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From unique killers to a jumbo genome – isolation and characterization of phages that 

infect the plant pathogen, Agrobacterium tumefaciens 

Hedieh Attai 

Dr. Pamela Brown, Dissertation Advisor 

Abstract 

Bacteriophages and their lytic peptides can protect plants from phytopathogens 

such as Agrobacterium tumefaciens. To better understand mechanisms of phage-

mediated host killing, we isolated and characterized five lytic bacteriophages with 

activity against A. tumefaciens C58. These phages come in different shapes and 

sizes—from T7-like phages with podoviral morphology and isometric heads to T4-

like phages with myoviral morphology and a contractile tail—and exhibit varying 

host ranges and killing efficiencies. The smallest Agrobacterium phages are phiKMV-

like phages in the T7 superfamily that are efficient at killing their hosts. Their 

lethality can be attributed to their expression of a unique endolysin, called Phage 

Peptidoglycan Hydrolase (PPH). The atypical domain structure of PPH, along with 

the absence of obvious accessory proteins, suggest PPH may function independently 

to mediate host cell lysis. Contrary to the narrow host range of the phage, expression 

of PPH from an inducible promoter inhibits cell growth and blocks cell division in a 

broad range of bacteria including Agrobacterium, Sinorhizobium, and Escherichia 

strains. Another member of the Podoviridae family, Atu_ph08, carries remnants of a 

lysogen and shares 60.2% identity with Agrobacterium genomospecies 3. The T4-like 
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phages in our collection are not potent killers. Atu_ph04 is unique T4-like phage that 

is similar to a group of rhizophages. The largest Agrobacterium phage, Atu_ph07, has 

a head diameter of 146 nm, an extended tail length of 136 nm, and a genome of 490 

kbp. Our results indicate a high degree of morphological and genomic diversity and 

also suggest novel mechanisms of host cell killing remain to be uncovered. 
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Hidden Gems of the Microbial World: Bacteriophages and their Enzymes  
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ABSTRACT 

Bacteriophages are virtually everywhere—phages have been identified in nearly 

every environment on this planet and are numerically dominant in many environments. 

Phages and their bacterial hosts have been coevolving for billions of years, enabling some 

phages to become efficient killers of their hosts. With the spread of antibiotic-resistant 

bacteria, it is crucial that we better understand the diverse mechanisms employed by 

phages to slow growth and lyse bacterial cells. Some phages express proteins called 

endolysins to lyse their hosts. Better understanding how these proteins function should 

reveal their antimicrobial potential and enable the development of strategies to prevent or 

treat bacterial infections. Furthermore, given the diversity of phages that remain 

unexplored it is likely that additional mechanisms of host cell killing remain to be 

discovered. Finally, in some cases, phage cocktails have been shown to control the spread 

of diseases in plants and humans. To further explore the diversity of phages and in hope 

of isolating phages suitable for biocontrol, here we isolate and characterize phages that 

infect the bacterial plant pathogen, Agrobacterium tumefaciens.  

 

INTRODUCTION 

For over 3 billion years, microbes and viruses have inhabited the earth and shaped 

the environment we recognize today. Bacteria are found nearly everywhere. Our 

environment has so-called “good” bacteria, those that colonize our microbiomes or 

provide nutrients to plants, and “bad” bacteria, which cause disease. But the underlying 

entities that influence bacterial diversity are less understood, often even referred to as 

“dark matter” [1]. Viruses are the most abundant biological entities on this planet, yet 
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much remains to be discovered about them and the roles that they play in our 

environments [2]. Viruses that infect bacteria are called bacteriophages, or phages. 

Current estimates suggest that there are 108 phages in every milliliter of water [3] and 

that 31 billion phages traverse cells in the epithelial layer in the human body each day 

[4]. Bacteriophages, the term literally meaning “bacterial eaters,” were first discovered in 

1915 and scientists quickly realized their potential as antimicrobials. For example, in the 

1940s Eli Lilly sold seven phage products for human use, including “Staphylo-jel,” which 

was used to prevent or treat Staphylococcus infections [5]. However, the discovery and 

commercialization of antibiotics overshadowed the need for phage research and 

commercial therapeutic phage production ceased in the Western World. Still, some 

scientists recognized the value of studying these phages and scientific research has 

validated the important role of phages in driving microbial diversity and genetic 

recombination [6], as well as their potentially therapeutic properties.  

 

Phages Influence Microbial Diversity 

Phages are able to drive microbial diversity because of their unique lifestyles. 

These non-living organisms are entirely dependent on their bacterial hosts for survival. 

The majority of double-stranded DNA tailed phages are characterized as having either 

lytic and temperate lifestyles (Figure 1-1), though there are additional phage lifestyles. 

The lytic cycle is initiated by phage attachment to a bacterial host cell. The phage will 

recognize a specific receptor (or receptors) on, or protruding from, the bacterium [7]. The 

phage will then inject its genetic material through its tail and into its host by poking a 

needle through the cell membrane(s) [8]. The phage genome translocates into the host,  
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Figure 1-1. Phages can undergo the lytic or lysogenic cycle. In the lytic cycle, phage 

DNA will be injected into the host, where it will replicate and be packaged into new 

phage heads. Phage lysis proteins will burst the cell wall to allow progeny to infect the 

next host. In the lysogenic cycle, phage DNA can integrate into the host chromosome, 

where it becomes a prophage. This prophage can replicate along with the bacterial DNA 

for generations until a stressor, such as UV or chemical damage to DNA induces 

prophage excision and entry into the lytic cycle.  
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replicates in the host cytoplasm, and subsequent transcription and translation results in 

the production of proteins involved in the assembly of phage progeny. New phage 

particles are assembled and packaged with genetic material. To allow the new phages to 

escape the cell, the phages may express enzymes that destroy the host cell wall. The 

bacterial cell bursts and a new round of phage infection is initiated. The process of killing 

microbes leads to a release in organic matter that is consumed by other organisms. It is 

estimated that viral infections release up to 109 tons of carbon each day, contributing to 

25% of the carbon used in photosynthesis [9]. 

 

Temperate Phages are Major Contributors to Horizontal Gene Transfer 

Not all phages rapidly kill their hosts—the genomes of temperate phages are 

capable of entering the lysogenic cycle (Figure 1-1), remaining dormant by either 

incorporating into the host genome as a prophage or remaining as a separate plasmid with 

a phage-derived origin of replication in the host cell. The phage genome can remain 

latent in the host indefinitely, until phage replication is activated by a stress response. 

Once activated by a stressor, such as chemical treatment or UV damage to DNA, the 

phage enters the lytic cycle. Temperate phages can undergo both lytic and lysogenic 

cycles. In fact, Bacillus phages can communicate with one another during the switch 

from lysogeny to lysis [10]. The presence of prophages in the environment is vast—it has 

been estimated that half of marine bacterial genomes contain prophages [11]. 

The process in which a phage transfers DNA from one bacterium to another is 

generally mediated by temperate phages and is called transduction. Generalized 

transduction occurs when the phage packages random DNA from the bacterial host rather 
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than phage DNA. During the next round of infection, the phage injects the bacterial DNA 

(rather than phage DNA) into the host cell, enabling genetic transfer. This process is well 

characterized in Enterobacteria phage P22, in which the phage DNA sequence used for 

the initiation of packaging is homologous to sequences in the host genome, enabling the 

phage to package host DNA fragments [12]. In specialized transduction, which is 

modelled in Enterobacteria phage lambda, the prophage is excised from a specific site in 

the bacterial genome, and adjacent bacterial DNA is excised as well [12]. Transduction is 

one of the major contributors to horizontal gene transfer and subsequent microbial 

evolution. Each year, 1024 genes are transferred from virus to host in the oceans [13]. 

 

DIVERSITY OF PHAGES 

 Phage diversity is so wide that there is no single, universal gene that is conserved 

throughout all phages [14]. Instead, the phylogeny of phages is determined using 

signature genes, including the large terminase, portal vertex protein, and the major capsid 

protein [15]. Phages are most often categorized by their morphology and relation to well-

characterized phages, such as the coliphages T4, T7, or lambda. These phages have been 

key model organisms in the phage field and have led to critical findings in molecular 

biology. T4 is known for its icosahedral head and visible tail, whereas T7 shares a 

similarly shaped head with a much smaller, less noticeable tail. Together, these make up 

major superfamilies of phages that look similar but may infect very unrelated hosts.  

 The morphology of phages has been a key consideration when classifying them 

into families. Electron microscopy of isolated phages allows researchers to observe their 

morphologies. The order Caudovirales is comprised of tailed dsDNA phages, phages 
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with a long contractile tail, such as T4, are classified as Myoviridae, phages with short 

noncontractile tails, like T7, are Podoviridae, and phages with long noncontractile tails, 

such as lambda, are Siphoviridae. This form of classification system was defined by Hans 

Ackermann [16] and is still used by the International Committee on Taxonomy of 

Viruses (ICTV) [17]. 

 

PHAGE GENOMES 

 The size of phage genomes can range from about 3 kbp to the recently identified 

540 kbp Megaphages [18,19]. Phages with genomes larger than 200 kbp are considered 

jumbo phages, and are often more closely related to other jumbo phages than phages that 

share a host [20].  

Phage genomes are often modular with regions encoding for functions such as 

virion structure, DNA replication, DNA modification, and control of transcription. Phage 

genomes of the same family encode a set of conserved, or core, genes that are involved in 

essential processes [18]. Highly conserved genes encode proteins involved in virion 

structure and phage morphogenesis. Phage morphogenesis in the Caudovirales initiates 

with the formation of the prohead. DNA is packaged through the portal vertex and 

cleaved by the terminase proteins. Next, the head completion proteins, as well as the tail 

subunits and tail fibers are assembled [21]. The baseplate lysozyme is necessary for DNA 

entry into the host cell. Other core genes are involved in DNA replication, transcription, 

translation and posttranslational control, nucleotide metabolism, and morphogenesis. 

DNA replication, repair, and recombination genes include DNA polymerase and helicase. 

RNA polymerase sigma factor initiates transcription. Ribonucleotide reductase enzymes 
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reduce ribonucleotides into deoxyribonucleotides, a step that is essential to DNA 

synthesis [22].  

Phages of the same superfamily often share core genes, while having variability in 

hyperplastic regions, whose genes are mostly uncharacterized. Gene shuffling contributes 

to this variability. Genes in the hyperplastic regions are hypothesized to allow the phage 

to adapt to their hosts [23]. 

 

PHAGES AS BIOCONTROL AGENTS 

 As the rate of antibiotic resistant bacteria increases, there is an increasing need for 

a new approach to finding antimicrobials [24]. Since phages have natural antagonistic 

properties against bacteria, they are being investigated for their role in treating and 

preventing bacterial diseases in animals as well as plants [25–27]. In humans, phage 

therapy has been shown to be successful in cases as a last resort, when all antibiotics fail 

to treat a patient. In one particularly striking case, a man named Tom Patterson emerged 

from his coma after receiving a phage therapy cocktail to treat his multi-drug resistant 

Acinetobacter baumannii [28].  

 In plants, phages can be applied to prevent infection. From an agricultural 

standpoint, plant diseases lead to a 10% decrease in global food production [29] and the 

global food supply is predicted to be insufficient for the expected population increase.  In 

several cases, phage biocontrol has been shown to lead to an improved crop yield [30]. 

For instance, phage treatment led to a 59% reduction of Xanthomonas axonopodis-

causing citrus canker [31]. Phage mixtures were able to prevent tomato wilt caused by 

Ralstonia solanacearum, as seen in multiple studies [32,33]. Coinoculation of phage with 
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pathogenic Pectobacterium and Dickeya reduced soft rot on potato slices by 80% [34]. 

Finally, phage treatments also reduced the rotting and blackleg in potatoes caused by 

Dickeya solani [35].  

There are a number of important considerations as phage biocontrol strategies 

move from the lab into the field.  The timing of application is a key consideration [36]. 

Phages cannot undo the damage caused by a phytopathogen and therefore should be 

viewed as a means to prevent, rather than cure, an infection. Also, to avoid UV exposure 

which can cause DNA damage to the phage, it is preferred that phage application occur at 

night. Finally, it is necessary to prescreen the host range of phages to ensure that 

beneficial microbes in the soil and rhizosphere will not be adversely impacted.  

 

PHAGE ENDOLYSINS 

 Due to centuries of coevolution between bacteria and phages, some phages have 

become armed with a reservoir of genes effective at adapting to their environments and 

killing their hosts. Understanding the mechanism in which phages lyse their host cells is 

an important step to discovering a new source of antimicrobials. In order to allow the 

release of new phage progeny, many phages express proteins that hydrolyze the bacterial 

cell wall.  

 

The Canonical Endolysin-Holin-Spanin Mechanism 

This process is well-characterized in lambda phage, and the endolysin-holin-

spanin mechanism is considered to be the canonical mechanism by which phage-

mediated cell lysis occurs. Lambda phage infects the Gram negative bacteria, Escherichia 
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coli. Gram negative bacteria are enclosed by an inner membrane, periplasm that contains 

the peptidoglycan (PG) cell wall, and an outer membrane. Cell wall PG is composed of 

alternating sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc), 

as well as peptide chains that are crosslinked together to form a lattice. Phages express 

three classes of proteins for the lysis process: endolysins, holins, and spanins (Figure 1-2) 

[37]. First, holins oligomerize to form a hole in the inner membrane [38]. The endolysin 

is now able to travel through this newly formed pore, into the periplasmic space, where it 

cleaves PG. Endolysins vary in their specific enzymatic activity, but the lambda phage is 

a murein transglycosylase, which cleaves the glycosidic bond between the MurNAc and 

GlcNAc [39,40]. The spanin proteins comprise an i-spanin, or inner membrane spanin, 

and an o-spanin, or outer-membrane spanin. These spanins contract, forcing the inner and 

outer membranes to fuse, creating a pore in the envelope, which completes the lysis of 

the host cell [41].  

 

Non-canonical Modes of Phage-Mediated Lysis 

 The diversity of phages can be appreciated by considering numerous other 

mechanisms of phage-mediated cell death that have been discovered. Signal-arrest-

release (SAR) endolysins encode an N-terminal transmembrane domain that anchors to 

the inner membrane until signaled by an enzyme called the pinholin [42]. Pinholins form 

small pores that trigger a shift in the proton motive force, causing the release of the active 

SAR endolysin into the periplasm, where it hydrolyzes the bacterial cell wall [43].  
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Figure 1-2. The canonical endolysin-holin-spanin mechanism of phage-mediated cell 

lysis. Phage lambda expresses holins that form a pore in the inner membrane, allowing an 

endolysin to hydrolyze the cell wall PG. Three common mechanisms of PG lysis include 

amidase, endopeptidase, or glycosidase activity. Once the cell wall is destroyed, the 

spanin proteins are activated to fuse the inner and outer membranes and complete the 

lysis process.  
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 Small, single-stranded nucleic acid phages, such as coliphages IX174 and Qβ, use 

a different approach to kill their hosts, involving the expression of single lysis proteins. 

Single lysis proteins are sufficient to induce cell death because they target proteins 

involved in cell wall biogenesis, a process essential to the cell’s survival [44]. The phage 

IX174 genome encodes lysis protein E which blocks the essential protein MraY and the 

phage Qβ genome encodes A2, which targets MurA. Both MraY and MurA are involved 

in PG precursor biosynthesis. 

 

Applications of Lysis Proteins 

 While phages and bacteria coevolve, bacteria can gain resistance against certain 

phages. They can mutate the surface-exposed receptors that are recognized by phage tail 

fibers, such as flagella, pili, or lipopolysaccharides. In contrast, they cannot drastically 

modify the structure of PG because the cell wall is necessary for the maintenance of cell 

shape and structural integrity. Therefore, it can be argued that phage endolysins may be 

outstanding candidates for therapy against multidrug resistant bacterial infections [45]. 

Other advantages to using phage-derived peptides is their rapid action and synergy when 

combined with antibiotics or other antimicrobial strategies [46]. 

 The use of lysin enzymes as antibiotics, or “enzybiotics,” was first mentioned by 

Nelson et al. [47]. Though the application of endolysins are arguably better suited for 

Gram positive bacteria that lack an outer membrane and thus have an exposed cell wall, 

recent studies have shown the promise for treating Gram negative bacteria with a 

combination of endolysins and outer membrane permeabilizers. Polycationic agents, such 

as polymyxin E, and chelators, such as EDTA, have been shown to effectively 
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permeabilize the outer membrane by disrupting lipopolysaccharides [48,49]. Another 

approach to increase permeabilization of the outer membrane is to engineer fusion 

proteins. The modular structure of endolysins allow for the construction of such protein 

fusions [50]. One particularly striking example is the engineering of outer-membrane 

penetrating endolysins, dubbed Artilysins [51]. Artilysins contain seven peptides that 

destabilize lipopolysaccharides fused to highly active endolysins. In vitro and in vivo 

studies found that Artilysins are effective in killing Pseudomonas aeruginosa and 

Acinetobacter baumannii. Artilysins led to a 4 to 5 log reduction in bacteria in vitro and, 

in combination with EDTA, Artilysins could rescue 40% of infected worms. 

 

A CASE STUDY: AGROBACTERIUM AS AN AGENT OF DISEASE  

 Phages that infect human pathogens and marine bacteria have been widely 

identified, yet there is an underrepresentation of phages that infect the order Rhizobiales 

and family Rhizobiaceae, which includes many soil-dwelling bacteria [52]. These 

bacteria are quite important for plant growth, their impacts ranging from symbiosis in 

which the bacteria fixes nitrogen for the host plant to pathogenesis. There are currently 

18 Rhizobium phages and 15 Sinorhizobium phages in the database, reflecting the 

importance of these beneficial microbes to soil and plant health. Only one Agrobacterium 

phage, named 7-7-1, had been isolated prior to our research, despite the importance of 

Agrobacterium in agriculture [53]. Myoviridae phage 7-7-1 infects the non-pathogenic 

Agrobacterium sp. H13-3 by attaching to its flagella [54]. To gain a better representation 

of Agrobacterium phages, and to potentially find phages that prevent disease, we sought 

to isolate phages that infect the phytopathogenic A. tumefaciens strain C58. 
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 While Agrobacterium tumefaciens is widely known to genetically modify plants, 

it is also known to plant pathologists as the third most scientifically and economically 

important plant pathogen [55]. A. tumefaciens causes crown gall disease in plants, which 

manifests as galls, or tumors, that are comprised of overproliferating plant cells [56]. 

Uncontrolled plant cell division leads to a block in nutrient transport throughout the plant 

and a misallocation of resources, leading to a decrease in crop yield [57]. Pathogenic A. 

tumefaciens contains a Ti plasmid, which encodes its virulence genes, and is required for 

the formation of crown galls [58]. The Ti plasmid has a Vir region that encodes a type IV 

secretion system and a fragment called T-DNA, which integrates into the plant host cell’s 

genome [59]. The genes encoded on the T-DNA include enzymes that overproduce plant 

hormones, including auxin and cytokinin, and proteins involved in synthesizing opines, 

which serve as nutrients, providing carbon and energy for the bacteria [60]. Scientists 

have taken advantage of Agrobacterium’s ability to integrate DNA into plant cells and 

now use this system to deliver genes to plants [61].  

Currently, the commercially available biocontrol to prevent crown gall disease is 

a strain of A. radiobacter called K84. This strain produces a toxin called agrocin 84, 

which inhibits the pathogenic A. tumefaciens and A. rhizogenes [62]. However, not all 

strains of A. tumefaciens are sensitive to agrocin 84 [63]. Another concern is that 

conjugation between A. radiobacter and A. tumefaciens can enable A. radiobacter strains 

to acquire the Ti plasmid and become pathogenic [64]. Thus, there is a need for 

alternative biocontrol options to prevent A. tumefaciens infections, and here we explore 

the possibility of treatments using phage or their proteins as viable biocontrol options. 
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CONCLUSIONS 

 It has become evident that bacteriophages play an important role in our 

environment through the shuffling of genes that has led to microbial diversity. In a 

society that is becoming increasingly threatened by antibiotic resistance, it is vital that 

alternative approaches are explored. We have only uncovered the tip of the iceberg of 

phage diversity, and the vast reservoir of genes which have evolved to kill bacteria are 

only beginning to be understood. The diverse mechanisms of host cell killing employed 

by phages have the potential for providing a source of novel antimicrobials. In our study, 

we isolated Agrobacterium phages to be used as biocontrol agents to prevent crown gall 

disease in plants. Not only did we isolate and characterize new phages that infect the 

phytopathogen, but we discovered new genes that have potential as antimicrobials.  
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Expression of a peptidoglycan hydrolase from lytic bacteriophages Atu_ph02 and 

Atu_ph03 triggers lysis of Agrobacterium tumefaciens 
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ABSTRACT  
 
In order to provide food security, innovative approaches to preventing plant disease are 

currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis 

proteins are effective at triggering lysis of the phytopathogen Agrobacterium 

tumefaciens. Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induce 

lysis of C58-derived strains of A. tumefaciens. Co-inoculation of A. tumefaciens with 

phage onto potato discs limits tumor formation. The genomes of Atu_ph02 and Atu_ph03 

are nearly identical and ~42% identical to T7 supercluster phages. In silico attempts to 

find a canonical lysis cassette were unsuccessful; however, we found a putative phage 

peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. 

Remarkably, endogenous expression of pph in the absence of additional phage genes 

causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the 

presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, 

PPH expression causes extensive cell branching due to a block in cell division but does 

not trigger rapid cell lysis. In contrast, mutation of positively charged residues at the 

extreme C-terminus of PPH causes more rapid cell lysis. Together, these results suggest 

that PPH causes a block in cell division and triggers cell lysis through two distinct 

activities. Finally, the potent killing activity of this single lysis protein can be modulated 

suggesting that it could be engineered to be an effective enzybiotic. 

 

IMPORTANCE 

Characterization of bacteriophages such as Atu_ph02 and Atu_ph03 that infect plant 

pathogens such as Agrobacterium tumefaciens may be the basis of new biocontrol 
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strategies. First, cocktails of diverse bacteriophages could be used as a preventative 

measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to 

develop resistance simultaneously to multiple bacteriophage species. The specificity of 

bacteriophage treatment for their hosts is an asset in complex communities such as 

orchards where it would be detrimental to harm the symbiotic bacteria in the 

environment. Second, bacteriophages are potential sources of enzymes that efficiently 

lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins 

do not replicate as phages do, their effect is highly localized, providing an alternative to 

traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. 

tumefaciens may provide insights for designing preventative strategies against bacterial 

pathogens.  

 
INTRODUCTION 

Crop damage caused by bacterial phytopathogens poses a threat to food security 

worldwide (1). Agrobacterium tumefaciens is one of the top three most scientifically and 

economically important bacterial plant pathogens (2) and is responsible for significant 

economic losses in stone fruit and nut production (3, 4). A. tumefaciens causes crown gall 

disease by transforming plant cells with constitutively-expressed genes for production of 

phytohormones and opines. Opines serve as a custom food source for the bacteria. 

Increased hormone production causes plant cells to locally over-proliferate (5, 6), leading 

to tumor formation and reduced transport of water and nutrients throughout the plant. 

Thus, infected plants often do not achieve maximal crop yields.  

Current commercially available biocontrol involves the application of 

Agrobacterium radiobacter strain K84, which releases a bacteriocin called agrocin to 
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outcompete A. tumefaciens. However, only a limited number of A. tumefaciens strains are 

sensitive to agrocin (7, 8) and sensitive strains of A. tumefaciens can become resistant (9). 

