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ABSTRACT 

     Ionic currents drive cellular function within all living cells to perform highly specific tasks. 

For excitable cells, such as muscle and neurons, voltage-gated ion channels have finely tuned 

kinetics that allow the transduction of Action potentials to other cells. Voltage-gated ion channels 

are molecular machines that open and close depending on electrical potential. Neuronal firing 

rates are largely determined by the overall availability of voltage-gated Na+ and K+ currents. This 

work describes new approaches for collecting and analyzing experimental data that can be used to 

streamline experiments. 

     Ion channels are composed of multimeric complexes regulated by intracellular factors 

producing complex kinetics. The stochastic behavior of thousands of individual ion channels 

coordinates to produce cellular activity. To describe their activity and test hypotheses about the 

channel, experimenters often fit Markov models to a set of experimental data. Markov models are 

defined by a set of states, whose transitions described by rate constants.  

     To improve the modeling process, we have developed computational approaches to introduce 

kinetic constraints that reduces the parameter search space. This work describes the 

implementation and mathematical transformations required to describe linear and non-linear 

parameter constraints that govern rate constants. Not all ion channel behaviors can easily be 

described by rate constants. Therefore, we developed and implemented a penalty-based 

mechanism that can be used to guide the optimization engine to produce a model with a desired 

behavior, such as single-channel open probability and use dependent effects.  

   To streamline data collection for experiments in brain slice preparations, we developed a 3D 

virtual software environment that incorporates data from micro-positioning motors and scientific 

cameras in real-time. This environment provides positional feedback to the investigator and 

allows for the creation of data maps including both images and electrical recordings. We have 

also produced semi-automatic targeting procedures that simplifies the overall experimental 

experience.  
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    Experimentally, this work also examines how the kinetic mechanism of voltage gated Na 

channels regulates the neuronal firing of brainstem respiratory neurons. These raphe neurons are 

intrinsic pacemakers that do not rely on synaptic connections to elicit activity. I explored how 

intracellular calcium regulates the kinetics of TTX-sensitive Na+ currents using whole-cell patch 

clamp electrophysiology. Established with intracellular Ca2+ buffers, high [Ca2+] levels greater 

than ~7µM did not change the voltage dependence of steady-state activation and inactivation, but 

slightly slowed inactivation time course. However, the recovery from inactivation and use 

dependence inactivation is slowed by high intracellular [Ca2+]. Overall, these approaches 

described in this work have improved data acquisition and data analysis to create better ion 

channel models and enhance the electrophysiology experience. 
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Introduction 

Cellular communication relies on the transduction of electrical and chemical signals 

across membranes. These signals are relayed by the activity of ion channels. Ion channels 

are integral membrane proteins that allow the passage of charged molecules through the 

hydrophobic membrane. The coordinated activity of these channels work to drive cellular 

activity that regulates metabolic functions, such as breathing, vison, and auditory 

processing. Voltage-gated channels utilize ionic gradients established by ionic pumps to 

elicit events known as action potentials (AP). Excitable cells within the body, such as 

muscles, neurons, and glia utilize APs to trigger further activity.  

An action potential event is simply the coordinated opening and closing of individual ion 

channels that can sense voltage. A large charge distribution and fast change in voltage 

over milliseconds (AP) allows excitable cells to trigger the release of neurotransmitters, 

and intracellular calcium from intracellular stores, further activating second messenger 

pathways that amplify the single AP event to many other cellular pathways that can 

regulate gene expression. As these events are fast (ms) on the timescale of life, the 

frequency of APs is a better indicator as to overall activity.  

The activity and best resolution of single channel events took place with the development 

of the patch-clamp technique, which utilizes a tight giga-ohm seal between glass and cell. 

This seal enhances the signal to noise ratio, so that with stable recordings one can 

measure a stochastic transition between two conductance levels. Within the noise of the 

data, physiologists confirmed what was previously hypothesized that aggregated 

openings of individual proteins are responsible for the Na+ and K+ currents that elicit an 

AP  
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The ability to reliably record data from voltage-gated ion channels and other ionic 

proteins has propelled the field of neuroscience like no other. “Seeing into” the cellular 

activity of neurons allows for investigation to understand the circuitry that underlies 

certain behaviors. My behavior of interest is breathing, which requires the coordinated 

activity of muscles in the airways and diaphragm creating a negative pressure system to 

drive air across the lungs. This behavior is modular, as organisms must be able to respond 

to the environment and increase metabolic output. This behavior is driven by rhythmic 

circuits in the brainstem that can be isolated in a slice preparation and maintains 

coordinated activity under synaptic blockade.  

This work aims to demonstrate how one can decode the kinetics of voltage-gated Na+ 

channels within neuronal circuits to develop an understanding of the regulators of 

intrinsic pacemakers. In order to further progress the field, one must also develop tools to 

take advantage of new technologies and develop new tools for analysis.  
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Chapter 1 

Modeling the kinetic mechanisms of voltage-gated ion channels 

This chapter has been adapted from:  

Salari, A., M.A. Navarro, and L.S. Milescu. 2016. Chapter 13: Modeling the Kinetic 

Mechanisms of Voltage-Gated Ion Channels. In: A. Korngreen (ed) Patch-Clamp 

Analysis: Advanced Techniques, pp 267-304, Springer, NY, USA 

Abstract 

Voltage-gated ion channels play a key role in action potential generation and 

propagation, in neurons and other excitable cells. Different types of neurons display 

unique patterns of cellular excitability and assemble into brain circuits with distinct 

network properties. The firing properties of individual neurons and neuronal circuits, and 

ultimately the function of the entire nervous system, are largely determined by the kinetic 

properties of voltage-gated Na channels. In this chapter, I discuss how to investigate 

these properties (state transitions, rate constants, voltage sensitivity, etc.) by generating 

ion channel models and testing them in live neurons using the dynamic-clamp technique. 

We focus on deriving biophysically realistic models from macroscopic currents obtained 

in whole-cell voltage-clamp experiments, using the Markov formalism. Nevertheless, the 

topics covered in this chapter are also useful for investigators interested in building 

Hodgkin-Huxley-type models or in understanding what information can be extracted 

from other types of electrophysiological data. Lastly, we discuss the technical 
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requirements for performing dynamic-clamp experiments and provide an example of this 

powerful experimental-computational approach.   

Author contribution: M.A.N. ran simulations, made figures, and wrote the manuscript. 

1.1 Introduction 

Ion channels are the molecular building blocks of cellular excitability, forming highly 

specific and efficient pores in the membrane. Gated by various types of stimuli (chemical 

ligands, electricity, mechanical force, temperature, or light), ion channels form a 

superfamily of transmembrane proteins (Hille, 2001; Frank and Catterall, 2004). Channel 

activity underlies a vast number of physiological and pathological events. Voltage-gated 

ion channels are important in muscles, neurons, and many other cell types to both detect 

and drive changes in membrane potential, causing downstream responses (Bezanilla, 

2000; Frank et al., 2005). As a more unusual example, the Ca
2+

 selective CatSper 

channels help drive sperm motility (Ren et al., 2001a; Qi et al., 2007) and the initial 

depolarization of the egg upon sperm fertilization (Xia and Ren, 2009). To perform all of 

these functions, the channel molecule undergoes conformational transitions within a set 

of conducting and non-conducting states, governed by specific kinetic mechanisms 

(Sigworth, 1994; Armstrong and Hille, 1998; Yellen, 1998).  

The relationship between membrane voltage and ionic current is simple and can be 

derived from basic principles (Hodgkin, 1952). Electrically, the cell membrane is 

equivalent to a capacitor (lipid bilayer), which stores charge and is connected in parallel 

with variable conductances (ion channels), connected in series with a battery (the 
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electrochemical potential of permeant ions across the membrane). If no external input is 

applied, the current flowing through the conductance and the current charging the 

capacitor sum to zero. Thus, ignoring spatial effects, the change in the membrane 

potential vs. time is proportional to the net ionic current flowing through the membrane, 

as described by the differential equation: 

   (1) 𝐶
𝑑𝑉

𝑑𝑡
= −𝐼, 

where C is membrane capacitance, V is membrane potential, 𝐶 × 𝑑𝑉 𝑑𝑡⁄ is the capacitive 

current that charges the membrane, I is the ionic current flowing through the membrane, 

and t is time.  

All the ion channels within the membrane contribute to the total I, which is the algebraic 

sum of all the single-channel currents. Thus, any individual ion channel that opens or 

closes will cause an immediate and finite change in the net current I, unless V happens to 

be equal to the reversal potential for that channel. From this perspective, a closing of a 

channel is as significant as an opening. In turn, a change in the overall current modifies 

the rate at which the membrane potential changes over time. As V evolves in time, the 

driving force for the permeating ion and the kinetic properties of the voltage-gated 

channel will also change. These changes will again modify I, closing the causal loop 

between membrane potential and ionic current.  

Because they both sense and control membrane potential, voltage-gated ion channels play 

a key role in action potential generation and propagation, in neurons and other excitable 

cells (Bean, 2007). Neurons, in particular, spend considerable amounts of chemical 

energy to create and maintain the electrochemical gradients necessary for action 
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potentials to work (Richie, 1973; Hasenstaub et al., 2010) and establish communication 

within the nervous system. Such high energy demand requires support from astrocytes, 

which are required for proper maintenance of glutamate, lactate, ATP, D-serine and other 

neurotransmitters within the extracellular space (Pellerin and Magistretti, 1994; 

Hülsmann et al., 2000; Bélanger et al., 2011; Tang et al., 2014). Different types of 

neurons display unique patterns of cellular excitability (Connors and Gutnick, 1990) and 

assemble into brain circuits with distinct network properties (Marder and Goaillard, 2006; 

Smith et al., 2007). The firing properties of individual neurons and neuronal circuits, and 

ultimately the function of the entire nervous system, are largely determined by the kinetic 

properties of voltage-gated ion channels (Getting, 1989; Harris-Warrick and Marder, 

1991; Grillner, 2003; Prinz et al., 2004), which are further modified by pH, intracellular 

ligands, and auxiliary subunits (Woodhull, 1973; Li et al., 1992; Aman et al., 2009).  

1.2 Ion channel models  

Modeling ion channel kinetics can take the simple form of exponential curve fitting to 

find time constants, or sigmoid fitting of conductance curves. However, more 

sophisticated computational algorithms may be required when trying to extract 

information from a variety of experimental data. Whether this effort is worthwhile 

depends on the specific goals of the investigator. For example, one may want to find a 

model that can be used as a computational building block in large-scale simulations of 

neuronal networks. For this application, simplified phenomenological models will 

compute faster and would probably work just as well (Izhikevich and Edelman, 2008). 

However, with a more mechanistically-oriented goal, all biophysical knowledge available 
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on a particular ion channel should be assembled into a detailed computational model 

(Armstrong, 2006), which can be tested and refined against new experimental data, and 

then further used to quantitatively test various hypotheses.  

Starting with the seminal work of Hodgkin and Huxley (Hodgkin and Huxley, 1952; 

Catterall et al., 2012), most ion channel models fall somewhere in the range defined by 

these two examples. Although phenomenological models that simply describe the data 

are useful, the ultimate goal would be to quantitatively understand how the ion channel 

works at the molecular level and how it interacts with its environment at the cellular 

level. A biophysically realistic model must agree with existing theory and experimental 

data (Vandenberg and Bezanilla, 1991a; Hoshi et al., 1994; Zagotta et al., 1994a; Zagotta 

et al., 1994b; Schoppa and Sigworth, 1998a, b, c; Rothberg and Magleby, 2000), but it 

should also remain computationally tractable. Above all, we must keep in mind that “all 

models are wrong but some are useful” (Box, 1979).  

1.2.1 Kinetic mechanisms  

A kinetic mechanism is defined by a set of possible conformational states. Although in 

principle a protein can assume a continuum of structural conformations, statistically, the 

molecule will reside most of the time in a relatively small subset of high-occupancy 

states. The time spent continuously in a given state – the "lifetime" – is a random quantity 

with an exponential probability distribution (Colquhoun and Hawkes, 1995b). For 

voltage-gated ion channels, the high-occupancy states are the various conformations that 

correspond to functional and structural elements, such as resting or activated voltage 

sensors, closed or open pore, inactivated or non-inactivated channel, etc. (Bezanilla, 
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2000; Catterall et al., 2007). A state can be identified experimentally if it is associated 

with a measurable change in properties (e.g., conductance, fluorescence), or it can be 

inferred statistically from the data, as some states may be characterized by subtle or less 

understood conformational changes.  

A kinetic mechanism is further defined by a set of allowed transitions between states. 

Powered by thermal energy or other sources, the channel undergoes conformational 

changes at seemingly random times. Subsequent state transitions are also random events, 

with the average frequency of a given transition being inversely related to the energy 

barrier separating the two states (Colquhoun and Hawkes, 1982). These transition 

frequencies are quantified by rate constants. According to rate theory (Eyring, 1935), a 

voltage-dependent rate constant, kij, corresponding to the transition from state i to state j, 

has the following expression: 

 (2) 𝒌ij = 𝒌ij
𝟎 × 𝒆𝒌ij

𝟏×𝑽, 

where V is the membrane potential and 𝒌ij
𝟎 is the rate at zero membrane depolarization. 

𝒌ij
𝟏 is a factor that indicates how sensitive the rate constant is to voltage, as follows: 

 (3) 𝒌ij
𝟏 = (𝜹ij

𝟎 × 𝒛ij × 𝑭)/(𝑹 × 𝑻), 

where zij is the electrical charge moving over the fraction δij of the electric field, F is 

Faraday’s constant, R is the gas constant, and T is the absolute temperature (Sigg, 2014). 

𝒌ij
𝟏 is zero for voltage-insensitive rates, while 𝒌ij

𝟎 is zero for non-allowed transitions. 

Together, the set of possible states and the set of possible transitions describe the 

topology of a kinetic mechanism. The rate constants and their voltage dependence define 

the kinetic parameters of the mechanism.  
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1.2.2 Markov formalism  

Originally developed for stochastic processes (Baum, 1970; Gagniuc, 2017), the Markov 

formalism can be directly applied to ion channels, by mapping each known or 

hypothesized conformation of the channel into discrete states of the Markov model 

(Colquhoun and Hawkes, 1995b). The kinetic mechanism is mapped to a finite set of 

discrete conformations with exponentially distributed lifetimes and random 

conformational changes, which can be detected experimentally or inferred statistically. 

The rate constants associated with a Markov model can be compactly expressed as a rate 

matrix Q, of dimension NS × NS, where NS is the total number of states. The Q matrix has 

each off-diagonal element, qij, equal to the rate constant kij. Each diagonal element, qii is 

equal to the negative sum of the off-diagonal elements of row i, so that the sum of each 

row of Q is zero. If a transition is not allowed between states i and j, qij is zero.  

The state of the model as a function of time can be conveniently expressed as a 

probability vector, P. At any time t, each element of P represents the occupancy of that 

state, or the fraction of channels that reside in that state. Under stationary conditions, the 

average fraction of the total time spent by the channel in each state can be calculated as 

an equilibrium state occupancy. For an ensemble of channels, the average number of 

channels residing in state i at equilibrium is equal to pi × NC, where pi is the equilibrium 

occupancy of state i and NC is the total channel count. 

When conditions change (e.g., when a voltage step is applied in a voltage-clamp 

experiment), the energy landscape of the channel changes as well. All the voltage-

sensitive rate constants take different values, and thus the rate matrix Q will change as 
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well. As a result, the equilibrium state occupancies will also be different. For an 

ensemble of channels, if a state becomes less likely to be occupied under the new 

conditions, the fraction of channels residing in that state will decrease over time, at a rate 

that depends on the average lifetime of that state. The same behavior would be observed 

from repeated trials of a single channel. However, in a single trial, the channel will 

simply continue its stochastic behavior, just with different transition frequencies.  

The process of relaxation towards a new state of equilibrium is described by the 

Kolmogorov equation (Cox and Miller, 1965), an ordinary differential equation (ODE): 

 (4) 
𝒅𝑷

𝒅𝒕
= 𝑷 × 𝑸. 

The state occupancies corresponding to equilibrium, PEq, can be obtained by setting the 

time derivative of P equal to zero and solving the resulting algebraic equation: 

 (5) 
𝒅𝑷eq

𝒅𝒕
= 𝑷eq × 𝑸 = 𝟎. 

When conditions are stationary and the rate matrix Q is constant, the differential equation 

has a simple analytical solution: 

 (6) 𝑷𝒕 = 𝑷𝟎 × 𝒆𝑸×𝒕, 

where Pt and P0 are the state occupancies at an arbitrary time t and at time zero, 

respectively. The exponential of 𝑸 × 𝒕 is another matrix, A, that contains the conditional 

state transition probabilities. Each element of A, aij, is the conditional probability that the 

channel will be in state j at time t, given that it was in state i at time zero. No assumption 

is made about what other transitions would have occurred in that time interval. The 
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transition probability matrix A for a given time t can be calculated numerically using the 

spectral expansion method (Colquhoun and Hawkes, 1995b), as follows: 

 (7) 𝑨𝒕 = 𝒆𝑸×𝒕 = ∑ 𝑩𝒌 × 𝒆𝝀𝒌×𝒕
𝒌 , 

where the Bk values are the spectral matrices derived from the eigenvectors of Q, and the 

λk values are the eigenvalues of Q, with λ0 always equal to zero.  

The Bk and λk values can be calculated with a numerical library or with specialized 

software, such as Matlab or QuB. For analysis of macroscopic currents, it is convenient 

to calculate the transition probability matrix Aδt that corresponds to the data sampling 

interval, δt. Then, the state occupancies can be calculated recursively, starting with some 

initial solution, using a simple vector − matrix multiplication: 

 (8) 𝑷𝒕+𝜹𝒕 = 𝑷𝒕 × 𝑨𝜹𝒕. 

As discussed later in this chapter, when solving models in dynamic clamp applications, 

the A matrix can be precalculated across a physiological voltage range, to enable fast 

computation of the predicted current (Milescu et al., 2008).  

1.2.3 Hodgkin-Huxley-type models 

The ion channel models originally proposed by Hodgkin and Huxley (Hodgkin and 

Huxley, 1952) can also be formulated as Markov models, as they explicitly represent the 

closed, open, or inactivated states of the channel. While they were empirical at the time 

of their discovery, HH models remain to this day reasonably realistic and proficient. 

Their main limitation – but also their power, depending on the application – resides in 

making some strongly simplifying assumptions about the channel, which are simply 
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outdated now (e.g., equal and independent "activation particles", or independent 

activation and inactivation processes). However, one should keep in mind that HH 

models are in disagreement with biophysical theory when their rate constants do not 

follow the Eyring rate theory (Eyring, 1935b), but instead are formulated as arbitrary 

functions of voltage, as discussed in (Strassberg and DeFelice, 1993; Milescu, 2005; 

Baranauskas and Martina, 2006). While their limited number of states and transitions 

would inherently reduce their ability to explain experimental data, HH models can gain 

more flexibility through these arbitrary rate functions.  

1.3. Solving ion channel models  

For mathematical illustration, let us consider the simple ion channel model shown in Fig. 

1.1A. This model approximates a voltage-gated sodium (Nav) channel, featuring closed, 

open, and inactivated states. A single-channel stochastic simulation of a voltage-clamp 

recording is shown in Fig. 1.1B, where a noisy signal randomly jumps between zero and 

a tiny negative current (on the scale of pA). The noise in the trace is mostly caused by 

instrumentation, though the open state has its own intrinsic fluctuation in current 

(Sigworth, 1985), which can be estimated (Heinemann and Conti, 1992) and simulated 

(Qin, 2000a). On the basis of Ohm’s law, the average single channel current 

corresponding to the open state can be calculated as follows: 

(9)  𝑖 = 𝑔 × (𝑉 − 𝑉𝑅), 

where g is the single channel conductance, V is the membrane potential, and VR is the 

reversal potential for the permeant ion. Note that Eq. 9 is an approximation: the current is 
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a nonlinear function of voltage when the permeant ion has unequal intra- and 

extracellular concentrations, as described by the Goldman-Hodgkin-Katz current 

equation (Hille, 2001). 

For channels that have several conducting states, we can make the unitary current 

equation more general by introducing a conductance vector g, with each element gi equal 

to the conductance of state i, or equal to zero for non-conducting states. The unitary 

current for an arbitrary set of state occupancies can be calculated by taking the dot 

product between the state occupancy vector P and the conductance vector g, as a function 

of time: 

(10)  𝑖𝑡 = (𝑷𝑡 ⋅ 𝒈) × (𝑉 − 𝑉𝑅). 

When a single channel trace is simulated, at any given time only one element of P is 

equal to one, and the rest are zero. As the channel changes state during the simulation, a 

different element of P becomes equal to one, and thus a different conductance is 

"selected" by the dot product P · g. To calculate the total ionic current, It, given by an 

ensemble of identical channels, we simply multiply the unitary current by the total 

number of channels, NC: 

(11)  𝐼𝑡 = (𝑷𝑡 ⋅ 𝒈) × (𝑉 − 𝑉𝑅) × 𝑁𝐶. 

Computationally, It can be efficiently calculated in two steps: first, calculate the state 

occupancies Pt, using the recursive Eq. 8; then, calculate It as a function of Pt, using Eq. 

11. The time-invariant vector g × (V − VR) × NC needs to be recalculated only when the 

voltage changes.  
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As shown earlier in Eq. 6, for a time interval where conditions are constant (e.g., during a 

voltage step), Pt can be calculated as a function of some initial state occupancies, P0. For 

a typical voltage-clamp protocol, the P0 at the beginning of a sweep can be calculated as 

the equilibrium occupancies corresponding to the holding membrane potential. For this 

calculation to be accurate, the holding voltage should be maintained long enough to allow 

channels to reach equilibrium. If the protocol consists of a sequence of voltage step 

commands, the P0 of one step can be calculated as being equal to the Pt at the end of the 

previous step. This idea could also be applied to protocols where the command voltage 

varies continuously (e.g., during a "ramp"). In this case, a continuously-varying episode 

can be approximated with a sequence of discrete steps of constant voltage. At the limit, 

each of these steps is as short as one acquisition sample.  

Although very compact, Eq. 11 is not easy to interpret. To clarify its properties, we first 

replace Pt with its solution as a function of P0: 

(12)  𝐼𝑡 = ((𝑷0 × 𝑒𝑸×𝑡) ⋅ 𝒈) × (𝑉 − 𝑉𝑅) × 𝑁𝐶. 

Then, replace e
Q×t

 with its spectral expansion: 

(13)  𝐼𝑡 = ((𝑷0 × (∑ 𝑩𝑘 × 𝑒𝜆𝑘×𝑡𝑁𝑆−1
𝑘=0 )) ⋅ 𝒈) × (𝑉 − 𝑉𝑅) × 𝑁𝐶. 

Rearrange the terms and obtain the total ionic current as follows:  

(14)  𝐼𝑡 = ∑ (((𝑷0 × 𝑩𝑘) ⋅ 𝒈) × (𝑉 − 𝑉𝑅) × 𝑁𝐶 × 𝑒𝜆𝑘×𝑡)
𝑁𝑆−1
𝑘=0 . 

Where Bk is a spectral matrix derived from the eigenvectors of Q, NC is the number of 

channels, and λk is an eigenvalue of Q. As all eigenvalues are negative, except for λ0, all 



15  

 

 

terms in Eq. 14 become vanishingly small when t is sufficiently large, with the exception 

of the  λ0 term, which remains constant:  

(15)  𝐼𝑡→∞ = ((𝑷0 × 𝑩0) ⋅ 𝒈) × (𝑉 − 𝑉𝑅) × 𝑁𝐶. 

Since channels are at equilibrium when t is sufficiently large, one can recognize that the 

vector (P0 × B0) must be equal to PEq. Therefore, the current flowing at equilibrium has 

the expression: 

(16)  𝐼Eq = (𝑷Eq ⋅ 𝒈) × (𝑉 − 𝑉𝑅) × 𝑁𝐶, 

where:  (17)  𝑷Eq = 𝑷0 ⋅ 𝑩0. 

In the equation above, P0 can be any arbitrary probability vector.  

With these results, the macroscopic current can be written as: 

(18)  𝐼𝑡 = 𝐼Eq + ∑ (𝐼𝑘 × 𝑒𝜆𝑘×𝑡)
𝑁𝑆−1
𝑘=1 , 

where Ik is a scalar quantity with dimension of current: 

(19)  𝐼𝑘 = ((𝑷0 × 𝑩𝑘) ⋅ 𝒈) × (𝑉 − 𝑉𝑅) × 𝑁𝐶 . 

The eigenvalues, λk, can be replaced with time constants, τk, obtaining the final current 

equation:  

(20)  𝐼𝑡 = 𝐼Eq + ∑ (𝐼𝑘 × 𝑒−𝑡/𝜏𝑘)
𝑁𝑆−1
𝑘=1 , 

where τk = −1 / λk. The macroscopic current described by Eq. 20 as a function of time is a 

sum of NS − 1 exponentials, plus a constant term. Each exponential component is 

parameterized by a time constant τk and an amplitude Ik.  
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These results are general: any voltage-gated ion channel that has NS high-occupancy 

conformations will in principle generate a macroscopic current with NS − 1 exponentials, 

when subjected to a step change in membrane potential. This is illustrated in Fig. 1.1C 

for the simple three-state model: It (the red trace) has the expected profile of rise 

(activation) followed by decay (inactivation). This time course is a sum of two simple 

exponential components that vanish to zero with different time constants. In this 

particular case, IEq is almost zero.  

In the above equations, the macroscopic current It was calculated as a deterministic 

function of some initial conditions P0. However, one should keep in mind that It is the 

sum of many unitary currents, each generated by an individual ion channel that makes 

random transitions between states. These stochastic events at the single channel level will 

make the macroscopic current a stochastic process as well. Therefore, the state occupancy 

at time t is a random quantity, characterized by a probability distribution (Celentano and 

Hawkes, 2004; Milescu et al., 2005; Moffatt, 2007; Stepanyuk et al., 2014). The state at 

time t can be statistically predicted from some known previous state, but the uncertainty 

of the prediction increases with the time from the reference point. In contrast, the initial 

state of a deterministic process can predict any future state with equal precision. The 

difference between stochastic and deterministic processes is illustrated in Fig. 1.1C, 

where the trajectory of the stochastically simulated macroscopic current (black trace) 

consistently diverges from the deterministically calculated current (red trace).  

 

 



17  

 

 

1.4. Experimental aspects 

1.4.1 Voltage clamp protocol design  

Single channel or macroscopic voltage-clamp recordings elicit stochastically fluctuating 

current, mixed with noise and artifacts. In single channel recordings, the mean value of 

the current randomly jumps between two (or more) levels, often by as little as 1 pA, 

corresponding to molecular transitions between conducting and non-conducting channel 

conformations. For example, in the single channel trace shown in Fig. 1.1B, there 

happens to be four conductance changes over 50 ms. A channel with faster kinetics 

would result in more transitions per second, or, equivalently, in shorter average lifetimes 

in each state. Furthermore, a channel with greater voltage sensitivity would exhibit 

transition frequencies that change more substantially with voltage. Overall, the statistical 

properties of single-channel data can be analyzed with a variety of mathematical methods 

and computational algorithms, to extract the kinetic mechanism of the underlying ion 

channel (Ball and Sansom, 1989; Hawkes et al., 1990; Qin et al., 1996, 2000a; 

Venkataramanan and Sigworth, 2002; Qin and Li, 2004; Csanady, 2006) 

Voltage-clamp protocols must be designed carefully and optimized to minimize these 

issues. Overall, the most important practical recommendation we can make is to design 

and apply as many types of stimuli as feasible, to force the channel to visit as many states 

as possible, which should result in well-observed exponential components and well-

determined kinetic parameters. Ultimately, designing a good set of stimulation protocols 

is an iterative process, without a priori solutions. It may well happen that applying yet 
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another protocol exposes a new behavior of the channel, which then needs to be 

investigated with new or refined stimuli.  

An example of a typical set of voltage-clamp protocols is given in Fig. 1.2, as applied to 

recording whole-cell Nav currents from mammalian neurons in brain slices (Milescu et 

al., 2010b). A minimum of four protocols is necessary to investigate the kinetic properties 

of Nav channels, as illustrated in panels A, B, C, and D. Each of these voltage-clamp 

protocols forces the channel on a different state trajectory, thus exposing a different set of 

kinetic properties. For example, the protocol in panel A starts the channel in a state of 

deactivation, and takes it through activation, opening, and inactivation. Several 

exponential components are well defined in the data, particularly the two time constants 

of inactivation. In contrast, the protocol in panel C starts the channel in a state of 

deactivation as well, but the channel is taken directly into inactivation, without opening. 

Two time constants of inactivation can also be detected in the data, but the exponential 

components have lower amplitude and thus are slightly less well defined.  

With some of these protocols, the raw data can be used directly to determine the kinetic 

parameters (e.g., the time course of activation and inactivation in panel 1.2A). With 

others, the raw data are first processed to extract some empirical measure of state 

occupancy, which is then used to estimate kinetic parameters. Examples are the (pseudo) 

steady-state activation and inactivation in panel E, and the time course of recovery from 

inactivation and the sub-threshold inactivation in panel F. Generally, the raw data are 

used directly when an exponential time course is experimentally observable in the 

macroscopic current. For example, when the channel activates, opens, and then 
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inactivates (panel A). When state changes are not associated with changes in 

conductance, information is obtained from two-pulse protocols. For example, when the 

channel inactivates at membrane potentials where it cannot activate and open (panel C). 

In this case, the peak of the current is used as an empirical measure for the total 

occupancy of non-inactivated states, available to generate current upon activation.  

1.4.2 Limitations of the recording system 

Depending on the recording technique, the experimental preparation, and the noise levels 

of the recording system, a change in the conductance state of a single channel may be 

very difficult or impossible to detect experimentally. Second, the frequency of transitions 

in the overall state of the ensemble is proportional to the total number of channels, and it 

may exceed the bandwidth of the recording system. For example, if the average single 

channel transition frequency is 10 s
−1

, an ensemble of 10,000 channels would exhibit 

100,000 transitions per second, while the recording bandwidth (50 kHz-100 kHz) may be 

limited to lower or similar magnitude. Thus, information encoded in the magnitude and 

frequency of stochastic current fluctuations may be lost.  

A generally more reliable source of information is the mean value of the macroscopic 

current, as a function of time and voltage (Anderson and Stevens, 1973; Sigworth, 

1980a). Although the mean value can be easily extracted from noisy data, even in this 

case, decoding the kinetic mechanism is far from being trivial. The main difficulty lies in 

the ambiguous relationship between the exponential parameters describing the 

macroscopic current (time constants τk and amplitudes Ik) and the kinetic parameters of 

the channel (rate constant factors 𝑘ij
0 and 𝑘ij

1).  
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Following a step change in conditions, the overall state of the ensemble relaxes 

exponentially towards a new equilibrium. For a channel with NS states, this relaxation 

process is quantified by a set of 2×NS − 1 parameters, as described by Eq. 20: NS − 1 time 

constants τk, NS − 1 amplitudes Ik, and the equilibrium current IEq. Every one of these 

exponential parameters, including IEq, is a mathematical function of all the rate constant 

parameters, and implicitly a function of membrane potential. Thus, while calculating the 

exponential parameters from the kinetic mechanism is straightforward, the inverse 

calculation is not. Furthermore, this also implies that no more than a maximum of 2×NS − 

1 kinetic parameters can be extracted from a macroscopic current generated in response 

to a single voltage step. In reality, kinetic mechanisms may have more parameters than 

that. For example, the three-state model in Fig. 1.2A has eight kinetic parameters but 

only five exponential parameters. Even with this unrealistically simple model, it is clear 

that the kinetic parameters of the model cannot be unequivocally determined from the 

mean value of the macroscopic current, unless the voltage clamp protocol is expanded to 

more than one voltage step. 

Another difficulty is related to the theoretical and experimental observability of all the 

exponential components, given the limited resolution of the recording system. Although 

each pair of exponential parameters (τk, Ik) depends on all the rate constants, fast or slow 

exponential components will be influenced most by similarly fast or slow rates, 

respectively. Then, if a certain exponential component is weakly represented in the data, 

some of the kinetic parameters will also be weakly determined. The contribution of an 

exponential component to the data, given a set of kinetic and conductance properties, 
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depends on two factors. First, the amplitudes Ik depend on the initial state occupancies P0. 

Thus, depending on the voltage-clamp protocol, some components may have very small, 

or even zero, amplitude, and can be undetectable relative to the experimental resolution. 

Overall, a change in state occupancy is accompanied by a change in current only if the 

total occupancy of the conducting states changes. If this fraction doesn't change, or if the 

change is small relative to the resolution of the recording system, the mean current value 

will remain approximately constant, even though the properties of the stochastic 

fluctuations may change. Second, an exponential component can be observed 

experimentally only if the bandwidth of the recording system is adequate. Thus, very fast 

(<500µs) exponentials may be distorted or filtered out, while very slow components may 

not be detected in short protocols. A property worth remembering is that these 

exponential components vanish in order, from the smallest to the largest time constant. 

As a result, the fastest components will be affected the most by experimental artifacts 

associated with abrupt changes in the command voltage.  

1.4.3 Experimental artifacts 

The data recorded in voltage-clamp experiments do not contain just the current of 

interest, but are contaminated by a variety of artifacts, including other currents active in 

the preparation, experimental noise, voltage-clamp errors, etc. (Marty and Neher, 1995). 

All of these artifacts will negatively affect fitting algorithms and can result in a distorted 

model. Although artifacts cannot be eliminated, they can be reduced to acceptable levels. 

Thus, the effects of random measurement noise, which lowers the precision of parameter 

estimates, can always be reduced by collecting more data, and generally are not an issue. 
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Deterministic power line interference (50 or 60 Hz and harmonics) can be easily removed 

online or offline. Uncompensated brief transients that occur when the command voltage 

changes abruptly can simply be excluded from the fit, provided that they don’t overlap 

with significant channel activity. However, longer transients must be somehow separated 

from the signal. Voltage-clamp errors caused by incomplete compensation of the series 

resistance could be significant, as the actual voltage at the membrane is not truly 

measured with the patch-clamp technique (Sigworth, 1995). The membrane voltage is 

estimated from the measured series resistance and the recorded current. Then, a corrected 

version of the command voltage protocol can be constructed and used in the data fitting 

procedure.  

As explained above, an arbitrary voltage waveform can be approximated with a sequence 

of constant voltage steps. Another artifact is imperfect space-clamp, which can occur 

when recording from neurons in vivo or in brain slices (Bar-Yehuda and Korngreen, 

2008). In this case, the current recorded from the soma can be contaminated with action 

potentials back-propagating from the axon (Stuart et al., 1997a), which usually escapes 

voltage-clamp control. Space-clamp errors can be reduced with a simple technique that 

selectively inactivates axonal sodium channels and thus makes the axon a passive 

compartment (Milescu et al., 2010a). Finally, the bandwidth of the recording system 

should be sufficiently wide for the kinetics of the ion channel investigated. Initially, the 

cutoff frequency of the low-pass filter and the sampling rate of the digitizer should be set 

as high as possible to identify the fastest time constant present in the data. Then, 

acquisition parameters can be set to the values recommended by Nyquist's sampling 
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theorem (Heinemann, 1995). In many cases, the fastest time constant corresponds to 

channel activation or deactivation. 

Even when these artifacts cannot be eliminated, in principle they can be parameterized 

and included into the fitting algorithm. Unfortunately, contamination with other ionic 

currents that are active in the preparation cannot be easily encoded in the algorithm. 

These currents are generally unknown quantities and cannot be compensated 

computationally. The ideal solution is to isolate the current of interest pharmacologically, 

with a very specific blocker. In the case of Nav channels, TTX is very potent and 

selective for central nervous system Nav channel subtypes. To truly isolate a current of 

interest, the same protocols can be repeated under control conditions and with a 

saturating dose of TTX (1µM) applied (Nav channels have an IC50 ~ 200 nM for TTX). 

Then, the current of interest can be obtained by performing a subtraction between the two 

data sets. This subtraction not only eliminates all other currents, including leak, but will 

also remove capacitive transients. However, not all channels can be completely isolated 

by pharmacological subtraction, as many agents are promiscuous, with off target effects 

at higher concentrations (Rosker et al., 2007).  

As a general solution, all other currents should be reduced as much as possible. Some 

currents can be blocked pharmacologically, while others can be rendered inactive by 

exploiting voltage-dependence with clever protocol design. Furthermore, the background 

leak currents and possibly other currents left unblocked can be subtracted using the P/n 

technique (Armstrong and Bezanilla, 1974), which will also remove capacitive transients. 
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However, one should be aware that the P/n method relies on the assumption that leak 

currents are linear with voltage, and thus cannot subtract voltage-sensitive currents.  

When designing protocols to isolate the current of interest, pharmacologically or via the 

P/n technique, one should keep in mind that these procedures will extend the total 

acquisition time, and recording parameters may change over time. For example, the seal 

resistance may deteriorate, causing an increase in leak, the level of solution in the bath 

may change and alter pipette capacitance and transients, and series resistance may 

fluctuate and change the amplitude of recorded currents. Generally, currents may run 

down over time. All these changes will distort the subtracted current. One other problem 

with subtraction methods is that uncompensated series resistance errors depend on the 

total current flowing. Then, if the total current takes significantly different values under 

control versus pharmacological block or P/n conditions, the actual voltage at the 

membrane will also differ. As a result, the subtracted current will be contaminated with 

some leftover current. Thus, even if a good blocker is available for the channel of 

interest, reducing all the other currents pharmacologically is still recommended. A similar 

artifact occurs when the current of interest is functionally coupled with other currents 

(e.g., Ca
2+

 − activated K
+
 currents). These would no longer be activated when the current 

of interest is blocked. Finally, one should keep in mind that when two random variables 

are subtracted from each other, their mean values subtract but their variances add. Thus, 

subtracting two sets of currents will result in a signal with greater noise, which would 

make it difficult to apply fitting methods that rely on the properties of current 

fluctuations.  
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1.5. Fitting the data 

The parameter estimation procedure combines a parameter optimization engine (the 

optimizer) and an algorithm that calculates how well the model explains the data (the cost 

function, or the goodness of fit). The optimizer starts with a set of initial values and 

iteratively explores the parameter space, according to a defined search strategy, until it 

finds a set of parameters that maximizes the goodness of fit. For each point sampled in 

the parameter space, the optimizer calls the estimation algorithm to evaluate the goodness 

of fit. Typically, the optimizer is data- and model-blind, although it can be tweaked for a 

particular problem. A variety of general optimization algorithms that have been described 

in the literature (Fletcher, 2013) and are available in numerical libraries can be applied to 

ion channels. In contrast, the function that calculates the goodness of fit is very 

specialized and can be quite complicated.  

1.5.1 Goodness of fit 

In general, how well the model explains the data can be defined in different ways, 

depending on the data and the model. For a deterministic time series contaminated by 

measurement noise, the goodness of fit is typically given by the sum of squared errors, S, 

between the experimental data points and the fit curve: 

(21)  𝑆 = ∑ (𝑦𝑡 − 𝑓𝑡(𝑴,𝑲))2
𝑡 , 

where yt is the data point measured at time t and ft (M, K) is the calculated value at time t, 

given a structural model M and a set of parameters K. The best fit parameters are those 

that correspond to the lowest S value that could be reached. 
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Curve fitting is not the ideal method for data generated by ion channels, or other 

stochastic processes, as these data are not simply described by deterministic functions 

and thus cannot be theoretically calculated at every time point. Instead, ion channel data 

are a stochastic sequence of channel states, contaminated with random measurement 

noise. Nevertheless, this stochastic sequence is generated by a probability distribution 

(Colquhoun and Hawkes, 1995b). For single-channel data, this probability distribution 

can be used to calculate the likelihood of the data, L (Hawkes et al., 1990): 

 (22)  𝐿 = 𝑝(𝒀|𝑴,𝑲), 

where p is the conditional probability of the data sequence Y, given a model topology M 

and a set of parameters K. The best fit parameters correspond to the highest L value that 

could be reached. In practice, the logarithm of the likelihood function is used instead of 

the likelihood itself, because L may reach intractably small or large values.    

Ideally, macroscopic currents should also be approached as a stochastic process, using a 

likelihood-based goodness of fit. A variety of mathematical and computational 

algorithms have been designed to calculate the likelihood of a macroscopic current 

(Celentano and Hawkes, 2004; Milescu et al., 2005; Moffatt, 2007; Stepanyuk et al., 

2014b), all making various approximations to speed up the computation. Ultimately, the 

fastest but theoretically the least accurate approximation that can be made is to 

completely ignore the stochastic nature of the macroscopic current. Essentially, the 

goodness of fit in this case is calculated as the sum of squared errors between the 

experimental data and the calculated macroscopic current, It: 

(23)  𝑆 = ∑ (𝑦𝑡 − 𝐼𝑡)
2

𝑡 . 
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This approximation is most suitable when the analyzed current is generated by many 

channels, when stochastic fluctuations are small relative to the mean value and 

comparable to the measurement noise. All other methods that make more accurate 

assumptions exploit in some way the fluctuations of the current, and theoretically should 

produce more accurate or more precise parameter estimates. However, as discussed 

above, many experimental data are not clean enough for noise analysis and the mean of 

the current may be the only reliable source of information. This condition describes well 

the macroscopic currents generated by voltage-gated ion channels in whole-cell patch-

clamp experiments (Fig. 1.3).  

