notation y.histit(Si), since these histories are run time measures too.

According to Chapter 8, the model of the simultaneous execution scheme allows us to calculate

the average observed processing time mPTt(Si) in yt with 1 ≤ i ≤ k, hence to predict the

execution-performance from data of the execution histories.

k
∑

i=1

y.mPTt(Si) ≈
k
∑

i=1

PT (z.Si, y.histit(Si)) (9.2)

PT (.) represents the calculated processing time according to Algorithm 8.2. The notion z.Si

represents the split parameter in z for the procedure Si.

9.1.1 Problem Statement

We define the problem as follows:

Given the observed run time behavior yt = fC(xt, t) of a completed stage t with

xt ∈ Zt × 2Ft (see also Section 7.4), find

1. a partial order (Zt × 2Ft ,≤) and an algorithm that predicts the run time

performance of y′t = fC(x′
t, t) for the same (already completed) stage t and

for all configurations x′
t ≤ xt, and

2. a run time optimization algorithm that utilizes this prediction algorithm in

order to select a configuration with best performance for each stage.

We predict the performance of stage t, since the run time behavior of future stages is unknown.

When such an algorithm can predict the performance of all x′
t ≤ xt, the optimizer is able to

select the configuration with the best performance for the next stage t′ > t. Note that for

the case x′
t = xt we already have such a prediction algorithm as stated by Equation 9.2.

9.1.2 Problem Solution

In this section we introduce a solution of the problem and point to the appropriate subsequent

sections where the involved subproblems are discussed in detail.

Within our solution we use the following partial order:

Definition 9.1 Let x, x′ ∈ Zt×2Ft be configurations with x =
(

(split1, . . . , splitk), repl
)

and

x′ =
(

(split′1, . . . , split′k), repl′
)

. The partial order is defined by (Zt × 2Ft ,≤) where x′ < x

holds if split′i ⊆ spliti for 1 ≤ i ≤ k and repl = repl′.

174

The configuration x′ performs less or equal computations at the cache than x, since the split

parameters of x′ contain less or equal IO statements. Hence, the configuration x′ considers

as least as much IO statements as x, thus requiring at most the same set repl = repl′

of replicated fragments. In the following we use the notation x = (z, repl) with z ∈ Zt,

repl ⊂ Ft and z = (split1, . . . , splitk). (x′ = (z′, repl) follows analogously) and z′ < z.

Given the above notions, our prediction technique operates in the following phases:

I. Predict Execution Behavior

Let t be a completed stage t, (z, repl) a configuration and yt be the resulting behavior

including the execution histories hist
(1)
t (S1), . . . , hist

(k)
t (Sk) for all k stored procedures. Given

z′ < z, we modify in Section 9.2 the execution frequencies in those histories, such that they

reflect the run time behavior of z′ in t.

For example, if for z a sequence of queries q1; q2 is always executed at the cache the

corresponding nodes in the execution history are labelled by the counter, say cinvalid > 0,

which reflects the number of invalid executions of the queries at the cache. If in z′ the

query q1 is not executed at the cache (z′ < z performs less IO statements at the cache than

z), cinvalid(q1) = 0 follows and the corresponding counters for q2 in the execution history

will change, since the server does not switch to normal mode for an invalid result of q1 and

therefore considers more delivered results of q2.

II. Determine Load-Dependent Basic Parameters

In Section 8.4.1 we have defined the basic parameters for the model of the simultaneous

execution scheme, e.g., execution time of IO statements, verification time, etc. These param-

eters depend on the load conditions at a cache and the central server. The load of the system

depends on the users’ activities and the split parameters which balance the code execution

between caches and the server.

Since a new configuration z′ can significantly change the code balancing between cache and

server, we first determine the load that is caused by z′ and second determine the appropriate

value of the load-dependent basic parameters. In Section 9.3 we present an appropriate

approach.

III. Calculate the Execution-Performance

For the modified basic parameters and the modified execution histories, we calculate the

average processing time for each procedure by Algorithm 8.2, PT (.). Given xt = (z, repl) we

show in Section 9.4 that for x′
t = (z′, repl) with x′

t < xt the resulting execution-performance

of the cache in t run with x′
t follows from

k
∑

i=1

mPTt(Si) ≈
k
∑

i=1

PT (z′.Si, histit(Si)). (9.3)

175

with histit(.) as the modified histories that have been observed for xt = (z, repl).

As a result, the optimizer at the cache can calculate the execution-performance for a subset

of the configuration space Zt × 2Ft , and thus can select a configuration zopt with the best

performance for a completed stage t. Then, zopt is a possible candidate for the configuration

of the next stage.

In Section 9.5 we apply a greedy search technique to the configuration space. A summary

of our model and a discussion is given in Section 9.6. Additionally, we point to some open

problems and possible extensions that may further improve our technique.

9.2 Simulate the Execution Behavior of Split Parameter

The execution history histt(S) of a procedure S is recorded for stage t and split ∈ Z(S). We

modify the history in such a way that it simulates the behavior of a split′ ⊂ split. Hence, the

modified history represents the run time behavior of S in t as it would be observed if split′

has been used instead of split.

First, we present some motivating examples that demonstrate the main idea of the mod-

ification. Then, we define an appropriate algorithm for adapting an execution history.

9.2.1 Motivating Examples

Given split and split′ we present the basic idea of modifying the history in Figure 9.1. The

total number of executions

number of invalid query results

number of valid query results

1
3

2
42

35
5

40

root

6

4
0

6
02

3
0

40

10

root

9 6 9

IO statement only executed at the server

IO statement executed at the cache

modification of a counter

Figure 9.1: Example for modifying the execution frequencies of a history. Left: All statements

are executed at the cache. Right: Three statements are removed from the parameter split.

left side represents the execution history histt(S) where grey nodes represent IO statements

in split. The box at the root r node depicts the total number cexec(r) of executions of S in t,

white boxes at non-root nodes n the number cinvalid(n) of valid subsequences with an invalid

query n. Leaf nodes n are not attached to the tree, but are represented by the green boxes

with the counter cvalid(n). The counter cvalid(n) represents the number of valid subsequences,

176

where all query results are valid. Recall that each execution of S must result into one valid

subsequence. Therefore the sum of all cinvalid and cvalid must be 40.

The right side represents split′ and the modified history. There are three white nodes

that represent queries that are not executed at the cache any more. Hence split′ contains 3

queries less than split. Let n be such a node. If n is not executed at the cache, then there

can be no valid subsequence with n as an invalid query at the end. Hence, cinvalid(n) must

be 0 (white boxes with 0).

Furthermore, the counter cvalid(n) at leaf nodes n represents all executions of the path to n

where all query results are valid. If n is not in split, then the number cinvalid(n) represent the

number of executions of the path to n where all queries are valid. Hence, we add cinvalid(n)

to the counter cvalid(n
′) of the corresponding leaf node n′ that is attached to n. Recall that

n′ is always attached to exactly one leaf node (see Section 8.3). As a result, the sum of all

cinvalid and cvalid counter is 40 and the counters simulate a history for split′.

The next example in Figure 9.2 discusses a node that is removed from split and that is

connected to multiple leaf nodes. The left side again represents split and the picture in the

middle the modified history for removing the lower nodes from split according to Figure 9.1.

total number of executions

number of invalid query results

number of valid query results

IO statement only executed at the server

IO statement executed at the cache

modification of a counter

6

1
3

2
42

35
5

40

root

6

4
0

6
000

40

16

root

0

3

6

4
0

6
000

40

10

root

5

9 9

6
8

Figure 9.2: Example for modifying the execution frequencies of a history. Left: All statements

are executed at the cache. Middle: Four statements are removed from the parameter split.

Right: One statement with subsequent statements is removed from the parameter split.

The history at the right shows how we handle the removal of a node that is connected to

multiple leaf nodes. Let n be this node. According to the Figure the valid subsequence with

n as an invalid query is executed cinvalid = 9 times. Hence, for split′ these cases cannot occur

any more. Again, we add cinvalid(n) to cvalid(n
′) of the leaf nodes n′ that are connected to n.

However, the problem still is how to add the value of cinvalid(n) to cvalid(n
′) of two leaf

nodes. Since the precise distribution is unknown, we distribute cinvalid(n) proportional to

the execution frequency cvalid(n
′) of both leaf nodes. Again, the sum of all cinvalid and cvalid

counters is 40 and the counters simulate a history for split′.

177

The above two examples deal with queries that are removed from the end of execution paths.

At Figure 9.3 we take a look at a query which is removed from the middle of an execution path,

hence reflects an independent query q, such that all query executions after q can be executed

independently of q. The left side shows the execution history for split. The procedure has

2
35

5

1
3

2
4

2
35

5

1
3

2
4

IO statement only executed at the server

IO statement executed at the cache

modification of a counter

total number of executions

number of invalid query results

number of valid query results

60

root

60

root

0

5 5

20 1010

5

5

5
2

3

Figure 9.3: Example for modifying the execution frequencies of a history.

been executed 60 times.

At the right side we show the execution history for split′ ⊂ split that performs one query

less at the cache. Let n be this query. Originally cinvalid(n) = 20 which means that the first

query on the involved execution paths was invalid in 20 executions out of 40 (sum of the left

subtree is 40, sum of the right subtree is 20).

If n is not executed at the cache, these 20 cases cannot occur. As a consequence the server

does not switch to normal mode and expects more query results from the cache. Hence, these

20 executions distribute among the 5 valid subsequences that correspond to the 3 subnodes

of n and the 2 leaf nodes (represented by the green boxes).

Since the precise distribution among these subsequences is unknown, we assume that

these 20 executions are equally distributed according to the execution frequencies cinvalid and

cvalid. Figure 9.3 shows how the 20 executions are distributed. Again, the sum of all cinvalid

and cvalid counter is 60 and the counters simulate a history for split′.

A special cases arrises if the sum of the counters cvalid(n
′) and cvalid(n

′) is 0 for all

subnodes of n. Then, at run time none of these subsequences has been executed. The

problem is to distribute the value of cinvalid(n) to these nodes. In such a case we distribute

the value according to the counters cexec(n
′) that is greater 0, since the history contains only

execution paths that have been executed in a stage.

178

9.2.2 An Algorithm for Modifying the Execution History

Given a history histt(S) and two splits with split′ ⊂ split, the following Algorithm returns

the modified history hist′t(S). Its evaluation is supplied in Section 9.4.