Therefore, alternative methods of biocontrol are emerging, including selection and 

breeding of resistant crops (10-12), chemical treatments (13), and isolation of additional 

antagonist organisms (14). In this work, we consider the possibility of lytic 

bacteriophages and phage-encoded lysis proteins as options for A. tumefaciens biocontrol. 

Bacteriophages and phage-derived proteins have recently been employed against 

several plant pathogens (15, 16). Lytic phages contain a large reservoir of genes 

specifically involved in killing their host cells and are attractive as biocontrol agents. 

Lytic bacteriophages have shown promise in protecting tomato plants from wilting 

caused by Ralstonia solanacearum (17, 18), oranges from citrus canker caused by 

Xanthomonas axonopodis (19), leeks from bacterial blight caused by Pseudomonas 

syringae pv. porri (20), and kiwi from canker caused by Pseudomonas syringae pv. 

actinidiae (21). While these studies indicate the potential of bacteriophages to serve as 

biocontrol agents, further optimization of phage replication and lysis will be necessary to 

effectively scale for use in crop fields and orchards. As of yet, bacteriophages have not 

been employed as biocontrol against A. tumefaciens. 

As research on bacteriophages as biocontrol agents has recently grown in 

popularity, so has the study of phage proteins responsible for their antimicrobial activity 

(22). The term “enzybiotics,” first coined in 2001, refers to the direct application of 

phage endolysins, peptidoglycan hydrolase enzymes that target the bacterial cell wall, to 

susceptible hosts (23). Benefits of using endolysins include their direct mode of action, 

low incidence of resistance, and potential for protein optimization (24). The use of 
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exogenously applied peptidoglycan hydrolases to directly kill bacteria is more established 

for Gram positive bacteria since they lack an outer membrane barrier; however, in at least 

some cases, exogenous application of endolysins has been shown to effectively lyse 

Gram negative bacteria (25). Additional strategies for targeting Gram negative pathogens 

include co-application of the endolysin with an outer membrane permeabilizer such as 

ethylenediaminetetraacetic acid (EDTA) (26), or engineering an endolysin to gain the 

ability to lyse bacteria from the outside by absorption through the outer membrane (27).  

Lytic bacteriophages that infect A. tumefaciens have been isolated from soil and 

sewage samples (28-30) suggesting that there is untapped potential for using 

bacteriophage or endolysins as biocontrol agents against the pathogen; however, only 

Agrobacterium sp H13-3 phage 7-7-1 has been subject to genomic characterization (31). 

In this work, we isolate and describe 2 lytic bacteriophages that specifically infect a 

subset of A. tumefaciens strains. These bacteriophages are closely related and contain a 

novel endolysin with potential antimicrobial activity.  

 

RESULTS AND DISCUSSION 

Isolation and characterization of bacteriophages that infect A. tumefaciens C58. 

Wildtype strains of A. tumefaciens are well known for their ability to cause crown gall 

disease and this ability is dependent on the presence of the tumor inducing plasmid, pTi 

(3, 32, 33). In this work, A. tumefaciens strain C58 was selected as the host strain for 

isolation of bacteriophage since it was isolated from a cherry tree tumor (34), the 

complete genome sequence is available (35, 36), and it has been widely studied as a 

pathogen (37).  
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Using a modified phage enrichment protocol (38), we isolated two 

bacteriophages, called Atu_ph02 and Atu_ph03, from samples obtained from the 

Columbia, MO, regional wastewater treatment plant. Presence of bacteriophage in 

supernatants from cleared A. tumefaciens cultures was confirmed by spot and classic 

plaque assays. Virions were concentrated and partially purified by precipitation with 

polyethylene glycol (PEG) and differential centrifugation. Phages Atu_ph02 and 

Atu_ph03 form large and clear plaques on a lawn of A. tumefaciens (Figure 2-1A). 

Transmission electron microscopy (TEM) of the virions reveals icosahedral heads with 

diameters ~58 nm, and short tails (Figure 2-1B). Subterminal tail fibers are not visible 

through TEM. This morphology suggests that these bacteriophages are podoviruses (39).  

The host ranges of the phages were assessed by spotting phage stock dilutions on 

a range of bacteria (Figure 2-1C). Each bacteriophage exhibits a narrow host range, only 

infecting a subset of A. tumefaciens strains. Both phages infect C58-derived strains (C58, 

EHA105, EHA101, GV3101, NTL4) with the exception of AGL-1, which carries a 

mutation in recA (40). This suggests that RecA, an enzyme responsible for homologous 

recombination and DNA repair, may be required for efficient bacteriophage infection. 

Atu_ph02 and Atu_ph03 cannot infect A. tumefaciens strains that are not derived from 

C58 (LBA4404 and Chry5) or other tested species including Agrobacterium vitis, 

Sinorhizobium meliloti, Caulobacter crescentus, and Escherichia coli. A narrow-host 

range is considered to be an important asset when assessing the potential of 

bacteriophages as biocontrol agents against phytopathogens, as it minimizes harm to 

other beneficial microbes in the rhizosphere. Ideally, a cocktail of lytic bacteriophages  
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Strain Atu_ph02 Atu_ph03

C58 + +

EHA105 + +

EHA101 + +

GV3101 + +

NTL4 + +

AGL1 - +*

Chry5 - -

LBA4404 - -

Agrobacterium vitis S4 - -

Sinorhizobium meliloti
RM41

- -

Caulobacter crescentus
CB15

- -

Escherichia coli DH5α - -
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Figure 2-1. Characterization of plaque and bacteriophage morphologies. (A) Plaques 

formed on a lawn of Agrobacterium tumefaciens C58 are shown for each 

bacteriophage. Scale bars = 10 mm. (B) Transmission electron micrographs reveal the 

morphology of each bacteriophage. Scale bars = 100 nm. (C) Specificities of 

bacteriophages were determined by spotting dilutions of phage on a lawn of the host 

bacterium. + indicates that plaques were observed and – indicates that plaques were 

not observed. *Plaques were observed only at titers ~1000 times higher than required 

for plaque formation on other host strains. Strain AGL1 contains an insertion mutation 

in recA to stabilize recombination plasmids.
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requiring different host factors would be deployed to reduce the incidence of host 

resistance (21).  

 

Phage treatment causes cell lysis and results in reduced pathogenicity of A. 

tumefaciens.  

To further assess the potential of these bacteriophages as biocontrol agents, we measured 

the effect of phage infection on A. tumefaciens grown in liquid medium, growth on 

agarose pads, and on A. tumefaciens-induced tumor formation on potato discs. Bacterial 

growth curves indicate the rate at which phages can inhibit the growth of their bacterial 

hosts. A. tumefaciens cells infected with Atu_ph02 or Atu_ph03 at a multiplicity of 

infection (MOI) of 0.001 grew for ~3 h post infection prior to the onset of cell lysis 

(Figure 2-2A). Timelapse microscopy shows uninfected WT cells form microcolonies 

within 7 h (Figure 2-2B top) whereas cells infected with Atu_ph02 (Figure 2-2B center) 

or Atu_ph03 (Figure 2-2B bottom) at an MOI of 0.01 initially grow and divide but begin 

lysing 5 h after infection. Since phages are released after the first cell lyses, the remaining 

cells are subsequently infected and all cells in the field are lysed within the next 2 h 

(Figure 2-2B center and bottom). In other representative fields, cells which are not 

initially infected form relatively large microcolonies; however, cells on the periphery of 

these microcolonies later lyse. Since this lysis event is never observed in the absence of 

phage, we infer that these cells are susceptible to the phage particles which have likely 

diffused through the agarose.  

The qualitative potato tumor assay uses potato discs to mimic wound sites and 

evaluate virulence of A. tumefaciens cells on plant hosts (41). Potato discs inoculated  
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with A. tumefaciens formed tumors after 14 days of infection (Figure 2-2C, top right). 

Co-inoculation with Atu_ph02 or Atu_ph03 at an MOI of 1.0 reduces the number of 

tumors formed on the potato disc (Figure 2-2C, bottom). Since bacteria readily evolve 

resistance to individual bacteriophages, phages Atu_ph02 or Atu_ph03 alone are unlikely 

to be effective biocontrol agents. However, these phages may be valuable as a component 

of a bacteriophage cocktail. Together, the growth curve, microscopy, and potato tumor 

assay in Figure 2-2 show that Atu_ph02 and Atu_ph03 are lytic phages capable of rapidly 

killing A. tumefaciens and potentially protecting plants from infection.  

 

Phages Atu_ph02 and Atu_ph03 belong to the T7 supercluster. Although Atu_ph02 

and Atu_ph03 are similar in morphology (Figure 2-2B), lysis rate (Figure 2-2A), and 

genome size (Supplemental Figure 2-S1A), the genomes are not identical based on 

restriction fragment pattern analysis (Supplemental Figure 2-S1B). Therefore, we 

sequenced both genomes in order to gain insights into the mechanism of phage-mediated 

host cell lysis.  

Phages Atu_ph02 and Atu_ph03 contain nearly identical small genomes of ~45 

kbp encoding 55 and 58 open reading frames (ORFs), respectively (Figure 2-3, Table 2-1, 

Supplemental Table 2-S1). Dot plot analysis of the Atu_ph02 and Atu_ph03 sequences 

reveals that these genomes are almost entirely syntenic, with only a few regions 

indicative of small deletions or insertions (Supplemental Figure 2-S2A). Comparison of 

the 52 shared protein sequences reveals a high degree of similarity: 23 are 100% 

identical, another 23 are 90-99.88% identical, and the remaining 6 are 49%-88% identical 

(Supplemental Figure 2-S2B and Supplemental Table 2-S1).  



 36 

  



 37 

The genomes of Atu_ph02 and Atu_ph03 are organized in functional blocks 

(Figure 2-3 and Supplemental Table 2-S2) including genes encoding DNA-associated 

proteins (Figure 2-3B, light blue arrows) and genes predicted to function in phage 

morphogenesis (Figure 2-3B, purple arrows). Remarkably, 60% of the ORFs encode 

hypothetical proteins of unknown function (Figure 2-3B, white and grey arrows), ~70% 

of which (23 in Atu_ph02 and 26 in Atu_ph03) are ORFans (Figure 2-3B, white arrows), 

meaning they share no significant homology with existing proteins in the non-redundant 

database (42).  

Whole genome comparisons using the Atu_ph03 nucleic acid sequence reveal that 

this phage genome is ~42% identical to both the T7-like Rhizobium etli phage RHEph02 

and Phage MedPE-SW-cel-C56. Whole genome alignments identified syntenic regions 

among these phage genomes (Figure 2-4A). Similar to Rhizobium etli phages RHEph02, 

RHEph03, RHEph08 and RHEph09 (38), phages Atu_ph02 and Atu_ph03 can be 

classified as members of the T7 supercluster based on the similarity of the genome 

organization and the presence of core T7 genes. There are 4 conserved core T7 genes, 

predicted to encode the T7-like RNA polymerase, large terminase, and structural proteins 

(Supplemental Table 2-S2). These 4 core genes are also present in RHEph02, RHEph08, 

and Phage MedPE-SWcel-C56 (Supplemental Table 2-S2). A phylogenetic analysis using 

the gene encoding the large terminase reveals that Agrobacterium phages Atu_ph02 and 

Atu_ph03, Rhizobium etli phages, and Phage Med-SWcel-C56 form a distinct clade and 

share a common ancestor with other T7-like bacteriophages that target non-enteric hosts, 

including Pseudomonas phage IKMV (Figure 2-4B). Furthermore, this phylogeny 

supports the classification of these Agrobacterium phages within the IKMV-like cluster  
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Figure 2-4. Genome wide syntenic mapping and key protein phylogenies. (A) Whole 

genome alignments of Atu_ph03 with Rhizobium phage RHEph02 and phage MedPE-

SWceI-C56. Position of genes encoding the A1 protein and large terminase are shown 
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with black bars. (B) Phylogenetic analysis of the large terminase subunit from Atu_ph02 

and Atu_ph03 and other T7-like phages. Purple nodes indicate T7-like phages, green 

indicate Sp-6-like phages, and blue indicate IKMV-like phages. (C) Phylogenetic 

analysis of the probable A1 protein from Atu_ph02 and Atu_ph03, closely related 

Rhizobium phages, phage MedPE-SWcel-C56, and phages belonging to T5 family. Blue 

nodes indicate IKMV-like phages, orange indicate phi-Cbk-like phages, and pink 

indicate T5-like phages. Scale bars represent the number of amino acid substitutions per 

site. Numerical value on each node represents the bootstrap value of 100 replicates.  
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of phages, which includes characterized phages that infect Alphaproteobacteria such as 

Caulobacter phages ICd1 (43) and Percy (44), and Ralstonia phage IRSB1(45). 

Furthermore, whole genome comparisons using Atu_ph03 and Pseudomonas phage 

IKMV reveal that the genomes are 42% identical. A total of 13 of the predicted proteins 

in the Atu_ph03 genome have homologous proteins in IKMV which share at least 24% 

identity, including key proteins that function in DNA metabolism and virion structure and 

assembly (Supplemental Table 2-S2).  

 

Phage Atu_ph02 and Atu_ph03 contain a putative A1 protein. A surprising 

observation within the genomes of Atu_ph02 and Atu_ph03 is the presence of a homolog 

of the A1 protein from phage T5 (Figure 2-3B, Supplemental Table 2-S2). The probable 

A1 protein is conserved within the clade containing the Rhizobium etli phages and Phage 

Med-SWcel-C56 suggesting that the ancestor of these phages acquired the gene 

horizontally since it is not prevalent among IKMV-like bacteriophages (Figure 2-4C, 

Supplemental Table 2-S2). The putative A1 protein (Gp10) from Atu_ph03 is 486 amino 

acids and is 38% identical to the phage T5 A1 protein (Supplemental Table 2-S2). In 

phage T5, A1 mutants are defective in multiple processes, including degrading host 

DNA, downregulating pre-early gene expression (46), and completion of T5 DNA 

transfer into the host cell (47). The probable A1 proteins have no readily identifiable 

functional domains, transmembrane domains, or signal peptides, thus we cannot 

speculate on function of the A1 protein in phages Atu_ph02 and Atu_ph03. Homologs to 

the A1 protein are found in other non-T5 phages including Caulobacter phage ICBK (48, 

49) (Figure 2-4C). In phage ICBK and related phages, the A1 protein is located with the 



 41 

DNA replication module, suggesting that this protein may function to alter ICBK gene 

expression through an interaction with host RNA polymerase (49). The putative A1 

proteins in Agrobacterium phages Atu_ph02 and Atu_ph03 join a small family of A1-

related proteins found in distinct clades of non-T5-like phages (Figure 2-4C) and 

bacterial genomes, though the function remains uncharacterized in all cases (48).  

 

Atu_ph02 and Atu_ph03 phage lysis proteins. Many bacteriophages that infect Gram-

negative hosts contain a lysis cassette consisting of an endolysin and accessory proteins 

(50). Most of these endolysins have a globular structure containing a single enzymatic 

active domain (EAD) and cannot reach the periplasm independently (50-52). In the 

canonical holin-endolysin system, endolysins accumulate in the cytoplasm until a 

sufficient quantity of holins are inserted in the inner membrane to form homo-oligomeric 

pores that allow endolysins to enter the periplasm (50). An alternative strategy is used by 

signal-arrest-release (SAR) endolysins that contain an N-terminal type II signal anchor, 

which embeds the inactive enzyme in the inner membrane until pinholins cause 

membrane depolarization and release of the endolysin to the periplasm (50). Both the 

holin-endolysin and pinholin-SAR endolysin systems rely on spanins to fuse the inner 

and outer membranes to complete cell lysis. In addition to these strategies, in silico and 

experimental analysis suggest that some endolysins contain N-terminal signal sequences 

which may enable delivery to the periplasm via the Sec machinery (51, 53, 54).  

Among the phage lysis proteins, endolysins are most readily identified in phage 

genomes due to the presence of peptidoglycan hydrolase domains. Thus, the genomes of 

Atu_ph02 and Atu_ph03 were searched for putative endolysin proteins. All of the 
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predicted ORFs were translated and searched for the presence of domains encoding 

peptidoglycan hydrolases. Two candidate peptidoglycan hydrolases were identified 

(Figure 2-3, red arrows; Table 2-S2). Gp35 contains a putative cell wall hydrolase 

(pfam07486) and is located in close proximity to the putative tail proteins and internal 

virion proteins suggesting that this hydrolase may function as a virion associated lysin. 

Gp3 contains a putative N-acetylmuramidase domain (DUF3380) suggesting that it may 

hydrolyze peptidoglycan.  

To determine if either Gp35 or Gp3 are part of a canonical lysis cassette, we 

searched for potential accessory proteins, such as holins or pinholins, by screening each 

putative protein sequence for the presence of transmembrane domains. Phage genome 

Atu_ph03 encodes a total of 6 predicted transmembrane proteins (Figure 2-3, pink 

arrows); however, none of these proteins are in close proximity to the putative 

peptidoglycan hydrolases. This observation suggests that Atu_ph03 may not contain a 

canonical lysis cassette. Remarkably, one of the transmembrane-containing proteins also 

contains the putative phage peptidoglycan hydrolase domain DUF3380 (Figure 2-3, red 

and pink striped arrows). The sequence of PPH is 100% identical in phages Atu_ph02 

and Atu_ph03 (Figure 2-3A, Supplemental Table 2-S1) and is not present in the genomes 

of the closely related Rhizobium etli phages or Phage MedPE-SWcel-C56 (Supplemental 

Table 2-S2). To determine if PPH contributes to cell lysis, pph (gp3) was subject to 

bioinformatic and genetic characterization.  

 

Phage peptidoglycan hydrolase is sufficient to induce A. tumefaciens cell lysis. PPH 

contains a domain (DUF3380) that is found in bacterial and viral proteins that bind 
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peptidoglycan (Figure 2-5A and Supplemental Figure 2-S3). Recent characterization of 

an endolysin (Gp110) from a Salmonella phage 10 containing DUF3380 revealed that 

this domain functions as a N-acetylmuramidase and cleaves the E1-4 glycosidic bond 

between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan (55). 

Predicted PPH transmembrane topology according to a hidden Markov model (56) 

orients the transmembrane domain with the EAD in the periplasm and the short C-

terminal tail in the cytosol (Figure 2-5A). Remarkably, if PPH functions as an endolysin, 

this suggests that PPH may utilize an atypical mechanism of entering the periplasm and 

causing host cell lysis.  

In light of these observations, we sought to determine if expression of PPH is 

sufficient for cell lysis. A plasmid containing pph under the control of a lac promoter 

(pSRKKm-Plac-PPH) was introduced into WT A. tumefaciens cells allowing observations 

of cell viability, cell growth, cell morphology, and cell lysis under conditions where pph 

is induced by the presence of isopropyl E-D-1-thiogalactopyranoside (IPTG) (Figure 2-

5). Growth curve analysis shows that induction of pph leads to growth inhibition within 4 

hours (Figure 2-5C), in contrast to normal growth exhibited by uninduced cells 

(Supplemental Figure 2-S4A). To measure viability, we grew A. tumefaciens containing 

pSRKKm-Plac-PPH in the absence of IPTG to mid-exponential phase. Next, we spotted 

dilutions of A. tumefaciens containing pSRKKm-Plac-PPH onto plates with and without 

IPTG. In the presence of inducer, there is a 5-log loss in viability of A. tumefaciens cells 

(Figure 2-5D) compared to the same strain in the absence of inducer (Supplemental 

Figure 2-S4B). These results suggest that accumulation of PPH is sufficient to inhibit A. 

tumefaciens growth. Next, timelapse microscopy was used to determine if pph induction  
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Figure 2-5. Characterization of phage peptidoglycan hydrolase (PPH) and its effect on A. 

tumefaciens. (A) Predicted PPH protein topology. Arrows indicate sites subject to point 

mutagenesis. (B) Zymogram of 30 Pg whole cell lysates from A. tumefaciens lacking 



 45 

PPH, expressing PPH, and expressing PPHE32A. (C) Growth curve of A. tumefaciens 

growth when expressing plasmid pSRKKm-Plac with variants of pph under induced 

conditions. (D) Cell viability of A. tumefaciens containing plasmids to express unmutated 

and variant PPH grown under induced conditions. Time-lapse microscopy of an A. 

tumefaciens cell containing (E) empty pSRKKm-Plac vector, (F) pSRKKm-Plac-PPH, 

(G) pSRKKm-Plac-PPHE32A, (H) pSRKKm-Plac-PPHK328A,K334A,K335A, (I) pSRKKm-Plac-

PPHE32A,K328A,K334A,K335A, and (J) pSRKKm-Plac-PPH1-304. Cells were induced for PPH 

expression for 1 hour prior to initiation of time-lapse microscopy. Scale bars = 5 µm.  
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triggers lysis of A. tumefaciens cells. A. tumefaciens cells with an empty pSRKKm-Plac 

plasmid grew and divided to form microcolonies (Figure 2-5E). In contrast to cells 

infected with Atu_ph02 or Atu_ph03, which lyse rapidly with little change in cellular 

morphology (Figure 2-2C), PPH induction causes cells to elongate and branch prior to 

cell lysis (Figure 2-5F). The branching phenotype observed when pph is induced in A. 

tumefaciens cells is reminiscent of cells exhibiting a block in cell division (57-63). This 

observation suggests that PPH may have a dual function: blocking cell division and 

triggering cell lysis. 

We hypothesized that the peptidoglycan hydrolase activity is necessary for PPH 

induction to trigger cell lysis. Alignments of DUF3380 sequences from bacterial and viral 

proteins reveal the presence of a conserved glutamate (E), which is presumed to be a 

catalytic residue, followed by a conserved serine (S) (55) (Supplemental Figure 2-S3). To 

determine if the predicted catalytic glutamate functions in cell lysis during PPH 

induction, we mutated PPH to PPHE32A and characterized cell growth (Figure 2-5C), cell 

viability (Figure 2-5D), and cell lysis of the PPHE32A strain (Figure 2-5G). Cultures of A. 

tumefaciens producing PPHE32A become turbid and increase in optical density based on 

growth curve analysis (Figure 2-5C), but are not viable when spotted on media containing 

inducer (Figure 2-5D). Timelapse microscopy of cell growth when PPHE32A is induced 

explains these seemingly contradictory observations (Figure 2-5G). When PPHE32A is 

expressed, A. tumefaciens cell division is blocked and large, extensively branched cells 

form. This unusual morphology causes both an increase in light scattering in growth 

curve analysis and a marked decrease in cell viability. Cells lyse ~4 h later post induction 

when expressing PPHE32A than when they express PPH (compare Figures 2-5F-G). 
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Together, these observations suggest that the predicted N-acetylmuramidase domain 

contributes to PPH-mediated cell lysis. To further test this hypothesis, we assessed the 

ability of PPH to clear peptidoglycan embedded in an SDS-PAGE gel. A zymogram 

loaded with equal amounts of protein from whole cell lysates of WT cells, WT cells 

expressing PPH, and WT cells expressing PPHE32A reveals bands of clearing at the 

expected size of 35 kDa when PPH is expressed (Figure 2-5B, Supplemental Figure 2-

S5). A smaller band of clearing (~25 kDa) is also observed when PPH is expressed and 

may indicate a degradation product of the PPH. In contrast, no clearing is observed when 

the PPHE32A variant is expressed (Figure 2-5B, Supplemental Figure 2-S5). The lack of 

clearing in PPHE32A shows the important role this residue plays in peptidoglycan 

cleavage. These results suggest that PPH has peptidolglycan hydrolyzing activity, 

although it is possible that PPH stimulates other peptidoglycan hydrolases in A. 

tumefaciens. Future work using purified proteins will be necessary to confirm these 

results.  