1.5.2 Computing the cost function 

For each data set that is included in the fitting procedure, the estimation algorithm must 

calculate the goodness of fit. When the cost function is the sum of squared errors, S, then 

the mean current It must be calculated for every point in the data. Essentially, the 

algorithm must simulate a macroscopic current in response to the same voltage-clamp 

protocol as was used to record the data, given the set of parameters proposed by the 

optimizer in that iteration. For two-pulse protocols, such as those shown in Fig. 1.2, the 

simulated current sequence must also be processed in the same way as the experimental 

data. For example, the experimental recovery from inactivation (Fig. 1.2D) is calculated, 

as a function of time and recovery potential, as the ratio between the peak current 

obtained with the test pulse and the peak current obtained with the conditioning pulse. 

Although it might be tempting, it is a bad idea to calculate the theoretical recovery from 

inactivation using the sum of non-inactivated state occupancies. Instead, it should be 
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calculated as for the experimental curve: first, simulate the response of the model to the 

two-pulse protocol, then, from this simulation, calculate the ratio of the two peaks. 

It is most efficiently computed recursively, using Eq. 8 to calculate Pt+1 from Pt, where t 

and t + 1 refer to consecutive samples. The computation is initialized with a P0 calculated 

as the equilibrium state occupancy vector that corresponds to the holding voltage. The 

entire sequence of operations can be summarized as follows: 

(24)  𝑷Eq = 1 ⋅ 𝑩0,𝑉𝐻
, 

 𝑷0 = 𝑷Eq, 

  𝑷1 = 𝑷0 × 𝑨𝛿t,V1
, 

  … 

  𝑷𝑡 = 𝑷t-1 × 𝑨𝛿t,V𝑡
, 

  𝐼𝑡 = 𝑷𝑡 × 𝑰𝑉𝑡
, 

  𝑆𝑡 = (𝑦𝑡 − 𝐼𝑡)
2, 

where 1 is the normalized unity vector, with each element equal to 1 / NS; 𝑩0,𝑉𝐻
 is the 

spectral matrix corresponding to λ0 and calculated for a voltage equal to the holding 

potential, VH; 𝑨𝛿t,V𝑡
 is the transition probability matrix calculated for δt and a voltage 

equal to the command potential at time t, Vt; St is the squared error at time t. Finally, 𝑰𝑉𝑡
 is 

a vector with dimension of current, with each element equal to the maximum current that 

would be generated if all the channels resided in that state: 

(25) 𝑰𝑉𝑡
= 𝒈 × (𝑉𝑡 − 𝑉𝑅) × 𝑁𝐶. 
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When the command voltage changes during a protocol sequence, the spectral matrix B0 

and the transition probability matrix Aδt are replaced with the matrices calculated for that 

voltage value. As discussed, instead of the command voltage, one could use the actual 

voltage measured at the membrane, when available, or a voltage corrected for errors 

caused by the uncompensated series resistance.  

The total sum of squared errors, S, is the sum of squared errors for all data points used in 

the analysis. S could be divided in components corresponding to individual data sets, 

each multiplied by a weighing factor: 

(26) 𝑆 = ∑ 𝑤𝑖 × 𝑆𝑖𝑖 . 

These weighing factors can be chosen empirically, to establish the relative contribution of 

each data component to the cost function.  

1.5.3 Model parameters 

For a given model topology, the unknown parameters to be determined are the rate 

constant factors 𝑘ij
0and 𝑘ij

1. However, the macroscopic current depends on additional 

quantities: the unitary conductance, g, and the total number of channels, NC. Calculating 

It in the cost function requires these quantities. Normally, for a given ion channel type, 

the unitary conductance has the same value in every recording and can be estimated 

directly from single channel data, or via noise analysis from macroscopic currents 

(Sigworth, 1980a; Heinemann and Conti, 1992). Although NC can also be determined 

through noise analysis, it takes a different value in each experimental preparation and it 

cannot always be known. One possibility is to make NC a parameter to be estimated 
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(Milescu et al., 2005). If the data used in the fit were obtained from multiple experiments, 

then there will be multiple NC parameters, one for each preparation. The downside with 

this approach is a potentially large increase in the dimensionality of the parameter space, 

which would slow down the optimizer. Another possibility is to normalize the current in 

each data set to the local maximum value. The disadvantage in this case is a greater 

ambiguity in the estimated kinetic parameters. Furthermore, it can be problematic to 

analyze fluctuations. With some models, distinct combinations of rate constants and 

channel count values can generate the same macroscopic current in response to a voltage-

clamp protocol (Milescu et al., 2005). However, in principle this ambiguity could be 

resolved by adding more protocols to the fit.   

1.6. Dynamic clamp - testing models in live neurons 

As shown in the previous section, it is possible to find an ion channel model that explains 

voltage-clamp data well and gives insight into the biophysical mechanism of the channel. 

However, in an excitable cell, there are many ion channel types that work together to 

generate specific patterns of firing activity. A cell is a complex system where multiple 

components interact nonlinearly (Koch and Segev, 2000). In contrast, voltage-clamp 

experiments isolate the channel of interest from this system and test it with predefined 

voltage waveforms. It is quite possible that some features of the kinetic mechanism that 

are critically important to the function of the cell may not be revealed in the voltage-

clamp data and may not be captured by the model. Ideally, the model should also be 

tested functionally, in a cellular context.  
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A powerful tool for studying the function of voltage-gated ion channels in live neurons is 

dynamic-clamp (Tan and Joyner, 1990; Robinson and Kawai, 1993; Sharp et al., 1993). 

The principle is to pharmacologically block the channel of interest, and then functionally 

replace it with an injected current, dynamically calculated on the basis of a kinetic model 

(Milescu et al., 2008). As a first-order approximation, where we ignore the potential 

regulatory function of the permeant ions, Ca
2+

 in particular (Kaczmarek, 2006), the 

neuron makes no distinction between the native current and the model-based current, 

which are not necessarily carried by the same ions. Then, if the model is accurate, the 

neuron would exhibit the same firing pattern as with the actual channel. The sensitivity of 

the firing pattern to channel properties and the contribution of that particular current to 

spiking can be easily studied by varying the properties of the model and manipulating the 

model-based current in real-time. The major advantage of this hybrid experimental-

computational approach is that a channel can be investigated within a live cell without 

any knowledge about other conductances or cell properties (Fig. 1.4). 

1.6.1 Solving the model in real-time 

Dynamic-clamp can be understood within the context of a cellular model. To make it 

easier to explain the concepts, we make several simplifying assumptions: i) besides 

voltage-independent leak channels, the neuron contains only Nav and Kv channels, with 

kinetic mechanisms described by Markov models;  ii) the neuron has a single 

compartment and the membrane is isopotential; and iii) the model corresponds to an ideal 

whole-cell recording (zero access resistance, no pipette capacitance, etc.) (Marty and 

Neher, 1995). The state of the model as a function of time is completely described by 
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three variables: the membrane potential V, and the state occupancies of the Nav and Kv 

channels, PNa and PK. These state variables evolve in time according to the following 

ordinary differential equations: 

(30) 𝐶
𝑑𝑉

𝑑𝑡
= −(𝐼Na + 𝐼𝐾 + 𝐼leak) + 𝐼app, 

(31) 
𝑑𝑷𝐾

𝑑𝑡
= 𝑷𝐾 × 𝑸𝐾, 

(32) 
𝑑𝑷Na

𝑑𝑡
= 𝑷Na × 𝑸Na, 

where Iapp is the current injected into the neuron through the patch-clamp pipette. To run 

a computer simulation of our model neuron, we would have to integrate these equations 

with an ODE solver. A real neuron "integrates" a similar set of differential equations, just 

more complex, to account for multiple cellular compartments, ion channel stochasticity, 

etc.  

In voltage-clamp, Iapp is in principle equal to the sum of all ionic currents, so as to keep V 

equal to the command voltage and dV/dt equal to a predefined value (e.g., zero for a 

constant voltage step, or a finite value for a voltage ramp). In this sense, Iapp becomes a 

measure of the total ionic currents active in the cell. In current-clamp, Iapp is typically 

used to test the firing properties of a neuron under a range of conditions. For example, 

Iapp can be a constant value to bias the membrane potential, or it can be a predefined 

waveform that mimics excitatory or inhibitory synaptic input. In dynamic-clamp, Iapp is 

not predefined. Instead, Iapp is calculated in real-time, as a function of the membrane 

potential V and some other quantities.  
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How can dynamic-clamp be used to test a voltage-gated ion channel model in a live 

neuron? Let’s consider the case of Nav channels. First, we pharmacologically block the 

channel, with TTX in this case. As the Nav current was eliminated, the equations 

"integrated" by the cell simplify to just two: 

(33) 𝐶
𝑑𝑉

𝑑𝑡
= −(𝐼𝐾 + 𝐼leak) + 𝐼app, 

(34) 
𝑑𝑷𝐾

𝑑𝑡
= 𝑷𝐾 × 𝑸𝐾. 

Next, we replace the blocked current with a current generated by a Nav model that is 

solved on the computer. Effectively, we now have a hybrid biological-computational 

model that has the same set of ODEs, but two equations are "integrated" by the cell, and 

one is integrated on the computer:  

(35) 𝐶
𝑑𝑉

𝑑𝑡
= −(𝐼𝐾 + 𝐼leak) + 𝐼app, "integrated" by the neuron 

(36) 
𝑑𝑷𝐾

𝑑𝑡
= 𝑷𝐾 × 𝑸𝐾,  "integrated" by the neuron 

(37) 
𝑑𝑷Na

𝑑𝑡
= 𝑷Na × 𝑸Na,  integrated on the computer 

where the injected current, Iapp, is now equal to the negative current generated by the Nav 

model, −𝑰Na
𝑪 , plus a constant component, Iinj, that can be used to apply current steps or for 

other functions:  

(38) 𝐼app = −𝐼Na
𝐶 + 𝐼inj. 

The channel model is solved on the computer over discrete time steps, using the recursive 

method:  

(39) 𝑷Na, t+𝛿𝑡 = 𝑷Na,t × 𝑨Na,V, 
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where ANa,V is the transition probability matrix calculated for a given membrane potential 

V. ANa,V can be pre-calculated over a voltage range (e.g., –100 to +100 mV, every 0.1 

mV) and stored in a look-up table. As illustrated in Fig. 1.4, the model is solved in a real-

time computational loop, where every iteration corresponds to one integration step. For 

each iteration, V is read from the amplifier through the digital acquisition card (DAQ). 

Depending on V, the appropriate A matrix is selected from the look-up table and used to 

update 𝑷Na. Then, 𝑰Na
𝑪 is recalculated and injected into the neuron via Iapp. This loop must 

execute fast enough so that the voltage at the membrane does not change significantly 

within one iteration, which would invalidate both the selected ANa,V and the injected 

current 𝑰Na
𝑪 . The update rate should match the maximum rate of voltage change, which is 

typically the rising phase of the action potential. An update every 20 µs (50 kHz), or 

faster, is generally adequate. Once an update interval is chosen, every iteration of the 

loop should be completed precisely within that time. To ensure predictable time steps 

with minimum variability, the code should run with real-time priority on the computer.  

1.6.2 Equipment and software 

While dynamic-clamp can be performed under a variety of electrophysiology paradigms, 

we focus here on whole-cell patch-clamp experiments in neurons (Marty and Neher, 

1995). Thus, in addition to the equipment and software used for patch-clamp, one also 

needs a digital acquisition card, a dedicated computer, and specialized software for real-

time computation. Ideally, the patch-clamp amplifier should feature "true" current clamp. 

We had good results with HEKA's EPC 9 and 10 amplifiers, as well as with Molecular 

Devices' Multiclamp 700B. EPC 10 is more convenient, because it allows summation of 
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external and internal current in current-clamp mode. In contrast, the Multiclamp amplifier 

has only one input connection for applied current, which is normally used by the external 

DigiData digitizer. A solution in this case is to use an electronic summation circuit or a 

mechanical switch box. Although we don't have first-hand experience with other 

instruments, there are several commercially available patch-clamp amplifiers that feature 

true current clamp, e.g., those made by A-M Systems, NPI, Warner Instruments, etc. 

Although some patch-clamp amplifiers already include an internal (EPC 10) or external 

(Multiclamp 700B) digitizer, these are not necessarily optimized for real-time feedback 

acquisition, where, in a very short time (tens of microseconds), a sample is read from the 

analog input, processed on the CPU, and another sample is written to the analog output. 

With a few exceptions (e.g., the hardware-based dynamic-clamp device commercialized 

by Cambridge Electronic Design), all dynamic-clamp applications use digitizers made by 

National Instruments. At the time of writing, we recommend the NI PCIe-6351 or NI 

PCIe-6361 (slightly faster) boards, which have been optimized for very low latency. One 

should be aware that the manufacturer typically specifies the maximum rate for buffered 

acquisition, not for real-time applications. Transferring one single sample across the PCIe 

bus has a finite latency that limits dramatically the throughput rate in real-time 

acquisition. For example, the maximum rate that we could obtain with a NI PCIe-6361 

card is ~220,000 computational cycles per second, even though the board can acquire 2 

million samples per second in buffered mode. Nevertheless, a throughput rate like this is 

excellent, being comparable with the bandwidth of the patch-clamp amplifier in current-

clamp. 
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Historically, the first dynamic-clamp programs were coded in some flavor of real-time 

Linux (Christini et al., 1999; Butera Jr et al., 2001; Dorval et al., 2001). At the time, 

obtaining acceptable real-time performance under the Microsoft (MS) Windows 

operating system − or any other non-real-time OS − was simply not possible. On such a 

system, user programs can be interrupted at random by other programs, or by the 

operating system itself. Another limitation at the time was the driver provided by 

National Instruments for programming their boards, which was incredibly slow for real-

time applications (~1,000 cycles per second, according to our tests). However, the 

situation has completely changed over the last ten years, with the development by 

National Instruments of new digitizers and optimized drivers, with the advent of multi-

core processors and an improved PCIe bus, and with the general increase in CPU speeds. 

Today, dynamic-clamp software can be run in MS Windows with excellent real-time 

performance, on par with what is achieved under real-time Linux.  

Dynamic-clamp programs are available for both real-time Linux (Lin et al., 2010) and 

MS Windows (Kullmann et al., 2004; Nowotny et al., 2006; Milescu et al., 2008; Yang et 

al., 2015). For the more biophysically-inclined user, we recommend our own 

implementation of dynamic-clamp in the QuB software, which runs under MS Windows 

(www.milesculabs.biology.missouri.edu/QuB). The major advantages are integration 

with a variety of ion channel modeling algorithms, a powerful scripting language for 

customized models and protocols, and sophisticated methods for solving Markov models 

of ion channels, deterministically or stochastically. QuB is also useful as it uses a series 

of parameters that can be modified in real-time without having to stop the script, 

http://www.milesculabs.biology.missouri.edu/QuB
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recompile and restart the script. The graphic user interface is shown in Fig. 1.5. The only 

method that can be used to solve large Markov models accurately is the matrix method 

described in this chapter, which is available in our software. Once a few quantities are 

pre-calculated and stored in look-up tables, very large Markov models can be solved 

using only vector − matrix multiplications, which can be executed very quickly on 

modern CPUs or on graphics processors (GPUs). For example, we were able to run 

models with as many as 26 states at 50 kHz or faster (Milescu et al., 2008). The matrix 

method is also very stable and accurate, even with long sampling intervals, which is 

generally not the case with methods that rely exclusively on ODE solvers to advance the 

state probabilities. In particular, integration with the Euler method, which is practically 

the only one that is fast enough for real-time applications, is bound to fail with even small 

Markov models (Milescu et al., 2008).  

In principle, any desktop computer can be used for dynamic-clamp. However, for high-

performance applications (large models and high throughput rates), we recommend a fast 

computer that is used exclusively to run the dynamic-clamp engine. We had the best 

results with multicore Intel Xeon CPUs, installed in dual-processor server-grade systems. 

For example, the computer that we currently use in the lab has two Intel Xeon E5-2667 

v2 8-core processors, clocking at 3.3 GHz, and runs Windows 7 Pro 64-bit. Our system 

was built by ASL, Inc., but many other computer integrators sell configurable systems. 

Of all the components, the most critical are the CPU and the motherboard.  
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1.6.3 Preparing and running a dynamic clamp experiment 

Setting up a dynamic-clamp experiment involves a few steps. First, the voltage monitor 

output of the patch-clamp amplifier should be connected to one of the analog inputs of 

the National Instruments digitizer, while the external current input of the amplifier should 

be connected to one of the analog outputs of the digitizer. Next, one needs to zero the 

offsets and calibrate the scaling factors between the amplifier and digitizer, for both input 

and output. The calibration procedure depends on the specific dynamic-clamp software 

but the idea is to make sure that the membrane voltage value read into the dynamic-clamp 

software is the same as the value reported by the patch-clamp amplifier. Likewise, the 

external current reported by the amplifier should match the current sent by the dynamic-

clamp software. In our experience, there are always slight offsets of a few mV in 

membrane potential and a few pA in injected current, between the amplifier and the 

digitizer. These offsets must be compensated for in the software. In particular, one should 

be careful that the amplifier receives no unwanted external current when Iapp is equal to 

zero, as even a small current of a few pA can alter the firing pattern of a neuron. Most 

amplifiers have adjustable gain in current-clamp (e.g., 1 pA / mV). The smallest gain 

should be selected that still allows the injection of the largest current that might be 

predicted by the model. For example, a model-based Nav current ranges from a few pA 

in the interspike interval, small but sufficient to influence neuronal firing properties, to 

several nA during an action potential.  

The pipette capacitance should be reduced as much as possible by coating with Sylgard 

or other agents. In our experience, the residual capacitance should be no more than 5 − 6 



39  

 

 

pF, otherwise ringing may occur in dynamic-clamp when large currents are injected, 

particularly with Nav currents during action potentials. Once a patch is obtained, the 

typical artifact estimation and compensation procedures should be applied for series 

resistance and pipette capacitance, as well as for membrane capacitance. Then, upon 

switching to current-clamp, the pipette capacitance compensation should be slightly 

reduced (10 − 20 %) to avoid ringing, while series resistance should be compensated 

100%.  

An example of a dynamic-clamp experiment is shown in Fig. 1.6, adapted from a study 

on excitatory pre-Bötzinger (pre-BötC) neurons in the brainstem respiratory slice 

(Yamanishi et al., 2018). There, the persistent Na
+
 current (INaP) was investigated with 

voltage-clamp protocols designed to characterize its properties of activation and 

inactivation, recovery from inactivation, and slow inactivation. The data obtained with 

these protocols were used to construct a state model and to estimate its kinetic 

parameters. Then, this model was tested in dynamic clamp experiments, to determine 

how INaP contributes to bursting behavior. The pre-BötC circuit contains a mixture of 

both bursters and non-bursters, which differ in the total amount of INaP (Koizumi et al., 

2013). Since there is no selective blocker for INaP, the INaP model was either added to non-

bursters (Fig.1.6B, 1.6C) or subtracted from intrinsic bursters (Fig. 1.6E). The results 

showed that injecting INaP into non-bursters was sufficient to convert them to burst firing, 

exhibiting the characteristic burst after-hyperpolarization (bAHP) (Fig. 1.6B bottom) and 

modulation of bursting frequency by bias current injection (Fig. 1.6C). In contrast, 

subtracting INaP from intrinsic bursters converted them to quiescence or tonic firing. 
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Clearly, this INaP-based interconversion between bursting and non-bursting firing modes 

depends on the entire complement of ion channels expressed by pre-BötC neurons. For 

example, adding INaP into other types of neurons, such as tonically firing ventral raphé 

neurons, cannot induce bursting. 

1.7. Conclusions  

We described here the overall process by which a kinetic model of a voltage-gated ion 

channel is constructed from experimental data. To do so, one needs a good understanding 

of data properties, including the experimental or recording artifacts that may be 

contaminating the signal. A variety of voltage-clamp protocols are necessary to make the 

channel visit as many conformations as possible, to shed light on the number of 

conformational state and the transitions between them. Furthermore, one should take into 

account prior knowledge from other studies and create a model that is in agreement with 

other types of data, as detailed in the next chapter. Finally, it is important to test the 

model with dynamic clamp, to verify that it can reproduce certain behaviors and thus 

confirm its accuracy.  
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1.8 Figures and figure legends

 

Figure 1.1. From model to data. A simple ion channel model (A) was used to simulate single-

channel (B) and macroscopic (C) currents in response to a voltage step (D). The macroscopic 

current was simulated with an ensemble of 1000 channels, either deterministically (black trace) or 

stochastically (red trace). The inset shows a fit of the stochastic macroscopic current (red) with a 

two-exponential function. The individual exponential components of the fit line are also shown 

(green and blue).  
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Figure 1.2. Designing voltage-clamp protocols for Na
+
 currents. To gather information about 

the kinetic mechanism, the channels are forced to make transitions between different sets of 

states, as follows: deactivated to open to inactivated (A), deactivated to inactivated to open (B), 

non-inactivated to inactivated (C), and inactivated to non-inactivated (D). Raw data are further 

processed to extract state occupancies as a function of time and voltage (E and F). Adapted from 

(Milescu et al 2010b) 
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Figure 1.3. Fitting the data with a model. A) Model originally formulated for Nav channels 

(Kuo and Bean 1994). States C1...C5 and O6 represent the non-inactivated channel, and I7...I12 are 

inactivated states. O6 is the only conducting (open) state. The pathway from either C1 to C5, or 

from I7 to I12, corresponds to the activation of the four voltage sensors, assumed to be equal and 

independent. This assumption is denoted by the 4:3:2:1 or 1:2:3:4 ratios in the factors multiplying 

the αm or βm rates. The C5 to O6 transition corresponds to the opening of the channel. The model 

allows the channel to inactivate without opening, from any of the closed states C1...C5. However, 

the channel is most likely to inactivate from the open state O6, or when more voltage sensors are 

activated (e.g., from C5). B-E) Example fits of the model in A to the macroscopic data in Fig. 3. 

The data were pooled together and fitted with the kinetic mechanism shown in Fig4A, using a 

computational algorithm that minimized the sum of squared errors. The response of the model to 

the same voltage-clamp protocols as used to record the data is represented by the red trace, which 

corresponds to the best parameters found by the optimizer. B) Time course of activation. C) 

Voltage dependence of activation and inactivation. D) Subthreshold inactivation. E) Recovery 

from inactivation. 



44  

 

 

 

 

Figure 1.4. Testing ion channel models in live neurons with dynamic-clamp. As illustrated 

here, a Nav current is blocked with TTX and replaced with a model-based current, which is 

calculated in real-time on the basis of a model and injected into the neuron via the patch-clamp 

pipette.  
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Figure 1.5 Running dynamic clamp in QuB. The screenshot is an example of how QuB can be 

set up for dynamic clamp experiments. The Script window includes a list of parameters of the 

model that can be readily changed and take effect in real time. This is useful to modify 

conductance values of particular current. Scriptlets are scripts that can run independently of the 

main script, and can be used to run a protocol or perform data analysis with a single mouse click. 

The Chart window displays the real-time acquisition of the data. The Trigger graph window is 

used to detect and display action potentials in real-time. The Graph window is used to display 

analyzed data, such as the phase plane of the AP, as shown here. 

  

Parameters
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Figure 1.6. Dynamic clamp example. A novel Markov model was fit to voltage-clamp data of 

the INaP in pre-BötC neurons. INaP predicted by Model 1 was added to nonbursters (GNaP > 0) or 

subtracted from bursters (GNaP < 0) via dynamic clamp. The recordings were obtained under bath-

applied Cd
2+

(200 μM) and CNQX (20 μM). A) Current clamp (CC) recording from a 

representative nonburster. The neuron was verified to fire repetitively when sufficiently 

depolarized by injecting bias current (not depicted). B) Same cell as in A, but with INaP added. 

When sufficient INaP is injected (GNaP = 1.3 nS), the neuron exhibits robust bursting, with the back 

after hyperpolarization (bAHP) and the interburst depolarization drift (arrow) characteristic of 

intrinsic bursters. C) Bursting frequency depends on baseline membrane potential (modified with 

depolarizing bias current), a behavior typical of intrinsic bursters. D) CC recording from a 

representative intrinsic burster. E) Same cell as in D, but with INaP subtracted. The step changes in 

membrane potential Vm and INaP reflect depolarizing bias current steps of 5–10 pA. INaP 

subtraction eliminates the ability to generate bursting activity, but the neuron can fire repetitively 

when sufficiently depolarized.  
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Chapter 2 

Estimating kinetic mechanisms with prior knowledge: 

 linear and nonlinear parameter constraints 

This chapter has been adapted from: 

Salari A.*, M.A. Navarro*, M. Milescu, L.S. Milescu. 2018. Estimating kinetic 

mechanisms with prior knowledge I: Linear parameter constraints. J. Gen. Physiol., 

150(2):323-338. doi: 10.1085/jgp.201711912 

Navarro, M.A.*, A. Salari*, M. Milescu, L.S. Milescu. 2018. Estimating kinetic 

mechanisms with prior knowledge II: Behavioral constraints and numerical tests. J. Gen. 

Physiol., 150(2):339-354. doi: 10.1085/jgp.201711913 

*equal authorship 

Abstract 

Kinetic mechanisms predict how ion channels and other proteins function at the 

molecular and cellular levels. Algorithms have been developed that can be used to extract 

kinetic parameters from a variety of experimental data types. Ideally, a kinetic model 

should explain new data but also be consistent with existing knowledge. This chapter 

describes mathematical and computational formalisms that can be used to enforce prior 

knowledge into a model using constraints. These constraints can enforce explicit linear 

relationships involving rate constants, as well as nonlinear relationships that can quantify 
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a behavior of the model that cannot be easily expressed through mathematical 

relationships. For linear constraints we develop a formalism based on a linear algebra 

transformation, and for the other types we develop a penalty estimation mechanism. The 

linear transformation converts the set of linearly-interdependent model parameters into a 

reduced set of independent parameters, which can be passed to an automated search 

engine for model optimization. These can be applied to enforce many types of model 

properties and assumptions, such as microscopic reversibility, allosteric gating, equality 

and inequality parameter relationships. Examples of nonlinear properties that require 

nonlinear or behavioral constraints include the maximum open probability, use-dependent 

availability, and nonlinear parameter relationships. In principle, these procedures can be 

coupled to any of the existing methods for solving molecular kinetics – for ion channels 

or other proteins. By incorporating more knowledge into the parameter estimation 

procedure, it is possible to obtain more realistic and robust models, with greater 

predictive power.   

 

 

Author contribution: M.A.N. designed scripts to test and implement the algorithms to 

fit sets of experimental data, implemented behavioral constraints, tested the penalty 

method in QuB, made figures, and wrote the manuscripts. 
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2.1. Introduction 

Ion channels are highly adapted to perform specific functions in the cell. Voltage-gated 

sodium (Nav) channels have finely tuned kinetic properties that allow neurons and other 

excitable cells to generate action potentials of specific shape and frequency (Bean, 2007). 

The properties that enable Nav and other channels to perform such complex and well 

calibrated behavior are encoded in the kinetic mechanism, defined as a set of 

conformational and functional states, interconnected by a network of allowed state 

transitions that may depend on ligand concentration, membrane potential, or other 

physical variables (Colquhoun and Hawkes, 1995a; Colquhoun and Hawkes, 1995b). 

Taking advantage of molecular biology to create protein truncations or point mutations 

have identified key domains of ion channels, such as the C-terminus (Wang et al., 2011a; 

Ben-Johny et al., 2014) and the voltage sensors (Armstrong and Bezanilla, 1977; 

Bezanilla and Armstrong, 1977; Stühmer et al., 1989). The activity and movement of 

these domains are essential to overall function of the protein and cells; therefore, the 

kinetic mechanism must be decrypted.  

Critical advancements in laser photonics (Strickland and Mourou, 1985) have helped 

produce the optical trap (Ashkin, 1970; Ashkin et al., 1986), which has provided means 

to resolve tiny conformational changes of single-molecules (Smith et al., 1992; Svoboda, 

1993). The data produced by single-molecule techniques, such as patch clamp 

electrophysiology (Sigworth, 1980b),  FRET (Forrester Resonance Energy Transfer) 

(Ben-Johny et al., 2013) and optical tweezers (Bustamante et al., 2000), are often 
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recordings over time with the desired signal of multiple events found with an underlying 

noise.  

A typical approach to kinetic modeling is to fit experimental data with a memory-less 

Markov model, characterized by rate constants. Markov models have been used to 

analyze many types of data in biology, from single-channel (Qin, 1996, 2000a; Popescu 

and Auerbach, 2003) and macroscopic recordings of ligand-gated receptors or voltage-

gated ion channels, the catalytic rate of ribosomes (Kaiser et al., 2011), and the walking 

rates of microtubule molecular motors myosin V (Yildiz et al., 2003; Syed et al., 2010) 

and kinesin (Yildiz et al., 2004; Milescu et al., 2006). Decades of ion channel research 

have shown that kinetic mechanisms cannot be fully captured by any single type of 

experiment and must include a variety of experimental protocols to force the proteins of 

interest into many data states.  

To construct a good model that may be useful, one must fit a comprehensive data 

collection (Horn and Lange, 1983; Hawkes et al., 1990; Vandenberg and Bezanilla, 

1991a; Hawkes et al., 1992; Hoshi et al., 1994; Zagotta et al., 1994a; Zagotta et al., 

1994b; Schoppa and Sigworth, 1998a, b; Rothberg and Magleby, 2000; Milescu, 2005), 

ideally generated by multiple experimental paradigms (Vandenberg and Bezanilla, 

1991b; Akk et al., 2005; Milescu et al., 2008). For example, we know that Nav and other 

channels have four voltage sensors that gate with different timing and voltage sensitivity 

(Bezanilla, 2000a; Chanda and Bezanilla, 2002b). These fundamental aspects cannot be 

easily resolved by single channel or whole-cell recordings alone, but they can be 
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addressed in combination with other types of experiments, such as patch-clamp 

fluorometry (Chanda and Bezanilla, 2002a; Zaydman et al., 2013; Pantazis et al., 2014).  

Optimizing a model against multiple types of data is a difficult problem in itself. A 

further complication is that some results – quantitative or qualitative – cannot be added to 

the data collection that is used for fitting. The number of voltage sensors, the existence of 

open-state block, numerical relationships between parameters due to allosterism, etc., are 

examples of such results. Instead, this prior knowledge about the channel must be 

encoded directly into the model. In this way, the model will explain the new data but will 

also remain consistent with what is already known.  

How do we introduce prior knowledge into a model? We present here some strategies for 

addressing this issue. At the most basic level, structural assumptions about the kinetic 

mechanism can be stated implicitly by choosing a specific set of states and connectivity, 

as we explain with an example from the literature (Kuo and Bean, 1994). Further 

quantitative or qualitative assumptions can be introduced by defining a set of constraints 

that the model has to satisfy, while also explaining the new data. These model constraints 

can be formulated as explicit mathematical relationships between rate constants or other 

model parameters or can specify the behavior of the model under certain conditions (Fig. 

2.1).  

To develop new model constraints, an existing method for enforcing linear constraints 

between rate constants (Qin, 1996; Colquhoun, 2004; Milescu, 2005) was extended to 

cover arbitrary linear constraints between model parameters, including allosteric factors, 

reducing the parameter search space (Salari et al., 2018). This new formalism can handle 
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both equality and inequality relationships allowing for direct modulation of the parameter 

search. The second half of this work describes a method to implement arbitrary parameter 

relationships, as well as behavioral constraints, by adding a penalty term to the cost 

function of the fitting algorithm (Navarro et al., 2018). The theory and computational 

procedures described here can be coupled, in principle, to any of the existing methods for 

solving molecular kinetics, for ion channels or other proteins. These concepts can be used 

not only to enforce existing knowledge, but also to formulate and test new hypotheses. 

2.2 Materials and methods 

All the mathematical and computational algorithms described in this study were 

implemented and tested with the freely available MLab edition of the QuB program 

(http://milesculabs.biology.missouri.edu/QuB), running under the Microsoft Windows 

operating system. QuB provides a suite of algorithms for extracting ion channel kinetic 

models and parameters from single molecule and macroscopic data (Qin et al., 1996, 

2000a, b; Milescu, 2005), and for testing these models in live cells using real-time 

computation (dynamic clamp) (Milescu et al., 2008, Milescu et al., 2010b).  

2.2.1 Model parameters 

To simulate the test data, the model shown in Fig. 2.6A was tweaked by hand to generate 

macroscopic currents resembling voltage-dependent sodium currents (Fig. 2.7). The 

simulated data were fitted in multiple runs, with different sets of constraints applied to 

the model (Fig. 2.6B). The model parameter values (true, initial, and estimated) are listed 

in Table 2.1. 

http://milesculabs.biology.missouri.edu/QuB
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2.2.2 Stochastic simulations 

Ion channel macroscopic traces were simulated stochastically under the voltage-clamp 

paradigm, using established procedures (Milescu, 2005). To approximate the properties 

of sodium currents, the single channel conductance was 10 pS and the reversal potential 

was +60 mV. Random Gaussian noise with zero average and 5 pA standard deviation was 

added to each trace, to approximate whole-cell recording noise. To generate activation / 

inactivation time course (Fig. 2.7A) and activation / availability steady-state curves (Fig. 

2.7B), we used a typical voltage-clamp protocol: the channels were first equilibrated at -

120 mV, then subjected to a 200 ms conditioning step at potentials ranging from -120 mV 

to +40 mV, followed by a 50 ms test step at 0 mV. The peak current from each 

conditioning step was extracted and converted to conductance (assuming a linear 

relationship), and the obtained values were used to construct the activation curve. 

Similarly, the peak current from the test step was extracted and used to construct the 

availability curve. Together, the currents evoked during the first 5 ms of the conditioning 

step in the -50 mV … +40 mV range (Fig 2.7A) and the activation and availability curves 

(Fig 2.7B) were used for model optimization.  

2.2.3 Model optimization  

The algorithms were tested by fitting the data shown in Fig 2.7. Optimization trials were 

run on a dual eight-core 3.3 GHz Intel Xeon processor computer, running Windows 7 64-

bit. Each optimization run took less than 20 minutes to complete. The model was 

optimized by minimizing the cost function with a modified version of the Davidon-



54  

 

 

Fletcher-Powell optimizer (dfpmin) (Fletcher and Powell, 1963; Press et al., 1992). For 

efficiency, the cost function was coded for parallel computation. The cost function was 

calculated as the sum of square errors between the data and the prediction of the model, 

normalized to the total number of points, plus a penalty term for those optimization trials 

involving a behavioral constraint, as detailed in section 2.5. The gradients of the cost-

function with respect to the free parameters were calculated numerically. The prediction 

of the model for a given set of parameters was obtained by simulating the deterministic 

response of the model to the same stimulation protocols as used for simulation. Then, the 

resulting traces were processed to extract the time course and the activation and 

availability curves, following the same procedure as for the simulated test data (Milescu 

et al., 2010b; Salari et al., 2016). 

2.3. Theoretical background  

2.3.1 Kinetic mechanisms 

Markov models reduce the continuum of molecular conformations that can be assumed 

by the protein to a small set of discrete states that can be detected experimentally or 

inferred statistically (Colquhoun and Hawkes, 1995a; Colquhoun and Hawkes, 1995b; 

Colquhoun and Sigworth, 1995). These states correspond to various conformations of 

functional and structural elements, such as resting or activated voltage sensors, bound or 

unbound ligand, closed or open pore, inactivated or non-inactivated channel, etc. Direct 

transitions are permitted between certain states, and the frequency of these transitions is 

quantified by Eyring rate constants, which can be functions of ligand concentration, 
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membrane potential, tension, or other physical variables. The topology (or structure) of a 

kinetic mechanism is defined by the set of states and their transition connectivity, 

including information on which rates are ligand-dependent, voltage-dependent, etc.  

Here, we assume that all rate constants follow the Eyring formalism (Eq. 1) (Eyring, 

1935a), with the implication that complexity in kinetic behavior should be explained with 

more elaborate state models, rather than through over-parameterized and ad hoc rate 

constant expressions. Accordingly, voltage-dependent rate constants are simple 

exponential functions of voltage: 

 (1) 𝑘ij = 𝑘ij
0 × 𝑒𝑘ij

1×𝑉, 

where 𝑘ij is the rate constant of the transition from state i to state j, and V is the 

membrane potential. The 𝑘ij
0 value is the rate constant at zero membrane depolarization, 

while the 𝑘ij
1 value is the voltage sensitivity factor, which can be expanded as follows: 

 (2) 𝑘ij
1 = (𝛿ij × 𝑧ij × 𝐹)/(𝑅 × 𝑇), 

where zij is the electrical charge moving over the fraction δij of the electric field, F is 

Faraday’s constant, R is the gas constant, and T is the absolute temperature. For voltage-

insensitive rates, 𝑘ij
1 = 0. Rate constants that depend on other physical variables, such as 

membrane tension, have similar exponential expressions (Gnanasambandam et al., 2017). 

For state transitions that represent the binding of a ligand, rate constants have the 

following expression: 

 (3) 𝑘ij = 𝑘ij
0 × [𝐿], 
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where 𝑘ij
0 is the rate constant at unitary ligand concentration [L].  

The set of 𝑘ij
0 and 𝑘ij

1 values are the main parameters of the kinetic mechanism. Together, 

the kinetic parameters and the topology of the model fully specify the mechanism. In 

turn, the kinetic mechanism describes the operation of the channel within the membrane, 

particularly how the channel changes its state in response to stimuli. Markov models, 

computational algorithms, and software have been adapted and developed to extract the 

kinetic mechanism from experimental data (Ball and Sansom, 1989; Hawkes et al., 1990; 

Qin, 1996, 2000a, b; Venkataramanan and Sigworth, 2002; Celentano and Hawkes, 2004; 

Qin and Li, 2004; Milescu, 2005; Csanady, 2006; Moffatt, 2007; Stepanyuk et al., 2011; 

Stepanyuk et al., 2014), with two interrelated aims: to find an appropriate topology and to 

estimate the kinetic parameters.  

2.3.2 Formulating the topology of the model 

The first step in building a kinetic model is to identify a particular topology that defines 

the structural and functional elements of the channel and their connecting pathways. The 

topology can be used to specify the number of voltage sensors, the identity of voltage-

sensitive transitions, the number of inactivated states, the presence of multiple open 

states, the existence of allosteric relationships, etc. The models shown in Fig. 2.2 

illustrate how a topology can be formulated to capture the key features of a Nav channel 

kinetic mechanism, as detailed in section 2.5.5. This model was based on a large body of 

knowledge accumulated in the field and, not surprisingly, provided a flexible enough 

framework that explained voltage clamp recordings of sodium currents in several 
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neuronal preparations (Kuo and Bean, 1994; Raman, 2001; Taddese and Bean, 2002; 

Milescu et al., 2010b).  

In contrast, when little is known about the channel, one must take a purely data-driven 

approach and build a parsimonious topology that explains the data reasonably well. Of 

course, if one wishes a realistic model, then the Eyring theory and related concepts must 

still be obeyed. Some kinetic properties are intuitive enough and can be easily translated 

into model features (Salari et al., 2016). For example, whole-cell recordings where the 

current first rises and then decays require a model with one conducting and at least two 

non-conducting states. In general, searching for the right topology can be approached as 

an iterative process, where one tests a series of models of increasing complexity, adding 

more and more states and connections. For each tested model, one must determine 

whether the topology is compatible with the data. If no parameter values can be found 

that result in a good fit, the topology must be reformulated and parameters re-estimated. 

Since larger models can inherently fit better, one should take into account the number of 

degrees of freedom when ranking models. Thus, unless a larger model improves the fit 

substantially, one should give preference to a model with fewer free parameters. The 

search across topologies can be terminated when the fit no longer improves.  

The model search process is not trivial and relies much on the experience of the 

investigator. The number of non-equivalent (Kienker, 1989) connectivity schemes can be 

prohibitively large, even for models with a relatively small state count (Bruno et al., 

2005). A possible solution is to use a smart optimization algorithm that not only estimates 

parameters for a given topology but at the same time searches efficiently across 
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topologies (Gurkiewicz, 2007; Menon et al., 2009). Furthermore, one may be able to 

reduce the searched state space by utilizing some information contained in the data. For 

example, statistical analysis of single channel electrical recordings through dwell time 

histogram analysis can provide reasonable estimates on the number of conductance levels 

(through visual inspection or amplitude histogram analysis) and the minimum number of 

kinetic states in each conductance level (Colquhoun and Hawkes, 1982; Hawkes et al., 

1990). Other methods can provide more direct evidence about the structural 

conformations and transition pathways of the channel, such as the number of voltage 

sensors, the number of inactivated states, or the identity of voltage- or ligand-dependent 

transitions (Grosman et al., 2000; Ahern et al., 2016). In principle, an automated search 

across model topologies can incorporate this information (Teed and Silva, 2016). 

