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Abstract: Fire is a multi-scale process that is an important component in determining ecosystem age
structures and successional trajectories across forested landscapes. In order to address questions
regarding fire effects over large spatial scales and long temporal scales researchers often employ forest
landscape models which can model fire as a spatially explicit disturbance. Within forest landscape
models site-level fire effects are often simplified to the species, functional type, or cohort level due
to time or computational resource limitations. In this study we used a subset of publicly available
U.S. Forest Service forest inventory data (FIA) to estimate short-term fire effects on tree densities
across multiple stem diameter classes in two ecological sections in the central and southern United
States. We found that FIA plots where low-intensity fires occurred within the preceding five years in
the Ozark Highlands ecological section had significantly reduced stem densities in the two smallest
diameter classes and in the Gulf Coastal Plains and Flatwoods fire reduced stem densities in the three
smallest diameter classes. Using an independent subset of FIA plots we then parameterized and
calibrated a forest landscape model to simulate site-level fire effects using a logistic regression based
method and compare the results to previous methods of modeling fire effects. When representative
landscapes from both study areas were simulated under a low-intensity fire regime using a forest
landscape model the logistic regression probability method of modeling fire effects produced a similar
reduction in stem densities while the previous age-cohort method overestimated density reductions
across diameter classes. A more realistic representation of fire effects, particularly in low intensity fire
regimes, increases the utility of forest landscape models as tools for planning and management.

Keywords: forest landscape modeling; fire effect modeling; LANDIS PRO

1. Introduction

Fire is an important driver that shapes forested landscapes due to the interactions between the
frequency, intensity, and absence of fire with forest succession which can determine species composition
and stand structure at varying spatial scales [1–3]. The alteration of fire regimes across the eastern
United States by humans has resulted in drastic reductions in the area burned over the past century
which has likely led to changes in forest species and structure compositions [4,5]. There is evidence that
in the future climate change could have a direct effect of increasing fire potential across the region [6].
Recently, the use of fire as a management tool has increased as managers look for new tactics to increase
forest resilience, restore desirable historical conditions, or control invasive species [6–11].

Researchers often employ models to study the effects of fire as a management tool or stochastic
natural process under novel conditions, long temporal scales, or large spatial scales [12–15].
The method of modeling fire effects can determine the effective spatial and temporal scope of the
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results [16]. Models which simulate fire effects directly on individuals, often called first-order fire
effects [16,17], use mechanistic processes or empirically-based probabilities to determine injury or
death caused directly by fire. Due to their complexity, first-order fire effects models often operate
at short temporal time scales (daily or sub-daily) or small spatial scales (individual tree or stand)
which can limit the applicability of their predictions in long-term management or strategic planning
contexts [18]. Another class of model represents the aggregated effects of fire on individuals as changes
in vegetation types or land cover classes using either mechanistic or rule based state-transition methods.
These models, referred to as second-order fire effect models, can simulate larger landscapes over longer
time periods, although usually at the expense of tracking site-level details of forest composition [19].
Over the course of several decades many models have been developed that use one, or both methods of
simulating fire effects in order to provide information to answer a variety of research and management
related questions.

One such example are forest landscape models (FLMs) which have been developed specifically
to combine the interactions between spatial processes of disturbance and dispersal with site-level
community dynamics. Since the spatial component of disturbances is one of the main focuses of
FLMs, it is unsurprising that model developers have focused considerable effort on the ignition and
spread components of fire disturbance [2,12,20,21]. The method for modeling fire effects within FLMs
is often implemented using a rule-based community transition method where specific age cohorts,
species, or some combination of both are removed from a site where fire occurs [21]. Most FLMs have
a main component to simulate forest succession which interacts with separate disturbance modules
by means of a biological or ecological model currency, which in the case of fire effects has typically
been the presence or absence of specific species or age cohorts [22,23]. Fire effects are represented by a
specific set of these cohorts being removed from a site following a set of user-defined rules. A few,
more complex and computationally intensive, FLMs model fire mortality at the individual level using
empirical logistic regression probability equations [19,24,25]. By combining the feedback from the fire
effect modules with forest succession, species dispersal, and other disturbance mechanisms researchers
can use forest landscape models to examine the role that fire plays across broad spatial and temporal
scales that are not often feasible in direct field studies.