The observation that expression of PPHE32A causes a dramatic cell morphology 

including very large, branched cells (Figure 2-5G) suggests that PPH causes a block in 

cell division that is independent of the peptidoglycan hydrolase activity. Since divisome 

assembly is initiated in the cytoplasm (64) and the predicted topology of PPH suggests 

that only the C-terminal tail would extend into the cytoplasm, we examined this sequence 

for any remarkable features and observed that this region is lysine-rich. To determine if 

the positively charged C-terminus functions in regulation of cell division and timing of 

cell lysis, we constructed a plasmid encoding a PPH variant in which the lysines have 

been mutated to alanines (PPHK328A,K334A,K335A) and assessed cell growth (Figure 2-5C), 
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cell viability (Figure 2-5D), and cell lysis (Figure 2-5H). The growth curve reveals that 

expression of PPHK328A,K334A,K335A causes a growth defect that is significantly more 

pronounced than that of wild-type PPH (Figure 2-5C) and spotting of cells expressing 

PPHK328A,K334A,K335A under inducing conditions results in a decrease in cell viability 

(Figure 2-5D). Remarkably, timelapse microscopy reveals that cells producing 

PPHK328A,K334A,K335A lyse rapidly (Figure 2-5H). This phenotype is strikingly similar to 

cells infected with phages Atu_ph02 and Atu_ph03 (Figure 2-2C). Unlike cells 

expressing PPH, cells that express PPHK328A,K334A,K335A lyse rapidly without a block in 

cell division. This observation suggests that the positively-charged lysines function in the 

regulation of PPH-mediated cell killing by contributing to the block in cell division but 

are not required for lysis.  

To confirm the roles of the catalytic E32 and the positively charged lysine 

residues, the loss of function mutations were combined to create PPHE32A,K328A,K334A,K335A. 

Induction of PPHE32A,K328A,K334A,K335A restores normal growth (Figure 2-5C) and viability 

(Figure 2-5D). Timelapse microscopy reveals that cells producing 

PPHE32A,K328A,K334A,K335A continue to elongate and divide, producing microcolonies 

(Figure 2-5I). Some cells expressing PPHE32A,K328A,K334A,K335A appear to be hypercurved, 

swollen, or bulging, suggesting that this variant of PPH causes relatively minor defects in 

the cell wall or cell growth. Together, these data suggest that we have identified 

important residues responsible for the PPH-mediated block in cell division and cell lysis.  

Finally, we sought to determine the contribution of the C-terminal transmembrane 

domain in PPH-mediated cell lysis. We truncated PPH to remove the C-terminal TM 

domain and cytosolic tail and expressed PPH1-304 in A. tumefaciens. Expression of PPH1-
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304 does not impair growth (Figure 2-5C), viability (Figure 2-5D), or the ability to form 

microcolonies (Figure 2-5J). Consistent with the predicted topology of PPH, these 

observations suggest that the cells do not lyse since the peptidoglycan hydrolase does not 

reach the periplasm. We hypothesize that these cells do not exhibit a block in cell 

division since the positively-charged residues at the extreme C-terminus of PPH are also 

absent. 

While the possibility of a dual function of PPH in peptidoglycan hydrolysis and 

blocking cell division is intriguing, additional work is needed to determine if a block in 

cell division occurs during infection with phage Atu_ph02 or Atu_ph03 and if PPH 

contributes to a delay in cell division. Since we are artificially expressing PPH in A. 

tumefaciens, we cannot yet determine if this phenotype is an artifact of protein expression 

or representative of PPH induction during phage infection; however, the ability to abolish 

the cell division defect and induce rapid lysis by mutating the positively charged C-

terminus may suggest a biological role for this region of the peptide. A dual function for 

PPH in peptidoglycan hydrolysis and blocking cell division is consistent with 

descriptions of single lysis proteins in phages with smaller genomes. For example, 

Coliphages IX174, MS2, and QE encode lysis proteins E, L, and A2, respectively (65-

68). Protein E causes host cell lysis by inhibiting the activity of a host protein involved in 

peptidoglycan biosynthesis (66). The C-terminus of PPH may have a similar function 

leading to inhibition of a cell division protein. Indeed, A. tumefaciens cells expressing 

PPH exhibit a branching phenotype similar to that in FtsZ-depleted cells (63) (Figure 2-

5F). The inhibition of cell division causes cells to increase in volume, which may benefit 

the phage by maximizing burst size (69). While it remains unclear if or how the phages 
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Atu_ph02 and Atu_ph03 regulate the timing of lysis during infection, it appears that the 

C-terminus of PPH may contribute to the regulation of cell lysis. 

Overall, we find that PPH is a potent inhibitor of A. tumefaciens cell growth and 

viability, revealing the possibility that this protein may be engineered to be an even more 

potent antimicrobial. Future studies will be aimed at characterizing the enzymatic activity 

of PPH, identifying host factors required for PPH-mediated cell division blocks, and 

addressing the specificity of PPH as an antimicrobial.  

 

Conclusions. Our laboratory has isolated and characterized two closely related 

bacteriophages that specifically infect A. tumefaciens strains derived from C58. These 

phages, Atu_ph02 and Atu_ph03, are lytic and lead to host cell lysis. While the potato 

tumor assay shows that these phages offer partial protection from tumor formation, the 

use of these phages for biocontrol may be limited unless additional lytic phages are used 

in combination therapies. In order to investigate the mechanism of host cell lysis, the 

genomes Atu_ph02 and Atu_ph03 were sequenced, revealing the presence of a putative 

atypical endolysin, termed phage peptidoglycan hydrolase (PPH). PPH is sufficient for 

lysis of A. tumefaciens cells and appears to have a dual function in disrupting the 

divisome assembly or function and triggering cell lysis. Mutational analyses suggest that 

a putative N-acetylmuramidase domain contributes to cell lysis while a positively 

charged C-terminus causes a block in cell division. The transmembrane domain is 

hypothesized to aid in delivery of the peptidoglycan hydrolase domain to the periplasm 

and is necessary for rapid PPH-induced cell lysis. Understanding the mechanism by 

which PPH blocks cell division, the specific host factor it targets, and its enzymatic 
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activity on the cell wall will elucidate the mode of action of PPH and determine if PPH 

shows promise as an enzybiotic. More detailed characterization will be necessary to 

confirm if PPH disrupts cell division during phage infection and to determine if PPH 

functions as an endolysin late during the phage infection cycle. This work demonstrates 

that bacteriophages have evolved additional mechanisms to kill their host cells and 

illustrates the value of exploring bacteriophage genomes as a source of candidate 

enzybiotics.  

 

MATERIALS AND METHODS 

Bacterial strains and culture conditions. The bacterial strains used in the study are 

listed in Table 2- 2. Agrobacterium tumefaciens strains and Sinorhizobium meliloti were 

cultured in Luria-Bertani (LB) broth, with the exception of A. tumefaciens LBA4404, 

which was cultured using yeast mannitol (YM) media (70). Agrobacterium vitis was 

grown in potato dextrose media (Difco) and Caulobacter crescentus was cultured on 

peptone yeast extract (PYE) media (71). All of these strains were grown in liquid culture 

at 28°C with shaking. Escherichia coli was cultured in LB broth at 37°C. When 

necessary, solid media were prepared with 1.5% agar. Kanamycin was used at a working 

concentration of 300 μg/ml for A. tumefaciens and 50 μg/ml for E. coli. Isopropyl-β-D-

thiogalactosidase (IPTG) was used as an inducer at a concentration of 1 mM.  

 

Clonal isolation of bacteriophage strains. Bacteriophages capable of infecting A. 

tumefaciens strain C58 were isolated from wastewater samples using an enrichment 
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protocol adapted from Santamaría et al. (38) and described in detail in the supplemental 

methods.  

 

Plaque assays. Classic whole plate plaque assays were performed using the soft agar 

overlay method (72). To complete whole plate plaque assays, 100 μl cells (OD600 = ~0.2) 

were incubated with 100 μl of diluted phage for 15 min at 28°C. Phage solutions were 

serial diluted in phage dilution buffer, a mixture of Dulbecco's phosphate-buffered saline 

(DPBS, Mediatech, Inc., Manassas, VA, USA) with 2 percent gelatin (1:20). The mixture 

of cells and phage was then added to 3 ml of soft agar prior to overlay. The soft agar 

containing bacteriophage and cells was poured onto a room-temperature LB plate 

containing 1% agar and swirled gently to spread the soft agar evenly across the plate. For 

host range testing, plaque assays were completed by spotting phage on lawns of bacterial 

cells. In the spot assays, 100 μl cells (OD600 = ~0.2) were added to 0.3% soft agar and 

overlayed on solid medium. After solidification, 10 μl of phage serial dilutions in DPBS-

gelatin were spotted on the soft agar. Plates were incubated for 1–2 days and observed for 

plaque formation. Spot assays were used for host range testing with appropriate 

adjustments to the base medium and soft agar. Media used for each strain is listed in 

Table 2-2.  

 

Partial purification of virions and preparation of virion DNA. Virions from 1-liter 

cleared lysates were enriched and concentrated to 1.5 ml by 2 successive precipitations 

with 10 percent polyethylene glycol (73) and differential centrifugation (17,000 × g for 

10 min.; 288,000 × g for 2 h), as detailed in supplemental methods. Since some non-
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virion lysate components co-purify with virions during this procedure, we consider these 

virions to be only partially purified. Virion DNA was prepared from partially purified 

virions by 2 phenol extractions, chloroform extraction, and ethanol precipitation, as 

detailed in supplemental methods. 

 

Transmission electron microscopy. Virion morphology was observed by applying a 

small volume of concentrated partially purified virions onto a carbon-coated Formvar 

grid, negatively stained with 2% uranyl acetate. Specimens were observed on a JEOL 

JEM-1400 transmission electron microscope at 120 kV. Capsid diameters of ten virions 

from each phage strain were measured using ImageJ (74). 

 

Growth curves. Growth curves were performed in LB medium by infecting C58 cells at 

an optical density (OD600) of 0.05 with bacteriophage at an MOI of 0.001 in liquid 

culture. The turbidity of these cultures, represented by their OD600, was recorded every 5 

min during a 24 h interval while the cells grew at 28°C. Cultures were shaken for 1 min 

prior to each reading. The OD600 was measured using a BioTek Synergy H1 Hybrid 

Reader. For the growth curve with induction of PPH or PPH variants, cells were grown in 

LB medium without inducer for 16 h, then diluted to an OD600 of 0.05. Where indicated, 

1 mM IPTG was added to the cultures just prior to taking the initial reading. 

 

Time-lapse microscopy. A. tumefaciens strain C58 cells were grown to an OD600 of 0.2 

and infected with Atu_ph02 and Atu_ph03 at an MOI of 0.01. Infected cells were 

incubated at room temperature for 15 minutes to allow phage attachment before 1-μl 
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portions were added to a 1% agarose pad containing LB as described previously (57, 75). 

Cells were imaged using a 60× oil immersion objective (1.4 NA) by differential 

interference microscopy every 5–10 minutes for 24 hours using a Nikon Eclipse TiE 

equipped with a QImaging Rolera em-c2 1 K electron-multiplying charge-coupled-device 

(EMCCD) camera and Nikon Elements imaging software. Cells containing pSRKKm, 

pSRKKm-PPH, pSRKKm-PPHE32A, pSRKKm-PPHK328A,K334A,K335A, pSRKKm-

PPHE32A,K328A,K334A,K335A, and pSRKKm-PPH1-304 were grown to an OD600 of 0.2, then 

induced with 1 mM IPTG. Cells were placed in the 28qC shaker for 1 h prior to imaging.  

 

Potato tumor assay. To test for phage protection from A. tumefaciens-mediated plant 

transformation, potato tumor assays adapted from Morton and Fuqua (41) were used. 

Briefly, red-skinned, organically grown potatoes were rinsed, peeled, and sterilized prior 

to cutting discs. Sterilization consisted of soaking the potatoes in 1.05% sodium 

hypochlorite for 20 min and exposing each side to UV for 20 min using a Cole-Parmer 

SK-97505-30 lamp emitting at 254 nm with an irradiance of 900 PW/cm2 at the work 

surface. Potatoes were then cut into cylinders and sliced into discs with diameter 2 cm 

and thickness 0.5 cm. Discs were overlaid with 100 μl cells (OD600 = 0.2) resuspended in 

DPBS-gelatin. When indicated, cells were premixed with Atu_ph02 or Atu_ph03 at an 

MOI of 1.0. Potatoes were incubated at room temperature for 10–20 days in a humid 

chamber and tumor formation was observed.  

 

Cell viability assays. Serial dilutions of A. tumefaciens cells containing plasmids for 

expression of pph and pph variants were spotted on plates in the presence and absence of 
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IPTG to test cell viability during pph induction. Colonies were inoculated overnight in 

LB with kanamycin, and diluted to OD600 0.05. Cells were then serially diluted and 4 µl 

of each dilution was spotted onto LB plates containing Kan and either IPTG (for 

induction) or 1% glucose (for maximal repression). Plates were grown for 2 days at 28°C 

and imaged.  

 

Genome sequencing and assembly. Libraries for genome sequencing were constructed 

from virion DNA following the manufacturer’s protocol and reagents supplied in 

Illumina’s TruSeq DNA PCR-Free sample preparation kit (#FC-121-3001). Briefly, 1 

microgram of DNA was sheared using standard Covaris methods to generate average 

fragmented sizes of 350 bp. The resulting 3’ and 5’ overhangs were converted to blunt 

ends by an end repair reaction using 3’ to 5’ exonuclease and polymerase activities, 

followed by size selection (350 bp) and purification with magnetic sample purification 

beads. A single adenosine nucleotide was added to the 3’ ends of the blunt fragment 

followed by the ligation of Illumina indexed paired-end adapters. The adaptor-ligated 

library was purified twice with magnetic sample purification beads. The purified library 

was quantified using KAPA library quantification kit (KK4824) and library fragment size 

confirmed by Fragment Analyzer (Advanced Analytical Technologies, Inc.). Libraries 

were diluted, pooled and sequenced using a paired-end, 75 base read length according to 

Illumina’s standard sequencing protocol for the MiSeq. Library preparation and 

sequencing was conducted by the University of Missouri DNA Core Facility. 
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Genome annotation. Protein-coding regions were annotated by RAST server (76). 

Proteins of interest were analyzed by TMHMM (56) and SignalP 4.1 (77). Whole 

genome alignments were created using the Mauve (78) plugin in Geneious version 8.1. 

Phylogenetic trees were constructed using a ClustalW (79) protein alignment and creating 

a PhyML (80) tree, version 3.0, as a Geneious plugin using the Geneious Tree Builder 

with the following settings: Le Gascuel substitution model with 100 bootstrap models. 

Nucleotide alignments were used to determine percent identities between genomes, using 

the MUSCLE (81) alignment in Geneious.  

 

Nucleotide sequence accession numbers. Genome sequences of phages Atu_ph02 and 

Atu_ph03 have been deposited in the GenBank database with nucleotide accession 

numbers MF403005 and MF403006, respectively.  

 

Construction of plasmids for characterization of PPH. See Table 2-3 for a list of all 

primers used in plasmid construction and sequencing. All variants of pph were cloned 

into vector pSRKKm-Plac-sfgfp, which allows for inducible expression of target genes 

under the control of the lac promoter using IPTG as the inducer (63). To construct 

pSRKKm-PPH, PCR using Phusion High-Fidelity DNA Polymerase (Thermo Scientific) 

was performed on the Atu_ph02 genomic DNA using primers PPH NdeI F and PPH 

BamHI R. PCR products were gel purified using the GeneJET Gel Extraction Kit 

(Thermo Scientific). Amplified gene products and the pSRKKm-Plac-sfgfp plasmid (63) 

were digested with NdeI and BamHI overnight at 37°C and subsequently gel purified. 

Digested vector and insert were ligated using T4 DNA ligase (Invitrogen). The ligation 
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reaction was incubated at 4°C overnight. The ligation was transformed into DH5α 

chemically competent E. coli cells (Invitrogen) and selected for on LB agar plates 

containing kanamycin. Plasmid DNA was extracted using the GeneJET Plasmid 

Miniprep kit (Thermo Scientific) prior to electroporating competent A. tumefaciens cells 

as described previously (82). The pSRKKm-PPH vector was sequenced using the pSRK 

Forward Sequencing primer at the MU DNA Core Facility. To perform site-directed 

mutagenesis on PPH, the Q5 Site-Directed Mutagenesis Kit was used according to the 

protocol (New England Biolabs). To construct PPHE32A, primers “PPH E32A F” and 

“PPH E32A R” were used. For PPHK328A K334A K335A, “PPH K328A F” and “PPH K328A 

R” were used first, followed by “PPH K334A F” and “PPH K334A R,” and lastly “PPH 

K335A F” and “PPH K335A R.” To construct PPH1-304, “PPH NdeI F” and “PPH1-304 

BamHI R” primers were used. Generated constructs were sequenced at the MU DNA 

Core Facility using the “pSRKKm Forward Sequencing,” “PPH NdeI F,” and “PPH 

linker For NdeI” primers.  

 

SDS-PAGE and Zymography. Whole cell lysates were prepared using 100 ml cultures 

of exponential-phase cells (OD 0.3-0.6) grown with inducer for 3 h for WT cells, WT 

cells expressing PPH, or WT cells expressing PPHE32A. Cells were centrifuged at 4,300 × 

g for 15 min at 4qC and the cell pellets stored at -20qC overnight. The next day, pellets 

were resuspended in 8 ml B-PER Bacterial Protein Extraction Reagent (Thermo 

Scientific) with the addition of 1/6 of a crushed protease inhibitor tablet (Thermo 

Scientific). Cells were lysed by sonication (4 pulses comprised of a 10 s burst, followed 

by 20 s burst). Cell debris was pelleted at 17,000 x g for 15 min at 4qC. Soluble proteins 
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in the supernatants were quantified using the Pierce BCA Protein Assay Kit (Thermo 

Scientific). 30 Pg total protein from each whole cell lysate sample was boiled for 5 min 

and loaded onto two gels (one with embedded peptidoglycan), which ran at 30 V for 30 

min, followed by 100 V for 90 min. For zymography, SDS-PAGE gels were embedded 

with peptidoglycan. 1 L culture of A. tumefaciens strain C58 was autoclaved and 

peptidoglycan was harvested by centrifugation at 7,000 x g for 20 min at 4qC. Pellets 

containing peptidoglycan were resuspended in 10 ml D-PBS, 1X with calcium and 

magnesium (Corning Cellgro). 500 Pl peptidoglycan was added to a 12% SDS 

polyacrylamide gel. After running the gel, the running gel was incubated in 25 mM Tris 

(pH 8), 1% Triton X-100 at 28qC overnight to renature the proteins and enable 

peptidoglycan hydrolysis. The gel was stained in 1:50 0.1% methylene blue in 0.01% 

KOH for 3 h and destained in 0.01% KOH. For SDS-PAGE, the running gel was 

incubated in Coomassie Blue dye (0.25% w/v Brilliant Blue R-250 (FisherBiotech), 10% 

acetic acid, 5% methanol) for 30 s, then destained (7.5% acetic acid, 50% methanol) 

overnight with shaking.  
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TABLES  
 
Table 2-1. Summary of key genomic features 
  

Bacteriophage Genome 
length (bp) 

GC 
content 
(%) 

Number of 
ORFs 

Coding 
density 
(%) 

Number of 
hypothetical 
proteins 

Number of 
ORFansa 

Atu_ph02 45,423 54.8 55 92.9 32 23 
Atu_ph03 45,175 54.7 58 93.8 36 26 

a ORFans are predicted proteins that do not have significant hits in the nr database. 
Hypothetical proteins share homology with proteins in the nr database (42) 
 
 
Table 2-2. Bacterial strains and plasmids used in this study. 

Strain or plasmid Sequence or relevant characteristics Growth 
Medium 

Reference/Sou
rce 

Plasmids    
PSRKKm-Plac-sfgfp Kmr; broad host range vector containing 

lacIq and lac promoter 
 (63) 

pSRKKm-Plac-PPH 
Phage Peptidoglycan Hydrolase (PPH) 
inserted into pSRKKm-Plac-sfgfp  This study 

pSRKKm-Plac-PPHE32A PPH predicted catalytic residue mutated  This study 
pSRKKm-Plac-
PPHK328A,K334A,K335A PPH regulatory residues mutated  This study 
pSRKKm-Plac-
PPHE32A,K328A,K334A,K335A 

PPH catalytic and regulatory residues 
mutated  This study 

pSRKKm-Plac-PPH1-304 PPH truncation to remove TM domain  This study 
E. coli strains    
DH5α Cloning strain; Gammaproteobacterium LB Life 

Technologies 
S17-1 Smr; RP4-2, Tc::Mu,Km-Tn7, for plasmid 

mobilization 
LB (83) 

A. tumefaciens strains    
C58 Nopaline type strain; pTiC58; pAtC58 LB (32) 
C58 pSRKKm-Plac-sfgfp C58 transformed with empty pSRKKm 

plasmid 
LB (63) 

C58 pSRKKm-Plac-PPH C58 transformed with pSRKKM-Plac-PPH LB This study 
C58 pSRKKm-Plac-
PPHE32A 

C58 transformed with pSRKKm-Plac-
PPHE32A LB This study 

C58 pSRKKm-Plac-
PPHK328A,K334A,K335A 

C58 transformed with pSRKKm-Plac-
PPHK328A,K334A,K335A LB This study 

C58 pSRKKm-Plac-
PPHE32A,K328A,K334A,K335A 

C58 transformed with pSRKKm-Plac- 
PPHE32A,K328A,K334A,K335A LB This study 

C58 pSRKKm-Plac-PPH1-

304 
C58 transformed with pSRKKm-Plac-PPH1-

304 LB This study 
EHA105 C58 derived; succinamopine strain; T-DNA 

deletion derivative of pTiBo542 
LB MU Plant 

Transformation 
Core Facility 

EHA101 C58 derived; nopaline strain; T-DNA 
deletion derivative of pTiBo542 

LB MU Plant 
Transformation 
Core Facility 
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GV3101 C58 derived; nopaline strain LB MU Plant 
Transformation 
Core Facility 

NTL4 C58 derived; nopaline-agrocinopine strain; 
ΔtetRA 

LB (84) 

AGL-1 C58 derived; succinamopine strain; T-DNA 
deletion derivative of pTiBo542 

LB MU Plant 
Transformation 
Core Facility 

LBA4404 Ach5 derived; octopine strain; T-DNA 
deletion derivative of pTiAch5 

YM MU Plant 
Transformation 
Core Facility 

Chry5 Succinamopine strain; pTiChry5 LB (85) 
Other bacterial strains    
Agrobacterium vitis S4 Vitopine strain; pTiS4; pSymA; pSymB Potato 

dextrose 
(86) 

Sinorhizobium meliloti 
RM41 

Rhizopine strain; pSymA; pSymB; 
pRme41a 

LB (87) 

Caulobacter crescentus 
CB15 

Alphaproteobacterium PYE (88) 

 
 
Table 2-3. Synthesized DNA primers used in this study. 