2.3.3 Parameter estimation 

A computational procedure for finding the "best" parameters for a proposed model 

topology combines an algorithm that measures how well a given model explains the data, 

with an optimization engine that searches the parameter space for the "best" solution 

(Fletcher, 2013). This optimal solution minimizes the error between the data and the 

prediction of the model (e.g., the sum of square errors), or maximizes a probability 

function (e.g., the likelihood that the experimental data were generated by the model, or 

the Bayesian posterior probability) (Horn and Lange, 1983; Hawkes et al., 1990; Qin, 

1996, 2000a; Celentano and Hawkes, 2004; Milescu, 2005; Csanady, 2006; Moffatt, 

2007; Calderhead et al., 2013; Stepanyuk et al., 2014; Epstein et al., 2016). Intuitively, 

the first approach can be described as minimizing a "cost function", while the second as 
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maximizing a "goodness of fit". Throughout this study, we will use the "cost function" 

term, but with the understanding that it could refer to either minimizing the sum of square 

errors, or, equivalently, to minimizing the negative log-likelihood. When one also 

searches for an appropriate topology, the value of the cost function can be used as a score 

to rank the model. Even though the kinetic mechanism is fully characterized by the 𝑘ij
0 

and 𝑘ij
1 parameters, the experimental data typically depend on some other parameters as 

well, such as the number of active ion channels, the single channel conductance, the ionic 

concentrations, etc. To extract the kinetic mechanism from the data, these other 

parameters may need to be co-estimated (Colquhoun, 1996; Qin, 2000b; Milescu, 2005). 

2.4 Results  

Once a model topology is selected to appropriately express what is known or 

hypothesized about the channel, the next step is to find a set of parameters that explain 

the data well. The parameter estimation procedure can be designed to enforce prior 

knowledge with the use of model constraints to generate a more selective set of parameter 

values, ideally reducing the total number of free parameters. These model constraints 

come in two categories: i) parameter constraints (Salari et al., 2018) and ii) behavioral 

constraints (Navarro et al., 2018). A parameter constraint is formulated as an explicit 

mathematical relationship that involves rate constants or other model parameters. An 

example is the scaling of one rate constant to another or restricting the range of a 

parameter to positive values. In contrast, a behavioral constraint quantifies the behavior 

of the model under certain conditions, without explicitly referring to rate constants or 
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other model parameters. An example is enforcing the maximum open probability (PO) 

reached by the channel during a specific voltage-clamp stimulation protocol.  

The mathematical and computational procedures that reduce the number of free 

parameters to enforce parameter constraints are limited to linear relationships (Salari et 

al., 2018). However, nonlinear relationships can be enforced using the mechanism 

developed for behavioral constraints (Navarro et al., 2018). As illustrated in Fig. 2.1, 

linear parameter constraints that enforce an equality relationship reduce the 

dimensionality of the parameter space, eliminating one dimension for each relationship. 

In contrast, both inequality parameter constraints and behavioral constraints preserve 

dimensionality, but reduce the size of the parameter space. To describe it intuitively, 

inequality parameter constraints present the optimizer with a reduced road map, whereas 

behavioral constraints guide the optimizer through only toll-free roads.  

2.5. Implementing prior knowledge with linear parameter constraints 

In this section, we discuss the implementation of prior knowledge via linear parameter 

constraints using the Nav channel kinetic mechanism shown in Fig. 2.2A. This model is a 

good example, as it covers many of the parameter constraints that our formalism can 

enforce. Similar model topologies that have a combination of inactivation states have 

been proposed (Horn and Vandenberg, 1984; Benndorf, 1988), but the first model that 

incorporates evidence that inactivation can proceed from the closed state was developed 

with many mechanistic assumptions in mind (Kuo and Bean, 1994). These are reflected 

in the number of states and connections, and in the mathematical relationships between 
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various kinetic parameters (Fig. 2.2B). These assumptions can be regarded and expressed 

as parameter constraints.  

2.5.1 Model assumptions 

The first assumption is that channel activation involves four identical and independent 

voltage sensors, and all four must be activated to open the pore. Of course, this 

assumption is not necessarily true, as more recent evidence obtained with voltage clamp 

fluorometry indicates that the channel can open when only three voltage sensors are 

activated (Capes et al., 2013; Pantazis et al., 2014; Goldschen-Ohm and Chanda, 2015). 

In Fig. 2.2A, all closed states with the same number of resting sensors (n) are lumped 

into a single compound state. The result is the five-state activation pathway C1...C5. The 

frequency of activation transitions for any of the compound states C1...C5 is equal to n 

times the frequency of the activation transition for a single sensor. The same rule applies 

to deactivation transitions. For example, when the channel resides in a closed state that 

has three resting voltage sensors (C2, n = 3), the compound activation rate (𝑘2,3) is three 

times the activation rate of a single sensor (𝑘4,5or 𝛼𝑚). Thus, if 𝑘4,5 and 𝑘2,1 are the 

transition rates of a single sensor activating or deactivating, respectively, the assumption 

of identical and independent voltage sensors is expressed by the following mathematical 

relationships, where one rate is scaled to another by a constant factor:  

 (4) 𝑘3,4 = 2 × 𝑘4,5,   

  𝑘2,3 = 3 × 𝑘4,5, 

  𝑘1,2 = 4 × 𝑘4,5, 
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  𝑘3,2 = 2 × 𝑘2,1, 

  𝑘4,3 = 3 × 𝑘2,1, 

  𝑘5,4 = 4 × 𝑘2,1.  

Any deviation from the condition of identical and independent voltage sensors will 

require a model with a different number of states, connections, and multiplication factors 

along the activation pathway. In fact, these constant multiplication factors (2, 3, and 4) 

could be replaced with unknown cooperativity factors, to be determined from the 

experimental data, similar to the inactivation allosteric factors introduced next. The same 

principles apply to ligand-gated ion channel mechanisms. In this case, the multiplication 

factors (sometimes called “statistical” factors) are used to describe the relationships 

between the ligand binding sites. 

Another assumption is that the channel can inactivate not only from the open state O6, but 

also from any of the C1...C5 closed states into the I7…I12 inactivated states. However, the 

transition into inactivation from the closed states depends on the degree of activation: as 

more voltage sensors are activated, the C to I transitions become faster, whereas the I to 

C become slower. As envisioned in the original model, this property is implemented with 

the allosteric factors a and b. Thus, the rate of inactivation from a closed state Cn is equal 

to the rate of inactivation from the previous closed state, Cn-1, multiplied by the a factor. 

For example, 𝑘2,8 = 𝑎 × 𝑘1,7, 𝑘3,9 = 𝑎 × 𝑘2,8, etc. The opposite is true for the return 

rates: 𝑘8,2 = 𝑏−1 × 𝑘7,1, 𝑘9,3 = 𝑏−1 × 𝑘8,2, etc. Taking 𝑘1,7 and 𝑘7,1 as references, this 

assumption is expressed by the following mathematical relationships, where one rate is 

scaled to another by a variable factor: 
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 (5) 𝑘2,8 = 𝑎 × 𝑘1,7, 

  𝑘3,9 = 𝑎2 × 𝑘1,7, 

  𝑘4,10 = 𝑎3 × 𝑘1,7, 

  𝑘5,11 = 𝑎4 × 𝑘1,7, 

  𝑘8,2 = 𝑏−1 × 𝑘7,1, 

  𝑘9,3 = 𝑏−2 × 𝑘7,1, 

  𝑘10,4 = 𝑏−3 × 𝑘7,1, 

  𝑘11,5 = 𝑏−4 × 𝑘7,1.  

Furthermore, the voltage sensors can also activate while the channel is inactivated, along 

the I7...I11 pathway, but with different kinetics, also encoded by the allosteric factors a 

and b. Thus, we have another set of similar mathematical relationships: 

 (6) 𝑘10,11 = 𝑎 × 𝑘4,5, 

  𝑘9,10 = 𝑎 × 𝑘3,4, 

  𝑘8,9 = 𝑎 × 𝑘2,3, 

  𝑘7,8 = 𝑎 × 𝑘1,2, 

  𝑘8,7 = 𝑏−1 × 𝑘2,1, 

  𝑘9,8 = 𝑏−1 × 𝑘3,2, 

  𝑘10,9 = 𝑏−1 × 𝑘4,3, 

  𝑘11,10 = 𝑏−1 × 𝑘5,4. 

Overall, this allosteric coupling between activation and inactivation can explain the 

apparently contradictory findings that inactivation appears strongly voltage-sensitive, but 
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only minimal electrical charge is detected to move within the channel during inactivation 

(Armstrong and Bezanilla, 1977). Generally, allosteric factors, such as the a and b 

quantities above, are unknown and need to be determined from the data or estimated.  

Finally, the last assumption is that the channel satisfies the condition of microscopic 

reversibility, i.e., no energy input is required for gating and opening. Under this 

condition, for any reaction loop in the model, the clockwise product of rates around the 

loop must equal the counterclockwise product (Song and Magleby, 1994; Rothberg and 

Magleby, 2001; Colquhoun, 2004). As the model in Fig. 2.2A has five independent 

loops, the following mathematical relationships must hold true: 

(7)       𝑘1,2 × 𝑘2,8 × 𝑘8,7 × 𝑘7,1 = 𝑘2,1 × 𝑘8,2 × 𝑘7,8 × 𝑘1,7 (for the C1-C2-I8-I7-C1 loop), 

 𝑘2,3 × 𝑘3,9 × 𝑘9,8 × 𝑘8,2 = 𝑘3,2 × 𝑘9,3 × 𝑘8,9 × 𝑘2,8 (C2-C3-I9-I8-C2), 

 𝑘3,4 × 𝑘4,10 × 𝑘10,9 × 𝑘9,3 = 𝑘4,3 × 𝑘10,4 × 𝑘9,10 × 𝑘3,9 (C3-C4-I10-I9-C3), 

 𝑘4,5 × 𝑘5,11 × 𝑘11,10 × 𝑘10,4 = 𝑘5,4 × 𝑘11,5 × 𝑘10,11 × 𝑘4,10 (C4-C5-I11-I10-C4), 

 𝑘5,6 × 𝑘6,12 × 𝑘12,11 × 𝑘11,5 = 𝑘6,5 × 𝑘12,6 × 𝑘11,12 × 𝑘5,11 (C5-O6-I12-I11-C5). 

2.5.2 Voltage-dependent and ligand-dependent rate constants 

Some of the mathematical relationships used to express parameter constraints may 

involve rate constants that are functions of membrane potential. Unless otherwise 

specified, all these mathematical relationships must be true for any membrane potential 

value. For example, the scaling relationship 𝑘3,4 = 2 × 𝑘4,5 in Eq. 4 can be expanded as 

follows: 

 (8) .    VkkVkk  1

5,4

0

5,4

1

4,3

0

4,3 exp2exp
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A logarithm transformation can be applied to convert products into sums: 

 (9) 𝑙𝑛(𝑘3,4
0 ) + 𝑘3,4

1 × 𝑉 = 𝑙𝑛(2) + 𝑙𝑛(𝑘4,5
0 ) + 𝑘4,5

1 × 𝑉. 

Rearranging the terms gives: 

 (10) 𝑙𝑛(𝑘3,4
0 ) − 𝑙𝑛(𝑘4,5

0 ) + 𝑉 × (𝑘3,4
1 − 𝑘4,5

1 ) = 𝑙𝑛(2). 

This relationship must be true when V = 0, in which case it simplifies to: 

 (11) 𝑙𝑛(𝑘3,4
0 ) − 𝑙𝑛(𝑘4,5

0 ) = 𝑙𝑛(2). 

Using this result in Eq. 10, results in:  

 (12) 𝑘3,4
1 − 𝑘4,5

1 = 0. 

Thus, to enforce a scaling relationship between two voltage-dependent rate constants, the 

two mathematical relationships above (Eqs. 11 and 12) must be simultaneously satisfied. 

The same reasoning can be applied to other types of constraints. For example, after taking 

the logarithm and rearranging the terms, the first loop balance constraint in Eq. 7 

becomes:  

 (13)  𝑙𝑛(𝑘1,2
0 ) − 𝑙𝑛(𝑘2,1

0 ) + 𝑙𝑛(𝑘2,8
0 ) − 𝑙𝑛(𝑘8,2

0 ) + 𝑙𝑛(𝑘8,7
0 ) − 𝑙𝑛(𝑘7,8

0 ) +

𝑙𝑛(𝑘7,1
0 ) − 𝑙𝑛(𝑘1,7

0 ) + 𝑉(𝑘1,2
1 − 𝑘2,1

1 + 𝑘2,8
1 − 𝑘8,2

1 + 𝑘8,7
1 − 𝑘7,8

1 + 𝑘7,1
1 − 𝑘1,7

1 ) = 0. 

For the above equation to be true, two mathematical relationships must be simultaneously 

satisfied:  

 (14) 𝑙𝑛(𝑘1,2
0 ) − 𝑙𝑛(𝑘2,1

0 ) + 𝑙𝑛(𝑘2,8
0 ) − 𝑙𝑛(𝑘8,2

0 ) + 𝑙𝑛(𝑘8,7
0 ) − 𝑙𝑛(𝑘7,8

0 ) +

𝑙𝑛(𝑘7,1
0 ) − 𝑙𝑛(𝑘1,7

0 ) = 0       and 
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 𝑘1,2
1 − 𝑘2,1

1 + 𝑘2,8
1 − 𝑘8,2

1 + 𝑘8,7
1 − 𝑘7,8

1 + 𝑘7,1
1 − 𝑘1,7

1 = 0. 

Some kinetic mechanisms involve state transitions associated with the binding of a ligand 

(Grosman et al., 2000; Burzomato et al., 2004; Akk et al., 2005). For example, a 

relationship where one ligand-dependent rate constant 𝑘ij is scaled by a constant factor c 

to another ligand-dependent rate constant 𝑘kl can be expanded as follows: 

 (15) 𝑘ij
0 × [𝐿] = 𝑐 × 𝑘kl

0 × [𝐿] ⇒ 

  𝑙𝑛(𝑘ij
0) + 𝑙𝑛([𝐿]) = 𝑙𝑛(𝑐) + 𝑙𝑛(𝑘kl

0 ) + 𝑙𝑛([𝐿]), 

with the final solution: 

 (16) 𝑙𝑛(𝑘ij
0) − 𝑙𝑛(𝑘kl

0 ) = 𝑙𝑛(𝑐). 

Relationships involving voltage-dependent or ligand-dependent rate constants have some 

special restrictions that have a simple mathematical provenance: i) if a rate is scaled to 

another rate, their voltage sensitivities must be equal (or trivially zero). Thus, a voltage-

dependent rate cannot be scaled to a non-voltage-dependent rate, except for a single 

voltage value; ii) if a loop involves only one voltage-dependent transition, then the 

forward and backward voltage sensitivity factors for that transition must be equal (or 

zero)(Colquhoun and Hawkes, 1995a). A more typical and useful scenario would require 

at least two voltage-dependent transitions in the loop; and iii) a mathematical relationship 

that involves ligand-dependent transitions cannot be satisfied for all ligand 

concentrations, unless the algebraic sum of all the ln([Ligand]) terms is equal to zero. 

Thus, a ligand-dependent rate cannot be scaled to a non-ligand-dependent rate, except for 

a single concentration value. In the case of microscopic reversibility, this condition 
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requires that the clockwise and counterclockwise transitions around the loop involve the 

same number of ligand-dependent steps. When the channel binds multiple types of 

ligands, each type must satisfy these conditions. Models formulated without taking these 

precautions are, in principle, physically unrealistic.  

2.5.3. Allosteric and other multiplicative factors 

Multiplicative factors can be introduced in the rate constant equation to express a variety 

of parameter constraints. One obvious application is to implement allosteric model 

behavior, as previously discussed, where the a and b factors multiply the rate constant 

pre-exponential term 𝑘ij
0. However, multiplicative factors can also be introduced within 

the exponential in Eq. 1. So far, we lumped the voltage sensitivity as a single factor, 𝑘ij
1, 

but in fact we may need to consider the other quantities in Eq. 2. For example, one may 

want to introduce explicit temperature dependence for a rate in the case of 

thermosensitive proteins. In this case, 𝑘ij
1 can be factorized by the following constraint 

expression: 

 (17) 𝑘ij
1 = 𝑎𝑘 × 𝐶𝑘, 

where ak is a multiplicative factor that stands for 𝛿ij × 𝑧ij, and Ck is a numerical constant 

equal to F/RT, as in Eq. 2. This approach would make it possible to mix data collected at 

different temperatures, in the same way as one can already account for different voltages 

or ligand concentrations.  
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As another example, one may want to enforce a relationship between the 𝛿ij and 𝛿ji values 

for a given transition, such as 𝛿ij = 1 − 𝛿ji. In this case, assuming that 𝑧ij and 𝑧ji are 

known quantities, the following constraint expressions will apply: 

 (18) 𝑘ij
1 = 𝑎k1 × 𝐶𝑘,      𝑘ji

1 = 𝑎k2 × 𝐶𝑘,       𝑎𝑘 = 1 − 𝑎k2, 

where 𝑎k1 and 𝑎k2 are multiplicative factors that stand for 𝛿ij and 𝛿ji, respectively, and Ck 

is a numerical constant equal to zF/RT, where 𝑧 = 𝑧ij = 𝑧ji.  

Because of the logarithm transformation discussed before, multiplicative factors are 

subject to some restrictions. Thus, a pre-exponential parameter 𝑘ij
0 can only be 

constrained to an unlimited product of multiplicative factors and other pre-exponential 

parameters, each raised to an arbitrary power: 

 (19) 𝑘ij
0 = 𝐶 × ∏ 𝑎𝑘

𝐶𝑘
𝑘 × ∏ 𝑘mn

0 𝐶𝑚𝑛
mn , 

where C is a positive numerical constant. Taking the logarithm from 𝑘ij
0 will convert this 

product into a linear sum. In contrast, an exponential parameter 𝑘ij
1 can only be 

constrained to an unlimited sum of multiplicative factors and other exponential 

parameters, each multiplied by an arbitrary numerical constant: 

 (20) 𝑘ij
1 = 𝐶 + ∑ 𝐶𝑘 × 𝑎𝑘𝑘 + ∑ 𝐶mn × 𝑘mn

1
mn , 

where C is an arbitrary constant. As explained further, a given multiplicative factor can 

only be used as a pre-exponential-type factor, as in Eq. 19, or as an exponential-type 

factor, as in Eq. 20, but not as both.   
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2.5.4 Inequality constraints 

So far, the considered parameter constraints have only been formulated as mathematical 

equalities. However, prior knowledge may also be expressed through inequality 

parameter constraints. First, there is a physical requirement that all pre-exponential rate 

parameters 𝑘ij
0 must be greater than zero, since transition frequencies are positive 

numbers. Likewise, quantities that multiply rate constants, such as the a and b allosteric 

factors above, must also be restricted to positive values in order to keep rates positive. 

Both of these constraints are automatically handled by the logarithm transformation of 

variable. In contrast, the exponential factors 𝑘ij
1 are in principle free to take any value in 

the (–∞, +∞) range, but they can also be restricted. One could think of a variety of other 

inequality constraints. For example, limiting the values of voltage-sensitivity parameters 

𝑘ij
1 to be greater than zero for voltage sensor activation rates, and less than zero for 

deactivation rates: 

 (21) 𝑘ij
1 ≥ 0,  (activation) 

  𝑘ji
1 ≤ 0.  (deactivation) 

Applying any of these constraints could be a useful working hypothesis during the initial 

stages of formulating a model. Subsequently, these constraints could be relaxed. In 

reality, the forward and backward values can both have the same sign: as long as the 

activation value is more positive than the deactivation value (𝑘ij
1 ≥ 𝑘ji

1), the channel will 

be more activated at more positive membrane potentials, as is the case with Nav and 

other voltage-gated channels. To give another hypothetical example, one may want the 
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ratio between two rate constants at a certain membrane potential V0 to be smaller than a 

numerical constant c: 

 (22) 𝑘ij/𝑘kl ≤ 𝑐 ⇒  

  (𝑘ij
0 × 𝑒𝑥𝑝(𝑘ij

1 × 𝑉0))/(𝑘kl
0 × 𝑒𝑥𝑝(𝑘kl

1 × 𝑉0)) ≤ 𝑐 ⇒ 

  𝑙𝑛(𝑘ij
0) − 𝑙𝑛(𝑘kl

0 ) + 𝑉0 × (𝑘ij
1 − 𝑘kl

1 ) ≤ 𝑙𝑛(𝑐). 

All of these “≤” or “≥” inequalities can be converted to equality relationships by 

subtracting or adding, respectively, a positive quantity to the right-hand side of the 

inequality.  

For example, in Eq. 22, we can subtract z
2
, a quantity that by definition is positive: 

  (23) 𝑙𝑛(𝑘ij
0) − 𝑙𝑛(𝑘kl

0 ) + 𝑉0 × (𝑘ij
1 − 𝑘kl

1 ) ≤ 𝑙𝑛(𝑐) − 𝑧2. 

As long as the inequality condition in Eq. 23 is satisfied for z = 0, we can find a value for 

z that converts the inequality into an equality: 

 (24) 𝑙𝑛(𝑘ij
0) − 𝑙𝑛(𝑘kl

0 ) + 𝑉0 × (𝑘ij
1 − 𝑘kl

1 ) = 𝑙𝑛(𝑐) − 𝑧2. 

If we want the above ratio between two rate constants to be smaller than a numerical 

constant at any voltage V, not just at V0, then we have: 

 (25) 𝑙𝑛(𝑘ij
0) − 𝑙𝑛(𝑘kl

0 ) + 𝑉 × (𝑘ij
1 − 𝑘kl

1 ) = 𝑙𝑛(𝑐) − 𝑧2. 
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Since this is an equality, we follow the same reasoning as for equality constraints: the 

above relationship must also be true when V = 0, and thus we obtain two simultaneous 

relationships: 

 (26) 𝑙𝑛(𝑘ij
0) − 𝑙𝑛(𝑘kl

0 ) = 𝑙𝑛(𝑐) − 𝑧2, 

  𝑘ij
1 − 𝑘kl

1 = 0. 

In the jargon of optimization theory, z is called a "slack" variable (Fletcher, 2013). With 

equality constraints, one has to find a set of model parameters that satisfy a set of 

relationships. When inequalities are added to the model and transformed into equalities 

using slack variables, one has to find both a set of model parameters and a set of slack 

variables that together satisfy the constraint relationships. A slack variable is not a true 

parameter of the model, but merely a variable that is temporarily used to handle 

inequality constraints during the search for optimum parameters. For “≥” inequalities, we 

must add z
2
 to the right-hand side, rather than subtract it. Very importantly, the quantity 

added or subtracted via slack variables must take positive values, which is why we use z
2
 

and not z. The reason for converting inequality relationships to equalities is to have all 

linear constraints handled by the same linear algebra mathematical formalism. 

2.5.5 Model parameters  

As discussed in the previous section, the core parameters of a kinetic model are 𝑘ij
0 and 

𝑘ij
1, together with some optional multiplicative factors 𝑎𝑘 that describe allosteric coupling 

or other properties (e.g., the a and b allosteric factors in the model shown in Fig. 2.2B) or 

help parameterizing the rate constants in more detail. However, other parameters 𝑞𝑙 may 
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also be added to the modeling framework, depending on the application. These external 

parameters are not necessarily present in any of the rate constant expressions. Instead, 

they may describe the data or experimental variables. For example, when fitting 

macroscopic currents, one may also need to estimate the number of channels in the 

record, or the single channel conductance (Milescu, 2005). Thus, we define a set K, of 

size NK, which contains all the model parameters:  

(27) 𝑲 = {𝑘ij
0, 𝑘ij

1, 𝑎𝑘, 𝑞𝑙}. 

These quantities, which we term “rate constant parameters” (pre-exponential 𝑘ij
0 and 

exponential 𝑘ij
1), “multiplicative factors” (𝑎𝑘), and “external parameters” (𝑞𝑙), may be 

involved in the mathematical relationships that express parameter constraints, as 

discussed further.  

2.5.6 A general equation for linear parameter constraints 

All the mathematical relationships that were used to implement the assumptions made for 

the Nav model in Fig. 2.2A have something in common: regardless of type (scaling, 

microscopic reversibility, etc.), each of the above equality and inequality parameter 

constraints results in one or two equations involving 𝑙𝑛(𝑘ij
0), 𝑘ij

1, 𝑎𝑘, and z
2
, each 

multiplied by a constant. Although not shown in the above examples, these relationships 

can also contain any external parameter ql. Thus, a general form that covers all these 

examples can be written as follows: 

(28) ∑ [𝐶ij
0 × 𝑙𝑛(𝑘ij

0)]I,j + ∑ [𝐶ij
1 × 𝑘ij

1]I,j + ∑ [𝐶𝑘 × 𝑓𝑘(𝑎𝑘)]𝑘 + ∑ [𝐶𝑙 × 𝑓𝑙(𝑞𝑙)]𝑙 = 𝐶,

 (equality) 
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(29) ∑ [𝐶ij
0 × 𝑙𝑛(𝑘ij

0)]i,j + ∑ [𝐶ij
1 × 𝑘ij

1]i,j + ∑ [𝐶𝑘 × 𝑓𝑘(𝑎𝑘)]𝑘 + ∑ [𝐶𝑙 × 𝑓𝑙(𝑞𝑙)]𝑙 = 𝐶 +

𝐶𝑧 × 𝑧2, (inequality) 

where 𝑓𝑘 is an invertible function of the multiplicative factor 𝑎𝑘 (e.g., 𝑓𝑘(𝑎𝑘) = 𝑙𝑛(𝑎𝑘), 

or 𝑓𝑘(𝑎𝑘) = 𝑎𝑘), and 𝑓𝑙 is an invertible function of the external model parameter 𝑞𝑙. The 

𝐶ij
0, 𝐶𝑖𝑗

1 , 𝐶𝑘,𝐶𝑙, C, and 𝐶𝑧 quantities are numerical constants, with 𝐶𝑧 = 1 for a “≥” 

inequality, and 𝐶𝑧 = −1 for a “≤” inequality.  

Specific parameter constraints (e.g., scaling one rate constant to another) can be obtained 

from the general equation by selecting a subset of 𝑙𝑛(𝑘ij
0), 𝑘ij

1, 𝑓𝑘(𝑎𝑘), and 𝑓𝑙(𝑞𝑙) via non-

zero multiplication constants 𝐶ij
0, 𝐶𝑖𝑗

1 , 𝐶𝑘, or 𝐶𝑙. As shown in the above examples, a 

variety of useful constraints can be implemented using this mechanism: making a rate 

equal to a constant, scaling two rates by a constant factor, scaling two rates by a variable 

factor, constraining the total charge for a set of transitions, enforcing microscopic 

reversibility, constraining a reaction loop out of microscopic balance, restricting a model 

parameter to a range, expressing explicit temperature dependence, etc. Some of these 

constraints will require a single mathematical relationship, while others will require two. 

We note that using multiplicative factors in constraints generally makes sense when the 

same factor is used in multiple relationships. Otherwise, these factors can be simply 

calculated after the parameters are estimated.  

2.5.7 Converting between model parameters and free parameters 

One can verify that the model in Fig. 2.2B was parameterized in such a way as to 

implicitly satisfy most assumptions: identical and independent voltage sensors, allosteric 
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coupling of inactivation to activation, and microscopic reversibility. For example, the 

condition of identical and independent voltage sensors is enforced by the 4, 3, 2, 1, or 1, 

2, 3, 4 factors multiplying the αm or βm quantities, respectively. In other words, any 

values can be assigned to the model parameters, 𝛼𝑚
0 , 𝛼𝑚

1 , a, b, etc., and the assumptions 

will be automatically satisfied. There is only one exception: the C5-O6-I12-I11-C5 reaction 

loop is not implicitly balanced. In this case, the balance equation (i.e., 𝛼mo × 𝛽ho × 𝛽mh ×

𝑏−4 × 𝛼ℎ = 𝛽mo × 𝑎4 × 𝛽ℎ × 𝛼mh × 𝛼ho) is not true by definition. Instead, it must be 

enforced by choosing an appropriate set of numerical values for all the parameters 

involved. In contrast, all the other loops are automatically balanced (e.g., 4𝛼𝑚 × 𝛽ℎ ×

𝑎 × 𝛽𝑚 × 𝑏−1 × 𝛼ℎ = 𝛽𝑚 × 𝛽ℎ × 4𝛼𝑚 × 𝑎 × 𝛼ℎ × 𝑏−1). 

In general, to formulate a parameterization that implicitly satisfies all parameter 

constraints, one must be able to identify a subset of independent model parameters that 

can be estimated by the optimization engine, and a subset of dependent parameters that 

can be simply derived from the independent ones. This is exactly how the model in Fig. 

2.2B was formulated. However, finding this parameterization is not trivial in some cases 

(Colquhoun, 2004). Moreover, it is not clear to us how constraints that are defined by 

inequality relationships would be handled by this type of parameterization. A potentially 

easier and certainly more flexible strategy is to define the constraints as an invertible 

transformation 𝑓𝐶  between the set of interdependent model parameters K and a set of 

independent, or “free”, parameters X: 

(30) 𝑿 = 𝑓𝐶(𝑲), 

 𝑲 = 𝑓𝐶
−1(𝑿). 



75  

 

 

Thus, the model is defined by the K parameters, which are interdependent and thus 

cannot take arbitrary values, but only those values that satisfy the user-defined parameter 

constraints. In contrast, the X parameters are independent of each other and are “free” to 

take any value in the (–∞, +∞) range. We emphasize that the X parameters are not a 

subset of K, as explained below. These free parameters are passed to a model-blind 

optimizer that can search without any constraint in the parameter space defined by X, 

where it finds a solution that best explains the data. This optimal solution can be 

translated from the free parameter space back into the model parameter space, via 

the  𝑓𝐶
−1

transformation.  

If we want to implement the types of parameter constraints listed in the above examples, 

how do we define the 𝑓𝐶  and 𝑓𝐶
−1

 transformations that translate the model parameters K 

into the free parameters X, and vice versa? In preparation for this, we need to recognize 

that the left-hand side of the generalized Eq. 28 or 29 is nonlinear with respect to 𝑘ij
0 and 

𝑎𝑘, and perhaps to some external parameter 𝑞𝑙. However, we can make the following 

invertible transformations of variable: 

 (31) 𝜀ij
0 = 𝑙𝑛(𝑘ij

0), 

  𝑘ij
0 = 𝑒𝑥𝑝(𝜀ij

0), 

  𝜑𝑘 = 𝑓𝑘(𝑎𝑘), 

  𝑎𝑘 = 𝑓𝑘
−1(𝜑𝑘), 

  𝜙𝑙 = 𝑓𝑙(𝑞𝑙), 

  𝑞𝑙 = 𝑓𝑙
−1(𝜙𝑙). 
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If the multiplicative factor 𝑎𝑘 is an allosteric factor or a similar quantity that multiplies a 

rate constant 𝑘ij, then 𝑓𝑘(𝑎𝑘) is 𝑙𝑛(𝑎𝑘), which is invertible. If 𝑎𝑘 is a factor that 

multiplies a voltage sensitivity parameter 𝑘ij
1, then 𝑓𝑘(𝑎𝑘) is the identity function 

𝜑𝑘 = 𝑎𝑘, which is invertible as well. Similar reasoning applies to the external parameters 

𝑞𝑙. For example, if 𝑞𝑙 refers to the number of channels, we can also use the logarithm 

transformation (Milescu, 2005). In all cases, the logarithm has two desirable effects: it 

restricts the variables to positive values, and it scales the parameters to more similar 

values relative to each other, helping the optimization engine to find the solution.  

We can rewrite the generalized Eqs. 28 and 29 with these transformations of variable: 

(32) ∑ [𝐶ij
0 × 𝜀ij

0]i,j + ∑ [𝐶ij
1 × 𝑘ij

1]i,j + ∑ [𝐶𝑘 × 𝜑𝑘]𝑘 + ∑ [𝐶𝑙 × 𝜙𝑙]𝑙 = 𝐶,   (equality) 

(33) ∑ [𝐶ij
0 × 𝜀ij

0]i,j + ∑ [𝐶ij
1 × 𝑘ij

1]i,j + ∑ [𝐶𝑘 × 𝜑𝑘]𝑘 + ∑ [𝐶𝑙 × 𝜙𝑙]𝑙 = 𝐶 + 𝐶𝑧 × 𝑧2, 

(inequality) 

The left-hand side of these equations is now linear with respect to 𝜀ij
0, 𝑘ij

1, 𝜑𝑘, and 𝜙𝑘. 

Next, we define a vector R, of dimension NR, with elements that correspond to 𝜀ij
0, 𝑘ij

1, 

𝜑𝑘, and 𝜙𝑘. For a more intuitive notation, we refer to an element of R as ri, when its type 

is unspecified, or as 𝑟ij
0, 𝑟ij

1, 𝑟𝑘, or 𝑟𝑘, when we emphasize its identity as a specific type of 

model parameter (𝑘ij
0, 𝑘ij

1, 𝑎𝑘, or 𝑞𝑘, respectively). R has the same size as K (NR = NK). 

Thus, a parameter constraint is expressed as a linear relationship between the elements 𝑟𝑖 

of R, as follows: 

 (34) ∑ 𝐶𝑖 × 𝑟𝑖𝑖 = 𝐶,  (equality) 

 (35) ∑ 𝐶𝑖 × 𝑟𝑖𝑖 = 𝐶 + 𝐶𝑧 × 𝑧2, (inequality) 
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where 𝐶𝑖 stands for one of the numerical constants 𝐶ij
0, 𝐶ij

1, 𝐶𝑘, or 𝐶𝑙, respectively. Then, 

assuming that we have NC constraint relationships, we can write the generalized 

constraint Eq. 34 or 35 above in a more compact matrix form (Qin, 1996; Fletcher, 2013), 

as follows: 

 (36) 𝑴 × 𝑹 = 𝑽, 

where M is a matrix of dimension NC x NR and V is a vector of dimension NC. Each row 

of M corresponds to the numerical constants on the left-hand side of the generalized Eq. 

34 or 35, while each element of V represents the right-hand side of Eq. 34 or 35: 

(37)[

… (𝐶ij
0)

1
(𝐶ij

1)
1

… (𝐶𝑘)1 … (𝐶𝑙)1 …
… … … … … … … …
… (𝐶ij

0)
𝑁𝐶

(𝐶ij
1)

𝑁𝐶
… (𝐶𝑘)𝑁𝐶

… (𝐶𝑙)𝑁𝐶
…

]

(𝑴)

×

[
 
 
 
 
 
 
 

…
𝜀ij

0

𝑘ij
1

…
𝜑𝑘

…
𝜙𝑙

… ]
 
 
 
 
 
 
 

(𝑹)

=

[

(𝐶)1  or  (𝐶 + 𝐶𝑧 × 𝑧2)1

…
(𝐶)𝑁𝐶

  or  (𝐶 + 𝐶𝑧 × 𝑧2)𝑁𝐶

]

(𝑽)

. 

Thus, each linear relationship between the 𝜀ij
0, 𝑘ij

1, 𝜑𝑘, and 𝜙𝑙 variables is encoded by row 

c of matrix M and element c of vector V. Equation 36 encapsulates in matrix form all the 

linear parameter constraints imposed on the model, including both equality and inequality 

relationships.  

Although they linearize the constraint relationships, the transformed model parameters R 

are still interdependent through the constraint relationships. How do we remove the 
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interdependence and convert R into the set of free parameters X? Ignoring for now that V 

is not a constant vector, because it depends nonlinearly on the optional slack variables z, 

we can take advantage of the linear form of the matrix equation 𝑴 × 𝑹 = 𝑽 and express 

R as a linear function of X (Qin, 1996), and vice versa: 

 (38) 𝑹 = 𝑨 × 𝑿 + 𝑩, 

 (39) 𝑿 = 𝑨−1 × 𝑹, 

where the vector X, of dimension NX = NR - NC, contains the independent parameters. 

Note that Eq. 39 is obtained from 𝑿 = 𝑨−1 × (𝑹 − 𝑩), because A
-1

 multiplied by B is 

equal to a zero vector. The matrix A, of dimension NR x NX, and the vector B, of 

dimension NR, can be determined from M and V using the singular value decomposition 

(Golub and Reinsch, 1970). First, M is decomposed as follows: 

 (40) 𝑴 = 𝑼𝑀 × 𝑺𝑀 × 𝑽𝑀
𝑇, 

where UM is an orthogonal matrix of dimension NC x NC, VM is an orthogonal matrix of 

dimension NR x NR, and SM is a diagonal matrix of dimension NC x NR that contains the 

singular values of matrix M. Then, A can be extracted as a submatrix of VM: 

 (41) 𝑨𝑖=1…𝑁𝑅, j=1…𝑁𝑋
= 𝑽M 𝑖=1…𝑁𝑅,𝑗=𝑁𝐶…𝑁𝑅

. 

The inverse of the A matrix, A
-1

, is similarly obtained from VM
-1

. Since VM is orthogonal, 

VM
-1

 is simply equal to VM transposed (VM
T
). Then, B can be calculated as follows: 

 (42) 𝑩 = 𝑴+ × 𝑽, 
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where the matrix 𝑴+, of dimension NR x NC, is the pseudo-inverse of M and can be 

calculated as follows: 

 (43) 𝑴+ = 𝑽𝑀 × 𝑺𝑀
+ × 𝑼𝑀

𝑇, 

where SM
+
 is obtained from SM by replacing all non-zero diagonal elements (the singular 

values) with their inverse. With the A and B matrices obtained as above, we can now 

calculate R from K, and then X from R, and vice versa.  

How do we deal with inequality constraints and slack variables? We found a simple 

solution, though perhaps not immediately obvious. First, we define a vector Z, of 

dimension NZ, where NZ is equal to the number of inequality constraints. This vector 

contains all the slack variables, one for each inequality constraint. Then, we define 

another vector 𝑿̄, which is the union of X and Z: 

 (44) 𝑿̄ = 𝑿 ∪ 𝒁. 

The size of 𝑿̄ is equal to NX + NZ, The slack variables Z are arbitrary and thus 

independent of each other and of the free parameters X. Hence, the elements of 𝑿̄ are also 

independent of each other, and represent the free parameters given to the optimizer. Each 

time the optimizer tries a new set of free parameters 𝑿̄, the corresponding Z is used to 

recalculate V (Eq. 37), which in turn is used to recalculate B (Eq. 42). The A matrix 

remains the same, because the coefficient matrix M contains only constants. Thus, we 

can calculate the transformed model parameters R as follows: 

 (45) 𝑩𝑍 = 𝑴+ × 𝑽𝑍, 

 (46) 𝑹 = 𝑨 × 𝑿 + 𝑩𝑍, 
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where 𝑩𝑍 and 𝑽𝑍 are the B and V quantities calculated for a given vector Z.  

During optimization, the slack variables in Z are provided by the optimizer, together with 

X. However, Z must be initialized at the beginning of the optimization from a given set 

of transformed model parameters R and the appropriate relationships in Eq. 37. Let zc be 

the slack variable introduced by the inequality relationship defined by row c of the 

constraint matrix M. Then, zc can be calculated with the following equation: 

 (47) 𝑴𝑐 × 𝑹 = 𝐶𝑐 + 𝐶zc × 𝑧𝑐
2,  

where Mc is a vector corresponding to row c of M. This equation has the obvious 

solution: 

 (48) 𝑧𝑐 = √(
𝑴𝑐×𝑹−𝐶𝑐

𝐶zc
). 

The two-way conversion between the model parameters K and the free parameters 𝑿̄ is 

summarized in the flowchart in Fig. 2.3.  

2.5.8 Redundant constraints 

One should take care to prevent redundancy and use only the minimum number of 

mathematical relationships that are necessary to implement the assumptions of the model. 

Intuitively, a constraint relationship is redundant if its intended consequence is already 

enforced by other relationships. With our example model, one could use either the scaling 

𝑘7,8 = 𝑎 × 𝑘1,2, or the scaling 𝑘7,8 = 4 × 𝑎 × 𝑘4,5, but not both, because it would create 

an additional relationship between 𝑘1,2 and 𝑘4,5. Similarly, the condition that the 

algebraic sum of voltage sensitivities around a reaction loop is equal to zero may be 
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already enforced by some rate scaling relationships, and should not be duplicated. When 

in doubt, one could check the rank of the M matrix, which will be reduced by redundant 

constraints.  