Algorithm 9.1 (Modify Execution History)

Syntax: computeHist(split, split′, histt(S))

Input: split parameter, execution history

Output: modified execution history hist′t(S)

1. Let N = {n1, . . . , nk} be the node set of histt(S) where ni = (si,#si) with si ∈ ID(S).

Let Nmodify ⊆ N be the subset of all nodes with si ∈ split and si /∈ split′.

// Nmodify does not contain leaf nodes nor the root node.

2. For each node n ∈ Nmodify do

(a) // Handle low-level updates.

// There is nothing to do for delete operations.

// For insert operations the counter for executions at the cache is set to 0.

If n corresponds to an insert(R, t) operation then set cinsert(n) = 0 endif

(b) // Handle queries.

If n corresponds to a query then

i. Set Nsub as all subnodes that follow on execution paths after n and that

correspond to a query or a leaf node. Note that n /∈ Nsub.

ii. // Compute sum of valid subsequences over all subnodes.

#exec :=
∑

n′∈Nsub

cinvalid(n
′) + cvalid(n

′)

iii. // Add cinvalid(n) proportional to all subnodes and

// modify counters within the history histt(S).

If #exec > 0 then for each node n′ ∈ Nsub:

A. cvalid(n
′) := cvalid(n

′) +
cvalid(n

′)

#exec
· cinvalid(n)

B. cinvalid(n
′) := cinvalid(n

′) +
cinvalid(n

′)

#exec
· cinvalid(n)

endif (Step 2.b.iii)

iv. // If sum is 0 then none of the valid subsequences represented by the node

// Nsub has been executed in stage t. For this, we apply a distribution

// according to the total execution frequency cexec of a query.

If #exec = 0 then

A. #exec :=
∑

n′∈Nsub

cexec(n
′)

B. // Modify counters within the history histt(S).

For each node n′ ∈ Nsub:

1. cvalid(n
′) = cvalid(n

′) +
cexec(n

′)

#exec
· cinvalid(n)

179

2. cinvalid(n
′) = cinvalid(n

′) +
cexec(n

′)

#exec
· cinvalid(n)

endfor

endif (Step 2.b.iv)

v. // If n /∈ split′ no valid subsequence can end in n.

cinvalid(n) = 0

vi. // If n /∈ split′ there can be no reused results for n.

creuse(n) = 0

endif (Step 2.a)

endfor (Step 2)

3. Return histt(S)

As explained in previous sections, an execution of a procedure must result into one of the

valid subsequences as captured by the counters cinvalid and cvalid of the execution history.

Recall that cexec(r) of the root node r of a tree represents the number of all executions in a

stage. Hence, the sum over all cinvalid and cvalid of the nodes of the tree has to be cexec(r).

From the above algorithm we require that it preserves this property.

Given a node n of the tree and all of its subnodes Nsub, both represent a subtree of the

execution history. We show that the sum over all cinvalid and cvalid of this subtree is not

modified by the Algorithm. If this holds for all subtrees, it also holds for the whole tree.

For the case #exec > 0 the sum over all cinvalid and cvalid of a subtree n is

cinvalid(n) +
∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

The following transformations exactly represent Step 2(b)iii of the Algorithm

cinvalid(n) +
∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

=
#exec

#exec
· cinvalid(n) +

∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

=
cinvalid(n)

#exec
·
(

∑

n′∈Nsub

cinvalid(n
′) + cvalid(n

′)
)

+
∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

=
∑

n′∈Nsub

(

cinvalid(n
′) +

cinvalid(n
′)

#exec
· cinvalid(n) + cvalid(n

′) +
cvalid(n

′)

#exec
· cinvalid(n)

)

and shows that the sum is preserved.

For the case #exec = 0 the sum of a subtree n is also

cinvalid(n) +
∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

180

where the sum over the counters cinvalid and cvalid is 0. The following transformations repre-

sent Step 2(b)iv

cinvalid(n) +
∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

=
#exec

#exec
· cinvalid(n) +

∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

=
cinvalid(n)

#exec
·
∑

n′∈Nsub

cexec(n
′) +

∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

=
∑

n′∈Nsub

cexec(n
′)

#exec
· cinvalid(n) +

∑

n′∈Nsub

(

cinvalid(n
′) + cvalid(n

′)
)

=
∑

n′∈Nsub

(

cinvalid(n
′) +

cexec(n
′)

#exec
· cinvalid(n) + cvalid(n

′) +
cexec(n

′)

#exec
· cinvalid(n)

)

and again shows that the sum is preserved. Hence, the sum over all cinvalid and cvalid of the

nodes of the tree is not changed by the Algorithm.

9.3 Capture Load-Dependent Basic Parameters

The higher the load at a cache or the server, the higher the execution time of queries and

low-level updates. Based on this observation, we present a model that roughly captures this

correspondence. It is suitable for all systems that utilize database caches and the central

server only for the running database application. Hence, the model does not support other

applications that have an impact on the load of caches and the server. Extentions of the

model are discussed at the end of this Chapter in Section 8.6.

Caches and the server perform stored procedure code that consists of IO statements

(queries and low-level updates). Hence, the load at a cache and the server can be captured

by the total amount of IO statements that are executed in a stage t. The amount of IO

statements corresponds to the number of calls of the function eval(.) that executes such a

statement on data. We do not consider the functions evalC(.) and evalS(.), since they do not

necessarily execute a statement, e.g., undef values, reuse of a delivered result, etc.

We add two more measures at a cache: mIOCt represents the total number of all in a

stage t performed IO statements at the cache and mIOSt those at the server. Note that

mIOSt is determined by the configuration of the split parameters of all attached database

caches, since these define the load balancing between caches and the server. The value of

mIOSt is obtained by the server and send to all attached caches at the end of a stage. Hence,

a cache is informed about the load at the server.

Consider again the configuration z = (split1, . . . , splitk) of the cache at stage t and the

new configuration z′ = (split′1, . . . , split′k) for which we have modified the execution histories

hist1t (S1), . . . , histkt (Sk) to simulate its run time behavior. Since a configuration z′ defines the

code execution at cache and server, it can also affect the load conditions of both. Hence, z′

181

can also cause a change of the basic parameters, e.g., query execution time, that are required

to predict the processing time of procedures. Based on the histories, we first determine the

load of the cache and the server, and second determine the value of these load-dependent

parameters.

9.3.1 Determine the Load of a Configuration

To define mIOCt and mIOSt, we introduce some intermediate notations that start with a #

to denote their counter-like nature. Given a procedure Si, spliti ∈ Z(Si) and its execution

history histit(S), we compute the load of Si at the server as follows: Let Nupdate be the set

of all nodes in histit(Si) that represent low-level updates and Nquery those that represent

queries. Then,

#IOSt(histit(Si)) =
∑

n∈Nupdate

cexec(n) +
∑

n∈Nquery

(

cexec(n) − creuse(n)
)

captures the load of Si by summarizing the number of executions of IO statements at the

server. A low-level update is always executed at the server. For query executions we subtract

the amount of valid queries whose result was delivered by the cache and not executed by the

server. Note that Algorithm 9.1 sets creuse = 0 for all queries that are not executed by the

splits in z′ at the cache. Hence, the value #IOSt can be computed for the original, as well

as for the modified histories.

For all procedures S1, . . . , Sk that are executed at the cache in t we calculate the portion

of the load that is imposed on the server. The cache-server load is defined by

#IOCSt =

k
∑

i=1

#IOSt(histit(Si))

Note that #IOCSt is only equal to the total load mIOSt of the server if only one cache is

attached to the server. Then, other caches do not produce load at the server and only the

procedures S1, . . . , Sk are executed at the server. Otherwise mIOSt equal to the sum of the

$IOCSt of all attached database caches.

Let mIOSt be the observed total load at the server, #IOCSt the calculated cache-server

load from the original execution histories and #IOCS′
t the cache-server load of the modified

execution histories. Then, the resulting total load mIOS′
t at the server for z′ is approximated

by

mIOS′
t = mIOSt − #IOCSt + #IOCS′

t

which is based on the original load of t and the change of the cache-server load. Note that

this prediction ignores the existence of other database caches. However, from the point of

view of a single cache the behavior of other caches is unknown, such that no better prediction

than mIOS′
t can be made, except that caches communicate with each other (see also Section

7.6) and synchronize their optimization and prediction.

182

The load mIOCt at the cache can be captured in a similar way, however not by using our

specific notion of an execution history which considers IO statements at the cache only up

to the last notification (see Section 8.2.2). To capture mIOCt, we have to define a separate

history for the partial execution at the cache which can be constructed in a similar way as

the current history.

Since we have not done this, we apply the proposed prediction technique only to cache

that runs in single-user mode, such that there is no concurrent access at the cache. As

a consequence the database system always processes one request at a time and we expect

constant values of the basic parameters. We show this later on in this section.

9.3.2 Determine the Value of Load-Dependent Basic Parameters

According to Section 8.3.2 the basic parameters are (1) the execution time of an IO statement

s of a procedure S at the cache ptC(s) and at the server ptS(s), (2) the access time of the

query result cache (QRC) tcache, (3) the network time tnet, (4) the verification time tverifyC

at the cache and tverifyS at the server, and (5) the final commit and additional overhead of

an execution.

Given the parameter ptS and the total server load mIOSt, we capture the load-dependent

value of ptS(s) by a function

fptS : S × N × R 7→ R

such that ptS = fptS(S, s,mIOSt).

We assume that this function is maintained by a database cache. For each completed

stage a cache has obtained the values mIOSt and ptS(s) from the server, hence over multiple

stages a cache can be trained to capture the function fptS(.) Analogously, the parameter

ptC(s) can be handled if the load mIOCt at the cache has been captured appropriately.

For the remaining parameters, e.g., tverifyS , a function

fverifyS : R 7→ R

is sufficient, since the parameter does not depend on a procedure nor its IO statements.

Then, tverifyS = fverifyS(mIOSt). Analogously, the values for these parameters are known

at a cache, such that an appropriate function can be trained at run time.

An Example for fptS

For the ONE-System (Experiment of Section 6.3.2) with one procedure S and one type of

query, say s, we have observed the values x for fptS(S, s,mIOSt) for a stage of length 80s

with 0 ≤ x ≤ 16000 as depicted by the scatter diagram in Figure 9.4. The dots represent all

pairs of mIOSt and ptS(s) that have been observed during the experiment. The line shows

the resulting regression function fptS(S, s,mIOSt) that represents the average value of ptS(s)

for a given mIOSt.