Synthesized DNA Primers Sequence 

PPH NdeI F 5’ -GTA CCA TAT GTG CAA CCA AAG -3’ 

PPH BamHI R 5’ -TCA GGA TCC TTA TTT CTT CCA -3’ 

PPH1-304 BamHI R 5’ -TCA GGA TCC TTG AGG AAC -3’ 

PPH K328A F 5’ -GCG GCA TAC ATC CAC -3’ 

PPH K328A R 5’ -GTA CCC TGC GTA GGC -3’ 

PPH K334A F 5’ -GCG AAA TAA GGA TCC -3’ 

PPH K334A R 5’ -CCA GTG GAT GTA TGC -3’ 

PPH K335A F LacGFP 5’ -GCA TAA GGA TCC GCT -3’ 

PPH K335A R 5’ -CGC CCA GTG GAT GTA -3’ 

PPH E32A F 5’ -GCG AGT GCA GGC AAA -3’ 

PPH E32A R 5’ -CTT GTC CAC GAT GGC -3’ 

pSRK Forward Sequencing 5’ -AAT GTG AGT TAG CTC ACT CAT TAG GCA -3’ 

PPH 31 For NdeI 5’ -ATA CAT ATG GGG GCT GGT GCC -3’ 

PPH linker For NdeI 5’ -ATA CAT ATG AGC AAG GCT GGT AAT -3’ 
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CHAPTER 2: SUPPLEMENTAL MATERIAL 

 

SUPPLEMENTAL METHODS 

Clonal isolation of bacteriophage strains. Water samples were filtered by passing 

through a 0.45 μm membrane (Millipore Ultrafree – CL, Low-binding Durapore PVDP 

membrane) and 890 Pl of filtrate was mixed with 100 Pl 10X LB and 10 Pl A. 

tumefaciens C58 at a starting OD600 of ~0.2. Cultures were incubated at 28°C in LB broth 

for 16 h while shaking. Cultures that appeared clear were screened for plaque formation. 

If the culture was turbid, supernatants were collected by centrifugation at 3,000 x g for 10 

min and 100 Pl filtrate were mixed with 100 Pl bacteria (OD600 ~0.2) for another round of 

amplification. If cultures remained turbid after 5 rounds of amplification, the filtrate was 

considered to be negative for lytic activity. Filtrates that caused clearing of the bacterial 

culture within 5 rounds of amplification were examined for evidence of phage activity. 

Filtrates were screened for phage activity using a spot assay for detection of plaques. 

Whole plate plaque assays were performed using filtrates which produced plaques in the 

spot assay. Individual plaques were suspended in Dulbecco's phosphate-buffered saline 

(DPBS, Mediatech, Inc., Manassas, VA, USA) with gelatin added (1:20). Three rounds of 

purification comprised of selecting individual plaques after whole plate plaque assays 

were completed for each bacteriophage to ensure homogenous bacteriophage populations. 

 

Concentration and partial purification of virions. Concentrated phage stocks were 

produced by polyethylene glycol (PEG) precipitation. For PEG precipitation, filtered 

lysates were scaled up to 1 L and centrifuged at 11,000 x g for 20 min at 4qC to remove 
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bacterial cells. To the supernatants, 400 Pl 10 mg/ml RNase A (Sigma) and 1 ml 3.45 

mg/ml DNase I (Sigma) were added for removal of bacterial genomic DNA and RNAs. 

After 1 h of stirring at room temperature, NaCl (final concentration of 500 mM) and 10% 

w/w PEG 8000 (Fisher) were added and the solution was stirred for 2 h until dissolved. 

Bacteriophages were precipitated for 16 h at 4°C. Precipitated bacteriophages were 

collected by centrifugation at 11,000 x g for 30 min at 4°C and resuspended in 30 ml 

DPBS. The bacteriophage solution was incubated with shaking overnight at 4°C. 

Insoluble material was removed and the supernatant was recovered. NaCl (final 

concentration 0.5M) and PEG 8000 (10% w/w) were added to the supernatant and the 

solution rotated for 2 h at 4°C. Bacteriophages were precipitated, collected by 

centrifuging for 20 min at 17,000 x g at 4°C, and resuspended 8 ml DPBS.  The 

bacteriophage solution was rotated overnight at 4°C. This viscous solution was 

centrifuged at 17,000 x g for 2 min at 4°C and the supernatant was collected. The 

bacteriophage solution was mixed with 300 μl 10 mM phenol red and 22 ml DPBS and 

centrifuged at 17,000 x g for 30 min and the supernatant was collected. The supernatant 

was overlayed with a 2 ml sucrose (5% w/w) cushion and ultracentrifuged at 141,000 x g 

for 2 h at 4°C. The supernatant was removed and the pellet was washed in DPBS and 

dissolved in 1 ml DPBS. All phage stocks were stored at 4°C. 

 

Preparation of virion DNA. Two 500-µl portions of partially purified virions in 1.5-ml 

microtubes were extracted twice with 500 µl neutralized phenol (water-saturated phenol 

shaken twice with 1/10 vol 1 M Tris.HCl pH 8, discarding the upper phase each time) and 

once with 500 µl chloroform (a 24:1 mixture of chloroform and isoamyl alcohol), each 
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time discarding the organic (lower) phases.  To the final aqueous phases were added 40 

µl 3 M sodium acetate, pH adjusted to 6 with acetic acid, and 1 ml ethanol; precipitates 

were pelleted by a 10-min centrifugation in a microfuge; supernatants were aspirated; 

pellets were gently washed by adding 1 ml freezer-cold 70% v/v ethanol and aspirating 

the liquid; pellets were air-dried, dissolved in 100 µl TE (10 mM Tris.HCl pH 7.5, 1 mM 

Na2EDTA), and centrifuged 10 min in a microfuge to clear insoluble material; 

supernatants were pooled and stored at -20°C. 

 

DNA restriction analysis. Phage genomic DNA was digested with restriction 

endonucleases from New England Biolabs using the standard protocol. All reactions 

contained 2.5 μg DNA and were incubated at 37°C for 2 h. Restriction patterns were 

analyzed on a 0.7% agarose gel, which ran at 100 V for 1 h and was stained with SYBR 

Safe DNA Gel Stain (Thermo Scientific).  
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SUPPLEMENTAL TABLES 

Table 2-S1. Comparison of gene products encoded in Atu_ph02 and Atu_ph03 

 
aLength of each gene product is given in amino acids (AA) 
bPercent identites were determined by blastx analysis using each predicted ORF in 
Atu_ph03 as query against the protein database for Atu_ph02 
 
 
 
 
 
 
 
 

Atu_ph03 Atu_ph02  
gene 

product 
length 
in AAa 

gene 
product 

length 
in AAa 

percent 
identityb 

gp1  41 gp1 41 72.5 
gp2 173 gp2 173 100 
gp3 336 gp3 336 100 
gp4 415 gp4 409 99.26 
gp5 134 gp5 134 100 
gp6 449 gp6 449 100 
gp7 68 gp7 68 83.58 
gp8 39 gp8 163 77.78 
gp9 123 gp8 163 92.62 
gp10 486 gp9 486 99.79 
gp11 224 gp10 210 69.78 
gp12 55    
gp13 331 gp11 337 93.75 
gp14 180 gp12 181 88.27 
gp15 786 gp13 787 98.09 
gp16 291 gp14 291 100 
gp17 77 gp15 77 100 
gp18 38 gp16 38 100 
gp19 317 gp17 317 98.73 
gp20 61 gp18 61 100 
gp21 77 gp19 77 96.05 
gp22 128 gp20 128 100 
gp23 816 gp21 816 99.88 
gp24 57 gp22 57 100 
gp25 66 gp23 66 100 
gp26 155 gp24 155 100 
gp27 88    
gp28 68 gp25 68 100 
gp29 533 gp26 533 99.62 
gp30 296 gp27 296 99.66 

Atu_ph03 Atu_ph02  

gene 
product 

length 
in AAa 

gene 
product 

length 
in 

AAa 

percent 
identityb 

gp31 327 gp28 327 100 
gp32 212 gp29 212 99.53 
gp33 823 gp30 823 99.64 
gp34 169 gp31 169 99.4 
gp35 1192 gp32 1192 99.83 
gp36 1255 gp33 1255 99.68 
gp37 507 gp34 507 98.62 
gp38 181 gp35 181 98.33 
gp39 59 gp36 59 100 
gp40 107 gp37 107 100 
gp41 612 gp38 623 100 
gp42 122 gp39 122 100 
gp43 91 gp40 91 100 
gp44 149 gp41 149 99.32 
gp45 64 gp42 64 100 
gp46 289 gp43 289 98.96 
gp47 47 gp44 47 94.59 
gp48 222 gp45 222 98.19 
gp49 124 gp46 124 100 
gp50 61 gp47 60 93.22 

  gp48 104  
gp51 65 gp49 65 85.94 
gp52 88 gp50 88 49.33 
gp53 50    
gp54 89 gp51 105 59.00 
gp55 107 gp52 107 93.40 
gp56 78 gp53 78 98.70 
gp57 91 gp54 95 100 
gp58 40 gp55 40 100 
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Table 2-S2. Similarity of putative Atu_ph03 proteins to proteins in select bacteriophages 

 Similarity of putative proteins in select bacteriophages 
E-value (percent identity)a 

 

Atu_ph03 Rhe_phe2 Rhe_phe8 MedPE-
SWcel-

C56 

T7 phiKMV T5 Putative Functionb 

  gene 
product 

length 
in AA 

 

gp1 41 - - - - - - ORFan 
gp2 173 gp014 

8e-10 
(35%) 

gp013 
2e-09 

(34%) 

- - - - Hypothetical protein 

gp3 336 - - - - - - Hypothetical 
peptidoglycan binding 

protein (PPH) 
gp4 415 - - - - - - DNA primase 
gp5 134 gp020 

8e-24 
(42%) 

gp020 
9e-24 

(42%) 

gp17 
5e-08 

(28%) 

- - - DNA primase 

gp6 449 gp021 
2e-141 
(49%) 

gp021 
2e-141 
(49%) 

gp19 
1e-124 
(43%) 

- gp15 
7e-59 

(33%) 

- DNA helicase 

gp7 68 - - - - - - ORFan 
gp8 39 - - - - - - ORFan 
gp9 123 - - - - - - ORFan 
gp10 486 gp022 

3e-159 
(49%) 

gp022 
3e-159 
(48%) 

gp20 
6e-119 

(43%) 

- - gp004 
7e-103 
(38%) 

A1 protein 

gp11 224 - - - - - - Hypothetical protein 
gp12 55 - - - - - - ORFan 
gp13 331 gp026 

2e46 

(35%) 

gp026 
2e-46 

(34%) 

gp23 
3e-21 

(28%) 

- - - ATP-dependent DNA 
ligase 

gp14 180 - - - - - - ORFan 
gp15 786 gp028 

0.0 
(52%) 

gp028 
0.0 

(52%) 

gp26 
0.0 

(49%) 

- gp 19 
5e-114 

(32%) 

- DNA-directed DNA 
polymerase 

gp16 291 gp029 
9e-91 

(52%) 

gp029 
8e-92 

(53%) 

gp28 
3e-39 

(35%) 

- gp21 
3e-27 

(33%) 

- Hypothetical protein 

gp17 77 - - - - - - ORFan 
gp18 38 - - - - - - ORFan 
gp19 317 gp031 

2e-125 

(56%) 

gp031 
2e-125 

(56%) 

gp29 
3e-76 

(41%) 

- gp22 
6e-28 

(32%) 

- 5’-3’ exonuclease 

gp20 61 - - - - - - ORFan 
gp21 77 - - - - - - ORFan 
gp22 128 gp034 

2e-20 

(42%) 

gp034 
1e-26 

(42%) 

gp32 
1e-25 

(37%) 

- gp23 
2e-16 

(38%) 

- Recombination 
endonuclease VII 

gp23 816 gp036 
0.0 

(49%) 

gp037 
0.0 

(48%) 

gp33 
0.0 

(42%) 

gp1 
3e-123 

(49%) 

gp26 
1e-96 

(29%) 

- T7-like RNA 
polymerase 

gp24 57 gp037 
4e-15 

gp038 
3e-13 

- - - - Hypothetical protein 
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(60%) (60%) 
gp25 66 - - - - - - Hypothetical protein 
gp26 155 - - - - - - N-acetyltransferase 
gp27 88 - - - - - - ORFan 
gp28 68 - - - - - - ORFan 
gp29 533 gp043 

1e-173 

(50%) 

gp042 
9e-176 

(48%) 

gp37 
9e-104 
(36%) 

gp8 
8e-55 

(29%) 

gp30 
3e-37 

(29%) 

- Tail-head connector 
protein 

gp30 296 gp043 
1e-41 

(38%) 

gp044 
1e-40 

(38%) 

gp38 
8e-19 

(31%) 

- gp31 
0.001 
(30%) 

- Capsid assembly 
protein 

gp31 327 gp044 
7e-154 

(66%) 

gp045 
2e-153 

(66%) 

gp39 
8e-123 
(53%) 

- gp32 
3e-33 

(27%) 

- Major capsid protein 

gp32 212 gp045 
5e-60 

(43%) 

gp046 
5e-60 

(43%) 

- - - - Tail tubular protein A 

gp33 823 gp046 
0.0 

(44%) 

gp047 
0.0 

(44%) 

gp41 
9e-92 

(29%) 

gp12 
5e-62 

(27%) 

gp34 
1e-46 

(28%) 

- Tail tubular protein B 

gp34 169 gp047 
4e-18 

(40%) 

gp048 
4e-18 

(40%) 

- - - - Internal virion protein 

gp35 1192 gp048 
1e-68 

(43%) 

gp049 
1e-68 

(43%) 

- - - - Cell wall hydrolase; 
M15 peptidase 

gp36 1255 gp049 
0.0 

(33%) 

gp050 
0.0 

(33%) 

gp44 
5e-78 

(27%) 

- gp37 
1e-19 

(24%) 

- Internal virion protein 

gp37 507 gp050 
3e-29 

(46%) 

gp051 
2e-28 

(46%) 

gp45 
1e-19 

(41%) 

- - - Tail fiber protein 

gp38 181 - - - - - - Hypothetical protein 
gp39 59 gp052 

3e-13 

(41%) 

gp053 
3e-12 

(36%) 

- - - - Hypothetical protein 

gp40 107 gp053 
2e-20 

(41%) 

- gp47 
1e-09 

(33%) 

- gp42 
5e-05 

(33%) 

- Terminase, small 
subunit 

gp41 612 gp054 
0.0 

(65%) 

gp055 
0.0 

(64%) 

gp48 
0/0 

(58%) 

gp19 
4e-87 

(35%) 

gp43 
1e-132 
(40%) 

- Terminase, large 
subunit 

gp42 122 gp055 
1e-14 

(37%) 

gp056 
1e-14 

(37%) 

- - - - Hypothetical protein 

gp43 91 - - - - - - ORFan 
gp44 149 - - - - - - ORFan 
gp45 64 - - - - - - ORFan 
gp46 289 - - - - - - Hypothetical protein 
gp47 47 - - - - - - ORFan 
gp48 222 gp006 

1e-25 
(34%) 

gp004 
6e-26 

(35%) 

- - - - Hypothetical protein 

gp49 124 - - - - - - ORFan 
gp50 61 - - - - - - ORFan 
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gp51 65 - - - - - - ORFan 
gp52 88 - - - - - - ORFan 
gp53 50 - - - - - - ORFan 
gp54 89 - - - - - - ORFan 
gp55 107 - - - - - - ORFan 
gp56 78 - - - - - - ORFan 
gp57 91 - - - - - - ORFan 
gp58 40 - - - - - - ORFan 
aE-values and percent identity were determined by blastp analysis using each predicted 
ORF in Atu_ph03 as query against the protein databases for Rhizobium phage RHEph02 
(taxid:1220602), Rhizobium phage RHEph08 (taxid:1220715), Phage MedPE-SWcel-
C56 (taxid: 1871314), Bacteriophage T7 (taxid: 10760), Bacteriophage phiKMV (taxid: 
204270) and Bacteriophage T5 (taxid: 10726). – indicates that a significant hit was not 
detected in the pairwise comparison. 
b ORFans are predicted proteins that do not have significant hits in the nr database (1). 
Hypothetical proteins share homology with proteins in the nr database. 
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SUPPLEMENTAL FIGURES 

 

 

Supplemental Figure 2-S1. Initial characterization of phage genomic DNA shows 

Atu_ph02 and Atu_ph03 are distinct. (A) Agarose gel containing undigested genomic 

DNA extracted from A. tumefaciens strain C58, phage Atu_ph02 (02), and phage 

Atu_ph03 (03). (B) Restriction fragment pattern analysis of Atu_ph02 (02) and Atu_ph03 

(03) genomic DNA digested with EcoRI, NheI, and HindIII. 
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Supplemental Figure 2-S2. Phage Atu_ph03 and Atu_ph02 are very similar. (A) Dot 

plot analysis comparing the nucleotide sequences of phages Atu_ph03 and Atu_ph02 

genomes. Insets highlight areas of difference. (B) Blast analysis of the protein sequences 

encoded in Atu_ph02 and Atu_ph03. The CDS of Atu_ph03 (blue arrows) and the Blast 

comparison with Atu_ph02 (maroon) are shown. 
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Supplemental Figure 2-S3. Clustal alignment of DUF3380 domains from various phage 

proteins with similarity to the DUF3380 from Salmonella phage 10 endolysin and 

bacterial PG-binding proteins with similarity to the DUF3380 found in PPH. Conserved 

ES residues are present in all sequences and shown in a red box. Consensus identity for 

the sequence is mapped along the top of the alignment. Green = 100% identical, gold = 

30-100%, red = <30%, no color = 0%. (1) Dickeya virus Limestone putative endolysin 

YP_007237392.1 (aa 90-260), (2) Shigella phage Ag3 hypothetical protein 

YP_003358573.1 (aa 90-261), (3) Klebsiella phage 0507-KN2-1 phage-encoded PG 

binding protein YP_008531963.1 (aa 90-261), (4) Salmonella phage 10 endolysin gp110 

ANK36008.1 (aa 90-261), (5) Salmonella phage Vil phage encoded PG-binding protein 

YP_004327457.1 (aa 90-261), (6) Serratia phage phiMAM1 PG-binding protein 

YP_007349105.1 (aa 90-261), (7) Erwinia phage phiEa2809 putative PG binding protein 

YP_009147574.1 (90-261), (8) Brucella abortus hypothetical protein WP_006091019.1 

(20-190), (9) Ochrobacterium anthropis PG-binding protein WP_061347616.1 (aa 20-

190), (10) Agrobacterium phage Atu_ph03 PPH  (aa 26-196). 

  

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10



 84 

 

Supplemental Figure 2-S4. Growth of A. tumefaciens with plasmids to express variants 

of pph under uninduced conditions. (A) Growth curve of A. tumefaciens growth when 

expressing plasmid pSRKKm with variants of pph under uninduced conditions. (B) Cell 

viability of A. tumefaciens containing plasmids to express variants of pph grown under 

uninduced conditions. 
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Supplemental Figure 2-S5. Clearing of peptidoglycan is observed when PPH is 

expressed in A. tumefaciens. Zymogram (left) and SDS polyacrylamide gel (right) loaded 

with 30 Pg whole cell lysates of A. tumefaciens lacking PPH, expressing PPH, and 

expressing PPHE32A. 
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Larger than life: Isolation and genomic characterization of a jumbo phage that infects the 

bacterial plant pathogen, Agrobacterium tumefaciens 
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ABSTRACT 

Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease, leading to 

the damage of agriculturally-important crops. As part of an effort to discover new phages 

that can potentially be used as biocontrol agents to prevent crown gall disease, we 

isolated and characterized phage Atu_ph07 from Sawyer Creek in Springfield, MO, using 

the virulent Agrobacterium tumefaciens strain C58 as a host. After surveying its host 

range, we found that Atu_ph07 exclusively infects Agrobacterium tumefaciens. Time-

lapse microscopy of A. tumefaciens cells subjected to infection at a multiplicity of 

infection (MOI) of 10 with Atu_ph07 reveals that lysis occurs within 3 h. Transmission 

electron microscopy (TEM) of virions shows that Atu_ph07 has a typical Myoviridae 

morphology with an icosahedral head, long tail, and tail fibers. The sequenced genome of 

Atu_ph07 is 490 kbp, defining it as a jumbo phage. The Atu_ph07 genome contains 714 

open reading frames (ORFs), including 390 ORFs with no discernable homologs in other 

lineages (ORFans), 214 predicted conserved hypothetical proteins with no assigned 

function, and 110 predicted proteins with a functional annotation based on similarity to 

conserved proteins. The proteins with predicted functional annotations share sequence 

similarity with proteins from bacteriophages and bacteria. The functionally annotated 

genes are predicted to encode DNA replication proteins, structural proteins, lysis 

proteins, proteins involved in nucleotide metabolism, and tRNAs. Characterization of the 

gene products reveals that Atu_ph07 encodes homologs of sixteen T4 core proteins and is 

closely related to Rak2-like phages. Using ESI-MS/MS, the majority of predicted 

structural proteins could be experimentally confirmed and 112 additional virion-

associated proteins were identified. The genomic characterization of Atu_ph07 suggests 
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that this phage is lytic and the dynamics of Atu_ph07 interaction with its host indicate 

that this phage may be suitable for use as a biocontrol agent.  

 

Keywords: Agrobacterium, jumbo bacteriophage, mass spectrometry, genomics, 

biocontrol, Atu_ph07 

 

Introduction 

Bacteriophages, or phages, are the most abundant biological entities on the planet (Clokie 

et al., 2011). Phages are viruses that specifically infect bacteria, often causing lysis. 

Phage-mediated host cell lysis of bacteria impacts environments both directly through 

release of dissolved organic carbon and micronutrients and indirectly by modulation of 

the microbial communities (Srinivasiah et al., 2008). Phages also contribute to horizontal 

gene transfer and host cell evolution. Although bacteria-phage coevolution significantly 

drives gene diversity and microbial evolution (Koskella and Brockhurst, 2014), there is a 

huge number of viral genes that encode proteins of unknown function (Hatfull, 2015). 

Thus, research on phage biology, phage-host interactions, and phage-derived enzymes 

has recently reemerged, particularly in the context of medical and biotechnology 

applications (Santos et al., 2018).  

 

In one such application, phage cocktails can be used as a form of biocontrol against plant 

pathogens, as seen in successful experiments with Xanthomonas species, Ralstonia 

solanacearum, Pseudomonas syringae, and Dickeya solani (Adriaenssens et al., 2012; 

Buttimer et al., 2017b; Rombouts et al., 2016). Agrobacterium tumefaciens is a Gram-
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negative bacterium that causes crown gall disease in flowering plants (Dandekar, 2003) 

and phage cocktails may be a viable option to improve biocontrol of this phytopathogen; 

however, there are only three well-characterized Agrobacterium phages: Atu_ph02, 

Atu_ph03, and 7-7-1 (Attai et al., 2017; Kropinski et al., 2012). When searching for 

additional lytic phages with potential to serve as biocontrol agents against A. tumefaciens, 

we isolated a unique jumbo phage, Atu_ph07, with a dsDNA genome size of 490,380 bp.  

