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CVD growth of (001) and (111) 3C-SiC Epilayers and Their Interface Reactivity with 

Praseodymium Oxide Dielectric Layers 

Rakesh Sohal 

Brandenburgische Technische Universität Cottbus, 2006 

 

 

Zusammenfassung 

 

Im Rahmen dieser Arbeit wird das Wachstum und die Charakterisierung von 3C-SiC Filmen, 

deren Oxidation, sowie das darauf präparierte Pr-Silikat und die AlON abgeleitete Grenzfläche 

untersucht. Dünne 3C-SiC Filme wurden auf Si(001) und Si(111) Oberflächen mit Hilfe von 

Chemical Vapor Deposition Verfahren hergestellt. Vor dem eigentlichen SiC-Wachstum wurde eine 

SiC Zwischenschicht präpariert. Durch diese Buffer-Schicht wurde das epitaktische Wachstum von 

3C-SiC auf Si(111) und Si(001) erst ermöglicht. Als optimale Präparationstemperaturen  für 3C-SiC 

auf Si(111) und Si(001) konnten 1100°C und 1150°C gefunden werden.  

 

Im Verlaufe der Oxidation hat sich ein langsamer Stufenprozess mit moderaten Temperaturen 

als hilfreich erwiesen, um die Graphitisierung an der SiO2/SiC Grenzfläche zu minimieren. 

Sauberes, graphitfreies SiO2 konnte somit auf 3C-SiC mit Hilfe von Si-Evaporation und Heizen im 

Vakuum hergestellt werden. Für mögliche Anwendung von Pr2O3 auf Siliziumkarbid als high-k 

Dielektrikum wurden weiterhin Pr-Silikate und AlON untersucht. Praseodymium-Silikat konnte 

erfolgreich auf der SiO2 Oberfläche abgeschieden werden und gleichzeitig die Graphitisierung 

verhindert werden. Im Vergleich hierzu konnten sehr stabile Grenzflächen mit AlON hergestellt 

werden. Diese Grenzflächen bestehen hauptsächlich aus AlN mit Anteilen von Pr-Al Komplexen. 

Diese Schichten können als Reaktionsbarrieren zwischen  Pr2O3 und SiC dienen und gleichzeitig 

den Band-Offset vergrößern. 
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Abstract 

 

In this work, growth and characterisation of 3C-SiC thin films, investigation of oxidation of 

thus prepared layers and Pr-silicate and AlON based interface with SiC have been studied. 

Chemical vapor deposition of 3C-SiC thin films on Si(001) and Si(111) substrates has been 

investigated. Prior to the actual SiC growth, preparation of initial buffer layers of SiC was done. 

Using such a buffer layer, epitaxial growth of 3C-SiC has been achieved on Si(111) and Si(001) 

substrates. The temperature of 1100°C and 1150°C has been determined to be the optimal 

temperature for 3C-SiC growth on Si (111) and Si(001) substrates respectively.  

 

The oxidation studies on SiC revealed that a slow oxidation process at moderate temperatures 

in steps was useful in reducing and suppressing the g-C at the SiO2/SiC interface. Clean, graphite-

free SiO2 has been successfully grown on 3C-SiC by silicon evaporation and UHV anneal. For the 

application of high-k Pr2O3 on silicon carbide, plausible interlayer, Pr-Silicate and AlON, have been 

investigated. Praseodymium silicate has been prepared successfully completely consuming the SiO2 

and simultaneously suppressing the graphitic carbon formation. A comparatively more stable 

interlayer using AlON has been achieved. This interlayer mainly consists of stable phases of AlN 

along with some amount of Pr-aluminates and CN. Such layers act as a reaction barrier between 

Pr2O3 and SiC, and simultaneously provide higher band offsets. 
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Chapter 1 

 

Introduction 

 

Since 1950s, semiconductor technology has grown tremendously impacting almost 

everyone’s life style. As perceivable from the word “semiconductors” these are the materials having 

intermediate electrical conductivity between metals and insulators. The progress in semiconductor 

technology started using germanium but due to its several drawbacks, e.g. high junction leakage 

current due to narrow energy bandgap (Eg=0.66eV), silicon (Eg=1.1eV) proved to be suitable for 

further development in semiconductor technology. At the beginning of 21st century silicon is still 

dominating in electronics industry. Other materials like GaAs and its alloys are for light emitting 

devices where silicon, being an indirect bandgap semiconductor, is not suitable. Moreover silicon 

devices are not able to operate at temperatures above 150°C, especially when high operating 

temperatures are combined with high power, high frequency, and high radiation environment. New 

materials replacing well established silicon are wide bandgap (2.0- 6.0 eV) semiconductors (SiC, 

GaN etc.) for fabricating electronic devices and sensors capable of withstanding extreme conditions 

like high power, high temperature and harsh environments. 

 

There is considerable interest in developing electronics capable of operating at temperatures 

higher than 200°C in high radiation and/or in harsh environment. Applications which need high 

temperature circuit operation are aerospace systems (turbine engines, high tech aircrafts and space 

shuttles), hybrid electric vehicles, nuclear power instrumentation, space exploration and oil drilling.  

High temperature operation is also essential for Micro-Electro-Mechanical Systems (MEMS) in 

order to maximise its utility. Several wide bandgap materials possess the physical and electrical 

properties relevant for fabricating devices capable of operating in hostile environment. A worldwide 

research in development of various types of wide bandgap semiconductors and devices is ongoing 

for several years. However, out of all these, only silicon carbide (SiC), diamond and gallium nitride 

(GaN) are suitable for the manufacture of high temperature electronic and optoelectronic devices. In 

particular, SiC has a high development potential and recently considerable progress has been made 

in fabrication of SiC devices mainly high performance Schottky diodes and transistors such as 

bipolar junction transistors (BJT), metal oxide semiconductor field effect transistors (MOSFET) and 

various types of sensors, etc. 
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Why Silicon Carbide? 

Silicon Carbide (SiC) is an important indirect wide bandgap semiconductor with outstanding 

electronic properties. With “figures of merit” (Table 2.2, p.16) far better than that of silicon, it may 

outclass silicon in high power, high voltage switching, high temperature electronics (including 

sensors), high power microwave devices, and high radiation environment or ultra-violet 

optoelectronic devices [1]. This material also possesses distinguished chemical stability and 

hardness. Some of the advantages over Si based power devices are as follows: 

 

• SiC unipolar devices are thinner, and they have lower on-resistances, which consequently 

results in lower conduction losses and therefore higher overall efficiency. 

• SiC based power devices have higher breakdown voltages because of their higher 

breakdown electric field e.g. Si (300V) vs SiC (1450V) Schottky diodes. 

• SiC has higher thermal conductivity (4.9W/cm-K for SiC and 1.5W/cm-K for Si); therefore 

SiC power devices have a lower junction-to-case thermal resistance therefore device 

temperature increase is slower. 

• SiC can operate at high temperatures up to 600°C on the other hand, Si devices can operate 

only to 150°C. 

• SiC is extremely radiation hard therefore it is applicable in aerospace decreasing the 

additional weight from radiation shielding. 

• Because of low switching losses, SiC based devices can operate at high frequencies 

(>20kHz) which is not possible with Si based devices in power levels of more than a few 

tens of kilowatts.  

 

Although SiC do have above listed advantages, it do posses some disadvantages which hinder its 

development. Following are some of the disadvantages: 

• Processing yield is lower due to micropipe defects. 

• Higher device cost due to unavailability of large wafers. 

• Need for high temperature packaging technique in order to utilise SiC to its full potential. 

 

SiC Advances 

SiC based LEDs are now replaced by more efficient devices based on direct bandgap GaN 

and other group III nitrides. The explosive growth of the nitride based optoelectronics had a positive 

impact on development of SiC technology. SiC wafers form an ideal template for nitride epitaxy 

due to good lattice match and higher thermal conductivity [2]. Two inch diameter wafers standard is 
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being replaced by 3-inch diameter wafers progressing towards 4-inch diameter wafers in volume 

production consequently lowering the cost of a wafer unit area. Several nucleation mechanisms for 

micropipes formation such as nucleation on second phase inclusions [3, 4] and coalescence of 

elementary screw dislocations [5] are studied. Besides the reduction in micropipes density, 

considerable progress has been made in reduction of basal plane dislocations using a novel 

“repeated a-face” approach [6]. Availability of high resistivity substrates, for low-loss, high-

frequency devices, is now possible by intentional compensation of shallow residual impurities by 

deep levels induced by vanadium doping [7].  A significant reduction in interface charge density by 

post oxidation nitrous oxide annealing [8] would surely boast the development of more advanced 

high voltage switching devices such as MOSFETs and induced gate bipolar transistor (IGBTs). In 

order to fully utilise the superior properties of SiC a highly developed epitaxial growth technology 

is essential. A planetary wafer rotation in hot wall reactor has permitted superior thickness and 

doping uniformity [9]. Micropipes defects can be closed by Si-rich growth conditions [10] at the cost 

of epilayer quality. Another well known defect in epilayers “carrot defect” density can be reduced 

by the judicious selection of substrates and optimised epigrowth techniques [11]. For 3C-SiC 

epitaxial growth, selective epitaxial growth (SEG) [12] and growth on undulated silicon substrates [13] 

are proved to be effective technique for reduction of defects density in grown layers. 

 

SiC Oxidation 

SiC surface oxidation is one of the key issues for successful device applications. SiC has one 

great advantage over other III-V and II-VI wide bandgap semiconductors; that an oxide layer can be 

thermally grown by heating in an O2 ambient exactly like for Si. This oxide layer is used as gate 

isolation material for MOSFETs, which is a most widely used semiconductor device in modern 

electronic industry. Moreover SiC MOSFETs would be applicable in extreme conditions where the 

conventional silicon devices can not work efficiently.  

 

Fabrication of efficient and reliable SiC-MOSFETs requires abrupt homogeneous SiO2/SiC 

interface with low interface states density comparable to that of SiO2/silicon interface. Several 

groups have reported the fabrication of MOSFETs in three main polytypes 4H, 6H and 3C-SiC [14-

18], however, the channel mobility is extremely small compared to its bulk value which hinders the 

realisation of power MOSFETs in SiC. The low channel mobility is largely related to the presence 

of greatly enhanced density of imperfections at the SiO2/SiC interface [19, 20] which not only degrade 

the device performance but also cause reliability problems related to the anticipated extreme 

operating conditions [21]. 
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Pr-Silicate on SiC 

The interface between high-k metal oxide dielectrics and silicon usually consists of ultra thin 

layer of silicon dioxide and (metal) M-silicates. The combination of low (SiO2, M-Silicates) and 

high-k layers stack would ultimately reduce the overall usefulness of high-k material. It is possible 

to avoid interfacial SiO2 formation by controlled M-silicate formation. Although the dielectric 

constant of these pseudo-binary alloys (M-silicates) is inevitably lower than the pure metal-oxides, 

this is considered to be an acceptable trade off for the greatly improved interface stability [22]. 

 

Praseodymium oxide directly deposited on silicon reacts readily at room temperature with 

silicon forming Pr-silicate and Pr-silicide as an interfacial layer. Such an interfacial layer could 

deteriorate the usefulness of high-k praseodymium oxides due to uncontrolled reaction at interface 

forming Pr-silicides which are metallic by nature. The formation of such interlayer could be 

controlled in order to form uniform interface and to avoid silicide formation. The investigation of 

Pr-silicate is important also for obtaining pure Pr2O3 phase.  

 

The above discussed chemistry of high-k metal oxides is true also in their application on 

silicon carbide. In the present work the metal oxide was praseodymium oxide. Pr-oxide do reacts 

with SiC forming Pr-silicate and silicide and additionally leave carbon clusters. This problem could 

be solved by carefully growing SiO2 and subsequently converting this oxide layer to Pr-silicate 

which could be utilised as a buffer layer for further Pr2O3 growth on SiC substrate. 

 

Suitable Interface for Alternate Dielectric (Pr2O3) on SiC 

As discussed under previous title, Pr2O3 readily reacts with SiC at room temperature. 

Although uniform Pr-silicate interlayer could be a temporary solution to this problem, another one 

could be the use of other high-k dielectric layer which could be a barrier to any kind of interaction 

between Pr2O3 and SiC i.e. which could avoid elemental diffusion at Pr2O3/SiC interface. This 

solution facilitates the possibility of choosing a material with sufficiently large valence and 

conduction band offsets (necessary to reduce leakage currents) with silicon carbide. Since, normally 

the bandgap decreases with increasing dielectric constant, being a high-k material, Pr2O3 also 

possess small bandgap which is not suitable for providing the sufficient band offsets with SiC. 

Moreover, there is a great requirement of thermally stable dielectric layer especially to utilise SiC 

device to their full potential. Aluminum nitride has been suggested as an alternative to silicon 

dioxide as dielectric for SiC MOS devices applicable at high temperature. Most important features 
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of AlN are large band offsets with SiC, thermal stability and elimination of ultra-thin SiO2 

formation at interface. 

 

Purpose of Research 

Cubic silicon carbide (3C-SiC) is one of the most important polytypes of SiC. Most 

advantageous factor for 3C-SiC is that it is low temperature polytype and therefore it can be grown 

on easily available good quality silicon substrates. It also possesses high electron mobility and high 

saturation drift velocity which make it suitable for high frequency device applications. Due to lack 

of suitable bulk growth technique it has been grown epitaxially on silicon substrates using 

conventional chemical vapor deposition methods. In order to utilise SiC to its full potential, the 

investigations being carried out in present work are briefly summarised as follows: 

• Development of suitable crystal growth (bulk or thin films) techniques is the very first 

problem to be solved. 

• Investigation of thermal oxidation of SiC and comparison with SiO2 on silicon in order to 

understand the origin of differences in their structural and electrical characteristics and 

thereby improving SiO2/SiC interface. 

• Investigation of praseodymium silicate formation in order to avoid ultra-thin SiO2 layer at 

Pr2O3/SiC interface for utilising high-k Pr2O3 on SiC substrates. 

• Hunt for stable interlayer between high-k praseodymium oxide and 3C-SiC. Since the 

thermally grown silicon oxide on SiC has large interface state density and low critical 

electric field (Ecr); alternate dielectric material can provide better interface and relevant Ecr. 

 

Therefore, for the development of SiC electronics, good quality single crystalline (bulk or thin 

films) SiC along with perfect dielectric material is a promising solution. Therefore the goal of this 

thesis work was investigation of CVD (chemical vapor deposition) growth of 3C-SiC, thermal 

oxidation of thus prepared SiC and alternate interfacial material between high-k praseodymium 

oxide (Pr2O3) and 3C-SiC. 

 

Highly oriented thin films of cubic silicon carbide (3C-SiC) were successfully grown on both 

Si(001) and Si(111) substrates at comparatively low temperatures 1050°C to 1200°C. The optimal 

growth temperature for our CVD system is found to be about 1150°C for Si(001) and 1100°C for 

Si(111). Below optimal growth temperature the growth rate is too low to completely cover the Si 

surface; whereas above this, the nucleation rate is too high to assume epitaxial growth.  
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The CVD grown 3C-SiC thin films were oxidised in ambient air or 10mbar of nitrous oxide 

(N2O) and analysed by XPS. Oxidation of silicon carbide at moderate temperature ~600°C in steps 

was found to be suitable to achieve pure silicon oxide layers. 

 

A painstaking approach for the preparation of praseodymium silicate on SiC was successful. 

It required careful oxidation of silicon carbide to obtain optimal silicon oxide thickness without any 

carbon cluster formation. The silicon oxide was almost completely transformed to Pr-silicate 

without any carbon clusters formation at the interface. 

 

An interlayer by utilising Aluminium Oxinitride (AlON) between Praseodymium Oxide and 

3C-SiC has been studied and found to be transformed to AlN along with some Pr-aluminate and CN 

which was stable and diffusion/reaction barrier between Pr2O3 and SiC. Such interlayer solved the 

problem of distructive interaction between Pr2O3 and SiC and simultaneously provides sufficient 

band offsets. 
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Chapter 2 

 

Silicon carbide and Dielectrics: Background 
 

Introduction 

Silicon carbide (SiC), one of the oldest known semiconductor materials, has received special 

attention in recent years because of its suitability in electronic and optoelectronic devices operating 

under high temperature, high power, high frequency, and/or strong radiation conditions, where the 

conventional semiconductor materials like Si, GaAs, and InP are considered to have reached their 

limits. As a wide bandgap semiconductor, SiC possesses many superior properties, such as a high 

operating temperature range, a high critical breakdown field (Ecr), high resistance to radiation and 

the ability to construct visible-range light emitting devices [1]. SiC has one great advantage over 

other wide bandgap semiconductors; that an oxide layer can be thermally grown by heating in O2 

ambient exactly like for Si. In SiC MOS devices the channel mobility is extremely small compared 

to its bulk value which hinders the realisation of power MOSFET in SiC. The oxide semiconductor 

interface layer plays an important role in performance and reliability of MOSFETs and therefore 

growth of high quality SiO2 layer with a low defect density at the interface is a crucial fabrication 

step. Due to the presence of high density of interface states (at SiO2/SiC interface), insufficient band 

offsets besides instability of oxides electrical properties at elevated temperatures and in high electric 

fields, there is a possibility of the application of alternate dielectric materials. In this chapter 

distinguished properties of silicon carbide have been discussed in detail, followed by the brief 

discussion of major advances towards SiC device development processing steps i.e. oxidation or 

employing the alternate dielectrics.  

 

2.1 Polytypism in Silicon Carbide  

 

Silicon carbide is interesting not only for its better mechanical, thermal and electronic 

properties, but also for its unique structural characteristics. Silicon carbide occurs in many different 

crystal structures termed as “polytypes” and the phenomena is polytypism. The term polytypism is 

the special case of polymorphism. While polymorphism is the ability of an element or compound to 

crystallize in more than one crystal structure, one dimensional polymorphism is called polytypism. 

In case of silicon carbide, Si-C bilayer, basic element, arrange in different stacking sequences 

(Fig.2.2) giving rise to various polytypes without changing stoichiometry. The stacking in cubic and 
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hexagonal structures is shown in Fig.2.1. In hexagonal stacking the SiC4 (CSi4) tetrahedral position 

with CSi4 (SiC4) coinciding the triangular bases whereas in cubic stacking these triangular bases are 

rotated by 60° with respect to each other. Most commonly used notation of the identification of 

polytypes is Ramsdell notation [1]. In this notation the number of layers in the stacking direction (c-

axis), before the sequence is repeated, is combined with the letter representing the Bravais lattice 

type: cubic (C), hexagonal (H) or rhombohedral (R). The extreme polytypes are 3C-SiC, which has 

a zincblende structure with pure cubic stacking of Si-C bilayers (ABC…) in the <111> direction, 

and 2H-SiC which has wurtzite structure with pure hexagonal stacking (AB...) in the <0001> 

direction. The other polytypes viz. hexagonal or rhombohedral have combination of cubic and 

hexagonal stacking sequences with n-Si-C bilayers in the primitive cell [2]. More than 200 polytypes 

of SiC have been identified, but only few of them, such as 3C, 4H, and 6H-SiC, are of technological 

interest.  