Redundant constraints may also arise from inequalities. Although tempting, using 

inequality relationships to enforce a range constraint on a model parameter is not 

possible, unfortunately, because it would result in two equality relationships that are 

redundant. However, this limitation can be overcome through the same mechanism that 

handles behavioral constraints (Navarro et al., 2018). Furthermore, although inequality 

constraints add slack variables to the overall set of free parameters, the total number of 

equality and inequality constraints must still be strictly smaller than the number of model 

parameters K. 

2.5.9 Calculating the cost function and its gradients 

In a typical scenario, the cost function F is an explicit function of the rate constants 𝑘ij 

and of some external model parameters 𝑞𝑙: 

 (49) 𝐹 = 𝑓(𝑘ij, 𝑞𝑙). 

Typically, F would not depend explicitly on the multiplicative factors 𝑎𝑘, which are 

generally used to establish relationships between other parameters. Since the model 

parameters K can be obtained from the free parameters 𝑿̄, F can also be written as a 

function of the free parameters 𝑿̄: 

 (50) 𝐹 = 𝑓(𝑥̄𝑘). 
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Thus, the optimization algorithm is model-blind. In other words, even though it 

eventually generates a set of optimum model parameters 𝑲∗, it actually searches for a 

solution in the space defined by the free parameters 𝑿̄. As it searches for the solution, the 

optimizer requires the cost function F to be calculated for each proposed 𝑿̄. The specific 

expression of the cost function F depends on the type of application: it could be a sum of 

square errors, a likelihood, or a Bayesian posterior probability, or it could be a mixture of 

these, when multiple types of data are bundled together (e.g., single channel and whole 

cell traces). 

The optimizer may also require the gradients of F with respect to the free parameters 𝑿̄, 

as is the case with gradient descent optimization methods (Fletcher, 2013). These 

gradients can be calculated by numerical approximation, but analytical calculation is 

more accurate and may actually be faster in some instances. To calculate the gradient of 

F with respect to a free parameter 𝑥̄𝑘, we have to consider that the rate constants 𝑘ijare 

functions of 𝑘ij
0 and 𝑘ij

1. In turn, 𝑘ij
0 is a function of 𝜀ij

0. We also have to consider that 𝑞𝑙is 

a function of 𝜙𝑙. These 𝜀ij
0, 𝑘ij

1, and 𝜙𝑙 quantities are entries in the R vector and thus are 

explicit functions of a free parameter 𝑥̄𝑘. To calculate a gradient, we apply the chain 

differentiation rule, as follows: 

(51) 
𝜕𝐹

𝜕𝑥̄𝑘
= ∑ [

𝜕𝐹

𝜕𝑘ij
× (

𝜕𝑘ij

𝜕𝑘ij
0 ×

𝜕𝑘ij
0

𝜕𝑟𝑚
×

𝜕𝑟𝑚

𝜕𝑥̄𝑘
+

𝜕𝑘ij

𝜕𝑘ij
1 ×

𝜕𝑘ij
1

𝜕𝑟𝑛
×

𝜕𝑟𝑛

𝜕𝑥̄𝑘
)]ij + ∑ [

𝜕𝐹

𝜕𝑞𝑙
×

𝜕𝑞𝑙

𝜕𝑟𝑝
×

𝜕𝑟𝑝

𝜕𝑥̄𝑘
]𝑙 . 

In the above equation, 𝑟𝑚, 𝑟𝑛, and 𝑟𝑝 are the elements of the R vector that correspond to 

𝜀ij
0, 𝑘ij

1, and 𝜙𝑙, respectively. The 
𝜕𝐹

𝜕𝑘ij
 and 

𝜕𝐹

𝜕𝑞𝑙
 quantities depend on the specific application, 

e.g., the maximum interval likelihood (Qin, 1996) or the maximum point likelihood of 
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single channel data (Qin, 2000a), or the maximum likelihood of macroscopic currents 

(Milescu, 2005). The other partial derivatives can be calculated as follows: 

 (52) 
𝜕𝑘ij

𝜕𝑘ij
0 =

𝑘ij

𝑘ij
0,       

𝜕𝑘ij
0

𝜕𝑟𝑚
= 𝑘ij

0,     
𝜕𝑘ij

𝜕𝑘ij
1 = 𝑘ij × 𝑉,    

𝜕𝑘ij
1

𝜕𝑟𝑛
= 1. 

The 
𝜕𝑞𝑙

𝜕𝑟𝑝
partial derivative depends on the specific transformation between 𝑞𝑙 and 𝜙𝑙, as 

illustrated here for the logarithm and identity transformations: 

(53) 
𝜕𝑞𝑙

𝜕𝑟𝑝
= 𝑞𝑙  if 𝜙𝑙 = 𝑙𝑛 𝑞𝑙, 

 
𝜕𝑞𝑙

𝜕𝑟𝑝
= 1  if 𝜙𝑙 = 𝑞𝑙. 

Finally, the partial derivative of any 𝑟𝑖 with respect to any 𝑥̄𝑘 takes the following form:  

 (54) 
𝜕𝑟𝑖

𝜕𝑥̄𝑘
= 𝑎i,k  if 𝒙̄𝒌 ∈ 𝑿, 

  
𝜕𝑟𝑖

𝜕𝑥̄𝑘
= 2 × 𝑚+

i,c × 𝑥̄𝑘  if 𝒙̄𝒌 ∈ 𝒁 and inequality constraint is "≥", 

  
𝜕𝑟𝑖

𝜕𝑥̄𝑘
= −2 × 𝑚+

i,c × 𝑥̄𝑘  if 𝒙̄𝒌 ∈ 𝒁 and inequality constraint is "≤". 

where 𝑎i,kand 𝑚i,c
+  are elements in the A and M

+
 matrices, respectively. In the last two 

equations, the c subscript is the index of the inequality constraint relationship that uses 𝒙̄𝒌 

as the slack variable (the index in V, Eq. 45).  

Using all these quantities, the overall analytical derivative of F, the cost function with 

respect to 𝒙̄𝒌 becomes: 

(55) 
𝜕𝐹

𝜕𝑥̄𝑘
= ∑ [

𝜕𝐹

𝜕𝑘ij
× 𝑘ij × (𝑎m,k + 𝑉 × 𝑎n,k)]ij + ∑ [

𝜕𝐹

𝜕𝑞𝑙
× 𝑞𝑙 × 𝑎p,k]𝑙  if 𝒙̄𝒌 ∈ 𝑿, 

 
𝜕𝐹

𝜕𝑥̄𝑘
= 2 × 𝑥̄𝑘 × {∑ [

𝜕𝐹

𝜕𝑘ij
× 𝑘ij × (𝑚+

m,c + 𝑉 × 𝑚+
n,c)]ij + ∑ [

𝜕𝐹

𝜕𝑞𝑙
× 𝑞𝑙 × 𝑚+

p,c]𝑙 }  
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if 𝒙̄𝒌 ∈ 𝒁, "≥", 

          
𝜕𝐹

𝜕𝑥̄𝑘
= −2 × 𝑥̄𝑘 × {∑ [

𝜕𝐹

𝜕𝑘ij
× 𝑘ij × (𝑚+

m,c + 𝑉 × 𝑚+
n,c)]ij + ∑ [

𝜕𝐹

𝜕𝑞𝑙
× 𝑞𝑙 × 𝑚+

p,c]𝑙 }  

if 𝒙̄𝒌 ∈ 𝒁, "≤". 

The above equations are given for the case of 𝜙𝑙 = 𝑙𝑛 𝑞𝑙. The subscripts m, n, and p used 

for the a and m
+
 quantities are equal to the indices in the R vector that correspond to 𝜀ij

0, 

𝑘ij
1, and 𝜙𝑙, respectively.  

2.5.10 Calculating the error of the estimates 

When estimating the parameters of a model, it is important to have a measure of 

confidence in those estimates. The variance of a free parameter estimate measures the 

curvature of the cost function with respect to that parameter. Intuitively, the variance tells 

us how much the calculated prediction of the model will change when the value of a free 

parameter 𝑥̄𝑘 is changed by a small amount. We emphasize that this change must be 

interpreted in the context of the specific data used in the analysis. Thus, parameters 

estimated with large variance are generally poorly determined, because of insufficient 

data, while small variance denotes a well-defined parameter. 

One could calculate the variance of a free parameter estimate, 𝑉𝑎𝑟(𝑥̄𝑘), from the second 

order partial derivative of the cost function, or could use the variance provided by some 

optimization engines, as is the case with the Davidon-Fletcher-Powell optimizer 

(Fletcher, 2013). However, when using the parameter constraints described here, the free 

parameters 𝑿̄ must be converted back to model parameters K, and some transformation 
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must be applied to the variance. Thus, the variance of a model parameter, 𝑉𝑎𝑟(𝑘𝑖), can 

be calculated using the following approximation (Qin, 2000a; Milescu, 2005): 

 (56) 𝑉𝑎𝑟(𝑘𝑖) = ∑ [𝑉𝑎𝑟(𝑥̄𝑝) × (
𝜕𝑘𝑖

𝜕𝑥̄𝑝
)
2

]𝑝 , 

where 𝑥̄𝑝 is a free parameter in 𝑿̄. To calculate the variance for each type of model 

parameter (𝑘ij
0, 𝑘ij

1, 𝑎𝑘, and 𝑞𝑙), we use the chain differentiation rule, as shown above for 

calculating the cost function gradients. For rate constant parameters (𝑘ij
0 and 𝑘ij

1), we 

obtain the following: 

 (57) 𝑉𝑎𝑟(𝑘ij
0) = ∑ [𝑉𝑎𝑟(𝑥̄𝑝) × (𝑘ij

0 ×
𝜕𝑟ij

0

𝜕𝑥̄𝑝
)
2

]𝑝 , 

  𝑉𝑎𝑟(𝑘ij
1) = ∑ [𝑉𝑎𝑟(𝑥̄𝑝) × (

𝜕𝑟ij
1

𝜕𝑥̄𝑝
)
2

]𝑝 . 

For pre-exponential and exponential multiplicative factors ak we have the expressions: 

 (58) 𝑉𝑎𝑟(𝑎𝑘) = ∑ [𝑉𝑎𝑟(𝑥̄𝑝) × (𝑎𝑘 ×
𝜕𝑟𝑘

𝜕𝑥̄𝑝
)
2

]𝑝  if ak is pre-exponential, 

  𝑉𝑎𝑟(𝑎𝑘) = ∑ [𝑉𝑎𝑟(𝑥̄𝑝) × (
𝜕𝑟𝑘

𝜕𝑥̄𝑝
)
2

]𝑝   if ak is exponential. 

Finally, for external parameters ql, the expression depends on the transformation 

function. For the logarithm and the identity function, we have the following expressions: 

 (59) 𝑉𝑎𝑟(𝑞𝑙) = ∑ [𝑉𝑎𝑟(𝑥̄𝑝) × (𝑞𝑙 ×
𝜕𝑟𝑙

𝜕𝑥̄𝑝
)
2

]𝑝  for logarithm transformation, 

  𝑉𝑎𝑟(𝑞𝑙) = ∑ [𝑉𝑎𝑟(𝑥̄𝑝) × (
𝜕𝑟𝑙

𝜕𝑥̄𝑝
)
2

]𝑝   for identity transformation. 
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In Eqs. 56 through 59, the partial derivative of r (𝑟ij
0, 𝑟ij

1, 𝑟𝑘, and 𝑟𝑙) with respect to 𝑥̄𝑝is 

calculated as in Eqs. 54, depending on whether 𝑥̄𝑝 is an element of X or a slack variable 

in Z. 

2.6. Behavioral constraints and arbitrary parameter relationships 

A good amount of prior knowledge about the channel can be expressed as linear 

relationships between model parameters, resulting in constraints that can be handled with 

relatively straightforward linear algebra methods. However, some channel behaviors and 

properties cannot be easily formulated as explicit functions of model parameters, or they 

need nonlinear functions that are not so easily tractable. For voltage-gated channels, 

examples of important functional behavior include the open probability (PO), the voltage-

dependence of activation or inactivation, or the use-dependent availability. These 

properties cannot be easily formulated as functions of rate constants, except for very 

simple kinetic mechanisms. Furthermore, they must be prescribed in the context of a 

specific stimulation protocol (e.g., voltage-clamp step protocols, etc.).  

2.6.1 Expanding the cost function 

Without explicit parameter relationships, we cannot solve behavioral constraints simply 

by converting model parameters into free parameters, as we did for linear parameter 

constraints. Likewise, we cannot use that formalism to solve any parameter constraint 

that cannot be written as a linear relationship between the transformed model parameters, 

as captured by the generalized linear constraint equations 32 and 33. Instead, the solution 

proposed here for handling behavioral constraints and arbitrary parameter relationships is 
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to include them into the cost function. Thus, the cost function F, which is minimized by 

the optimizer in search for an optimal solution, can be expanded to include multiple 

components, one for each piece of experimental data and one for each constraint: 

(60) 𝑭 = ∑ (𝜶𝒊
𝒀 × 𝑭𝒊

𝒀)𝒊 + ∑ (𝜶𝒋
𝑪 × 𝑭𝒋

𝑪)𝒋 , 

where 𝐹𝑖
𝑌 represents the cost of data component i and 𝐹𝑗

𝐶 represents the cost of behavioral 

constraint j. The αij quantities are relative weighting factors that multiply the cost 

function components. Including multiple components in the cost function is known in the 

optimization literature as multi-objective fitting (Druckmann et al., 2007; 

Bandyopadhyay and Saha, 2013; Fletcher, 2013). For example, 𝐹𝑖
𝑌 could stand for newly 

acquired voltage-clamp data (e.g., the time course of activation and inactivation at 

different membrane potentials), while 𝐹𝑗
𝐶 could be data from the literature (e.g., steady 

state activation and inactivation curves), or a hypothetical property recorded in a different 

paradigm (e.g., the open probability PO). The cost function components that denote 

constraints should be formulated in such a way that they take a value of zero when the 

underlying constraint is satisfied, and a very large value – relative to the data cost 

components – when the constraint fails, as explained further. 

2.6.2 Formulating behavioral constraints and arbitrary parameter 

relationships 

Some behavioral constraints can be formulated as mathematical relationships involving 

simple properties of the channel. For example, we could constrain the maximum open 
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probability reached during a depolarization step to take certain values or to fall within a 

range:  

 (61)  𝑃𝑂 = 0.5, or   𝑃𝑂 ≤ 0.4, or           0.3 ≤ 𝑃𝑂 ≤ 0.7. 

An example of a parameter constraint that cannot be processed with the formalism 

developed in part one is restricting a rate constant pre-exponential factor 𝑘ij
0 to a range of 

values: 

 (62)  1000 ≤ 𝑘ij
0 ≤ 10000.  

This range constraint cannot be handled as two linear inequality relationships, because 

they would be mathematically redundant, where both cannot be simultaneously satisfied. 

Another example is parameterizing an exponential factor 𝑘ij
1 as a product of more than 

one variable: 

 (63) 𝑘ij
1 = 𝐶 × 𝑎 × 𝑏, 

where a and b could stand for the 𝛿ij and 𝑧ij parameters in Eq. 2, and C is a constant equal 

to 𝐹/(𝑅 × 𝑇). Unfortunately, this equation is nonlinear. 

Algebraically, any equality or inequality relationship can be converted to “= 0” or to 

“≥ 0”, respectively. Thus, the above constraints could be rewritten as follows:  

 (64)  𝑃𝑂 − 0.5 = 0,  

  0.4 − 𝑃𝑂 ≥ 0,  

  {
𝑃𝑂 − 0.3 ≥ 0
0.7 − 𝑃𝑂 ≥ 0

}. 
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  {
𝑘ij

0 − 1000 ≥ 0

10000 − 𝑘ij
0 ≥ 0

}. 

  𝑘ij
1 − 𝐶 × 𝑎 × 𝑏 = 0. 

The cost function components 𝐹𝐶 that correspond to the above equality and inequality 

relationships can be formulated as follows: 

(65) 𝐹𝐶 = 𝛼 × (𝑃𝑂 − 0.5)2,  

 𝐹𝐶 = 𝛼 × (0.4 − 𝑃𝑂)2,  

 𝐹𝐶 = 𝛼 × [(𝑃𝑂 − 0.3)2 + (0.7 − 𝑃𝑂)2],  

 𝐹𝐶 = 𝛼 × [(𝑘ij
0 − 1000)

2
+ (10000 − 𝑘ij

0)
2
], and 

 𝐹𝐶 = 𝛼 × (𝑘ij
1 − 𝐶 × 𝑎 × 𝑏)

2
, 

 where α is a weighting factor with the following properties: 

(66) 𝛼 > 0,     for equality constraints, and 

(67) {
𝛼 = 0   if constraint ≥ 0
𝛼 > 0   if constraint < 0

},   for inequality constraints, 

where “constraint” refers to the left-hand side term of a constraint equation (Eqs. 37). 

Thus, these cost function components are equal to zero when the underlying constraints 

are exactly satisfied, but take a positive and quadratically increasing value when the 

constraint relationships are not satisfied.  

2.6.3 Non-parametric behavioral constraints 
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In principle, the same logic can be applied to any other model property. However, some 

model behaviors cannot be reduced to a single value or cannot be easily calculated 

theoretically. For example, many functional aspects, such as the recovery from 

inactivation or the use-dependence, can be empirically fitted by one or two exponentials. 

Unfortunately, these apparent time constants cannot be directly and easily calculated 

from the model, which actually predicts a larger number of exponentials, equal to the 

state count minus one (Milescu, 2005; Salari et al., 2016). Likewise, the voltage-

dependent activation curve can be well approximated and fitted by a Boltzmann equation 

with only two parameters, but calculating the half-activation and the sensitivity values 

directly from the model is generally not practical. 

In cases like these, it is simpler to simulate the response of the channel to the same 

stimulation protocol as was used to obtain the experimental - or hypothesized - data. 

Then, a cost function component can be calculated as the sum of square differences 

between the simulated and the experimental data: 

(68) 𝐹𝐶 = 𝛼 ×
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑖 ,  

where yi and xi are experimental and simulated data points, respectively, and N is the 

number of data points. In the above equation, one could use the raw data directly, point 

by point, or one could extract some properties from the raw data and use the points on 

that property curve. For example, when the stimulation protocol is designed to extract the 

time course of a macroscopic current, one would fit the raw data directly. In contrast, 

when the stimulation protocol is designed to extract a behavior, such as the recovery from 

inactivation, one would fit the property curve. Although extracting a property curve 
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involves additional computation, it has the substantial benefit of concentrating the 

information on a very specific aspect of channel behavior. For example, in a curve that 

represents the recovery from inactivation, every data point informs directly on the 

apparent time constants of inactivation. Likewise, every data point in a voltage-dependent 

activation curve informs directly on the two parameters of the Boltzmann equation. 

Whether the cost function for these non-parametric behavioral constraints is calculated 

from raw data or from property curves, or is based on hypothetical values, one must 

consider the presence of random noise and other artifacts that contaminate the 

experimental data. Thus, even a perfect model would not generate zero cost for the 

constraints, which may confuse the optimization engine. A simple solution is to 

reformulate the problem as an inequality: 

(69) 
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑖 ≤ 𝜀,  

where ε is a positive constant proportional to the noise content of the data. Then, the cost 

function component can be written as follows: 

(70) 𝐹𝐶 = 𝛼 × [𝜀 −
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑖 ]

2

, 

where α is a weighting factor with the following property: 

(71)  {
𝛼 = 0   if   

1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑖 ≤ 𝜀

𝛼 > 0   if   
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑖 > 𝜀

}. 

Thus, if the sum of square errors between the simulated and the experimental data is less 

than ε, then the underlying constraint is considered to be satisfied. In other words, the 
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model only needs to explain the constraining data components “well enough”, as 

warranted by the inevitable noise and artifacts.  

2.6.4 A computational framework for solving behavioral constraints and 

arbitrary parameter relationships 

We presented above some examples of behavioral constraints and arbitrary parameter 

relationships. In general, the problem we must solve is to find a model that best explains 

the experimental data, but also satisfies a set of equality or inequality constraints. 

Mathematically, the problem can be formulated as the minimization of a function subject 

to a set of nonlinear constraints: 

(72)  minimize 𝐹(𝑿̄) 

such that:  ℎ𝑖(𝑿̄) = 0, 𝑖 = 1…𝑁𝐸  

       𝑔𝑗(𝑿̄) ≥ 0, 𝑗 = 1…𝑁𝐼, 

where 𝑿̄ and 𝐹(𝑿̄) are the vector of free parameters and the cost function, respectively, as 

defined in part one, and ℎ𝑖(𝑿̄) and 𝑔𝑗(𝑿̄) are two sets of NE equality and NI inequality 

constraints, respectively. In the case of maximum likelihood methods, instead of 

maximizing the log-likelihood, one can equivalently minimize its negative. 

As discussed in the previous section, one possible solution to this constrained function 

minimization is to add the constraints to the fit (Eq. 60). This approach is equivalent to 

the method of penalties (Fletcher, 2013), which reformulates the problem as an 

unconstrained optimization, by adding a penalty term to the cost function 𝐹(𝑿̄). Thus, the 

objective becomes minimizing a penalized cost function 𝐹′(𝑿̄, 𝛼): 
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 (73) 𝐹′(𝑿̄, 𝛼) = 𝐹(𝑿̄) + 𝛼 × ∑ ℎ𝑖(𝑿̄)2
𝑖 + ∑ 𝛽𝑗 × 𝑔𝑗(𝑿̄)2

𝑗 , 

where α and βj are penalty factors with the following properties: 

 (74) 𝛼 > 0, 

  𝛽𝑗 = {
0  if  𝑔𝑗(𝑿̄) ≥ 0

𝛼  if  𝑔𝑗(𝑿̄) < 0
}, 

Formulating the hi and gi expressions that correspond to any of the equality and 

inequality constraints above is straightforward. For example, the first two of the PO 

constraints given above (Eq. 64) become: 

 (75)  ℎ𝑖 = 𝑃𝑂 − 0.5,  

  𝑔𝑖 = 0.4 − 𝑃𝑂. 

The gradients of the penalized cost function might be required by the optimization 

engine. These could be calculated analytically, as follows: 

(76) 
𝜕𝐹′(𝑿̄,𝛼)

𝜕𝑥̄𝑘
=

𝜕𝐹(𝑿̄)

𝜕𝑥̄𝑘
+ 2 × {𝛼 × ∑ [ℎ𝑖(𝑿̄) ×

𝜕ℎ𝑖(𝑿̄)

𝜕𝑥̄𝑘
]𝑖 + ∑ [𝛽𝑗 × 𝑔𝑗(𝑿̄) ×

𝜕𝑔𝑗(𝑋̄)

𝜕𝑥̄𝑘
]𝑗 }. 

The derivatives of hi and gj with respect to a free parameter 𝑥̄𝑘 depend on the specific 

constraints used, and one may need to calculate them using the chain differentiation rule, 

as in the case of linear constraints. Ultimately, if the constraint functions are too 

complicated, the gradients can be approximated numerically. Whether the gradients are 

calculated analytically or numerically, one should keep in mind that inequality penalties 

are only semi-differentiable and may throw off the optimizer. If this is the case, one 

possibility is to approximate the penalty into a differentiable function (Bertsekas, 1975).  
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The main advantage of the penalty method is that it can be used with any optimization 

algorithm that was originally designed for non-constrained problems. The main issue, 

however, is the choice of the penalty parameter α. On the one hand, if α is too small, the 

solution found by the optimizer will be pulled toward 𝐹(𝑿̄), and then the constraints 

defined by ℎ𝑖(𝑿̄) and 𝑔𝑗(𝑿̄) may not be exactly satisfied. On the other hand, if α is very 

large, the solution will satisfy the constraints, in principle. However, the optimizer engine 

may have a difficult time finding that solution, because the penalized cost function 

𝐹′(𝑿̄, 𝛼) may change very abruptly in the n-dimensional parameter space. Thus, although 

it is conceptually and computationally very simple, using the penalized cost function is 

not exactly a plug-and-play solution, as in the case of linear constraints. To better 

demonstrate how the fitting procedure is performed QuB, the graphic user interface is 

described in Fig. 2.4. 

A possible strategy is to find the solution iteratively, starting with a relatively small α, 

and increasing it until some convergence criteria are satisfied (Himmelblau, 1972). This 

is the approach we are taking here, as summarized in Fig. 2.5. Once a model topology is 

chosen, the workflow starts with defining – if any – the linear parameter constraints and 

the behavioral constraints, including any other arbitrary parameter constraints. The next 

step is to define the cost function and the penalized cost function, according to the 

specific application (macroscopic fitting, single-channel maximum likelihood, etc.). 

Then, we choose a set of model parameters as the starting point, K0. Mathematically, 

these parameters do not need to satisfy either set of constraints (parameter or behavioral), 

but starting as close as possible is recommended. From the initial model parameters K0, 
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we then calculate the initial set of free parameters, 𝑿̄0. Finally, we initialize the penalty 

parameter α to α0, equal to a small positive number. In practice, this value can be chosen 

so as to make the data and the penalty components of the overall cost function be 

approximately equal.  

Once these quantities are defined and initialized, we start the optimization procedure, 

which involves two embedded loops, as shown in Fig. 2.5. An outer loop, indexed by p, 

handles the schedule for updating the penalty parameter αp that is used to calculate the 

penalized cost function 𝐹′(𝑿̄, 𝛼𝑝), and an inner loop, indexed by k, handles model 

optimization for a given αp. The penalty parameter αp is progressively increased at each 

outer loop iteration, to increase the relative weight of the penalty component in 

𝐹′(𝑿̄, 𝛼𝑝). Thus, the behavioral constraints may be only loosely satisfied at the end of the 

first outer loop iteration, but they will get tighter each time αp is increased. The outer loop 

can be run for a predefined number of iterations, or can be terminated when the 

behavioral constraints are satisfied, if at all possible.  

In principle, any type of optimization engine can be used in the inner loop. As explained, 

the optimizer is completely model- and penalty-blind. Essentially, the optimizer solves an 

unconstrained minimization problem, operating with a set of free parameters 𝑿̄. 

However, as it explores the free parameter space in search for a minimum, the optimizer 

will require, for a given 𝑿̄𝑘, the penalized cost function 𝐹′(𝑿̄, 𝛼𝑝) and possibly its 

gradients. For this, the transformed model parameters Rk are calculated from 𝑿̄𝑘, and 

then the model parameters Kk are calculated from Rk, as outlined in Fig. 2.3. The model 

optimization in the inner loop can be run for a predefined number of iterations, or can be 
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terminated when some convergence criteria are satisfied. Typically, convergence requires 

that there be no substantial changes in the free parameter values and in the cost function 

(and its gradients be close to zero), from one iteration to the next. 

2.6.5 Testing the algorithm 

To clarify the computational procedures described in both parts of this study, we give a 

step-by-step numerical example. For illustration purposes, we chose the model shown in 

Fig. 2.6A, which is complex enough to accommodate an allosteric factor (a1 in Fig. 

2.6A), an external parameter representing the number of active channels in the recording 

(NC), and several parameter and behavioral constraints. At the same time, the model is 

small enough to allow us to print the vectors and matrices used in the numerical 

computation. Readers who wish to implement their own code can use these examples for 

verification. Briefly, we tested the algorithms by fitting a stochastically simulated set of 

macroscopic data, generated in response to a typical voltage-clamp step protocol. We 

intentionally chose a relatively small data set (the time course of activation and 

inactivation at different voltages, and the voltage-dependent steady-state activation and 

inactivation curves, as shown in Fig. 2.7) to illustrate potential parameter identifiability 

issues and the effect of constraints. The data were fitted in multiple runs, with each run 

enforcing a different set of constraints, as outlined in Fig. 2.6B. The simulation, data 

analysis, and fitting procedures are explained in Materials and Methods.  

We define the following set of model parameters K: 

 (77) 𝑲 = {𝑘1,2
0 , 𝑘1,2

1 , 𝑘2,1
0 , 𝑘2,1

1 , 𝑘2,3
0 , 𝑘2,3

1 , 𝑘3,2
0 , 𝑘3,2

1 , 𝑘3,4
0 , 𝑘3,4

1 , 𝑘4,3
0 , 𝑘4,3

1 , 𝑎1, 𝑞1}, 
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where a1 is the allosteric factor and q1 is the channel count. Thus, the model has a total of 

14 model parameters. Their numerical values are given in the Methods section. The 

corresponding vector of transformed model parameters R is: 

 (78) 𝑹 = {𝜀1,2
0 , 𝑘1,2

1 , 𝜀2,1
0 , 𝑘2,1

1 , 𝜀2,3
0 , 𝑘2,3

1 , 𝜀3,2
0 , 𝑘3,2

1 , 𝜀3,4
0 , 𝑘3,4

1 , 𝜀4,3
0 , 𝑘4,3

1 , 𝜑1, 𝜙1},  

where:  

 (79) 𝜀ij
0 = 𝑙𝑛 𝑘ij

0, 

  𝜑1 = 𝑙𝑛 𝑎1, 

  𝜙1 = 𝑙𝑛 𝑞1. 

2.6.6 Applying linear parameter constraints 

The test model has allosteric relationships that require two sets of linear parameter 

constraints. The first set applies to the forward transitions C1 to C2 and C2 to C3: 

 (80) 𝑘1,2 = 𝑎1 × 𝑘2,3. 

As explained above, we apply the logarithm on both sides of Eq. 80 and obtain a set of 

two equality relationships: 

 (81) {
𝑙𝑛 𝑘1,2

0 = 𝑙𝑛 𝑎1 + 𝑙𝑛 𝑘2,3
0

𝑘1,2
1 = 𝑘2,3

1 }.  

 The backward transitions C3 to C2 and C2 to C1 have a similar allosteric relationship, 

which results in another set of two equality relationships: 

 (82) {
𝑙𝑛 𝑘3,2

0 = 𝑙𝑛 𝑎1 + 𝑙𝑛 𝑘2,1
0

𝑘3,2
1 = 𝑘2,1

1 }.  
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Altogether, we have a set of four linear mathematical relationships between the 

transformed model parameters in R: 

 (83) 

































0

0

0

0

1

1,2

1

2,3

1

3,2

1

2,1

1

0

1,2

0

2,3

1

0

3,2

0

2,1

kk

kk





. 

Together, these four equations reduce the number of free parameters by four, from 14 

down to 10. We must point out that the same allosteric relationships could be 

implemented just as well without the explicit use of an allosteric factor. Thus, we could 

write the following constraint equation: 

 (84) 
𝑘1,2

𝑘2,3
=

𝑘3,2

𝑘2,1
. 

Again, after taking the logarithm, we obtain a set of two equations: 

 (85) {
𝑙𝑛 𝑘1,2

0 − 𝑙𝑛 𝑘2,3
0 = 𝑙𝑛 𝑘3,2

0 − 𝑙𝑛 𝑘2,1
0

𝑘1,2
1 − 𝑘2,3

1 = 𝑘3,2
1 − 𝑘2,1

1 }. 

The first equation in the set enforces the allosteric relationships at V = 0. However, the 

second equation is not sufficient to enforce the allosteric relationships at any voltage. To 

do so, we must add either one of the following two equations: 

   (86) 𝑘1,2
1 = 𝑘2,3

1 , 

    𝑘3,2
1 = 𝑘2,1

1 . 

Altogether, this is equivalent to having a set of three mathematical relationships: 
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 (87) {

𝑙𝑛 𝑘1,2
0 − 𝑙𝑛 𝑘2,3

0 = 𝑙𝑛 𝑘3,2
0 − 𝑙𝑛 𝑘2,1

0

𝑘1,2
1 = 𝑘2,3

1

𝑘3,2
1 = 𝑘2,1

1

}, 

with the final form: 

 (88) {

𝜀1,2
0 + 𝜀2,1

0 − 𝜀2,3
0 − 𝜀3,2

0 = 0

𝑘1,2
1 − 𝑘2,3

1 = 0

𝑘3,2
1 − 𝑘2,1

1 = 0

}. 

This result can be easily verified: the same set of equations can be obtained by 

eliminating 𝜑1 between the first two equalities in Eq. 83. Without the explicit use of an 

allosteric factor, the model would have only 13 model parameters. However, there would 

be only three constraint equations in that case, which means that the number of free 

parameters would still be the same: 10. In conclusion, adding an allosteric factor does not 

necessarily increase the number of free parameters of a model. Instead, it provides a more 

intuitive way of formulating the relationships that may exist between rate constants. 

Another assumption that we made about our test model is that the O3 to I4 transition has 

the same voltage sensitivity as the C2 to O3 transition. This results in one mathematical 

relationship: 

   (89) 𝑘3,4
1 − 𝑘2,3

1 = 0. 

With this relationship, the number of free parameters is down to 9. We note that this 

relationship follows from the actual model parameters used to simulate the data. 

However, even if the true model parameters were unknown, the savvy investigator would 

still enforce this constraint, motivated by the shape of the activation curve, which reaches 

a constant value towards the more positive voltages (Fig. 2.7B). For this particular 
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model, this aspect of the activation curve suggests that the rates of activation and 

inactivation increase by approximately the same factor with voltage. If, for example, the 

inactivation rate had a stronger voltage dependence than the activation rate (𝑘3,4
1 > 𝑘2,3

1 ), 

the activation curve would start turning down at more positive potentials.  

The final assumptions we made involve inequality constraints. Thus, we constrained the 

rate of recovery from inactivation (I4 to O3) to have negative voltage dependence, and the 

deactivation rates (O3 to C2 and C2 to C1) to have a voltage sensitivity greater than -0.15 

mV
-1

: 

   (90) 𝑘4,3
1 ≤ 0, 

    𝑘2,1
1 ≥ −0.15. 

Since the 𝑘3,2
1  and 𝑘2,1

1  factors are already constrained to be equal, we apply the inequality 

constraint to 𝑘2,1
1  only, to avoid redundancy. To handle these two inequality constraints, 

we add two slack variables, z1 and z2, and write two equality relationships: 

   (91) 𝑘4,3
1 = 0.0 − 𝑧1

2, 

    𝑘2,1
1 = −0.15 + 𝑧2

2. 

Thus, although we added two constraints, we also added two slack variables. As a result, 

the number of free parameters remains the same: 9. 

We summarize here all the constraint equations: 
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 (92) 
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2.6.7 Linear algebra calculations 

We can now formulate the constraint matrix M and vector V, as in Eq. 37: 

 (93)

 𝑴 =

𝜀1,2
0 𝑘1,2

1 𝜀2,1
0 𝑘2,1

1 𝜀2,3
0 𝑘2,3

1 𝜀3,2
0 𝑘3,2

1 𝜀3,4
0 𝑘3,4

1 𝜀4,3
0 𝑘4,3

1 𝜑1 𝜙1

(1) 1 −1 −1
(2) −1 1 −1
(3) 1 −1
(4) −1 1
(5) −1 1
(6) 1
(7) 1

, 

𝑽 =

0
0
0
0
0

0 − 𝑧1
2

−0.15 + 𝑧2
2

. 
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 For easier visualization, we only entered the non-zero elements in the M matrix. As M 

contains only constant values, it can now be decomposed with the singular value 

decomposition technique into three matrices, as in Eq. 40: 

 (94) 𝑼𝑀

-0.70711 0 0 -0.70711 0 0 0

-0.70711 0 0 0.70711 0 0 0

0 0.70711 0 0 -0.70711 0 0

0 0 0.85065 0 0 0 -0.52573
0 0.70711 0 0 0.70711 0 0
0 0 0 0 0 1 0

0 0 -0.52573 0 0 0 -0.85065

, 

 (95) 𝑺𝑀 =

2
1.73205
1.61803
1.41421

1
1

0.61803

, 

(96)𝑽𝑀 = 

-0.35355 0 0 -0.5 0 0 0 -0.79057 0 0 0 0 0 0
0 0.40825 0 0 -0.70711 0 0 0 0 0.55933 0 0.10847 -0.09337 0

0.35355 0 0 -0.5 0 0 0 0.15811 0 -0.19196 0 0.58018 -0.47596 0
0 0 -0.85065 0 0 0 -0.52573 0 0 0 0 0 0 0

0.35355 0 0 0.5 0 0 0 -0.47434 0 -0.06727 0 -0.17343 -0.60448 0
0 -0.8165 0 0 0 0 0 0 0 0.55933 0 0.10847 -0.09337 0

-0.35355 0 0 0.5 0 0 0 -0.15811 0 -0.12469 0 0.75362 0.12852 0
0 0 0.52573 0 0 0 -0.85065 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0.40825 0 0 0.70711 0 0 0 0 0.55933 0 0.10847 -0.09337 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0

0.70711 0 0 0 0 0 0 -0.31623 0 0.06727 0 0.17343 0.60448 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

 

From VM we can now obtain the A matrix, as shown in Eq. 41: 
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 (97) 𝑨 =

-0.79057 0 0 0 0 0 0

0 0 0.55933 0 0.10847 -0.09337 0

0.15811 0 -0.19196 0 0.58018 -0.47596 0
0 0 0 0 0 0 0

-0.47434 0 -0.06727 0 -0.17343 -0.60448 0

0 0 0.55933 0 0.10847 -0.09337 0

-0.15811 0 -0.12469 0 0.75362 0.12852 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0.55933 0 0.10847 -0.09337 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

-0.31623 0 0.06727 0 0.17343 0.60448 0
0 0 0 0 0 0 1

. 

The A
-1

 matrix is simply obtained by transposing A, and we do not show it here. To 

obtain the B vector, we must first calculate the pseudo-inverse of M, M
+
, as shown in Eq. 

43. First, we calculate the pseudo-inverse of SM, SM
+
: 

 (98) 𝑺𝑀
+ =

0.5
0.57735
0.61803
0.70711

1
1

1.61803

. 

With SM
+
, we can calculate M

+
: 
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 (99) 𝑴+ =

0.375 -0.125 0 0 0 0 0

0 0 0.66667 0 -0.33333 0 0

0.125 -0.375 0 0 0 0 0
0 0 0 0 0 0 1

-0.375 0.125 0 0 0 0 0

0 0 -0.33333 0 -0.33333 0 0

-0.125 0.375 0 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 0 0 0

0 0 -0.33333 0 0.66667 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0

-0.25 -0.25 0 0 0 0 0
0 0 0 0 0 0 0

. 

The M
+
 matrix can now be used to calculate the B vector, as in Eq. 42. However, when 

the model contains inequality constraints, the V vector will contain elements that depend 

on the slack variables z1 and z2. During optimization, the slack variables are changed 

freely by the parameter estimation engine. However, at the beginning of the optimization, 

they must be initialized by solving their corresponding constraint equation. In this case, z1 

is initialized as follows: 

(100) 𝑘4,3
1 = 0 − 𝑧1

2 ⇒ 

𝑧1 = √𝑘4,3
1 − 0 = √0.1 = 0.31623, 

where 0.1 is the initial value of 𝑘4,3
1 . Likewise, z2 is initialized as: 

 (101) 𝑧2 = 0.27386. 

With the z1 and z2 values, we can now calculate the initial V and B vectors:  
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 (102) 𝑽 =

0
0
0
0
0

−0.1
−0.075

,     (103) 𝑩 =

0
0
0

-0.075
0
0
0

-0.075
0
0
0

-0.1
0
0

, 

To start the optimization, we must initialize the free parameters 𝑿̄. When the model 

constraints include inequalities, as we have here, 𝑿̄ is formed by the reunion of X and Z 

vectors (Eq. 44). Z contains the slack variables, which are initialized as shown above, 

while X is initialized from the initial set of model parameters R
0
, using Eq. 39. 

Altogether, the initial free parameter values are: 

 (104) 𝑿̄0 =

10.6402
7.3132

-3.7075
2.9957

-4.5367

-5.6263
8.0064
0.3162
0.2739

. 

Each time the cost function is requested by the optimization engine, the transformed 

model parameters R are calculated from the free parameters 𝑿̄ with Eq. 40. Then, the 

model parameters K are calculated from R.  
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2.6.8 Applying arbitrary constraints and behavioral constraints  

In addition to linear parameter constraints, we also tested a few simple but useful 

constraints that cannot be implemented with the linear algebra formalism. First, we tested 

an arbitrary parameter constraint that restricts the channel count NC to a range of values. 

The test data were simulated with NC = 5,000. However, to test the algorithms under 

more realistic conditions, we enforced a range of values away from the true value (6,000 

to 8,000). The same strategy was used with all the behavioral constraints introduced next. 

The constraint and the corresponding cost function component are the following: 

 (105) 6,000 ≤ 𝑁𝐶 ≤ 8,000,  

 (106) 𝐹1
𝐶 = 𝛽1 × (

𝑁𝐶−6,000

6,000
)
2

+ 𝛽2 × (
8,000−𝑁𝐶

8,000
)
2

, 

where 𝛽1 and 𝛽2 are numerical factors with the following properties: 

 (107) {
𝛽1 = 0  if  𝑁𝐶 ≥ 6,000
𝛽1 = 𝛼  if  𝑁𝐶 < 6,000

}, 

  {
𝛽2 = 0  if  𝑁𝐶 ≤ 8,000
𝛽2 = 𝛼  if  𝑁𝐶 > 8,000

}. 