 

Jumbo phages have genomes exceeding 200 kbp (Hendrix, 2009) and are less frequently 

isolated since they are often eliminated during common size-exclusion isolation methods 

due to their large size (Yuan and Gao, 2017). Most jumbo phages are members of the 

Myoviridae family and contain visible tails. The largest known phage genome belongs to 

Bacillus phage G at 497 kbp (Donelli et al., 1975), followed by Salicola phage SCTP-2 at 

440 kbp, Xanthomonas phage XacN1 at 384 kbp (Yoshikawa et al., 2018), 

Pectobacterium phage CBB at 378 kbp (Buttimer et al., 2017a), Cronobacter phage 

vB_CsaM_GAP32 at 358 kbp (Abbasifar et al., 2014), and Serratia phage BF at 357 kbp 

(Casey et al., 2017). Recently, some of these T4-like jumbo phages (CBB, 

vB_CsaM_GAP32, BF, vB_KleM-Rak2, K64-1, 121Q, vB_Eco_slurp01, PBECO4) were 

classified into a new phylogenetic clade called ‘Rak2-like viruses’ (Buttimer et al., 

2017a; Yoshikawa et al., 2018), named after Enterobacteria phage Rak2 (Simoliunas et 

al., 2013).  

 

In this work, we use phenotypic, genomic, and proteomic approaches to characterize 

phage Atu_ph07 (formal name according to Kropinski et al., 2009: 
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vB_AtuM_Atu_ph07). Based upon comparative genome analysis and phylogenetic 

analysis, Atu_ph07 clusters just outside the Rak2-like phages. Though most Atu_ph07 

ORFs encode as-yet uncharacterized hypothetical proteins, this work identifies functions 

for some key proteins, including experimentally validated structural proteins, and 

compares those proteins to homologs in related phages.  

 

Materials and Methods 

Bacterial strains and culture conditions. Strains used in this study are shown in Table 

3-1. Agrobacterium tumefaciens strains were cultured in Lysogeny Broth (LB), with the 

exception of A. tumefaciens strain LBA4404, which was grown in yeast mannitol (YM) 

medium. Agrobacterium vitis was cultured using potato dextrose media (Difco), 

Rhizobium rhizogenes was grown in mannitol glutamate yeast (MGY) medium and 

Caulobacter crescentus was grown in peptone-yeast extract (PYE) medium (Poindexter, 

1964). Sinorhizobium meliloti was grown in LB (Weidner et al., 2013). These strains 

were grown at 28qC. Escherichia coli was grown in LB at 37qC. Liquid cultures were 

grown with shaking and solid medium was prepared with 1.5% agar. 

 

Clonal isolation of bacteriophage Atu_ph07. Atu_ph07 was isolated from Sawyer 

Creek in Springfield, MO using Agrobacterium tumefaciens strain C58 as the host. 

Atu_ph07 was isolated using an enrichment protocol (Santamaría et al., 2014) adapted as 

described previously (Attai et al., 2017).  
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Partial purification of virions. Virions were concentrated and partially purified from 2 

L lysate by polyethylene glycol (PEG) precipitation (Yamamoto et al., 1970) and 

differential centrifugation. All centrifugations and incubations were performed at 4qC. 

The starting lysate was distributed evenly into six 500-ml centrifuge bottles and 

centrifuged at 5,000 rpm for 20 min to pellet bacterial cells. The supernatants were 

poured into fresh bottles, which were centrifuged as before to pellet residual bacterial 

cells. The doubly-cleared supernatants were treated with DNase I (Sigma D5025) at a 

final concentration of 3.5 Pg/ml with stirring for 1 h at room temperature to digest 

bacterial DNA. Solid NaCl was added to a final concentration of 0.5 M with stirring; 

when the salt was fully dissolved, solid PEG 8000 (Fisher BP233-1) was added gradually 

to a final concentration of 10% w/w with constant stirring; stirring was continued for 

another 2 h. The suspension was distributed evenly into six 500-ml centrifuge bottles, 

which were refrigerated overnight before being centrifuged at 8,000 rpm for 10 min to 

pellet the virions; supernatants were decanted and discarded; the bottles were centrifuged 

again and residual supernatants were removed by aspiration. To each bottle, 20 ml 1 X 

Dulbecco’s phosphate-buffered saline with magnesium and calcium (DPBS; Fisher) was 

added and the pellets dissolved by gentle shaking at 4qC overnight.  

 

The six dissolved pellets were distributed evenly into four 50-ml disposable plastic 

conical centrifuge tubes, which were centrifuged for 10 min at 5,000 rpm to pellet 

insoluble material. The cleared supernatants were pooled and 1/9 vol of 5 M NaCl was 

added. Solid PEG 8000 was added gradually with stirring to a final concentration of 10% 

w/w, and stirring was continued for another 1 h at room temperature. The suspension was 
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distributed evenly into 4 50-ml centrifuge tubes, which were centrifuged 20 min at 

10,000 rpm to pellet virions. The supernatants were decanted and discarded, and the tubes 

were centrifuged again briefly. Residual supernatants were aspirated and discarded. To 

each tube, 15 ml DPBS was added, and the tubes were rotated overnight at 4qC to 

dissolve the pellets. The tubes were centrifuged for 10 min at 5,000 rpm to pellet 

insoluble material. The supernatants combined and 0.6 ml of sterile 10-mM phenol red 

(pH ~7) was added to color the solution cherry-red. This solution was layered onto 2-ml 

cushions of 5% w/w sucrose in DPBS in 6 14×89 mm Ultraclear centrifuge tubes 

(Beckman 331372) and centrifuged at 40,000 rpm for 20 min in a Beckman SW41Ti 

rotor. The clear supernatants were aspirated gently. 1 ml DPBS was added to each tube 

and the pellets were dissolved by periodic vortexing and standing overnight at 4qC. The 

dissolved pellets were transferred to 6 1.5-ml microtubes, which were vortexed to 

complete dissolution and centrifuged at 6,000 rpm for 5 min to pellet insoluble material. 

The supernatants were transferred to fresh 1.5-ml microtubes, which were centrifuged at 

13,000 rpm for 30 min to pellet virions. The supernatants were aspirated, the tubes were 

centrifuged, and the residual supernatants were aspirated. The pellets were resuspended 

in 1 ml DPBS by periodic vortexing and standing overnight at 4qC. Finally, the tubes 

were centrifuged at 6,000 rpm for 5 min to pellet insoluble material and the cleared 

supernatants were transferred to fresh 1.5-ml microtubes and stored at 4qC. The solutions 

were notably turbid. Virion concentration was estimated at 1012 physical particles/ml by 

scanning a 1/10 dilution spectrophotometrically, assuming that intact virions have about 

the same molar absorption coefficient at 260 nm as do naked 490,380-bp DNA 

molecules. The infective titer was 7×1010 plaque forming units (pfu)/ml. 
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Plaque assays. Whole-plate plaque assays were performed with the soft agar overlay 

method (Attai et al., 2017). Briefly, 100 Pl cells, grown at an optical density at 600 nm 

(OD600) of ~0.2 and diluted to OD600 of 0.05, were mixed with 100 Pl phage for 15 min at 

room temperature prior to dilution to allow attachment. This mixture of cells and phage 

were serially diluted in LB and added to 3 ml melted 0.15% or 0.3% LB-soft agar. The 

solution was then overlaid onto a 1% LB-agar plate and swirled for even distribution. For 

host range testing, serial dilutions of phage were spotted onto a bacterial lawn. A mixture 

of 100 Pl cells (OD600 of ~0.2) and 0.3% LB-soft agar was overlaid onto a 1% LB-agar 

plate. Once the cells solidified, 5 Pl of phage dilutions were spotted onto the soft agar. 

Plates were incubated for 1 to 2 days to allow plaque formation.  

 

Preparation of virion DNA. Virion DNA was prepared essentially as described (Attai et 

al., 2017). A 500-µl portion of partially purified virions was pipetted into a 1.5-ml 

microtube and extracted twice with neutralized phenol (liquefied phenol equilibrated 

twice with 1/10 vol 1 M Tris-HCl pH 8, discarding the small upper phase each time) and 

once with chloroform:isoamyl alcohol (24:1 v/v) as follows: 500 µl neutralized phenol or 

chloroform:isoamyl alcohol was added to the microtube, the microtube was vigorously 

vortexed, and the phases were separated by centrifugation at 13,000 rpm for 2 min; most 

of the lower (organic) phase was removed and discarded, the microtube was centrifuged 

as before, and the upper (aqueous) phase containing the DNA was transferred to a fresh 

microtube, taking care to avoid residual bottom layer and interphase material. Next, 40 Pl 

3 M sodium acetate (pH adjusted to 6 with acetic acid) and 1 ml 100% ethanol were 
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mixed with the final extract to precipitate the DNA. The precipitate was pelleted by 

centrifugation at 13,000 rpm for 10 min and washed gently with 1 ml freezer-cold 70% 

ethanol. The pellet was air-dried, dissolved in 100 Pl 1 mM Tris-HCl pH 7.5, 100 µM 

Na2EDTA, and stored at -20qC.  

 

Growth curves. Growth curves were performed by growing bacteria at a starting OD600 

of 0.05, in LB. Cells were mixed with purified Atu_ph07 in liquid media at the MOIs 

indicated. Cell growth was measured by the culture turbidity, represented by the 

absorbance at OD600. Measurements were taken every 10 min for 36 h. Cells were grown 

at 28qC and shaken for 1 min prior to each reading. The OD600 was measured using a 

BioTek Synergy H1 Hybrid reader. Results were taken in quadruplicate and averaged. 

For host range testing, Atu_ph07 was added to cells at an MOI of 10. 

 

Time-lapse microscopy. A. tumefaciens strain C58 cells were grown to an OD600 of 0.2 

and infected with Atu_ph07 at an MOI of 10. Infected cells were incubated at room 

temperature for 15 min to allow phage attachment and 1 Pl infected cells were spotted on 

a 1% agarose pad containing LB, as previously described (Howell et al., 2017). Cells 

were imaged using a 60u oil immersion objective (1.4 numerical aperture) by differential 

interference microscopy every 10 min for 24 h using a Nikon Eclipse TiE equipped with 

a QImaging Rolera EM-C2 1 K electron-multiplying charge-coupled-device (EMCCD) 

camera and Nikon Elements imaging software. 
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Transmission electron microscopy. Virion morphology was observed by applying a 

small volume of concentrated purified virions onto a freshly, glow-discharged carbon-

coated TEM grid and negatively stained with 2% Nano-W (Nanoprobes, LLC, 

Brookhaven NY). Specimens were observed on a JEOL JEM-1400 transmission electron 

microscope at 120 kV. Capsid diameters of 100 virions were measured using ImageJ 

(v.2.0.0) (Schneider et al., 2012). Head lengths were measured from the top of the phage 

head vertex to the top of the neck (n=114). Head widths were measured from the right 

vertex of the head to the left vertex, approximately equidistant between the top of the 

head vertex and top of the neck and perpendicular to the tail (n=118). Tail lengths were 

measured from the bottom of the head vertex to the baseplate (n=102). Contracted tails 

were also measured (n=12).  

 

Genome sequencing and assembly. Libraries for genome sequencing were constructed 

from virion DNA following the manufacturer’s protocol and reagents supplied in 

Illumina’s TruSeq DNA PCR-free sample preparation kit (FC-121-3001). Briefly, 2.4 Pg 

of DNA was sheared using standard Covaris methods to generate average fragmented 

sizes of 350 bp. The resulting 3’ and 5’ overhangs were converted to blunt ends by an end 

repair reaction using 3’-to-5’ exonuclease and polymerase activities, followed by size 

selection (350 bp) and purification with magnetic sample purification beads. A single 

adenosine nucleotide was added to the 3’ ends of the blunt fragments followed by the 

ligation of Illumina indexed paired-end adapters. The adaptor-ligated library was purified 

twice with magnetic sample purification beads. The purified library was quantified using 

a KAPA library quantification kit (KK4824), and library fragment sizes were confirmed 
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by Fragment Analyzer (Advanced Analytical Technologies, Inc.). Libraries were diluted, 

pooled, and sequenced using a paired-end 75-base read length according to Illumina’s 

standard sequencing protocol for the MiSeq. Library preparation and sequencing were 

conducted by the University of Missouri DNA Core facility. 

 

Genome annotation. Protein-coding regions were annotated by RAST server (Aziz et 

al., 2008) and PSI-BLAST (Altschul et al., 1997) with an e-value cut-off of 1e-03. 

Proteins of interest were analyzed by TMHMM (Krogh et al., 2001) and SignalP 4.1 

(Petersen et al., 2011). The presence of tRNAs were detected by tRNAscan-SE (version 

2.0) (Lowe and Chan, 2016). Codon usage was analyzed by Geneious (v.11.0.5) (Kearse 

et al., 2012). Pairwise (%) nucleotide identity was determined using the Mauve plugin in 

Geneious (Darling et al., 2004). 

 

16S rRNA gene amplification. 16S rRNA gene sequences were amplified by colony 

PCR using OneTaq DNA Polymerase (New England Biolabs) and universal primers, 27F 

and 1492R (Hogg and Lehane, 1999; Turner et al., 1999). Amplified DNA was purified 

using the GeneJET PCR Purification Kit (Thermo Scientific) and sequenced by the MU 

DNA Core facility.  

 

Phylogenetic and gene product analysis. Homologs of the major capsid protein, large 

terminase, and portal vertex protein were identified by BLASTp using an E-value cutoff 

of 1e-03. Protein alignment was performed by Geneious using ClustalW (v.2.1) and the 

BLOSUM matrix (Kearse et al., 2012; Larkin et al., 2007). Maximum-likelihood trees 
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based on phylogeny (PhyML) were built using a Geneious plugin with 100 bootstrap 

models (Guindon et al., 2010). For the 16S rRNA tree, a ClustalW nucleotide alignment 

and a neighbor-joining tree were created in Geneious using the Jukes-Cantor genetic 

distance model. These trees were imported and annotated in iTOL (v3) (Letunic and 

Bork, 2016).  

 

SDS-PAGE and electron spray ionization mass spectrometry (ESI-MS/MS).  

Starting from a PEG purified phage stock of >1010 pfu/ml, a protein pellet was obtained 

by chloroform:methanol extraction (1:1:0.75 [vol/vol/vol]). The pellet was resuspended 

in loading buffer (40% Glycerol [vol/vol], 4% SDS [wt/vol], 200 mM Tris-HCl pH 6.8, 8 

mM EDTA, 0.4% Bromophenol blue [wt/vol]) and heated at 95°C for 5 minutes before 

loading on a 12% SDS-PAGE gel. After separation by gel electrophoresis, virion proteins 

were visualized by staining in Gelcode™ Blue Safe Protein Stain (Thermo Scientific). 

Fragments covering the full lane of the gel were subsequently isolated and subjected to 

trypsin digestion as described by Shevchenko et al., 1996. The samples were then 

analyzed by nano-liquid chromatography-electrospray ionization tandem mass 

spectrometry (nanoLC-ESI-MS/MS) and peptides were identified, based on a database 

containing all predicted phage proteins, using the search engines SEQUEST [v 1.4.0.288] 

(ThermoFinnigan) and Mascot [v 2.5] (Matrix Science). 

 

Lysogen induction and detection assays. To test if Atu_ph07 produces lysogens, we 

attempted to induce C58 cells that survived Atu_ph07 infection with mitomycin C and 

ultra-violet (UV) irradiation. Ten survivor strains were isolated by streak-purifying 3 
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times on LB-agar and were confirmed to survive Atu_ph07 infection by conducting spot 

assays. Survivor cells were grown to OD600 of 0.4-0.5 and mixed with mitomycin C 

(Fisher) at a final concentration of 0.5 Pg/ml for 2 h at 28qC with shaking or grown to an 

OD600 of 0.6-0.7 irradiated with UV for a time ranging from 3 s to 120 s. In each case, 

cells were centrifuged at 7,500 rpm for 10 min. The supernatant was filtered through a 

0.45 Pm column and centrifuged at 4,000 rpm for 10 min. The flow-through was spotted 

(5 Pl) on a lawn of C58 (OD600 = 0.2, 0.3% LB-agar) and incubated overnight at 28qC to 

be observed for plaque formation in comparison to the Atu_ph07 control. 

 

To find prophages in the genomes of survivor strains, we attempted to PCR amplify 

genes from Atu_ph07 that are not present in C58 using two sets of primers, which 

amplified nicotinate phosphoribosyltransferase (CDS 242) and adenine-specific 

methyltransferase (CDS 399). Primers to amplify nicotinate phosphoribosyltransferase 

(1,299 bp) were 5’ ATG ATC GAT ATC GCA ACA 3’ (forward) and 5’ TTA GAC 

AAT TAG AGG TGC 3’ (reverse) and adenine-specific methyltransferase (759 bp) 

primers were 5’ATG CAA ATT GGT AAT GGG 3’ (forward) and 5’ TTA AAA TTC 

AAA TAG CCC 3’ (reverse). PCR was performed using OneTaq DNA Polymerase (New 

England Biolabs). DNA from Atu_ph07 or A. tumefaciens were used as positive and 

negative controls, respectively.  

 

Accession number. The genome sequence of Atu_ph07 has been deposited in the 

GenBank database with the nucleotide accession number MF403008. 
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RESULTS AND DISCUSSION 

Isolation and characterization of Atu_ph07. Agrobacterium tumefaciens strain C58 

(Watson et al., 1975) was used as a host strain to isolate phages from environmental 

samples. We isolated phage Atu_ph07 from a water sample from Sawyer Creek in 

Springfield, MO using a modified phage enrichment protocol (Santamaría et al., 2014). 

Following filtration of water samples, we noticed the clearing of bacterial cultures after 

two rounds of incubation with C58. The presence of phage was apparent after performing 

plaque assays. Virions were concentrated and partially purified using polyethylene glycol 

(PEG) precipitation and differential centrifugation. Atu_ph07 appeared to make small, 

turbid plaques on 0.3% soft agar (Figure 3-1A, left), and larger, clearer plaques on 0.15% 

soft agar (Figure 3-1A, right). Lowering the agar concentration allows propagation of 

jumbo phages by promoting phage diffusion through the medium. Growth curves of A. 

tumefaciens infected with Atu_ph07 at different multiplicities of infection (MOIs) show 

that Atu_ph07 inhibits growth of its host after two hours (Figure 3-1B; Supplementary 

Figure 3-S1A). Time-lapse microscopy of A. tumefaciens cells infected with Atu_ph07 at 

an MOI of 10 shows that Atu_ph07 causes cell lysis within 3 hours (Figure 3-1C). 

Transmission electron microscopy (TEM) of virions revealed icosahedral heads (length 

146 r 0.6 nm and width 152 r 0.8 nm) and long tails (136 r 0.5 nm), as shown in Figure 

3-1D. Phage tails appear to be contractile, as shorter tails with an average length of 77 r 

2.6 nm were observed and some heads also appear to be empty. Lastly, the TEMs 

indicate the presence of tail fibers and tail-associated ‘hairy’ whiskers (Figure 3-1D, 

inset). Similar features have also been observed in Enterobacteria phage vB_PcaM_CBB 

(Buttimer et al., 2017a). While the ‘hairy’ whiskers are tail-associated in Enterobacteria  
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Figure 3-1. Characterization of Atu_ph07. (A) Atu_ph07 forms small plaques on a lawn 

of A. tumefaciens on 0.3% soft agar (left) and larger plaques on 0.15% soft agar (right). 

(B) Growth curve of A. tumefaciens infected with Atu_ph07 at different MOIs. (C) Time-

lapse microscopy of A. tumefaciens cells infected with Atu_ph07 at an MOI of 10. (D) 

TEM image of Atu_ph07 shows the phage is in the family Myoviridae.  
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phage vB_PcaM_CBB, these long, thin appendages appear to be primarily capsid-

associated in Atu_ph07. Together, the morphology confirms that Atu_ph07 belongs to 

the family Myoviridae (Ackermann, 2009). 

 
Host range of Atu_ph07. Since plaque formation by Atu_ph07 is inconsistent (Figure 3-

1A), growth curves in the presence or absence of Atu_ph07 at an MOI of 10 were used to 

assess the host range of the phage (Supplementary Figure 3-S1). Susceptible test strains 

have a decreased growth rate and growth yield in the presence of phage when compared 

to growth in the absence of phage (Figure 3-2, Supplementary Figure 3-S1A), and 

plaques are formed when an undiluted phage stock with an infective titer of 7×1010 

pfu/ml is spotted on the test strain. In contrast, resistant strains have comparable growth 

curves in the presence or absence of phage (Figure 3-2, Supplementary Figure 3-S1B), 

and no plaques develop when the phage stock is spotted on lawns of the test strain. 

 

To determine if similarity of the bacterial strains plays a role in phage infectivity, we 

acquired or sequenced the 16S rRNA gene of the host strains and constructed a 

phylogenetic tree (Figure 3-2). The strains of A. tumefaciens form a monophyletic clade 

consistent with the grouping of these closely related strains into Agrobacteria biovar 1 

based on biochemical tests and pathogenicity assays (Keane et al., 1970; Panagopoulos 

and Psallidas, 1973). While it remains debated if biovar 1 comprises a single species 

(Sawada et al., 1993; Young et al., 2006) or a complex of related species (Costechareyre 

et al., 2010; Mougel et al., 2002; Portier et al., 2006), the bacterial strains in this group 

are heterogeneous, comprising at least nine genomospecies (G1 – G9) (Mougel et al., 

2002). A. tumefaciens C58, which was the host used to isolate Atu_ph07, belongs to the  
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Figure 3-2. Host range of Atu_ph07. Phylogenetic tree of Alphaproteobacteria tested for 

Atu_ph07 susceptibility in this study was constructed using 16S rRNA sequences. 

Agrobacterium strains are represented in purple, Rhizobium strains in pink, 

Sinorhizobium strains in brown, Caulobacter in orange, and the outgroup, E. coli, is in 

blue. Agrobacteria biovars and genomospecies are indicated. Phage susceptibility (green) 

or resistance (red) for each strain is indicated. 
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G8 genomospecies (Mougel et al., 2002) and each G8 strain tested was susceptible to 

Atu_ph07 (Figure 3-2). While other Agrobacteria biovar 1 strains belonging to G1 

(LBA4404 and Chry5) are susceptible to Atu_ph07, this is not a universal phenotype as 

strain LMG215 is resistant to Atu_ph07 (Figure 3-2). Representative isolates from 

biovars 2 and 3, as well as other Alphaproteobacterial strains, are not susceptible to 

Atu_ph07 infection (Figure 3-2). Thus, the host range of Atu_ph07 appears to be 

restricted within a subset of Agrobacteria biovar 1. 