 

Figure 2.1 SiC4 tetrahedra (a), Side and top view along the stacking direction of cubic (b) and 

wurtzite (c) SiC crystal structures 

 

(a) 

(b) (c) 
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Figure 2.2 Si-C bilayer stacking sequence in 3C, 2H and 4H-SiC
[2]

 

 

Due to their different stacking sequences (Fig. 2.2) each polytype differs from others in various 

properties. The property which is derived from an average over the electronic properties should 

fairly insensitive to polytypism. For example Si-C bonding is very similar and only shows minor 

differences and anisotropies. The elastic constants, also relating to bonding, are quite similar. The 

polytypes are regular arrangements of Si-C bi-layer in either cubic or hexagonal underlying layer. 

Since the electronic band structures and phonon dispersion relations in these systems descried wave 

propagation through an assembly of such bi-layers. The resulting formation of standing wave 

patterns clearly lead to intricate dependencies on the polytype as reported in [3,4]. So, the stacking 

order also determines the position of conduction band minimum in k-space [5]. Their electronic band 

structure, the indirect bandgap varies from 2.4eV to 3.3eV for cubic polytype (3C-SiC) to 

completely hexagonal stacking 2H-SiC. Choyke et al [6] has established experimentally the linear 

relation between bandgap and degree of hexagonality for some of the SiC polytypes.  

 

2.2 SiC: Physical Properties 

 

Bonding in SiC:  

The fundamental structural unit of silicon carbide is a covalently bonded primary coordinated 

tetrahedron defined by sp3 orbitals, either, SiC4 or CSi4. The Si-C bond is 88% covelent and 12% 

ionic contribution, estimated from Pauling’s formula and the bond length is 1.89Å. Each carbon 

atom is surrounded by four silicon atoms (and vice-versa). The distance between two similar atoms, 
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usually denoted by letter “a” is 3.08 Å, while the spacing between two layers, that is the height of 

the tetrahedron, is 2.52 Å. 

 

SiC - Crystal structure 

Among the several polytypes of SiC, luckily, only few are of technological interest such as 

4H-SiC, 6H-SiC, 3C-SiC and 2H-SiC. While 3C-SiC is purely cubic form and 2H-SiC is purely 

hexagonal form, whereas others such as 4H- and 6H are partially hexagonal forms of SiC. 

Following in Fig.2.3 the basic crystal lattice structures for cubic and hexagonal SiC are shown. 

 

Figure 2.3 The most common crystal structures for SiC:  cubic and  hexagogal SiC 
[SM Sze in table source] 

 

Electrical and optical properties 

Owing to different stacking of Si-C bilayers in SiC crystal lattice, each polytype exhibits 

unique fundamental electrical and optical properties. Some of the important properties of most 

important polytypes and other semiconductors are summarised in Table 2.1. Some of these 

properties are non-isotropic i.e. they are strongly dependent on crystallographic direction of current 

flow and applied electric field (e.g. electron mobility in 6H-SiC).  

 

Energy bandgap 

Silicon carbide possess the bandgap range from 2.3eV (for 3C-SiC) to 3.3eV (for 2H-SiC). 

Bandgap for SiC polytypes increases almost linearly with percentage of hexagonality [7]. Due to its 

large bandgap, it does not show any significant increase in intrinsic carrier concentration (ni) (see 

also Table 2.1) rendering SiC devices relatively insensitive to current/voltage fluctuations, high 

temperature and/or high radiation conditions. 
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Breakdown electric field 

Due to the large breakdown electric field of wide bandgap the devices fabricated from SiC will 

operate more efficiently even at high voltages as compared to those from other materials.  

 

Thermal conductivity 

SiC is better thermal conductor than other currently used semiconductor materials which allows 

(a) greater heat dissipation (reducing the need for cooling system design integration) and (b) stable 

operation at higher temperatures. 

 

Saturation electron drift velocity 

SiC’s higher electron saturation drift velocity allows an increase in frequency switching 

capability and a decrease in power loss during circuit switching, as compared to current 

semiconductor devices made of silicon or gallium arsenide [8]. 

The performance of most of the electronic devices is controlled by following major elements:  

• The bandgap energy of the material: due to its large bandgap, SiC does not show any 

significant increase in intrinsic carrier concentrates rendering SiC devices relatively 

insensitive to current/voltage fluctuations and high temperature and/or high radiation 

conditions 

• Intrinsic carrier concentration and/or doping level 

• The electron/hole effective masses and 

• The carrier mobility 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CVD Growth of (111) and (001) 3C-SiC Epilayers and Their Interface Reactivity with Pr2O3 Dielectric Layers 

 
14 

 

Table. 2.1 

Comparison of properties of selected SiC polytypes with other main semiconductors (at 300K) 

Property Si GaAs GaN(H) 4H-SiC 6H-SiC 3C-SiC 

Bandgap (eV) 1.12 1.42 3.42 3.2 3.0 2.3 

Breakdown electric field  

@ ND=1017cm-3 (MVcm-1) 

 c-axis:3.2׀׀ c-axis:3.0׀׀ 5~ 0.6 0.6

┴c-axis:>1 

>1.5 

Thermal conductivity (Wcm-1K-1) 1.5 0.46 ~2.25,6,7 3-5 3-5 3-5 

Intrinsic carrier concentration (cm-3) 1010 1.8x106 ~10-10 ~10-7 ~10-5 ~10-1 

Saturated electron velocity (107cm s-1) 1.0 1.2 2.04 2 2 2.5 

Electron mobility 

 @ ND=1016cm-3 (cm2V-1 s-1) 

1200 6500 5003 

@1017 

 c-axis:800׀׀

┴c-axis:800 

 c-axis:60׀׀

┴c-axis:400 

750 

Hole mobility @ NA=1016cm-3 (cm2V-1 

s-1) 

420 320 350 115 90 40 

Maximum operating temperature (°C) 300 460   1240 800 

Relative dielectric constant 11.9 13.1 10.4 (a) 

9.5 (c) 

9.7 9.7 9.7 

Lattice constant (Å) 5.43 5.65 a=3.189 

c=5.1851 

a=3.073 

c=10.053 

a=3.080 

c=15.117 

4.36 

Sources in reference [9] 

 

2.3 SiC: Electronic Band structures 

 

In semiconductor crystals there exists a periodic potential with the periodicity of the lattice. It is 

the quantum mechanical interaction of electrons with the periodic potential of the lattice that gives 

rise to the band structure of solids i.e. allowed energy bands in which electrons can exist, satisfying 

Pauli’s exclusion principle, separated by forbidden energy regions. Usually the band structure of a 

crystalline solid is obtained by solving the Schrödinger equation of an approximate one-electron 

problem. Using the Bloch theorem one can show that the energy Ek is periodic in the reciprocal 

lattice, Ek=Ek+G where G is the reciprocal lattice vector. So, for a given band index, to label the 

energy uniquely, it is sufficient to use only k’s in a primitive cell of the reciprocal lattice. The 

standard convention is to use the Wigner-Seitz cell in the reciprocal lattice, called Brillouin zone. It 

is thus evident that we can reduce any momentum k in the reciprocal space to a point in the 

Brillouin zone, where any energy state can be given a label in the reduced zone schemes. 

Fig.2.4 shows the band structures of 3C and 2H-SiC both represented in 2H Brillouin zone [11]. 
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Figure 2.4 Band structures of 3C and 2H-SiC both represented in 2H Brillouin zone 
[11] 

 

Since the band structures of solids are related to their Brillouin zones, comparison of the band 

structures of different polytypes of silicon carbide can be carried out best by examining the relation 

between their Brillouin zones. Then the band structures can be thought of being related to each 

other by simple foldings. Lambrecht et al. [11] has reported utilising such approach. They started 

with the non-primitive unit cell of 2H-SiC and folded its bands to compare it directly to the bands 

of 4H-SiC in the same Brillouin zone. Since the complete description of this approach and 

discussion of its outcomes was beyond the scope of this manuscript, the author would like to 

suggest, if interested, to refer to the above report for complete understanding of this approach. 

 

2.4 The Figures of Merit 

 

Evaluation of SiC potentiality for electronic applications: 

The device potential of a semiconductor material can often be estimated by various “figure of 

merit”. Johnson’s figure of merit (JFM) [8] addresses the potential of a material for high frequency 

and high power applications, and can be described by the following expression: 

( )
π

2

22

4 ⋅

⋅
=

vE
JFM

sB  

where EB is the breakdown electric field and vs is the electron saturation velocity. In terms of this 

parameter, SiC is 260 times better than Si and is only inferior to diamond. Key’s figure of merit 

(KFM) [12] addresses the potentiality of a material for integrated circuit applications: 

επ
χ

04 ⋅⋅

⋅
⋅=

vc
KFM s  
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where c is the velocity of light, ε 0  is the static dielectric constant and χ is the thermal conductivity. 

In terms of this figure of merit, SiC is 5 times better than Si and is again, only second to diamond. 

Baliga’s figure of merit (BFM) [13] defines materials parameters to minimize the conduction loss in 

low-frequency unipolar transistors. 

EBFM g
3

0 ⋅⋅= µε  

Here µ is the mobility and Eg is the bandgap of the semiconductor 

 

Table 2.2 Relative figures of merit of different semiconductors 
[14]

  

 Si GaAs 3C-SiC(4H) Diamond 
Relative ZJ 1 7 1130(262) 2601 
Relative ZK 1 0.5 6(5.1) 32 
Relative ZB 1 2.6 (2400) 1x105 

 

 

2.5 3C-SiC Surfaces 

 

Surfaces and interfaces are usually the most reactive regions of any material. There is a large 

lattice mismatch between Silicon carbide and silicon. The thin film epigrowth on lattice mismatched 

substrates induces not only a poor control of growth, formation of point and extended defects, but 

also low reproducibility of doping, metallisation, surface preparation and stoichiometry. Extensive 

work has been done on macroscopic bulk defects of cubic silicon carbide layers grown by chemical 

vapor deposition. There have been some efforts on the quality of reconstructed surfaces and their 

correlation with the bulk defects. Surface quality is also important for any device fabrication, e.g. a 

very smooth sample exhibit an unusual 4x4 Si-terminated structure [15] and rough surfaces are even 

more difficult to clean [16]. Ion bombardment and subsequent annealing was unsuccessful [17, 18] for 

preparing well-ordered and stoichiometric SiC(001) surfaces partially due to different Si and C 

sputtering rates, Si desorbed rapidly well below the temperatures needed to repair the lattice 

damages leading to high graphitic carbon concentration[19]. An alternate method, UHV annealing, 

has been used for a good surface preparation. Since the existing O impurities desorb as SiO during 

UHV annealing, leading to Si-deficient surface with excess graphitic carbon. This problem has been 

easily solved by preparing the Si rich SiC surface just after the growth. It is very difficult to avoid 

graphitic carbon formation in preparing a C-terminated surface by UHV annealing.  

 

Low temperature in-situ chemical cleaning techniques have been developed by Kaplan [20, 21]  

1) depositing Ga metal and later thermal desorption. The graphitic carbon floats on Ga metal 
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surface and carried away during desorption, along with oxides formed by reaction of Ga with O, 

probably aided by the high heat of formation of Ga2O3 versus SiO2 and SiO. 2) The second 

approach is heating the samples in Si-vapor from a resistively heated Si wafer. The O impurity 

desorbs as SiO, and the loss of Si is compensated by incident flux, while graphitic carbon reacts to 

form SiC. The main advantage of this method is that graphitised or otherwise contaminated surfaces 

can be easily converted to pure SiC phase. Ballina et al. [22] used ion bombardment to remove O and 

metallic Cr deposition and annealing at 750°C. Annealing for Cr carbide which desorbs above 

750°C, leaving well ordered Si-terminated (2x1) surfaces. Silicon carbide exhibit a (2x1) LEED 

pattern for heat cleaned, Si flux-annealing and high temperature Si2H6 (disilane) dosed c(2x2) C 

terminated surfaces. Hara et al. [23] studied the full range of (001) reconstructions using medium 

energy ion scattering (MEIS) and found that (2x1) corresponds to termination in a full monolayer 

(ML) of Si. Powers et al. [24] have proposed the buckled dimmer model from (2x1) LEED structural 

analysis. Soukiassian et al. [25] reported that (2x1) occurs for high density of defects, such as 

missing dimers.  

 

The c(4x2) occurs for very well ordered terminating Si (ML) [25, 26] , which can be formed 

from the (2x1) by controlled deposition of Si. In XPS Si2p core level, (2x1) shows a larger 

inhomogeneous broadening and a larger band bending than other reconstructions, implying the 

presence of higher density of surface defects [27]. Many groups have used C1s core level to study 

near surface compositional changes in SiC [27]. Asymmetry towards higher binding energy suggests 

a second component in addition to bulk C1s. Since a perfect (2x1) surface, terminate in a full ML of 

Si, is not expected to show significant surface induced C1s binding energy shift, this suggests Si-

vacancies in the “real” (2x1) reconstruction. This extra feature is absent for c(4x2) [26]. 

 

2.6 SiC Oxidation 

 

SiC has one great advantage over other III-V and II-VI wide bandgap semiconductors; that an 

oxide layer can be thermally grown by heating in O2 ambient exactly like for Si. This oxide layer is 

used as gate isolation material for metal oxide semiconductor field effect transistor MOSFET, 

which is a most widely used semiconductor device in modern electronic industry. Several groups 

have reported the fabrication of MOSFETs in three main polytypes 4H, 6H [28-32] and 3C-SiC [33] 

however, the channel mobility is extremely small compared to its bulk value which hinders the 

realisation of power MOSFET in SiC. 
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The oxide semiconductor interface layer plays an important role in the performance and 

reliability of MOSFETs and therefore a high quality SiO2 layer formation, with a low defect density 

at the interface, is a crucial fabrication step. This is because the mobility of charge carriers is 

significantly affected by the existing defects at the interface over the channel region (Fig.2.4). The 

oxidation rate of SiC is in general lower that that of Si by more than an order of magnitude. 

Therefore, temperatures exceeding 1100°C are typically used in the dry oxidation process. The 

SiO2/SiC interface defect densities obtained to date are relatively high and one limiting factor for 

the formation of a high quality oxide is considered to be a carbon containing by-product at the 

interface [34]. Several reports have pointed out [35-37] that silicon oxycarbide exists within the 

thickness of 0.3-1nm at the interface. While, recent report revealed that there is no excess carbon in 

the oxide or at the interface. However, the oxide is structurally different from that grown on Si 

though the oxide is stoichiometric SiO2 
[38]. In addition, Si-Si bonds remain at the interface after CO 

loses during oxidation process [39]. From the above discussion, one could say that the obvious proof 

for inferior MOS properties of SiC has not been identified yet. 

 

 

Figure2.4 Schematic of a typical MOSFET Structure 

 

X-rays photoelectron studies of Si-SiO2 interfaces have identified an interfacial compositional 

transition layer within 0.5nm of the interface which contains intermediate oxidation states of Si viz. 

Si+1, Si+2 and Si+3. These transition regions can contribute to interface roughness and also give rise 

to electronically active defects. Improvement in the device performance is achieved by post-

oxidation annealing which reduces sub-oxide bonding groups in interfacial transition region, 

effectively smoothing the Si-SiO2 interface [40-44]. Investigations of SiC-SiO2 interfaces have also 

identified an interfacial compositional transition layer [45]. Since SiC has wide bandgap, the 

intermediate oxidation states exist within the bandgap and consequently affecting the device 

performance. Due to the dissimilar transitional layer at the SiC-SiO2 interface, the interface state 

density Dit is found to be much higher than that at the Si-SiO2 interface. Presence of so high 

interface states density is generally attributed to carbon clusters and near-interfacial defects in the 

oxide layer [46]. Theoretical investigation has confirmed that the emission of CO molecules during 
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SiC oxidation can lead to carbon cluster formation [47]
. Much effort has been devoted to the 

improvement of the interface quality between SiC and its native oxide. Promising processes for the 

reduction of the interface-state density are re-oxidation [48] or annealing in ammonia [49]. These 

processes should remove carbon from the interface [50] or passivate carbon-cluster gap states by N 

incorporation [51]. 

 

The density of interface states Dit at SiO2 interface with the three most common SiC polytypes 

(3C, 6H and 4H both n and p-type), oxidised in dry O2, remains above 1011 cm-2 eV-1 over the entire 

SiC bandgap energy range, measured by “Constant Capacitance-Deep Level Transient 

Spectroscopy” (CC-DLTS) [52]. In the lower half of the bandgap Dit is in the range of 1012 cm-2 eV-1 

and in the vicinity of conduction band edge, particularly in 4H-SiC, it approaches 1013 cm-2 eV-1. 

Other type of measurement techniques, e.g. C-V measurements, indicates that p-type SiC MOS 

structures show much higher Dit in the vicinity of the Fermi level than the n-type ones [53, 54]. This 

was thought to be associated with Al dopants typically used as acceptor dopants in SiC. Moreover 

over-compensation of Al-doped p-SiC into n-type SiC by nitrogen ion implantation results in a 

similar interface quality as in Al-free n-type SiC MOS structures [55]. A high value of Dit is observed 

near the conduction band of 4H, lower in 6H and no Dit in 3C-SiC MOS structures [56] perhaps due 

to different conduction band (CB) edges for different polytype. Dit is also observed to be strongly 

dependent on the crystallographic orientation of the oxidised planes. It increases with increasing 

misalignment angle from the (0001) plane Si-surface due to higher defect density at the misaligned 

surfaces [57]. The MOS structures on other faces, like (11-20) and (1-100), exhibit much higher Dit 

in the lower portion of the band gap which was associated with the higher availability of carbon 

atoms at these SiC surfaces. 

 

2.7 Alternate dielectrics on SiC 

 

Due to the presence of high density of interface states, at SiO2/SiC interface, besides 

insufficient stability of oxides electrical properties at elevated temperatures and in high electric 

fields there is a possibility of the application of alternate dielectric materials. The electrical 

performance of several alternate dielectrics including AlN, AlON and Al2O3 on SiC is thoroughly 

investigated by Lipkin et al. [58] reporting that alternate dielectric possess the problem of significant 

leakage currents comparative to the buried silicon oxynitride between top and bottom SiO2 layers 

on SiC. The Al based oxynitride (AlON) performance [59] was reported to be similar to that of 

Al2O3. Several attempts have been made to use Al-based insulating materials, like AlN and Al2O3 
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as a replacement for SiO2 however they provide no substantial improvements as compared to SiO2, 

and suffer both from the high Dit and substantial leakage current [60-63]. This is due to insufficient 

barrier height to block electron/hole injection because of their lower bandgap [64-66]. The band offset 

values between alternate dielectrics and SiC polytypes was calculated in [67]. All the dielectrics have 

reduced valence band offsets at the interface with SiC as compared to SiO2 which implies lower 

barrier height and consequently, under negative bias, large leakage currents. The solution to the low 

valence band offset is the insertion of thin layer of classical dielectric SiO2 between SiC and the 

alternate dielectric [67]. This approach has been tested using HfO2 on SiC with SiO2 interlayer which 

shows large suppression of leakage current comparative to that in the structure with HfO2 deposited 

immediately on clean SiC surface [68]. This approach is further supported by the CV analysis of 

SiC/insulator interface properties [69].  