The normalization to 6,000 or 8,000 makes this penalty component comparable with all 

the other penalty and data components. 

The second is a behavioral constraint that enforces the maximum open probability 

reached during a brief depolarization step from -120 to 0 mV, as illustrated in Fig. 2.6B, 

Run IV. With the true parameter values, the model predicts a maximum PO of 

approximately 0.42, but we constrained it to 0.5. The constraint equation and the 

corresponding cost function component are the following: 
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 (108) 𝑃𝑂 = 0.5,  (109) 𝐹2
𝐶 = 𝛼 × (𝑃𝑂 − 0.5)2. 

Finally, we tested a behavioral constraint that enforces the time constant of recovery from 

inactivation. As discussed earlier, it would be rather difficult to calculate this quantity 

analytically. Instead, we use a surrogate value, extracted from a simulation in response to 

a two-pulse voltage clamp protocol. As shown in Fig. 2.6B, Run V, we inactivate the 

channels with a brief voltage pulse, let them recover for 50 ms, and then apply a second 

pulse to test how many channels have recovered. The recovered fraction is defined as the 

maximum open probability reached during the second voltage pulse, relative to the first 

pulse: 

 (110) 𝑓𝑅 =
(𝑃𝑂)𝑝𝑢𝑙𝑠𝑒2

(𝑃𝑂)𝑝𝑢𝑙𝑠𝑒1
. 

Thus, if we want to enforce a specific recovery time constant τR, we can calculate the 

corresponding 𝑓𝑅 for a recovery interval of arbitrary duration t, and use that 𝑓𝑅 value in 

the behavioral constraint: 

  (111) 𝑓𝑅 = 𝑒𝑥𝑝 (−
𝑡

𝜏𝑅
). 

Our test model predicts a recovered fraction 𝑓𝑅 of approximately 0.43 with a recovery 

interval t = 50 ms, at -80 mV, but we constrained it to 0.8. The constraint equation and 

the corresponding cost function component are the following: 

 (112) 𝑓𝑅 = 0.8,   (113) 𝐹3
𝐶 = 𝛼 × (𝑓𝑅 − 0.8)2. 

2.6.9 Optimizing the model 
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We illustrate the performance of the algorithms with six optimization runs, each 

implementing a different set of constraints, as described in Fig. 2.6B. Together, these 

examples test the full range of constraints that the algorithms are designed to handle, as 

they are likely to occur in real life modelling applications: linear equality and inequality 

parameter constraints, and model behavior and properties. Furthermore, we test all types 

of model parameters, as defined in the companion paper: rate constant parameters, 

multiplicative factors (a1), and external parameters (NC). The true parameters of the 

model, as well as the initial and the estimated parameters obtained in each optimization 

run, are given in Table 2.1.  

In Run I, we enforced only equality linear parameter constraints (Eq. 83). The cost 

function that was minimized by the optimizer had the following expression: 

 (114) 𝐹(𝑿̄) = 𝐹1
𝐷 + 𝐹2

𝐷 + 𝐹3
𝐷, 

where 𝐹1
𝐷, 𝐹2

𝐷, and 𝐹3
𝐷 are the cost components corresponding to the data shown in Fig. 

2.7: time course traces, activation curve, and availability curve, respectively. Each of 

these data components is the sum of square differences between the data and the 

prediction of the model, normalized by the total number of data points. The time course 

component was also normalized to the peak current, as follows: 

  (115) 𝐹1
𝐷 =

1

𝑁𝑉×𝑁𝑡
∑ (

𝑦V,t−𝐼V,t

𝑦Peak
)V,t

2

, 

where NV is the number of traces, Nt is the number of samples in each trace, yV,t and IV,t 

are the data point and the predicted current, respectively, at voltage V and time t, and ypeak 

is the largest negative peak current in the entire data set. With these normalizations, all 
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three data cost components take comparable values. We have not done it here but, in 

principle, one should further normalize the data to account for potentially different levels 

of noise, such as between the time course traces and the activation and availability 

curves. One could multiply each cost component by a factor inversely proportional to its 

normalized variance, to ensure that less noisy data sets will be fit more tightly by the 

model.  

In Run II, we used the same conditions as for Run I, but we added the inequality linear 

parameter constraints (Eqs. 90-91). In Runs III through VI, we applied the same linear 

parameter constraints as in Run II, but in each of these we added different constraints that 

were implemented via the penalty mechanism: an arbitrary parameter constraint that 

restricts NC to a range of values (Run III), and behavioral constraints that enforce PO (Run 

IV), the recovered fraction fR (Run V), or both PO and fR simultaneously (Run VI). In all 

these tests, the optimizer minimized a penalized cost function with the following 

expression: 

 (116) 𝐹′(𝑿̄, 𝛼) = 𝐹1
𝐷 + 𝐹2

𝐷 + 𝐹3
𝐷 + 𝐹𝐶, 

where 𝐹𝐶 stands for either 𝐹1
𝐶 (Run III), 𝐹2

𝐶 (Run IV), 𝐹3
𝐶 (Run V), or 𝐹2

𝐶 + 𝐹3
𝐶 (Run VI).  

The optimization results shown in Fig. 2.8 demonstrate the proper functioning of the 

algorithm with all types of constraints. To test the convergence of the optimizer, we 

intentionally chose starting parameters (Table 2.1) that generate prediction curves that 

deviate substantially from the data, as shown by the blue traces in Fig. 2.3. In all cases, 

the cost function virtually settled in about 30 iterations (Fig. 2.8A, left panel), after which 

most model parameters changed little (Fig. 2.8B). For Run I, the final parameter values 



110  

 

 

are within approximately 10% of the true values (Table 2.1), which is to be expected 

under these conditions (Milescu, 2005). For the other runs, the constraints push some of 

the parameters away from their true values, as intended. Although the final parameter 

values (Table 2.1) vary across the six runs, they all predict virtually identical fit curves, 

all represented by the red traces in Fig. 2.7A/B.  

The effect of inequality linear parameter constraints can be observed by comparing Runs 

I and II. In Run I, the 𝑘4,3
1  parameter is unconstrained and meanders to values as large as 

+0.12 mV
-1

, finally converging to a slightly positive value, even though the true value is 

slightly negative (-0.05 mV
-1

). The convergence to a positive value for 𝑘4,3
1  is not a 

failure of the search engine, but simply a result of the stochastic nature of the data. In 

Run II, 𝑘4,3
1  is constrained to a negative range and, as expected, converges to a final value 

of zero. The convergence to a value that lies on the edge of the constrained range would 

suggest that this solution is suboptimal, compared to the solution found in Run I. Indeed, 

the cost function value is nominally larger: 0.000533 for Run II, vs 0.000392 for Run I. 

The 𝑘2,1
1  parameter is also constrained with an inequality in Run II. However, 𝑘2,1

1  hovers 

comfortably above its limit in Run I, and, as expected, the constraint applied in Run II 

has no effect. 

In Runs III through VI, the cost function is replaced by a penalized cost function, which 

adds a penalty function component (Eq. 73). In all of these cases, the penalty function 

quickly drops by four or five orders of magnitude during the optimization (Fig. 2.8A, 

right panel). In Run III, where the penalty mechanism enforces a range of values for NC, 

the penalty function occasionally drops to zero (Fig. 2.8A, right panel, orange trace), 
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whenever NC is within the allowed range and the constraint is exactly satisfied (Fig. 

2.9A). Although the initial value of NC was outside the acceptable range (3,000), the 

optimizer quickly brought NC within the range, in just a few iterations. We find it 

interesting that the convergence value of NC does not lie on the edge of its allowed range 

(6,000), as close as possible to the convergence value found in Run II (5,500). This 

suggests the existence of multiple solutions that predict identical fits.  

In Runs IV through VI, the penalty mechanism was used to enforce equality relationships 

for PO and fR. Like with NC in Run III, the initial values of PO and fR were quite different 

from their enforced values. However, a few iterations were sufficient to bring PO or fR 

close to their enforced values, as illustrated in Fig. 2.9B and C (green and magenta 

traces). In contrast to Run III, the penalty function approaches a small value, but does not 

reach zero (Fig. 2.8A, right panel, green, blue, and violet traces). Accordingly, the 

enforced quantities hover in a small neighborhood centered on their enforced values (Fig. 

2.9B and C). The size of this neighborhood depends on the numerical value of the 

penalty parameter 𝛼𝑝: the larger the 𝛼𝑝, the smaller the neighborhood. In principle, 

enforcing the penalty might require several cycles, where each cycle increases the value 

of 𝛼𝑝, as illustrated in Fig. 2.5, and tightens the constraint. However, for these relatively 

simple optimization examples, we initialized the penalty factor as 𝛼0 = 1, which 

enforced the constraints tightly enough in a single penalty cycle.  

As expected, adding these constraints that push PO and fR away from their true values 

also results in slightly suboptimal fits in Runs IV through VI, compared to Runs I through 

III. Furthermore, these constraints expose correlations between properties of the model 
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(PO and fR) and certain model parameters. Thus, PO is inversely correlated with NC. 

Without any constraint, PO and NC are estimated as approximately 0.42 and 5,100, 

respectively. In contrast, when PO is constrained (Runs IV and VI), the NC estimate is 

lowered to 4,000 (Fig. 2.9A). Vice versa, when NC is constrained to a larger value, the 

estimated parameters predict a lower PO (Fig. 2.9B). Likewise, fR is correlated with the 

rate of recovery from inactivation (the I4 to O3 transition). Thus, enforcing fR to a larger 

value (0.8) than the true value (0.43) results in a smaller estimate for 𝑘4,3
0  and in a more 

negative estimate for 𝑘4,3
1  (Fig. 2.8B, Runs V and VI). Considering these potential 

correlations between different parameters or model properties, one should be careful not 

to apply contradictory constraints.   

2.7. Discussion 

We have presented here a set of mathematical and computational tools that can be used to 

estimate kinetic mechanisms that explain new data but also satisfy user-defined 

constraints or prior knowledge. Fitting a model to a new data set, while accounting for 

previous data sets is not trivial. Prior knowledge expressed as linear mathematical 

relationships between two sequential transitions can be easily handled through model 

parameterization, as the independent parameters are identified by the user and passed on 

to a search engine, while the remaining (dependent) parameters are simply derived from 

the first set, whenever necessary. However, a more elegant and flexible solution is the 

method of reduction (Fletcher, 2013), first applied to kinetic modeling algorithms some 

twenty years ago (Qin, 1996, 2000a; Milescu, 2005). Yet even the reduction method, 

despite its reach, is not the universal solution to enforcing prior knowledge. Although 
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very powerful, this method is limited to constraints that can be formulated as explicit 

linear equality relationships between model parameters. Thus, it cannot handle 

inequalities, nonlinear relationships, and implicit constraints that describe a model 

property or behavior. 

In this study, we proposed a comprehensive set of mathematical and computational tools 

that address all these limitations and greatly expand the range of prior knowledge that can 

be enforced. First, we enhanced the reduction method to handle both equality and 

inequality linear parameter constraints. Furthermore, we expanded the range of 

parameters that can be constrained, to include not only rate constant parameters, but also 

allosteric and other similar factors, and external parameters that describe the data or the 

experiment. Any relationship between these parameters can now be enforced, as long as 

it is linear. Second, any other types of model constraints, such as range constraints, 

nonlinear parameter relationships, or model properties and behavior, are handled by 

applying a penalty to the cost function. Together, the reduction method and the penalty 

method can handle virtually any type of model constraint that is likely to be encountered 

in the field. 

These methods described here are available through the freely available QuB software, as 

maintained by our lab. These methods are also easy to implement by interested readers. 

The only high-level mathematical operation involved is the singular value decomposition, 

which is readily available from many free linear algebra packages. As illustrated in Fig. 

2.3, the code can be implemented as a pair of functions: one that converts a set of 

interdependent model parameters into a set of free parameters, and a second function that 
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performs the reverse operation. The first function is called only once, when the 

optimization is started, to initialize the free parameters from the model parameters. Any 

optimization package has one user-customizable callback function that is called each time 

the search engine needs the cost function for a given set of parameters. The function that 

converts free parameters into model parameters can be inserted at the beginning of this 

callback function.  

2.7.1 Compatibility with existing optimization frameworks  

The procedures described here can be easily adapted into a typical optimization package. 

As illustrated by the workflow diagram in Fig. 2.5, only a few modifications would be 

required: adding a function that converts between free parameters and model parameters 

(𝑿̄𝑘 → 𝑲𝑘) and vice-versa, modifying the cost-function to calculate and add the penalty, 

and implementing a schedule to progressively increase the penalty parameter. The first 

two modifications are trivial, as just about every optimizer will have a callback function 

where the user writes custom code to calculate the cost function for a given set of free 

parameters. The third modification is potentially more involved, but a simple solution 

would be to increase the penalty parameter by hand and restart the optimizer. 

2.7.2 Constrained fitting versus multi-objective fitting 

There is a certain similarity between constrained fitting, on the one hand, and simply 

including those data that underlie the constraints into a more comprehensive data set to be 

fitted. The second approach is generally described as multi-objective fitting (Druckmann 

et al., 2007; Bandyopadhyay and Saha, 2013). While it is not a substitute for the 
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reduction method that is used to enforce linear parameter constraints, it could be a 

substitute for the penalty method. As the name implies, in this case the optimizer would 

need to find a solution that satisfies multiple objectives, i.e., data sets. This is 

conceptually equivalent to constrained fitting, but there is also one important difference: 

in multi-objective fitting, the optimal solution found by the search engine may actually 

explain poorly each and all of the individual data sets, as long as it is the best overall 

compromise. Moreover, to find this compromise solution, one must choose a set of 

weighting factors that encode how much each data set is worth to the model, which is not 

trivial.  

In contrast, the constraining mechanism described in this study will give the highest 

priority to the constraints and satisfy them exactly (the linear parameter constraints, via 

the reduction method), or at least very tightly (all other constraints, via the penalty 

method). Only after the constraints are satisfied, will the model adapt to explain the data, 

as much as possible. Nevertheless, as explained above, a certain margin of error can be 

built into the constraints to accommodate noise and potential artifacts, but the constraints 

will stay tightly within this margin. One advantage to the constraint approach is that one 

can more easily detect when a model is incompatible with the data. Furthermore, one 

could also detect inconsistent knowledge, as signaled by incompatible constraints. 

2.7.3 Model behavior: to enforce or not? 

The need for enforcing explicit parameter relationships is obvious, if only to consider 

microscopic reversibility, or the ratio of sequential activation rates. However, it may be 

less clear to the reader why model behavior and properties need to be enforced. Why not 
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derive them directly from the data? After all, once model parameters are estimated, they 

can be used to predict any model property or behavior. The problem resides in the 

potential lack of model and parameter identifiability. In an ideal case, the model would be 

uniquely identifiable, which means that no other topology exists that can explain the data 

equally well (Kienker, 1989; Bruno, 2005). Furthermore, the data would be noise and 

artifact free and the model parameters would be fully identifiable, which means that the 

model admits a unique solution and the optimizer is able to find it from the data. If this 

were the case, it would make little sense to enforce a model behavior or property, except 

to test the sensitivity of the parameters with respect to that behavior.  

However, in reality, the true model may never be known, and the working model may be 

just one out of many equivalent topologies. Furthermore, the parameters may not be fully 

identifiable, either because the model admits multiple solutions (theoretical parameter 

identifiability), or because the data are corrupted by noise and artifacts that flatten the 

cost function surface (practical parameter identifiability) (Milescu, 2005; Raue et al., 

2009; Siekmann et al., 2012; Hines et al., 2014; Middendorf and Aldrich, 2017). Thus, 

estimating the kinetic mechanism from limited data may result in a parameter set that is 

just one out of many possible solutions, and potentially one with poor predictive power.  

This is actually the case with our numerical example: in all runs, the estimates obtained 

by the optimizer are close to the true values (Table 2.1), except when otherwise 

constrained (e.g., NC in Run III). However, the estimates differ across runs, even though 

the fits are virtually identical between runs and follow closely the data (Fig. 2.7, red 

lines). How can different sets of parameters produce the same solution? The explanation 



117  

 

 

for this apparent contradiction is that the parameters are not uniquely identifiable given 

the reduced data set. Clearly, adding more constraints or enforcing other model behaviors 

would improve parameter identifiability and would select only those parameter solutions 

that are compatible with that behavior. Furthermore, it would also improve model 

identifiability, making it easier to discover the correct model. Short of the true model, we 

would at least obtain more robust models. 
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2.8 Figures and figure legends 

 

 

 

Figure 2.1. Estimating kinetic mechanisms with prior knowledge. A model can be made to fit 

experimental data while also satisfying user-defined constraints that establish explicit 

relationships between model parameters, or define specific model behaviors. In the absence of 

constraints, a fitting algorithm will search a potentially large parameter space, to find a solution 

that best explains the data. Adding constraints to the model not only enforces prior knowledge but 

also accelerates the fitting procedure, by narrowing the search space and reducing the number of 

free parameters. Furthermore, constraints can be used as a mechanism for testing hypotheses 

against experimental data. 
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Figure 2.2 Expressing prior knowledge via model topology and parameter relationships. A) 

an example model that captures the kinetic properties of neuronal sodium channels (Kuo and 

Bean, 1994; Milescu et al., 2010b). B) various assumptions about the structural and functional 

elements of the channel are contained in the structure of the model (the states and their 

connectivity) and in the quantitative relationships between rate constants. The parameter 

constraints resulting from these assumptions are explained in the text. The α and β quantities are 

voltage-dependent rate constants, while a and b are multiplicative factors expressing allosteric 

relationships. State labels denote closed (C), closed and inactivated (I), and open (O) states.  
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Figure 2.3. Transformations between model parameters and free parameters. The model is 

defined by a set of interdependent parameters K, whereas prior knowledge is expressed as a set of 

linear parameter constraints. K contains pre-exponential and exponential kinetic parameters (kij
0
 

and kij 
1
), multiplicative factors (ak), and external parameters (ql). To enable more types of 

constraints, K is transformed into R by applying the logarithm or other functions to some of the 

parameters in K. The linear constraints are reduced via the singular value decomposition to obtain 

a set of free parameters X. Inequality constraints are handled by a set of slack variables Z. The 

constraints reduce the number of free parameters in X by one for each mathematical relationship, 

although each inequality relationship increases the size of Z by one. An overall set of free 

parameters 𝑿̄ is formed from X (equality constraints only) or from X and Z (equality and 

inequality constraints). 𝑿̄is given to the model-blind optimizer to search for an optimal solution, 

which can be converted back into a set of model parameters K. A) Conversion from K to 𝑿̄. B) 

Reverse conversion from 𝑿̄ to K. These conversions can be applied to any kinetic mechanism, 

regardless of the number of states and connections. All the quantities in the figure are explained 

in the main text. 
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Figure 2.4. Optimizing a model in QuB. The main script is used to declare global variables that 

are referenced by multiple scriptlets. The main computation is handled by the Optimizer window, 

which systematically calls individual scriptlets that perform the computation. For each voltage-

clamp protocol, an individual scriptlet is created to simulate the response of the ion channel 

model to the same protocol used to collect the data, and also to plot the analyzed data in the 

Graph window. The optimization process begins by calling a scriptlet that converts the model 

parameters (K) into a set of free parameters (X). Then, each protocol scriptlet calculates the 

response of the model to the protocol and plots the data. In this example, the VC data is shown in 

white and the output of the model in red. After the simulations are generated, the cost-function 

(F) is calculated between the experimental data and the simulated data, via another scriptlet. The 

optimizer then uses a gradient descent method to determine a new set of model parameters. The 

cycle is repeated until convergence, according to a set of criteria. To implement behavioral 

constraints, another scriptlet is used to calculate the value of the penalty determined by the 

behavioral constraint. The screenshot also shows the constraint window, where all linear 

parameter constraints are described for each model. 

Constraint 
windowOptimizer

Model
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Figure 2.5. Optimizing a constrained model. The flowchart summarizes the computational 

steps needed to optimize a kinetic model, subject to parameter and behavioral constraints. Linear 

parameter constraints are implemented via linear algebra transformations between the model 

parameters K and the free parameters X
*
, whereas behavioral constraints or arbitrary parameter 

relationships are handled by a penalized cost function F’( X. k, α p) that measures the overall 

error of the model relative to the data and the constraints. The K → X
*
 and X

*
 → K 

transformations are detailed in Fig. 2.3. To calculate the cost function, one needs to generate the 

response of the model (e.g., probability distributions and macroscopic currents) to the same 

stimulation protocols used to generate the experimental data and formulate the behavioral 

constraints. The inner computational loop, indexed by k, optimizes the model for a given penalty 

factor αp, whereas the outer loop, indexed by p, gradually increases αp, to more tightly satisfy the 

behavioral and arbitrary parameter constraints. 
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Figure 2.6. Test model with different sets of constraints. A) A simple kinetic mechanism that 

generates voltage-gated sodium channel-like currents (see Fig. 2.7). All rate constants are as 

described by Eq. 1; kij = k ij
0 × e 

kij1 ×V
); a1 is an allosteric factor, and NC is the number of channels. 

B) Six sets of constraints were applied to the model to test the algorithms (see Figs. 2.8 and 2.9). 

Runs I and II test linear parameter constraints implemented with linear algebra–based methods 

that convert model parameters into free parameters, and vice versa. Run I implements only linear 

relationships, whereas run II adds two inequalities. Runs III through VI test arbitrary parameter 

constraints and behavioral constraints implemented with the penalty mechanism. Run III tests a 

parameter range constraint, whereas runs IV through VI test constraints that enforce model 

properties and behavior: the maximum open probability during a depolarization step (PO, run IV 

and VI) and the recovered fraction of available channels at 50 ms after a 5-ms inactivation step 

(fR, runs V and VI). The PO and fR quantities are obtained as shown below. 
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Figure 2.7. Test data and model predictions. A) and B) Whole-cell currents were simulated 

stochastically with the test model in Fig. 2.6A, using a standard activation/inactivation 

protocol. The data were processed to extract the time course of activation/inactivation (black 

traces in A) and the steady-state activation and availability curves (black symbols in B). The time 

course and steady-state curves were fitted together (see Fig. 2.8). The predictions of the model at 

the beginning and at the end of optimization are shown by the blue and red traces, respectively. 

The fit curves correspond to run I in Fig. 2.6B, but all runs resulted in virtually identical fits. The 

true, initial, and estimated parameters and properties of the model are shown in Table 2.1. 
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Figure 2.8. Testing optimization with model constraints. The model shown in Fig. 2.6A was 

optimized to fit the data in Fig. 2.7 (time course and steady-state curves), subject to the six sets of 

constraints shown in Fig. 2.6B. A) The convergence of the overall cost function (left) and penalty 

component (right). B) Parameter convergence in each of the six test runs. Only the model 

parameters K are shown, but note that the optimizer searches in the free parameter space defined 

by 𝑿̄. To reduce clutter, some model parameters are not displayed, as they are defined by 

constraints (e.g., k 
0
1,2 = a ×  k0

 2,3). For better visualization, the exponential factors k
1

ij are plotted 
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on the right axis (dotted lines), whereas all the other quantities are on the left axis: preexponential 

factors k
0
ij (log scale, solid lines), channel count NC (log scale, dashed black line), and allosteric 

factor a1 (dashed magenta line). The dashed gray horizontal lines and arrows indicate the 

boundaries of inequality linear constraints for k
1
2,1 and k

1
4,3 (runs II through IV) and the 

boundaries of the range constraint for NC (run III). Note how k
1

4,3 is estimated as a positive value 

in run I, but it remains less than zero under the inequality constraint in runs II through VI. In each 

panel, the symbols aligned with the last iteration mark the true parameter values. 
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Figure 2.9. Enforcing model properties and behavior. A–C) The convergence of the NC 

estimate (A) and calculated PO (B) and fR (C) quantities are shown for each of the six 

optimization runs described in Fig. 6B. The constrained and the true values are indicated by the 

gray and black dashed lines, respectively. As expected, NC and PO are inversely correlated; when 

one is constrained to be larger or smaller than the true value, the other one becomes smaller or 

larger, respectively. Likewise, fR is correlated with the rate of recovery from inactivation; when fR 

is constrained to be larger than the true value, the k
0

4,3 and k
1

4,3 estimates become smaller and 

more negative, respectively. All the enforced quantities quickly reach their enforced range (NC) 

or value (PO and fR). Note that without being constrained, fR is not well defined by the test data 

and does not converge to the true value. In contrast, NC and PO are well defined. 
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Chapter 3 

3D data mapping and real-time experiment control and visualization in 

brain slices 

This chapter has been adapted from:  

Navarro, M.A., J.V.K. Hibbard, M.E. Miller, T.W. Nivin, and L.S. Milescu. 2015. 3D 

data mapping and real-time experiment control and visualization in brain slices. Biophys 

J. 109:1521-1527. doi: 10.1016/j.bpj.2015.08.045. 

Abstract 

We propose here two basic concepts that can streamline electrophysiology and imaging 

experiments in brain slices and enhance data collection and analysis. The first idea is to 

interface the experiment with a software environment that provides a 3D scene viewer 

where the experimental rig, the brain slice, and the recorded data are represented to scale. 

Within the 3D scene viewer, the user can visualize a live image of the sample and 3D 

renderings of the recording electrodes, with real-time position feedback. Furthermore, the 

user can control the instruments and visualize their status in real-time, and can play back 

previously executed experiments and run simulations. The second idea is to integrate 

multiple types of experimental data into a spatial and temporal map of the brain slice. 

These data can consist of low-magnification maps of the entire brain slice, for spatial 

context, and any other types of high-resolution structural and functional images, together 

with time-resolved electrical and optical signals. The entire data collection can be 

visualized within the 3D scene viewer. These concepts can be applied to any other types 
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of experiments, where high-resolution data are recorded within a larger sample, at 

different spatial and temporal coordinates. 

Author contribution: M.A.N. wrote scripts to implement new objects and scenes within 

the 3D viewer, analyzed imaging data, debugged calibration procedures, designed and 

performed experiments, created figures, and wrote the manuscript. 

3.1. Introduction  

Brain slices are reduced but powerful preparations, where molecules and individual cells 

can be studied in the broader context of functional neuronal networks and circuits (Llinás 

and Sugimori, 1980; Edwards et al., 1989; Smith et al., 1991). Structurally or 

functionally, each level of organization is best approached with specialized techniques, 

such as patch-clamp for ion channel kinetics (Hamill et al., 1981; Kole, 2008) or 

multiphoton microscopy for circuit organization (Sabatini et al., 2002; Helmchen and 

Denk, 2005; Nakahata and Yasuda, 2018). Combining multiple techniques and data types 

maximizes the information extracted from each brain slice, for a more comprehensive, 

multiscale understanding of the entire preparation (Packer et al., 2015). In many studies, 

however, readily available data are not collected. Potentially useful images are not always 

recorded in patch-clamp studies, even when they are performed under visual guidance 

with a microscopy camera.  

A difficulty with these experiments is that brain slices can be as large as several 

millimeters across, and as thick as several hundred microns, or even more. With a low-

magnification imaging objective, the field of view (FOV) can cover much, if not all, of 

the sample. However, most electrophysiology and many imaging experiments are 
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performed under high magnification, where individual neurons can be resolved. Under 

these conditions, only a small section of the entire slice is seen in the FOV, which makes 

it difficult to navigate large samples. Having some visual feedback to help place the live 

image in the 3D sample space would be extremely useful. Yet to our knowledge, this 

functionality is missing from existing imaging software.  

We propose here two basic concepts that can streamline experiment execution and 

enhance data collection and analysis. The first idea is to interface the experiment with a 

3D virtual reality software environment to provide an immersive experience to the 

investigator. Much as a 3D computer game makes the player feel in the midst of the 

action on the screen, this environment would bring the user into a 3D virtual world that 

represents to scale the experimental rig, the brain slice, and the recorded data. By 

providing a two-way link to experiments, the program would allow the user to control the 

instruments but also to visualize their status in real-time. Furthermore, the same virtual 

environment could be used to revisit previously executed experiments and to run 

simulations.  

The second idea is to integrate multiple types of experimental data into a spatial and 

temporal map of the brain slice. For example, a low-resolution map of the entire brain 

slice could be obtained at low-magnification with IR-Differential Interference Contrast 

(IR-DIC) or epifluorescence. This map would provide context and serve as a guide for 

further investigation at higher resolution. Areas of interest or individual neurons can be 

identified and examined with optical or electrical methods. The resulting images and 

signals would be embedded and visualized on the map, with their spatial and temporal 
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coordinates recorded. These data may include, for example, multi-photon z-stacks, time-

resolved calcium fluorescence, or patch-clamp recordings. We have implemented these 

concepts in the freely available QuB software package, which can be downloaded at 

http://milesculabs.biology.missouri.edu/QuB.html.  

3.2. Methodology 

3.2.1 Animal procedures and brain slice electrophysiology 

 All animal procedures were approved by the University of Missouri Animal Care and 

Use Committee. To minimize the use of animals, the software was tested during 

experiments performed for other projects in the lab. The brain slices used here for 

illustration were obtained from Sprague Dawley and TH-GFP-labeled rats (Taconic, 

USA), following standard slice preparation and electrophysiology procedures. 

3.2.2 Imaging hardware 

 We used a customized upright microscope (Scientifica, UK) equipped with Dodt 

contrast, epifluorescence, and two-photon imaging with a MaiTai HP laser (Newport, 

USA), and with computer-controlled motorized positioners (Scientifica, UK) for the 

translation stage, objective, and recording electrodes. Wide-field imaging was done with 

a Hamamatsu sCMOS Flash4.0 V2 camera (Hamamatsu Photonics KK, Japan).  

3.2.3 Computer software and hardware  

The QuB program was used for 3D data mapping and experiment control and 

visualization, and for image acquisition with the camera. ScanImage 3.8.1 (Vidrio 

http://milesculabs.biology.missouri.edu/QuB.html
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Technologies, USA) was used for two-photon image acquisition. PatchMaster (HEKA, 

Germany) and QuB were used for patch-clamp and data acquisition. All computer work 

was done on a dual-processor workstation equipped with 8-core Opteron 4284 processors 

(AMD, USA) and an R9 280X Radeon video card (AMD, USA), running Windows 7 

(Microsoft, USA). 

3.2.4 Software platform  

To rapidly design, implement, and test the concepts and computational tools described 

here, we took advantage of the QuB software (Milescu, 2000-2006; 2015). QuB is an 

open-source platform, featuring algorithms and functionality that have been applied to a 

broad range of problems, from ion channel biophysics (Qin, 1996; Milescu, 2005) to 

neuronal physiology (Milescu et al., 2008; Milescu et al., 2010b). QuB also features a 

powerful scripting language (KPL) that we had previously developed and now have 

expanded, which provides high-level functions to record and process data, and to 

simulate and estimate ion channel, neuronal, and network models.  

3.2.5 3D visualization 

To handle the 3D visualization of data and experiments, we have added a 3D scene 

viewer to the QuB program, based on the glscene library. The 3D scene can be 

interactively navigated with a computer mouse for an arbitrary point of view with the 

viewer camera. The scene can also be displayed for stereoscopic visualization using 

virtual reality glasses (Occulus Rift). Two new classes of computational objects were 

designed and added to the KPL scripting language. The first class, which we call 



135  

 

 

“world3d”, is used to represent data (images, electrical recordings, etc.), equipment 

(objective, imaging camera, isolation table, laser, etc.), or any visual or non-visual type of 

object. The world3d objects can be created and organized hierarchically, to capture the 

structural and functional relationships between the objects that they represent. The second 

class, which we call “globject” for graphics library object, implements a collection of 

building blocks for 3D graphics. Each world3d object can use one or more globjects to 

render its visual content in the 3D scene viewer. Multiple types of globjects are available, 

where each type implements a 3D graphics primitive, such as lines, cylinders, etc., and 

can be customized in terms of size, color, position, etc. An example of what can be 

created with these computational objects is shown in Fig. 3.1.  

In addition to the base world3d object type, there are several derived types that have 

special meaning and functionality. For example, there are objects that handle the acquired 

images and other types of data, display the live image coming from the camera or the 

laser scanner, or control the positioning motors. Some special objects are automatically 

created by the software (predefined), such as the “liveview” discussed below. The user 

can create additional objects via the KPL scripts, based on any of the existing types. 

Whether predefined or user-defined, all these objects can be fully customized and 

manipulated individually (resized, translated, rotated, etc.), while their collection of 

globjects can be modified or expanded. These changes can be applied interactively or via 

the scripting language. The scene can also be animated for instructional purposes. For 

example, one could demonstrate microscope function by animating the light path 
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corresponding to different imaging modes, such as two-photon vs. epifluorescence, as 

illustrated in Fig. 3.1B and C. 

3.3. Real-time 3D visualization and control of experiments   

 

3.3.1 Live imaging 

We implemented a simple solution that allows the investigator to see a live image and 

simultaneously visualize its location within the sample space (Fig. 3.2). For this, we 

included in the 3D scene a specialized world3d object, called the “liveview”, that 

displays the live image coming from the video source (camera or laser scanner), as seen 

through the imaging objective. This liveview object is a representation to scale of the field 

of view (FOV), with its size depending on the currently selected objective. As the FOV is 

moved during an experiment, by translating the objective along the z-axis, the liveview 

follows automatically, repositioning itself in the virtual 3D space, providing real-time 

navigational feedback to the user. With our experimental setup, we were able to achieve 

update rates of the liveview content of at least 60 frames per second, ensuring fast and 

smooth video. 

Very importantly, a low-resolution image of the entire brain slice can be recorded and 

shown throughout the experiment as a background map, to provide spatial context to the 

liveview (Fig. 3.2). Additional graphical elements are also drawn in the scene viewer, to 

help the user understand how deep the solution is in the chamber, how thick the slice is, 
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and where the FOV is located within the slice or solution (Fig. 3.2). The coordinates for 

solution and slice surface are approximate values that can be determined by the user.  

The live imaging functionality in QuB is not only useful for knowing the location of the 

FOV at all times but can also be used to analyze imaging data. For example, in the case 

of functional imaging i.e., using fluorescent calcium or voltage sensitive dyes, an ROI 

can be placed within the camera viewport to calculate the average pixel intensity in real-

time. Taking advantage of QuB’s data acquisition functionality, originally developed to 

implement dynamic clamp, the KPL was modified to add functions that can find the 

average pixel intensity or standard deviation of multiple ROIs. Currently, square ROIs 

can simply be placed within the camera window and the real-time engine can perform the 

computation and plot the data over time. By recording the output of multiple ROIs, one 

can also perform online background subtraction to find the change in fluorescence online 

(Δf/f). This allows the experimenter to have real-time information on the status of the 

experiment. As the data is processed in real-time, the recording of each individual frame 

does not necessarily need to be recorded, drastically reducing file size for very long 

acquisitions. However, since the actual images are discarded, it prevents the experimenter 

from being able to go back and re-process the data to account for movement artifacts or 

changes in the focal plane. This functionality is demonstrated in Fig. 3.3, showing a 

screen shot of QuB during calcium imaging experiments.  

3.3.2 Motorized positioning  

Motorized positioners are commonly used to translate the imaging objective along the z-

axis, to translate the recording chamber or the entire microscope in the xy-plane, and to 
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move the recording electrodes in x, y, and z. To handle the motorized positioning 

operations, we created a specialized type of world3d object that establishes a two-way 

communication with the motor controllers. Interactively or programmatically, these 

“positioner” objects send commands to the motor controllers to read or set the 3D 

coordinates of the positioned objects, and update the 3D scene accordingly. We use 

several positioner objects: one for the FOV, called “viewport”, and one for each of the 

recording electrodes, called “pipettes”.  

The viewport is a non-visual object that is linked to the motors that move the objective 

and the translation stage (or the entire microscope). With our upright microscope 

configuration, when these motors move the translation stage, the sample is physically 

moved, while the objective or FOV remains in position. However, it makes more sense 

conceptually to take the opposite view, and consider that the sample remains stationary, 

while the FOV is moved by the motors. Thus, the viewport can be conveniently used as 

an interface to position the liveview and image the sample at specific 3D coordinates. 

When its motors move, the viewport updates the position in the 3D scene of all its 

associated world3d objects, including the liveview, which will update its live content as 

well. When a different section of the sample needs to be imaged, the user simply changes 

the position of the viewport in the 3D scene, which then sends the appropriate commands 

to the objective and translation stage motors.  

The pipette avatars visually represent the recording electrodes in the 3D scene and are 

linked to the motors that move them. As with the liveview, having real-time visual 

feedback on pipette position is extremely useful: it tells the investigator where the tip of 
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the pipette is located relative to the sample, objective, the surface of the perfusion 

solution, or the bottom of the chamber. Without this visual feedback, the user is 

oftentimes forced to switch to the low-magnification objective, to be able to safely bring 

the pipette back in the FOV. This makes it difficult to navigate in the slice over long 

distances, when the pipette is in the bath or not within the FOV. 

Being able to control and set the location of the motors, we developed a semi-automatic 

targeting procedure that utilizes the projection of the approach axis to determine the 

necessary location the pipette needs to be placed to successfully approach a desired target 

cell (Fig. 3.4). This has been extremely useful in being able to reliably target and patch 

neurons located deep in the slice and reduces the necessary skill needed to patch a cell, 

which has hastened the training for new patch clampers.  

3.3.3 Calibrating the motorized positioners 

In order to calibrate the system, global Cartesian coordinates of the 3D scene must be 

defined. We define the (x, y) origin of the coordinate system as the optical axis of the 

imaging objective, and the z origin as the top of the perfusion chamber base for live 

experiments, or the top of the slide for fixed preparations. In Fig. 3.1, the x-, y-, and z-

axes are shown by dashed lines, in red, green, and blue color, respectively.  

Ideally, the motors used in the experiment to position the objective, the translation stage, 

the pipettes, the laser scanning mirrors, and so forth, would all align with the global 

coordinates. In practice, this is not the case. Typically, experimental rig equipped for 

laser scanning imaging has the microscope body bolted to the vibration isolation table. 
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The imaging objective translates along the z-axis of the microscope body to change the 

focal plane. The imaging camera and the laser scanning mirrors are attached onto the 

microscope body. A translation stage is bolted on the isolation table, carrying and moving 

the recording chamber, the sample, and the electrode positioners in the xy-plane. The 

electrode positioners move the pipettes along three or four axes (e.g., three physical 

Cartesian axes and a fourth virtual axis along the pipette length).  

All these components may be misaligned with respect to each other, on any or all axes. 

For example, a common misalignment is the rotation of the camera sensor around the z-

axis, relative to the translation stage or when the xy-planes of the translation stage and the 

camera sensor are not parallel, as illustrated in Fig. 3.5.  

These various misalignments must be corrected, as much as possible, in the hardware. 

Whatever misalignment remains can be reduced by applying software corrections to the 

positioner coordinates. One could implement rather extensive corrections, but here we 

will keep it simple. We take as the reference the sensor of the camera, since it is 

immobile (unlike the camera, the laser scanning plane can be rotated via the command 

electronics). Hence, the axes of the global coordinate system are defined by the rows and 

columns of pixels on the camera sensor (the x- and y-axes, respectively) and by the 

normal to the sensor plane (the z-axis). Everything else will be corrected relative to this 

global coordinate system.  

The rotation of the translation stage relative to the camera sensor can be simply corrected 

by applying a mathematical transformation between the coordinates of the virtual 

viewport object and the coordinates of the physical stage. Unfortunately, a gradient 
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between the xy-planes of the sensor and the translation stage cannot be corrected 

mathematically. As a result of this gradient, a given point in the sample will not maintain 

focus when the stage is translated, because its image will project on an area of the sensor 

that can be farther or closer along the z-axis. However, the recorded images can be shown 

with this tilt, and will still align when displayed in transparency mode. Furthermore, this 

misalignment does not accumulate along the x- and y-axes. When tiling images over a 

large area, the effects of misalignment can be reduced by cropping the sensor when 

imaging with the camera, or by increasing the zoom factor when using the laser scanning 

system.  

Since the electrode positioners are fixed onto the translation stage, they must be corrected 

only for misalignment relative to the local coordinate system of the translation stage, not 

relative to the global coordinates. If we assume that the xy-planes of the electrode 

positioners and the translation stage are reasonably parallel, the only correction is for 

rotation around the z-axis. This can be done in the same way as for the stage.  