It shows that the average query execution time increases from 5ms to 15ms at the server.

The maximum of 16000 IO statements results from the following observation: a procedure

183

qu
er

y
ex

ec
ut

io
n

tim
e

in
 m

s

number of IO statements per stage at the server

 4

 6

 8

 10

 12

 14

 16

 18

 0 4000 8000 12000 16000
 4

 6

 8

 10

 12

 14

 16

 18

Figure 9.4: Query execution time ptS and server load mIOSt for a four-client system.

call performs at most 20 queries at the server. For those configurations we obtain a maximal

throughput of about 200 procedure calls in 80 seconds (see Chapter 6). In total these are

about 200 · 20 = 4000 queries for one client and 16000 queries for four clients. Taking the

updates at the server (1 per second) into account, we get about 16080 IO statements per

second.

Analogously we observed fptC(S, s,mIOCt) for a cache. Figure 9.5 shows the query

execution time at the cache w.r.t to the load. Again, the dots represent the measured values

qu
er

y
ex

ec
ut

io
n

tim
e

in
 m

s

number of IO statements per stage at the cache

 5.6

 5.8

 6

 6.2

 6.4

 0 2000 4000 6000 8000

 5.6

 5.8

 6

 6.2

 6.4

 0

Figure 9.5: Query execution time ptC and cache load mIOCt for the four-client ONE-System.

at run time and the line the trained function.

Since a cache performs procedures in a sequential manner and only one query can occupy

the computational resources of the system, the query execution time is almost constant.

The maximum of 8000 IO statements per stage results from the following observation: the

maximum throughput is 400 procedure calls in a stage of 80 seconds. This maximum is

achieved by executing all queries at the cache. Hence, in a stage the cache executes 400 ·20 =

8000 queries.

Since the cache runs in single-user mode, it performs 8000 queries in a stage much more

184

efficiently than the server. The overhead at the server results from the concurrent access of

four clients and the intermediate updates.

9.4 Evaluation of the Prediction Technique

For the experiments with four clients of the Sections 6.3.2 and 6.3.3 we have evaluated the

predication technique. Both experiments measure the processing time of a procedure for 21

different split and 13 different synchronization configurations. The split balances the code

execution between cache and server, and the different synchronization rates determine the

freshness of cache data, thus determining the amount of valid and invalid queries. Recall

that the procedure S implements 20 equal queries. In the following we use s for this query.

We apply the technique as defined in Section 9.1.2 and show that our technique produces

reasonable results in predicting the execution-performance of a cache.

Dependent Queries

After the experiment completes, we obtain 273 execution histories, one for each of the 21·13 =

273 configurations. Let us, for example, consider those configurations that perform 19 queries

at the cache and one query at the server, hence split = {1, . . . , 19}. Then, there are 13

execution histories hist1, . . . , hist13, one for each configuration of the synchronization.

For each of the 13 histories we perform the prediction technique for the splits ∅, {1, . . . , i}

with 1 ≤ i ≤ 18 — in total 19 different split configurations, denoted split1, . . . , split19. Let

histi be one of the 13 histories and splitj one of the 19 splits. Then, we apply the prediction

technique with the above defined algorithms as follows:

1. // Modify the history to simulate splitj.

hist′i = computeHist(splitj, histi)

2. Let mIOS be the original observed server load of the configuration 19 and i for 1 ≤

i ≤ 13

// Compute the cache-server load #IOCS for the original and the modified histories.

// Since only a single procedure is executed in a stage, only one history is considered

// for the computation of #IOCS and #IOCS′.

#IOCS = #IOS(histi)

#IOCS′ = #IOS(hist′i)

// Approximate the server load of the new configuration.

// The factor four results from the four attached database caches.

// Note that all attached caches use the same configuration for a stage.

// Hence, the change of the server load is equal for all 4 caches.

mIOS′ = mIOS − 4 · #IOCS + 4 · #IOCS′

3. // Based on the trained functions and the server load,

// determine the query execution time at the server.

ptS(s) = fptS(S, s,mIOS′)

185

4. // Determine the remainding basic parameters.

// ptC(s) is static for a cache in single-user mode (see also Figure 9.5).

ptC(s) = 5.8

// As shown by the experiments, the value of these parameters is very low

// and therefore have only a minor impact on the prediction technique.

tcache = tnet = tverifyC = tV erifyS = 0 for all configurations

// For all experiments the additional overhead is about 2-4ms.

tfinal = 3

5. // Predict processing time.

PTi,j = PT (splitj, histi)

For the 19 · 13 configurations Figure 9.6 depicts the original observed and the predicted
u

p
d

a
te

D
e

la
y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 120

 125

 130

 140

 150

 180
 210 240

 270

 300

 330

up
da

te
D

el
ay

| split |

predicted processing time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 2 4 6 8 10 12 14 16 18

 125 130

 140

 150
 180

 210

 240

 270

 300

Figure 9.6: Observed (left) and predicted (right) processing time with four clients and de-

pendent queries.

processing time PTi,j. Again the X-axis denotes the split configuration, hence the amount

of queries that are intended to be executed at the cache, and the Y-axis represents the 13

different synchronization delays. As we observe, there is only a little difference between the

original and the predicted processing time.

In the following we take a closer look at the deviation between the original observed

and the predicted values. For this, we have performed the prediction also for all other split

configurations, not only this with 19 queries. Hence, we obtained

20
∑

k=1

k · 13 = 2730

pairs (obsi, esti) where obsi represents an observed value and esti an predicted value. We

skipped the empty split (case k = 0) since for no query computations at a cache there is

nothing to predict. Again, we visualize the deviation in terms of the frequency distribution

and density (see Section 8.5 for a definition). According to Figure 9.7 we obtain a deviation

of -7% up to 7% for 90% of the pairs.

186

90%

fr
eq

ue
nc

y

deviation

distribution

density

 0

 1

−0.1 0.05 0.1 0.15
 0
−0.15 −0.05

Figure 9.7: Preciseness of the prediction technique of relative deviations (frequency den-

sity and distribution) between the original observed and the predicted values for dependent

queries.

Independent Queries

The same experiment is repeated for independent queries. The only difference are the split

configurations. Instead of the above, we use spliti = {i, . . . , 20} for 2 ≤ i ≤ 20 which are

again 19 different split configurations. Hence, the cache jumps over the first i − 1 queries in

the procedure code.

Figure 9.8 depicts the original observed and the predicted processing time. Again there

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 95

 100

 130 160

 190 220 280

 250

 310

u
p

d
a

te
D

e
la

y

| split |

predicted processing time in ms

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 2 4 6 8 10 12 14 16 18

 95

 100

 130 160

 190
 220

 250
 280

 300

Figure 9.8: Observed (left) and predicted (right) processing time with four clients and inde-

pendent queries.

is only a little difference. The optimum for 15 queries at the cache shows the usefulness

of our prediction technique. If, for example, a cache executes the configuration with 20

queries, a better configuration can be detected by predicting the execution-performance of

all configurations that perform less executions at the cache, but more at the server. Such an

analysis would reveal the configuration with 15 queries at the cache as optimum.

187

According to Figure 9.9 we obtain a deviation of -10% up to 8% for 90% of the pairs.

90%

fr
eq

ue
nc

y

deviation

density

distribution

 0

 1

−0.15 −0.1 −0.05 0.05 0.1 0.15
 0

Figure 9.9: Preciseness of the prediction technique of relative deviations (frequency density

and distribution) between the original observed and the predicted values for independent

queries.

9.5 Towards Solving the Dynamic Optimization Problem

In this Section we present a greedy algorithm as a primitive solution for the dynamic opti-

mization problem. Based on the experimental results of the ONE-System, we first discuss

the values of the user-provided parameters minRead, minWrite and minEff that are used

to parameterise the optimization problem (see Section 7.3). Second, we present and discuss

the algorithm that incorporates the above technique for predicting the cache-performance of

a cache.

9.5.1 The User-Provided Parameters of the Optimization Problem

According to Section 7.4, a fragment F is only replicated to a cache in stage t′, if it suffices

the following properties already in the previous stage t:

mReadt(F) ≥ minRead

mWritet(F) ≤ maxWrite

mEfft(F) ≥ minEff

The first represents the read-frequency of F (number of read operations per time unit), the

second the write-frequency (number of write operations per time unit), and the latter the

efficiency of a fragment that is defined by the total execution time of valid queries at the cache

in stage t. The values minRead, maxWrite and minEff are provided by the administrator

of the database system. In Chapter 6 we have evaluated the simultaneous execution for the

ONE-System. Based on this, we discuss possible values of the above parameters. However,

in general the proper choice of these parameters depends on the application, e.g., number of

fragments, network speed, computational power of the clients and the central server, etc. To

obtain these values for an application, a similar analysis as in Chapter 6 should be performed.

188

Write Frequency

As defined in Section 4.5, the proposed database system uses an optimistic update propaga-

tion protocol to synchronize cache data. Hence, updates that have been applied at the server

are propagated to the cache with a possible delay. The delay causes data inconsistencies at

the cache, such that query executions at the cache can produce invalid results. The higher

the frequency of updates at the server, the lower the probability of a query at the cache to hit

a consistent data version. For this, only the replication of less-frequently fragments is useful.

Further, high-frequently updated fragments cause a high synchronization effort at the server.

For the ONE-System in Chapter 6 we have chosen a value

maxWrite = 1

such that only those fragments are replicated that are updated less than once per second. This

is feasible, since there is only one fragment. For applications with a high number of frequently

updated fragments, the value maxWrite = 1 is probably to high, since for example 1000 of

such fragments will cause 1000 updates per second at a cache. If these updates overload

the cache, the simultaneous execution does not necessarily benefit from local computations.

Hence, the value of maxWrite should be chosen this way that a reasonable amount of updates

per second are applied at a cache.

Read Frequency

Our scheme only participates from valid query executions at a cache. The fewer queries are

executed on a fragment at the server, the fewer potential valid queries at a cache. For the

experiments in Chapter 6 we obtained a read frequency of a fragment of 50 up to 100 per

second. These values result from

50 ≤
x · 20 queries

80 sec
≤ 100

where 80 is the length of a stage, 20 the number of query executions within a procedure call

and x ∈ [200, 400] the number of procedure calls in a stage (throughput). Recall that the

throughput depends on the chosen split parameter.