 

The Pr2O3 reacts with SiO2 on SiC or silicon forming Pr-silicate, Pr-silicides and if SiO2 is too 

thin graphitic carbon at the interface [70, 71]. The presence of Pr-silicide, being metallic in nature, can 

also assist in the increase in leakage current and presence of graphitic carbon would affect the 

channel mobility. A short term solution to above problems is the controlled fabrication of Pr-silicate 

prior to Pr2O3 growth which also assists [72] in formation of pure Pr2O3 phase by stopping Si out-

diffusion. Here the Pr-silicate formation does not solve the problem of low band offsets of Pr2O3 

with SiC. The aluminum base dielectric layers are investigated by several groups. The reported 

conduction and valence band offsets for aluminum nitride to SiC [73] are 1.7eV and 1.3eV 

respectively.  
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Chapter 3 

 

Bulk and Thin film growth 

 

Introduction 

In this chapter the silicon carbide crystal growth techniques for both bulk and thin film 

growth have been discussed briefly. Various bulk growth techniques for SiC are discussed followed 

by a brief summary of to date progress on bulk growth. Then the SiC thin films growth techniques 

are discussed briefly, simultaneously some of the imported reported work are also discussed. The 

chemical vapour deposition technique has been discussed in detail followed by a brief summary of 

important achievements in CVD growth of cubic silicon carbide.  

 

3.1 Bulk Growth 

Commercially, most of the semiconductor crystals, e.g. Si and GaAs, are grown using of the 

various methods, such as Czochralski, liquid-encapsulated Czochralski, Bridgman, and gradient 

freeze methods. To employ fully the advantage of the superior physical and electronic properties of 

SiC devices, suitable bulk growth technique must be developed. Above mentioned usual methods 

cannot be adopted for the growth of silicon carbide because of its high thermal stability. It can not 

be melted under easily achievable process conditions, because it sublimes before melting. The 

calculated values show that the stoichiometric SiC would melt only at above 100,000 atm and 

3200°C. At high temperatures, above 1800°C it not only sublimes but dissociates in Si, C, SiC2 and 

Si2C [1]. Because of these reasons, single crystals of SiC are grown using the techniques based on 

vapor growth, high temperature solution growth, and their variants. Since SiC readily sublimes, 

physical vapor growth can be easily adapted, and has become the primary method for growing large 

sized SiC boules. The main three types of commercially used bulk growth techniques are Acheson 

process, the Lely process and the modified Lely process. The last two of these processes require the 

sublimation of a SiC source placed in the hot zone of the growth furnace and the subsequent mass 

transport of vapor species to a cooler region, where the crystal grows by deposition from the vapor 

phase. Source materials can be SiC powder, Si and C powder or crystalline SiC and the growth can 

be seeded or unseeded. The vapor transport can be performed either in vacuum or in a gas ambient 

at a pressure between 10-6 and 20 Torr and the growth temperature range is 1600 to 2700°C. 
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3.1.1. Acheson process 

 

In this process a trough-type furnace is used, in which a mixture of silica and carbon with a 

small percentage of sawdust and common salt are heated to about 2700°C. The result is a 

combination of crystallites and polycrystalline agglomerates in different states of perfection, but 

heavily contaminated due to the low purity of the source material. This kind of technique is mostly 

used for the production of SiC for grinding applications; crystal quality is too less to be used for 

substrate production in semiconductor industry. 

 

3.1.2. Lely Process 

 

This was the first technique for the production of electronic grade semiconducting SiC 

developed by Lely in 1955 [2]. In this process SiC powder is sublimated at temperatures 2550-

2600°C in a closed graphite crucible filled with argon where spontaneous nucleation of crystals 

occurs on perforated graphite wall cavities. A temperature gradient across the perforated graphite is 

impressed in the above mentioned rang in order to initiate nucleation. The primary drawback of the 

Lely process was small size of grown crystals, up to 10mm diameter. Furthermore, the grown 

material shows poor control of the nucleation, non uniformity in doping and a distribution of 

crystals of different size and polytypes, mainly 6H-SiC (75-95%), 4H, 15R and less frequently, 8H, 

21R and 33R. This material is often used for research purposes, but the irregularity of the platelet 

shape and the small size makes it not viable for electronic applications. 

The original Lely method was later improved by Hamilton and others [3]. In this improved 

version, SiC charge is packed in between the two annular graphite cylinders. The outer cylinder is 

thick and the inner cylinder is thin and porous, which acts as a diaphragm. The sublimed SiC vapor 

passes through the small holes in the diaphragm and crystals are nucleated at the inner surface. 

Thick layers of SiC are also deposited on the lids at both ends. This modification offers slightly 

better control over the number of nucleation sites and yield. Good quality, larger crystals are 

obtained when the temperature variation in the cavity is small and the Ar pressure is maintained at 

about one atmosphere 

 

3.1.3. Modified Lely Process 
 

Tairov and Tsvetkov in 1978 made a breakthrough in SiC bulk growth technology [4]. They 

modified the Lely process, hence called modified Lely process, to grow large diameter bulk crystals 
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without the disadvantageous characteristic of the Lely process. In this technique a seed crystal is 

introduced in the Lely chamber and growth proceeds by vapor transport of carbon and silicon, 

placed in graphite crucible, bearing species from the source to the growth site. The necessary 

condition for SiC growth using this approach is a temperature gradient between the source and the 

seed, causing vapor phase transport of the species and their re-crystallisation on the seed crystal at 

super-saturation condition. The typical growth pressure is less than 20 Torr, the growth temperature 

between 2100 and 2400°C and the temperature gradient between the source and the seed 20 to 

35°C/cm. The growth is usually performed on {0001} face (on-axis or with some offset angle) of 

6H or 4H-SiC seed, Si or C face. 

 

 

Figure 3.1 Schematics of SiC bulk growth methods: Acheson, Improved Lely
[3]

 and Modified Lely 

Methods
[4]

 

 

3.1.4. Control parameters of the bulk growth 

 

Growth rate 

Typical growth rates for the bulk growth of SiC are from0.5 to 1.2mm/h. A study of the 

general theory of vapor-phase growth was developed by Lever 
[5] and Mandel 

[6]; in this 

development the growth rate is determined by the transport of the species from the source to the 

seed either by diffusion or by the surface kinetics. This theory was applied to SiC growth by 

Lilov
[7], finding that the growth rate is limited by the rate of diffusive transport of the growing 

species from the source to the growth surface and the diffusion constant of the gas species are 

inversely proportional to the pressure in the deposition system. So the growth rate can be controlled 

by changing the pressure in the deposition chamber. 
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Polytype control 

The control of polytype is very important in bulk growth; in fact, if special precautions are not 

taken, the inclusion of unwanted polytypes in the grown material is very common. There are many 

factors which influence the polytype structure viz. growth temperature and pressure, surface 

orientation, polarity of the seed and presence of impurities. 

In the sublimation growth of SiC the polytype structure is mainly determined by the pumping 

speed of the carrier gas, which directly influences the time dependence of the pressure in the growth 

chamber. The time dependence of growth pressure can be described by the following equation: 

P(t)=Peq+(P0-Peq)exp(-t/τ) 

where P0 is the starting pressure, Peq is the final pressure and τ is the pumping speed constant, equal 

to the ratio between the volume of the chamber and the pumping speed. A high τ value corresponds 

to a low saturation and low initial growth rate and gives rise to 4H-SiC formation, a high τ value 

gives rise to 3C-SiC formation and an intermediate τ value gives rise to 6H-SiC formation. 

Also the polarity of the seed material (Si-type or C-type plane) and the presence of impurities 

have an influence on the polytype determination. On (0001) C plane of 6H-SiC seed crystal the 

crystal growth with boron as impurity leads to the 4H-SiC ingots, while on (0001) Si surface it 

leads to 6H-SiC [8]. 

 

3.2 Thin film growth 

Epitaxial thin film growth is a key process in SiC technology, since the bulk material quality 

is too low for the direct use in device structures. It also makes possible the growth and further 

processing, for device fabrication, at lower temperature with superior crystalline quality and better 

doping control. Various techniques have been used for the epitaxial growth of SiC: chemical vapor 

deposition, liquid phase epitaxy, sublimation epitaxy and molecular beam epitaxy. Different 

problems are related to the growth of different polytypes on different substrates. 

Here the detailed discussion of fundamentals of liquid phase epitaxy, sublimation epitaxy and 

molecular beam epitaxy are beyond the scope of this thesis. The most utilised epigrowth technique, 

chemical vapour deposition, is discussed, starting from fundamentals to its application for SiC 

growth. Then the reported work on α-SiC epigrowth is reviewed followed by a discussion 

emphasised on 3C-SiC epigrowth.  
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3.2.1. Molecular Beam Epitaxy 

Molecular beam epitaxy is a technique for epitaxial growth via the interaction of one or 

several molecular or atomic beams that occurs on a surface of a heated crystalline substrate. The 

sources materials, solids (or gaseous supplied directly on substrate), are placed in evaporation cells 

to provide an angular distribution of atoms or molecules in a beam. The substrate is heated to the 

necessary temperature and, when needed, continuously rotated to improve the growth homogeneity.  

In case of SiC, the first experiments on MBE were carried out with gaseous sources [9] 

disilane (Si2H6) and ethylene (C2H4) at 1050-1250°C on 6H-SiC substrates mis-oriented by 3-4°. 

Later experiments were also performed with solid sources [10], pyrolytic graphite and pure silicon, 

evaporated by an electron gun. 

Typical growth rates for both types of MBE are 0.03 - 0.3Ås-1 at a substrate temperature of 

800°C – 1000°C. Generally 3C-SiC (CVD-material) on Si and 6H-SiC (Acheson-material) are used 

as substrates. The main advantages are the low process temperature and high purity; the 

disadvantages are low deposition rates and high cost of the MBE apparatus. Other problems are the 

lattice damage caused by hydrogen and hydrocarbon incorporation into the deposited film and 

additionally the strongly gas flow dependency of the polytype. Attempts to produce high quality 

SiC single crystal layers thicker than 1 µm by this technique have not been successful.  

 

3.2.2. Chemical Vapour Deposition 

The process technology of chemical vapor deposition (CVD), today and for many years, has 

been one of the key technologies in semiconductor processing. CVD technology is used throughout 

the various processing steps in today’s semiconductor manufacturing; starting with the synthesis of 

the elemental silicon through thin epitaxial and polycrystalline silicon films extending on through 

the oxidation process, the deposition of dielectric films of nitrides, carbides, and silicides and 

metallisation films. 

Chemical vapor deposition: Basics  

CVD is a materials synthesis process in which one more volatile precursors react in vapour 

phase near or on heated substrate to form a solid thin film. The CVD technology combine several 

scientific and engineering disciplines including thermodynamics, kinetics, fluid dynamics, plasma 

physics (for plasma enhanced CVD) and of course the chemistry. Several steps that must happen in 
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every CVD process (Fig. 3.4) can be listed as follows: reactant gases are transported with carrier 

gas to the reactor, reactant species diffuse through the boundary layer above the growth surface, the 

species are transported to the surface via diffusion, reaction (adsorption or chemisorption) takes 

place on the surface, gaseous byproducts are transported away from the surface, and finally diffused 

away through the boundary layer. 

Fluid Mechanics  

The epitaxial layer uniformity is significantly influenced by the gas flow dynamics since the 

successful uniform mass transport of precursors and reaction byproducts is dependent on consistent 

flow conditions. The laminar flow ensures an even cooling load and controllable transport 

phenomena in the reaction zone. Laminar flow is achieved when the fluid flows in smooth planes 

stacked onto each other. The planes of flow do not mix and the only mechanism for species to travel 

from one plane to another is diffusion [11, 12]. Because of the resistance of the surrounding surfaces, a 

velocity distribution of the gas is observed where vmax is generally in the center of the reactor and 

v=0 at the reactor walls. The so called “boundary layer” is the region where the v changes from that 

of the bulk gas to zero. The boundary layer orientation with respect to the substrate surface 

originates from the drag exerted by it on the gas flow. Since the reduction in the velocity increases 

along the length of the heated substrate, the boundary layer becomes gradually thicker.  

 

Figure 3.4 Schematic illustrating the fundamental steps in chemical vapour deposition 
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A rough estimation of laminar flow conditions can be made from the Reynolds number Re a 

dimensionless parameter given as [13] 

µ

ρν ..D
R

r
e =  . . . . . . . . . .(1) 

where Dr is the diameter of the reactor tube, ν is the gas velocity, ρ is the gas density, and µ is 

the gas viscosity. Usually in most of the industrial processes value of Re for CVD reactors is below 

100, hence the gas flow is in laminar regime, since Re is less than 2000.  

The thickness of boundary layer y is given as 
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where x is distance along the reaction chamber. So the boundary layer forms at the inlet of reaction 

chamber and its thickness increases until the flow is fully established depending on total length of 

reaction chamber.  

The reactants are transported or diffuse across this boundary layer to reach the substrate 

surface and the reaction by-products diffuse back across the boundary layer and are removed by the 

main gas stream. The flux of species going to and coming from the substrate surface is given by 

dy

dn
DJ =  and can be approximated to 

                       
( )

y

nnD
J

sg −
=  . . . . . . . . . .(3) 

where ng and ns are the gas stream and surface reactant concentrations respectively; D is the gas 

phase diffusivity which is a function of pressure and temperature. Under steady state condition the 

flux of reactant to the substrate is equaled by the chemical reaction at substrate surface.  

                       nkJ ss .=  . . . . . . . . . .(4)  

where ks is the reaction rate constant, therefore from eq.(3) and eq.(4) 
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where hg=D/y gas phase mass transfer coefficient 
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So, the surface concentration of reactants ns, which determines the growth rate, is a function 

of both, reaction chemistry and gas phase transport process. As y approaches zero, ns≈ng and the 

growth process will be dominated by surface chemical reaction. If ks is very large relative to hg, the 

surface concentration approaches zero, and the overall process is limited by the transport of 

reactants across the boundary layer. 

The slowest CVD process step from the above mentioned steps is rate determining step. When 

CVD reaction rates for a particular chemistry and reactor geometry are plotted over reciprocal 

temperature the deposition or growth rate varies exponentially with temperature and two regimes 

are recognised as also shown in Fig.3.5. 

• The kinetic or surface reaction rate controlled regime which occurs at lower 

temperatures 

• The diffusion or rate of arrival controlled regime which occurs at higher temperature. 

This regime is also termed as mass transport controlled regime 

 

Figure 3.5 Typical overall reaction rate for CVD reactors vs. reciprocal temperature
[14]

 

 

Below some temperature, the surface reaction rate normally controls the growth rate, because 

for a given reactor geometry, the rate of arrival is greater than the surface reaction rate. As the 

temperature is increased, the overall surface reaction rate usually increases more rapidly than the 

overall mass transport rate, and the rate of arrival or mass transport rate becomes the limiting factor. 
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Depending on the type of source of supplying required activation energy, there are various 

CVD processes viz. hot and cold wall CVD and plasma enhanced CVD etc. Pressure dependent 

CVDs are atmospheric pressure CVD and low pressure CVD. 

The CVD process is a viable single crystal production method with satisfactory doping 

behavior. As discussed in the section dealing with the fundamentals of CVD, the precursor gases 

are transported using a carrier gas, usually hydrogen, in a reactor on a substrate heated to specific 

temperature where chemical reaction occurs on the surface of the substrate producing a solid 

deposit on substrate, and volatile byproducts to be pumped away. 

Through chemical vapour deposition thin films of SiC can be grown homoepitaxially (SiC on 

the same polytype substrate) and heteroepitaxially (on different substrate TiC, Si etc.). Both types 

of growth processes are described in the following sections. 

 

3.2.2.1 SiC Homoepitaxy 

First attempts of homoepitaxial growth of 6H-SiC on 6H-SiC substrates prepared by the 

Acheson process were made at relatively high temperatures (1700-1900 °C) [15]. By improving the 

substrate quality (modified Lely-process) the growth temperature was reduced. For example, 6H-

SiC grown on 6H-SiC Lely samples and 4H-SiC on 4H-SiC Lely samples, the process required 

substrate temperatures of 1550°C or 1620°C respectively.  

The growth rates of this process are 2µm.h-1. The n-type doping is done by N2, p-doping by 

trimethylaluminium, with concentrations ranging from 1.1015 to 1.1019 m-3 [16, 17]. The Hall 

measurements of n-doped 6H-SiC show an electron mobility of 104cm2(Vs)-1. High quality 

materials are produced at low temperatures compared to 6H-SiC Lely material which has smaller 

electron mobility. The high temperature CVD 6H-SiC epitaxial process provides deposition rates up 

to 100 µm.h-1 [18], which is relatively high compared with LPE and sublimation processes. 

Nishino et al. [19] reported on the 3C-SiC homoepitaxy deposition on 3C-SiC Lely-process 

samples (SiH4/C3H8/H2) at a temperature of 1560 °C, atmospheric pressure with deposition rates of 

2.5 µm.h-1, with nitrogen doping at a level of 5x1015cm-3. There are no significant DPB (double 

positioning boundary) interface film defects by this method. The main problem in homoepitaxy of 

SiC is the high production cost and lower quality due to high cost and lower quality of SiC 

substrates compared to Si. The main advantages of homoepitaxy are the appropriate lattice 
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constants and thermal coefficients; beneficial only if high quality substrate can be produced 

economically. 

 
 
3.2.2.2 Heteroepitaxy: 3C-SiC 

The advantages of using silicon as a substrate in heteroepitaxy of 3C-SiC are large size, high 

quality, low price, and good polytype control. The equipment used in SiC heteroepitaxy is the same 

as for homoepitaxy. Other substrates have also been investigated (TiC and Al2O3) 
[21-22], but they 

are expensive or without adequate quality for SiC semiconductor applications. Thin films of 3C-SiC 

on 6H-SiC growth at temperature of 1450 °C with deposition rates of 4µm.h-1 and thickness up to 

12 µm were reported by Powell et al. [23]. Compared with 3C-SiC deposition on Si, these samples 

exhibited fewer interface defects.  

The initial experiments with deposition of SiC on Si [24-25] illustrated that differences in both 

the lattice constant (almost 20%) and the thermal expansion coefficient (almost 8%) between SiC 

and Si produced a high concentration of defects at the SiC-Si interface and consequently this 

process of crystal growth turned out to be problematic. Nishino et al. [26] solved this problem by 

growing films with the so called "Buffer layer" technique where the film is deposited at 

atmospheric pressure with specific gases (SiH4/C3H8/H2) in a quartz reactor with a graphite 

susceptor, and an inductive heating system. The Fig. 4.4 on p.52 shows the deposition process. The 

growth occurs in two stages while H2 flow remains constant during the whole process.  

This process was used by different research groups with some variations for 3C-SiC 

deposition [16, 17, 27-35]. It was also tested with different Si substrates orientations and different gases. 

The production of epitaxial films with high quality depends on number of factors. In particular, the 

substrate orientation has large influence on the epitaxy process [36] and it has been shown that for 

orientations (100) and (111) the best results are achieved. On the other hand, Si (111) substrates 

frequently show cracks in the film during the cooling process because higher mechanical stresses 

result for this substrate orientation compared to (100) substrates.  