 

Genome analysis and phylogeny. The Atu_ph07 genome is 490,380 bp in length, 

leading to the classification of Atu_ph07 as a jumbo phage. Like other agriculturally-

relevant jumbo phages, Atu_ph07 has a low G+C content (37.1%) (Almpanis et al., 

2018). The genome was annotated using a combination of Rapid Annotation using 

Subsystem Technology (RAST) (Aziz et al., 2008) and manual annotation based on PSI-

BLAST analysis (Altschul et al., 1997). Atu_ph07 contains 714 open reading frames 

(ORFs), including 390 ORFans (no discernable homologs in other lineages), 214 

conserved hypothetical proteins with no assigned function, and 110 predicted proteins 

with assigned functions based on similarity to conserved proteins (Table 3-2, 

Supplementary Table 3-S1, Figure 3-3).  
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Figure 3-3. The annotated genome of Atu_ph07. ORFs are represented by functional 

categories in corresponding colors. Regions shaded in beige represent putative structural 

protein clusters as identified using ESI-MS/MS analysis. Proteins detected by ESI-

MS/MS analysis are indicated with an asterisk (*) below the corresponding ORF.  
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Due to the high degree of divergence, comparative genome analysis of jumbo phages is 

challenging. Based on nucleotide identity, Atu_ph07 is most similar to Synechococcus 

phage S-SSM7 (Sullivan et al., 2010). However, the genomes are only 13.1% identical 

and do not share collinear blocks. Since whole genome alignments did not reveal phages 

similar to Atu_ph07, we next constructed phylogenetic trees using the sequence of 

proteins conserved in many jumbo phages. There is no universal gene present in all 

phages, therefore signature gene products including the major capsid protein, large 

terminase subunit, and portal vertex protein were selected for the phylogenetic analysis 

(Adriaenssens and Cowan, 2014). These phylogenies place Atu_ph07 among the jumbo 

phages in the T4-superfamily (Figure 3-4). Although the genome of Atu_ph07 only 

shares 33 homologous ORFs with the genome of bacteriophage T4 (Supplementary Table 

3-S2), core proteins involved in phage morphogenesis and DNA replication, 

recombination, and repair were identified (Supplementary Table 3-S3) (Miller et al., 

2003). The phylogenetic trees are consistent with the recent characterization of 

Xanthomonas phage XacN1 (Yoshikawa et al., 2018), which suggested that XacN1, 

Salicola phage SCTP-2 and Atu_ph07 are distantly related to the Rak2-like jumbo 

phages. 
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Figure 3-4. Phylogenetic comparison of Atu_ph07 and related phages. Phylogenetic trees 

of phages based on alignments of the (A) major capsid protein, (B) large terminase, and 

(C) portal vertex protein. Jumbo phages are labeled in blue. Bootstrap values of 100 

replicates are represented by circles. Rak2-like phages are indicated by a green line. 
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The ORFs in the Atu_ph07 genome were compared to those in XacN1, SCTP-2 and 

Rak2-like phage genomes (Figure 3-5, Supplementary Table 3-S2). The genome of phage 

SCTP-2 has the highest level of gene conservation with 141 genes (19.7% of Atu_ph07 

ORFs) in common with the Atu_ph07 genome. Overall, the gene composition of 

Atu_ph07 is not well conserved with the Rak2-like phages (Figure 3-5, Supplementary 

Table 3-S2), consistent with proposal that Atu_ph07, together with SCTP-2, may belong 

to a new clade that comprises a sister group to the Rak2-like phages (Yoshikawa et al., 

2018).  

 

Functional annotation. Most of the 110 Atu_ph07 ORFs that can be assigned to a 

functional annotation are predicted to function in phage morphogenesis and replication. 

The functional annotation is enriched in proteins involved in DNA replication, 

modification, recombination or repair (Figure 3-3, light blue arrows), nucleotide 

metabolism (Figure 3-3, yellow arrows), translation and posttranslational proteins (Figure 

3-3, pink arrows) and structural proteins (Figure 3-3, purple arrows) (Supplementary 

Table 3-S1). 

 

DNA Replication, Repair, and Recombination. Atu_ph07 encodes 26 enzymes involved 

in DNA replication, repair, and recombination (Figure 3-3, light blue arrows, 

Supplementary Table 3-S1). The majority of these enzymes are all highly conserved in 

XacNI, SCTP-2, and the Rak2-like phages (Figure 3-5, Supplementary Table 3-S2). 

These highly conserved enzymes include homologs of six of the T4 core proteins 

involved in DNA replication, repair, and recombination (Petrov et al., 2010). The  
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Figure 3-5. Similarity of annotated gene products in Atu_ph07 and related phages. Heat 

map displaying Atu_ph07 gene products compared with homologs in 12 related phages, 

including members of the Rak2-like phages (indicated with a green line). Intensity of the 

red color indicates the degree of similarity among homologs. Grey boxes indicate that a 

homolog with an E-value smaller than 1e-03 was not detected (ND). Gene products are 

organized by functional category and Atu_ph07 gp numbers are indicated.  
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enzymes with homology to the T4 core proteins are predicted to function as part of the 

DNA helicase-primase complex (gp70), DNA polymerases (gp276, gp277), sliding clamp 

loader (gp312), and recombination-related endonucleases (gp691, gp693) 

(Supplementary Table 3-S3). One of the endonucleases (gp693) is directly upstream of a 

protein (gp694) with similarity to the RNA polymerase sigma factor for late transcription. 

This gene product shares similarity with XacNI, SCTP-2, T4, and most of the Rak2-like 

phages (Supplementary Table 3-S2). The Atu_ph07 genome also encodes a predicted 

DNA polymerase III alpha subunit (gp316) and epsilon subunit (gp671) suggesting that 

the polymerase may contribute to both DNA replication and 3’-5’ exonuclease activity. 

The DNA polymerase III subunits are conserved in most of the Rak2-like phages (Figure 

3-5, Supplementary Table 3-S2). Atu_ph07 encodes three type II topoisomerase proteins 

involved in chromosome partitioning (gp4, gp5, gp200) (Kato et al., 1992). Gp4 is highly 

conserved with DNA gyrase subunit B encoded by the Rak2-like phages and gp5 encodes 

topoisomerase IV subunit A, also well-conserved in the Rak2-like phages (Figure 3-5). 

Together, the presence of these highly conserved genes suggests that Atu_ph07 encodes 

the proteins necessary to complete phage DNA replication and DNA-related functions 

including recombination and repair.   

 

Nucleotide metabolism. To supplement the nucleotide pool required for phage DNA and 

RNA synthesis, T4-like phage genomes encode enzymes for nucleotide metabolism 

(Petrov et al., 2010). The Atu_ph07 genome contains several enzymes predicted to 

contribute to nucleotide metabolism (Figure 3-3, Supplementary Table 3-S1). These 

include both alpha and beta subunits (gp122, gp123) of ribonucleotide reductase (RNR) 
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of class 1a (nrdA and nrdB), which are involved in oxygen-dependent nucleotide 

metabolism of ribonucleotides into deoxyribonucleotides, a step that is needed for DNA 

replication (Dwivedi et al., 2013). Phages generally acquire RNR proteins from their 

hosts to provide them an evolutionary advantage. The alpha subunit of Atu_ph07 is 

similar to the RNR alpha subunit encoded by A. tumefaciens strain B6. RNR proteins 

catalyze nucleotide metabolism with the help of glutaredoxin and thioredoxin (Sengupta, 

2014). Two putative glutaredoxin proteins are encoded by Atu_ph07 (gp121, gp266), one 

of which (gp121) is directly adjacent to the alpha subunit of RNR. Thioredoxin is 

encoded by gp221.  

 T4-like phages require ATP and NADH/NAD+ for important processes like DNA 

synthesis, transcription, and translation. To metabolize NAD+, phages use nicotinamide-

adenine dinucleotide pyrophosphatase (NUDIX) hydrolases (Bessman et al., 1996; Lee et 

al., 2017). This family of enzymes is involved in housekeeping functions of the cell, 

including the hydrolysis of unwanted nucleotides or removal of excess metabolites. 

Atu_ph07 encodes three putative members of the NUDIX hydrolase superfamily (gp257, 

gp303, gp557). Other putative proteins involved in nucleotide metabolism include NadR 

(gp587) and PnuC (gp586). NadR transcriptionally regulates NAD biosynthesis and 

PnuC is a membrane transporter that allows nicotinamide mononucleotide (NMN) uptake 

(Foster et al., 1990; Kurnasov et al., 2002). 

  

tRNA genes and tRNA processing genes. The genome of Atu_ph07 encodes 33 tRNA 

genes, including 32 canonical tRNAs corresponding to all amino acids except asparagine 

and threonine (Figure 3-6). The remaining tRNA is a suppressor with an anticodon of 
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UCA indicating read-through of opal (UGA) stop codons. The UGA stop codon is 

abundant in both the phage (N=267) and A. tumefaciens (N= 2,923) genomes suggesting 

that there are several potential genes targeted by the suppressor tRNA. With the 

exception of the suppressor tRNA, all of the tRNAs encoded in the Atu_ph07 genome are 

also found in the A. tumefaciens genome suggesting that the tRNAs do not improve 

decoding capacity; however, some of the phage tRNAs correspond to codons that are 

more frequently used in the phage genome (Figure 3-6). This observation is consistent 

with the notion that phage-encoded tRNAs allow translation to be optimized for the 

codon usage of the phage genome (Bailly-Bechet et al., 2007). In addition to the tRNA 

genes, the Atu_ph07 genome encodes four tRNA processing proteins. These tRNA 

processing proteins include tRNA nucleotidyltransferase (gp18) and tRNAHis-5'-

guanylyltransferase (gp227), which are involved in tRNA maturation. Putative peptidyl-

tRNA hydrolases (gp680, gp256) function to decrease the pool of peptidyl-tRNAs formed 

throughout the initiation, elongation, and termination stages of translation.  

 

Clp-like proteins. The Atu_ph07 phage genome encodes seven putative members of the 

Clp family of proteins that function to degrade proteins, including ClpX (gp2), a 

prophage Clp protease-like protein (gp128), an ATP-dependent Clp protease ATP-

binding subunit (gp155), ClpA (gp292), ClpB (gp492), ATP-dependent Clp protease 

proteolytic subunit (gp676), and ClpS (gp708). The Clp proteases may contribute to 

virion assembly or have alternative functions. For example, during phage lambda DNA 

replication, the ClpX/ClpP protease removes the O protein from the origin of replication  
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Figure 3-6. tRNAs are encoded in the Atu_ph07 genome. Table (left) shows amino acids, 

codons, and tRNAs encoded in the Atu_ph07 genome. Graphical representation of codon 

bias (right) of phage Atu_ph07 and its host A. tumefaciens strain C58. Data points 

represent the usage of each codon in the Atu_ph07 and A. tumefaciens genomes. Red 

points represent codons only found in A. tumefaciens, purple points represent codons only 

found in Atu_ph07, and blue points represent codons found in both genomes. Grey lines 

outline the region in which codon usage in both genomes is similar.  
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(Zylicz et al., 1998) and the activity of ClpX/ClpP has been associated with slowing 

down DNA replication of the phage under poor growth conditions (Węgrzyn et al., 2000). 

In the Atu_ph07 genome, clpX (gp2) is located in close proximity to genes predicted to 

encode topoisomerase proteins (gp4-5) suggesting that the ClpX protein may function in 

the regulation of phage DNA replication. In E. coli, ClpS is an adaptor protein that 

modifies the substrate specificity of the ClpA/ClpP protease and contributes to 

degradation or refolding of protein aggregates (Dougan et al., 2002). ClpA (gp292) is 

highly conserved in most of the Rak2-like phages (Figure 3-5). The presence of the ClpB 

(gp492) and DnaJ (gp293) chaperones, which also function in the removal of protein 

aggregates (Mogk et al., 1999), further suggests that Atu_ph07 may help its host to 

survive the stress of phage infection long enough for the phage replication cycle to be 

completed. Together, these observations suggest that Clp proteins likely contribute to 

diverse aspects of phage biology potentially including virion assembly, DNA replication, 

and proteolytic clearance of protein aggregates.  

 

Structural Proteins. Based on homology, the genome of Atu_ph07 was predicted to 

encode 20 proteins involved in phage morphogenesis and structure (Figure 3-3, 

Supplementary Table 3-S1). Candidate structural genes encode proteins for head 

morphogenesis and structure (gp125, gp143, gp198, gp204, gp215), baseplate (gp181, 

gp182, gp686, gp697), tail sheath (gp132, gp140), and tail fibers (gp31, gp288, gp327, 

gp472). All five of the candidate head proteins, one of the baseplate wedge subunits 

(gp182), and both of the tail sheath proteins share significant homology with T4 core 

structural proteins (Supplementary Table 3-S2, 3-S3). The Atu_ph07 genome does not 
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encode proteins with similarity to T4 core tail fiber proteins (Supplementary Table 3-S3); 

however short tail fibers are evident when Atu_ph07 is observed under transmission 

electron microscopy (Figure 3-1D). One of the tail fiber proteins (gp472) is most closely 

related (51% identity) to a tail fiber protein encoded in the genome of Agrobacterium 

phage Atu_ph02 (Attai et al., 2017), suggesting that these phages may share an entry 

route into Agrobacterium cells.  

 

Based upon the complex morphology of Atu_ph07, we hypothesized that the genome 

annotation likely underestimates the quantity of proteins involved in phage 

morphogenesis and structure. To experimentally identify additional structural proteins, 

electrospray ionization mass spectrometry (ESI-MS/MS) was used (Figure 3-7, 

Supplementary Table 3-S4). Overall, the proteomic analysis supported the annotation of 

structural proteins, as all of the head, neck, tail fiber, and most of the tail (5/7) proteins 

could be identified in the virion proteome. As expected, the most abundant protein 

observed in the particle proteome is the major capsid protein (gp215, fragment 6 in 

Figure 3-7). A total of 131 proteins were found among the phage virion proteins, with 

sequence coverages higher than 5%, or more than one identified unique peptide 

(Supplementary Table 3-S4). About 78% (102/131) of these proteins do not have an 

assigned function. The majority of the virion proteins are encoded in three large clusters 

as shaded in beige in Figure 3-3 (CDS 31-76, CDS 170-215 and CDS 284-329), while the 

remaining proteins reside in smaller clusters or as separate genes spread across the 

genome. Notably, CDS 31-76 contains 29 identified proteins of which only two were 

predicted, indicative of the vast amount of potentially unique structural proteins in  
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Figure 3-7. SDS-PAGE of Atu_ph07 structural proteins as identified by ESI-MS/MS. 

Phage proteins were separated by size and excised from the gel for proteomic analysis. 

Numbers at the right of the gel indicate the position of bands which were excised from 

the gel. Proteins identified in each band are listed. Bold font indicates validation of 

annotated structural proteins.  
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Atu_ph07. The lack of similarity with known virion proteins should not be surprising, as 

only a small number of jumbo phages with whisker-like structures have been described to 

date.  

 
Atu_ph07 induces cell lysis. The genome content is insufficient to confidently predict 

the phage life cycle, however the phage can induce lysis (Figure 3-1B-C). To assess the 

possibility of a lysogenic phase, we isolated ten variant clones of A. tumefaciens strain 

C58 that survive exposure to Atu_ph07 at high MOI. Lysogens were not induced from 

any of the ten unsusceptible variant clones by exposing them to UV irradiation or 

mitomycin C (see Materials and Methods for experimental details). Furthermore, we 

were unable to PCR-amplify two distinctive Atu_ph07 genes, nicotinate 

phosphoribosyltransferase (CDS 242) and adenine-specific methyltransferase (CDS 399), 

from the unsusceptible variants. Consistent with these observations, no integrase- or Cro-

like genes, which are required for lysogeny in several temperate phage species, could be 

identified in the Atu_ph07 genome. 

 

Since we observe that Atu_ph07 can induce cell lysis (Figure 3-1C), we searched for 

genes encoding candidate lysis proteins in the genome. Atu_ph07 contains two predicted 

lysozymes (gp141 and gp699). Gp141 is in close proximity to the predicted phage head 

completion protein and tail sheath monomer, indicating that it may be involved in phage 

DNA entry. Gp699 has homologues in the Rak2-like phages and is adjacent to three 

predicted structural proteins—the baseplate hub subunit (gp686), baseplate wedge protein 

(gp697), and tail tape measure protein (gp701). 
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To widen our search for candidate lysis proteins, we searched for transmembrane (TM) 

proteins which can be indicative of the presence of the canonical endolysin-holin-spanin 

system of host cell lysis (Young, 2014). A TMHMM analysis (Krogh et al., 2001) of the 

predicted proteins identified 40 predicted TM proteins, only three of which have putative 

functions: ribonucleotide reductase of class 1a beta subunit (gp123), ribosyl nicotinamide 

transporter PnuC (gp586), and peptidyl tRNA hydrolase (gp680). Eight of these encoded 

TM proteins (gp369-gp376) appear consecutively on the genome at ~280 kbp, however 

each of these are ORFs with no detectable similarity in the database, or ORFans (Yin and 

Fischer, 2008), making us unable to predict their function as a unit at this time. Thus, at 

present, the mechanism of Atu_ph07-mediated host cell lysis remains unknown. 

  

CONCLUSION 

Several jumbo phages have been recently characterized, many encoding a large number 

of hypothetical proteins. Recently, a group of T4-like phages have been categorized into 

a new monophyletic group called ‘Rak2-like’. While phage Atu_ph07 clusters just 

outside this group, many genes share homology with core genes in the Rak2-like phage 

genomes. Atu_ph07 infects a subset of Agrobacterium tumefaciens strains (Figure 3-2) 

and its ability to infect this plant pathogen makes it a candidate for biocontrol.  

 

The phage biology of Atu_ph07 is likely to be remarkable in its own right. While the 

genome encodes genes for DNA replication, transcription, translation, nucleotide 

metabolism, as well as over 130 experimentally confirmed structural proteins, many more 

molecular mechanisms remain to be unraveled. Understanding the modes through which 
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a non-living entity can acquire, store, replicate, and express such a vast number of genes 

to promote its life cycle is a fascinating aspect of phage biology unique to jumbo phages. 

A logical assumption considering the coding density of this phage is that many of the 

putative hypothetical proteins have functional significance and provide jumbo phages 

with an evolutionary advantage in specific ecological niches. Continued exploration of 

jumbo phages will help elucidate the mechanisms in which diverse bacteriophages have 

evolved to thrive as the most abundant biological entities in the world.  
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Tables 

Table 3-1. Bacterial strains used in this study 

Strain or 

plasmid 

Relevant characteristics Growth 

medium 

Reference or 

source 

A. 

tumefaciens 

strains 

   

C58 Nopaline type strain; pTiC58; pAtC58 LB (Watson et al., 

1975) 

EHA105 C58 derived, succinamopine strain, T-

DNA deletion derivative of pTiBo542 

LB MU plant 

transformation core 

facility 

GV3101 C58 derived, nopaline strain LB MU plant 

transformation core 

facility 

NTL4 C58 derived, nopaline-agrocinopine 

strain, ∆tetRA 

LB (Luo et al., 2001) 

AGL-1 C58 derived, succinamopine strain, T-

DNA deletion derivative of pTiBo542 

∆recA 

LB MU plant 

transformation core 

facility 

LBA4404 Ach5 derived, octopine strain, T-DNA 

deletion derivative of pTiAch5 

YM MU plant 

transformation core 

facility 
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Chry5 Succinamopine strain, pTiChry5 LB (Bush and Pueppke, 

1991) 

LMG215 Agrobacterium biovar 1, 

genomospecies 4, isolated from hops 

in 1928 

LB Chang lab at 

Oregon State 

University 

LMG232 Agrobacterium biovar 1, 

genomospecies 1, isolated from beet in 

1963 

LB Chang lab at 

Oregon State 

University 

A74a Agrobacterium biovar 1, 

genomospecies 8, isolated from 

Pennsylvania lavender in 2003 

LB Chang lab at 

Oregon State 

University 

06-777-2L Agrobacterium biovar 1, 

genomospecies 7, isolated from 

Marguerite Daisy in 2006 

LB Chang lab at 

Oregon State 

University 

    

Other 

bacterial 

strains 

   

A. vitis S4 Vitopine strain, pTiS4, pSymA, 

pSymB 

Potato 

dextrose 

(Slater et al., 2009) 

Rhizobium 

rhizogenes 

D108/85 

Agrobacterium biovar 2, isolated from 

Michigan blueberry 1985 

MGY Chang lab at 

Oregon State 

University  
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Caulobacter 

crescentus 

CB15 

Alphaproteobacterium PYE (Nierman et al., 

2001) 

Sinorhizobium 

meliloti 1021 

Rhizopine strain, pSymA, pSymB, 

pRme41a 

LB (Weidner et al., 

2013) 

Escherichia 

coli DH5D 

Gammaproteobacterium LB Life Technologies 

 

Table 3-2. Summary of key genomic features of Atu_ph07 

Genom

e length 

(bp) 

G+C 

conten

t (%) 

Numbe

r of 

ORFs 

Codin

g 

density 

(%) 

Number of 

hypothetica

l proteins 

Number 

of ORFs 

with 

predicte

d 

functions 

Numbe

r of 

ORFan

s 

Numbe

r of 

tRNAs 

490,380 37.1 714 83.6 214 110 390 33 
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SUPPLEMENTARY FIGURES 
 
Supplementary Figure 3-S1. Representative growth curves of A. tumefaciens strains 
C58 (A) and LMG215 (B) in the absence (blue) or presence (red) of phage Atu_ph07 at 
MOI 10. Experiment was performed in duplicate and averaged. 
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SUPPLEMENTARY TABLES 
 
Supplementary Table 3-S1. Atu_ph07 genes categorized by predicted function. 
 