However, in general the parameter minRead is used to filter out fragments that are

rarely accessed, since there is no need to replicated fragments that are not accessed by an

application. For this, a setting of

minRead > 0

should be sufficient to block such fragments. Note that minWrite and minRead are only

used as entry barrier for the replication of a fragment F , but there is no guaranty that

the cache-performance will benefit from the replication of F . For this we also consider the

fragment efficiency.

189

Fragment Efficiency

A low fragment efficiency indicates a low number of valid query executions at the cache. The

fragment efficiency of the ONE-System is depicted at Figure 9.10. The X-axis represents the

number of query executions at the cache and the Y-axis the update delay which influences

the error rate. The higher the delay, the higher the error rate and the more queries have to

be re-executed at the server. The re-execution is costly and increases the amount of query

executions at the server. Recall that the ONE-System uses only one fragment. Hence, all 20

u
p

d
a

te
D

e
la

y

fragment efficiency in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 2 4 6 8 10 12 14 16 18

 2 5 10 15 20 25

 30
 35

 40

u
p

d
a

te
D

e
la

y

processing time in ms

| split |

 100ms

 200ms

 500ms

 1000ms

 5sec

 15sec

 25sec

 0 5 10 15 20

 120

 125

 130

 140

 150

 180
 210 240

 270

 300

 330

Figure 9.10: ONE-System. Left: fragment efficiency in seconds. Right: processing time of a

procedure in ms.

queries of a procedure are executed on the same fragment.

As expected, the higher the number of valid queries, the higher the fragment efficiency

which is the total sum in seconds of valid query executions at the cache. According to the

Figure, a setting of

minEff = 2

for the ONE-System is feasible, since then no significant improvement is observable for the

processing time.

However, the value of minEff is based on the query execution time and the error rate which

again depends on the application and its stored procedures. For this, a proper selection of

minEff requires an analysis of the application’s run time behavior.

9.5.2 A 2x2-Phase Greedy Optimization Algorithm

In the following we demonstrate an example of an optimization algorithm that incorporates

the above prediction technique to solve the dynamic optimization problem. However, the

algorithm does not provide a solution for all concerns of a dynamic optimization problem

and relies on the following assumptions and restrictions:

190

1. The algorithm requires a 24-hour cycle of an application where at night time no signif-

icant executions take place. Hence, at night time there are free resources that can be

utilized by the optimizer.

2. Since the initial replication of fragments to a cache can result into heavy work load,

the placement of new fragments and the removement of existing fragments of a cache

is only done at night time.

3. A cache has been trained to provide the functions fx with x ∈ {ptC , ptS, verifyS, . . . }

(see Section 9.3.2).

4. The algorithm neither detects repetitive pattern in the system’s behavior, nor does it

utilize a memory to keep good-performing configurations of previous stages.

5. In each stage the system creates a new execution history for a procedure. There is a

garbage collector that removes histories that are not used any more.

6. The algorithm performs a random search over the configuration space Z which repre-

sents the split parameters of all procedures.

The algorithm runs in different phases. Over a 24-hour cycle there are the two main phases.

The operational phase at day time tries to figure out a configuration that results in an optimal

performance for the given work load. The data-reconfiguration phase takes place at night

time and, as mentioned above, adds/removes fragments to/from a cache.

The operational phase at run time continously toggles two types of stages. The first pushes

the execution of all IO statements to a cache and the second uses an optimal configuration

that is computed by the above prediction technique. The goal of the first type of stages is

to execute as much as possible (greedy) of the queries at the cache, such that the resulting

execution histories contain the execution frequency for a high number of valid subsequences.

On such histories we run the presented predication technique and compute a configuration

zopt with the best execution-performance, which then is used for the second type of stages.

Hence, in the best case every second stage runs with an optimal configuration.

However, the algorithm has also to consider the computation effort to compute zopt at

run time. Instead of computing zopt between two successive stages, we shift its computation

into background. Thus, a computation can run multiple stages and as soon as zopt has been

computed it can be used by a stage of the second type.

The algorithm uses the notation mRead∅(F) that represent the arithmetic average of

mReadt(F) over all stages t of the operational phase. Let t1, . . . , tk be all stages during the

operation phase, then the average read frequency of a fragment F is defined by

mRead∅(F) =
1

k
·

k
∑

i=1

mReadti(F)

Analogously, we use mWrite∅(F) and mEff
∅
(F).

191

Algorithm 9.2 (Greedy Optimization Algorithm at a Cache)

Input: m - number of configurations for predicting the cache-performance,

minEff, minRead, minWrite

Output: set internal configuration parameters for each stage

Local Variables: repl - set of replicated fragments, zmax, zopt and zi - split configurations,

F - fragment, i, k - running index, t - stage, j - stage counter

1. // No fragments are replicated. Set first stage.

repl = ∅, j = 0

2. // Operational phase. We assume that at midnight there are no user

// activities, such that the system can perform reconfiguration tasks.

Repeat until midnight

(a) // Set configuration, where all IO statements are executed at the cache.

zmax = (ID(S1), . . . , ID(Sk)) for all Si ∈ Stj with 1 ≤ i ≤ k

(b) // Shift maximum of computations to the cache.

j = j + 1

Run stage tj with configuration (zmax, repl)

(c) If there is no computation in background and repl 6= ∅, do in background:

i. Pick randomly z1, . . . , zk with zi < zmax or zi = zmax for all 1 ≤ i ≤ k ≤ m

ii. Estimate cache-performance for all zi as defined in Section 9.1.2

iii. Assign zi with best cache-performance to zopt

(d) // Run a stage with the best known performance.

If zopt has been assigned,

i. j = j + 1

ii. run stage tj with configuration (zopt, repl)

3. // data-reconfiguration phase

Add to repl all fragments F ∈ Ftj with

F /∈ repl, mRead∅(F) ≥ minRead, mWrite∅(F) ≤ minWrite

4. Remove from repl all fragments F with

mRead∅(F) < minRead, mWrite∅(F) > minWrite and mEff
∅
(F) < minEff

5. Jump to 2

The algorithm starts with no replicated fragments. In the operational phase, first (Step

2a) the configuration zmax is computed that for all procedures in St the execution of all IO

statements is shifted to the cache. For this, each split parameter is set to ID(Si) which is the

set of identifiers of all IO statements in a procedure Si. Note that the set St depends on a

stage t, since procedures can be added or removed at run time.

In Step 2b the systems performs a stage with the configuration (zmax, repl) where a cache

executes all IO statements for which data is locally available. Note that in the very first

192

operational phase no IO statement is executed at a cache, since repl = ∅. However, during

this phase the values of mReadt(F) and mWritet(F) are collected for each fragment, such

that in Step 3 the first fragments will be placed at a cache.

Based on the prediction technique, a configuration zopt is computed in Step 2c. Since we

only consider continuous stages, the computation is done in background, such that there is

no additional time slot between two successive stages. Further, the prediction is only done if

there are replicated fragments (repl 6= ∅). Otherwise, there are no executions at a cache and

therefore no valid subsequences in the execution histories, hence nothing to predict.

To compute zopt, the algorithm picks at most m distinct configurations zi that perform

less or equal computations than zmax at the cache. Note that k depends on zmax. The more

IO statements are executed at a cache, the more different zi exist that contain less than these

IO statements. For each zi the algorithm applies the above prediction technique and com-

putes the resulting cache-performance. The configuration with the best cache-performance

is assigned to zopt. As we have shown in Section 9.4, the prediction procedures reasonable

results.

When such a zopt has been assigned, a new stage is executed in Step 2d with a possibly

better performance. If a computation is still running in background, the last known zopt

is used. As a result, every second stage is performed with a possibly optimal performance.

Clearly, the success depends on the parameter m that determines the duration of the back-

ground computation. If it is too small, possibly not enough zi are considered and no better

configuration can be found. If it is too high, the background computation can take multiple

stages, such that the resulting zopt possibly does not match the current load situation any

more. Hence, an appropriate search strategy has to be applied. We follow up this issue at

the end of this Section.

After the operational phase, the algorithm enters its data-reconfiguration phase (Step 3

and 4) where the set of replicated fragments is adapted. In Step 3 all fragments are placed at

the cache which satisfy the constraints on the read and write frequency. For this we consider

the average of the frequency over the entire operational phase. Recall from Chapter 4 that

the number of fragments is dynamic at run time and that the server maintains a set Ft of

fragments. The subscript t emphasizes its dependency of a stage.

In Step 4 we remove all fragments from the cache that do not satisfy the constraints

on the read and write frequency, and that do not produce the required execution time of

valid queries. Hence, the algorithm is rather greedy in the placement of fragments, since a

fragment is kept replicated during the entire operational phase.

The algorithm demonstrates how the prediction technique can be integrated into a primi-

tive search over the configuration space. The algorithm adapts the set of replicated fragments

and the split of the code between cache and server according to the requested data and the

load conditions. Replicated data is adapted in a 24-hour cycle with the assumption that at

midnight there are no user activities, such that the system can perform reconfiguration tasks.

If other periods with minor activities are known the cycle can be shortened. The split of the

code is adapted every second stage (Step 2c and 2d).

193

As mentioned at the beginning of this Section, the algorithm relies on a number of assump-

tions and restrictions. In order to obtain a complete and feasible solution for the dynamic

optimization problem, a standard technique (see Section 7.5) has to be customized appropri-

ately. We suggest to use genetic algorithms (GAs) for the following reasons:

1. GAs are suggested by many authors to solve complex dynamic optimization problems.

These heuristic search methods try to track moving optima, rather than to determine

their precise location.

2. Much work has been done in extending GAs with a case-based memory which are used

to detect repetitive pattern of the user behavior and to predict the position of the

optima in the search space. The case-based memory is an ideal place for incorporating

our prediction technique.

3. A genetic algorithm performs a heuristic search over the search space. For this it uses

evolutionary concepts, such as mutation and combination of genetic information, to

derive new positions in the search space. In order to apply a genetic algorithm to our

problem an appropriate mapping between an individual and a configuration (z, repl)

has to be defined.

However, such a mapping requires a detailed study of existing approaches of genetic algo-

rithms, their implementation, and comparison. In a student reseach project [90] we have

investigated primitive mappings to genetic algorithms for the in Chapter 3 discussed web

shopping application. The results have also been partially published in [60].