Exhaustive studies show that the deposition rate is connected with the quality of the film, i.e. 

by using lower deposition rates, the quality is improved. In addition, when separate precursors are 

used for Si and C, the proportion of Si and C (Si/C) in the gaseous phase changes the film 

properties. Many authors used values from 0.4 to 1.0 [31, 37-39]. Other factors such as deposition 

pressure, temperature, carbonisation deposition temperature, carbonisation duration and gaseous 
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purity influence the 3C-SiC film quality [33]. The Buffer-Layer-Process at temperatures higher than 

1300 °C leads to the formation of several film crystal defects. 
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Chapter 4 

 

Experimental 

 

Introduction 

In this chapter, all of the sample preparation methods and characterisation techniques have 

been discussed in detail. In section 4.1, a general description is given for the CVD system used for 

the epigrowth of 3C-SiC on Si substrates. In section 4.2, the CVD growth process is described in 

detail. In section 4.3, oxidation procedures adopted for oxidising the 3C-SiC layers is explained. In 

the end, section 4.4, growth procedure for aluminium oxinitride growth on 3C-SiC is briefly 

discussed. Section 4.5 dealt with the short description of characterisation techniquies utilised in this 

work. 

 

4.1. CVD Growth of 3C-SiC 
 

In this section the process of chemical vapour deposition of 3C-SiC is discussed. Beginning 

with description of general information about the CVD system being used, followed by Si substrate 

cleaning process and finally the deposition process which is double step procedure namely 

carbonisation and growth is discussed. 

 

4.1.1. CVD Reactor : General information 

 

The CVD system, shown in Fig.4.1, consists of a horizontal cold wall reaction chamber, gas 

pumping units, DC power supplies, gas control system interfaced with computer. The stainless steel 

chamber is the main chamber consists of, with several windows, along with a resistive heating set-

up and an infrared optical pyrometer. The optical pyrometer was focused, prior to each growth, on 

the center of the substrate. The inner diameter of the chamber is 150mm and length 350mm. The 

substrate holder is of stainless steel material on which Si substrate could be fastened so that the 

direct current could be supplied through the substrate. The IRCON IR pyrometer set to the 

emissivity of Si is used to watch the temperature from the middle of the substrate. A combination of 

rotary and turbo-molecular pumps is used to pump down the reaction chamber. Only the rotary 

pump is used for purging and pumping the rest and byproduct gases during the experiment. All of 

the rest and byproduct gases are exhausted in environment through a scrubber “CLEANSORB” a 
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dry-bed absorber from “CS Clean Systems”. The scrubber converts the hazardous gases to stable 

salts at safe room temperature operation. 

 

The gas handling system consists of Tylan MFCs and manually adjustable micro valves, and 

the gases used in these experiments were trichlorosilane (TCS), acetelene (C2H2) and hydrogen. 

Argon is used as a purging gas and nitrogen for byproduct gas treatment in scrubber unit. The purity 

of all gases used is summarised in Table.1. A computer with data acquisition cards running software 

programmed with C++ regulates the MFCs control unit in CVD system. 

 

Table.1 Purity of trichlorosilane, acetylene, hydrogen, argon and nitrogen. 

Gases Purity in Vol.% Standard Unit 

Trichlorosilane (SiHCl3) 

Acetylene (C2H2) 

Hydrogen(H2) 

Argon (Ar) 

Nitrogen (N2) 

Semiconductor quality 

99.6 

99.993 

99.998 

99.999 

- 

2.6 

4.3 

4.8 

5.0 

 

The vapor pressure of TCS at room temperature (25°C) is 610 Torr. Mass flow controllers 

were used to precisely regulate the gas flow rates. The pressure in the reactor was measured by two 

separate pressure gauges for high (≥10-3mbar) during film growth and low pressures (≤10-3mbar) 

ranges prior to the growth. The maximum growth temperature was limited by the melting point of 

Si (1420°C) and allowable current through Si substrates. The reaction chamber was regularly 

cleaned from inside using acetone and subsequently pumped and purged with high purity argon in 

each experiment. Precursors and carrier gas were mixed in a spherical mixing point (Fig.4.2) prior 

to their introduction to reaction chamber in order to avoid any chance of inhomogeneous 

distribution of gases during growth. 
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Figure 4.1 Schematic (top) and photograph (bottom) of CVD System for 3C-SiC thin film growth. 

The gas flow rates of precursor and carrier gases were controlled with mass flow controllers 

interfaced with computer. 
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Figure 4.2 Gas mixing point, acetylene, trichlorosilane and hydrogen mix 

prior to their entry in reactor 

 

4.1.2. Substrate cleaning prior to CVD Growth 

 

The substrates used were Si(100) and Si(111) wafers ordered from Wacker Siltronic with the 

Czochralski method with following specifications: thickness 0.68 mm, diameter 14.64 cm, specific 

resistivity 0.01 - 0.03 Ω·cm, p-type B doped with one face polished. 

Silicon wafers were carefully handled, considering all laboratory precautions, during cutting in 

pieces of suitable size, cleaning, mounting on sample holder and loading in the reactor. Silicon 

substrates, usual size of 12x22mm2, were first cleaned in acetone to remove the organic 

contaminations, then dipped in 5% HF for two minutes to remove the native oxide and subsequently 

rinsed in de-ionised water. To remove the native oxide, formed during fastening on sample holder 

and loading in the reactor, the substrate was heated to 1100°C in hydrogen environment. 

 

4.1.3. Chemical vapor deposition process 

 

The double step growth process was adapted for the CVD growth of 3C-SiC. The precursor 

gases trichlorosilane (TCS), acetylene as Si and C sources respectively and hydrogen as carrier gas, 

had been used in this work. The trick of SiC buffer layers formation by carbonisation prior to SiC 

growth is well established approach to minimise the interface defects formation. The buffer layers 

accommodate the large lattice mismatch between two materials by gradually changing its 

composition from Si to SiC. In the following sections the adopted chemical vapor deposition 

process is discussed thoroughly. 
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Purging the reaction chamber 

After HF clean of Si substrate, it was fastened on a stainless steel sample holder (fig.4.3a) and 

loaded in the reactor (Fig.4.3b). Then, the reaction chamber was pumped, with a combination of a 

rotary and turbo-molecular pump, to 10-6 mbar. Then reaction chamber was properly purged thrice 

using high purity argon gas to get rid of residual oxygen and other contaminating gases. The 

substrate was heated to 1100°C in presence of argon. Then the argon supply was stopped and 

hydrogen was introduced to clean the residual native oxide.  

  

Figure 4.3 Si-substrate mounted on stainless steel holder (a) and subsequently loaded in 

the reaction chamber on inbuilt copper electrodes (b) 

 

Carbonisation: Buffer layer on Si 

Just after cleaning the silicon substrate in hydrogen ambient at 1100°C, without cooling the 

substrat,e carbonisation process was carried out at specific temperature reached in less than 

2minutes. For carbonisation a mixture of hydrogen and acetylene gases is introduced on heated 

substrate. After the carbonisation hydrogen and acetylene flow was stopped and substrate 

temperature was reduced to 700°C.  

 

Growth of 3C-SiC 

After a period of three minutes at 700°C, growth process is carried out. During the growth 

process Si-substrate is heated to the required growth temperature while mixture of TCS, acetylene 

and hydrogen, with specific gas ratio, is introduced in the reactor. After completion of CVD process 

substrate was cooled from growth temperature to room temperature in about two minutes. The 

temperature was maintained ±2°C around the specified carbonisation and growth temperatures. The 

followed complete CVD growth process is demonstrated in Fig. 4.4 (shown only for carbonisation 

and growth temperature 1200°C). 

(b) (a) 
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Figure 4.4 Time vs. temperature graph of CVD process used for 30 minutes of 3C-SiC growth. 

 

The chemical vapor deposition process parameters are summarised in Table 2. 

 

Table 2. CVD process parameters for all of the experiments 
 

Gas flow rate (sccm)  

Process TCS C2H2 H2 

Pressure 

(mbar) 

Temperature 

(°C) 

Time 

(min.) 

Carbonisation 0 1.5-5 15-50 0.8-1.7 1000-1200 3 

Growth 7.5-25 1.5-5 15-50 0.8-1.7 1000-1200 10-30 
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In the following tables three sets of process parameters used to study the influence of different 

gas flow rates on the chemical composition, microstructure and crystallinity of 3C-SiC layers on 

silicon, are shown. 

 

Table 3. Three sets of CVD process parameters for investigating the 

influence of gas flow rates 
 

Set I 

Gas flow rate (sccm)  

Process TCS C2H2 H2 

Pressure 

(mbar) 

Temperature 

(°C) 

Time 

(min.) 

Carbonisation 0 2 20 0.9 1100 3 

Growth 10 2 20 0.9 1100 30 

 
Set II 

Gas flow rate (sccm)  

Process TCS C2H2 H2 

Pressure 

(mbar) 

Temperature 

(°C) 

Time 

(min.) 

Carbonisation 0 1.5 15 0.9 1100 3 

Growth 7.5 1.5 15 0.9 1100 30 

 
Set III 

Gas flow rate (sccm)  

Process TCS C2H2 H2 

Pressure 

(mbar) 

Temperature 

(°C) 

Time 

(min.) 

Carbonisation 0 2 20 1.7 1100 3 

Growth 20 2 20 1.0 1100 30 

 
A photograph of thus grown 3C-SiC layer on Si is shown in Fig. 4.5. Here the effect of 

different temperature zones over the substrate could be easily seen which appears due to the 

variation in the thickness of grown layers over the sample size is about 10x20mm2.  

 

 

 
Figure 4.5. A normal photograph of CVD grown 3C-SiC on Silicon substrate of 

10x20mm
2
 size. The variation of colour could be easily observed which appears due to 

different temperature zones during growth. 
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4.2. Oxidation of 3C-SiC 
 

Silicon dioxide is formed on the SiC surface, when subjected to high temperatures in 

oxidizing ambient, in very much the same fashion as on silicon. The oxidation of SiC is slower than 

that of silicon, and the silicon and carbon face oxidize at different rates. As detailed in section 2.6 

(on page 17) the interfacial properties of SiO2-SiC are very different from SiO2-Si. The oxidation of 

3C-SiC grown by above method is carried out in order to understand these differences. 

Silicon substrates were initially cleaned in acetone bath then oxidised by heating in ambient air to 

700°C for 1min.  

 

Thin films of cubic silicon carbide were not cleaned by any wet chemical method; they were 

just out-gased in vacuum (10-8 mbar) using about 0.2A current through it. Oxidation of 3C-SiC is 

carried out by two methods.  

1. Heating 3C-SiC to about 800°C (3Ampere) in ambient air for 2 minutes. 

2. Oxidation in 10mbar of N2O in high pressure (compared to UHV chamber) cell for ten 

minutes at 800°C. Additional silicon is deposited prior to the oxidation in order to avoid 

graphitic carbon formation at the interface. 

 

4.3. Praseodymium Silicate on 3C-SiC 
 

For these experiments (3nm) SiO2 on SiC samples prepared by heating the SiC substrates in 

ambient air to 800°C for 2 minutes were used for Pr deposition. Prior to the praseodymium metal 

deposition all of the SiO2/3C-SiC samples were out-gased at 300°C in ultra high vacuum. Pr-metal 

was deposited by thermal evaporation in 10-7 mbar, subsequently annealing in vacuum was carried 

out which leads to Pr-silicate formation from silicon dioxide on SiC.  

 

4.4. Aluminum Oxinitride as an Interlayer between PrOx and 3C-SiC 

 
Aluminium oxinitride layers were prepared ex-situ by sputtering an aluminum source by 

nitrogen ions in vacuum (target current=126µA, P=1.1x10-5mbar, time=11sec.). Inclusion of oxygen 

was from the residual oxygen pressure in sputtering unit. Thus prepared AlON layer was about 

1.6nm thick (estimated from Si2p peak intensity reduction after deposition). AlON layers were then 

out-gased and Pr-oxide was deposited by e-beam evaporation of Pr6O11 powder for about 5 minutes 

which yields 2nm of Pr-oxide layer thickness. 
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4.5. Characterisation Techniques 
 

4.5.1. X-rays Photoelectron spectroscopy XPS 

 

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical 

Analysis (ESCA) is a widely used technique to investigate the electronic structure of molecules, 

solids and surfaces. Photoelectron spectroscopy has widespread practical implications in various 

scientific fields like surface chemistry and materials science, and has significantly contributed to the 

understanding of fundamental principles in solid state physics. Photoelectron spectroscopy, based 

on the photoelectric effect was developed in the mid-1960 by Kai Siegbahn and his research group. 

 

Principle 

In this technique, the chemical analysis of first few atomic layers of the samples is carried out 

by irradiating the sample with mono-energetic x-rays and analysing the kinetic energies of emitted 

electrons. The x-rays (photons), possessing limited penetration depth, interact with atoms in the 

surface causing electron emission by the photoelectric effect. The kinetic energies of the emitted 

electrons measured by XPS is given by [1]: 

φν
Sbeke EhE −−=  ......(1) 

where hv is the x-rays energy, Ebe is the binding energy of the atomic orbital from which the 

electron originates and φ S
 is the work function of the spectrometer. 

In this way measuring the kinetic energy and calculating the binding energy yields the fingerprint of 

the parent atom. Since every element has a unique set of binding energies, XPS can be used to 

identify and determine the concentration of the elements in the surface. This technique is extremely 

surface sensitive due to very small mean free path of the ejected electrons in a solid typically 5-50Å. 

 

In this work the XPS analysis of samples was carried out with Leybold XPS system using 

MgKα (1253.6eV) X-rays source and hemispherical analyzer. The chemical composition of CVD 

grown 3C-SiC layers, oxidised SiC surfaces and Pr on SiO2 covered SiC were investigated.  

 

XPS analysis had been also carried out with synchrotron radiation source at Beamline U49/2 

PGM1 at BESSY-II Berlin, termed synchrotron radiation photoelectron spectroscopy (SRPES). 

With SRPES, varying the photon energy, the elemental compositional gradient analysis along the 

thickness and the structure of interface between two kinds of layers, like Pr on SiO2 covered SiC 

could be accomplished. The Beam line source integrated with Specs hemispherical analyzer was 
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used to study 3C-SiC surface oxidation, Pr on SiO2 covered 3C-SiC and AlON interlayer stability 

between Pr-oxide and 3C-SiC.  

 

4.5.2. Fourier Transformed Infra-Red Spectroscopy (FTIR) 

 

 

Infrared (IR) spectroscopy is one of the most common spectroscopic techniques used by 

researcher in organic and inorganic fields. It is an important and popular tool for structural 

elucidation and compound identification. Simply, it is the absorption measurement as a function of 

frequency in infra-red (IR) region by a sample positioned in the path of the beam. Through IR 

spectroscopic analysis one can determine the chemical functional groups in the sample. Different 

functional groups absorb characteristic frequencies of IR radiation.  

 

 

At temperatures above absolute zero, all 

atoms in molecules are in continuous 

vibration with respect to each other. The 

major types of molecular vibrations are 

stretching and bending. The various types of 

vibrations are illustrated in Fig. 4.6. 

 

Each molecule has its own distinct 

quantised vibrational and rotational energy 

levels and any transition within these levels is 

sensitive to electromagnetic energy 

corresponding to the mid-infrared region 

(4000cm-1-400cm-1). Therefore, this technique 

is based on the principle that a molecule 

absorbs infrared radiation of the appropriate 

frequency to excite it from one vibrational or 

rotational level to another. When an infrared 

beam passes through a sample, certain  

Figure 4.6 Major vibrational modes for a 

nonlinear group, -CH2 (+ indicates motion from 

the plane of page toward reader; – indicates 

motion from the plane of page away from 

reader.)
[2]
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frequencies are absorbed and are absent in the 

transmitted spectrum. The transmitted 

spectrum can be used to identify the presence 

of specific chemical bonds in the sample based 

on absorptions e.g. absorption at 796cm-1 is 

due to Si-C TO phonon mode of vibration. 

However, the individual vibrational motion is 

usually accompanied by other rotational  Figure 4.7. Simplified optical layout of a typical 

FTIR spectrometer [from Nicolet Instrument Corporation] 
 

motions. These combinations lead to absorption bands, not to discrete lines, commonly observed in 

the mid IR region. 

 

The absorption is related to transmittance by Beer-Lambert law:  

( ) ( ) ( )cbT1logA ⋅⋅ε== ωωω  ……(2) 

where εω is the frequency dependent absorptivity, b is sample thickness, c is the concentration 

of the bond responsible for absorption. Peak position is most commonly exploited for qualitative 

identification, because each chemical functional group displays peaks at a unique set of 

characteristic frequencies. The shift in particular peak position corresponds to the available internal 

stress or the bond strain in the sample e.g. a thin films of SiC on Si usually possess stresses in the 

layer due to 20% lattice mismatch which is responsible for shift in TO optical phonon mode of 

vibration (794cm-1) towards higher or lower wavenumber values [3] for compressive or tensile stress 

respectively. 

In this thesis, infrared spectra were recorded with Bio-Rad FTS-60A Spectrometer, equipped 

with deuterated triglycine sulfate DTGS and photomultiplier detectors and Thermo-Nicolet Impact 

410 Spectrometers. All spectra were taken at 4cm-1 resolution, 50 scans in the wavenumber range of 

400~6000 cm-1. 
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4.5.3. X-rays Diffraction XRD 

 

 

X-Ray Diffractometry (XRD) has been used for the determination of the film structure 

(polycrystalline or monocrystalline) and for the identification of the polytype inclusions in the SiC 

films. 

 

Principle 

The atomic lattice spacing of most of the materials is of same order as the wavelength of x-

rays (0.5 Å -2.5Å). When a sample is bombarded with incident x-rays of a known wavelength, 

sample’s lattice spacing, lattice shape, and atom type all cause the incident x-rays to be diffracted 

from the target material in a characteristic manner. X-rays penetrate deep into the sample material 

and interfere constructively or destructively leading to only certain charateristic diffraction peaks to 

be visible on a spectrum, which makes it possible to characterise the crystal structure of the 

material. When a monochromatised x-ray beam is partially reflected from the sample (lattice plane) 

the interference of the reflected beam can be constructive only in specific directions. 

 

 

The interference of the reflected beam would 

be constructive when the path difference ML+LN 

(Fig.4.8) is integral multiple of the wavelength of 

x-rays, given by the famous Bragg’s equation: 

θλ sin2dn =  ……(3) 

where λ is the incident wavelength, θ is the angle 

of incidence, d is the interplanar spacing of known 

planes. 

Figure 4.8. X-rays Diffraction – Bragg’s 

Law
[4]

 

X-rays diffraction (XRD) analysis was carried out in “Rigaku DMAX 1500” a Bragg – 

Brentano Diffractometer having rotating anode generator with Cu-Kα radiation as the source. All 

XRD measurements were done in typical specular θ/2θ scan geometries. 