The calibrations described so far must be done only once, when the experimental system 

is built, or every time a mechanical component is manually repositioned. However, 

another calibration is necessary each time the recording electrode is replaced with a new 

one. Pulled glass electrodes can differ significantly in length, and the tip may also be 

randomly off-center relative to the pipette long axis. By bringing the pipette tip in focus 

within the live image, its position can be easily extracted in relation to the FOV, which 

has known coordinates. 
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Other useful corrections can also be easily implemented in software. For example, when 

low and high magnification objectives are used for imaging, they may be misaligned in 

the xy-plane, or on the z-axis. Taking one objective as reference, the other one can be 

easily corrected by applying an (x, y, z) offset to the motors that position the translation 

stage and focus the objective. Another calibration is the alignment between the FOV of 

the camera and the laser scanning system. Again, the camera sensor can be taken as 

reference, while its own FOV can be calibrated with a graded microscopy scale, or 

simply calculated from the sensor size and the objective magnification factor. 

Most of the mathematical operations for 3D positioning and rotation in the 3D scene 

object hierarchy are handled by a 3D OpenGL-based library, which greatly simplified our 

coding. Furthermore, other functions are also supported by this 3D library, such as 

collision detection, which would be very useful for preventing pipette crash in multi-

electrode experiments. 

3.4. 3D structural and functional data mapping 

3.4.1 Mapping the sample 

At the beginning of an experiment, the first operation is to establish the volumetric 

contour of the brain slice. This can be done quickly in the 3D scene: under live imaging, 

the user can simply move the liveview object (and thus the FOV) around the contour of 

the slice and click with the mouse on the liveview image to sequentially add 3D points to 

the contour. From these 3D points, a world3d “contour” object will be generated and 

positioned in the 3D scene. The same procedure can be applied to mark any structural 
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feature of interest, or to simply register arbitrary 3D coordinates. All contour objects can 

be displayed in the 3D scene, and at any time the user can send the liveview to their 

coordinates, for imaging.  

Once the volumetric contour of the slice is constructed, we found it very useful to have a 

scan of the entire slice surface at low magnification. Together with the volumetric 

contour, this surface scan provides a reference for navigation with the liveview in the 

sample space and for further data acquisition, as illustrated in Figs. 3.2, 3.4, and 3.6. The 

surface scan can be obtained under multiple imaging paradigms. The most obvious 

choice is IR-DIC or Dodt contrast, which provides images where basic slice anatomy, 

including neuronal layers, nuclei, etc., can be identified. For transgenic animals with 

fluorescent labeling, fluorescence scans can be generated as well, and can be shown 

individually or overlaid onto the IR image. This idea is illustrated in Figs. 3.4 and 3.5, 

where fluorescently labeled dopaminergic neurons can be seen within midbrain slices. To 

cover the entire extent of the slice, multiple images were taken and tiled together 

automatically.  

The surface map is a useful prerequisite, but the entire thickness of the slice can 

potentially be scanned using two-photon imaging or other optically sectioning methods. 

Ideally, a slice map would have high enough resolution to resolve cellular details and 

would not take too long to extract. However, two-photon stacks may require significant 

storage space. For example, acquiring 100 xy-planes over a 2x2 mm sample area with a 

40x objective at 512x512 pixel resolution would generate approximately 2 GB of data. 

Even when storage is sufficient, displaying these image stacks may require more video 
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memory than currently available on typical computers. As a simple solution, we have 

implemented a mechanism where images can be stored at the acquired resolution, but 

down-sampled and displayed at a lower resolution. Alternatively, the entire map could be 

displayed at a memory-friendly resolution, but with the current area of interest optionally 

displayed at maximum resolution.  

3.4.2 Data collection and visualization 

Although constructing a map of the slice could be the final aim in some experiments, in 

many cases additional data will be obtained. The two types of data generally associated 

with slice experiments are images and time-resolved optical and electrical signals. For 

example, electrical signals could be current-clamp or voltage-clamp recordings, while 

optical signals could be single cell fluorescence using Ca
2+

- or voltage-sensitive dyes. 

The idea is that, throughout the experiment, all images and data are collected and 

imported on the map with temporal and spatial information, to indicate when and where 

in the slice they were obtained. An example of how images and time-resolved signals can 

be embedded on a slice map is shown in Fig. 3.6. A particularly effective way for 

visualizing 3D confocal images is to render transparent the pixels where the signal is 

below a certain threshold, making fluorescently labeled individual neurons stand out 

against the slice map, as illustrated in the figure.  

Our software can be used for acquisition of electrical signals and for image acquisition 

with camera or laser-scanning sources. Regardless of the image source, acquisition 

operations can be set up as single images or as scans across one or more spatial 

dimensions, or across time. For scans, the FOV is programmatically moved by the 
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positioning motors to cover either regular geometry space or arbitrary contour objects. 

Acquisition can be cropped to a smaller region of the sensor, instead of capturing the full 

frame, to increase the maximum frame rate. Furthermore, time-resolved optical signals 

corresponding to user-defined regions of interest (ROI) can be extracted in real-time from 

live images. Recording the average pixel intensity over an ROI, instead of the raw pixel 

data, dramatically decreases data throughput to only a few bytes per ROI per frame, 

which is particularly suitable for longer recordings at high frame rates.  

These time-resolved optical signals are integrated with the existing functionality in QuB, 

including the real-time computational engine used for dynamic-clamp (11). For example, 

this would enable experiments where intracellular calcium concentration could be added 

to the dynamic-clamp computational model. Specialized world3d objects were 

implemented in the KPL scripting language to handle images and other types of data, 

either acquired within our own software or recorded with other programs. These 

computational objects can be used for script-based image and data processing and for 

setting up complex data acquisition protocols.   

3.5. Discussion 

We have implemented here some simple but powerful concepts that open new 

possibilities for experiments in brain slices or other preparations. First, we have identified 

an easy way to provide structural and functional context to data, in a visually intuitive 

way. Many programs can be used for offline analysis and interpretation of individual 

images or other signals. However, what is missing from this approach is the overall 

picture, where all data can be visually placed together on a 3D map of the sample and 
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analyzed. With our software, multiple types of data can be temporally and spatially 

mapped in living preparations, in real-time. This is a critical step towards understanding 

brain structure and function at all levels of organization (Getting 1989; Insel et al., 2013).  

Second, we have made the experiments themselves easier. There is arguably nothing 

more frustrating to the neurophysiologist than not knowing where the pipette is located, 

or not knowing what part of the sample is being imaged by the camera. Is the objective 

going to crash the pipette into the slice? Is the objective going to crash into the bottom of 

the recording chamber? This experimental angst has a simple solution. By showing the 

live image and the recording electrode avatars in a 3D scene, the user is informed at all 

times where the actual electrodes are and where the live image is coming from. Since this 

original publication, other systems have been proposed that also function to automate the 

targeting and patch clamp process (Wu et al., 2016; Suk et al., 2017; Shull et al., 2018; 

Kolb et al., 2019), as well as new image analysis algorithms for cell identification (Lee 

and Rozell, 2017) and pipette detection (Koos et al., 2017). 
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3.6 Figures and figure legends 

 

 

 

Figure 3.1. Experiment visualization. A 3D scene viewer is used to represent instrumentation, 

samples, and data. A-C) Computer screenshots showing 3D renderings of an experimental rig 

equipped for electrophysiology and imaging, functioning in multiphoton (B) or epifluorescence 

(C) imaging modes.  
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Figure 3.2. Live imaging with real-time position feedback. The live image obtained with the 

microscopy camera or with the laser scanner is rendered in the 3D scene viewer. A-C) Computer 

screenshots taken at progressively greater zoom factors, showing the liveview object displaying a 

live camera image, together with a low-resolution map of the brain slice, the recording chamber, 

the objective, and a recording electrode. When the FOV is moved in the sample space, the 

liveview automatically follows, as indicated by the blue arrows, and updates its live content. The 

blue box denotes the bottom of the chamber and the top of the solution, while the magenta 

rectangle denotes the top of the slice, which are helpful for successful navigation of the pipette. 
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Figure 3.3. Online processing of functional imaging. The screenshot shows the camera window 

with four active ROIs (green squares) placed over individual cells. The output of the data is 

plotted in the chart window, where calcium transients corresponding to each individual cell can 

be measured with relatively high signal to noise ratio.  
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Figure 3.4. Motorized pipette positioning. The pipette is rendered in the 3D scene viewer, and 

its position can be updated. Once a target is identified, the pipette can be brought to a position 

where its approach axis (magenta dotted line) intersects the neuron. A) Computer screenshot 

illustrating pipette positioning for patching a neuron. B) Multiphoton z-stack of the slice region 

around the target neuron, before and after approach. Red color corresponds to the difference 

between the two z-stacks, as the pipette moved, and two neurons were slightly pushed aside. The 

insets are IR images taken with the camera before (A) and after (B) target approach.   
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Figure 3.5. Calibrating the motorized positioners. A) Rotational misalignment between the 

Cartesian axes of the camera sensor (red arrows) and the translation stage (blue arrows). B) 

Rotational misalignment between the recoding electrode (green arrows) and the camera sensor 

(red arrows). C) The approach angle of the recording electrode. D) and E) Tiled images before 

(D) and after (E) implementation of the software correction of the misalignments.  
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Figure 3.6. 3D data mapping.  Different types of data can be rendered in the 3D scene viewer, 

including low-resolution transmitted light and epifluorescence maps of the entire brain slice, 

high-resolution multiphoton z-stacks, and time-resolved electrical and optical signals. Data traces 

are current clamp recordings from individual cells in response to 100 pA / 100 ms pulses. 
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Chapter 4 

Investigating the role of intracellular calcium on voltage-gated sodium 

currents 

This chapter represents unpublished work. 

Abstract 

Intracellular calcium serves as a signaling factor for many biological processes. 

Intracellular calcium may also modulate the inactivation kinetics of some Nav channel 

subtypes. To explore this potential effect, we recorded Na
+
 currents from medullary raphé 

neurons in neonatal (P0-P3) rat brainstem slices, via whole-cell patch-clamp. Using 

different calcium buffers, we set the free [Ca
2+

] to low (~70nM) and high (~7μM) values 

and characterized Nav channel properties under voltage clamp. We found that high 

intracellular calcium did not significantly alter steady-state activation kinetics, but 

slightly hastened inactivation kinetics. The voltage-dependence of inactivation was also 

rightward shifted ~ 3 mV. Furthermore, we tested whether [Ca
2+

] modifies the kinetics of 

recovery from inactivation kinetics, using two-pulse protocols applied under both 

concentrations, and found only minimal effects. Finally, we tested the effect of [Ca
2+

] on 

Nav use-dependence properties and found a significant reduction in the available current 

at low [Ca
2+

] compared to high [Ca
2+

]. The differences were increased with more 

depolarizing voltages, indicating that a small shift in the steady-state curves could be the 

underlying cause. 



154  

 

 

Author contribution: M.A.N designed and performed experiments, analyzed data, 

created figures, and wrote the manuscript.  

4.1. Background on voltage-gated Na channels  

Voltage-gated Na (Nav) channels are membrane proteins that open and inactivate quickly 

(1-2 ms) to depolarize the membrane and elicit an action potential. In humans, there are 

nine pore-forming α-subunits (Nav1.1-1.9), encoded by their respective genes (SCNA1-

SCNA9) and four single transmembrane (TM) β-subunits (Navβ1-4), with their 

respective genes (SCNB1-SCNB4) (Catterall et al., 2005). A single α-subunit is often 

found co-expressed with at least one β-subunit, and each subunit has differential 

expression profiles and kinetic modulation (Brackenbury and Isom, 2008). Mammalian 

Nav α-subunits are large (260kDa) complexes organized in four domains (DI-DIV), each 

with six transmembrane helices (S1-S6) (Fig. 4.1). S1-S4 of each domain acts as the 

voltage-sensing domain (VSD), whereas S5-S6 of each domain come together to create 

the conducting pore (Hille, 2001; Ahern et al., 2016).  

The high-sequence homology within the voltage-gated ion channel superfamily has 

greatly accelerated our understanding of Nav channels in terms of the overall pore 

structure (Lipkind and Fozzard, 2000; Frank et al., 2005), as many crystal structures have 

been solved for voltage-gated K
+
 (Kv) channels (Swartz, 2004; Long et al., 2005; 

González et al., 2012). Pore blocking toxins were used to identify critical residues in the 

pore (Hidalgo and MacKinnon, 1995), while gating modifier toxins helped establish the 

S3-S4 segment as the voltage sensing domain (VSD) (Swartz and MacKinnon, 1997a, b). 

A high density of positively charged residues (Arginine and Lysine), present at every 
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third position within the S4 helix defines the binding site of many amphipathic toxins 

isolated from tarantulas. These toxins “hang” onto the VSD, speeding up activation and 

slowing deactivation of the channel (Milescu et al., 2007; Mihailescu et al., 2014; Tilley 

et al., 2018), as discussed in a commentary (Navarro et al., 2019).  

4.1.1 Nav channel function, selectivity, and pharmacology 

Each domain of the α-subunit has slightly different sequence in the VSD, which can 

result in different kinetic properties at the level of individual domains. For Nav channels 

and many other channels, the movement of DIV is consistently slower than DI-DIII and 

is tightly correlated with fast inactivation (Stühmer et al., 1989)(Chanda and Bezanilla 

2003). By attaching fluorophores onto the cysteines within the S3-S4 linker, many 

investigators have recorded fluorescent movements that correlate with VSD movement in 

Kv channels (Manuzzu et al 1996)(Cha and Bezanilla 1997)(Perozo et al 1998)(Glauner 

et al 1999), Nav channels (Chanda and Bezanilla 2002a; b)(Zhu et al 2017)(Barro-Soria 

et al 2017) and Cav channels (Pantazis et al 2013). This technique can only be used in 

heterologous expression systems, which allow for over-amplification of the desired 

protein and production of relatively large currents that can be conveniently recorded. By 

averaging data over many repeated trials, the signal to noise can be further improved.   

The intracellular linkers between domains serve as regulatory sites of inactivation and 

other activity. A highly conserved site for Nav channels is the IFM motif along the DIII-

DIV linker. When all intracellular linkers are removed with pronase, inactivation is 

eliminated and Na
+
 currents remain open until the stimulus is over (Armstrong et al., 

1973). Addition of the IFM peptide via the patch pipette is enough to rescue inactivation 



156  

 

 

(Eaholtz et al., 1994). The IFM motif is conserved across all mammalian Nav channels, 

as well as fish and bacterial Nav channels (Ahern et al., 2016). Many point mutations 

have been found in diseases such as cardiomyopathies and epilepsy (Deschênes et al., 

1999). 

Nav channels are highly selective for Na
+
, but other monovalent cations, such as K

+
 and 

Li
+

, can also pass, albeit with lower affinity. Selectivity or permeability is on the order of 

170:1 for Na
+
:K

+
 and 70:1 for Na

+
:Ca

2+
 (Hille, 2001; Ren et al., 2001b). Mutations in 

critical charged residues in the S5-S6 linker were used to identify the selectivity filter and 

the outer vestibule, as neutralization of negatively charged amino acids greatly reduces 

tetrodotoxin (TTX) sensitivity (Fozzard and Hanck, 1996). TTX is a highly-selective and 

potent (IC50 ~ 60 nM) pore blocker of Nav channels that was originally isolated from 

pufferfish, where it is produced by symbiotic bacteria (Do et al., 1990; Yu et al., 2004), 

which has also been found on terrestrial amphibians (Cardall et al., 2004; Hanifin, 2010). 

The high specificity of TTX for Nav channels (Nav1.1-Nav1.6) has been a priceless tool 

for understanding not only ion channel structure, but also neural behavior. 

4.1.2 Nav channel subtype specification and expression  

The primary subtypes in the mammalian central nervous system are Nav1.1, Nav1.2 

Nav1.3 and Nav1.6, whereas Nav1.7, Nav1.8, and Nav1.9 are largely expressed in the 

peripheral nervous system (Elliott and Elliott, 1993; Strickland et al., 2008). Nav1.2, 

Nav1.3, and Nav1.6 are found in t-tubules of skeletal muscle, while Nav1.4 is typically 

located on the intercalated disk (Maier et al., 2002; Wang and Wang, 2003; Hirn et al., 

2008). Nav1.5 is known as the cardiac muscle subtype (Remme et al., 2008) and many 
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mutations lead to diseases such as tachycardia, heart failure, long-qt syndrome, and 

Brugada syndrome (Papadatos et al., 2002; Mohler et al., 2004; Nattel et al., 2007). 

Nav1.3 is also responsible for pacemaking currents found in serotonin-releasing 

enterochromaffin cells in the gut (Strege et al., 2003; Strege et al., 2017). In neurons,  

Nav channels are distributed throughout the cell, in the soma, dendrites, and axon (Lai 

and Jan, 2006; Vacher et al., 2008). Nav channels are also found at high densities in the 

axon initial segment (AIS) (Palay et al., 1968; Kole, 2008; Lorincz and Nusser, 2010), a 

highly organized structure within the first 20-60 µm of axon, present in almost all 

vertebrate neurons (Chang and Rasband, 2013).The AIS is composed of dense actin and 

β4-spectrin cytoskeleton, with an underlying macromolecule called AnkyrinG (AnkG), 

which serves as a landing zone for voltage-gated ion channels, neurotransmitter 

receptors, and cell adhesion molecules (Rasband, 2010; Gasser et al., 2012).  

Nav channel expression within the AIS is also specific, with Nav1.6 often found distally, 

further away from the soma, and Nav1.1 or Nav1.2 proximal to the soma (Hu et al., 2009; 

Osorio et al., 2010; Yamagata et al., 2017). As Nav1.6 has a slightly (~5 to 10 mV) more 

hyperpolarized activation curve, these dense and isolated channels can lower the local 

resting membrane potential, making it easier for Nav channels to activate (Yu et al., 

2008; Hu et al., 2009; Teleńczuk et al., 2016). For these reasons, the AIS is the site of 

action potential (AP) initiation (Colbert and Johnston, 1996; Kole, 2008; Hu et al., 2009; 

Baranauskas et al., 2013). From the axonal initial segment, the action potential back-

propagates to the soma, causing the abrupt onset (Stuart et al., 1997b; Palmer and Stuart, 

2006; Shu et al., 2007; Yu et al., 2008). A compromised structural integrity of the AIS is 
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a factor in many complex neurological disorders (Buffington and Rasband, 2011), 

including Angelmann syndrome  (Kaphzan et al., 2011; Kaphzan et al., 2013), 

schizophrenia (Volk et al., 2002; Athanasiu et al., 2010), and bipolar disorder (Schulze et 

al., 2009).  

4.1.3 Modulators of Nav channel kinetics   

Nav channels have many intrinsic sites for regulation by a variety of intracellular factors. 

There are many Serine/Threonine residues that can be phosphorylated by PKA and PKC 

(Costa and Catterall, 1984; West et al., 1991; Chen et al., 1995; McAnelly and Zakon, 

1996; Cantrell et al., 2002), which in turn can up-regulate or down-regulate protein 

expression and modify overall current density (Misonou et al., 2004; Misonou and 

Trimmer, 2004). In heterologous systems, the co-expression of Navβ1 subunit along with 

any α-subunit greatly enhances overall expression (Chahine and O'Leary, 2011) as well 

as shifting the steady-state activation and inactivation curves. Expression of the Navβ4 

subunit, or even of a small portion of the intracellular tail (Aman and Raman, 2010; 

Lewis and Raman, 2013), results in an open-pore block by β4, which competes with the 

fast-inactivation particle IFM motif and generates a “resurgent” current (Raman and 

Bean, 1997) when the particle is released (Bant and Raman, 2010). This behavior is a key 

mechanism that allows for the fast firing rates (~50 Hz) of cerebellar Purkinje neurons. 

However, these regulatory mechanisms change with cellular activity, making it 

challenging to separate them from other cellular functions. 

The C-terminal tail of voltage-gated channels is often a site for modulation. Nav channel 

C-terminus includes a calmodulin binding motif and an IQ domain, which allows for 
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modulation by intracellular calcium. Calmodulin is a calcium binding protein composed 

of two EF-hand domains, which bind two Ca
2+

 ions per domain (Chin and Means, 2000). 

Binding of Ca
2+

 to calmodulin allows for transportation of Ca
2+ 

ions that upon activation 

can trigger many downstream events such as regulation of gene expression by activation 

of CREB (cAMP response element binding protein)(Kandel, 2012) or CamKII 

(calmodulin kinase kinase), which are required for long-term potentiation (Herring and 

Nicoll, 2016; Nakahata and Yasuda, 2018).  

Recently, it was found that the AIS macrostructure has activity-dependent plasticity, 

expressed via shortening and relocating the expression of AIS structural proteins (Grubb 

and Burrone, 2010). During development, the AIS undergoes both elongation and 

shortening, regulated by overall neuronal activity on the timescale of days to weeks 

(Grubb et al., 2011; Kuba, 2012; Hinman et al., 2013; Kuba et al., 2014; Yoshimura and 

Rasband, 2014), or even hours in culture (Grubb et al., 2011; Evans et al., 2013; Evans et 

al., 2015). It is thought that AIS relocation is triggered by an increase in intracellular 

calcium levels, via activation of L-type calcium channels and of a downstream calcium-

sensitive phosphatase, calcineurin (Grubb and Burrone, 2010; Bender et al., 2012). 

Inhibition of the calcineurin can prevent AIS relocation (Evans et al., 2013).  

4.2 Chapter introduction 

The regulation of ion concentrations within cellular compartments is critical for cellular 

communication. Cellular gradients of permeant ions regulate many important cellular 

functions, such as ATP production (Elston et al., 1998), water regulation (Hazama and 

Okada, 1988), and gene expression (Bading et al., 1993; Dolmetsch et al., 1998). In 
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addition to its electrogenic function, Ca
2+

 ions
 
can participate in signal cascades that 

trigger synaptic release (Katz and Miledi, 1968), cross-bridge cycling of the actin-myosin 

filaments (Metzger and Moss, 1990), and many forms of synaptic plasticity via Ca
2+

 

activated phosphatases (calcineurin) and kinases (calmodulin-dependent kinase-2) 

(Malinow et al., 1989; Malenka, 1994; Evans et al., 2013). Many calcium activated 

proteins have structural domains known as EF hand motifs, which can bind two Ca
2+

 ions 

each (Persechini et al., 1989). Calmodulin (CaM), an intracellular calcium binding 

protein is made up of two lobes, each composed of two EF hands that allow the binding 

of Ca
2+

 with high affinity (nM - µM) (Faas et al., 2011). As a mobile, intracellular 

protein, CaM activity serves as a local sensor of Ca
2+ 

activity to regulate many members 

of the ion channel superfamily, including voltage-gated Ca
2+

 (Cav) channels (Peterson et 

al., 1999), store-operated Ca-release channels (Li et al., 2017), Ca-activated K
+
 channels 

(Keen et al., 1999; Joiner et al., 2001), Ca-activated Cl channels (Tian et al., 2011; Jung 

et al., 2013), voltage-gated K (Kv) channels (Wen and Levitan, 2002; Chang et al., 2018), 

voltage-gated Na (Nav) channels (Deschênes et al., 2002; Ben-Johny et al., 2014) and 

Transient Receptor potential (TRP) channels (Lambers et al., 2004; Hasan et al., 2017).  

Binding of CaM to functional proteins often occurs at sites known as IQ (Isoleucine-

Glutamine) domains. These domains are found in many Ca
2+ 

-regulated proteins 

(Yamniuk and Vogel, 2004); in voltage-gated Cav and Nav channels, they are found on 

the C-terminal tail (Wen and Levitan, 2002; Herzog et al., 2003; Ben-Johny et al., 2015). 

For Cav channels, non-Ca
2+

 -bound Calmodulin (apo-Calmodulin) binds to the C-

terminus and is important for regulating the Ca
2+ 

-dependent inactivation, which is 
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isolated using Ba
2+

 as a charge carrier (Tang et al., 2003; Adams et al., 2014). 

Functionally, calcium dependent inactivation (CDI) serves as a negative - feedback 

mechanism to reduce channel activity once appropriate intracellular Ca
2+ 

levels are 

reached. Intracellular Ca
2+

 concentrations ([Ca
2+

]) are tightly regulated in cells, as high  

[Ca
2+

] (e.g., >10-15µM) can activate calpains, which are Ca
2+

-activated proteases that 

degrade structural proteins within the cell at the beginning stages of apoptosis and trigger 

cell death (Squier et al., 1994).  

In resting neurons, intracellular [Ca
2+

] remains around 100 nM (Helmchen et al., 1996) 

and can increase to a few µM during high firing activity. During an AP, the membrane 

depolarization activates Cav channels in the axon terminus, triggering an increase in 

[Ca
2+

] (> 1µM) (Lipscombe et al., 1988), inducing neurotransmitter release. Upon ligand 

binding, many ionic neurotransmitter receptors, such as NMDA glutamate receptors and 

TRP channels, permeate a non-selective current dominated by Ca
2+

 (MacDermott et al., 

1986), leading to increase in [Ca
2+

]
 
within dendritic spines (Yuste and Denk, 1995; 

Sabatini et al., 2002) and throughout the cell. The use of fluorescently labelled calcium 

chelators that modify their brightness when Ca
2+

 is bound (Kao et al., 1989; Regehr et al., 

1989; Maravall et al., 2000) and genetically engineered probes (Miyawaki et al., 1997; 

Nakai et al., 2001; Akerboom et al., 2012; Chen et al., 2013) has been instrumental for 

unveiling how Ca
2+

 activity increases proportional to neuronal firing frequency 

(Helmchen et al., 1996; Magee and Johnston, 1997; Markram et al., 1997).  

As neurons require voltage-gated Nav channels to fire APs, modulation of Nav channel 

kinetics can regulate overall neuronal activity. Nav channels begin to open at 
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depolarizing potentials (around -50 mV), further driving membrane depolarization and 

thus opening more Nav channels. Once opened, Nav channels quickly inactivate (2-5 ms) 

and cease conduction, allowing for repolarization of the membrane by Kv currents and 

for reliable conduction of the AP down the axon. However, not all Nav channels 

inactivate with the same kinetics. In some neurons, Nav channels exhibit partial 

inactivation, or a “persistent” component (French et al., 1990; Crill, 1996), whereas in 

other neurons, Nav channels exhibit long-term inactivation that lasts hundreds of 

milliseconds or seconds (Colbert et al., 1997; Jung et al., 1997; Mickus et al., 1999; 

Aman and Raman, 2007; Milescu et al., 2010b). Some Nav channels also exhibit calcium 

dependent inactivation (CDI), such as Nav1.4, found in skeletal muscle (Herzog et al., 

2003; Biswas et al., 2009; Ben-Johny et al., 2014), and Nav1.2, found in neurons 

(Chahine et al., 2005; Wang et al., 2012). 

The ventral raphé are a group of serotonergic pacemaking neurons located in the midline 

of the brainstem, providing serotonin (5-hydroxytryptophan, 5-HT) to the brainstem and 

spinal cord circuits (Richerson, 2004). When serotonergic neurons cannot produce 5HT 

or are not present, animals have severe respiratory problems and often die in infancy 

(Hodges et al., 2009). Sitting at the seam of the brainstem, the raphé neurons wrap 

processes around blood vessels and increase their firing rate (from 2Hz  to 6 Hz) when 

perfused with high CO2 (Wang et al., 1998; Wang et al., 2002; Severson, 2003; Corcoran 

et al., 2009). By increasing their firing rate, they increase the release of 5HT onto the 

rhythmic inspiratory pacemakers, the pre-Bötzinger complex (pre-BötC), which triggers 

an increase in respiratory rhythm (Wang et al., 1998; Wang et al., 2001; Severson, 2003; 
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Ptak et al., 2009). These neurons are implicated in disease states such as sudden infant 

death syndrome and congenital sleep apnea (Richerson, 1997; Richerson, 2004).  

The Nav currents in the ventral raphé exhibit long-term inactivation (LTI), where a single 

AP or voltage clamp pulse can trigger a proportion of channels (~20%) to become 

activated for seconds (Milescu et al., 2010b). Long-term inactivation of Nav channels has 

been attributed to proteins known as Fibroblast-Growth Factor Homologous Factors 

(FHF1-4 or FGF11-14), which contain the immunoglobulin domain characteristic to 

members of the fibroblast growth factor family. However, they do not bind to the FGF 

receptor, are not secreted, and do not serve as growth factors (Smallwood et al., 1996; 

Ornitz, 2000; Wang et al., 2000; Goldfarb, 2005). FHFs are intracellular proteins that co-

express with Nav channels (Smallwood et al., 1996; Liu et al., 2001; Wittmack et al., 

2004; Goetz et al., 2009) and can regulate Nav peak amplitude and dramatically slow 

inactivation rates (Liu et al., 2003; Goldfarb et al., 2007; Laezza et al., 2007; Laezza et 

al., 2009; Dover et al., 2010; Goldfarb, 2012; Venkatesan et al., 2014). Crystal structures 

of the C-terminus of Nav 1.5 and Nav1.2 channels have been crystallized in a complex 

with FGF13 and calmodulin, in a calcium-dependent manner (Goetz et al., 2009; Wang et 

al., 2011b; Sarhan et al., 2012; Wang et al., 2012). FHF and Calmodulin bind to the C-

terminus at different levels of [Ca
2+

] indicates that these regulators of Nav channel 

inactivation may be kinetically interacting. In this chapter, I present a series of patch-

clamp electrophysiology experiments in ventral raphé neurons, where we tested if 

intracellular [Ca
2+

] can modulate Nav channel kinetics, particularly long-term 

inactivation. 
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4.3. Materials and methods 

4.3.1 Animal procedures 

All animal procedures were approved by the University of Missouri Animal Care and 

Use Committee. Neonatal (P1-P4) Sprague Dawley rats (Taconic, USA) were used 

following standard slice preparation and electrophysiology procedures. 

4.3.2 Brain slice preparation 

 In vitro medullary slice preparations containing midline raphé neurons, inferior olivary 

neurons, and hypoglossal motor neurons were obtained from postnatal (P0–P5) Sprague 

Dawley rats as described in (Koshiya and Smith, 1999). Briefly, animals were 

anesthetized with isoflurane and the brain was removed from the skull in ice-cold 

artificial CSF (aCSF) containing (in mM): 124 NaCl, 25 NaHCO3, 3 KCl, 1.5 CaCl2, 1.0 

MgSO4, 0.5 NaH2PO4, and 30 D-glucose, equilibrated with 95% O2 and 5% CO2 (pH 7.4 

± 0.05 at room temperature). Fine dissection was quickly performed to remove the pia 

membrane to increase oxygen penetration to the tissue. The brainstem was pinned on to a 

piece of clay attached to an acrylic mount, which was attached on top of a metal base that 

could be manipulated with a set screw, to properly orient the brainstem for slicing. 

Transverse brainstem slices were cut rostral to caudal in 400 μm thick sections, until the 

opening of the fourth ventricle was seen. The wall of the fourth ventricle was used to 

adjust the pitch of the mounting device. 200 μm thick sections were taken until the 

desired location was determined, indicated by the presence of the inferior olives, the first 

hypoglossal (XII) nerve rootlet, and the presence of the nucleus ambiguous. Once in final 

http://www.jneurosci.org/content/30/22/7740.long#ref-18
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position, a 350-400 μm thick slice was taken at the level of the pre-BotC. The slice was  

transferred to a recording chamber mounted onto a microscope stage, and superfused 

with aCSF at room temperature. 

4.3.3 Neuron identification 

Ventral raphé neurons were selected based on their location in the slice and their 

electrical activity. Raphé neurons cluster at the midline immediately superior to the 

inferior olives and have irregularly shaped somas. After obtaining a GΩ seal and prior to 

breaking into whole-cell configuration, the amplifier was switched to current clamp (CC) 

mode to check for regular and slow pacemaking (1–3 Hz) with broad action potentials 

(3–6 ms). All experiments were done under visual control using infrared-Dodt contrast 

for visualization. 

4.3.4 Solutions 

Intracellular solutions were designed to obtain a desired free [Ca
2+

] using the 

MaxChelator program (Chris Patton) to calculate buffering capacity. For voltage clamp 

(VC), pipettes were filled with a “Low Calcium” solution with a calculated free [Ca
2+

] ≈ 

70 nM, containing (in mM): 120 Cs-gluconate (prepared from CsOH and gluconic acid), 

30 Na-gluconate, 10 TEA-Cl, 5 4-AP, 10 EGTA, 1 CaCl2, 10 HEPES, 4 Mg-ATP, 0.3 

Na3-GTP, 10 Na2-phosphocreatine, pH 7.3 adjusted with CsOH (285 ± 5 mOsm/L). To 

create the “High Calcium” solution with a calculated free [Ca
2+

] ≈ 7µM, HEDTA was 

used as the Ca
2+ 

chelator, as it can set free [Ca
2+

] to µM levels. This solution contained 

the following (in mM): 125 Cs-gluconate (prepared from CsOH and gluconic acid), 10 



166  

 

 

TEA-Cl, 5 4-AP, 10 Na3-HEDTA, 5 CaCl2, 10  HEPES, 4 Mg-ATP, 0.3 Na3-GTP, 10 

Na2-phosphocreatine, pH 7.3 adjusted with CsOH (285 ± 5 mOsm/L). The intracellular 

[Na
+
] for both VC solutions was set to 50 mM to reduce the size of Na

+
 currents and 

improve voltage- and space-clamp.  

For CC, pipettes were filled with a “Low Calcium” solution containing (in mM): 125 K-

gluconate, 10 NaCl, 10 EGTA, 1 CaCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na3-GTP, 4 Na2-

phosphocreatine, pH 7.4 adjusted with KOH (285 ± 5 mOsm/L). For the “High Calcium” 

CC experiments, the solution contained (in mM): 125 K-gluconate, 10 Na3-HEDTA, 5 

CaCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na3-GTP, 4 Na2-phosphocreatine, pH 7.4 adjusted 

with KOH (285 ± 5 mOsm/L). A fluorescent dye (TxRed, 10µM) was added to the 

pipette solution prior to filtering, to highlight neurons accessed by whole-cell.  

4.3.5 Pharmacology 

For VC experiments, CdCl2 (200 µM) was added to the superfusing aCSF to block Ca
2+

 

currents. In some slice experiments, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-

benzo[f]quinoxaline-7-sulfonamide (NBQX; 10 μM) was added to the superfusing aCSF 

to inhibit excitatory synaptic transmission. To block Na
+
 currents, TTX (1 µM) was 

added to the superfusing aCSF after initial VC recordings were taken.  All reagents were 

purchased from Millipore-Sigma (St. Louis, MO). 

4.3.6 Electrophysiology 

Electrodes (4-5 MΩ) were pulled from borosilicate glass, fire polished on a micro-forge 

and then coated with a thin layer of Sylgard to reduce capacitive transients. Pipette 
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capacitance was compensated 100% in VC, and ≈70% in CC. For off-line analysis, the 

membrane capacitance (Cm) was approximated as the value used for compensation in VC 

(≈20 pF). Series resistance (Rs) was typically 9–15 MΩ. Cells with Rs > 22 MΩ were 

discarded. In VC experiments, Rs was compensated 80% (2 µs response time), and the 

compensation was readjusted before each voltage clamp protocol. For CC experiments, 

bridge mode was compensated 100% and periodically readjusted. A calculated liquid 

junction potential of ≈10 mV for the K
+
-based and ≈8 mV for the Cs

+
-based solutions 

was corrected on-line. Somatic whole-cell recordings were obtained with a HEKA 

EPC10 Double patch clamp amplifier. For VC, data were low-pass filtered at 40 kHz and 

digitally sampled at 100 kHz, using the amplifier’s built-in digitizer, controlled by 

Patchmaster software from HEKA (v2.91). For analysis, all VC data were then down-

sampled to 10 kHz and filtered at 5 kHz to reduce file size. For CC, the signal 

representing membrane voltage was digitally sampled at 50 kHz (open-bandwidth), using 

National Instruments data acquisition cards (PCI 6052E or PCI 6251) and NI-DAQmx 

8.1, controlled by the QuB software (http://milesculabs.biology.missouri.edu/QuB.html).  

4.2.7 Voltage clamp protocols 

VC protocols were constructed and applied with the Patchmaster program. Leak 

subtraction was performed online with the n/4 method. To ensure stability between 

sweeps, the inter-sweep interval for all voltage protocols was set to 6 seconds, holding at 

-80 mV, to give sufficient time to Nav channels to exit the LTI state. For protocols 

investigating the recovery after use dependence, an inter-sweep interval of 30 seconds 

was used. Experimental VC protocols were applied 5 mins after establishing the whole-

http://milesculabs.biology.missouri.edu/QuB.html
http://milesculabs.biology.missouri.edu/QuB.html
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cell configuration. To test stationarity between sweeps, a brief 1 ms pulse to -15 mV was 

applied at least 25 ms prior to each protocol. If the current elicited by this pulse changed 

by > 12% from the first to the last sweep, the protocol was eliminated from the dataset.  

To assess steady-state (SS) activation (SSAct), a voltage pre-pulse of (-40 mV, 4-5 ms) 

was utilized prior to the test step, to inactivate axonal Nav channels for better space 

clamp (Milescu et al., 2010a). Activation voltage was measured from -100 to + 20 mV, in 

increments of +5mV, followed by a step to -20 mV for 100ms, followed by a 

repolarization to -120 mV. The maximum amplitude of the current was taken during the 

first 50ms of the test step and baseline subtracted. IV relationships were plotted in QuB 

and converted to GV curves as calculated by Imax/(Vstep-Vrev), when Vrev = 33 mV is 

the voltage when the Na
+
 current reversed, as measured in voltage clamp and confirmed 

by the GHK equation. Curves were then fit with a Boltzmann function multiplied by a 

line (Y = Bottom + (Top-Bottom + Slope1 * X ) / ( 1+ exp((V50-X) /Slope)) in Prism4.1 

(Graphpad).  

To measure SS-inactivation (SS-InAct), multiple protocols were used. First, the -20 mV 

holding step after the SS-Act protocol allows one to calculate both SSAct and SSInAct 

from the same protocol, as the test step for Activation is simply the pre-pulse for 

Inactivation. To disambiguate any effect of the VC prepulse, separate protocols were 

created without a prepulse, where a conditioning-pulse from -100 to -20 mV in +5 mV 

increments was applied for 50, 100 and 300 ms, followed by the test step at -20 mV for 

100 ms. The peak of the activation IV curve is typically between -15 and -20 mV. Data 

were analyzed in QuB by normalizing the peak current of each test pulse (taken at -
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20mV) to the maximum current. IV curves were fit with a Boltzmann function (Y = 

Bottom + (Top-Bottom + Slope1) / (1+ exp((V50-X) /Slope)) in Prism4.1.  

Recovery from inactivation (RI) was determined with a two-pulse protocol. After the 

minimum 6 second inter-sweep interval holding at -80 mV, a test pulse to -15 mV for 5 

ms was applied, followed by a variable holding step at -80 mV or -65 mV (starting at 

0.75 ms and multiplied by 1.8 for each sweep), followed by another 5 ms, -15 mV test 

pulse, repeated for 17 sweeps. This protocol results in exponentially increasing intervals 

that efficiently sample the exponential recovery time course. Although in heterologous 

systems the recovery protocols typically have holding voltages below -100 mV, raphé 

neurons cannot be reliably held at such negative potentials for too long without 

destroying the patch. The -65 mV holding voltage was used as it is close to the typical 

resting potential (Milescu et al., 2010b). We tested voltages above -65 mV, but many 

neurons could not be reliably clamped for the entire length of the recovery protocol. 

Analysis was done by taking the ratio between the maximum current evoked by the 

second pulse relative to the first pulse, for each sweep. Bi-exponential functions were fit 

to each dataset using the following equation Y=Amp1*exp(-X/tau1) + Amp2*exp(-

X/tau2) + IEq. Multiple rounds of fitting were performed with various constraints to 

compare the data sets.  

Use-dependent inactivation was measured with repetitive voltage pulses applied at 

different frequencies. As a first approximation of use-dependence, four pulses from -80 to 

-15 mV were separated by either 40 ms, 100 ms, or 300 ms. The four pulses were applied 

three times and the ratios were averaged across the three sweeps. Data were analyzed by 
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taking the ratio of the maximum current evoked by a given pulse relative to the first 

pulse. A 20-pulse protocol with repetition frequencies of 2 Hz, 5 Hz, and 12 Hz was 

applied and processed in the same way. To test the extent to which these neurons can still 

generate Na
+
 currents, we also applied a few protocols consisting of 100 pulses repeated 

at 5 Hz, 10 Hz, 20 Hz, and 50 Hz. The data with large variations in the current during the 

holding voltage, signifying poor VC, were discarded. 

4.2.8 Data analysis and statistics  

Custom-made scripts were developed in the QuB software 

(http://milesculabs.biology.missouri.edu/QuB.html) to process VC and CC data. Scripts 

were also generated to implement ion channel fitting, to test ion channels in 

computational neuron models, and to run simulations. Statistics and curve fitting were 

performed with Prism 4.1 (Graphpad) software. 