One area that presents opportunities for improving the utility of model predictions for
management and planning decisions is the ability of FLMs to interface with common forest
management and ecological monitoring sampling practices. Forest inventories typically record the
species and diameter at breast height (1.5 m) above ground for every tree on a plot which can then
be scaled to per hectare estimates of basal area and densities or aboveground biomass weights using
allometric equations [26]. Researchers have used forest inventory data in order to construct initial
forest community conditions as a starting point for FLMs [27,28]. These initial community definitions
are typically structured as quantitative information describing cohorts of similar individuals which are
grouped by species, functional type, developmental stage, size, age, or some combination of multiple
factors. The cohorts represented in early models were typically the presence or absence of age classes
by species [29], or forest type on each site [30]. As computational resources improved FLMs were able
to track more detailed quantitative information about cohorts within the model such as biomass [31],
number of individuals [28], or specific individuals [24] which allowed a more direct comparison with
forest inventory data for the purposes of model initialization, calibration, and validation [32]. This also
allows for the possibility of model predictions to be directly compared with studies of forest fire
ecology [10,33], silvicultural management [34,35], and wildlife population modeling [36,37].

We present an approach to modeling first-order fire effects using a logistic regression probability
method within a FLM, LANDIS PRO. With development of LANDIS PRO version 7.0 the
presence/absence age cohort structure of tracking species over the landscape was replaced with
one that could directly track number of individual stems within each age cohort [28]. This allows
the model to simulate partial effects of disturbance processes at the site-level and more realistically
represent some stand dynamics [38,39] while still operating at fine spatial resolutions (30–270 m)
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over large landscapes. We demonstrate how widely available forest inventory data is utilized to
initialize forest communities within the model and calibrate the fire effects model as well as validate
model predictions. The objectives of this study are: (1) Compare stem densities by size class on forest
inventory plots in the eastern United States to test the hypothesis that small diameter stem densities
are reduced on plots where low-intensity fire has occurred within the previous five years; (2) Test
if a logistic regression based fire effects model and a rule-based model are effective predicting stem
densities following a low-intensity fire within a forest landscape model.

2. Materials and Methods

2.1. Study Area

For this study we chose two different regions that represent different forest types and fire
regimes (Figure 1). The Ozark Highlands ecological section is primarily located in southern Missouri
and northern Arkansas. The forest cover types are largely composed of oak-hickory and oak-pine
forests [40]. Quercus alba L. (white oak) accounts for 24% of forest biomass in the region, while the next
nine most abundant species account for an additional 50% of forest biomass (Table 1).

Table 1. The top ten most abundant species in the Ozark Highlands ecological section by percentage
of total aboveground biomass as reported by the U.S. Forest Service Forest Inventory and Analysis
estimate from plots sampled between the years 2011–2015.

Species Latin Name Species Common Name Biomass Percentage

Quercus alba L. white oak 22.5
Quercus velutina Lam. black oak 15.0

Quercus stellate Wangenh. post oak 10.5
Quercus rubra L. northern red oak 5.1

Pinus echinata Mill. shortleaf pine 4.2
Quercus coccinea Münchh. scarlet oak 4.1

Juniperus virginiana L. eastern redcedar 2.9
Carya tomentosa Lam. mockernut hickory 2.6
Carya texana Buckley black hickory 2.5

Acer saccharum Marshall sugar maple 2.5

The Gulf Coastal Plains and Flatwoods section is located mainly in the southern portions of
Mississippi, Alabama, and Georgia while also covering parts of eastern Louisiana and northern Florida.
The region is dominated by southern pine forest types with mixed hardwoods. Pinus taeda L. (loblolly
pine) accounts for nearly 40% of forest biomass in the region while other common species include
Quercus nigra L. (water oak), Liquidambar styraciflua L. (sweetgum), Pinus elliottii Engelm. (slash pine),
Quercus laurifolia Michx. (laurel oak), Liriodendron tulipifera L. (yellow-poplar), Quercus alba L. (white
oak), Pinus palustris Mill. (longleaf pine), and Pinus echinata Mill. (shortleaf pine) (Table 2).