 

4.5.4. Scanning Electron Microscopy SEM 

 

Scanning Electron Microscopy (SEM) is an electron beam technique, in particular electron 

beam incident on the sample produce a magnified image. This technique is similar to light 

microscopy with the exception that electrons are used instead of photons and the image is formed in 

a different manner. An SEM consists of an electron gun, a lens system, scanning coils, an electron 

θ θ 

d 

L 

N M 
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collector and a cathode ray display tube. The electron energy is typically 10-30keV for most 

samples, but for insulating samples the energy can be as low as several hundred eV. The use of 

electrons has two main advantages over photons in microscopes: much larger magnification is 

possible since electron wavelengths are much smaller than photon wavelengths and the depth of 

field is much higher. In particular as shown by de Broglie equation, the electron wavelength λe 

depends on the electron velocitiy v or the accelerating voltage V as  

nm
VqmV

h

mv

h
e

22.1

2
===λ  ……(4) 

The wavelength is 0.012 nm for V=10kV – wavelength significantly below the 400 to 700nm 

wavelength range of visible light – making the resolution of SEM much better than that of an 

optical microscope. The SEM apparatus used can have a magnification range from few times 

(typically 10 times) to several thousand times; under suitable conditions the resolutions is better 

than 7nm. The system has four main subsystems: (i) Electron source, (ii) Electron optical column, 

(iii) Scanning system, (iv) Electron collector and display; with a Control electronics. 

 

The electron gun produces a beam of electrons with an effective 30microns source diameter. 

The electrons are emitted from a heated tungsten wire and are accelerated towards the specimen by 

the acceleration voltage, which can be varied from 0.2kV to 25kV. 

 

In this work the surface micrographs of CVD grown 3C-SiC layers were taken with ZEISS 

DSM 962 Digital Scanning Electron Microscope in two magnifications (x10,000 and x30,000) and 

20kV accelerating voltage. No special samples preparation procedure was adopted prior to the 

samples introduction in SEM system. 

 

4.5.5. Low Energy Electron Diffraction (LEED) 

 

LEED is used as a standard technique to check the crystallographic quality of a surface, 

prepared either as a clean surface, or in connection with ordered adsorbate overlayers. In this 

experiment, (Fig. 4.9) an electron beam with a primary energy between 20-300eV is incident on the 

surface and the elastically backscattered electrons give rise to diffraction spots that are imaged on a 

phosphorous screen. 
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Here a monochromated low 

energy electron source, with 59eV, 

118eV and 137eV primary energies, 

was utilised to create the LEED pattern 

and thus created patterns were 

photographed by normal digital camera. 

The clean surface of 3C-SiC (001) was 

prepared by flushing the sample twice at 

about 1150°C for few seconds in 

ultrahigh vacuum. Figure 4.9. Schematic diagram of LEED optics
[5]

 

 

4.5.6. Electron Energy Loss Spectroscopy (EELS) 

 

In this method, a beam of mono-energetic, low-energy electrons falls on a surface and excite 

the lattice vibrations of the substrate, molecular vibrations of the adsorbed species and even 

electrons. The energy loss of scattered electrons is described by the following equation: 

νhEE s −= 0  ……(5) 

where Es is the energy of the scattered electron, E0 is the energy of the incident electrons, h is the 

Planck constant, and ν is the frequency of the excited vibration. 

 

A primary mechanism by which electrons lose some of their energy to the vibrational modes 

of an adsorbate is a long-range interaction between the electric field of the incoming electron and 

the dynamic dipole of the adsorbate. The inelastic collision electrons are mostly forward-scattered 

and appear close to the specular direction. Because of the dipole nature of this interaction, the 

selection rule applicable is as follows: 

 

Only the vibrational modes of the adsorbate 

with a component of their associated dynamic 

dipole moment perpendicular to the surface are 

observable in electron energy loss spectroscopy 

(EELS). This limits the identification of modes 

in an EELS spectrum, but in the case when such 

a mode can be identified, allows us to obtain 

information about the geometry and symmetry 

of the surface complex. 
Figure 4.10 EELS Schematic 
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While the dipole scattering in EELS is most important, it is not the only mechanism of 

inelastic scattering. A second excitation mechanism, i.e. impact scattering is a short-range 

interaction in which multiple scattering plays an important role. Here cross-section is favored by 

relatively high energy electrons (>50eV) and the angular distribution is generally ‘more isotropic’. 

Consequently impact scattering is best observed away from specular where dipole losses are weak. 

Resonance scattering is another short-range mechanism in which vibrational excitation is achieved 

via a temporary negative ion. The dominant signature for this mechanism is an enhanced intensity 

of selected vibrational modes over a relatively narrow, incident electron energy range and, in the 

case of oriented molecules, a strong angular dependence in the scattering. 

A strong point of EELS is that it detects losses in a very broad energy range from infrared to 

electronic transitions at several electron volts. 

A typical energy-loss spectrum contains an elastic or zero-loss peak, comprising electrons that 

are unscattered or scattered elastically in the specimen with negligible energy loss (E~0). Inelastic 

scattering is caused by electrostatic interaction between the incident and atomic electrons, and takes 

a variety of forms. In case of a semiconductor or insulator, excitation of valence electrons to the 

conduction band gives rise to a spectral component proportional to the joint density of states. The 

intensity therefore remains low up to an energy loss equal to the energy gap Eg, allowing the latter 

to be measured or (from the intensity below Eg) surface or defect states to be detected. In contrast to 

this single-electron excitation, a collective effect occurs in almost all solids and is described in 

terms of the generation of plasmons. A transmitted electron produces an oscillation of electron 

density at an angular frequency ( )mnep εω 0
2= , where ne is the density of those atomic electrons 

which are electrostatically coupled within the solid: the conduction electrons in a metal and the 

valence electrons in a semiconductor or insulator. The plasmon wake produces a backward force on 

the electron, causing it to lose an average energy [6]: 
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this process results in a plasmon peak in the energy-loss spectrum centered around an energy Ep 

which is in the range 3-30eV for most solids. The low-energy part of the EELS spectrum 

corresponds to the dielectric properties of the specimen. High-energy primary electrons polarise the 

specimen and an electric field is built up and this in turn retards the primary electrons. The energy 

losses related to this scattering are strongly associated to the polarisability, or in the generally 

speaking, the dielectric behavior of the material. The Kramer-Kronig analysis (KKA) of EELS 
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spectrum gives the energy dependence of the real and the imaginary parts of the dielectric function 

and possibility to obtain direct band gap analysis of the specimen. According to dielectric theory the 

loss function, Im[-1/ε(E)], is related to the single-scattering distribution [7] by 
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where I0 is the zero-loss peak intensity, t the specimen thickness, v the incident electron velocity, β 

the collection semi-angle, a0 is the Bohr radius, and m0 is the electron mass. θE=E/(γm0v
2) is the 

characteristic scattering angle for an energy-loss E, where γ=(1-v2/c2)-1/2 is a relativistic factor. The 

frequency dependent real ε1 and imaginary ε2 parts of the complex dielectric function can be 

extracted with KKA. 

At higher energy loss, the intensity in the spectrum falls dramatically but superposed on this 

decline are ionisation edges, representing the excitation of core electrons belonging to inner atomic 

shells. Because the edge threshold occurs at the binding energy Ek of each shell (k=K, L, etc.), 

which is known for all elements, the element responsible can be identified. 

There are three main requirements which EELS spectrometers have to satisfy:  

i. The primary electrons should be mono-energetic, with as little spread in energy as 

possible, preferably by only a few meV;  

ii. The energies of the scattered electrons should be measured with an accuracy of 1 

meV or better;  

iii. The low-energy electrons must effectively be shielded from magnetic fields.  

Although, in principle, EELS can provide more information about the vibrational frequencies 

of modes involving atoms of the adsorbate or the surface of the adsorbent when compared with 

optical spectroscopies, its practical use is limited at present by the relatively poor resolution of 

EELS Spectra and the necessity for flat samples.  
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Figure 4.11 Photograph of EELS Set-up, a monochromated electron source (1) installed at Leybold 

XPS System was utilised for recording EELS spectra through Omicron analyser (2). 

 

EELS: Data acquisition  

Electron energy loss spectroscopy has been carried out with Vacuum Science Workshop 

(VSW) Monochromator controlled electron source with electron energy range of 10eV – 300eV 

installed at Leybold XPS System, the complete set-up is shown in Fig.4.11. 

 

The incident energy (primary energy Eo) usually in the range 50-300eV has been used in the 

present work. A substantial number of electrons elastically scattered (ES = Eo) - give rise to a strong 

elastic peak in the spectrum. On the low kinetic energy side of this main peak (E < Eo), the 

increased intensity, shown in Fig.4.12, corresponds to the electrons which have undergone discrete 

energy losses during the scattering from surface.  

 

 

1 2
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Figure 4.12. As measured EELS Spectrum using electron primary energy of 50eV, 

the scattered electrons were detected  by their kinetic energy 

 

The magnitude of the energy loss, ∆E = (Eo - E), is equal to the vibrational quantum (i.e. the 

energy) of the vibrational mode of the adsorbate excited in the inelastic scattering process. The data 

is normally plotted against the energy loss. As shown in fig.4.13, the spectrum was normalised to 

the elastic peak intensity and the intensity due to inelastic scattering was magnified by 40 to make it 

reasonable to resolve any energy loss contributions. 
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Figure 4.13. The spectrum shown in fig.4.12 was normalised and the contribution due to in-

elastically scattered electrons has been magnified by 40. 
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The instrumental resolution is given by FWHM (full-width at half maximum) of the elastic peak. 
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Figure 4.14. The Elastic peak in EELS measurement. 

 

It was possible to attain the value below 200meV for all samples by optimising the monochromator 

pass-energy and sample position since the intensity was very sensitive to these factors. 

 

References 

1. Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D., “Handbook of X-ray Photoelectron 

Spectroscopy” Perkin-Elmer Corporation ISBN: 0-9627026-2-5 (1992) 

2. Silverstein R. M., G. C. Bassler and T. C. Morrill, “Spectroscopic Identification of Organic 

Compounds, 4th Edition, New York, John Wiley & Sons, (1981) p.166. 

3. Olego D., M. Cardona, “Pressure dependence of the optical phonons and transverse charge 

in 3C-SiC” Physical Review B 25 (1982) p.3878 

4. Cullity B. D., “Elements of X-ray Diffraction” Second Edition 1978, Addison-Wesley 

Publishing Company Inc. 

5. Woodruff D. P., T. A. Delchar, “Modern Techniques of Surface Science” Second Edition 

(1994) Cambridge University Press 

6. Egerton, R. F., M. Malac, “EELS in the TEM”, Journal of Electron Spectroscopy and 

Related Phenomena 143 (2005) pp.43-50 

7. Schattschneider P., B. Jouffrey, “Plasmons and Related Exitations, in Energy-Filtering 

Transmission Electron Microscopy”, edited by L. Reimer, Springer, Berlin 1995 



 



 
 
 
 
 
 
 
 
 
 
 

5 
  

Results and Discussion 
 
 
 
 
 
 
 
 



 



Chapter 5 

 

Results and Discussion 

 

Introduction 

In this chapter all experimental results are organised in four main sections and at the end of 

each section the results are discussed in detail shorting out the main outcomes. First section dealt 

with the chemical vapor deposition and characterisation of 3C-SiC thin films on silicon substrates. 

Second section deals with characterization of SiO2/3C-SiC structure along with a comparison with 

SiO2/Si structure. Third section is regarding the synchrotron radiation photoelectron spectroscopy 

SRPES investigation of Pr interaction with oxidised 3C-SiC surfaces. Last section deals with 

stability of Aluminium Oxinitride interlayer between 3C-SiC and high-k dielectric PrOx. 

 

5.1 Chemical vapor deposition of 3C-SiC 

 

The chemical vapour deposition of 3C-SiC thin films on Si(111) and Si(001) substrates were 

investigated for their chemical composition, defects and crystalline quality, and surface morphology. 

To the best of author’s knowledge this was the first attempt for 3C-SiC CVD epigrowth using 

trichlorosilane and acetelene as precursor gases along with hydrogen as carrier gas. 

The investigation had being focused on chemical composition, structural defects and crystalline 

quality, and surface morphology of layers utilizing FTIR, XPS, XRD and SEM. The effects of 

different gas flow rates and different carbonisation and growth temperatures on the quality of 3C-

SiC thin films were studied. 

 

5.1.1 Carbonisation: Buffer layer formation 

 

The first step, carbonisation, was carried out by treating Si substrates with different gas ratios 

of C2H2+H2 at different temperatures, and characterised by XPS, SRPES and FTIR measurements. 

The initial buffer layer formation on silicon substrates was optimised through varying temperature, 

duration and gas flow rates. The Si2p and C1s core levels of silicon substrates treated at different 

temperatures with C2H2+H2 in (1:10 ratio) are shown in Fig.5.1 (a) and 5.1(b) respectively. The 

XPS peaks corresponding to SiC in Si2p@101eV and C1s@283eV core levels [1] appear for the 

samples treated at or above 1000°C whereas for the samples treated below 1000°C no SiC 
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contribution was observed. A small component at higher binding energy at 284.6eV attributed to 

elemental or graphitic carbon (g-C) is observed for the samples treated below 1000°C and for 

1200°C. The carbonisation on silicon surface occurs at/or above 1000°C. As observed in the Fig.5.1, 

the binding energy shifts in Si2p (at 101eV) and C1s (at 283eV) core levels correspond to SiC 

bonds.  
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Figure 5.1 Si2p and C1s core levels of Silicon treated in the gas ratio (H2:C2H2) 10:1 at different 

temperatures, for 5 min. 

 

Quality of buffer layers i.e. g-C contribution, surface roughness and Si/C ratio, was almost 

independent of time and gas flow rates whereas it was changing drastically with temperature from 

600°C to 1200°C. For example in Fig. 5.2 the surface roughness measured with Tele-step 

profilometer is shown. The surface roughness was more for the samples carbonised at 1000°C and it 

decreases for samples carbonised at 1100°C; further increase in temperature enhances the surface 

roughness as observed for temperature of 1200°C. 
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Figure 5.2 Surface roughness measured with telestep profilometer of silicon 

substrates carbonised at different temperatures. 
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Synchrotron Radiation source had been used for the analysis of initial buffer layers prior to 

SiC growth. In Fig.5.3 surface and bulk sensitive Si2p spectra measured on Si untreated substrate 

and ones exposed to carbonising environment at 800 and 1000°C, with photon energy of 280eV and 

1000eV respectively are shown. The temperature 1000°C was observed to be sufficient for the 

decomposition of C2H2 (acetylene) and C atoms chemisorption/adsorption to the Si surface. Almost 

no SiC contribution @ 101eV was observed on the samples treated below 1000°C.  
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Figure 5.3 Surface (left) and bulk (right)  sensitive Si2p  core level spectra for the  Silicon treated at 

the gas ratio (H2:C2H2) 10:1, and different temperatures  for 2 min. 
 

In Fig.5.4 the surface and bulk sensitive C1s spectra (with 420eV & 1000eV) of Si untreated 

substrate and treated at 800°C and 1000°C are shown. A small SiC component at 283eV along with 

a considerable g-C component at 284.7eV is present for the samples treated at 800°C both in 

surface and bulk sensitive spectra. Whereas the carbidic contribution is dominating for the sample 

treated at 1000°C in both surface and bulk sensitive spectra. 
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Figure 5.4 Surface (left) and bulk (right)  sensitive C1s  core level spectra for the  Silicon treated at 

the gas ratio (H2:C2H2) 10:1, and different temperatures  for 2 min. 
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FTIR spectra of buffer layer prepared at different temperatures are shown in Fig. 5.5(a). The 

characteristic peak for SiC TO absorption peak [2] around 795 cm-1 was observed which is absent for 

the samples treated below 1000°C. In Fig. 5.5(b), the dependence of the Si-C TO phonon absorption 

peak width on carbonisation temperature is shown. At the highest substrate temperature 1200°C, 

peakwidth was minimum, whereas it was maximum at intermediate carbonisation temperature 

1100°C. The reason for maximum width at intermediate temperature could be due to the (i) 

insufficient layer thickness resulting unrelaxed layer [3] and (ii) consequently higher defects density. 
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Figure 5.5 FTIR (a) spectra and (b) Si-C absorption peak width of carbonized Si surface at various 

temperatures. 
 

5.1.2 3C-SiC Growth 

 

After the optimisation of carbonisation step, subsequent growth of 3C-SiC is carried out for 

10 and 30 minutes in order to optimise the growth process parameters with gas flow rates of Set I 

given in Table3 in chapter 4. The duration for carbonisation was increased to three minutes in order 

to completely cover the silicon surface with buffer layer. The FTIR spectra are shown in Fig. 5.6 for 

the SiC layers obtained by 10minutes of growth process at different temperatures. In case of layers 

carbonised at 1100°C, the peak position shifts to lower values, 796cm-1 to 794cm-1, with increasing 

growth temperatures from 1000°C to 1200°C, the indication of relaxation of grown layers (strain 

reduction). Whereas for the layers carbonised at 1000°C, peak shift does not follow the similar 

trend, instead it is at minimum value for the layers grown at intermediate temperature of 1100°C 

and at higher value for those grown below or above this temperature. 
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Figure 5.6 FTIR spectra of SiC grown at different temperatures for 10min after 3min of 

carbonisation at (a) 1000°C and (b) 1100°C 

 

In Fig.5.7, the variations of FTIR peak width (FWHM) with growth temperatures is been 

plotted. One can observe that the minimum temperature difference between carbonisation and 

growth corresponds to minimum FWHM. 
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Figure 5.7 FTIR SiC TO Peak FWHM variation with growth temperature 

 

Subsequent to the 10minutes growth optimisation, 30minutes growth was carried out. FTIR 

spectra of 3C-SiC layers grown for half an hour is shown in Fig. 5.8. IR absorption peak for Si-C 

bonds observed to be more symmetric for the layers grown at 1200°C whereas for those grown at 

1100°C is asymmetric peak. Since asymmetricity in FTIR absorption peaks corresponds to defects 

density which deviates the Si-C bond strength resulting in distorted, absorption above or below 

actual Si-C vibrational value making the peak asymmetric and wider [3]. Carbonisation at lower 

temperatures such as 1000°C seems to be insufficient to create perfect buffer layer. For most of the 

layers prepared with carbonisation temperature 1000°C the Si-C absorption peak appears 

comparatively at higher value i.e. 802cm-1. This indicates that carbonisation temperature 1000°C is 

not sufficiently high to form perfect buffer layers in 3 minutes duration. Peaks for the layers grown 
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at 1100°C appear at 798cm-1 whereas for those grown at 1200°C is 796cm-1 much closer to the 

theoretical value of Si-C phonon absorption which is the  indication of the less strained and defect 

free layers[3]. 
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Figure 5.8 FTIR spectra for the SiC layers grown for 30minutes  with 1000°C and 1100°C 

carbonation temperature while 1100°C and 1200°C growth  temperatures 

 
Next the growth behaviour of 3C-SiC on Si(001) and Si(111) substrates has been compared. 

The CVD process temperatures were chosen plausible to achieve the optimal layer quality. The 

FTIR spectra of 3C-SiC grown on Si(111) and Si(001) are shown in Fig. 5.9. Although the peak 

width remains almost in the same range for SiC layers grown on Si(111) and Si(001) but the peak 

position was different, 796cm-1 and 794cm-1 for those grown on Si(111) and Si(001) respectively. 

The Si-C IR absorption peak for the samples grown at 1200°C subsequent to the carbonisation at 

1100°C shows more symmetric and smallest peak width, indicating the defect and strain free layer 

growth. Here one should note that the growth temperature of 1200°C was not used on Si(001) 

substrates. 
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Figure 5.9 FTIR spectra of 3C-SiC grown for 30 minutes on (a) Si(111) and (b) Si(001) at different 

carbonisation and growth temperatures. 
 