4.2.9 Data acquisition hardware 

Experiments were performed on a customized upright microscope (Scientifica, UK) 

equipped with Dodt contrast, epifluorescence, and two-photon imaging with a MaiTai HP 

laser (Newport, USA), and with computer-controlled motorized positioners (Scientifica, 

UK) for the translation stage, objective, and recording electrodes. Wide-field imaging 

was done with a Hamamatsu sCMOS Flash4.0 V2 camera (Hamamatsu Photonics KK, 

Japan).  

The QuB program was used for 3D data mapping and experiment control and 

visualization, and for image acquisition with the camera (Navarro et al., 2015). 

http://milesculabs.biology.missouri.edu/QuB.html
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ScanImage 3.8.1 (Vidrio Technologies, USA) was used for two-photon image acquisition 

(Pologruto et al., 2003). PatchMaster (HEKA, Germany) and QuB were used for VC and 

CC data acquisition, respectively. All computer work was done on a dual-processor 

workstation equipped with 8-core Opteron 4284 processors (AMD, USA) and an R9 

280X Radeon video card (AMD, USA), running Windows 7 (Microsoft, USA). 

4.4. Results 

To investigate the role of intracellular [Ca
2+

] on ventral raphé neuron activity in neonatal 

rats, we used whole-cell patch clamp to isolate and record voltage-gated sodium currents. 

The raphé neurons sit at the seam or midline of the in situ respiratory brainstem 

preparation (Fig. 4.2) and exhibit steady firing rates of 2-3 Hz, with broad action 

potentials (Fig. 4.2D). Raphé neurons are easy to identify and readily form gigaseals and 

are easy to voltage-clamp. 

Voltage-gated Na
+ 

currents were isolated from other ionic currents by applying 

combinations of toxins within the intracellular solution and in the bath. The voltage-

clamp solution contains several Kv channel blockers: Cs
+
, TEA, and 4AP. These 

blockers, combined with 200 µM CdCl2 applied in the bath (Fig 4.3.A), resulted in good 

isolation of Na
+
 currents. For further isolation of the Nav current, a saturating dose of 

TTX (1 µM) was applied to the bath and protocols were repeated. Unlike VC solutions, 

CC solutions do not have any blockers, therefore the Na
+
 current was isolated by TTX 

subtraction (Fig. 4.3B). TTX subtraction is highly dependent on being able to record 

stable currents prior and post TTX application. If the series resistance changes in time, 
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the TTX subtraction will be subject to experimental artifacts by over- or under-estimating 

the total Na
+
 current. 

4.4.1 Steady-state activation and inactivation  

To test whether the rhythm-generating transient Na
+
 currents can be modulated by 

intracellular [Ca
2+

], SS Activation and SS Inactivation properties were measured using 

the protocol shown in Fig. 4.4A. For each day of experiment, both solutions were 

prepared and pipettes were filled alternating solution each time to standardize acquisition. 

For each set of data, only the best most stable recordings were used. Examining the time 

course of activation, High [Ca
2+

] neurons had slightly slower kinetics (Fig. 4.5B), 

compared to the Low [Ca
2+

] solution, although when fitted with bi-exponential functions, 

the fast time constants corresponding to the initial phase of recovery do not differ (Fig. 

4.5C; High n = 6, low n = 6). When fitting the decay of SS inactivation, High [Ca
2+

] had 

slightly faster rates, but only by < 0.1 ms (Fig. 4.5D; Low n = 9, High n = 9), which 

potentially could be caused by series resistance compensation. The voltage dependence of 

activation was fit to a Boltzmann function multiplied by a line to account for the linear 

trend of the GV curve. The Vhalf or slope of SSAct did not vary significantly between 

Low [Ca
2+

] (-33 ± 0.8 mV) and High[Ca
2+

](-32 ± 0.5 mV). Both data sets could be fit 

with the same Vhalf and slope parameters (p > 0.2, F-test). However, the Vhalf of SSInact 

was more depolarized for Low [Ca
2+

] solution Vhalf = -46.3 ± 1.6 mV (n = 9) compared to 

High[Ca
2+

], Vhalf = -50.6 ± 0.97 mV (n = 9). There were no differences found in the peak 

current density or cell capacitance between the two data sets (Low, n = 28; High, n = 21), 

indicating that the two sample sets likely contain similarly sized neurons.  
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4.4.2 Recovery from inactivation  

The recovery from inactivation (RI) of Na
+
 currents in ventral raphé neurons have a bi-

exponential time course, indicating two potential mechanisms regulating the recovery 

(Milescu et al., 2010b). Only stable recordings where the amplitude of the first test pulse 

changed by < 12% from the first to the last sweep were included in the analysis. The 

recovery was tested at -80 mV, where channel availability is 100% , and at -65 mV, 

where availability is incomplete, but the voltage is near the recorded resting potential of 

these neurons. I also attempted to test recovery at -60 mV, but not all cells could be 

properly voltage clamped for the entire length of the protocol. For all RI traces, the data 

were first fit with a single exponential decay model. For each data set, the fits with a 

single exponential were poor and could not explain the slow time constant. The best bi-

exponential fits to RI80 data had the following parameters, Low[Ca
2+

]:  τfast = 6.28 ± 

0.39, τslow = 587.3 ± 212.4 ms (n = 13); High[Ca
2+

] : τfast = 6.11 ± 0.4 ms and τslow = 

379.3 ±  139 ms (n = 17). The data sets could be fit equally well (R
2 

= 0.93) with the 

same τslow = 464 ± 119 ms, however when fit individually the High[Ca
2+

] had a faster 

τslow (Fig. 4.6).  

For RI-65, the recovery was not complete after 5 seconds, however both Low and 

High[Ca
2+

], reached the same equilibrium value at the end of the protocol. Data sets that 

did not reach values greater than 0.8 were removed from the analysis. Representative VC 

traces are displayed in Fig. 4.6B. For Low[Ca
2+

] τfast =  14.3 ± 1.05 ms and τslow = 556.9 

± 254 ms (n = 17). For High [Ca
2+

] τfast = 14.6 ± 1.02 ms and τslow = 537.3 +/- 221 ms (n 
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= 19). The overlap of the best fit values demonstrates that High intracellular [Ca
2+

] does 

not modify recovery kinetics for either recovery voltage.  

4.4.3 Use-dependent inactivation  

As pacemaking neurons typically operate under repetitive firing, we tested the use 

dependence of inactivation, using fast 5 ms pulses from -80 to -15 mV, repeated at 

different frequencies. To determine how many pulses are required to reach a steady state, 

we tested protocols with 100 pulses (Fig. 4.7). These data were collected under VC but 

with High [Ca
2+

] (n = 5) and Low [Ca
2+

] (n = 15) CC solutions. The data could not be fit 

with a single exponential component, but required a bi-exponential. The general trend, as 

expected, is that, as the frequency of stimulation increases, the proportion of channels 

that become unavailable increases. Both sets of data could be fit with the same fast and 

slow time constants (Fig. 4.7). However, at 10 Hz and 20 Hz, Low [Ca
2+

] solutions had 

more channels become unavailable (more inactivation). The fast time constants of the 

data determined that the first component is complete within what would be the first 20 

stimulus pulses. 

To record properly isolated Na
+
 currents, we designed VC protocols containing 20 pulses 

repeated at 2 Hz, 5 Hz, and 12 Hz, as these frequencies are within the normal firing range 

of raphé neurons. Similar to the RI protocol, we chose -80 mV and -65 mV as the inter-

pulse voltages. With only 20 pulses, the decay in peak current can be fit with a single 

exponential and both Low and High solutions could be fit with the same time constant. 

With a holding voltages at -65 mV, the time constants were estimated as follows: for 2 

Hz, τ = 1.807 ± 0.22 s; 5 Hz, τ = 4.04 ± 0.45 s; and 12 Hz, τ = 8.82 ± 0.93 s. With 
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holding voltages at -80 mV, where there is little SS inactivation (SSInact in Fig. 4.5) the 

time constants were faster: for 2 Hz, τ = 1.21 ± 0.57 s; 5 Hz, τ = 2.33 ± 0.32 s; and 12 Hz, 

τ = 6.28 ± 0.72 s. As both sets of data could be fit to the same exponential and the only 

difference lies in the accumulation into inactivation, this behavior may be due simply to 

the 3 mV Vhalf shift of SS-inactivation between Low and High [Ca
2+

]. 

4.4.4 Recovery from use-dependent inactivation 

The use-dependence protocols demonstrated that the Low [Ca
2+

] solutions accumulate 

more channels into a non-conducting inactivated state, which could be fit to a mono-

exponential process. As recovery from inactivation is a bi-exponential process, we 

designed voltage-clamp protocols that tested use-dependence and then examined the 

process of recovery from the use-dependence steady state. The protocols contained 20 

pulses repeated at 5 Hz, 10 Hz, and 20 Hz, followed by a single test pulse applied after 

exponentially increasing time intervals. The initial recovery interval was 100 ms, 

increasing exponentially for 10 sweeps, with the last interval 30 seconds. The intersweep 

interval had to be increased from 6 s to 30 s to allow time for full recovery, as having 

only a 6 s interval decreased the total available current dramatically with 20 pulses. These 

data were collected with High and Low [Ca
2+

] CC solutions, not with VC solutions. Fig. 

4.9A shows an example protocol. Although sample sizes were low, the recovery after 

stimulus could be fit to a single exponential. In agreement with the use-dependence data, 

Low [Ca
2+

] solutions induced greater accumulation into inactivation than the High [Ca
2+

], 

allowing for faster recovery with the High [Ca
2+

]. 
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4.5. Discussion 

As discussed in previous chapters, identifying the overall kinetics is ideally determined 

by fitting a model to the data. Initial modeling attempts were made for these voltage-

clamp experiments, but, as presented here, intracellular [Ca
2+

] had minor effects on the 

kinetics of voltage-gated Nav channels in raphé neurons. Such slight effects on the 

kinetics makes it challenging to develop meaningful models that can be tested for 

comparison. If more differences in the kinetics had been found, creating a model that 

explains both data sets could lead to interesting dynamic clamp studies, which could 

potentially tease apart calcium dependence from activity dependence.  

Our experimental observations about the recovery process could be explained by the 

slight rightward shift of the inactivation curve at High [Ca
2+

]. In this case, at the same 

voltage near the top of the IV curve (e.g., at -65 mV), High [Ca
2+

] solutions would have a 

higher proportion of channels that are not inactivated compared to Low [Ca
2+

] solutions. 

Therefore, it makes sense that the differences between the two data sets would be largest 

when the holding voltage was < -80 mV. The effects that we saw here may not be due to 

any interaction with calcium, but rather to a simple shift in voltage dependence.  

Prior to this study, I performed experiments with more extreme intracellular [Ca
2+

] of 

nominally zero and 1 mM. Like many before me, I found it extremely challenging to 

patch in conditions with high [Ca
2+

], and the zero Ca
2+ 

had similar stability issues. 

Therefore, I chose the two [Ca
2+

] of ~70 nM and ~7µM, which represent more 

physiologically relevant extremes. Also, at around 6 µM, both calmodulin lobes should 

be fully bound to calcium, which should cause any effect - if there is one. Furthermore, 
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EGTA is likely not the best buffer to use for establishing the Low [Ca
2+

], as BAPTA can 

effectively buffer faster and at longer distances, whereas the spatial distribution of EGTA 

buffering may not reach the Ca
2+ 

located in smaller processes (Pethig et al., 1989; Stern, 

1992). Although my two Ca
2+

 solutions spanned two orders of magnitude, the difference 

may not have been enough to trigger any potential response. The ideal experiment would 

be to record voltage-clamp currents and then uncage calcium within the cell while 

recording the response to a use-dependence protocol. As our lab has a two-photon laser, I 

tried to uncage calcium using DM-nitrophen, a caged molecule with high two-photon 

cross absorption. A two-photon laser is useful to image deeply within a slice, but in many 

of my recordings it resulted in thermal gradients that would trigger uncontrolled action 

potentials. As the first laser pulse will uncage the highest dose of Ca
2+

, subsequent 

attempts to uncage after the uncontrolled action potentials failed to increase local [Ca
2+

] 

sufficiently.  

Another issue with this current study is the potential heterogeneity in the type of neurons 

that were tested, for which we did not have genetic markers available. Instead, I selected 

neurons based on their location and electrophysiological properties, but this reduced the 

sample size and made it more difficult to ascertain meaningful differences in the data. 
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4.6 Figures and Figure Legends  

 

 

Figure 4.1. Schematic of Nav channel secondary structure. The Nav α-subunit has four 

domains interconnected by intracellular linkers. Each domain has six transmembrane segments 

(S1 through S6). The S4 segment (red) has positively charged arginines that are translocated 

within the membrane as voltage is depolarized. S5-S6 from each domain (blue) form the ion 

conducting pore. The DIII - DIV linker contains the IFM motif (yellow), which is the inactivation 

"particle" responsible for fast inactivation. The C-terminus contains binding sites for regulatory 

factors, including calmodulin (green) and fibroblast growth factor homologous factors (grey). 

Nav α-subunits are typically expressed with at least one β subunit (orange), which are single 

transmembrane subunits with an extracellular immunoglobulin motif.  

  

DI DII DIII DIV

IFMmotif

β subunit
A
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Figure 4.2. The respiratory brainstem preparation. A) 3D model of the rat brain loaded in 

QuB’s World3D viewer viewer. The purple marker indicates the location of the slice used in our 

experiments. B) Schematic representation of the respiratory brainstem slice (350-400 µm thick) 

of the neonatal rat, containing the inspiratory rhythm-generating circuits in the Pre-Bötzinger 

complex (Pre-BotC), with output to the hypoglossal motor nucleus (XII). Other important 

structural features include the inferior olivary nucleus (IO), nucleus ambiguus (NA), spinal 

trigeminal nucleus (5SP), and the wall of the fourth ventricle (V4). C) IR Dodt-contrast image of 

a patched raphé neuron located along the midline. D) Typical steady firing rate (2-3 Hz) of raphé 

neurons, with characteristic broad calcium shoulder after the peak of the action potential. 
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 Figure 4.3. Isolation of Na
+
 currents. A) When using VC solutions in VC experiments, voltage 

pulses from -80 to -15 mV elicit inward Na
+
 and Ca

2+
 currents. Under bath-applied 200 µM 

CdCl2, the inward Ca
2+

 currents are eliminated. B) When using CC solutions in VC experiments, 

pulses from -80 to -15 mV elicit both a Na
+ 

-dominated inward
 
current and a K

+
 -outward current 

(K
+
). After TTX application, the inward current is mostly removed, leaving only small Ca

2+
 

current masked by the large K
+
 current.  
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Figure 4.4. Testing activation and inactivation properties. A) Full voltage clamp protocol used 

to test the SS-Act and SS-InAct. B) Representative traces of the time course of Activation, top-

black – Low [Ca
2+

] solution, bottom – green High [Ca
2+

]
 
solution. C) Representative traces of the 

time course of inactivation, top-black – EGTA low calcium solution, bottom – green HEDTA 

high Ca
2+ 

solution. The bottom scale bar represents 2 ms. 
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Figure 4.5. Steady-state activation and inactivation kinetics. A) The SS-Act G/V curves were 

fit with Boltzmann equations multiplied by a line. The Vhalf and slope of SSAct did not differ 

significantly (p value > 0.2) between the two data sets, Low [Ca
2+

] = -33 ± 0.8 mV, 3.73 ± 0.35, n 

= 6; High [Ca
2+

] = -32 ± 0.5 mV, 3.73 ± 0.35, n = 6. The SS-Inact I/V curves were fit with 

Boltzmann equations, showing that the Vhalf for Low [Ca
2+

] solutions was shifted in the 

depolarizing direction: Vhalf, slope = -46.3 ± 1.6 mV, -7.74 ± 0.51 compared to Vhalf = -50.6 ± 0.97 

mV, -6.811 ± 0.72. B) The peak Na
+
 current density was calculated from the maximum current 

elicited by a voltage pulse from -80 to -15 mV, divided by the estimated Cslow. There were no 

differences between the two data sets (Low, n = 28; High, n = 21). C) The plot of the time 

constants of SSAct decay vs. voltage (Low, n = 6; High n = 6). D) The plot of SSInact decay time 

constants vs. voltage demonstrates that inactivation kinetics are slightly faster with High [Ca
2+

] 

solutions (Low, n = 9; High, n = 9).  
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Figure 4.6. Recovery from inactivation of Na
+
 currents. A) Representative traces of raw 

recovery protocol at -65 mV. The current does not fully recover for the length of the protocol. 

Top, black trace – Low [Ca
2+

]. Bottom, green trace – High [Ca
2+

]. B) Representative traces of the 

raw recovery protocol at -80 mV. Top, black trace – Low [Ca
2+

]. Bottom, green trace – High 

[Ca
2+

]. C) The recovery property curve for -65 mV holding voltage, with the corresponding fits. 

Only the first second of data is shown, to showcase the bi-exponential time course. D) The 

recovery property curve for -80 mV with corresponding fits. E) Same data as in C and D, except 

plotted on an exponential time course 
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Figure 4.7. Use-dependent inactivation tested with 100 pulses. These data were collected in 

VC, but with CC solutions without blocking Ca
2+ 

currents. A) 100 pulses at 20 Hz. B) 100 pulses 

at 10 Hz. C) 100 pulses at 5 Hz. The top trace in each graph is the elicited current, below is the 

voltage, and the bottom is the analyzed data, where green represents High [Ca
2+

] (n = 5) and 

black represents Low [Ca
2+

] (n = 14). At higher pulse repetition rates, the entry into inactivation 

is enhanced, as indicated by the change in overall steady state. The data were fit to bi-exponential 

functions. The estimated time constants were statistically compared between data sets and no 

significant differences were found: for 5Hz, τfast = 0.029 ± 0.056 s, τslow = 3.16 ± 0.93 s; for 10 Hz, 

τfast = 0.082 ± 0.13 s, τslow = 5.62 ± 1.08 s; for 20 Hz, τfast = 0.456 ± 0.31 s, τslow = 11.1 ± 2.03 s. 

However, with repetition frequencies above 10 Hz, the Low [Ca
2+

] solution gives a larger fraction 

of inactivated channels. The first exponential component reaches a steady state level within the 

first 20 pulses, followed by a steady decay. 
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Figure 4.8. Use-dependent inactivation with voltage-clamp solutions. A) Representative  

traces for frequency stimulation at -65 mV, for both Low [Ca
2+

] (black) (n = 17) and High  

[Ca
2+

] (green) (n = 10) solutions. B) The same as in A, but at -80 mV (n = 19 for both High and 

Low ). C) Time course of use-dependent inactivation at -80 mV. The current evoked by a given 

pulse was normalized to the current evoked by the first pulse. D) Same as in C, but at -65 mV. 

Pulse trains with only 20 pulses could be fit to a single-exponential function. No statistical 

difference was detected between -80 and -65 mV, but the plateau was significantly different,  

with Low [Ca
2+

] solutions having a higher fraction of inactivated channels. These data are in 

agreement with the data recorded with CC solutions.   
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Figure 4.9. Recovery after use-dependent inactivation. A) Representative trace of a protocol 

with 20 pulses repeated at either 5 Hz, 10 Hz, or 20 Hz, followed by a single test pulse with 

exponentially increasing interval. If the intersweep interval was less than 30 seconds, the 20 pulse 

trains did not reach the same steady state but continued to inactivate. B) Analyzed recovery for 

20Hz: Left, linear time scale; Right, exponential time scale. Low [Ca
2+

] or EGTA (n = 6), High 

[Ca
2+

] (n = 4). C) Same as in B for 10 Hz. Low [Ca
2+

] (n = 2), High [Ca
2+

] (n = 3). D) Same as in 

B for 5 Hz. Low [Ca
2+

] (n = 4) High [Ca
2+

] (n = 2). The sample sizes for this data set are low as 

many samples had to be discarded due to the 20 pulses reaching a similar steady state.  
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Chapter 5 

Sodium channels implement a molecular leaky integrator that detects 

action potentials and regulates neuronal firing 

 

This chapter represents unpublished work. 

Abstract 

Voltage-gated sodium channels play a critical role in cellular excitability, amplifying a 

small membrane depolarization into a full blown action potential. Interactions with 

auxiliary subunits and factors modify the intrinsic kinetic mechanism to result in new 

molecular and cellular functionality. Here, we show that sodium channels can implement 

a molecular leaky integrator, where the input signal is the membrane potential and the 

output signal is the occupancy of a long-term inactivated state. Through this mechanism, 

sodium channels effectively measure the frequency of action potentials and convert it into 

Na
+
 current availability. In turn, the Na

+
 current can control firing frequency in a negative 

feedback loop. We present these ideas in the context of serotonergic raphé neurons, 

which fire spontaneously at low frequency and provide critical neuromodulation to many 

autonomous and cognitive brain functions.  

 

Author contributions: M.A.N performed experiments, analyzed the data and wrote and 

edited the manuscript. 
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5.1 Introduction 

Computation in the brain begins at the molecular level, with proteins such as ion channels 

and receptors that can change their structural and functional state in response to changes 

in the environment. These molecular building blocks capable of processing information 

have been adapted by nature into progressively more complex computational structures: 

ion channels and receptors were incorporated into synapses and neurons, neurons were 

interconnected into networks and circuits, and circuits were made into a brain capable of 

abstract thinking. Not surprisingly, computation in the engineering world followed the 

same trend: transistors were combined into integrated circuits, circuits were assembled 

into microprocessors, and microprocessors were developed into computers. 

At the molecular level, voltage-gated sodium (Nav) channels have long been credited 

with a critical role in cellular excitability: amplifying a small membrane depolarization, 

such as created by a tiny postsynaptic excitatory current, into a full blown action potential 

(Hodgkin and Huxley, 1952). Computationally, Nav channels can be regarded as the 

equivalent of a transistor (Sigworth, 2003), a nonlinear electric circuit element. To 

generate action potentials of specific shape and firing patterns, spontaneously or in 

response to synaptic input, a neuron expresses a complement of Nav and other types of 

ion channels (Bean, 2007) and positions them strategically at subcellular locations (Kole 

and Stuart, 2012). Although we generally understand how ion channels contribute to the 

mechanics of action potential generation and propagation, the molecular and cellular 

landscapes are complex and remain incompletely charted. At the most basic level, we do 
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not fully understand how ion channels function as molecular computational machines and 

how they interact with each other and with other factors to regulate cellular activity.  

Here, we examine a new computational function of Nav channels that emerges from a 

process of long-term inactivation (LTI), which can be caused by interaction with 

fibroblast growth factor-homologous factors (FHFs), a relatively recently discovered 

group of auxiliary factors, reviewed  by Goldfarb (Goldfarb, 2012). We are particularly 

interested in this functionality in the context of pacemaker serotonergic raphé neurons 

(Jacobs and Azmitia, 1992), which provide critical neuromodulation to many brain areas 

involved in autonomous (ventral raphé) and cognitive (dorsal raphé) functions. In a 

previous study (Milescu et al., 2010b), we examined the Nav channels in ventral raphé 

neurons and proposed a kinetic model that explains not only their intrinsic kinetic 

properties but also their characteristic process of long-term inactivation. Here, we 

investigate the computational aspects of this mechanism, using a combination of 

electrophysiology experiments and mathematical analysis.  

5.2 Materials and methods 

All animal procedures were approved by the Animal Care and Use Committees of the 

University of Missouri and SUNY Downstate Medical Center.  

5.2.1 Brainstem slices 

In vitro medullary slices containing ventral raphé neurons were obtained from neonatal 

(postnatal days 1 - 4) Sprague Dawley male and female rats, as described (Koshiya and 

Smith, 1999). Briefly, animals were anaesthetized with isoflurane and the brainstem was 
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swiftly removed in artificial cerebral spinal fluid (aCSF) containing the following (in 

mM): 124 NaCl, 25 NaHCO3, 3 KCl, 1.5 CaCl2, 1 MgSO4, 0.5 NaH2PO4, and 30 D-

glucose, equilibrated with 95% O2 and 5% CO2 (pH 7.4 ± 0.05 at room temperature). 

Transverse slices (300-400 µm thick) containing nucleus raphé obscurus, the pre-

Bötzinger Complex, and hypoglossal (XII) nerve rootlets were cut on a Campden 

Instruments 7000 vibratome (Campden Instruments, England) and transferred to the 

recording chamber and superfused with aCSF at room temperature, at a rate of ≈ 5 

ml/min. Raphé neurons were generally identified based on their location in the slice, 

adjacent to the midline. Whenever possible, the neurons were further selected based on 

their spiking pattern: regular and slow pacemaking (1 - 3 Hz) present in cell-attached 

mode, and broad action potentials (3 - 6 ms) with prominent calcium shoulder (Ptak et al., 

2009). Whole-cell patch-clamp was done under IR-Dodt contrast imaging, using a 

Hamamatsu Flash 4.0 camera (Hamamatsu Photonics, Japan) controlled by the QuB 

software (Navarro et al., 2015).   

5.2.2 Acutely dissociated neurons 

Dorsal raphé neurons were acutely dissociated from adult male Sprague-Dawley rats 

(200–250 g), as described (Penington et al., 1991). Briefly, animals were anaesthetized 

with isoflurane and then decapitated with a small animal guillotine. A small volume of 

gray matter was cut from immediately below the cerebral aqueduct containing the dorsal 

raphé nuclei, chopped into pieces, and bathed for two hours at room temperature, in a 

PIPES buffer solution containing 0.2 mg/mL trypsin (Sigma Type XI) under pure 

oxygen. The tissue was then triturated in Dulbecco’s modified Eagles’s medium to free 
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individual neurons. Small droplets containing suspended neurons were placed in the 

recording chamber and cells were allowed to settle and adhere to the bottom of the 

chamber. An extracellular recording solution containing (in mM): 120 NaCl, 10 TEACl, 

20 HEPES, 30 sucrose, 3 KCl, 1.5 CaCl, 1 MgCl2 (pH 7.4 ± 0.05 with CsOH at room 

temperature) was continuously perfused at a rate of ≈ 2 ml/min. Neurons with truncated 

dendrites and soma ≥ 20 µm were selected for whole-cell patch-clamp.  

5.2.3 Solutions  

For voltage clamp (VC) in brain slices, pipettes were filled with a solution containing (in 

mM): 70 Cs-gluconate, 30 Na-gluconate, 10 tetraethylammonium-Cl (TEA-Cl), 5 4-

aminopyridine (4-AP), 10 EGTA, 1 CaCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na3-GTP, 10 Na2-

phosphocreatine, pH 7.4 with CsOH (285 ± 5 mOsm/L). For VC in dissociated neurons, 

the pipette solution contained (in mM): 90 Cs-gluconate, 30 NaCl, 10 TEA-Cl, 5 4-AP, 

20 HEPES, 10 EGTA, 1 CaCl2, 4 Mg-ATP, 0.3 Na3-GTP, 10 Na2-phosphocreatine, pH 

7.4 with CsOH. Cs
+
, TEA

+
, and 4-AP minimized K

+
 currents, whereas the elevated Na

+
 

concentration decreased the size of Na
+
 currents and reduced VC artifacts. For current 

clamp (CC) and dynamic clamp (DC) in brain slices, pipettes were filled with a solution 

containing (in mM): 125 K-gluconate, 4 NaCl, 10 EGTA, 1 CaCl2, 10 HEPES, 4 Mg-

ATP, 0.3 Na3-GTP, 4 Na2-phosphocreatine, pH 7.4 adjusted with KOH (285 ± 5 

mOsm/L). For VC in brain slices, CdCl2 (200 µM) and 7-nitro-2,3-dioxo-1,4-

dihydroquinoxaline-6-carbonitrile (CNQX; 20 µM) were added to the superfusing aCSF 

to block Ca
2+

 currents and inhibit synaptic transmission. CdCl2 (200 µM) was also used 

for VC in dissociated neurons, while CNQX (20 µM) was used for CC and DC 
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experiments in brain slices. To block Na
+
 currents in brain slices, tetrodotoxin (TTX, 1 

µM) was added to the superfusing aCSF. All reagents were purchased from Millipore-

Sigma (St. Louis, MO, USA), with the exception of Cs-gluconate from Hello Bio Inc 

(Princeton, NJ, USA) and TTX from Alomone Labs (Jerusalem, Israel).  

5.2.4 Electrophysiology 

For brain slices, pipettes (5 - 7 MΩ) were pulled from borosilicate glass. For dissociated 

neurons, pipettes (2 - 3 MΩ) were pulled from soda-lime glass. All pipettes were coated 

with Sylgard to reduce capacitive transients. Pipette capacitance was compensated 100% 

in VC and ≈ 75% in CC and DC. For DC and offline analysis, membrane capacitance 

(Cm) was approximated as the value used for compensation in VC and was typically 20 

pF. Series resistance (Rs) was typically 9–15 MΩ. Cells with Rs ≈ 15 MΩ or with 

evidence of poor space-clamp were discarded. In VC experiments, Rs was compensated 

80% and the compensation was readjusted before running a protocol. In CC and DC 

experiments, Rs was compensated 100% and periodically readjusted. Measured liquid 

junction potentials of ≈ 10mV for the K
+
-based and ≈ 8mV for the Cs

+
-based solutions 

were corrected online. For neurons in the slice preparation, whole-cell recordings were 

obtained with an EPC-10 patch-clamp amplifier (HEKA Electronik, Germany), 

controlled by Patchmaster 2x90.2 software (HEKA Elektronik, Germany). For VC, the 

recorded currents were low-pass filtered at 40 kHz and digitally sampled at 100 kHz. For 

CC and DC, the membrane voltage signal was digitally sampled at 50 kHz (open-

bandwidth). For acutely dissociated neurons, an Axopatch 200B patch-clamp amplifier 

(Molecular Devices, USA) was used, controlled by pClamp 10.3 software (Molecular 
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Devices, USA). In this case, the recorded currents were low-pass filtered at 10 kHz and 

digitally sampled at 50 kHz. 

5.2.5 Voltage clamp experiments 

Voltage clamp protocols (Fig. 5.2) were constructed and applied with the Patchmaster 

program (brainstem slices) or with pClamp 10.3 (acutely dissociated neurons). The 

intersweep interval was 6 s at -80 mV, necessary for complete recovery from inactivation 

of Na
+
 currents. Recordings with evidence of Na

+
 current instability were discarded. Leak 

currents were subtracted using the P/n procedure. For VC recordings in brain slices, the 

TTX-sensitive Na
+
 current was isolated via TTX subtraction.  

5.2.6 Nav kinetic model 

For dynamic clamp experiments and computer simulations, we used the Nav model 

shown in Fig. 5.3A, using a previously published set of rate constant parameters (Model 

II in Supplemental Table 1 from (Milescu et al., 2010b). Each rate constant has an Eyring 

expression defined as 𝑘 = 𝑘0 × 𝑒𝑘1×𝑉, where k
0
 and k

1
 are pre-exponential and 

exponential factors, respectively, and V is membrane potential.  

5.2.7 Dynamic-clamp experiments 

To inject Nav conductance in live neurons, under bath-applied TTX, we used the 

dynamic clamp functionality in the QuB software (Milescu et al., 2008), following 

previously described procedures (Milescu et al., 2010b). The real-time computational 

loop was run at 50 kHz and the Nav model was solved using the matrix method. The 
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software was run on a dual-processor workstation with Xeon E5-2667 v2 8-core CPUs, 

running Windows 7, interfaced with the patch-clamp amplifier via a National Instruments 

data acquisition board PCIe-6361 and BNC-2120 connector block. 

5.2.7 Computer simulations 

 To simulate the response of the model to voltage clamp protocols, we used the MLab 

edition of the QuB program (http://milesculabs.biology.missouri.edu/QuB), as previously 

described (Milescu et al., 2008; Milescu et al., 2010b). All data were analyzed with Prism 

4.1 (GraphPad, CA, USA).  

5.3 Results 

5.3.1 Action potentials in serotonergic raphé neurons and the contribution of 

Nav channels 

Action potentials vary in their properties in different neuronal types but they generally 

last from hundreds of microseconds to several milliseconds, rapidly swinging the 

membrane between hyperpolarized and depolarized states. Serotonergic neurons in either 

the ventral or dorsal raphé nuclei have a particular electrophysiological profile 

characterized by regular and spontaneous spiking at low frequency (1 - 5 Hz), a steady 

depolarization in the interspike interval, and broad action potentials (3 - 6 ms), as 

illustrated in Fig. 5.1A and B. These characteristics are partially shared with other 

monoaminergic neurons (Grace and Bunney, 1983; Vandermaelen and Aghajanian, 1983; 

Li and Bayliss, 1998; de Oliveira et al., 2010; Tuckwell and Penington, 2014).  

http://milesculabs.biology.missouri.edu/QuB
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As in most excitable cells, Nav channels play a central role in serotonergic neurons, 

releasing the large depolarizing Na
+
 current (INa) that generates the action potential 

(Milescu et al., 2010b). To perform their duty, Nav channels must cycle through a 

sequence of functional states, as summarized in Fig. 5.1C: they are (virtually) closed (C) 

in the interspike interval, activate and abruptly open (O) and then quickly inactivate (I) 

during the action potential, and then recover from inactivation in the interspike interval. 

Interestingly, as it recovers from inactivation, the channel bypasses the open state, instead 

following the transition pathway indicated by the blue arrow in the figure. The resulting 

hysteresis (red vs. blue arrows) serves a fundamental role, as it effectively separates the 

process of inactivation during the action potential, controlled by the O - I transition, from 

the recovery from inactivation during the interspike interval, separately controlled by the 

I - C transitions.  

As a result, inactivation from the open state proceeds very quickly, giving the channel 

just enough time to flow current and sufficiently depolarize the membrane and activate 

other voltage-gated ion channels. In contrast, recovery out of inactivation proceeds more 

slowly from the closed states, at a rate that determines a refractory period compatible 

with the maximal spiking rate of the neuron. Furthermore, bypassing the open state 

minimizes the flow of Na
+
 ions in the wake of the action potential and thus economizes 

the energy utilized by cellular ionic pumps (Carter and Bean, 2009). A conceptual kinetic 

mechanism that adequately captures all these properties is shown in Fig. 5.1D (Kuo and 

Bean, 1994).  
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5.3.2 Nav channels have long-term inactivation 

Fast voltage-dependent activation (sub-millisecond) and inactivation (millisecond), as 

well as relatively fast recovery from inactivation (milliseconds) are kinetic properties 

common to all Nav channel subtypes, as described since the pioneering work of Hodgkin 

and Huxley (Hodgkin and Huxley, 1952). However, the Nav kinetic inventory is richer 

than that, including such behavior as "persistence" (French et al., 1990; Crill, 1996) or 

"resurgence” (Raman and Bean, 1997; Raman and Bean, 2001). In raphé and other 

neurons, Nav channels exhibit yet another interesting property: as illustrated in Fig. 5.2A, 

when subjected to brief, repetitive depolarizations that mimic trains of action potentials, 

the Na
+
 current evoked by each pulse progressively diminishes to levels inversely 

proportional to the pulse repetition rate.  

Furthermore, we can identify not one but two exponential components in the time course 

of recovery from inactivation, as shown in Fig. 5.2B. Following a brief depolarizing 

pulse that completely inactivates the channels, approximately 80% of the initially 

available current recovers fast (milliseconds), with a voltage-dependent time constant, 

whereas the remaining 20% recovers slowly (hundreds of ms), also with a voltage-

dependent time constant. In neonatal ventral raphé neurons, at -80 mV, the fast and slow 

components have time constants τ and relative amplitudes a of (mean ±SE): τ fast = 3.142 

±0.126 ms, afast = 0.786 ±0.013, τ slow = 612 ±76 ms, and aslow = 0.212 ±0.007 (n = 18). At 

-100 mV, τ slow = 209 ±39 ms and aslow = 0.199 ±0.01 (n = 6). These values are very 

similar in mature dorsal raphé neurons: at -100 mV, τ slow = 247 ±84 ms and aslow = 0.252 

±0.033 (n = 5). It is surprising that a brief 5 ms depolarizing pulse is sufficient to induce 
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complete current inactivation but seconds are then necessary to completely remove 

inactivation, even considering the significant difference between the membrane potentials 

where activation/inactivation and recovery from inactivation occur (-65 mV in this case, 

from -15 to -80 mV).  

Similar Nav properties (i.e., adapting response to pulse trains and partial slow recovery 

from inactivation) have been observed in other neuronal types, such as hippocampal 

pyramidal neurons (Mickus et al., 1999). Appropriately, this phenomenology has been 

termed "prolonged inactivation" (Jung et al., 1997) or "long-term inactivation" (LTI) 

(Dover et al., 2010), to distinguish it from slow inactivation, a process whereby Nav 

channels slowly (hundreds of milliseconds to seconds, or more) become unavailable 

when held at depolarizing potentials, and also slowly return to full availability at 

hyperpolarizing potentials (Ruff et al., 1988; Fleidervish et al., 1996). In contrast, LTI 

represents fast entry into a long-lived inactivated state, from which recovery is very slow. 

Interestingly, the entry and exit time constants differ by three orders of magnitude: 

milliseconds at depolarizing potentials and seconds during hyperpolarization (Mickus et 

al., 1999; Milescu et al., 2010b). As we discuss next, this fast-slow duality has important 

functional consequences.   

5.3.3 Mechanistic consequences of long-term inactivation 

Like other channel relatives, Nav channels interact with auxiliary subunits and factors to 

create new functional behaviors (Grieco et al., 2005; Aman et al., 2009; Ben-Johny et al., 

2014). The molecular factors that are responsible for LTI in different neuronal types have 

been identified as the FHFs (Smallwood et al., 1996; Liu et al., 2003; Wittmack et al., 



198  

 

 

2004; Lou et al., 2005; Rush et al., 2006; Goldfarb et al., 2007; Dover et al., 2010). 

Through constrained kinetic modeling (Navarro et al., 2018; Salari et al., 2018) of a 

comprehensive set of voltage clamp data recorded from raphé neurons, we previously 

formulated a kinetic mechanism that explains well all tested Nav kinetic properties, 

including LTI (Milescu et al., 2010b). We verified this model in live neurons, using real-

time computation (dynamic clamp), confirming that a model-generated current that 

replaced the TTX-blocked endogenous INa was able to generate action potentials of 

similar shape and frequency. Other studies in different neuronal types have arrived at 

conceptually similar models (Goldfarb et al., 2007; Menon et al., 2009). 

The model that we proposed to explain LTI in raphé neurons is shown in Fig. 5.3A, 

where the basic kinetic scheme introduced in Fig. 5.1D has been augmented with a non-

conducting state (S13) connected to the open state (O6). S13 is a long-lived state 

representing the open channel blocked by the auxiliary factor. The O6 - S13 rate constants 

take values that, in the context of the intrinsic Nav kinetics, result in the observed LTI 

phenomenology, i.e., the fast-slow bi-exponential recovery at hyperpolarizing potentials, 

out of the complete inactivation induced by a brief depolarization. The O6 - S13 transition 

competes with the normal inactivation process that corresponds to the O6 - I12 transition, 

with interesting mechanistic consequences. A brief depolarizing pulse from -80 to 0 mV 

(Fig. 5.3B) takes the channel rapidly through the sequence of closed states, as voltage 

sensors activate. Once it reaches the open state, the channel has now two distinct 

pathways to follow: to inactivate "normally" into the I12 state, or to long-term inactivate 
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into the S13 state. According to our experimental data (Fig. 5.2B), ≈ 80% of the channels 

"choose" the normal inactivation pathway and ≈ 20% the LTI.  

The I12 and S13 occupancy probabilities rise very quickly, reaching their respective values 

of 0.8 and 0.2 in a couple of milliseconds, as indicated by the time course of PI and PS in 

Fig. 5.3B (lower panel). However, these are not the equilibrium values: if the channels 

are maintained at depolarizing potentials for seconds, PS very slowly reaches a 

considerably higher value of ≈ 0.7, whereas PI drops accordingly to ≈ 0.3. Hence, entry 

into the S13 state is a bi-exponential process, with one component fast enough to reach 

completion during a brief voltage pulse - or action potential - and the other very slow, 

requiring several seconds to equilibrate. Since prolonged depolarizations are less likely to 

occur, the fast component is obviously the more physiologically relevant one.  

What happens after a brief depolarizing pulse, upon repolarization? As depicted in Fig. 

5.3C, those channels residing in the normal inactivated state I12 cycle relatively fast (5 - 

10 milliseconds) back into the non-inactivated closed states (C), without visiting the open 

state. In contrast, channels residing in the LTI state S13 recover slowly, in seconds, 

reaching the non-inactivated states through the open state. Therefore, the sum occupancy 

probability of all non-inactivated states (C states plus O6 state; PC+O in Fig 5.3C) rises 

from 0 to ≈ 1, on a bi-exponential time course. The fast component corresponds to 

recovery from the normal inactivation process (PI), whereas the slow component 

represents recovery from the LTI state (PS). This dual fast-slow process explains the 

observed bi-exponential recovery from inactivation of INa in raphé serotonergic neurons 
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(Fig. 5.2B). Interestingly, the open probability (PO) remains close to zero, because 

recovery from the LTI state through the open state is stretched over a long time interval.  