Table 2. The top ten most abundant species in the Gulf Coastal Plains ecological section by percentage
of total aboveground biomass as reported by the U.S. Forest Service Forest Inventory and Analysis
estimate from plots sampled between the years 2011–2015.

Species Latin Name Species Common Name Biomass Percentage

Pinus taeda L. loblolly pine 38.0
Quercus nigra L. water oak 10.9

Liquidambar styraciflua L. sweetgum 7.1
Pinus elliottii Engelm. slash pine 4.6

Quercus laurifolia Michx. laurel oak 4.0
Liriodendron tulipifera L. yellow-poplar 3.2

Quercus alba L. white oak 2.3
Pinus palustris Mill. longleaf pine 2.3
Pinus echinata Mill. shortleaf pine 2.2

Nyssa sylvatica Marshall blackgum 2.1
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were deactivated and the land types of each pixel were assumed to be homogenous.  

Figure 1. Two ecological sections containing forest inventory plots used for analysis, model
parameterization, and validation.

2.2. Model Parameterization

LANDIS PRO is a grid-cell based spatially explicit forest landscape model that can simulate
large landscapes over long temporal scales at a user-specified spatial resolution [28]. By tracking
stem density within age classes for individual species occupying each cell the model can simulate
demography, stand dynamics, and disturbance. LANDIS PRO requires input parameters detailing
species attributes, land type attributes, forest composition, and disturbance characteristics.

Biological attributes for 29 species were collected from previous studies and literature [38,41–43].
Within the model each species is divided into age cohorts based on the simulation time-step and species
longevity. For example, if a species has a longevity within the model of 100 years and the simulation
time-step is set to two years the species would have 50 individual age cohorts. For this experiment
we chose a two year time-step. Stem diameter for each species within the model is determined by
age. We calibrated these age-diameter relationships using U.S. Forest Service Inventory and Analysis
(FIA) plot site-index information from within the study areas recorded from 1995–2017 [38,44,45].
At the beginning of simulation in LANDIS PRO each pixel was assigned an initial forest community
based on a single FIA plot. FIA records the species and diameter of each individual with a DBH
greater than or equal to 2.54 cm, allowing the inventory data to be directly transferred to the LANDIS
PRO age/diameter cohort structure. Since this study focused on modeling site-level fire effects,
the components of LANDIS PRO that simulate seed dispersal and establishment were deactivated and
the land types of each pixel were assumed to be homogenous.

For this study we chose to model post-fire mortality using an equation based on studies using
logistic regression to predict fire mortality using tree diameter at breast height (DBH) and height of
charring on the stem [46–48]. A review of post-fire mortality logistic regression models western North
America found that DBH was the most frequent significant variable among the models reviewed [48].
In a study that sampled over 2100 trees in oak-hickory forests DBH and height of bole scorching were
the most important variables in predicting post-fire mortality of trees smaller than 16 inches DBH [49].
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In a study of eastern mixed oak forests DBH and height of bole scorching were effective explanatory
variables for predicting the probability of top-killing following fire [46].

The equation used in LANDIS PRO 7.0 to calculate probability of mortality following fire is
as follows:

P(m) =
(

1 + e−(β0+β1X1+β2X2)
)−1

(1)

βi = model coefficients,
X1 = tree diameter (cm) at breast height,
X2 = height of bark charring (m).

The user provides five sets of model coefficients that correspond to the five fire tolerance classes
for tree species. The X2 parameter is used by the LANDIS PRO fire module analogously for fire severity.
The user can set five values for X2 that correspond to the five fire severity levels to produce a range of
mortality probabilities for all combinations of species fire tolerances and fire severities.