9.6 Summary and Discussion

Given a cache, a configuration (z, repl), and data of a completed stage t, we have shown how

to predict the performance of the stage t for the configurations (z′, repl) with z′ < z. The

configurations z′ differ from z by performing less computations at the cache, thus adding more

computations to the server. As the evaluation has shown, the deviation between the predicted

and observed values is comparatively low. As a result, we are able to select a zopt < z with

the best performance in t. We have presented an example of a greedy optimization algorithm

that uses the prediction technique to compute the configuration of the next stage. Since the

prediction technique is partial, the algorithm requires a stage where all computations are

done at the cache. From the run time behavior of this stage, the performance of a maximal

number m of configurations can be predicted. However, more work has to be done to turn

the presented optimization algorithm into a complete and applicable solution for the dynamic

optimization problem.

During the course of this Chapter we have evaluated the prediction technique on the

ONE-System. However, there are still the following limitations that open enough space for

future extentions of our approach:

194

1. The method is partial, since it only applies to configurations z′ < z and requires the

same set repl of replicated fragments. The latter is necessary since z′ requires the same

or less fragments at the cache. A z′ does not require new fragments to be replicated at

a cache, since z′ performs equal or less computations at a cache.

Our model does not allow the prediction of the processing time of splits z′ > z which

puts more computational efforts to the cache or which use a different set of replicated

fragments. In terms of the presented model, this requires the guessing of the frequency

of valid subsequences (captured by the counters cinvalid and cvalid) that include new

query executions at a cache. However, this is not possible with our model.

2. As we have shown, the values of the basic parameters depend on the load of a cache

and the central server. Hence, we require a way to observe the load and a technique

to determine the values of these parameters for the observed load. Our model for

observing the load considers only the amount of executed IO statements, hence does not

recognize the impact of other applications that run at cache and server. Furthermore, we

restricted the prediction to single-user caches where the execution time of IO statements

is rather constant. This results from the nature of the defined execution histories that

do not fully capture the partial execution at a cache, hence do not allow to reason about

all executed IO statements at a cache.

3. As stated at the end of Chapter 8, the prediction technique also requires a high difference

between the minimal and maximal cache-performance. With a deviation of at most ±

10% our technique will not produce reasonable results for situations where the minimal

and maximal processing times are very close and also differs by ± 10%.

4. Another important issue is the synchronization of the optimization and prediction tasks

of all attached caches. The configurations of all attached caches significantly influence

the load conditions at the central server. For a proper detection of the server load,

it is essential that a cache knows about the decisions of other caches in changing the

configuration. However, we consider only the optimization from the perspective of a

single cache and the simultaneous optimization of multiple database caches remaines a

challenging issue.

195

196

Chapter 10

Conclusion

Database caching techniques have been suggested in literature to improve the performance

of client-server database systems. Recent techniques further improve the performance by

integrating the caching scheme into concurrency control and query processing. In this disser-

tation we further integrate such a technique into the execution engine of a database system

and develop a novel execution scheme that allows to split and simultaneously execute stored

procedure code between cache and server. As the main result we show that this integration

improves the efficiency of database caching.

10.1 Summary and Contributions

We briefly discuss contributions of this thesis and summarize the content of all Chapters.

Part I

In Chapter 2 we investigate current database caching techniques and classify them along

multiple criteria. We show that one strategy for improving a caching scheme is its deeper

integration into the database system. This has mainly been achieved by combining caching

with concurrency control and query processing. We show the research gap in integrating

database caching into the execution engine of database management systems for procedural

application logic that is kept inside the database in terms of stored procedures, triggers, etc.

These concepts are very common and provided by almost every commercial database product.

Chapter 3 presents an illustrative example of our approach. On an intuitive level we

first discuss two traditional execution protocols for database caching and second compare

it to our novel simultaneous execution scheme. As a result we could show that the novel

scheme improves the performance for the chosen example. The improvement results from our

key concept of twin transactions in combination with a partial execution and query result

shipping. That is, after a stored procedure has been initiated, it is executed at the cache of

the client and the server in parallel. Both execute only a portion of the procedure code, such

that the execution is split among cache and server. The cache sends each computed query

result to the server which re-uses these results instead of computing them by itself. Hence,

197

load is taken from the central server and portions of the procedure code can be executed in

a parallel manner. In the example we also discuss limitations of this scheme. In general, it

does not apply to situations where traditional caching schemes are not successful, where huge

query results have to be shipped to the server and where cache or server are connected by a

slow and unreliable network.

Part II

In Chapter 4 we define an elementary client-server database system where each client is

extended by a local database management system that is able to execute stored procedures.

Server data is replicated to clients in terms of table fragments by an optimistic synchronization

protocol. It is optimistic, since updates are propagated to clients apart from the boundaries

of transactions which can cause data inconsistencies. To efficiently detect data inconsistencies

at clients, we attach a version identifier to each fragment such that equal versions at client

and server denote equal fragment content.

The main contribution of Chapter 4 is the concept of twin transactions that defines the

parallel execution of procedure splits at a local database management system of a client and

the central server. Both executions of the procedure produce the same effect on local data if

they have operated on equal fragment versions. To achieve this property, we have to restrict

the procedural language by removing non-deterministic operations and further side-effects

that can result from trigger or the check of integrity constraints. Twin transactions are the

starting point for developing our novel simultaneous execution scheme.

The novel execution scheme and split twin transactions are elaborated in Chapter 5. We

show how the local database management system partially executes the procedure code and

how computed query results are shipped to a query result cache (QRC) at the server. The

QRC serves as an intermediate memory to store query results. Whenever the server is looking

for a result, it consults the QRC. For the server we have shown how delivered query results

are efficiently verified by utilizing fragment versions.

The main contribution of Chapter 5 is the novel execution scheme that can be configured

at run time by two parameters: (1) the amount of code execution at a client that is captured

by the split parameter and (2) the set of replicated fragments. We show that the scheme is

correct for any of these settings. Furthermore, we show how to preselect meaningful settings

of the split parameters that respect dependencies in the procedure code. The preselection is

used in Part III by the optimization to reduce the size of the search space.

Chapter 6 presents a primitive client-server database system with a prototype implemen-

tation of our scheme. We show by various experiments that the new scheme outperforms the

traditional one. The improvement results from: (1) less communication costs between cache

and server, (2) a verification of queries that is done at the server in parallel to computations at

the cache and (3) independent queries (if they exist). Further, we investigate different setting

of the configuration parameters and their impact on the performance. Another contribution

of Chapter 6 is the conclusion that the proper setting of the configuration parameters depends

on run time factors such as the system’s load and available hardware resources. Hence, a

198

proper optimization of these parameters requires to consider run time information.

Part III

In Chapter 7 we take a closer look at the run time behavior of client-server database systems

and point to the influencing factors at the request (user behavior) and resource level. As

we argue, these factors are difficult to measure and to predict. By this observation and

the results of the experiments, we suggest to define the proper setting of the configuration

parameters by a dynamic optimization problem that takes changes of these factors during

run time into account.

To define the optimization problem for a cache, we modell the system’s behavior by suc-

cessive time periods of constant length and presented measures to capture the performance of

a cache that target the efficiency of procedure executions and fragment placements. For cap-

turing the performance of procedures we suggest three alternative measures — the response

time of procedures, the cache utilization, or the code balancing between cache and server.

For capturing the performance of a fragment we suggest using its read- and write frequency,

as well as the fragment efficiency which represents the amount of query executions at a cache

whose results could be successfully reused by the server.

The presented optimization problem defines the maximal performance of a cache and

has to be ”independently” solved by a cache. The problem is to find an appropriate setting

of the configuration parameters for each stage with a maximal resulting cache performance

subject to storage and fragment access and efficiency restrictions. We define the maximal

performance of a stage by taking the previous completed stage into account which provides

the values of the observed run time measures, such as fragment access and efficiency. This

model allows a cache to react to changing run time behavior stage-by-stage.

The first step towards solving the optimization problem is made in Chapter 8 where we

define a model of the simultaneous execution scheme for computing the processing time of

a procedure. The model is based on the run time behavior of a procedure that is collected

within execution histories for each stage. Such histories mainly contain information about

the execution time of elementary database operations and the frequency of valid and invalid

queries on different paths through the procedure code. Based on this information the model

allows us to recompute the observed processing time of a procedure. The model mimics

the simultaneous execution scheme including the shipping of query results, verification, idle

times, etc. The preciseness of the model is evaluated by using a prototype implementation.

We are able to show, that the predicted and the observed values of the processing time are

very close.

The contribution of Chapter 9 is the extention of the frequency-based model of Chapter 8

to predict the performance of a cache for different settings of the split parameters. As a result,

the performance can be computed in advance for a subset of all possible split configurations

(subset of the search space) which provides a local solution for the optimization problem.

The key of the estimation is the prediction of the execution frequencies of valid and invalid

queries for a given split configuration. The method is suboptimal, since these execution

199

frequencies can only be derived from already performed executions at a cache which produce

the frequencies for valid and invalid queries and executed paths through the procedure code.

These frequencies cannot be predicted for split configurations that refer to procedure code

that has not yet executed at a cache.

The proper estimation of the performance also requires to consider the load of the server

and the cache. We introduce a primitive measure for capturing the number of database oper-

ations of a stage. Based on this measure a cache is able to learn the correlation between the

system’s load and the execution time of primitive database operations (queries and updates)

which is important for a precise estimation. Again, the preciseness of the prediction technique

is evaluated based on the experimental data gained from the prototype implementation.

Finally, we present a greedy algorithm in Chapter 9 that provides a solution for the

optimization problem. Due to the partialness of the prediction technique it requires a special

learning stage where all executions are shifted to a cache. This stage produces execution

frequencies for all valid and invalid queries which are the base for predicting the frequencies

of alternative split configurations. Based on this, the algorithm computes the performance

of a set of split configurations and uses the best of them for the next stage. These two types

of stages are constantly toggelled, such that the algorithm is able to react to changing load

conditions within a few stages. Further, the algorithm adapts the content of a cache within a

fixed cycle to remove less-frequently and to add high-frequently accessed data. However, the

algorithm serves primarily as an example for demonstrating the prediction technique, rather

than as a full solution for the optimization problem. Hence, more work has to be done in

finding an appropriate solution for the optimization problem.

10.2 Open Directions for Further Work

During the course of this dissertation we have pointed out numerous open directions for

further work that in the following are briefly summarized.