 

Homogeneity of 3C-SiC layers 

 

The substrates were heated by d.c. current supply through them after fastening with 

molybdenum and stainless steel strips as discussed in “experimental” section. Since the contacts 

with the substrates were not perfect these were heated with less uniformity. Usually the contact was 

always different for different sample, so, the grown layer uniformity was almost non-reproducible. 

This non-uniform heating leads to non-uniformity in chemical composition, crystallinity and 

surface morphology. The uniform chemical composition of the layers were analysed by XPS core 

level measurements at different positions on the samples. In Fig. 5.10(a) the SiC/g-C peaks area 

ratio from C1s core level spectra measured through out the sample area divided in several regions, 

is plotted, where the ratio variation from maximum to minimum is demonstrated by colour scale, 

blue to red via cyan, green and yellow (not clear in black & white). The SiC/g-C ratio distribution 

uniformity was comparable with the uniformity seen in normal photographs, Fig. 5.10(b), of this 

layer. There was maximum SiC/g-C ratio towards the edge and areas which were brighter during 

CVD growth. Different methods for holding the substrate, by using molybdenum foils, over the 

substrate holder were tried, but none of them was successful. Later, the stainless steel blocks along 

with molybdenum foil and small pieces of silicon were used. Here the blocks were used in order to 

provide flat basement and pieces of silicon for better contact with substrates utilizing the smooth 

surface of silicon. Substrate in contact with smooth surface of silicon provides (1) about 60% (6 out 

of 10 prepared samples) chance of reproducible contacts formation and hence reproducible layer 
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quality (2) without any contamination as substrates were not in contact with other material which 

could be present if it would be in contact with other material than silicon.  
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Figure 5.10  (a) XPS areal scan of C1s core level on 3C-SiC layer, (b) photograph of  same sample of 

size 10x20mm
2
, (c) and (d) are Si2p and C1s core levels taken at the marked point in (a). The picture 

obtained from carbide/g-C areal scan is comparable with the normal photograph. 
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Figure 5.11  (a) XPS areal scan of C1s core level on 3C-SiC layer, (b) photograph of same sample 

of size10x20mm
2
, (c) and (d) are Si2p and C1s core levels taken at the marked point in (a). The 

picture obtained from carbide/g-C areal scan is comparable with the normal photograph. 
     

The consistency of the grown layers was challenged by FTIR results as shown in Fig.5.12. In 

Fig.5.12 FTIR spectra of 3C-SiC layers grown with three different sets of parameters are compiled. 

Each figure 5.12(a, b, and c) contains the spectra from three samples prepared with same process 

parameters but at different time. In each figure, considerable differences were easily observed i.e. 

they have very different FWHM and the inconsistency in peak position. The reason for these 

differences in FTIR absorption spectra could be only the inconsistent non-uniform substrate heating. 
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Photograph of 3C-SiC Sample 
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Figure 5.12 FTIR Spectra showing the effect of inconsistent non-uniform substrate heating for 

three different sets of cabonisation and growth temperatures. The substrates uniformly heated 

yield layers which result the narrower and symmetric absorption peaks. 
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Crystallinity: Influence of Growth Temperature 

 

The crystalline quality of the grown layers is analysed by x-rays diffraction in Bragg-Brentano 

mode with Cu Kα monochromatic source. In the Fig. 5.13, XRD spectra of SiC layers grown on 

Si(001) substrates with carbonisation temperature of 1000°C and growth temperatures of (a) 

1100°C and (b) 1200°C are shown. For both samples, the peak at 33° is the substrate Si(002) peak 

and the peak at 61.7° can be attributed to Si(004) reflection from CuKβ x-rays that have not been 

entirely filtered. Along with substrate peaks a pronounced peak at 41.3° attributed to the diffraction 

due to 3C-SiC(002) [4-9] planes was observed. For the samples grown at 1200°C a very small hump 

at about 35° attributed to 3C-SiC(111) [4-9] plane has appeared. So, at the temperature 1200°C, some 

crystallites grow in (111) orientation probably due to the higher nucleation rate at higher 

temperatures. From the spectra it could be concluded that the layers were grown epitaxially with 

preferred orientation and highly aligned with that of the substrates although the layers grown at 

temperature of 1200°C show little sign of peak due to 3C-SiC(111) planes.  
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Figure 5.13 XRD spectra for 3C-SiC grown on Si (001) with carbonization 

temperature 1100°C and 10minutes growth at (a) 1100°C and (b) 1200°C 
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In Fig. 5.14 the XRD spectra are shown for the 3C-SiC grown on Si(111) with (a) 

carbonisation temperature 1000°C and growth temperature 1100°C, with carbonisation temperature 
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1100°C and growth temperatures (b) 1100°C and (c) 1200°C. Besides the substrate peaks, a 

diffraction peak at 35° associated with 3C-SiC (111) planes and a peak at 60° due to 3C-SiC(220), 

were also observed. The peak at 58.9° appears where the forbidden Si(222) peak should appear. 
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Figure 5.14  XRD spectra for 3C-SiC grown on Si(111) at  different carbonization and growth 

temperature 
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In Fig. 5.15 the XRD measurements on 3C-SiC layers grown on Si(001) and Si(111) 

substrates at various temperatures are compiled. Characteristic peaks from 3C-SiC(001) and (111) 

planes appear dominantly besides the substrate peaks for the layers grown on Si(001) and Si(111) 

respectively. Here also one should notice that the forbidden substrate peaks Si(002) at 33° and 

Si(222) at 58.8° on Si(001) and Si(111) substrates respectively are observed, which appear due to 

the double diffraction effects. 
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Figure 5.15 XRD spectra of 3C-SiC on (a) Si(001) and (b) Si(111) grown for 30minutes at 1100°C, 

1150°C and 1200°C 
 

The CVD growth of 3C-SiC on Si(001) substrates occurs epitaxial at 1200°C with higher 

growth rate whereas for the layer grown at 1150°C some other, identified or non-identified, peaks 

appear, which indicates the growth in directions other than that of substrate, not aligned with 

substrate orientation, and probably inclusion of other polytypes. It can be deduced from the XRD 

spectra that the growth at 1100°C is epitaxial although the growth rate is very low (low peak 

intensity). 

Next, the CVD growth on Si(111) substrates: the XRD plots indicates that the layers grow 

epitaxially up to the temperature of 1150°C, whereas those grown at 1200°C were of rather inferior 

in crystalline quality. The XRD patterns for the layers grown at 1200°C constitute some, identified 

or unidentified, peaks due to the planes not aligned with substrates orientation. 

 

 

Chemical Analysis and Microstructural Morphology of CVD Grown 3C-SiC 

 

In Fig. 5.16 an overview XPS scan of 3C-SiC thin film is presented. From the peak intensity 

ratio for C1s and Si2p core levels C/Si ratio was about 1. The presence of intense O1s peak at 

533eV indicates the oxygen inclusion in the bulk SiC or this could also be due to surface silicon 

oxide.  
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Figure 5.16 XPS overview spectrum of 3C-SiC/Si after UHV annealing for 2minutes @ 400°. The 3C-

SiC thin films were grown at carbonisation and growth temperature of 1100°C and C2H2:TCS:H2 gas 

flow rate ratio of 2:10:20 

 

The C1s core level XPS with better resolution are shown in Fig.5.17 (a, b) for the as prepared 

3C-SiC and after UHV annealing. For the as prepared samples the SiC (carbidic) component at 

283eV along with a considerable hump towards higher binding energy (285.2eV) due to g-C was 

observed. This g-C contribution could be reduced, although not completely, by UHV annealing as 

shown in Fig. 5.17(b).  
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Figure 5.17 The C1s XPS spectra on (a) as prepared 3C-SiC/ Si and (b) after vacuum annealing at 

400°C for 2minutes. UHV annealing significantly reduces the g-C. 

 

The problem of g-C inclusion could be solved by increasing the concentration of TCS in the 

gas mixture during growth. The g-C inclusion was successfully suppressed by doing so, as shown in 

Fig. 5.18 the C1s spectra. The Si2p core level dominantly consists of SiC peak at 101eV with very 

small SiO2 component, since the XPS analysis was carried out ex-situ there was a possibility of 
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native oxide formation and samples were only outgased but not flashed which would have 

elimination the oxide contribution.  
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Figure 5.18 The Si2p and C1s XPS spectra of outgased in UHV for 1minute 3C-SiC/ Si(111) at 300°C. 

The 3C-SiC thin films were  prepared with carbonisation and growth temperature of 1100°C 

C2H2:TCS:H2 gas flow rate ration of 2:20:20 
 

 

 

 

Influence of different gas flow rates 

 

A series of CVD growth experiments on Si(001) were carried out varying the precursor gas 

flow rates. The three sets of gas flow rates, C2H2 : TCS : H2 (in sccm), were (i) 1.5:7.5:15, (ii) 

2:10:20 and (iii) 2:20:20. The XPS Si2p and C1s core level spectra are shown in Fig.5.19. 
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Figure 5.19 Si2p and C1s core levels: Effect of different gas flow rates on chemical composition of 

3C-SiC thin films grown with carbonisation and growth temperature 1100°C. 

 



CVD Growth of (111) and (001) 3C-SiC Epilayers and Their Interface Reactivity with Pr2O3 Dielectric Layers 

 

76 

The layers prepared with maximum concentration of TCS shows elemental Si signal, it could be 

either due to uncovered Si substrates or due to the excess of Si atoms and hence formed silicon 

nuclei. The growth with maximum TCS concentration also results to the layers with enhanced g-C 

formation. 

 

Influence of Growth Temperature on Chemical Composition and Microstructure 

 

Following is presented the XPS, SEM and FTIR investigation of 3C-SiC thin films grown at 

three different temperatures on both Si(111) and Si(001) substrates. The XPS Si2p and C1s spectra 

for 3C-SiC on Si(111) substrates are shown in Fig.5.20. Layers grown at 1100°C and 1200°C show 

the least amount of graphitic carbon (g-C), whereas the layers grown at 1150°C contain more g-C. 

If we correlate XPS results and SEM micrographs (Fig. 5.22-5.24), one could conclude that the 

growth rate is considerably affected by the amount of g-C inclusion due to reaction kinetics at 

1150°C. In the SEM micrograph of the layer grown at 1150°C it can be easily seen that the layers 

were not completely covering the Si surface and they had the smallest crystallite size. The layers 

grown at 1100°C were seems to be thicker since the thick layers would more readily crack due to 

8% difference in thermal expansion coefficient between 3C-SiC and silicon. In Si2p spectra 

(Fig.5.20) a contribution due to oxide was observed this could be either due to the residual oxygen 

partial pressure in the reactor or due to the native oxide on silicon substrates which might not be 

removed completely prior to growth via annealing in hydrogen environment. A small contribution 

from pure silicon (Si-Si) could be seen in Si2p spectra for layers grown on Si(111) at almost all the 

temperatures, though it was comparatively less for those grown at 1100°C besides reduction of g-C.  
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Figure 5.20 XPS Si2p and C1s core levels spectra of 3C-SiC on Si(111) grown at temperatures of 

1100°C, 1150°C and 1200°C. The growth at 1150°C results the layers with minimum g-C inclusion 
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The appearance of elemental Si contribution could be correlated to the corresponding SEM 

micrographs, where the layers were not completely covering the silicon surface. 

 

In the Fig. 5.21, XPS, Si2p and C1s, spectra are shown for the 3C-SiC layer grown on Si(001) 

substrates at various temperatures. 3C-SiC layers grown at the temperature of 1200°C contain 

maximum and considerable amount of g-C whereas those grown at 1100°C, has comparatively less 

g-C. And the layers grown at the intermediate temperature 1150°C, unlike the growth on Si(111), 

have insignificant amount of g-C. The layers grown at 1150°C were g-C free simultaneously they 

show elemental silicon contribution in Si2p core level spectra. Possibly these layers were silicon 

rich. Comparing the XPS spectra and SEM micrographs, crystallite size can be directly correlated to 

the amount of g-C i.e. more the amount of g-C smaller is the crystallite size. In the SEM image for 

the layers grown at 1150°C it can be easily seen that the layers are completely covering the Si 

surface and it has the largest crystallite size. The layers grown at 1100°C were not covering the 

surface completely whereas those grown at 1200°C covered the complete surface although the 

crystallites’ size were small. The observation of SiO2 contribution in Si2p core level spectra appears 

for the layers grown at 1200°C which was completely opposite in case of growth on Si(111) 

substrates. A small contribution from pure silicon Si-Si could be seen in Si2p spectra for layers 

grown on Si(001) at the temperatures 1100°C and 1150°C, it is absent for the layers grown at 

temperature 1200°C although there is some SiO2 contributions on the same.  
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Figure 5.21 XPS Si2p and C1s core levels spectra of 3C-SiC on Si(001) grown at temperatures of 

1100°C, 1150°C and 1200°C. The growth at 1150°C results the layers with minimum g-C inclusion. 
 

The influence of growth temperatures on the morphology of 3C-SiC grown on Si(001) and 

Si(111) substrates was investigated by secondary electron microscopy (SEM). The SEM 

micrographs are presented in Fig.5.22 to Fig. 5.24. In each figure the growth behavior on two 

different orientations of silicon substrates are compared. 
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Figure 5.22 SEM micrographs of CVD grown 3C-SiC on Si(111) and Si(001). Growth at 1100°C 

seems to be faster on Si(111) as the layer completely covers the substrate surface. The thicker 

layers crack while substrates were cooled down to room temperature. 
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Figure 5.23 SEM micrographs of CVD grown 3C-SiC on Si(111) and Si(001). At 1150°C the 

nucleation rate was faster on Si(111) as small crystallites could be seen in micrograph, whereas on 

Si(001) substrates layers cover the substrates completely. 
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Figure 5.24 SEM micrographs of CVD grown 3C-SiC on Si(111) and Si(001) with growth 

temperature of 1200°C. At this temperature the nucleation rate was faster on Si(111) as small 

crystallites could be seen in micrograph which could not increase their lateral dimension, whereas 

on Si(001) the  layers grow to cover the substrates completely. 
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The FTIR spectra of same samples are presented in Fig. 5.25.  For 3C-SiC growth on 

Si(111)substrates the FWHM of SiC TO phonon absorption peak increases continuously with the 

increase in growth temperatures. This trend was not observed for the layers grown on Si(001) 

substrates although the FWHM was comparatively lower for those grown at 1150°C, than those 

grown at 1100 and 1200°C. 
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Figure 5.25 FTIR Spectra of 3C-SiC on (left) Si(111) and (right) Si(001) substrates grown at 1100°C, 

1150°C and 1200°C 
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The Surface (2x1) reconstruction on 3C-SiC(001) epilayers 

The surface reconstruction of 3C-SiC(001) surfaces was analysed by low energy electron diffraction 

(LEED). The 3C-SiC layer was prepared with carbonisation and growth temperature of 1100°C 

with precursors’ (TCS:C2H2:H2) gas flow rates (in sccm) of 10:2:20. The LEED patterns observed 

on (001) surface of 3C-SiC are presented in Fig.5.26. The patterns were recorded with three 

different electron primary energies 59eV, 118eV and 137eV. After flashing the SiC surface several 

times at 1150°C the 2x1 surface reconstructions were successfully recorded by normal digital 

camera. 

 
 

Figure 5.26 The LEED pattern observed for (2x1) 3C-SiC surface re-constructions 

collected by using electron primary beam energy of 59eV, 118eV and 137eV. 
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5.1.3 Discussion 

 
The growth of 3C-SiC thin films on Si(001) and Si(111) substrates using trichlorosilane (TCS) and 

acetylene precursors in LPCVD (10-1mbar) at temperatures ≤1200°C was investigated. Different 

from APCVD technique, the LPCVD method produces homogeneous films. The double step 

deposition method, carbonisation and subsequent growth has been adopted to minimise the defects 

formation due to large lattice mismatch and difference in thermal expansion co-efficient between 

silicon and SiC, and to prevent silicon out-diffusion from substrate. 

 

Carbonisation 

The investigation of 3C-SiC heteroepitaxy on silicon showed the structural, chemical and 

morphological characterisation of the films. First the reaction of acetylene on silicon surfaces at 

600°C to 1200°C was investigated for initial buffer layer formation. The reaction between silicon 

surface and acetylene below 900°C was very slow, and therefore only g-C was predominantly 

formed on the surface. But by the XPS using synchrotron source first traces of SiC could be 

detected in C1s (283eV) already at 800°C although the silicon surface is not completely covered as 

Si-substrate component (99eV) in Si2p was appeared even in surface sensitive spectra. The onset of 

SiC components in Si2p (101eV) and C1s core levels and disappearance of substrate contribution 

occurred at and above 1000°C. Besides the carbidic contribution in C1s spectra g-C contribution 

was also observed. The g-C component was small in bulk sensitive and a considerable contribution 

in surface sensitive spectra. So the g-C was present predominantly on the surface which could be 

formed during cooling and sample’s longer stay in the reaction chamber due to the presence of 

residual gases and contamination over the reactor walls.  

The carbonisation process was analysed also by fourier transform infrared spectroscopy (FTIR). 

Infrared spectroscopy gives the chemical information of the sample, 3C-SiC thin films in the 

present case. In IR transmittance spectra the onset of characteristic transverse optical TO phonons 

of Si-C bonds [1] in SiC at about 794cm-1 (independent of type of structure) occurred for the silicon 

substrates treated at or above 1000°C. The peak width varies with the carbonisation temperature as 

shown in Fig.5.5. It was decreased with the increase in substrate temperature during carbonisation 

although the peak position shifts to higher wavenumber which indicate the presence of compressive 

strain in the layers[2]. The IR absorption peaks appear more symmetric for the silicon substrates 

carbonised at higher temperatures, it indicates the homogeneous distribution of Si-C and hence 

better crystalline quality. 
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SiC Growth 

 

Subsequent to the optimisation of carbonisation process parameters for our CVD system, growth 

process has been investigated. The effects of different gas flow rates and different substrate 

temperatures on chemical composition and crystalline quality was studied.  

 

First the growth for ten minutes duration has been investigated. A strong FTIR absorption 

peak appears below 800cm-1, characteristic 3C-SiC transverse optical (TO) phonon, for all layers 

grown at various temperatures from 1000°C to 1200°C. The IR absorption peaks for the layers 

grown at 1000°C and 1100°C were more asymmetric towards higher wavenumber values; this could 

be due to inhomogeneous distribution of SiC bonds with different bond lengths throughout the 

layers. The decrease in transmittance could be related to either the thicker layers and/or the free 

electron absorption of excess carbon in the films [2] which is also confirmed by XPS C1s core level 

spectra. The absorption peak shifted to lower wavenumber with the increase in growth temperature 

for the layers prepared with carbonisation temperature of 1100°C whereas it was not following any 

trend for those prepared with carbonisation at 1000°C. The IR absorption peak width, for the SiC 

layers grown for ten minutes (Fig. 5.7) with carbonisation temperature 1100°C, decreases when the 

growth temperature increased from 1000°C to 1200°C. Whereas for the layers grown after 

carbonisation at 1000°C it decreases for 1000°C to 1100°C growth temperature increase and 

increases when growth temperature was 1200°C. The presence of these differences because of 

different carbonisation temperature indicates that the carbonisation at 1000°C for three minutes 

might be insufficient temperature and/or duration to form suitable buffer layers which plays an 

important role for quality control of subsequently grown layers.  