We generated five sets of model coefficients for each study area that corresponded to the
five fire tolerance classes that are part of species parameters within LANDIS PRO. The values for
these parameters were estimated from previous studies in the two regions [10,46,50–52] and further
calibrated using FIA data from plots sampled between the years 2006 and 2010 from each study
area. The model coefficients for each fire tolerance class were adjusted from initial values so that
post-fire densities by diameter class more closely followed those found in the FIA calibration dataset.
The rule-based fire mortality model has no parameters that can be calibrated without altering code
within the model and follows the rules presented in He & Mladenoff, 1999 [12]. The fire tolerance of a
species determines what percentage of cohorts are removed following a fire of a given intensity.

2.3. Experimental Design

For each of the ecological sections a randomly generated landscape was modeled in LANDIS PRO
with 100 replications to ensure a heterogeneous application of fire on the landscape. Each replication
was a 30 row and 30 column map composed of randomly selected pixels from the initial community
map within the ecological section and regenerated for each replication. Initial communities were based
on FIA plots sampled between the years 2011 and 2015. Fire is more frequent and on average of a
higher severity in the Gulf Coastal Plains than in The Ozark Highlands, although both study area
generally only experience low-intensity ground fires [53]. We used the LANDIS PRO fire module to
apply fire to random pixels at a rate of 3.5% of the landscape in the Ozark Highlands and 9.5% of the
landscape in the Gulf Coastal Plains to match the approximated ratio of burned to unburned plots
found in the FIA data. The fires simulated in the Ozark Highlands section were parameterized to be
low-intensity surface fires of severity one, while the fires simulated in the Gulf Coastal Plains section
were either severity one or two [53]. The LANDIS PRO fire module was modified to simulate both the
original rule-based fire mortality and the logistic regression probability fire model and output stem
densities by diameter classes for each method. The diameter classes are ≤5 cm, 5–10 cm, 10–15 cm,
15–20 cm, 20–25 cm, 25–30 cm, 30–35 cm, and >35 cm. All parameters controlling fire intensity and
proportion of the landscape burned were held constant for both fire mortality modeling methods.
For each replication the landscape was partitioned in to unburned and burned cells and tree densities
for the eight diameter classes was extracted from each pixel.

The USDA Forest Service Forest Inventory and Analysis (FIA) [44] was utilized to validate
modeled mortality following fire. For each ecological section FIA plots that had a record of fire
occurring within the previous five years were identified. Trees within the plots were classified in to
one of the eight diameter classes to match results from the LANDIS PRO output. Each diameter class
was then summarized using the trees per acre expansion factor to produce density estimates from
each plot.
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2.4. Data Analysis

The pairwise Wilcoxon rank sum test was used to test for differences in stem density for
each diameter category across the burned FIA plots, unburned FIA plots, unburned LANDIS PRO
pixels, logistic regression probability fire mortality pixels, and rule-based fire mortality pixels.
The non-parametric Wilcoxon test was chosen due to unequal sample sizes across groups and
non-normal distributions. All comparisons of significance were made using an α of 0.05.

3. Results

3.1. Ozark Highlands Section

The stem densities for the ≤5 cm and the 5–10 cm class were significantly lower in burned
FIA plots compared to FIA plots that were unburned in the Ozark Highlands section (Figure 2).
All other diameter classes had no significant difference between burned and unburned plots in the
FIA data. The predictions of stem density in burned pixels made by LANDIS PRO using the logistic
regression fire effects model had no significant difference from burned FIA plots in the two smallest
diameter classes. For all other diameter classes LANDIS PRO had no significant difference in stem
densities between pixels burned using the logistic regression fire effects model and unburned pixels.
Simulated pixels burned using the rule-based fire effects model were significantly lower than unburned
pixels across all diameter classes.
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Figure 2. Boxplot showing stem densities within eight diameter groups from the Ozark Highlands
study area. Estimates from U.S. Forest Service Forest Inventory and Analysis plots that experienced
fire within the previous five years (BURN_FIA, n = 67) are compared with plots with no recorded fire
(UNBURN_FIA, n = 1972), predictions made by LANDIS PRO using a logistic regression probability
of fire mortality model (LRM_LANDIS), predictions made by LANDIS PRO using a rule-based fire
mortality model (RBM_LANDIS), and predictions from LANDIS PRO with no fire (UNBURN_LANDIS).
Letters below bars denote which density estimates did not differ significantly at an α of 0.05 using a
pairwise comparison using the Wilcoxon rank sum test within each diameter group.
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3.2. Gulf Coastal Plains Section