Full Support of Stored Procedures and Queries

To exemplify our approach, we put restrictions on the schema constraints (e.g. foreign keys)

and advanced concepts for integrity enforcement (e.g. trigger). To use the novel scheme in a

real-world setup, these concepts have to be taken into account by the simultaneous execution

scheme. As we suggest in Chapter 4, this can be done at the compiler level.

Another subject is the integration of query execution plans into the low-level procedure

code. Then, internal functions and sub-procedure calls in the query expressions could also

be handled by our scheme. As a result the low-level procedure contains the computation of

sub-queries, joins, etc. explicitly, which enables our scheme to handle partial query evaluation

at caches.

An interesting question is whether our approach affects the programming or the coding

rules of developers. To support our scheme, developers could mark independent queries and

put them at the beginning of the procedure code. These queries are candidates for being

200

executed at a cache and do not have to be automatically detected by a semantic analysis of

the procedure code.

Fine Tuning the Simultaneous Execution Scheme

The presented simultaneous execution scheme provides numerous starting points for further

optimization and fine tuning.

One issue is the reduction of useless idle times at the server that result from waiting

times for notifications and query results that are delivered by a cache. While processing a

statement, a cache could perform a look-ahead within the procedure code to determine the

state of the next query. The earlier the state can be reported to the server, the less useless

idle time occurs.

Another issue is the broader use of the query result cache (QRC). Currently, a transaction

at the server does only consider query results in the QRC that result from the same twin

transaction. In a broader use, a transaction at the server can check the entire QRC for usable

query results. Then, cached query results can also be reused from other previous or currently

running transactions. Of course, this would increase the search time for valid results in the

QRC, but potentially the number of reuse cases can be increased.

As we discuss in Chapter 5 and 6, the server switches to normal mode whenever an

invalid query has been detected. As shown be the experiments, this switch can increase as

well as decrease the performance of a cache. To determine the best switching strategy, more

experiments on real-world applications have to be done.

Our scheme undoes all updates that have been made during an execution at a cache.

This is useful, since a cache might have performed erroneous updates which can cause in-

consistencies at the cache. However, if a cache has operated on the same fragment version

as the server and has performed exactly the same updates as the server in their execution,

these updates can be committed and its rejection is needless. Another open direction is the

extension of our scheme by committing updates at the cache. This possibly further improves

the up-to-dateness of cache data, since then locally committed updates are not delayed by

the optimistic synchronization scheme.

As defined in Chapter 8, the model of calculating the processing time of a procedure on

the basis of execution histories mimics the behavior of the simultaneous execution including

the shipping of query results, verification, idle times, etc. Currently, our model does not

cover all behavior of the scheme, such that a proper mapping of this behavior to the model

potentially further improves its preciseness.

Eliminate User-Provided Parameters for the Optimization Problem

The optimization problem in Chapter 7 relies on three user-provided parameters that con-

trol the placement and removement of fragments at a cache. The first two (minRead and

minWrite) are used as entry barriers for fragments to be replicated. If the read-frequency

is too low or the write-frequency too high, a fragment is not considered for replication. The

third parameter (minEff) is used to remove already replicated fragments that do not produce

201

the required amount of valid query executions at a cache. An open question is whether these

parameters can be eliminated.

As we argue at the end of Chapter 7, the parameter minEff can be eliminated by devel-

oping a model for capturing the synchronization costs of a fragment and comparing it with

the benefits from valid query executions at the cache on this fragment. If the benefits exceed

the costs, the fragment is further replicated and removed from a cache otherwise.

Solutions to the Optimization Problem

The primary goals of the Chapter 8 and 9 are to develop a model for the novel scheme and

to derive possible model-specific optimization strategies. The example of an optimization

algorithm in Chapter 9 can be extended in many ways. As we suggest, further work should

be applied in considering heuristic search approaches, e.g., evolutionary approach, such as

genetic algorithms, to efficiently solve the optimization problem.

Such a mapping has to consider our partial solution of the optimization problem as well

as the proper handling of the feed-back problem. The latter results from a cyclic dependency

of influencing parameters. That is, the optimizer requires the precise values of the execution

time of elementary database operation which depend on the load of a cache and the server.

Since the optimizer sets the split parameters at a cache it influences the load of both. Hence,

the decisions of the optimizer possibly change this execution time by tracking the optimal

performance.

Local versus Global Optimization

Another important issue is the synchronization of the optimization tasks of all attached

caches of the system. The configurations of all attached caches significantly influence the

load conditions at the central server. For a proper detection of the server load it is essential

that each cache knows about the decisions of other caches in changing the configuration.

However, we consider only the optimization from the perspective of a single cache, where

the server is just a resource that due to different load-conditions computes requests with a

different efficiency.

Hence, a possibly better optimization result can be achieved by a global optimizer that for

the entire client-server system coordinates the setting of the replication and split parameters.

A global optimization seems very promising, but it also requires optimizing multiple caches

at the same time. Further, the optimizer should not run at the bottle-necked server, such

that the only possibility is autonomous optimizers at caches that communicate with each

other. In all a difficult, but challenging task.

202

Bibliography

[1] Serge Abiteboul and Oliver M. Duschka. Complexity of Answering Queries Using Ma-

terialized Views. In Proc. of the ACM SIGACT SIGMOD SIGART Symposium on

Principles of Database Systems (PODS), Seattle, pages 254–263, 1998.

[2] S. Adali, S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query caching

and optimization in distributed mediator systems. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Montreal, Canada, pages 137–148,

1996.

[3] A. Aho, R. Sethi, and J. Ullmann. Compiler construction. volume 3, 1989.

[4] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, and H. Pirahesh. Cache tables:

Paving the way for an adaptive database cache. In In Proc. of the 2003 Conf. on Very

Large Data Bases (VLDB), Berlin, Germany, pages 718–729, 2003.

[5] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. Dbproxy: A dynamic data cache

for web aplications. In ICDE, Bangalore, India, March, pages 493–504, 2003.

[6] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and T. Zhong. Web caching for database

applications with oracle web cache. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, Madison, WI, pages 594–599, 2002.

[7] D. F. Bacon and R. E. Strom. Optimistic parallelization of communicating sequen-

tial processes. In Proceedings of the 3rd ACM SIGPLAN Symposium on Principles &

Practice of Parallel Programming, volume 26, pages 155–166, Williamsburg, VA, April

1991.

[8] M. Balaban and P. Shoval. Enhancing the ER model with structure methods. In

CAiSE’98/IFIP Workshop on Evaluation of Modeling Methods in Systems Analysis

and Design, June 1998.

[9] M. Balaban and P. Shoval. Enhancing the ER model with structure methods. Journal

of Database Management, 10(4):14–23, 1999.

[10] Daniel Barbara. Mobile Computing and Databases - A Survey. IEEE Transactions on

Knowledge and Data Engineering, 11(1):108–117, 1999.

203

[11] C. N. Bendtsen and T. Krink. Dynamic Memory Model for Non-Stationary Opti-

mization. In Proc. of the Fourth Congress on Evolutionary Computation (CEC-2002),

1:145–150, 2002.

[12] Elisa Bertino, Elena Ferrari, and Evaggelia Pitoura. An Access Control Mechanism

for Large Scale Data Dissemination Systems. In RIDE-DM, April 2001, Heidelberg,

Germany, pages 43–50, 2001.

[13] Jürgen Branke. Evolutionary Approaches to Dynamic Optimization Problems. In

Jürgen Branke and Thomas Bäck, editors, Evolutionary Algorithms for Dynamic Op-

timization Problems, pages 27–30, San Francisco, California, USA, 7 2001.

[14] F. Bry, H. Decker, and R. Manthey. A uniform approach to constraint satisfaction

and constraint satisfiability in deductive databases. Proceedings of Extending Database

Technology, pages 488–505, 1988.

[15] K. S. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal. Enabling dynamic content

caching for database-driven web sites. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Santa Babara, CA, pages 532–543, 2001.

[16] M. Carey, M. Franklin, M. Linvy, and E. Shekita. Data Caching Tradeoffs in Client-

Server DBMS Architecture. In In Proc. of the ACM SIGMOD Conf. on Management

of Data, Denver, USA, pages 357–366, 1991.

[17] M. Celma and H. Decker. Integrity checking in deductive databases. the ultimate

method? Proceedings of 5th Australiasian Database Conference, pages 136–146, 1995.

[18] S. Ceri, P.Fraternali, S. Paraboschia, and L. Tanca. Automatic gerneration of pro-

duction rules for integrity maintenance. In ACM Transactions on Database Systems,

volume 19(3), pages 367–422, 1994.

[19] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. Pro-

ceedings of the 16. International Conference on Very Large Data Bases, pages 566–577,

1990.

[20] Stefano Ceri and Piero Fraternali. Designing Database Applications with Objects and

Rules. Addision Wesley, 1997.

[21] U. Cetintemel and P. Keleher. Light-Weight Currency Management Mechanisms

in Deno, In The 10 th IEEE Workshop on Research Issues in Data Engineering

(RIDE2000), pages 17-24, February 2000.

[22] U. Cetintemel, P. Keleher, and M. Franklin. Support for speculative update propagation

and mobility in deno, pages 509-516, ICDCS 1999.

[23] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseak Shim. Opti-

mizing Queries with Materialized Views. In 11th Int. Conference on Data Engineering,

pages 190–200, Los Alamitos, CA, 1995. IEEE Computer Soc. Press.

204

[24] C. Chen and N. Roussopoulos. Implementation and performance evaluation of the

adms query optimizer: Integrating query result caching and matching. In Proc. of

EDBT Conf., pages 323–336, 1994.

[25] Panos K. Chrysanthis. Transaction processing in mobile computing environment. In

IEEE Workshop on Advances in Parallel and Distributed Systems, pages 77–83, Prince-

ton, New Jersey, 1993.

[26] Simon Cuce, Arkady B. Zaslavsky, Bing Hu, and Jignesh Rambhia. Maintaining con-

sistency of twin transaction model using mobility-enabled distributed file system envi-

ronment. In DEXA Workshops, pages 752–756, 2002.

[27] K. Curewitz, P. Krishnan, and J. Vitter. Practical prefetching via data compression.

In In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 43–53, 1993.

[28] C.R. Cutler and R.T. Perry. Real Time Optimization with Multivariable Control is

Required to Maximize Profits. In Computers and Chemical Engineering, volume 7,

pages 663–667, 1983.