 

After investigating the growth for ten minutes, growth for half an hour was further 

investigated. The FTIR analysis shows that the SiC TO absorption peak appeared in the range of 

796cm-1 to 798cm-1 with the FWHM in the range of 35 cm-1 to 65cm-1 similar to the reported values 
[2]. Since the SiC layers were thicker, than those grown for 10 minutes, the IR absorption peaks 

became more pronounced and symmetric. The best symmetricity was observed for the layers grown 

at 1200°C with FWHM of 46cm-1. 

 

The x-ray diffraction (XRD) was used to analyse the structural quality (crystallinity) of grown 

layers. As shown in Fig.5.13 the XRD spectra of 3C-SiC layers grown for ten minutes on Si(001) 

substrates, a pronounced peak at 41.4° 2θ value for 3C-SiC(002) planes besides the substrates peaks 
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were observed. The layers grow preferentially aligned with the substrates orientation. At additional 

peak at 35.2° 2θ value assigned to 3C-SiC (111) appeared for the layers grown at 1200°C indicating 

that the nucleation rate was higher at these temperatures due to which various nuclei were not able 

to enlarge their size which were aligned randomly.  Considering the intensity of 3C-SiC(002) peak, 

it could be concluded that growth rate at temperature of 1200°C is somewhat lower than that at 

1100°C. The lower growth rate at 1200°C could be due to the increased nucleation rate. When very 

large number of nuclei were formed and not allowed to grow further this would result to the 

polycrystalline growth with some crystallites misaligned to the substrate. At higher temperatures 

like 1200°C, it could be possible that the SiC formation and Si outdiffusion compete with each 

other and finally results in lowering of growth rate. The 3C-SiC growth on Si(111) substrates has 

also been determined to be epitaxial (Fig.5.14, 5.15) i.e. preferentially aligned with respect to 

substrates. Besides the substrate peaks a pronounced peak at 35.2° from 3C-SiC(111) planes was 

observed. There was no trace of peaks from other planes unlike the growth on Si(001) substrates. 

Regarding the growth rate dependence on temperature, unlike the growth on Si(001) substrates, the 

growth on Si(111) substrates shows different behavior. The growth rate on Si(111) substrates 

increases with growth temperature. The 3C-SiC layers grown for half an hour also show almost 

similar characteristics considering the characteristic XRD peaks heights and hence the growth rates. 

Some additional peaks identified or unidentified (Fig. 5.14) were also observed for the layers grown 

at lower temperatures on Si(001) and for those grown at higher temperatures on Si(111). But no 

trace of 3C-SiC(002) peak at about 41° were observed for the layers grown on Si(111) whereas 

there was always a small peak appearing around 35° for those grown on Si(001) substrates. So the 

3C-SiC thin film epitaxial growth on Si(111) substrates seems to be easier than on Si(001) 

substrates. 

 

The chemical composition of 3C-SiC layers was investigated with x-rays photoelectron 

spectroscopy by Leybold XPS system with MgKα x-ray source. An overview spectrum measured 

on 3C-SiC grown at 1100°C is shown in Fig.5.16. Besides the Si2p and C1s core levels, a 

considerable peak for O1s was also detected. The main core levels, Si2p, C1s (Fig.5.17) were 

separately measured with higher resolution than in the overview scan. The FWHM for Si2p and C1s 

were estimated to be 1.5eV and 1.1eV respectively for as prepared layers, which was changed after 

vacuum annealing at about 400°C for 2 minutes to 1.6eV and 1.0eV respectively. Whereas C/Si 

ratio was roughly estimated, using Si2p and C1s peaks areas, to be around 1.00 for as prepared 

layers and it changed to 0.88 after vacuum anneal. In the C1s spectra as grown layers show 

dominantly the SiC (63%) component along with the g-C (37%) contribution. Furthermore the 
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layers were contaminated with oxygen as O1s appeared with a significant intensity. The oxygen 

contribution in XPS spectrum could appear due to the native oxide on SiC surface or from the 

contamination in the bulk due to the residual oxygen in CVD reactor and from oxygen partial 

pressure in the used gases like argon, hydrogen and acetylene. The amount of g-C was successfully 

reduced,  SiC(88%) and g-C(12%), by two minutes of vacuum annealing at 400°C as shown in 

Fig.5.17(b). 

 

The effect of different gas flow rates for hydrogen, acetylene and trichlorosilane was also 

investigated. Three different sets for C2H2: TCS: H2 gas flow rates “ratio” were (i) 1.5:7.5:15, (ii) 

2:10:20 and (iii) 2:20:20. The Si2p spectra were similar for first two sets of gas flow rates. Whereas 

for the layers grown with last set of gas flow rate it includes SiO2 and substrate contributions in 

Si2p sepectrum along with SiC contribution. In C1s spectra, the layers grown at low pressure show 

the least amount of g-C inclusion. The first two sets of gas flow rates had same gas ratios; the only 

difference was the total pressure during growth. The 3C-SiC layers grown with first set (lower total 

pressure), were having minimum g-C contamination. Whereas the layers grown with second and 

third sets, show similar g-C inclusion in considerable amount. In Si2p spectra for the layers grown 

with third set, two additional components, one SiO2 and other pure silicon from substrate, along 

with SiC component were observed. Since the total gas flow rate through the reaction chamber 

should be large and hence the source atoms were not having enough time to be adsorbed on Si 

surface. So, ultimately the growth with third set, was very slow. And therefore, the layers were not 

completely covering the surface. Another probable reason for observing substrate signal could be 

the simultaneous Si-etching process during SiC growth, which usually occurs at high pressures 

which would leave a large amount of carbon atoms forming later the carbon clusters on the surface 

and even within the bulk reducing the growth rate. 

 

A combination of SEM, XPS and FTIR analytical techniques was utilised in order to 

understand the growth behaviour in the CVD system. The gas flow rates as optimised earlier; Set 

(ii) was used. The 3C-SiC thin films were grown at 1100°C, 1150°C and 1200°C on both Si(001) 

and Si(111) substrates. In FTIR spectra, (Fig.5.25) for the layers on Si(111), the FWHM for SiC TO 

phonon mode absorption peak at 794cm-1 remain below 50cm-1 similar to the reported values in [2]. 

The absorption peaks were more intense for the layers grown at 1100°C and 1150°C in comparison 

to those grown at 1200°C. But the peak position remains at same value (794cm-1) which is also very 

close to the theoretical SiC TO phonon mode absorption. This indicates that the grown layers were 

free from any kind of strain which could have shifted the experimental SiC TO phonon peak 
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position as reported in [2]. The impression of FWHM of SiC TO absorption peak could be easily 

observed in their SEM micrographs. The layers with smallest FWHM, grown at 1100°C were thick 

layers as cracks formation could be seen which occurs when there was thick SiC layers which 

experiences more effect of difference in the thermal expansion coefficient between Si and SiC and 

results cracking during cooling. This cracking could be avoided just by slow cooling at the end of 

growth process. The SEM micrographs displays also that the layers are completely formed i.e. they 

completely cover the silicon surface. The crystallite size decreases in the order SiC @ 1100°C > 

SiC @ 1150°C > @ 1200°C. The dark regions in the SEM micrograph of SiC(111) grown at 

1100°C could be the evidence of well known and usually unavoidable micropipes. As the CVD 

growth processes were ended with Si overgrowth, to compensate the excess carbon inclusion, the 

additional components SiO2 and pure Si in Si2p and small g-C component in C1s spectra besides 

the pronounced SiC components were detected. These additional unwanted inclusions in the layers 

could be reduced to some extent just by vacuum anneal at about 400°C for two minutes. 

 

In the case of growth on Si(001) substrates, FTIR spectra show lowest FWHM of SiC TO 

phonon absorption for 3C-SiC grown at 1100°C whereas it was comparatively higher (57cm-1) for 

those grown at 1150°C and 1200°C. These differences can be correlated to respective SEM 

micrographs, where the layers grown at 1100°C show large number of voids, whereas these were 

very less for those grown at 1200°C. For the growth on Si(001) the amount of g-C inclusion in the 

layers could be correlated to the SiC(002) peak intensities which confirm the finding that excess 

carbon formation reduces the growth rate significantly. Whereas g-C inclusions in the layers grown 

on Si(111) were not so high, furthermore no significant differences in their amount could be 

observed for different growth temperatures, so, growth rate could not be correlated to g-C 

inclusions. Only the layers grown at 1150°C on Si(001) were completely covering Si-surface. These 

layers possess also largest crystallite size. The smallest FWHM of SiC TO phonon absorption peak, 

negligible g-C inclusion, largest crystallite size and smallest FWHM of XRD peak for the layers 

grown at 1150°C on Si(001) suggests that these were the best growth parameters for 3C-SiC growth 

on Si(001) substrates. Considering the same factors for the layers grown on Si(111) suggest that the 

growth at 1100°C with other earlier mentioned process parameters was the best set of growth 

parameters for 3C-SiC growth on Si(111) substrates. 
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Main outcomes: 

 

• The initial SiC buffer layers of optimal quality form when acetylene reacts on Si surfaces at 

1100°C. 

• The 3C-SiC grows epitaxially on Si(111) substrates and highly oriented on Si(001) 

substrates. 

• The optimum required temperatures to grow good quality epilayers on Si(111) and Si(001) 

substrates were 1100°C and 1150°C respectively.  
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5.2 Silicon dioxide on 3C-SiC and Silicon 

 

Silicon carbide has silicon dioxide as native oxide similar to that on silicon although not with 

similar interfacial quality. When SiC is thermally oxidised, there is a great fear of elemental carbon 

or graphitic carbon and other structural defects formation at SiO2-SiC interface. These interfacial 

defects are proven to be responsible for reduced channel mobility in SiC MOSFETs which could be 

successfully mitigated by several painstaking efforts towards SiC oxidation as discussed in section 

2.6.  

 

Here the silicon carbide oxidation process has been investigated by x-ray photoelectron 

spectroscopy. Chemical vapour deposited 3C-SiC layers were oxidised by resistive heating in air 

ambient and 10mbar N2O high pressure cell. Before starting the main discussion one should note 

that the CVD grown 3C-SiC layers used for oxidation in air ambient were containing some amount 

of g-C as discussed in section 5.1. 
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Figure 5.27 The XPS spectra, (a) C1s for as prepared 3C-SiC, (b) Si2p and (c) C1s for oxidised 3C-

SiC and C1s for UHV annealed SiO2/3C-SiC 
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The 3C-SiC was first oxidised at 450°C for 4minutes in air ambient which results to 1.1nm 

SiO2 on SiC. The oxide thickness was calculated by de-convoluting Si2p spectrum, Fig.5.27 (b), in 

SiO2 and SiC components. The CVD grown SiC layers comprised of some amount of g-C as shown 

in Fig.5.26 (a) which increases after oxidation (Fig.5.27(c)) in ambient air at 450°C for 4 minutes. 

Nevertheless this unfavorable elemental carbon could be considerably reduced, Fig. 5.27 (d) by 

UHV annealing at 400°C. 

 

The XPS C1s and Si2p spectra for the SiC oxidised at 600°C in ambient air, higher than 

previous oxidizing temperature. The oxidation was carried out in two steps 1+1 minute with 2 

minutes gap in between. The resulting oxide thickness was about 1.8nm. The observed a-C and g-C 

inclusion was reduced drastically, 65% to 26%, Fig. 5.28 (c), after oxidation. Whereas previous 

experiment shows that this reduction of g-C was possible only after annealing in vacuum. 
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Figure 5.28 The XPS spectra, C1s for as prepared 3C-SiC/Si (a), Si2p (b) and C1s (c) for the 

oxidised 3C-SiC/Si. 

 

The third SiC sample was oxidised at same temperature (600°C) and environment (ambient 

air) but not in two steps i.e. oxidised continuously for 2 minutes without any gap. Thus resulting 
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oxide thickness was about 2.8nm considerably thicker than that on previous samples. Moreover, the 

graphitic contamination could not be reduced, Fig. 5.28 (c), as much as Fig 5.27. 
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Figure 5.29 The XPS spectra, C1s for as prepared 3C-SiC/Si (a), Si2p (b) and C1s (c) for the 

oxidised 3C-SiC/Si 

 

In Fig.5.30, the Si2p and C1s spectra of oxidised 3C-SiC sample are shown. The SiC layer 

was oxidised at 600°C for 5 minutes in 10mbar of N2O in high pressure cell. Similar to the earlier 

oxidation experiments, a little amount of g-C remained after oxidation. The amount of g-C was 

completely converted to SiC by deposition of silicon over-layer followed by UHV anneal at about 

800°C as shown in Fig. 5.30 (b). 
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Figure 5.30 The XPS spectra, Si2p (a) and C1s (b) for graphite free SiO2 on 3C-SiC/Si. Annealing 

after Si evaporation in UHV assists reduction in g-C. 
 

Silicon dioxide (SiO2) on 3C-SiC was compared with SiO2/Si using synchrotron radiation 

photoelectron spectroscopy (SRPES) at the U49/2-PGM2 beamline at BESSY. Commercially 

available silicon substrates from Wacker-Siltronic and 3C-SiC(001) grown on Silicon substrates by 

CVD were used for these experiments. The SiO2/Si(001) interface was prepared by thermal 

oxidation at atmospheric pressure in air ambient at 400°C and annealing in UHV at about 800°C. 

The SiO2/SiC(001) interface was prepared by annealing in UHV at 300°C the native oxide, formed 

after ex situ CVD growth. The SiO2/Si/SiC(001) was prepared by Si evaporation in UHV on the SiC 

and subsequent oxidation in 10 mbar N2O, followed by Si evaporation in UHV and flashing at 

1100°C for 5 seconds. 

Both Si2p and O1s core levels have been measured with different photon energies 

corresponding to different surface sensitivities. From the O1s only small differences are observed 

for the various interfaces. Valence band spectra were measured at 510 eV (below the O 1s edge). 
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Figure 5.31 Si2p and O1s  spectra taken with photo-excitation energy of 150eV and 585eV 

respectively  for SiO2/Si, SiO2/SiC and SiO2/Si/SiC 
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Above in Fig. 5.31, the Si2p and O1s core level spectra taken, for the samples SiO2/Si, 

SiO2/SiC and SiO2/Si/SiC, with 150eV and 585eV respective photo-excitation energy. From the 

Si2p core level spectra the thickness of SiO2 was found to be about 6nm in the SiO2/Si(001), 4nm in 

the SiO2/SiC(001) and about 3nm in the SiO2/Si/SiC(001) systems. 
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Figure 5.32 Valence bands for SiO2/Si (dashed), SiO2/SiC (dash & circle) and 

SiO2/Si/SiC (solid line) recorded with 525eV photo-excitation energy. 

 

The valence band spectra of previously mentioned three different layer stacks are presented in 

Fig. 5.32. All spectra were normalised to the intensity of O2s peak. The feature at binding energy of 

4eV appears only for the oxide either directly on SiC or with Si ultra thin interlayer. The other 

difference observed was the feature at 15eV, it is more pronounced for SiO2 directly on SiC. 

 

Electron energy loss spectroscopy (EELS) on SiO2/3C-SiC 

 

In Fig.33, the EELS spectra recorded with electron primary energy of 50eV and 300eV from 

the as prepared 3C-SiC (a, b) and oxidised samples (a, b) are shown. The band gap estimation from 

the EELS measurements with 50eV for the (native) SiO2 on SiC gives the value 4.80eV which is 

well below the band gap of silicon oxide (~9eV). The appearance of small hump around 5.2eV is 

due to elemental carbon [19]. 
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Figure 5.33 EELS spectra recorded with electron primary energies 50eV and 300eV for the as 

prepared 3C-SiC (a, b) and after oxidation (c, d). 
 

The band gap of thus prepared silicon oxide layer was estimated from the EELS measurements with 

50eV which gives the value of 7.23eV close to the well-known band gap of silicon oxide (~9eV). 

After the oxidation of SiC layers, the feature due to g-C (5.2eV) was disappeared. Such an 

elimination of g-C through SiC oxidation was also observed (Fig. 5.28-29) in previous XPS studies. 

 

Main outcomes: Oxidation of 3C-SiC 

• Oxidation of SiC at moderate temperature, 600°C, in steps results thick silicon oxide nearly 

without interfacial g-C. 

• The excessive carbon could be successfully reduced by UHV annealing of elemental silicon 

evaporated on SiO2/SiC. 

• The bandgap of 7.23eV of SiO2 on SiC has been estimated by EELS measurements. 
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5.3 Praseodymium Silicate on 3C-SiC layers 

 

Due to the destructive interaction of Pr2O3 deposited directly on SiC there is great requirement 

of stable interfacial diffusion barrier layer between praseodymium oxide and silicon carbide. Pr-

silicate forms when Pr2O3 is deposited on silicon and it is found to be thermally stable. Furthermore, 

as already been reported, the Pr deposition on SiO2/Si results to Pr-silicate formation. These silicate 

layers could also be formed on SiC surfaces. The Pr2O3 directly deposited on SiC reacts already at 

room temperature resulting, besides silicate formation, the carbon clustering. So, the silicate could 

be formed by, first, growing g-C free SiO2 on SiC of optimal thickness to capture whole amount of 

deposited Pr layer forming silicate, second, deposition of optimal amount of Pr and subsequent 

vacuum annealing. This solid state interaction of Pr with silicon oxide covered 3C-SiC is studied by 

using synchrotron radiation photoelectron spectroscopy. Pr-silicate layer could be further applied as 

interlayer for Pr2O3 deposition on silicon carbide. 

 

This study is basically focused on the optimisation of silicon dioxide thickness and amount of 

praseodymium by investigating most critical core levels with different photo-excitation energies 

using synchrotron radiation at U49/2 Beam line at BESSY. 

 

In Fig.5.34, Si2p and O1s core level spectra taken at 600eV photo-excitation energy are 

shown. In the spectrum for SiO2 covered 3C-SiC (open triangles), SiO2 and SiC components appear 

at 103.8eV and 101.2eV respectively. The oxide thickness for the SiC oxidised at 600°C for 2 

minutes was calculated from the ratio of SiO2 and SiC components peak areas in Si2p spectrum 

using equation (1) [20] , and estimated to be about 3nm. Deposition of about 1nm thick Pr shifts the 

spectrum to higher binding energy.  
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where, λSiO2 is the attenuation length of the Si2p photoelectrons in SiO2, θ is the angle between the 

sample surface plane and the entrance to the electron analyzer, β is the ratio of intensity (or area) 

from infinitely thick,(>30nm SiO2) and Si which is usually taken as unity, whereas II SiSiO
expexp

2  is the 

measured ratio of Si2p intensities. 
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Figure 5.34 SRPES Si2p and O1s core levels spectra taken at 600eV photo-excitation energy for 

3nmSiO2/ SiC(open triangles), 1nm Pr metal deposition (solid circles), vacuum annealed at 

300°C(open circles) for 1minute and heated at 500°C(solid triangles) for 2minutes in ambient air. 
 