Stem densities for the ≤5 cm, the 5–10 cm, and the 10–15 cm diameter classes were significantly
lower on FIA plots with a recorded fire disturbance when compared to plots with no recorded fire.
In the 15–20 cm, 20–25 cm, and 25–30 cm diameter classes there was no significant difference in
stem densities among burned and unburned FIA plots (Figure 3). Within the ≤5 cm and 5–10 cm
diameter classes predicted stem densities had significant decreases of approximately 50% using the
logistic regression fire effects model while those using the rule-based model decreased by 90% and 50%
respectively. There was no effect of fire for all larger diameter classes under the logistic regression fire
effects model when compared to unburned pixels while the rule-based model predicted significantly
lower stem density in most of the larger diameter classes.
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Ozark Highlands and less than 15 cm in the Gulf Coastal Plains. These results are in agreement with 
a number of studies conducted within the study areas we examined or within systems with similar 
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Figure 3. Boxplot showing stem densities within eight diameter groups from the Gulf Coastal Plains
study area. Estimates from U.S. Forest Service Forest Inventory and Analysis plots that experienced
fire within the previous five years (BURN_FIA, n = 423) are compared with plots with no recorded fire
(UNBURN_FIA, n = 4444), predictions made by LANDIS PRO using a logistic regression probability
of fire mortality model (LRM_LANDIS), predictions made by LANDIS PRO using a rule-based fire
mortality model (RBM_LANDIS), and predictions from LANDIS PRO with no fire (UNBURN_LANDIS).
Letters below bars denote which density estimates did not differ significantly at an α of 0.05 using a
pairwise comparison using the Wilcoxon rank sum test within each diameter group.

4. Discussion

In an analysis of over 6000 forest inventory plot records we showed that plots with fire recorded
within the previous five years had lower stem densities in diameter classes less than 10 cm in the
Ozark Highlands and less than 15 cm in the Gulf Coastal Plains. These results are in agreement with
a number of studies conducted within the study areas we examined or within systems with similar
species composition and fire regimes. In a study conducted in mixed pine-hardwood forests of the
southern Appalachians following a single fire of three different intensities there were few species
in which stems less than 5 cm were completely removed [54], even under the highest observed fire
intensity. In two studies conducted in southern Missouri Kinkead et al. [52] found that mortality
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rates for trees less than 11 cm DBH ranged from 16% to 56% in oak-hickory forests following a single
low-intensity fire while Dey and Hartman [55] found that no species had a complete removal of
seedlings and saplings following a single burn. Brose et al. [51] found in a meta-analysis of studies
from the eastern United States that mortality following a single fire in oak dominated forests mainly
restricted to saplings less than 10 cm DBH, while larger size classes were less likely to be affected.
Knapp et al. [10] found a decline in mid-story sapling (3–10 cm DBH) density following periodic burns
on plots located within the Ozark Highlands section. Hodgkins [56] found that southern pine forests in
Alabama had significantly reduced understory stem densities of saplings 10 cm DBH or less following
low-intensity fires. Waldrop and Lloyd [57] found that loblolly pine stands in South Carolina had
significantly reduced stem densities following prescribed fire, with much of the mortality occurring in
smaller diameter classes. Likewise, McNab [58] found that low-intensity fires reduced stem densities
in loblolly pine stands in Georgia and that mortality was limited to trees 10 cm DBH and smaller.
Some studies have examined individual fire effects using FIA data in the western United States [59,60],
although to our knowledge there have been no studies in the eastern United States.