[29] Shaul Dar, Michael J. Franklin, B. T. Jónsson, Divesh Srivastava, and Michael Tan.

Semantic data caching and replacement. In Proc. VLDB Conf., Bombay, India, Septem-

ber, 1996, pages 330–341, 1996.

[30] M.L. Darby and D.C. White. On-line Optimization of Complex Processes. In Chemical

Engineering Progress, pages 51–59, 1988.

[31] S.K. Das and M.H. Wiliams. A path finding method for constraint checking in deductive

databases. Data and Knowledge Engineering 3, pages 223–244, 1989.

[32] H. Decker. Integrity enforcements on deductive databases. Proceedings of the 1st

Internetional Conference on Expert Database Systems, pages 271–285, 1986.

[33] S. Dressloch, T. Härder, N. Mattos, B. Mitschang, and J. Thomas. KRISYS: Modeling

concepts, implementations techniques and client/server issues. In The VLDB Journal,

pages 7(2):79–95, 1998.

[34] I.M. Edwards and A. Jutan. Optimization and Control using Response Surface Meth-

ods. In Computers and Chemical Engineering, volume 21(4), pages 441–453, 1997.

[35] W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen, Mike Spreitzer, Douglas B.

Terry, and Marvin Theimer. Designing and implementing asynchronous collaborative

applications with bayou. In ACM Symposium on User Interface Software and Technol-

ogy, pages 119–128, 1997.

[36] J. Eggermont and T. Lenaerts. Dynamic Optimization using Evolutionary Algorithms

with a Cased-based Memory. In Proc. of the 14. Belgium-Netherlands Conference on

Artifical Intelligence, pages 107–114, 2002.

205

[37] M. Franklin, M. Carey, and M. Livny. Transactional client-server cache consistency. In

In ACM Trans. on Database Systems, volume 22(3), pages 315–363, 1997.

[38] M. Franklin and D. Kossman. Cache investment strategies. In Technical Report CS-TR-

3803, University of Maryland, College Park, MD 10742. Submitted to IEEE Knowledge

and Data Engineering, 1997.

[39] M. J. Franklin and M. Carey. Client-server caching revisited. In Readings in Database

Systems (3rd Edition), M. Stonebraker, J. M. Hellerstein (Eds.), Morgan Kaufmann

Publishers Inc., In Proc. of the IWDOM, pages 57–78, 1998.

[40] M. J. Franklin, M. J. Carey, and M. Livny. Transaction Client-Server Consistency:

Aternatives and Performance. In Technical Report CS-TR-3511 and UMIACS TR 95-

84, University of Maryland, College Park, MD 10742, 1995.

[41] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann. Performance tradeoffs

for client-server query processing. In Proceedings of the 1996 SIGMOD Conference,

Montreal, Canada, pages 149–160, 1996.

[42] M.J. Franklin. Caching and Memory Management in Client-Server Database Systems.

Dissertation, Computer Sciences Department, University of Wisconsin-Madison, 1993.

[43] P. Fraternali, S. Paraboschi, and L. Tanca. Automatic rule generation for constraints

enforcement in active databases. In U. Lipeck and B. Thalheim, editors, Modeling

Database Dynamics, pages 153–173. springer WICS, 1993.

[44] C. A. Gerlhof and A. Kemper. A multi-threaded architecture for prefetching in object

bases. In In Proc. of the Intl. Conf. on Extending Database Technology (EDBT), volume

779 of Lecture Notes in Computer Science, pages 351–364, 1994.

[45] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The Dangers of Replication

and a Solution. In In Proc. of the 1996 SIGMOD Conference, Montreal, Canada, pages

173–182, 1996.

[46] John J. Grefenstette. Genetic algorithms for changing environments. In R. Männer and

B. Manderick, editors, Parallel Problem Solving from Nature 2 (Proc. 2nd Int. Conf.

on Parallel Problem Solving from Nature, Brussels 1992), pages 137–144, Amsterdam,

1992. Elsevier.

[47] R. Grimm. Systems Directions for Pervasive Computing. In the Proceedings of the 8th

Workshop on Hot Topics in Operating Systems (HotOS-VIII), Elmau, Germany, May

2001, pages 128-132, 2001.

[48] Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materialized Views: Prob-

lems, Techniques and Applications. IEEE Quarterly Bulletin on Data Engineering;

Special Issue on Materialized Views and Data Warehousing, 18(2):3–18, 1995.

206

[49] Ashish Gupta and Jennifer Widom. Local verification of global integrity constraints in

distributed databases. In Proc. of the 2003 SIGMOD Conference, Washington D.C.,

pages 49–58, 1993.

[50] Richard G. Guy, Peter L. Reiher, David Ratner, Michial Gunter, Wilkie Ma, and

Gerald J. Popek. Rumor: Mobile Data Access Through Optimistic Peer-to-Peer Repli-

cation. In ER Workshops, Singapore, pages 254–265, 1998.

[51] Laura M. Haas, Donald Kossmann, and Ioana Ursu. Loading a cache with query results.

In In Proc. of the Conf. on Very Large Data Bases (VLDB), Edinburgh, Scotland, pages

351–362, 1999.

[52] Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors. DBCache: Middle-tier

Database Caching for Highly Scalable e-Business Architectures. In the Proceedings of

the 2003 ACM SIGMOD International Conference on Management of Data, San Diego,

California, USA, June 9-12, 2003.

[53] T. Härder, B. Mitschang, U. Nink, and N. Ritter. Workstation/Server Architekturen für

datenbankbasierte Ingeniueranwendungen. In Informatik - Forschung und Entwicklung,

pages 10(2):43–53, 1995.

[54] Theo Härder and Andreas Bühmann. Database caching - towards a cost model for

populating cache groups. In ADBIS, Budapest, Hungary, pages 215–229, 2004.

[55] Christop Hartwig. A Middleware Architecture for transactional, object-oriented appli-

cations. Dissertation, Freie Universität zu Berlin, 2004.

[56] Holland and John. Hidden Order - How adaptation builds complexity. Addision Wesley,

1995.

[57] S. Jurk and M. Balaban. Improving Integrity Constraint Enforcement by Extended

Rules and Dependency Graphs. In Proc. 22th Conf. on DEXA, pages 501–516, 2001.

[58] S. Jurk and M. Balaban. Update-Consistent Query Results by Means of Effect Preser-

vation. In Proc. Fifth International Conf. on Flexible Query Abswering Systems

(FQAS’02), pages 28–43, 2002.

[59] S. Jurk and M. Balaban. Towards effect preservation of updates with loops. In Fifth

IFIP TC-11 WG 11.5 Working Conference on Integrity and Internal Control in Infor-

mation Systems, pages 59–75. Kluwer Academic Publishers, 2003.

[60] S. Jurk, U. Leser, and J.-L. Marzo. Cooperative Transaction Processing between Clients

and Servers. In ADBIS (Local Proceedings), pages 132–146, 2004.

[61] S. Jurk and M. Neiling. Client-Side Dynamic Preprocessing of Transactions. In ADBIS,

7th East European Conf., Dresden, Germany, volume 2798 of LNCS, pages 103–117.

Springer, 2003.

207

[62] M. Kaiser, K. Tsui, and J. Liu. Adaptive distributed caching. in proceedings of the

2002 congress on evolutionary computation, pages 1810-1815, 2002.

[63] F. Kappe. A scalable architecture for maintaining referential integrity in distributed

information systems. J.UCS: Journal of Universal Computer Science, 1(2):84–95, 1995.

[64] Arthur M. Keller and Julie Basu. A Predicate-based Caching Scheme for Client-Server

Database Architectures. VLDB Journal: Very Large Data Bases, 5(1):35–47, 1996.

[65] A. Kemper and D. Kossmann. Dual-buffering strategies in object bases. In In Proc. of

the Conf. on Very Large Data Bases (VLDB), pages 427–438, 1994.

[66] Donald Kossmann, Michael J. Franklin, Gerhard Drasch, and Wig Ag. Cache invest-

ment: integrating query optimization and distributed data placement. ACM Transac-

tions on Database Systems, 25(4):517–558, 2000.

[67] S.Y. Lee and T.W. Ling. Further improvement on integrity constraint checking for

stratisfiable deductive databases. In Proc. 22th Conf. on VLDB, pages 495–505, 1996.

[68] S. Link and K.-D. Schewe. Computability and Decidability Issues in the Theory of

Consistency Enforcement. In Electronic Notes in Theoretical Computer Science, vol-

ume 42, 2001.

[69] Peng Liu, Paul Ammann, and Sushil Jajodia. Incorporating Transaction Semantics to

Reduce Reprocessing Overhead in Replicated Mobile Data Applications, In Proc. of

the ICDCS, Austin, Texas, USA, pages 414-423, 1999.

[70] Q. Luo and J. F. Naugthon. Form-based proxy caching for database-backed web sites. In

In Proc. of the Conf. on Very Large Data Bases (VLDB), Rome, Italy, pages 191–200,

2001.

[71] Sanjay Kumar Madria and Bharat K. Bhargava. A Transaction Model for Mobile Com-

puting. In International Database Engineering and Application Symposium (IDEAS),

Cardiff, Wales, pages 92–102, 1998.

[72] E. Mayol and E. Teniente. Structuring the process of integrity maintenance. In Proc.

8th Conf. on Database and Expert Systems Applications (DEXA), Toulouse, France,

pages 262–275, 1997.

[73] E. Mayol and E. Teniente. Addressing efficiency issues during the process of in-

tegrity maintenance. In Proc. 10th Conf. on Database and Expert Systems Applications

(DEXA), Florence, Italy, pages 270–281, 1999.

[74] E. Mayol and Ernest Teniete. A survey of current methods for integrity constraint

maintenance and view updating. In Chen, Embley, Kouloumdjian, Liddle, Roddick,

editor, Intl. Conf. on Entity-Relationship Approach, volume 1727 of Lecture Notes in

Computer Science, pages 62–73, 1999.

208

[75] Subhasish Mazumdar and Panos K. Chrysanthis. Achieving Consistency in Mobile

Databases through Localization in PRO-MOTION. In DEXA Workshop, Florence,

Italy, pages 82–89, 1999.

[76] M. Miki, T. Hiroyasu, M. Kasai, K. Ono, and T. Jitta. Temperature Parallel Simulated

Annealing with Adaptive Neighborhood for Continuous Optimization Problem. In In

Proc. of the 2. International Workshop on Intelligent Design and Application, pages

149–154, 2002.