5.3.4 Nav channels are a molecular leaky integrator 

We now arrive at our main idea, that Nav channels implement a molecular leaky 

integrator, through an interaction with auxiliary factors. Mathematically, a continuous-

time leaky integrator is governed by the differential equation:  

(1) 
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑥(𝑡) − 𝑦(𝑡)/𝜏leak,        

where y is the output signal, x is the input signal, t is time, and τ leak is the leak time 

constant. Leaky integration can be more easily understood in the discrete time domain, as 

a mathematical operation that recursively calculates an output signal y from an input 

signal x, as follows: 

 (2) 𝑦𝑡+δt = 𝑦𝑡 × 𝑒−𝛿𝑡/𝜏leak + 𝑥𝑡+δt × 𝛿𝑡,       

where t is the sampling time between two measurements. When τ leak is infinite (or τ leak 

>> t), the above equation reduces to a simple integration (or summation), where yt+t = 

yt + xt+tδt. If the input signal contains digital data (i.e., 0 or 1), the integrator becomes 

an event counter. When τ leak is zero (or τ leak << t), the output signal becomes a scaled 

copy of the input signal, where yt+t = xt+tδt. Otherwise, when τ leak takes a finite value, 

the output signal at a given time point is first "leaked" (i.e., reduced) by a factor 

determined by the ratio t/ τ leak, then "integrated" (i.e., added) with the input signal at the 

next time point, to calculate the next output.  
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How does leaky integration apply to Nav channels? First, we consider the membrane 

potential (Vm) to be the input signal, and the occupancy of the LTI state S13 (PS) to be the 

output signal. We further consider Vm to be "digital" and take only two states: "low" in 

the interspike interval and "high" during the action potential, with the "low" state 

meaning functionally zero input (nothing to integrate). Finally, we consider that the time 

scale of the leak process is orders of magnitude longer than the width of an action 

potential. Under these conditions, the integration step corresponds to quickly 

incrementing PS whenever the input signal Vm switches to a high state (an action 

potential), as shown in Fig. 5.4A, and the leak step corresponds to slowly decrementing 

PS whenever Vm switches to a low state (the inter-spike interval), as shown in Fig. 5.4B.  

As indicated by our experimental data (Fig. 5.2B) and correctly predicted by our model, 

the arrival of a brief depolarization, such as an action potential, prompts ≈ 20% of all 

available (non-inactivated) channels to rush into the long-term inactivated state S13, 

whereas the other ≈ 80% quickly occupy the inactivated state I12, with time courses as 

shown in Fig. 5.3B. Channels that are already inactivated will maintain their state. 

Because PS is in fact a probability bound by 1, it cannot increase indefinitely. In fact, 

each action potential can only increase PS by ≈ 20% of the fraction of available channels. 

At the beginning of a spike train, when all channels are available, this increment is ≈ 0.2 

but progressively gets smaller, as fewer channels remain available (Fig. 5.4C). The 

specific value of the increment depends on the relative kinetics of O6 - S13 and O6 - I12 

transitions. Importantly, as predicted by the time course of PS in Fig. 5.3B, changing the 

width of the action potential would not significantly alter the 20/80% ratio, unless the 
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width were shorter than ≈ 1 ms, or if the depolarization were extended to hundreds of 

milliseconds or seconds, in which case PS would eventually reach an equilibrium value of 

≈ 0.7 (𝑃𝑆
∞ in Fig. 5.3B).  

Once the action potential ends and Vm switches to the low state, PS starts to "leak", 

because the input signal is "zero" in the interspike interval and there is nothing to 

"integrate". Thus, PS decays exponentially, with the same time constant as the slow 

component of recovery from inactivation (hundreds of milliseconds). Those channels that 

were long-term inactivated (occupying the S13 state) at the beginning of the interspike 

interval will remain unavailable to conduct current for an accordingly long time interval, 

on the order of seconds. In contrast, those channels that were normally inactivated 

(occupying the I12 state) will become available much sooner, after only a few 

milliseconds. If another action potential were triggered while some channels were still 

residing in either the long-term inactivated state S13 or in the inactivated state I12, the 

available (non-inactivated) channels will again divide 80/20% between normal 

inactivation and long-term inactivation, and so on. As a result, the occupancy of the S13 

state would keep increasing with each action potential (by progressively smaller 

increments), unless the interspike intervals were long enough to allow complete recovery 

out of the S13 state.  

5.3.5 Nav channels detect action potentials and measure spiking frequency 

The use of an integrator is obvious - to summate, to count - but what about a "leaky" 

integrator? As it happens, a leaky integrator not only describes many real-world 

phenomena, such as rain accumulating into a lake that drains into a river, but also has 
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many technical applications. One of the most obvious is to convert the frequency of an 

input signal into the amplitude of an output signal. In our own electrophysiology 

backyard, it is customary to pass a nerve signal through a leaky integrator (implemented 

in hardware or software) to convert noisy and dense spike trains into an amplitude signal 

that more legibly indicates the frequency of those spikes.  

As a molecular leaky integrator, Nav channels can also "measure" the frequency of action 

potentials and "store" it in the occupancy of the LTI state S13. As demonstrated by the 

experimental data shown in Fig. 5.2A, the amount of Na
+
 current evoked with 5 ms 

depolarizing pulse trains decays exponentially with each pulse, and decays more at higher 

repetition rates. In Fig. 5.4C, we calculate and plot PS using the equation PS = 1 - INa / 

INa
0
, where INa is the peak Na

+
 current measured for a given pulse and INa

0
 is the peak Na

+
 

current for the first pulse in the series. The rationale of using this equation to obtain PS is 

that the inter-pulse interval (195, 95, and 45 ms in this case) is long enough to allow full 

recovery from the normal inactivation, whereas recovery from the LTI state will be 

incomplete, as we know from the data shown in Fig. 5.2B. Thus, having a fraction of 

channels still trapped in the LTI state will proportionally reduce the maximal INa. As seen 

for this representative data set, PS reaches steady values of ≈ 0.3 at 5 Hz, ≈ 0.4 at 10 Hz, 

and ≈ 0.5 at 20 Hz, exhibiting a nonlinear dependence on the pulse repetition rate.  

To better understand how Nav channels may interpret action potential frequency, we 

simulated the response of our Nav model to a train of 5 ms depolarizing pulses from -80 

to 0 mV, repeated at different rates, and compared it with the response of a mathematical 

leaky integrator. For the sake of simplicity, the mathematical leaky integrator was 
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presented with the same train of pulses as the Nav model, but the input variable x was 

assigned 0 and 1 values, instead of -80 and 0, respectively. To match the behavior of the 

Nav model, we also modified Eq. 2, as follows: 

 (3)  𝑦𝑡+δt = 𝑦𝑡 × 𝑒−𝛿𝑡/𝜏leak + 𝑥𝑡+δt × 𝑓𝑡+δt,    

   

 (4)  𝑓𝑡+δt = 𝑦inc × (𝛿𝑡/𝑡𝑃) × (1 − 𝑦𝑡 × 𝑒−𝛿𝑡/𝜏leak),   

   

where yinc = 0.2 represents the 20% maximum increase in the output variable y, spread 

over the duration tP of a pulse. Thus, f is an ad hoc expression that ensures that, during a 

pulse in the input variable x,  the output variable y can only increase by 20% out of the 

difference to 1 (i.e., 1 − 𝑦𝑡 × 𝑒−𝛿𝑡/𝜏leak), in the same way as PS can only increase by 20% 

of the fraction of available channels (i.e., 1 − PS). As a result, the range of the output 

variable y is restricted between 0 and 1, similarly to PS. 

Our Nav model has a leak time constant τ leak ≈ 435 ms at -80 mV, a normal inactivation / 

LTI ratio of 80/20%, and an equilibrium S state occupancy 𝑃𝑆
∞ ≈ 0.7. These quantities 

depend on the specific values and voltage dependence of the O6 - S13 rate constants (k6,13 

= 400.8e
-0.011V

 and k13,6 = 0.207e
-0.031V

), in the context of all the other rate constants. 

Keeping the exponential factors 𝑘6,13
1  and 𝑘13,6

1  and all other rate constants unchanged,    

τ leak depends mostly on the pre-exponential factor 𝑘13,6
0  (lower value increases τ leak), the 

normal inactivation/LTI ratio depends on the pre-exponential factor 𝑘6,13
0  (lower value 

increases the ratio), and 𝑃𝑆
∞ depends on the ratio between 𝑘6,13

0  and 𝑘13,6
0  (lower ratio 

decreases 𝑃𝑆
∞). 
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As indicated by the red trace in Fig. 5.4D, when the Nav model is presented with a train 

of depolarizing pulses, PS reaches levels that depend nonlinearly on the pulse repetition 

rate. At any given pulse frequency, PS oscillates between a maximum reached at the end 

of a pulse, and a minimum reached at the end of the interpulse interval. At the maximum 

tested frequency of 100 Hz, PS oscillates between 0.92 and 0.93. Then, under constant 

stimulus, PS decays down to its equilibrium value 𝑃𝑆
∞ (see Fig. 5.3B). For comparison, 

we modified the O6 - S13 rate constants (k6,13 = 205.7e
-0.011V

 and k13,6 = 0.106e
-0.031V

) 

to obtain τ leak ≈ 820 ms and 90/10% normal inactivation / LTI ratio, while keeping the 

same 𝑃𝑆
∞. As indicated by the blue trace in Fig. 5.4D, in this case PS exhibits reduced 

oscillations and takes longer to reach steady state at a given pulse rate but follows the 

same overall trend with the increase in stimulus frequency. Finally, the mathematical 

leaky integrator responds in a similar fashion, although it starts to deviate at higher 

frequencies and under continuous input, where it reaches a maximum, in contrast to Ps, 

which slowly decays to 𝑃𝑆
∞.  

5.3.6 Nav channels drive spiking frequency 

As demonstrated in Fig. 5.4C and D, Nav channels respond to stimulation frequency by 

changing the occupancy of the long-term inactivated state, which, in turn, changes the 

amount of available INa. This observation raises the reciprocal question: does a raphé 

neuron respond to the amount of available INa by changing its spiking frequency? INa can 

potentially drive spiking frequency via two interrelated mechanisms: directly, by 

controlling the rate of depolarization in the interspike interval, and indirectly, by shaping 

the action potential waveform and thus affecting the other ionic currents that flow during 
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the action potential depolarization and during the ensuing interspike interval. To test this 

idea, we used dynamic clamp to inject a model-based INa in ventral raphé neurons, and 

measured the response of the cell to increasing levels of Nav conductance (GNa). 

Indeed, raphé neurons do respond to the level of available INa by changing their spiking 

frequency, as shown in Fig. 5.5A. The frequency vs. GNa response is approximately linear 

over a range of GNa = 4 to 16 nS/pF, although it starts to show saturation at higher levels 

(25 nS/pF) (Fig. 5.5B). The effect of INa on spiking frequency is clarified in Fig. 5.5C, 

where three example waveforms, each containing one action potential and the subsequent 

interspike interval obtained under a different GNa, are shown aligned. As can be observed, 

the rate of membrane depolarization in the interspike interval is virtually INa- and 

frequency-independent immediately after an action potential, up to ≈ -53 mV. From this 

point, the rate of depolarization changes proportionally to GNa, determining the duration 

of the interspike interval. Thus, at low firing frequency, Nav channels spend more time 

above -55 mV, which causes more closed-state inactivation and explains why the INa is 

disproportionately smaller. The amount of available INa also changes the peak membrane 

potential reached during an action potential. 

5.3.7 Nav channels are a molecular controller that regulates neuronal firing 

rate 

The experiments described in Figs. 5.2 and 5.5 clearly demonstrate that not only can Nav 

channels sense the frequency of action potentials, but they also can drive the spiking rate 

in raphé neurons. Thus, Nav channels implement a negative feedback loop that can 
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regulate the firing frequency of the host neuron, as shown in Fig. 5.6A. Conceptually, 

they are similar to a process controller used in engineering applications, as illustrated in 

Fig. 5.6B. As a technological example, one could take the home furnace as the "process", 

the indoor temperature as the "process variable", and human comfort as the "product". A 

sensor measures the temperature and forwards the measurement to a thermostat 

("controller"), which calculates the difference ("error") between a user-prescribed value 

("set point") and the measured value. A control algorithm processes the error and 

determines the timing and the amount of gas to burn in the furnace ("control variable") 

such as to maintain the actual indoor temperature relatively constant and approximately 

equal to the desired temperature. The furnace will burn gas when the error is positive, 

which will increase the temperature and eventually make the error zero or negative, 

which in turn will instruct the furnace to stop burning gas, until the temperature drops 

again and the error becomes again positive.  

The similarity between the Nav-based controller and the technological controller is quite 

striking, although not perfect. In the neuronal case (Fig. 5.6A), we can identify the 

"process" as the neuron, the "process variable" as the spiking frequency, and the 

"product" as serotonin. The Nav kinetic mechanism embodies the "sensor", the "set 

point", and the "controller" altogether: i) spiking frequency is measured by the occupancy 

of the LTI state S13, ii) the set point is determined by the rate constants of the O6 - S13 

transition, and iii) the control algorithm is simply represented by the mutually exclusive 

relationship between the occupancy of the LTI state and the fraction of Nav channels 

available to generate current, which is equal to 1 - PS. Finally, the "control variable" is 
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represented by the amount of available INa, which can drive spiking frequency and thus 

closes the loop.   

5.4 Discussion 

Nav channels play a fundamental role in cellular excitability, acting as a nonlinear 

amplifier that converts a small membrane depolarization into an action potential. Their 

intrinsically complex kinetic mechanism (Armstrong and Gilly, 1979; Armstrong, 2006) 

is further tweaked in different neuronal populations, to make Nav channels drive 

spontaneous spiking (Do and Bean, 2003), enable fast spiking (Raman and Bean, 2001; 

Khaliq et al., 2003), or establish complex firing modes (Magistretti et al., 2006; 

Yamanishi et al., 2018). Here, we showed that adding a state of long-term inactivation 

(Fig. 5.3A), as can be created by an interaction with auxiliary factors (Dover et al., 2010), 

significantly expands the Nav computational repertoire. LTI effectively turns the Nav 

channel into a molecular leaky integrator that can analyze the firing activity of the host 

neuron and encode its spiking frequency into the fraction of available sodium current 

(Fig. 5.4). In cells where spiking frequency can be modulated by the available Nav 

conductance, such as the serotonergic raphé neurons (Fig. 5.5), this frequency-to-

available current conversion can establish a negative feedback control loop that can 

regulate the frequency of action potentials (Fig. 5.6). 

Mathematically, a leaky integrator summates over time an input signal into an output 

signal, but the output steadily decays (Eq. 2). Studying for an exam is a good analogy: we 

quickly accumulate knowledge with every page we read, while at the same time we 

slowly forget whatever we learned. In the field of electrical engineering, a simple leaky 
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integrator can be implemented with an RC circuit. In the molecular world, nature has 

found a simple and elegant way of converting the Nav channel into a leaky integrator, 

while preserving its basic functionality as a spike generator - and partial pacemaking 

driver in raphé neurons. LTI is a mechanism that renders a fraction of the total number of 

Nav channels functionally non-available, in the sense that these channels are trapped in a 

non-conducting state and thus cannot contribute current to an action potential. This 

fraction increases and decreases with dynamics dictated by the frequency of action 

potentials, effectively becoming a measure of neuronal activity. For this mechanism to 

work, a single action potential must quickly increment the non-available fraction, 

whereas the subsequent interspike interval must slowly decrement it. In the case of LTI in 

raphé neurons, the two time constants are separated by three orders of magnitude (Fig. 

5.3B and C).  

The simplest kinetic mechanism compatible with the observed LTI behavior is shown in 

Fig. 5.3A, where an additional non-conducting state is connected to the open state of the 

basic Nav mechanism shown in Fig. 5.1D (Dover et al., 2010; Milescu et al., 2010b). 

This model predicts the critically important large discrepancy between LTI entry and exit 

time constants, yet realistically requires only minimal charge for the LTI transition. 

Nevertheless, the LTI mechanism - as well as the Nav mechanism itself - may be 

different and possibly more complex in reality, and needs further investigation. More 

work is also necessary to identify the specific subtypes of Nav channels and FHFs that 

are functional in both ventral and dorsal raphé neurons.  
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Although we examined here its computational aspects, the specific function of the Nav - 

LTI regulatory mechanism in raphé neurons remains to be investigated in full. What 

would happen in its absence? Clearly, for the same level of Nav channel expression, there 

would be more sodium current available and, considering the results shown in Fig 5.5, 

the firing frequency would be greater. Thus, one could speculate that one role of LTI is to 

make spiking frequency less dependent on Nav channel expression. Of course, as 

demonstrated in Fig. 5.5, frequency still increases with GNa, but this increase would be 

steeper without LTI. If this hypothesis were true, it would be interesting to know how 

many neuronal types rely on this mechanism. 

Another possibility is that LTI is one of several mechanisms that force raphé neurons to 

fire at relatively low frequency. In a previous study (Milescu et al., 2010b), we showed 

that ventral raphé neurons react to a depolarizing current injection with a proportional 

increase in spiking frequency, but they quickly adapt and then slowly return to a low 

frequency. In part, this adaptation depends on Nav channel long-term inactivation. 

Interestingly, the same type of kinetic model with open state block can account for the 

resurgent sodium current (Raman and Bean, 2001). However, in that case the entry and 

exit time constants have comparable values. That model can also be considered a leaky 

integrator but the fraction of channels that enter the blocked state during a brief 

depolarization becomes available immediately upon repolarization and thus augments the 

subthreshold depolarizing Na
+
 current, helping the hosting neuron to spike faster. In 

contrast, LTI may play the opposite role, by decreasing the amount of Na
+
 current (both 

sub- and suprathreshold) and making it harder for the neuron to spike at high frequency.  
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We are not aware of other studies where Nav channels - or other channels - have been 

identified as molecular leaky integrators, even though the leaky integrator is a powerful 

concept that has long been associated with neural computation, from individual neurons 

and circuits to cognitive processes (Knight, 1972; Cook and Maunsell, 2002; Mitani et 

al., 2013; Portugues et al., 2015; Groschner et al., 2018). In excitable cells, a molecular 

leaky integrator can be a tool for monitoring and regulating cellular activity, as we 

showed here for serotonergic raphé neurons. In fact, the intracellular Ca
2+

 also acts as a 

leaky integrator, quickly incrementing its concentration with each action potential, via 

Ca
2+

 influx through voltage-gated calcium channels, and more slowly decrementing it 

during periods of quiescence (Gorman and Thomas, 1978; Helmchen et al., 1996). Thus, 

the envelope of intracellular Ca
2+

 concentration becomes a measure of cellular activity 

that can be used to regulate a variety of Ca
2+

-dependent cellular processes (Gardos, 1958; 

Yuste et al., 2000; O'Leary et al., 2013), including the activity of many types of ion 

channels (Meech and Standen, 1975; Keen et al., 1999; Peterson et al., 1999; Deschênes 

et al., 2002; Wen and Levitan, 2002; Hartzell et al., 2005), which in turn can change the 

firing activity. As a leaky integrator established by the long-term inactivation process, 

Nav channels add another powerful mechanism for sensing and regulating the activity of 

excitable cells. 
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5.5 Figures and figure legends 

 

Figure 5.1. Spontaneous firing in serotonergic raphé neurons and the contribution of Nav 

channels. A and B) Raphé neurons are characterized by slow and regular spiking and broad 

action potentials, with the spike-generating sodium current (INa) mostly restricted to the 

depolarization phase. C) Schematic of state transitions undertaken by Nav channels during the 

spiking cycle ("C" - closed, "O" - open, "I" - inactivated states). D) Conceptual Nav state model 

proposed to explain the fundamental kinetic properties of INa in mammalian central neurons (Kuo 

and Bean, 1994). The representative current clamp recordings in A and B were obtained in 

neonatal rat brainstem slice preparations. In B, INa was calculated in real-time and injected in the 

cell using dynamic clamp, as previously reported (Milescu et al., 2010b).  
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Figure 5.2. Nav channels raphé neurons exhibit a slow kinetic component. A) The fraction of 

Nav channels available to generate current decays exponentially, when tested with trains of brief 

depolarizing voltage pulses (5 ms at -15 mV, repeated at 5, 10, or 20 Hz). The decay is greater at 

higher repetition rates. Each pulse completely inactivates INa, which then partially recovers from 

inactivation in the subsequent hyperpolarizing interval, at -80 mV. B) The timing of recovery 

from inactivation was tested with a two-pulse protocol, where the first pulse (5 ms at -15 mV) 

inactivates the channels and the second pulse tests availability versus time at -80 mV. As 

indicated by the two time constants (fast and slow), recovery from inactivation is a bi-exponential 

process, with the slow component accounting for approximately 20% of the total current. The 

representative voltage clamp recordings in A and B were obtained in neonatal rat brainstem slice 

preparations.  
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Figure 5.3. Nav long-term inactivation. A) Conceptual Nav state model that adds one non-

conducting state (S13)  to the model shown in Fig. 5.1D, to explain the slow kinetic component 

illustrated in Fig. 5.2. S13 is a state of long-term inactivation. B and C) State transitions 

undertaken by the channel during a brief depolarization (B) and in the subsequent hyperpolarizing 

interval (C). During depolarization, ≈ 80% of channels follow the standard C-O-I pathway, 

whereas the remaining ≈ 20% enter the S state. The O-I and O-S transitions are both fast, as 

illustrated in the bottom left panel, and compete with each other. When the membrane potential 

returns to more negative values, the fraction of channels in the I states recovers quickly, whereas 

the S state fraction recovers slowly, explaining the bi-exponential recovery from inactivation 

illustrated in Fig. 5.2B. PC+O, PO, PI, and PS represent occupancies of closed and open, open, 

inactivated, and long-term inactivated states, respectively 
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Figure 5.4. Nav channels implement a molecular leaky integrator that measures spiking 

frequency. A) The "integration" is represented by the quick entry of channels into the LTI state 

S, during an action potential. B) The "leak" is the slow transition out of the S state, during the 

interspike interval. C) The average occupancy of the LTI state (PS) increases with pulse repetition 

rate. The current trace is as in Fig. 5.2A. D, Testing the leaky integrator with trains of brief 

voltage pulses (5 ms at 0 mV, from -80 mV), with different repetition rates (2 to 100 Hz) or at 

constant depolarization. The average occupancy of the S state is a function of pulse frequency. 

The Nav model in Fig. 5.3A was tested with two sets of kinetic parameters for  the O6 - S13 

transition, corresponding to τ leak = 435 ms and 80/20% normal inactivation vs. LTI ratio (red 

trace; k6,13 = 400.8e
-0.011V

 and k13,6 = 0.207e
-0.031V

) or 820 ms and 90/10% ratio (blue trace; 

k6,13 = 205.7e
-0.011V

 and k13,6 = 0.106e
-0.031V

). Both sets have 𝑃𝑆
∞ ≈ 0.7. For comparison, the 

response of a discrete time mathematical leaky integrator with leak = 435 ms (black trace; Eq. 3). 
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Figure 5.5. Nav channels drive spiking frequency in serotonergic raphé neurons. A) 

Representative dynamic clamp recordings, where a model-based INa was injected in a neuron, 

under different levels of Nav conductance (GNa). The endogenous sodium current was blocked 

with bath-applied TTX. B) Spiking frequency increases proportionally with GNa, over a range 

typical for neonatal ventral raphé neurons. C) The rate of membrane depolarization in the 

interspike interval is virtually INa-independent immediately after the action potential, up to ≈ -53 

mV, after which it changes proportionally to GNa.     
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Figure 5.6. Nav channels can regulate spiking frequency in serotonergic raphé neurons in a 

negative feedback loop. A) Spiking frequency f is “measured” by the occupancy of the long-

term inactivated state (PS). For example, an increase in f causes an increase in PS, which 

determines a decrease in the fraction of Nav channels available to generate current, equal to 1 – 

PS. In turn, this decrease in INa reduces firing frequency, closing the loop. The kinetics of the 

long-term inactivation establish the operating point of the control loop. B) For comparison, a 

conceptual schematic of controllers used in engineering applications. "P" stands for proportional, 

"I" for integral, and "D" for derivative error correction.  
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Chapter 6  

Concluding remarks 

In order for organisms to produce behaviors, organized networks of neurons must be able 

to integrate sensory information and relay an appropriate response. To perform these 

functions, neurons are arranged in networks that contain pacemaking neurons, some that 

set the pace of bursting output (PreBötzinger bursters (Smith et al., 1991), others 

tonically fire and respond to physiological variables (raphé neurons (Ptak et al., 2009), 

excitatory interneurons that follow the pacemakers and help generate the rhythm 

(Koizumi et al., 2013), inhibitory interneurons that help with coordinated output  between 

networks (Koizumi et al., 2013), and motor neurons that produce the final output 

synapsing on individual muscle fibers to produce contractions. The system (body/nervous 

system) as a whole is complex and works to maintain overall homeostasis.  

This work aimed to provide new ideas in the field of neuroscience, to improve 

electrophysiology experience and to develop new methods for understanding how ion 

channels contribute to neuronal activity. Biology is complex and one must narrow focus 

to identify questions or problems that can be addressed with one’s toolbox and, when 

needed, expand the toolbox. To keep things simple, I targeted sets of intrinsic pacemaker 

neurons to take advantage of their ability to maintain activity under synaptic blockade to 

isolate individual neuron activity from network activity. Removing network activity 

results in cleaner recordings but also simplifies the computation of what is driving the 

cell to fire. Although we try to isolate a single mechanism, pacemakers that drive 
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essential behaviors such as cardio-respiratory function, have multiple, redundant 

mechanisms to ensure proper function.  

Trying to understand ion channel kinetic mechanisms by developing Markov state 

models requires good quality data sets, obtained with many voltage protocols, to be able 

to identify different functional states. Single channel recordings can be used to predict the 

number of states through the distributions of the open probability histogram. The 

challenge with interpreting ion channel data lies with the concept of hidden states, such 

as inactivation. Our observations in electrophysiology recordings are useful for 

identifying the open (conducting) state of a channel. Programs such as QuB were 

developed to quickly calculate the linear algebra required to determine the Q matrix 

(transition rate matrix) and fit the free parameters of the model to the data (Qin, 1996, 

2000a; Milescu, 2005). To identify other protein conformations, we use voltage clamp 

pulses to trace the rise and decay from thousands of individual channels. In the case of 

Nav channels, a brief 5 ms depolarizing pulse around -20 mV will trigger fast inward 

current (activation) that quickly turns off (inactivation) prior to the length of the pulse. A 

simple two state, Closed and Open, model cannot explain the time course of activation, 

which requires additional closed to closed transitions (Kienker, 1989; Milescu, 2005). As 

voltage-gated ion channels are tetrameric or pseudo-tetrameric proteins with functional 

domains, such as a voltage sensor that must move to open the pore (Horn et al., 2000; 

Chanda and Bezanilla, 2002a, b), structurally informed Markov models should take into 

consideration prior knowledge, including identifiable states such as activated voltage 
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sensors, or identifiable state transitions, such as Nav channel inactivation from the closed 

state (Armstrong and Bezanilla, 1977; Bezanilla and Armstrong, 1977).  

A long-standing issue in the ion channel field is how to develop models that describe new 

data, while at the same time accounting for results obtained in previous experiments. For 

example, existing known voltage-sensitivity values or scaling relationships between 

parameters are values determined for voltage-gated channels could be used as a starting 

place to fit a new data set. Other data, such as the open probability, can be reduced to a 

single value, yet the open probability is essentially determined by the entire model and 

thus depends in a complex fashion on the rate constants. Chapter 2 describes the 

mathematical methods and procedures used to implement linear parameter constrains and 

non-linear behavioral constraints that can be used to incorporate existing knowledge into 

the kinetic models of ion channels and other proteins. These methods are independent of 

the optimization method and can be applied to a variety of systems.  

Applying kinetic constraints allows one to reduce the number of free parameters and thus 

reduce the parameter search space of the model. Ideally, one should use the most compact 

model that can best explain all the data, but one should also account for everything else 

that is known or hypothesized about the molecule of interest. Application of linear 

parameter constraints can reduce the number of free parameters by one for each 

constraint. Chapter 2 also introduced the use of slack variables that can be used to modify 

an inequality relationship into an equality to constrain rates to certain values, such as 

greater than 0. Inequality linear constraints do not reduce the number of free parameters, 

but effectively reduce the parameter search space.  
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Behavioral constraints were implemented by addition of a penalty parameter to the 

overall cost function, which increases if the output of the iteration produces a model that 

does not produce the desired behavior. These behaviors are still limited to functions that 

can be quickly calculated from the generated data, however the advantage to enforce a 

known single-channel open probability, while simultaneously fitting macroscopic data, 

substantially improves how models can explain the overall ion channel activity. Modeling 

remains a challenging process and requires patience, as one restarts the optimizer with 

different initial parameters values to avoid local minima. Constraining models allows one 

to reduce the number of free parameters and create more informed models, however each 

constraint changes the free parameter landscape, changing how the optimization engine 

explores the space, and requiring more time to explore. By applying behavioral 

constraints, one can nudge the cost function to produce more informed models, but the 

constraints must be compatible with the data.  

Chapter 3 describes the computational tools used to develop a system that integrates a 

live camera feed with positional feedback of the sample prep. The microscope on my 

electrophysiology rig, which uses a high intensity laser for two-photon imaging, does not 

have eye pieces. A patch clamp experimentalist must construct a spatial map of how the 

3D movement of the manipulator correlates with the movement of the 2D projection, 

which is a challenging feat. By integrating the motor positions of the digital 

micromanipulators, we developed a semi-automatic procedure to target specified regions 

of interest with a patch pipette. Along with the visual feedback provided by the World 3D 

interface, the semi-automatic procedures make it easy to place the pipette so as to target a 
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neuron of interest, and thus enables patching deep in the slice. This is important, as 

neurons that are on the surface of the brain slice likely have many processes cut off 

during the slicing procedure and may not be a good representation of physiological 

neuronal activity. This system was developed at the beginning of my PhD and the 

software was subsequently used for all my experiments to create data maps of the 

recorded cells. The program has also helped speed up the training used to develop the 

fine motor skills required to properly position the pipette under visual guidance with the 

camera, however it does not teach experimenters the patient or the physics required to 

perform electrophysiology. Real-time analysis of the camera output for functional 

imaging allows for more up to date information on the progress of the experimenter.  

In Chapter 4, I isolated Na
+
 currents using whole cell voltage clamp in serotonergic 

ventral raphé neurons to examine if intracellular [Ca
2+

] can modulate long-term 

inactivation of these neurons. By introducing Ca
2+ 

chelators, EGTA and HEDTA, via the 

patch pipette, I recorded Nav channel steady-state activation, inactivation, recovery from 

inactivation and use dependent properties under these conditions. Minimal differences 

were found with spike generating, steady-state activation and inactivation properties as 

well as recovery from inactivation. Testing use dependence, via applying trains of 

depolarizing voltage pulses, indicates that high [Ca
2+

] solutions significantly reduced the 

entry into inactivation. This suggests that, after repetitive use, Nav channels in high 

[Ca
2+

] environments have reduced inactivation and increased availability. This 

conclusion was not easily predictable from existing data, as previous reports in 

heterologous systems demonstrate increased inactivation triggered by high [Ca
2+

] . In 
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raphé neurons, long-term inactivation serves as a negative feedback loop that regulates 

the frequency of firing and thus it is predicted that Ca
2+ 

could be a key signaling molecule 

that may be regulating this process.  

Given my voltage clamp data, one would predict that, in current clamp, the overall 

activity would be increased with high [Ca
2+

]. However, finding intrinsically active raphé 

proved challenging with my high [Ca
2+

] solution. This is not surprising, given that some 

experimenters suggest that patching under nominally zero Ca
2+ 

is challenging (Marty and 

Neher, 1995). I remade the current clamp solutions many times to ensure that the result 

was not due to poor solution preparation, but the result persisted.  

In neurons, Nav channel fast inactivation allows for the proper conduction of the action 

potential down the axon, creating a refractory period where the neuron cannot fire for a 

short period of time. This process prevents overexcitation and allows for neurons to 

maintain a steady firing frequency. In some cell types, Nav channels have unique 

inactivation properties, likely due to different expression profiles of Nav α subunits, 

which produce unique behaviors, including the persistent Na
+
 current (French et al., 

1990; Crill, 1996), the resurgent Na
+
 current (Raman and Bean, 1997; Khaliq et al., 

2003), and long-term inactivation (LTI) (Mickus et al., 1999; Goldfarb et al., 2007; 

Dover et al., 2010; Milescu et al., 2010b). These three mechanisms of inactivation are 

uniquely identifiable and serve to increase or decrease overall channel availability to 

produce faster or slower firing rates.  

Found in many bursting neurons, the persistent Na
+
 current (INaP) describes an increased 

inward component of the Nav channel time course that does not inactivate, effectively 
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always having available channels to conduct current. The presence of INaP in neurons 

seems to be associated with the expression of the Nav1.6 subunit (Raman et al., 1997; 

Maurice et al., 2001; Chatelier et al., 2010; Tan and Soderlund, 2011), and is also 

regulated by β subunits, as co-expression with β1 and Nav 1.6 reduces current amplitude 

(Aman et al., 2009; Lopez-Santiago et al., 2011), whereas β3 can lead to enhanced INaP 

(Qu et al., 2001). INaP is also regulated by Ca
2+

, as mutations in Nav 1.5 that prevent 

Calmodulin binding to the IQ domain on the C-terminus, enhances INaP in HEK cells 

(Yan et al., 2017). Interestingly, in cases of spinal cord injury, where INaP is upregulated 

in motoneurons, pharmacological blockade of  calpain, a calcium-activated protease, 

prevents cleaving of Nav 1.6 and blunts the INaP component, reducing muscle spasticity in 

treated mice (Brocard et al., 2016). These data suggest that the persistent component may 

be due to degradation or misfolding of Nav α subunit. However, in a recent publication 

on neurons in the pre-Bötzinger complex (Yamanishi et al., 2018), the INaP component 

was isolated in both bursting and non-bursting neurons with cleverly designed voltage 

clamp protocols to identify the quasi steady-state activation and inactivation of the INaP 

component, as well as the recovery from inactivation. These data confirm the idea that 

the kinetics do not change between bursters and nonbursters (Koizumi and Smith, 2008), 

and the behavior could be simply due to an increased amount of INaP, as a voltage clamp 

model can dynamically convert intrinsic bursters into nonbursters and nonbursters into 

bursters simply by introducing more or less INaP (Yamanishi et al., 2018).  

The resurgent Na
+
 current is another behavior of Nav channels that provides extra 

depolarization to drive fast spiking (40-50 Hz) (Raman and Bean, 1997; Khaliq et al., 
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2003). Unlike the persistent component, the resurgent current is elicited when 

repolarizing the membrane from -20 mV to -60 mV, where there is normally little or no 

current. The hypothesis for this mechanism is an interaction with Nav β4, where an 

intracellular motif interacts to block the pore, faster than the IFM motif (fast inactivation 

particle)(Grieco et al., 2005; Lewis and Raman, 2011), unbinding to allow for a second 

opening or a resurgence of current. Increasing the phosphorylation state of Nav channels 

regulates the kinetics and amplitude of resurgence (Raman and Bean, 2001; Grieco et al., 

2002). The resurgent current is also attributed to the presence of Nav 1.6 and Nav β4 

(Raman et al., 1997), but the behavior can be induced by toxins that slow Nav channel 

inactivation (Grieco and Raman, 2004; Bant et al., 2013) and has reduced amplitude in 

SCN8A (Nav1.6) knockout mice (Do and Bean, 2004; Grieco and Raman, 2004; Levin et 

al., 2006), Nav β4 knockout mice (Ransdell et al., 2017), and FGF14 KO mice (Yan et 

al., 2014). It seems that the mechanism of the resurgent behavior requires slower fast 

inactivation and an open channel blocker, but it is likely that more molecular activity is at 

play, as suggested by the inability to reproduce the behavior in heterologous systems.  

The last modification of inactivation, long-term inactivation, potentially prevents neurons 

from firing too fast. In serotonergic raphé neurons, LTI can be triggered by a single fast 

depolarization, such as an action potential, but remains inactivated over much longer 

timescales (seconds vs milliseconds) (Milescu et al., 2010b). With each stimulus, a small 

proportion (~20%) of channels remain inactivated, increasing the length of the inter-spike 

interval and reducing firing frequency. Repetitive stimuli trigger LTI that requires longer 

time periods to fully recover. The mechanism of LTI can be reproduced in heterologous 
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systems by co-expressing the A-isoform of fibroblast growth factor homologous factors 

(FHFs) with Nav1.6 channels (Dover et al., 2010). More evidence for this interaction lies 

in recordings of Na
+
 currents from knockouts of FHFs that have reduced current density 

and faster recovery times (Goldfarb et al., 2007; Laezza et al., 2009).  

Ideally, a kinetic mechanism should be able to explain any behavior the channel 

performs. Each behavioral modification described above are from recordings where 

channels have modified inactivation rates and often coincides with expression of Nav1.6. 

Interestingly, these behaviors can be described by the same model topology, the original 

Kuo and Bean topology with an added non-conducting state from the open state, 

however, with largely different rate constants (Raman et al., 1997; Magistretti et al., 

2006; Dover et al., 2010; Milescu et al., 2010b; Yamanishi et al., 2018). However, these 

models do not maintain the same rates in the other states, as some models were hand-

tweaked to describe the trends in the data, whereas others were fit to the data. With more 

complex model topologies, it is challenging to interpret how a single rate constant will 

affect the behavior of the model. However, in the case of the LTI model, hand tweaking 

the rates between the open state and extra state modifies the recovery from inactivation 

without drastically modifying the steady state properties. Interestingly, adding more 

states to the LTI state creating a longer chain does not seem to improve the fit. Overall, 

the existence of all these types of inactivation processes suggests that the Nav kinetic 

mechanism is complex and can be modulated for specific functions. Hence, it is 

important to take as much data as possible when searching for a good model. 
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Considering all the data presented here, there could be many directions for future studies. 

To more clearly establish the effect of intracellular [Ca
2+

] on Nav kinetics, one would 

have to record Nav currents under both low and high levels within the same cell, via Ca
2+ 

uncaging. My preliminary attempts to examine the entry into inactivation before and after 

two-photon uncaging of DM-nitrophen have been inconclusive. Once the first uncaging 

event occurs, it is challenging to consistently maintain a high level of Ca
2+ 

for more than 

a few milliseconds, as the buffering capacity for Ca
2+

 is quite fast. It is therefore 

challenging to test the long recovery protocol, which would be best at unveiling long-

term inactivation effects. One could also use the perforated patch clamp technique, which 

does not rupture the membrane as in whole-cell recordings, but instead utilizes a drug to 

slowly create holes in the membrane, resulting in reasonably low access resistance. This 

technique does not dialyze the cell with the internal solution, thus washing away the 

intrinsic buffering proteins within the cell, providing recordings with "normal" 

intracellular [Ca
2+

] levels.  

Another direction would be to remove Nav channel fast inactivation via pronase or a 

conditional mutant that introduces a mutation in the IFM motif. Without the ability for 

Nav channels to inactivate, it would be interesting to see if further addition of FHF 

proteins or calmodulin or non-calcium binding (apo) calmodulin via the patch pipette 

could induce long-term inactivation. These experiments could potentially determine if 

long-term inactivation is in fact an open-state block or if it is rather a stabilization of the 

fast inactivation state. These studies ideally would be first done in heterologous 

expression system, which we have attempted to perform in Xenopus oocytes, however 
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our current preparation with two-electrode voltage clamp is not fast enough to properly 

clamp the fast Na
+  

currents. Ideally, one would use the  cut-open oocyte technique, which 

allows for a faster clamp, as well as control over both internal and external solutions. 

These experiments could also help delineate other molecular interactions of long-term 

inactivation.  

On the timescale of organism behavior (months or years), neurons are likely to fire 

countless action potentials, so much so that a single action potential gets lost in the noise. 

The mechanisms studied here are on much faster time scales, where the behaviors could 

be explained by the activity of the channel itself, rather than through changes of overall 

ion channel expression. Characterizing both long and short time scales is vital to fully 

understand the function of neurons. However, one must also try to limit the number of 

variables in the system. Due to limitations with keeping the preparation alive with slice 

electrophysiology, it is not possible to look at these long (>hour) timescales but this may 

become possible with in vivo recordings that use implantable devices. However, whole-

cell patch-clamp where proper voltage clamp can be applied is yet to be worked out in 

this system. Overall, one must design experiments that could lead to a clear answer and 

understanding of the results. To fully understand how neurons function on long-time 

scales, one must utilize other techniques, such as monitoring ion channel expression at 

the membrane, or protein trafficking within the neuron, to fully grasp the full function of 

neurons. Our work presented here is just a small step towards that understanding, and it 

will be interesting to see how other investigators will use these tools in the future.  
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