CDS # RAST assigned function 
Updated assigned 
function 

Lengt
h (bp) Category 

1 Translation initiation factor 3 CDS 
 

504 Translation 

2 
ATP-dependent Clp protease ATP-
binding subunit ClpX CDS 

 
1,260 

Posttranslational 
modification 

4 

Phage DNA topoisomerase large 
subunit (EC 5.99.1.3) #T4-like gp60 
#T4 GC1464 CDS 

DNA gyrase subunit 
B 1,815 DNA replication 

5 
Topoisomerase IV subunit A (EC 
5.99.1.-) CDS 

 
1,362 DNA replication 

18 
tRNA nucleotidyltransferase (EC 
2.7.7.21) (EC 2.7.7.25) CDS 

 
1,266 Translation 

20 internalin, putative CDS 
 

3,507 Other 

31 Hypothetical protein CDS 
Phage tail fiber-like 
protein 1,290 Structural 

35 Hypothetical protein CDS Exonuclease type II 681 DNA replication 
42 conserved phage mega protein  

 
921 Structural 

49 
multi-sensor signal transduction 
histidine kinase CDS 

 
1,611 Other 

70 
DNA primase/helicase, phage-
associated CDS 

 
1,323 DNA replication 

71 Hypothetical protein CDS 
DNA primase 
subunit 1,023 DNA replication 

80 Hypothetical protein CDS 
RNA-DNA + DNA-
DNA helicase 1,383 DNA replication 

86 Hypothetical protein CDS 2'-5' RNA ligase 645 DNA replication 
tRN
A tRNA-Gln-TTG 

 
125 tRNA 

97 
putative type II DNA modification 
enzyme (methyltransferase) CDS 

 
768 DNA modification 

106 Hypothetical protein CDS RecA-like protein 1,107 
DNA recombination 
and repair 

107 Hypothetical protein CDS 
ssDNA-binding 
protein 1002 DNA replication 

109 
Gp17 terminase DNA packaging 
enzyme large subunit CDS 

 
1,809 Structural 

110 Phage terminase, large subunit CDS 
 

372 Structural 

112 autotransporter CDS 
 

2,235 Other 

121 Hypothetical protein CDS Glutaredoxin 237 
Nucleotide 
metabolism 

122 

Ribonucleotide reductase of class Ia 
(aerobic), alpha subunit (EC 1.17.4.1) 
CDS  1,641 

Nucleotide 
metabolism 

123 

Ribonucleotide reductase of class Ia 
(aerobic), beta subunit (EC 1.17.4.1) 
CDS  999 

Nucleotide 
metabolism 

125 Phage head completion protein CDS 
 

483 Structural 
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128 
Prophage Clp protease-like protein 
CDS 

 
1,656 

Posttranslational 
modification 

132 Phage tail sheath monomer CDS 
 

3,261 Structural 

135 

NAD synthetase (EC 6.3.1.5) / 
Glutamine amidotransferase chain of 
NAD synthetase CDS  1,671 

Nucleotide 
metabolism 

140 Hypothetical protein CDS 

Tail sheath stabilizer 
and completion 
protein 1,374 Structural 

141 

Phage lysin (EC 3.2.1.17) # Phage 
lysozyme or muramidase (EC 3.2.1.17) 
CDS  450 Lysis 

143 Hypothetical protein CDS 
Head completion 
adaptor; neck  771 Structural 

155 Hypothetical protein CDS 

ATP-dependent Clp 
protease ATP-
binding subunit 285 

Posttranslational 
modification 

180 T4-like phage structural protein CDS 
 

13,350 Structural 
181 Hypothetical protein CDS Baseplate wedge 3,597 Structural 

182 Hypothetical protein CDS Baseplate wedge 390 Structural 

189 
ulcer associated adenine specific DNA 
methyltransferase CDS 

 
978 DNA modification 

191 Phage protein CDS 
 

2,289 Hypothetical 

195 
T4-like phage protein, T4 GC1542 
CDS 

Nucleotidyltransfera
se 993 

Nucleotide 
metabolism 

198 
Phage portal vertex of the head #T4-
like phage Gp20 CDS 

 
1,755 Structural 

200 
Topoisomerase IV subunit A (EC 
5.99.1.-) CDS 

 
1,170 DNA replication 

204 
Phage prohead core protein CDS - 
Gp21 

 
633 Structural 

208 Phage protein CDS 
 

819 Hypothetical 
tRN
A tRNA-Leu-CAA 

 
78 tRNA 

tRN
A tRNA-Met-CAT 

 
76 tRNA 

213 
MJ0042 family finger-like protein 
CDS 

 
876 Other 

214 
DNA double-strand break repair Rad50 
ATPase CDS 

 
1,245 

DNA recombination 
and repair 

215 
Phage major capsid protein of 
Caudovirales (T4-like gp23) CDS 

 
1,230 Structural 

219 Conserved protein CDS 
 

651 Hypothetical 

220 
Adenine-specific methyltransferase 
(EC 2.1.1.72) CDS 

 
783 DNA modification 

221 Thioredoxin, phage-associated CDS 
 

1,047 
Nucleotide 
metabolism 

227 tRNAHis-5'-guanylyltransferase CDS 
 

789 Translation 

235 
Adenine-specific methyltransferase 
(EC 2.1.1.72) CDS 

 
810 DNA modification 

238 ADP-ribose pyrophosphatase (EC 
 

498 Nucleotide 
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3.6.1.13) CDS metabolism 

240 
EF hand domain/PKD domain protein 
CDS 

 
1,017 Hypothetical 

242 
Nicotinate phosphoribosyltransferase 
(EC 2.4.2.11) CDS 

 
1,299 

Nucleotide 
metabolism 

246 
Thymidylate synthase thyX (EC 2.1.1.-
) CDS 

 
951 

Nucleotide 
metabolism 

252 
HNH endonuclease family protein 
CDS 

 
558 

Nucleotide 
metabolism 

253 
protein serine-threonine phosphatase 
CDS 

 
1,257 Transcription 

261 
RNA ligase, phage-associated #T4-like 
RnlA #T4 GC1653 CDS 

 
1,194 Transcription 

263 Sll7028 protein CDS 
Zn dependent 
hydrolase 1,290 

Nucleotide 
metabolism 

266 Glutaredoxin CDS 
 

258 
Nucleotide 
metabolism 

271 DNA polymerase I (EC 2.7.7.7) CDS 
 

1,062 DNA replication 

276 

DNA polymerase (EC 2.7.7.7), phage-
associated #T4-like phage gp43 #T4 
GC0178 CDS  1,254 DNA replication 

277 
DNA polymerase (EC 2.7.7.7), phage-
associated CDS 

 
1,698 DNA replication 

279 Phage protein CDS 
 

249 Hypothetical 

282 DNA ligase (EC 6.5.1.2) CDS 
 

1,995 DNA replication 

288 Phage tail fiber protein CDS 
 

1,833 Structural 

292 
ATP-dependent Clp protease ATP-
binding subunit ClpA CDS 

 
2,298 

Posttranslational 
modification 

293 Chaperone protein DnaJ CDS 
 

807 
Posttranslational 
modification 

tRN
A tRNA Ser-GCT 

 
93 tRNA 

303 Probable NUDIX hydrolase CDS 
 

393 
Nucleotide 
metabolism 

309 
Phosphate starvation-inducible protein 
PhoH, predicted ATPase CDS 

 
765 Other 

310 Hypothetical protein CDS 
Phosphoglycolate 
phosphatase 621 Other 

312 
Replication factor C small subunit 
CDS 

 
948 DNA replication 

316 Hypothetical protein CDS 
DNA polymerase III 
alpha subunit 534 DNA replication 

319 

Cyanophage-encoded 
pyrophosphatase, MazG #T4 GC0184 
CDS 

 
408 Other 

320 
Streptococcal hemagglutinin protein 
CDS 

 
1,182 Other 

327 Phage tail fiber protein CDS 
 

2,130 Structural 

329 
Extracellular serine proteinase 
precursor (EC 3.4.21.-) CDS 

 
3,756 

Posttranslational 
modification 

tRN
A tRNA-Pseudo-ACC 

 
74 tRNA 
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297 Conserved protein CDS 
 

297 Hypothetical 

393 Phage protein CDS 
 

312 Hypothetical 
394 no significant homology 

 
1,455 Hypothetical 

399 
Adenine-specific methyltransferase 
(EC 2.1.1.72) CDS 

 
759 DNA modification 

tRN
A tRNA-Gly-GCC 

 
75 tRNA 

tRN
A tRNA-Met-CAT 

 
78 tRNA 

tRN
A tRNA-Asp-GTC 

 
78 tRNA 

tRN
A tRNA-Arg-TCT 

 
78 tRNA 

tRN
A tRNA-His-GTG 

 
75 tRNA 

tRN
A tRNA-Ser-TGA 

 
92 tRNA 

tRN
A tRNA-Tyr-GTA 

 
119 tRNA 

tRN
A tRNA-Leu-TAG 

 
90 tRNA 

tRN
A tRNA-Gly-TCC 

 
72 tRNA 

tRN
A tRNA-Gln-TTG 

 
75 tRNA 

tRN
A tRNA-Pro-TGG 

 
77 tRNA 

tRN
A tRNA-Ser-TGA 

 
109 tRNA 

460 Hypothetical protein CDS HNH endonuclease 765 
Nucleotide 
metabolism 

465 
Phage-associated homing endonuclease 
CDS 

 
609 

Nucleotide 
metabolism 

tRN
A tRNA-Phe-GAA 

 
76 tRNA 

tRN
A tRNA-Gln-CTG 

 
74 tRNA 

tRN
A tRNA-Pro-TGG 

 
78 tRNA 

tRN
A tRNA-Val-TAC 

 
75 tRNA 

tRN
A tRNA-Glu-TTC 

 
77 tRNA 

tRN
A tRNA-Met-CAT 

 
72 tRNA 

tRN
A tRNA-Trp-CCA 

 
76 tRNA 

tRN
A tRNA-Tyr-GTA 

 
82 tRNA 

tRN
A tRNA-Ile-GAT 

 
80 tRNA 

tRN
A tRNA-Pro-TGG 

 
78 tRNA 
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tRN
A tRNA-Phe-GAA 

 
76 tRNA 

tRN
A tRNA-Arg-ACG 

 
78 tRNA 

tRN
A tRNA-Ala-TGC 

 
72 tRNA 

472 Phage tail fiber protein CDS 
 

2,361 Structural 

481 

Guanosine-3',5'-bis(Diphosphate) 3'-
pyrophosphohydrolase (EC 3.1.7.2) 
CDS  456 

Nucleotide 
metabolism 

492 ClpB protein CDS 
 

1,986 
Posttranslational 
modification 

tRN
A tRNA-Lys-CCT 

 
73 tRNA 

554 Conserved protein CDS 
 

384 Hypothetical 

557 Hypothetical protein CDS 
 

306 Hypothetical 
573 Autotransporter adhesin CDS Hypothetical protein 4,152 Hypothetical 

575 
High-affnity carbon uptake protein 
Hat/HatR CDS 

 
4,317 Hypothetical 

586 
Ribosyl nicotinamide transporter, 
PnuC-like CDS 

 
678 

Nucleotide 
metabolism 

587 

Nicotinamide-nucleotide 
adenylyltransferase, NadR family (EC 
2.7.7.1) / Ribosylnicotinamide kinase 
(EC 2.7.1.22) CDS  1,026 

Nucleotide 
metabolism 

tRN
A tRNA-Sup-TCA 

 
72 tRNA 

622 Hypothetical protein CDS HNH endonuclease 789 
Nucleotide 
metabolism 

624 
Putative phage-related protein 
precursor CDS 

D-alanyl-D-alanine 
carboxypeptidase 399 Other 

638 
FIG006762: Phosphoglycerate mutase 
family CDS RNAse HI  369 DNA replication 

tRN
A tRNA-Cys-GCA 

 
76 tRNA 

670 
ADP-ribose 1""-phosphate 
phosphatase related protein CDS 

 
438 

Posttranslational 
modification 

671 Polymerase epsilon subunit CDS 
 

792 DNA replication 

673 
Uncharacterized protein COG3236 
CDS 

 
537 Hypothetical 

676 

ATP-dependent Clp protease 
proteolytic subunit (EC 3.4.21.92) 
CDS 

 
615 

Posttranslational 
modification 

677 Phage protein CDS 
 

1,125 Hypothetical 

680 
Peptidyl-tRNA hydrolase, archaeal 
type (EC 3.1.1.29) CDS 

 
468 Translation 

686 Hypothetical protein CDS 
Baseplate hub 
subunit 843 Structural 

691 
Phage recombination-related 
endonuclease Gp46 CDS 

 
1,776 

DNA recombination 
and repair 

693 
Phage recombination related 
endonuclease CDS 

 
1,023 

DNA recombination 
and repair 
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694 Hypothetical protein CDS 
RNA polymerase 
sigma factor 834 Transcription 

697 Hypothetical protein CDS Baseplate wedge 315 Structural 
699 Hypothetical protein CDS Lysozyme 2,598 Lysis 

701 
PE-PGRS virulence associated protein 
CDS 

Tail tape measure 
protein 618 Structural 

705 
Threonyl-tRNA synthetase (EC 
6.1.1.3) CDS 

 
708 Translation 

708 
ATP-dependent Clp protease adaptor 
protein ClpS CDS 

 
303 

Posttranslational 
modification 

709 Thymidine kinase (EC 2.7.1.21) CDS 
 

549 
Nucleotide 
metabolism 

710 16 kDa heat shock protein A CDS 

Molecular 
chaperone IbpA, 
HSP20 family 402 

Posttranslational 
modification 
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Supplementary Table 3-S2. Atu_ph07 gene products compared with 12 related phages. 
 

gp 
XacN
I 

SCTP
-2 BF CBB GAP32 121Q 

K64-
1 E11 Rak2 

slurp0
1 

S-
SSM7 T4 

DNA replication, repair, recombination 

4 
1.00E

-65 
1.00E-

62 
1.00E-

179 
4.00E-

176 
5.00E-

179 
6.00E

-177 
2.00E

-177 

2.00
E-

167 
4.00E-

177 
2.00E-

178 
 

3.00
E-41 

5 
1.00E

-34 
4.00E-

53 
3.00E-

101 
4.00E-

107 
4.00E-

107 
5.00E

-107 
2.00E

-107 

3.00
E-

109 
4.00E-

107 
9.00E-

107 
 

5.00
E-36 

35 
 

3.00E-
37 

1.00E-
65 

8.00E-
66 

2.00E-
65 

5.00E
-58 

 

2.00
E-63 

3.00E-
63 

 

6.00E-
31 

 
70 

6.00E
-64 

4.00E-
90 

2.00E-
79 

1.00E-
76 

2.00E-
77 

4.00E
-75 

8.00E
-77 

7.00
E-96 

8.00E-
77 

2.00E-
75 

4.00E-
31 

4.00
E-29 

71 
2.00E

-24 
7.00E-

31 
9.00E-

40 
1.00E-

36 
4.00E-

35 
8.00E

-38 
1.00E

-42 
7.00
E-52 

3.00E-
42 

5.00E-
38 

1.00E-
04 

 

80 
2.00E

-91 
9.00E-

138 
9.00E-

146 
1.00E-

147 
3.00E-

146 
2.00E

-145 
5.00E

-141 

2.00
E-

151 
7.00E-

141 
 

6.00E-
51 

1.00
E-26 

86 
1.00E

-59 
2.00E-

52 
          

97 
    

2.00E-
24 

       
10
6 

2.00E
-60 

6.00E-
59 

2.00E-
141 

8.00E-
154 

5.00E-
153 

6.00E
-143 

 

2.00
E-

155 
3.00E-

140 
 

2.00E-
31 

7.00
E-24 

10
7 

2.00E
-28 

4.00E-
81 

7.00E-
74 

2.00E-
70 

9.00E-
74 

1.00E
-66 

 

8.00
E-71 

6.00E-
73 

8.00E-
67 

  18
9 

            20
0 

 

5.00E-
15 

5.00E-
06 

8.00E-
06 

4.00E-
05 

5.00E
-05 

 

4.00
E-06 

5.00E-
07 

   21
4 

2.00E
-18 

7.00E-
55 

4.00E-
48 

4.00E-
53 

6.00E-
51 

3.00E
-49 

 

2.00
E-62 

3.00E-
50 

   22
0 

  

1.00E-
09 

5.00E-
09 

6.00E-
09 

       23
5 

  

4.00E-
09 

4.00E-
09 

3.00E-
09 

       27
1 

1.00E
-39 

6.00E-
80 

5.00E-
86 

2.00E-
85 

1.00E-
83 

2.00E
-87 

 

2.00
E-75 

1.00E-
87 

1.00E-
87 

  
27
6 

5.00E
-36 

6.00E-
67 

2.00E-
116 

3.00E-
115 

6.00E-
116 

7.00E
-116 

8.00E
-118 

3.00
E-

109 
5.00E-

117 
7.00E-

116 
4.00E-

15 
2.00
E-11 

27
7 

5.00E
-68 

2.00E-
116 

2.00E-
133 

5.00E-
137 

9.00E-
139 

1.00E
-135 

8.00E
-133 

2.00
E-

137 
6.00E-

133 
2.00E-

135 
6.00E-

33 
2.00
E-26 

28
2 

1.00E
-108 

           31
2 

4.00E
-70 

5.00E-
48 

4.00E-
49 

4.00E-
51 

3.00E-
52 

2.00E
-47 

 

3.00
E-61 

4.00E-
46 

 

5.00E-
33 

3.00
E-18 

31
6 

6.00E
-25 

1.00E-
37 

1.00E-
26 

1.00E-
27 

2.00E-
27 

3.00E
-24 

 

5.00
E-22 

5.00E-
26 

   39
9 

  

1.00E-
09 

1.00E-
11 

3.00E-
13 

       63
8 

     

2.00E
-05 

   

4.00E-
06 

  67
1 

  

9.00E-
08 

5.00E-
08 

8.00E-
09 

4.00E
-09 

 
0.001 

3.00E-
07 

   
69
1 

7.00E
-48 

1.00E-
120 

6.00E-
124 

8.00E-
124 

1.00E-
125 

3.00E
-113 

 

3.00
E-

119 
1.00E-

109 
6.00E-

113 
5.00E-

48 
7.00
E-50 

69
3 

2.00E
-49 

1.00E-
100 

1.00E-
91 

2.00E-
92 

4.00E-
91 

2.00E
-93 

 

2.00
E-

101 
2.00E-

96 
1.00E-

93 
6.00E-

27 
8.00
E-15 

Structural 
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31 
          

2.00E-
04 

 42 
            

10
9 

2.00E
-83 

1.00E-
91 

4.00E-
134 

1.00E-
130 

3.00E-
131 

3.00E
-130 

2.00E
-122 

7.00
E-

133 
4.00E-

123 
 

9.00E-
49 

2.00
E-42 

11
0 

7.00E
-19 

1.00E-
14 

3.00E-
12 

4.00E-
11 

3.00E-
12 

8.00E
-12 

6.00E
-14 

4.00
E-14 

2.00E-
14 

 

1.00E-
18 

4.00
E-08 

12
5 

5.00E
-27 

4.00E-
51 

2.00E-
36 

1.00E-
37 

5.00E-
37 

3.00E
-35 

 

3.00
E-44 

2.00E-
36 

 

7.00E-
33 

6.00
E-20 

13
2 

3.00E
-72 

1.00E-
116 

6.00E-
116 

6.00E-
117 

3.00E-
114 

2.00E
-103 

5.00E
-103 

8.00
E-

142 
5.00E-

103 
9.00E-

05 
3.00E-

30 
1.00
E-28 

14
0 

1.00E
-22 

3.00E-
59 

1.00E-
44 

3.00E-
43 

2.00E-
47 

8.00E
-42 

3.00E
-44 

5.00
E-54 

5.00E-
45 

 

1.00E-
05 

1.00
E-04 

14
3 

1.00E
-27 

8.00E-
51 

4.00E-
55 

3.00E-
53 

1.00E-
54 

3.00E
-53 

 

2.00
E-68 

5.00E-
53 

3.00E-
53 

3.00E-
12 

2.00
E-07 

18
0 

1.00E
-19 

2.00E-
85 

2.00E-
132 

6.00E-
130 

1.00E-
121 

1.00E
-127 

5.00E
-136 

4.00
E-

162 
4.00E-

136 
6.00E-

128 
5.00E-

05 
 18

1 
3.00E

-112 0 0 
1.00E-

169 
2.00E-

173 0 0 0 0 0 
2.00E-

09 
 18

2 
7.00E

-17 
1.00E-

11 
7.00E-

23 
3.00E-

25 
4.00E-

25 
3.00E

-25 
 

1.00
E-21 

2.00E-
21 

  

2.00
E-04 

19
8 

3.00E
-100 

2.00E-
164 

7.00E-
161 

3.00E-
166 

3.00E-
165 

6.00E
-159 

4.00E
-158 

1.00
E-

167 
1.00E-

156 
5.00E-

162 
7.00E-

31 
5.00
E-20 

20
4 

1.00E
-44 

2.00E-
54 

1.00E-
43 

9.00E-
44 

2.00E-
44 

5.00E
-46 

 

1.00
E-54 

3.00E-
42 

 

9.00E-
34 

5.00
E-14 

21
5 

6.00E
-80 

1.00E-
154 

2.00E-
164 

 

4.00E-
163 

1.00E
-158 

 

3.00
E-

163 
5.00E-

157 
 

3.00E-
35 

1.00
E-38 

28
8 

 

3.00E-
06 0.001 

       

3.00E-
05 

 32
7 

     

2.00E
-04 

   

2.00E-
04 

  47
2 

  

9.00E-
06 

       

1.00E-
04 

 68
6 

2.00E
-23 

1.00E-
30 

5.00E-
38 

5.00E-
41 

3.00E-
41 

7.00E
-38 

 

4.00
E-40 

2.00E-
32 

3.00E-
38 

  69
7 

3.00E
-05 

2.00E-
22 

3.00E-
20 

3.00E-
21 

8.00E-
21 

5.00E
-20 

 

5.00
E-19 

1.00E-
22 

2.00E-
20 

  70
1 

2.00E
-04 

 

5.00E-
04 

       

3.00E-
04 

 Lysis 
14
1 

     

5.00E
-04 0.001 

 
0.001 

4.00E-
04 

  69
9 

3.00E
-21 

5.00E-
65 

1.00E-
39 

1.00E-
39 

9.00E-
41 

4.00E
-40 

5.00E
-40 

5.00
E-44 

5.00E-
40 

4.00E-
40 

7.00E-
19 

 Translation 

1 
  

5.00E-
30 

4.00E-
24 

1.00E-
25 

1.00E
-23 

 

2.00
E-21 

1.00E-
24 

   2 
            

18 
2.00E

-15 
 

3.00E-
13 

1.00E-
14 

7.00E-
15 

4.00E
-12 

 

2.00
E-15 

2.00E-
13 

6.00E-
12 

  12
8 

            15
5 

 

3.00E-
04 

          22
7 

5.00E
-15 

6.00E-
21 

3.00E-
33 

9.00E-
36 

1.00E-
33 

       29
2 

 

5.00E-
170 0 0 0 0 0 0 0 

   29
3 

            32
9 

  

5.00E-
05 

3.00E-
04 

1.00E-
05 

3.00E
-05 

   

1.00E-
05 
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49
2 

 

6.00E-
52 

6.00E-
51 

1.00E-
50 

2.00E-
53 

1.00E
-51 

7.00E
-56 

8.00
E-50 

3.00E-
55 

   67
0 

3.00E
-19 

 

3.00E-
12 

2.00E-
09 

2.00E-
09 

4.00E
-13 

 

3.00
E-08 

1.00E-
12 

2.00E-
13 

 

1.00
E-08 

67
6 

5.00E
-08 

5.00E-
61 

1.00E-
38 

1.00E-
37 

2.00E-
39 

3.00E
-36 

 

6.00
E-33 

3.00E-
43 

   68
0 

7.00E
-27 

3.00E-
26 

5.00E-
04 

 

3.00E-
04 

   

3.00E-
07 

   70
5 

            70
8 

 

9.00E-
10 

 

2.00E-
06 

4.00E-
04 

  

6.00
E-11 

3.00E-
07 

   71
0 

 

2.00E-
16 

        

2.00E-
18 

 Nucleotide Metabolism 
12
1 

8.00E
-10 

4.00E-
09 

1.00E-
05 

1.00E-
05 

9.00E-
06 

  

5.00
E-06 

  

3.00E-
10 

8.00
E-08 

12
2 

5.00E
-06 

3.00E-
96 

1.00E-
13 

4.00E-
14 

2.00E-
14 

4.00E
-14 

7.00E
-10 

 

7.00E-
10 

5.00E-
14 

1.00E-
12 

1.00
E-15 

12
3 

 

1.00E-
89 

8.00E-
09 

1.00E-
10 

4.00E-
13 

3.00E
-09 

  

1.00E-
05 

3.00E-
09 

  13
5 

          

3.00E-
11 

 19
5 

  

2.00E-
09 

1.00E-
08 

3.00E-
07 

2.00E
-10 

4.00E
-10 

7.00
E-12 

3.00E-
10 

2.00E-
10 

 

4.00
E-46 

22
1 

  

1.00E-
35 

5.00E-
34 

3.00E-
33 

4.00E
-32 

 

3.00
E-43 

5.00E-
33 

1.00E-
32 0.001 

4.00
E-46 

23
8 0.001 

 

7.00E-
04 

4.00E-
04 

3.00E-
04 

  

3.00
E-04 

    24
2 

            24
6 

          

1.00E-
13 

 25
2 

 

3.00E-
14 0.001 

         25
3 

   
0.001 

        26
1 

 

7.00E-
18 

9.00E-
16 

7.00E-
19 

2.00E-
23 

8.00E
-17 

5.00E
-17 

1.00
E-24 

1.00E-
17 

5.00E-
17 

 

5.00
E-24 

26
3 

 

1.00E-
74 

2.00E-
61 

3.00E-
69 

4.00E-
67 

2.00E
-65 

 

5.00
E-79 

1.00E-
65 

2.00E-
66 

  26
6 

5.00E
-06 

1.00E-
08 

     

9.00
E-05 

  

4.00E-
04 

 30
3 

3.00E
-07 

6.00E-
17 

1.00E-
06 

4.00E-
06 

4.00E-
06 

  

1.00
E-05 

2.00E-
04 

   46
0 

 

2.00E-
19 

  

7.00E-
06 

       46
5 

 

2.00E-
25 0.001 

 

2.00E-
29 

  

5.00
E-09 

    58
6 

  
0.001 

4.00E-
05 

1.00E-
06 

  

1.00
E-11 

    58
7 

  

5.00E-
08 

4.00E-
11 

3.00E-
10 

  

4.00
E-16 

    62
2 

  

3.00E-
04 

2.00E-
04 

3.00E-
04 

       69
4 

2.00E
-17 

2.00E-
47 

2.00E-
58 

2.00E-
58 

2.00E-
57 

1.00E
-52 

 

3.00
E-46 

1.00E-
49 

1.00E-
52 

5.00E-
12 

3.00
E-06 

70
9 

  

9.00E-
04 

3.00E-
05 

1.00E-
04 

      

6.00
E-08 

Tot
al 84 141 121 117 120 101 31 102 100 63 40 33 
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Supplementary Table 3-S3. T4 core proteins found in Atu_ph07. *Atu_ph07 matches 
with E-values above 1E-10 are considered “yes” matches and those between 1E-10 and 
1E-03 are “unresolved.” Matches with E-values lower than 1E-03 were not considered 
significant. 
 