After one minute of annealing in vacuum at 300°C Pr-silicate component at around 103eV is 

observed. The effect of Pr-silicate formation is also supported by O1s spectra measure after SiC 

oxidation, Pr-deposition and subsequent vacuum annealing. In O1s spectra, initially only SiO2 

component appears at 533eV. Annealing after Pr-deposition (open circles) a shifted component 

towards lower binding energy is observed which is due to Pr-silicate, and another component 

around 530.5eV is due to PrOx. It is learnt by Si2p spectra that there is no silicide formation as it is 

formed on comparatively thinner SiO2 (native oxide) [11]. 

 

 

 

 

 

 

 

 



5. Results and Discussion 

 

 

97 

-1 08 -1 07 -1 06 -10 5 -10 4 -10 3 -10 2 -10 1 -1 00 -99 -98

(a )

SiO

SiC

SiO
2

h ν = 6 0 0 e V

S i2 p

3n m  S iO
2
 o n  3C -S iC

 M e as ured
 S iO 2
 S iC
 S iO
 S u m F IT

 

B in d in g  e n e rg y /  eV

 

 

-108 -107 -106 -105 -104 -103 -102 -101 -100 -99 -98

(b )

S iC

SiO +S i-O -Pr

SiO
2

h ν =600eV

 M easu red

 S iC
 S iO 2

 S iO +S iO P r
 S um FIT

1nm  Pr d eposited  on S iO
2
/3C -S iC

S i2 p

 

B ind ing  ene rg y / eV

 

 

The appearance of different states in 

Si2p spectra i.e. SiO2, SiO, Pr-O-Si(silicate) 

and SiC in as prepared (3nm)SiO2/3C-SiC, 

1nm Pr-deposited and subsequently annealed 

in UHV at 300°C are demonstrated in Fig. 

5.35. In SiO2/3C-SiC Si2p spectra was fitted 

using an interfacial Si+ state. Whereas on 

praseodymium deposition the more intensed 

Si+ (SiO, SiOPr) peak was required to 

perfectly fit the measure spectra. After 

annealing less intensed peak for Si+4(SiO2) 

was needed whereas a highly intensed peak 

for SiO or SiOPr was needed to fit the 

measured spectra. Pr reacts already at room 

temperature with SiO2 over silicon carbide. 

This reaction was further enhanced by 

vacuum annealing at 300°C, which converts 

most of the SiO2 to Si-O-Pr bridges at the 

interface. Such formed Pr-silicate layers were 

found to be stable even at 500C°C. 

 

Figure 5.35 Si2p core level spectra from (a) 

SiO2/3C-SiC, (b) 1nm Pr deposited (c) 

vacuum annealed for 60seconds at 300°C 

along with peak de-convolution in constituent 

components. 
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So it was clear that Pr silicate forms after annealing the above mention stacks. Now to find out 

Pr-silicate distribution along the depth, core levels were also measured with varied photon energies 

corresponding to different depth penetration and hence different depth detection. The Si2p spectra 

(Fig.5.36) were taken with 400eV, 600eV and 900eV for the Pr exposed SiO2/3C-SiC annealed 

samples. The relative intensity of Pr-Silicate component goes down when photon energy was 

increased. So Pr-silicate forms mostly on the surface. 
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Figure 5.36 Si2p core level measured with (open circles) 400eV, (solid circles) 600eV 

and (open triangles) 900eV on annealed Pr exposed SiO2/3C-SiC. Pr-silicate appears to 

be located in the bulk as the peak separation decreases with increase in photon energy. 

 

In Fig.5.37, there is a compilation of C1s spectra taken with 600eV photo-excitation energy. 

There was no significant g-C contribution in the spectra from oxidised, Pr exposed and vacuum 

annealed samples. But after heating in ambient air to the temperature of 600°C there is g-C 

contribution, an indication of a destructive interaction. This destructive interaction could possibly 

be avoided by increasing the oxide thickness. 
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Figure 5.37 C1s core level spectra taken with 600eV photo-excitation energy after 3C-

SiC oxidation (solid triangles), 1nm Pr deposition (solid circles), 1min vacuum anneal 

at 300°C (open circles) and heating to 600°C in ambient air (open triangles). 
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In these experiments, chemistry of Pr exposed SiO2 covered 3C-SiC was studied with SRPES 

core levels analysis. Pr found to be readily reactive with silicon dioxide layers transforming it to 

mostly the Pr-silicate form. Pr reacts already at room temperature with silicon dioxide and this 

reacting was further enhanced by annealing at 300°C.  

 

Pr-silicate forms mostly on the surface, its amount decreases towards the bulk as shown in 

(Fig.5.36) for different depth sensitive Si2p spectra. From the C1s core level spectra; there was no 

significant sign of g-C formation after Pr exposure and subsequent annealing. When Pr-silicate 

layers were annealed in ambient air, it leads to g-C formation. Since the Pr-silicate was formed to 

up to the interface at SiC under-layer, further annealing results destructive reaction at the interface 

The possible reason for such reaction is probably the higher affinity of Si-atoms for O-atoms, 

leading to the Si-C bond breaking and SiO bond formation (Fig.5.34) in Si2p spectra and carbon 

clusturing (Fig.5.37) in C1s spectra.  

 

Main outcomes: Pr interaction with SiO2 covered 3C-SiC 

• Pr-silicate forms when SiO2/SiC was exposed to Pr and annealed. 

• Thickness of silicon oxide should be optimised in order to obtain Pr-silicate without any 

interfacial SiO2 and also in order to suppress the g-C formation, and 

• No graphitic carbon was formed while praseodymium reacts with SiO2/SiC. 
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5.4 Aluminum Oxynitride Interlayers  

 

Being a wide bandgap semiconductor, Silicon carbide (SiC) is suitable for high-power and 

high-temperature devices from dc to microwave frequencies. However, the commercialisation of 

advanced SiC power devices remains limited due to performance limitation of the SiO2 dielectric 

among other issues. Silicon carbide is the only wide bandgap semiconductor which has SiO2 as 

native oxide but SiO2/SiC possesses several drawbacks - (1) the existence of high density of 

interface states and (2) its dielectric constant lower than that of SiC. The large interface states 

density decrease the overall carrier mobility in the channel region. Moreover, SiO2 has the dielectric 

constant 2.5 times lower than that of SiC, which means that at breakdown electric field for SiC, the 

electric field in the adjoining SiO2 becomes too high for reliable operation. This removes the main 

advantage of using SiC in high power devices, if ten times higher breakdown field for SiC in 

comparison to Si cannot be exploited, and in high frequency applications if the higher electron 

mobility for SiC in comparison to Si cannot be attained. Therefore, alternative dielectrics 

possessing significantly less interface state density on SiC and a dielectric constant higher than or of 

the same order as that of SiC (εr ≈10) should be used to reduce the electrical field in the insulator. 

Among alternative dielectrics to silicon dioxide (SiO2), Praseodymium oxide (k=36) [12] along with 

the interlayer of AlN (VB offset 1.5-2.4eV) [13] seems to be a good candidate. The use of another 

dielectric like AlN or AlON is essential for valence and conduction band offset requirements in 

MOS structure besides solving the problem of high interface states. 

 
In order to evaluate such a promising candidate, the sputter deposited AlON layer and 

subsequent annealing after PrOx deposition appears to be a convenient route to elaborate this kind 

of structure. So prepared PrOx/AlON layered stacks were investigated by synchrotron radiation 

photoelectron spectroscopy (SRPES). Annealing up to 900°C, results the formation of stable layer 

which consists AlN & Pr-Aluminates. Furthermore no Pr-silicide formation was observed even after 

annealing to 900°C in UHV. 

 

Aluminium oxinitride is being used as interfacial layer, which were prepared in 10-7mbar by 

sputtering an aluminium source with nitrogen ions and oxygen atoms come from residual oxygen 

pressure in vacuum sputtering unit. Chemical composition of as prepared AlON layer and thermal 

stability/reactivity, from room temperature to 900°C, of AlON layer with subsequently deposited 

few nanometers thick PrOx layer was investigated.  
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Praseodymium oxide deposited directly on SiO2 covered 3C-SiC reacts already at room 

temperature (Fig. 5.38) damaging Si-C bonds and hence creating excess carbon besides the silicate 

formation. So, there is a great requirement of stable interfacial layer to employ the high-k PrOx 

layers on SiC.  
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Figure 5.38 C1s spectra taken with 585eV photon energy after oxidation in 10mbar 

N2O (solid triangle), re-oxidation (open circles) after Si deposition and PrOx 

deposition (open triangles). 

 

This investigation was focused on quantitative (chemical composition) and qualitative 

characterisation of Pr-Oxide and AlON on 3C-SiC layers and their interaction using synchrotron 

radiation source. Interaction and thermal stability of PrOx layers on AlON interlayer up to the 

temperature of 900°C was studied using SRPES. In Fig.5.39, as measured (without VBM 

correction), N1s and Al2p core level spectra taken from the AlON covered 3C-SiC, PrOx deposited, 

and subsequent (900°C) vacuum annealed samples are shown. In N1s spectra for as grown AlON 

layer on 3C-SiC the main contribution was from Al-O-N (399.8eV) along with small contributions 

from C-N and/or SiN (400.5eV), and NO (402eV) and AlN (398eV) components as reported by 

Cao [14] and He et al [15]. After PrOx deposition, NO contribution was increased, simultaneously 

there was an addition of new component appearing at lower binding energy (395eV). Considering 

the electro - negativities for Pr and Al, [Prelectronegativity (1.13)< Alelectronegativity(1.61) ], the new 

component could be assigned to Pr-N bond formation. Annealing at 500°C for 2 minutes 

completely eliminates NO and to some extent Al-O-N and C-N/SiN components too, forming 

mainly Al-N besides the increase of N-Pr contribution. 
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Figure 4.39 N1s and Al2p core level spectra measured with different photon energy on as prepared 

AlON/3C-SiC, PrOx deposition and vacuum annealed at 900°C 
 

In Al2p spectra, taken with 385eV photon energy, for as deposited AlON/3C-SiC, the main 

contribution was from Al-O-N at 75.4eV with a small peak from Al-O (77.5eV). After PrOx 

deposition the Al-O component was decreased significantly and a new component is rising at 

74.6eV due to the attack of Pr atoms on Al-O-N environment forming Al-N (74.6eV [16], and small 

contribution at 73.4eV could be from Al-C bond formation [Celectronegativity(2.55)< 

Nelectronegativity(3.04)] [17] or it could be just peak broadening of Al-N contribution. After annealing at 

900°C A-O-N disappeared almost completely forming a stable Al-O-Pr interlayer between PrOx 

and 3C-SiC. 

 

In C1s spectra, shown in Fig.5.40, taken with 385eV, three components mainly C-N 

(285.5eV), small contribution from C-O-N (287.4eV) and CO (289.9eV) [18] were observed. In the 

AlON as grown layer on 3C-SiC are observed. After PrOx deposition C-O-N and C-O components 

are slightly increased. Subsequent vacuum annealing at 500°C results in the reduction of almost all 

C-O-N and CO components forming a stable C-N layer stable even at 900°C. 
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Fig.5.40 C1s and O1s core level spectra measured with different photon energy on as prepared 

AlON/3C-SiC, PrOx deposition and vacuum anneal at 900°C 
 

In O1s spectra, shown in Fig.5.40, taken with 637eV photo excitation energy, mainly two 

features namely O-N component at 532.4eV and O-Al (534eV) appears. After PrOx deposition 

besides the reduction in O-Al component a new component rises at 530eV and 531eV from Pr-O 

and Al-O-Pr respectively. This indicates that PrOx reacts, by Pr diffusion, with AlON layer already 

at room temperature which is significantly enhanced on annealing. On annealing at 900°C for 2 

minutes Al-O-N component is almost disappeared and mostly Al-O-Pr bridges are formed with 

small amount of PrOx.  

 

Discussion 

 

As presented in Fig.5.38, Praseodymium oxide deposited directly on SiO2 covered 3C-SiC 

readily reacts with underlying SiO2 layer creating disadvantageous g-C at the interface. Aluminum 

oxynitride observed to be a suitable interlayer between PrOx and SiC as reaction barrier, since no g-

C contribution in C1s (Fig.5.40) was observed even after annealing to 900°C for 2minutes. As 

prepared AlON consists of mainly (Fig.5.41) Al-O-N, little amount of Al-O and AlN, whereas 

interface contains (Fig.5.40) C-O-N. PrOx deposition enhances the Al-O bonds and induces N-Pr 

bond formation. Since PrOx provides sufficient oxygen atoms to increase the Al-O bonds and 

simultaneously creates N-Pr bond. But the Al-O was decreased almost completely (Fig.5.41) by 

vacuum annealing at 500°C. When Al-O bonds were decreased, Al-N bonds formed which were 

stable even at 900°C as confirmed by vacuum anneal at 900°C for 2 minutes. 
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Figure 5.41 Peak fitted for N1s and Al2p core level spectra obtained after annealing PrOx on 

AlON/3C-SiC at 900°C for 2 minutes. The aluminum oxides transformed to Pr-aluminates and small 

amount of AlN and N-Pr bonds. 

 

It was assumed that the C1s peak at 284eV was due to C-N and not due to g-C because it was 

not easy to distinguish their respective peaks positions. One should confirm whether this 

assumption was true. If the aforementioned was considered then there was no trace of g-C after 

PrOx deposition and even after vacuum anneal at 900°C. At the PrOx/AlON interface Pr-O-Al 

formed after vacuum anneal simultaneously Pr-O bonds contribution was decreased as Pr-O-Al 

bridges formed.  

 

So, the presented work investigated the interaction of PrOx with AlON covered 3C-SiC with 

synchrotron radiation photoelectron spectroscopy (SRPES). Following conclusion were drawn from 

this work: 

 

Main Outcomes: Praseodymium Oxide interaction with AlON covered 3C-SiC 

• AlON provides a good reaction barrier between high-k PrOx and wide bandgap 3C-SiC. 

• AlON transformed to Pr-aluminates and AlN which were thermally stable even at 900°C. 

• No elemental carbon was detected on PrOx deposition or after subsequent vacuum anneal. 

• The interface on SiC consists mainly CN which is also thermally stable 
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Chapter 6 

 

Summary, Conclusions and Future Prospects 

 
Summary 
 

Chemical vapor deposition of 3C-SiC thin films on Si(001) and Si(111) substrates has been 

investigated. Chemical compositional, qualitative and quantitative, characterisation was done by x-

ray, infrared spectroscopies, and structural characterisation by x-ray diffraction whereas surface 

morphology by scanning electron microscopy. 

 

Prior to the actual SiC growth, initial buffer layers of SiC were prepared by treating silicon 

with acetylene at or above 1000°C. The acetylene decomposes at 1000°C on Si surfaces and C 

atoms adsorbed resulting to SiC ultra thin layer, which we call the buffer layer. Although SiC buffer 

layer formed at 1000°C, but it attains the acceptable surface roughness not below 1100°C. The SiC 

buffer layer quality was almost independent of gas flow rates and duration. So, the optimised 

temperature for buffer layer formation was 1100°C which has been used for most of the further 

CVD growth.  

 

The silicon carbide growth subsequent to the carbonisation at 1100°C seems to be better than 

those on carbonisation at 1000°C as the FTIR absorption peak for SiC appears at its theoretical 

value. Minimum temperature difference between carbonisation and growth was also important to 

improve the layer quality. The growth for half an hour at 1200°C shows symmetric FTIR absorption 

peak. The FTIR absorption peak appears at 794cm-1 for SiC grown on Si(001) and 796cm-1 for SiC 

on Si(111) substrates. One should understand the reason behind this; whether this difference is due 

to the presence of tensile or compressive strains or it is related to intrinsic characteristic of planes. 

The uniformity of the layers has been improved by improving the heating. The 3C-SiC layers grow 

epitaxially on both (111) and (001) silicon substrates. The growth on (001) Si includes some 

crystallite growth in (111) direction whereas no (001) oriented growth was observed on (111) 

silicon substrates. The amount of g-C inclusion has been significantly reduced by increasing Si 

source concentration in reactor. The temperature of 1100°C and 1150°C has been proven to be the 

optimal growth temperatures for the growth of 3C-SiC on Si(111) and Si(001) substrates 

respectively. The supply of Si-precusor at the end of growth process was not useful to grow Si-rich 
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SiC layers. Instead it etches the already grown SiC layers leading to rough surfaces. The surface 

reconstruction of (2x1) has been observed by LEED on UHV flashed 3C-SiC(001) at 1150°C. 

The oxidation of SiC has been investigated. It has been observed that the oxidation process at 

the temperature of 600°C in two steps of one minute was usefull in reducing and suppressing the g-

C at SiO2/SiC interface. Clean, graphite free SiO2 has been successfully prepared on 3C-SiC by 

silicon evaporation and UHV anneal. The EELS measurements also confirm the elimination of 

graphitic carbon on oxidation. 

 

For the application of high-k Pr2O3 on silicon carbide plausible interlayers, Pr-Silicate and 

AlON, have been investigated. Praseodymium silicate has been prepared successfully consuming 

completely the SiO2 and simultaneously suppressing the g-C formation.  

 

Comparatively more stable interlayer using AlON has been achieved. This interlayer mainly 

consists of AlN along with some amount of Pr-aluminates and CN. Such layer acts as reaction 

barrier between Pr2O3 and SiC, and simultaneously provides higher band offsets. 

 

 
Conclusions 
 

• Chemical vapor deposition of epitaxial 3C-SiC thin films on both Si(001) and Si(111) 

have been successfully grown at comparatively low temperatures (<1200°C) using the 

double-step method. To the best of the author’s knowledge, this work is the first attempt 

for CVD growth of 3C-SiC on Si substrates using trichlorosilane+acetylene precursors 

with hydrogen. The temperature required to grow good quality epilayers on Si(111) and 

Si(001) were 1100°C and 1150°C respectively. 

• It has been learnt from the oxidation studies on SiC that oxidation at moderate 

temperatures (at slow rate) of one minute was useful to obtain thick silicon oxides layers 

without carbon cluster formation. Si evaporation proved to be beneficial in order to 

compensate the Si consumption in SiO2 suppressing any carbon cluster formation. 

• The formation of Pr-silicate has been established by the interaction of Pr on SiO2 covered 

3C-SiC at 300°C. 

• The formation of a stable interfacial layer mainly consisting of AlN with some amount of 

Pr-aluminate and CN has been established. Such layer acts as reaction barrier between 

Pr2O3 and SiC and simultaneously provides higher band offsets. 
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• The investigation of stable interfaces between high-k, Pr2O3, and silicon carbide is the first 

attempt towards the future applications of praseodymium oxide on silicon carbide for high 

performance devices. 

Future prospects . . .  

 

• The investigation of CVD growth of 3C-SiC layers could be improved by the utilisation of 

proper substrate heating method e.g. induction heating, flash lamp heating; and hence the 

qualitiy of layers could be improved. 

• Oxidation of thus prepared 3C-SiC layers of improved quality could be further 

investigated by XPS and electrical characterizations like capacitance-voltage analysis. 

• Orientation dependence of oxidation process of 3C-SiC surfaces could be studied. 

• To develope a stable interlayer between praseodymium oxide and SiC a pure phase of AlN 

layers could be utilised as it has been learnt from the presented work that AlON layers 

transform to AlN and Pr-aluminates. The electrical investigation of such layer stacks could 

confirm their utility in device applications. 

• Thin films of TiO2 and ZnO could be investigated as alternate dielectrics and/or interlayer 

between Pr2O3 and SiC. 
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