[77] C. Mohan. Caching technologies for web applications. In In Proc. of the Conf. on Very

Large Data Bases (VLDB), Rome, Italy, page Tutorial, 2001.

[78] C. Mohan. Application servers and associated technologies. In In Proc. of the Conf.

on Very Large Data Bases (VLDB), Hong Kong, China, page Tutorial, 2002.

[79] Brian D. Noble. Mobile Data Access. PhD thesis, Carnegie Mellon University Pitts-

burgh, USA, 1998.

[80] T. Oszu and P. Valduriez. Principles of Distributed Database Systems. Prentice-Hall,

Englewood Cliffs, New Jersey, 1991.

[81] M. Palmer and S. Zdonik. FIDO: A cache that lears to fetch. In Proc. of the Conf. on

Very Large Data Bases (VLDB), pages 255–264, 1991.

[82] E. Pitoura and G. Samaras. Data Management for Mobile Computing, volume 10.

Kluwer Academic Publishers, 1998.

[83] Evaggelia Pitoura. A Replication Schema to Support Weak Connectivity in Mobile

Information Systems. In 7th International Conference on Database and Expert Systems

Applications (DEXA), pages 510–520, 1996.

[84] Evaggelia Pitoura and Bharat Bhargava. Maintaining Consistency of Data in Mobile

Distributed Environments. In 15th International Conference on Distributed Computing

Systems (ICDCS), pages 404–413, 1995.

[85] PostgreSQL. http://www.postgreSQL.org.

[86] A. Rasheed. Twin-transaction model to support mobile data access. Ph.d. thesis, School

of Computer Science and Software Engineering, Monash University, 1999.

[87] A. Rasheed and A. Zaslavsky. Ensuring Database Availability in Dynamically Changing

Mobile Computing Environments. In Proc. of the 7th Australasian Database Conf.,

pages 100–108, 1996.

[88] M. Rodgriguez-Martinez and N. Roussopoulos. Mocha: a self-extensible database mid-

dleware system for distributed data sources, In Proc. of the 2000 ACM SIGMOD Conf.

Dallas, TX, USA. pages 213–224, 2000.

209

[89] Y. Saito. Optimistic Replication Algorithms. Technical report, General Examination

Report, University of Washington, 2000.

[90] S. Sämann. Experimentelle Analysen zu clientseitigen Vorberechnungen von Daten-

bankprozeduren, Studienarbeit, Brandenburgische Technische Universität Cottbus,

Lehrstuhl Datenbank- und Informationssyteme, November 2004.

[91] K.D. Schewe and B. Thalheim. Consistency enforcement in active databases. In

S. Chakravarty and J. Widom, editors, Research Issues in Data Engineering – Active

Databases, pages 71–76. IEEE Computer Society Press, 1994.

[92] K.D. Schewe and B. Thalheim. Limitations of rule triggering systems for integrity

maintenance in the context of transition specifications. Acta Cybernetica, 13:277–304,

1998.

[93] K.D. Schewe and B. Thalheim. Towards a theory of consistency enforcement. Acta

Informatics, 36:97–141, 1999.

[94] BEA WebLogic Application Server. http://www.bea.com/products/weblogic/server/.

[95] IBM Websphere Application Server. http://www.ibm.com/software/webservers/appserv/.

[96] The Times Ten Team. Mid-tier caching: The fronttier approach. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, Madison, WI,

pages 588–593, 2002.

[97] Douglas B. Terry, Karin Petersen, Mike Spreitzer, and Marvin Theimer. The case

for non-transparent replication: Examples from bayou. Data Engineering Bulletin,

21(4):12–20, 1998.

[98] K. Trojanowski and Z. Michalewicz. Evolutionary Algorithms for Non-Stationary En-

vironments. In Proc. of 8th Workshop: Intelligent Information systems, pages 229–240.

ICS PAS Press, 1999.

[99] van der Voort and A. Siebes. Termination and confluence of rule execution. In In

Proceedings of the Second International Conference on Information and Knowledge

Management, pages 245–255, November 1993.

[100] Gary D. Walborn and Panos K. Chrysanthis. Supporting Semantics-Based Transaction

Processing in Mobile Database Applications. In Symposium on Reliable Distributed

Systems, pages 31–40, 1995.

[101] Gary D. Walborn and Panos K. Chrysanthis. PRO-MOTION : Management of Mobile

Transactions. In Selected Areas in Cryptography, pages 101–108, 1997.

[102] Y. Wang and L. A. Rowe. Cache Consistency and Concurrency Control in a

Client/Server DBMS Architecture. In Proceedings of the 1991 ACM SIGMOD Int.

Conf. on Management of Data, pages 367–376. ACM Press, 1991.

210

[103] C. Wen and K. Yelick. Compiling sequential programs for speculative parallelism,

In Proceedings of the International Conference on Parallel and Distributed Systems,

Taiwan, Dec. 1993.

[104] J. Widom and S. Ceri. Deriving production rules for constraint maintenance. In Proc.

16th Conf. on VLDB, pages 566–577, 1990.

[105] J. Widom and S. Ceri. Active Database Systems. ISBN 1-55860-304-2, Morgan-

Kaufmann, 1996.

[106] W. K. Wilkinson and M. Neimat. Maintaining Consistency of Client-Cached Data.

In 16th International Conf. on VLDB, August 13-16, 1990, Brisbane, Queensland,

Australia, Proceedings, pages 122–133. Morgan Kaufmann, 1990.

[107] Q. Xiong and A. Jutan. Continuous Optimization using a Dynamic Simplex Method.

volume 58, pages 3817–3828. Chemical Engineering Science, 2003.

[108] Arkady B. Zaslavsky and Zahir Tari. Mobile Computing: Overview and Current Status.

Australian Computer Journal, 30(2):42–52, 1998.

[109] C. Zhou and M. Hsu. A theory for rule triggering systems. In Advances in Database

Technology-EDBT’ 90, volume 416 of Lecture Notes in Computer Science, pages 407–

421, 1999.

211

212

Notations

Notation Explanation

access(s) function that returns a set of fragments and versions (F, ver) that

have been accessed by the execution of the IO statement s, see

Section 4.6

cinsert(n),

cexec(n)

counters that are attached to nodes n of an execution history,

nodes represent statements (low-level updates or queries), cexec(n)

represents the number of executed statements at the server,

cinsert(n) represents the number of executed insert operations at

the cache, see Section 8.3.2

complete(R) function that is called at caches and the server, returns true if all

fragments of a table R are locally available, false otherwise, see

Section 4.6

C, C set C of clients with C ∈ C, see Section 4.1

data(F) function that returns the content (set of tuples) of a fragment F ,

see Section 4.4.3

eval(s,#s, e) function provided by the database management system to execute

an IO statement, s ∈ ID(S) is the internal identifier of the IO

statement of the corresponding procedure S, e the expression (up-

date or query) and #s ∈ N counts the repetitions of s during the

execution of S, see Section 4.3

evalC(s,#s, e) implements the function eval(s,#s, e) and additional behavior to

implement the simultaneous execution scheme at a cache, see Sec-

tion 5.3.1

evalS(s,#s, e) implements the function eval(s,#s, e) and additional behavior to

implement the simultaneous execution scheme at the server, see

Section 5.4

213

#exec is used as execution counter in algorithms, e.g. Section 9.2

F , F relation of fragments, fragment F in F , F is also treated as a set,

a fragment (F,R,A, c, ver) is represented by an identifier F ∈ N,

a table R, an attribute A, a value c and a version ver ∈ N, the

content of a fragment is defined by data(F) = σA=c(R), see Section

4.4.3

FAH fragment access history, contains tuples (F, ver, U) with fragment

F , version ver and sequence of updates U , see Section 4.4.4

fragDef(s) returns set of fragments (R,A, c) that are required to execute the

IO statement s, a value c = ∗ summarizes all fragments of the

table R, see Section 4.4.2

fragID(R,A, c) function that returns the identifier of a fragment in F that is

specified by a table R, an attribute A and a value c, see Section

4.4.3

ID(S) set of unique identifiers for all IO statements in a procedure S, see

Section 4.3

histt(S) execution history of a procedure S in stage t, see Section 8.3

mLabelt represents a run time value that is observed in a stage t

mIdlet(S) total sum of the idle time in ms at the cache and the server during

all procedure calls of type S in t, see Section 7.2.4

mDiskt disk space in KB at a cache in t, see Section 7.4

mEfft(F) fragment efficiency, total sum of the execution time in ms for valid

queries at a cache in t, see Section 7.3.3

mIdle+
t (S) total sum of the idle time in ms at the cache during all procedure

calls of type S in t, see Section 7.2.3

mPTt(S) average processing time in ms of all procedure calls of type S in

t, see Section 7.2.2

mReadt(F) read frequency of a fragment F in t, see Section 7.3.1

mSizet(F) size in KB of a fragment F in t, see Section 7.4

mWritet(F) write frequency of a fragment F in t, see Section 7.3.1

πA(r) projection of table r on column A, see Section 4.1

ptC(s), ptS(s) processing time of an executed IO statement at the cache and the

server respectively, see Section 7.2.1

PT (SC) processing time of a procedure call SC, see Section 7.2.2

214

repl, replC set of replicated fragments for a cache at client C, repl ⊆ (F), see

Section 4.5

R, R set R of relations/tables with R ∈ R, see Section 4.1

σϕ(r) selection of tuples in r that satisfy the condition ϕ, see Section 4.1

s identifier of an IO statement, s ∈ N, see Section 4.3

S, S set S of stored procedures with S ∈ S, see Section 4.1

SC a call of a procedure S, see Section 7.2.2

split set of IO statements, split ⊆ ID(S), see Section 5.1

t in Part II used as tuple, in Part III as a period of time (stage)

ver(F) version of a fragment F , ver(F) ∈ N, see Section 4.4.3

Z(S) set of split parameters, Z(S) ⊆ 2ID(S), see Section 5.5

Z configuration space, Z = Z(S1) × · · · × Z(Sk) for all Si ∈ S with

1 ≤ i ≤ k, see Section 7.4

z configuration z ∈ Z, see Section 7.4

Zt configuration space of a stage t, emphasis the problem that the

number of stored procedure is variable at run time, see Section

7.4

215