In the field studies referenced above, one common finding is that there is rarely complete mortality
in small diameter cohorts following low-intensity fires, even in fire intolerant species. In our results we
found that predictions using a rule-based fire mortality model were significantly lower compared to
the logistic regression probability model. This behavior is likely partially a result of how fire tolerance
for a given species is represented in the model. In the Ozark Highlands half of the top 10 most
abundant species in the region; black oak, scarlet oak, northern red oak, sugar maple, and mockernut
hickory, have a fire tolerance rating in the model of two or less, meaning they are moderately to very
intolerant of fire. Even the lowest intensity fire would kill 50 to 85% of cohorts in these species using
the rule-based based mortality method. For example, black oak has a fire tolerance rating of two and a
longevity of 150 years. In a low severity fire, using the rule-based fire mortality model, the smallest
50% of cohorts would be removed which corresponds to black oak individuals from 1–40 cm DBH.
The Gulf Coastal Plains section is predominantly composed of loblolly pine which is parameterized
in the model with a fire tolerance rating of four. This means that with a fire severity of two on the
landscape, only loblolly pine individuals from 1–25 cm DBH would be removed using the rule-based
fire effect model while under the diameter-based mortality probability trees at 2 cm have a 60% change
of being killed which declines to 1% at 12 cm. As the average fire tolerance of species increased across
study areas, the difference between predictions from the two fire effects models was less severe.

By modeling fire effects using a calibrated logistic regression model we were able to predict
post-fire stem densities for eight diameter classes that followed trends observed in inventory data
while predictions using a rule-based fire effects model consistently under-predicted the residual stem
densities following a fire. The residual small-diameter stems in stands that experience a low-intensity
fire are an important component along with regeneration in determining the species composition and
structure of the understory in the following years, particularly in plots that do not experience repeat
fires [1,51,55,56]. Within LANDIS PRO the effects of wildfire and prescribed fire are modeled using
the same method, with inputs from other modules determining the location and intensity of these
fire events. The results presented here represent only the effects of fire on residual stem densities
and do not include resprouting or seed regeneration which occur during a later process in LANDIS
PRO. This is comparable to the observations of fire effects from FIA plots, which are resampled at five
year intervals, and typically would not sample post-fire regeneration if the fire occurred within five
years or less since there is a 2.54 cm DBH threshold for inclusion [60]. In addition, the observations
of fire disturbance within FIA do not include information regarding the cause of fire which makes
differentiating between wildfire and prescribed fire in the data difficult. The significant difference
in size classes among FIA plots that were burned compared to those unburned highlights the utility
of this database as a resource for parameterizing and calibrating forest landscape models and fire
effect models.
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These results present an argument for a more empirically-based approach to modeling fire effects
where probability of mortality for individuals within a cohort can be calibrated to a fire regime
rather than completely removed. As computational resources have improved, FLM developers have
been able to incorporate more mechanistic or empirical processes that typically had been limited to
individual-based models. By modeling the site-level first-order fire effects which are then incorporated
in forest succession, FLMs produce bottom-up predictions of second-order fire effects such as changes
in species composition, forest structure, or carbon dynamics over time and space [61,62]. This differs
from other regional scale spatial models such as dynamic global vegetation models (DGVMs) or
state-transition models (STMs) which model second-order fire effects directly as represented by
changes in vegetation type or reductions in carbon pools [63,64]. DGVMs and STMs have been
used to explore the response of vegetation to climate at regional scales, however, the coarse spatial
resolution, simplified demographic information, and difficulty representing management within these
models limits their utility in strategic decision making processes [65]. A finer scale representation of
first-order fire effects based on empirical or mechanistic processes can translate to improved modeling
of second-order fire effects which are often more useful to managers or planners [16].

5. Conclusions

Here we have described an empirical modeling approach to fire mortality and showed how
this method can realistically represent decreases in stem densities across diameter classes following
low-intensity fires that are observed in field studies and inventory data. By examining forest inventory
plot data we were able to support the hypothesis that small-diameter stem densities are lower on plots
that have experienced low-intensity fire in the previous five years. We used forest inventory data
to calibrate a logistic regression probability function to model fire effects within LANDIS PRO and
compare predictions against a rule-based fire effects model. We found that the logistic regression fire
effects model was able to reasonably predict reductions in stem densities following low-intensity fires
while the rule-based fire effects model consistently overestimated mortality across size classes.
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