T4 
protein T4 protein function 

Match in 
Atu_ph07* 

Identity 
(%) E-value 

Query 
cover 
(%) 

Atu_ph07 
protein name 

Atu_ph07 
gp # 

Phage morphogenesis  
      

gp4 
head completion 
protein yes 37 6.00E-21 92 

head 
completion 
protein 125 

gp5 
baseplate lysozyme 
hub component unresolved 26 0.001 18 

hypothetical 
protein 699 

gp13 
head completion 
protein yes 20 3.00E-08 93 

hypothetical 
protein 143 

gp15 
tail completion 
protein yes 20 8.00E-06 72 

hypothetical 
protein 140 

gp17 

subunit of the 
terminase for DNA 
packaging yes; two 28 7.00E-43 68 

terminase 
DNA 
packaging 
enzyme large 109 

" 
  

31 2.00E-08 47 
terminase 
large subunit 110 

gp18 tail tube subunit yes; two 32 8.00E-29 39 
tail sheath 
monomer 132 

" 
  

37 4.00E-05 9 
structural 
protein 180 

gp20 
head portal vertex 
protein yes 25 4.00E-21 51 

portal vertex 
of the head 198 

gp21 
prohead core protein 
and protease yes 33 8.00E-15 66 

prohead core 
protein 204 

gp22 prohead core protein unresolved 19 5.00E-03 94 

DNA double-
strand break 
repair Rad50 
ATPase 214 

gp23 
precursor of major 
head protein yes 31 8.00E-14 99 

major capsid 
protein 215 

gp25 
base plate wedge 
subunit yes 28 2.00E-05 66 

hypothetical 
protein 182 

gp34 
proximal tail fiber 
protein subunit unresolved 26 4.50E-02 7 

EF hand 
domain/PKD 
domain 
protein 240 

gp36 
small distal tail fiber 
protein subunit unresolved 23 2.80E-01 98 

hypothetical 
protein 574 

DNA replication, repair, and 
recombination 

      
gp43 DNA polymerase yes; two 26 4.00E-27 28 

DNA 
polymerase 277 

" 
  

25 4.00E-12 32 
DNA 
polymerase 276 
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gp44 
sliding clamp loader 
complex tetramer yes 27 3.00E-19 90 

replication 
factor C small 
subunit 312 

gp41 
helicase-primer 
complex hexamer yes 25 4.00E-30 79 

DNA 
primase/helic
ase 70 

gp46 

subunit of a 
recombination 
nuclease complex 
required for 
initiation of DNA 
replication yes; two 25 6.00E-51 98 

recombinatio
n-related 
endonuclease 691 

" 
  

25 1.00E-03 29 
hypothetical 
protein 108 

gp47 

subunit of a 
recombination 
nuclease complex 
required for 
initiation of DNA 
replication yes 29 8.00E-16 62 

recombinatio
n-related 
endonuclease 693 

UvsW 

recombination 
DNA-RNA helicase, 
DNA-dependent 
ATPase yes 23 2.00E-27 72 

hypothetical 
protein 80 

Auxillary metabolism 
      

nrdA 

subunit of an 
aerobic 
ribonucleotide 
reductase complex  yes 23 2.00E-16 60 

ribonucleotid
e reductase of 
class Ia 
(aerobic) 122 

nrdB 

subunit of an 
aerobic 
ribonucleotide 
reductase complex  unresolved 21 1.00E-03 75 

ribonucleotid
e reductase of 
class Ia 
(aerobic) 123 

Gene expression 
      

gp55 
sigma factor for late 
transcription  unresolved 31 2.00E-07 50 

hypothetical 
protein 694 
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Supplementary Table 3-S4. Amino acids, anticodons, and tRNAs encoded in the 
Atu_ph07 genome. 
 

Amino 
acid Anticodon 

Number 
of tRNAs 

Ala TGC 1 

Arg ACG 1 
TCT 1 

Asp GTC 1 
Cys GCA 1 

Gln TTG 2 
CTG 1 

Glu TTC 1 

Gly GCC 1 
TCC 1 

His GTG 1 
Ile GAT 1 

Leu TAG 1 
CAA 1 

Lys CCT 1 
Met CAT 3 
Phe GAA 2 
Pro TGG 3 

Ser TGA 2 
GCT 1 

Trp CCA 1 
Tyr GTA 2 
Val TAC 1 

Suppressor TCA 1 
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Supplementary Table 3-S5. Bacteriophage Atu_ph07 structural proteins identified by 
ESI-MS/MS 
 

Gp 
# 

RAST assigned function Updated assigned 
function 

Band Nº  
(most abundant) 

Protein 
MW 
(kDa) 

Nº of 
unique 

peptides 

Sequence 
coverage, 

% 
20 Putative internalin  1 127,12 1 1.11 
21 Hypothetical protein  5 39,09 3 10.50 
 
31 Hypothetical protein 

Phage tail fiber-like 
protein 

1,2,3,4,5,6 (5) 45,47 9 27.70 

32 Hypothetical protein  1,2,3,4,5,6,7 (7) 34,14 7 27.32 
33 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(6) 
37,24 21 64.88 

40 Hypothetical protein  13 15,00 1 8.33 
41 Hypothetical protein  8,9,13 (13) 10,62 3 35.10 
42 Conserved phage mega 

protein 
 7,8,9,10,11,12,13 (11) 34,60 13 42.78 

43 Hypothetical protein  8,9,12,13 (13) 14,72 2 24.20 
44 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(10) 
86,18 21 27.33 

46 Hypothetical protein  13 9,14 3 54.70 
47 Hypothetical protein  6,7,8,9,10,11,12 (11) 13,97 2 22.10 
48 Hypothetical protein  13 9,11 3 37.00 
50 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(11) 
14,36 7 57.00 

53 Hypothetical protein  2,3,4,5,6,7,8,9,11,12,13 (9) 87,08 31 45.52 
54 Hypothetical protein  1,2,3,4 (4) 56,49 15 30.83 
55 Hypothetical protein  1,2,5,6,7,8 (8) 29,65 3 12.11 
56 Hypothetical protein  1,3,4,5,6,7,8 (8) 30,93 11 46.55 
57 Hypothetical protein  3,4,5,6,7,8 (8) 30,16 9 38.19 
58 Hypothetical protein  3,4,5,6,7,8 (8) 29,20 7 36.52 
59 Hypothetical protein  3,4,5,6,7 (7) 31,19 7 34.10 
60 Hypothetical protein  4,5,6,7,8,9 (8) 29,55 10 42.30 
61 Hypothetical protein  4,5,7,8 (8) 29,96 9 45.30 
62 Hypothetical protein  1,3,4,5,6,7,8,9 (8) 29,61 12 44.40 
63 Hypothetical protein  1,3,4,5,6,7,8,9,10,11,12,13 (8) 41,40 13 38.92 
64 Hypothetical protein  4,5,6,7,8 (8) 29,96 4 17.20 
65 Hypothetical protein  3,4,5,7 (7) 32,16 10 36.80 
67 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(8) 
26,32 16 66.98 

68 Hypothetical protein  9,11,12,13 (13) 9,95 5 63.82 
69 Hypothetical protein  13 11,73 1 11.80 
72 Hypothetical protein  8 27,59 1 4.60 
76 Hypothetical protein  11,12 (12) 14,88 4 33.90 
106 Hypothetical protein RecA-like protein 3,5 (5) 40,53 1 3.26 
107 

Hypothetical protein 
ssDNA-binding 

protein 
5,6,7,8,11,13 (7) 38,06 3 13.21 

108 
Hypothetical protein 

 1,2,3,4,5,6,7,8,9,10,11,12,13 
(13) 

97,96 25 31.24 

109 Gp17 terminase DNA 
packaging enzyme large 
subunit 

 11,12 (11) 68,13 4 10.46 

110 Phage terminase large subunit  12,13 (13) 14,29 1 7.32 
111 Hypothetical protein  9,13 (13) 12,80 2 23.90 
112 Autotransporter  1,2,3,4,5 (2) 76,62 15 29.56 
113 Hypothetical protein  1,2,3,4,5,6,7,8,9,11,12,13 (7) 25,06 11 61.70 
122 Ribonucleotide reductase of 

class Ia (aerobic) alpha subunit 
 3 62,00 1 1.83 
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(EC 1.17.4.1) 
125 Phage head completion 

protein 
 13 18,50 1 8.12 

126 Hypothetical protein  4,6 (6) 36,51 4 15.20 
127 Hypothetical protein  1,2,3,4,5,6,7,8,9, 12,13 (9) 21,37 7 52.83 
132 

Phage tail sheath monomer 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(2) 
117,53 31 41.14 

133 Hypothetical protein  9 20,79 1 4.86 
 
140 

Hypothetical protein 

Tail sheath 
stabilizer and 

completion protein 

1,2,3,4,5,8 (4) 51,67 9 26.91 

142 Hypothetical protein  3,4,5,6 (5) 41,07 3 10.20 
 
143 Hypothetical protein 

Head completion 
adaptor; neck  

3,4,5,6,7 (7) 28,45 4 18.40 

170 Hypothetical protein  1,2,3,4,5,6,7,8,9 (1) 31,89 8 35.16 
176 Hypothetical protein  1,2,3,4,5,6,7 (4) 66,07 14 36.20 
177 Hypothetical protein  1,2,3,4,6,7,8,9,10,11 (11) 21,66 2 11.60 
181 Hypothetical protein Baseplate wedge 1,2,3 (2) 136,79 11 11.85 
182 Hypothetical protein Baseplate wedge 12,13 (12) 15,07 3 22.50 
183 Hypothetical protein  9 21,97 1 4.74 
185 Hypothetical protein  13 10,13 2 12.80 
188 Hypothetical protein  7,8 (8) 18,34 4 26.20 
196 Hypothetical protein  1,2,3,4,13 (2) 57,94 14 30.20 
197 Hypothetical protein  1,2,3,4,5 (1) 87,30 15 23.12 
198 Phage portal vertex of the 

head T4-like phage Gp20 
 1,2,3,4,5 (3) 66,31 20 43.00 

199 Hypothetical protein  12,13 9,01 1 27.30 
200 Topoisomerase IV subunit A 

(EC 5.99.1-) 
 3,4,5,6,7,8,9,10,11,12,13 (9) 44,81 4 16.96 

204 
Phage prohead core protein 

 1,2,3,4,5,6,7,8,9,10,11,12,13 
(11) 

22,97 7 36.20 

205 Hypothetical protein  4,5,6,7,8,9,10,11,12,13 (9) 29,01 10 43.60 
206 Hypothetical protein  4,5,6,7,8,9 (8) 25,47 6 28.00 
210 Hypothetical protein  13 8,75 1 20.30 
213 MJ0042 family fingerlike 

protein 
 2,3,4,5,7,8,9,10,11,12,13 (13) 32,88 7 20.60 

215 Phage major capsid protein 
of Caudovirales (T4-like 
gp23) 

 1,2,3,4,5,6,7,8,9,10,11,12,13 
(6) 

43,51 10 40.56 

238 ADP-ribose pyrophosphatase 
(EC_3_6_1_13) 

 9 18,68 1 6.06 

239 Hypothetical protein  1,4,5,6,7,8,9,10,11,12 (11) 15,80 3 40.60 
240 EF hand domain PKD domain 

protein 
 5,6 (5) 36,31 2 13.90 

241 Hypothetical protein  1,2,3,4,5,6 (6) 43,70 6 18.24 
250 Hypothetical protein  7,8,13 (13) 26,25 2 7.66 
257 Hypothetical protein  1,2,3,5,6,7,8,9,10,11,12 (11) 16,73 4 43.26 
264 Hypothetical protein  5,7 (5) 46,80 2 4,56 
275 Hypothetical protein  2,5,7,8 (8) 27,85 1 3.63 
284 Hypothetical protein  1,3,4,5,6,7,8,9 (8) 25,12 7 50.20 
285 Hypothetical protein  12 14,30 3 23.60 
286 Hypothetical protein  2,3,4,5 (4) 38,73 8 33.29 
287 Hypothetical protein  1,2,3,4,5,6,7,8 (5) 38,49 4 18.70 
288 

Phage tail fiber protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(2) 
61,03 14 35.90 

289 Hypothetical protein  5,7,8,9,11,12,13 (13) 12,51 2 26.40 
290 Hypothetical protein  12 15,56 1 15.20 
294 Hypothetical protein  4,5,7,8,9,10,11,12,13 (13) 12,38 4 42.20 
295 Hypothetical protein  11 14,92 3 18.90 
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303 Probable NUDIX hydrolase  3,11 (11) 14,75 1 10.00 
305 Hypothetical protein  12 27,33 2 8.75 
306 Hypothetical protein  9,10,12 (9) 20,39 2 16.40 
311 Hypothetical protein  13 11,83 3 42.30 
314 Hypothetical protein  12 12,81 1 16.20 
320 Streptococcal hemagglutinin 

protein 
 1,3,4,5,6 (6) 40,73 4 18.80 

321 Hypothetical protein  1,2,3,4 (1) 36,02 2 8.81 
322 Hypothetical protein  2,4,6,7 (6,7) 33,63 2 7.3 
323 Hypothetical protein  1,2,3,4,5,6,7,8,9,11,13 (6) 42,40 17 62.20 
324 Hypothetical protein  1,2,3,4,5,6,7 (7) 34,76 6 26.50 
325 Hypothetical protein  1,2,3,4 (3) 77,23 13 26.03 
326 Hypothetical protein  1,2,3,4,5 (1) 75,68 9 16.70 
327 Phage tail fiber protein  1,2,3,4,5,6,7,8,9 (2) 72,15 14 37.40 
328 Hypothetical protein  1,2,7,9 (1) 93,95 8 12.74 
329 Extracellular serine proteinase 

precursor (EC 3.4.21-) 
 1,2,13 (1) 139,38 3 2.08 

377 Hypothetical protein  1,2,3,4,5 (4) 49,73 6 16.70 
381 Hypothetical protein  11 20,00 2 15.90 
390 Hypothetical protein  13 11,75 1 9.00 
393 Phage protein  12,13 (13) 11,30 2 29.10 
394 No significant homology  1,2,3,4,8 (4) 55,10 18 41.01 
407 Hypothetical protein  1,2,3,4,5,6,7,8 (6) 39,67 17 44.40 
408 Hypothetical protein  1,2,3,4,5,6,7,8,9 (8) 30,60 6 24.78 
443 Hypothetical protein  8,12 (12) 13,04 1 7.48 
466 Hypothetical protein  1,2,3,4,5,6,7,8,9,11,12,13 (4) 52,32 21 62.80 
470 Hypothetical protein  13 14,60 2 18.50 
472 Phage tail fiber protein  1,2,3 (2) 80,58 14 28.10 
475 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(11) 
31,66 14 39.54 

482 Hypothetical protein  7,8,9,10,11,12,13 (12) 31,68 9 36.70 
483 Hypothetical protein  5,6,7,8,9,10,11,12 (12) 33,72 16 55.80 
487 Hypothetical protein  1,4,5,6,7,8,9,10,11,12,13 (13) 12,99 8 50.90 
498 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(7) 
35,16 23 75.50 

514 Hypothetical protein  12,13 (13) 7,10 2 31.70 
544 Hypothetical protein  4,5,6,7,8,9,10,12,13 (13) 31,80 9 32.06 
548 Hypothetical protein  12 13,65 3 40.00 
561 Hypothetical protein  1,2,3,4,5,6,7,8,9,10,11,13 (9) 17,79 7 52.16 
574 Hypothetical protein  1,5 (5) 52,57 6 18.10 
576 Hypothetical protein  1,4,5 (4) 52,20 4 7.23 
577 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(12) 
14,42 5 52.10 

578 Hypothetical protein  2,3,4,5,6,7,8,9,10,11 (9) 19,16 4 43.90 
594 Hypothetical protein  3,7,8,9,12,13 (13) 23,87 15 57.51 
606 Hypothetical protein  13 8,62 1 13.90 
616 Hypothetical protein  1 32,06 1 4.67 
 
 
624 

Putative phage related protein 
precursor 

D-alanyl-D-alanine 
carboxypeptidase 

12,13 (12) 14,79 1 9.85 

627 Hypothetical protein  8 27,46 1 3.69 
636 Hypothetical protein  13 11,55 2 21.60 
639 Hypothetical protein  12 16,38 3 29.60 
661 Hypothetical protein  12 14,72 1 10.40 
668 Hypothetical protein  1,2,3,4,5,6,7,8,9,10,11,12 (11) 20,34 8 50.59 
672 Hypothetical protein  9,10 (9) 22,56 3 23.15 
675 

Hypothetical protein 
 1,2,3,4,5,6,7,8,9,10,11,12,13 

(8) 
24,87 3 20.60 

696 Hypothetical protein  2,3,4,5,7,8 (4) 50,11 5 13.90 
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697 Hypothetical protein Baseplate wedge 9,10,11,12,13 (13) 12,32 3 38.50 
698 Hypothetical protein  1,2,3 (3) 72,75 7 11.50 
 
701 

PE-PGRS virulence 
associated protein 

Tail tape measure 
protein 

5,6,7,8,9 (9) 21,77 8 68.80 

707 Hypothetical protein  9 24,28 1 3.98 
aItalics: Proteins with only a single peptide or low coverage                                                                  
Bold: Proteins annotated as structural proteins within the head, neck, tail or tail 
fibers 
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Abstract 
 

In the rhizosphere, bacteria-phage interactions are likely to have important 

impacts on the ecology of microbial communities and microbe-plant interactions. To 

better understand the dynamics of Agrobacteria-phage interactions we have isolated 

diverse bacteriophages which infect the bacterial plant pathogen, Agrobacterium 

tumefaciens. Here, we complete genomic characterization of Agrobacterium tumefaciens 

phages Atu_ph04 and Atu_ph08. Atu_ph04, a T4-like phage belonging to the Myoviridae 

family, was isolated from waste water and has a 143,349 bp genome which encodes 223 

predicted open reading frames (ORFs). Based on phylogenetic analysis and whole 

genome alignments, Atu_ph04 is a member of a newly described T4 superfamily which 

contains other Rhizobiales-infecting phages. Atu_ph08, a member of the Podoviridae T7-

like family, was isolated from waste water, has a 59,034 bp genome and encodes 75 

ORFs. Based on phylogenetic analysis and whole genome alignments, Atu_ph08 may 

form a new T7 superfamily which includes Sinorhizobium phage PCB5 and 

Ochrobactrum phage POI1126. Atu_ph08 is predicted to have lysogenic activity, as we 

found evidence of an integrase and several transcriptional repressors with similarity to 

proteins in transducing phage P22. Together, this data suggests that Agrobacterium 

phages are diverse in morphology, genomic content, and lifestyle. 

 

Keywords: Agrobacterium tumefaciens; bacteriophage; phage; biocontrol 

 

Introduction 
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 Agrobacterium tumefaciens is a plant pathogen that causes damage to crops 

worldwide [1]. This Gram negative bacterium transforms plant cells, which results in 

over-proliferation of host cells, causing crown gall disease in the form of tumors that 

block the plant from receiving proper nutrients. The interactions between Agrobacterium 

and plants have been studied extensively, leading to innovations in plant biotechnology 

[2,3]. In contrast, little is known about the natural predators of Agrobacterium. Studies of 

bacteriophages that prey upon bacterial plant pathogens such as Agrobacterium should 

reveal effective biocontrol strategies for host cell killing that can be exploited to limit 

phytopathogenesis [4,5]. With the rise of antibiotic resistant bacteria, there has been an 

increased interest in phage research; however, the diversity of phages that infect soil 

bacteria is under-sampled relative to phages of human pathogens and marine 

environments [6,7]. Understanding the diversity of phages in soil is important because of 

their impact on host populations, community interactions, and biogeochemical cycles [8]. 

 Here, we sought to further explore the diversity of phages that infect 

Agrobacterium tumefaciens. Currently, there are 4 characterized lytic phages that infect 

Agrobacterium: 7-7-1 [9], Atu_ph02 and Atu_ph03 [10], and Atu_ph07, a jumbo phage 

[11]. Phage 7-7-1 and Atu_ph07 are T4-like Myoviridae and Atu_ph02 and Atu_ph03 are 

T7-like Podoviridae. Here, we report characteristics of 2 additional phages, Atu_ph04 

and Atu_ph08, and compare them to related phages, including the extensively-

characterized Escherichia phage T4 [12,13] and P1.  

 

Materials and Methods 

Bacterial Strains and Culture Conditions  
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Strains used in this study are shown in Table 4-1. Agrobacterium tumefaciens 

strains were cultured in Lysogeny Broth (LB), with the exception of A. tumefaciens strain 

LBA4404, which was grown in yeast mannitol (YM) medium. Agrobacterium vitis was 

cultured using potato dextrose media (Difco), Rhizobium rhizogenes was grown in 

mannitol glutamate yeast (MGY) medium and Caulobacter crescentus was grown in 

peptone-yeast extract (PYE) medium [14]. These strains were grown at 28qC. 

Escherichia coli was grown in LB at 37qC. Liquid cultures were grown with shaking and 

solid medium was prepared with 1.5% agar. 

 

Phage Isolation and Purification  

 Phage Atu_ph04 was isolated from an effluent sample from a waste water 

treatment plant in Columbia, MO, while Atu_ph08 was isolated from a waste water 

sample from Reno, Nevada. A. tumefaciens strain C58 was used as a host strain, using the 

multiple-enrichment isolation method as described previously [10,15]. 

 

Plaque Assays 

Whole-plate plaque assays were performed with the soft agar overlay method 

[10]. Briefly, 100 µl cells, grown at an optical density of 600 nm (OD600) of ∼0.2 and 

diluted to OD600 of 0.05, were mixed with 100 µl phage for 15 min at room temperature 

prior to dilution to allow attachment. This mixture of cells and phage were serially 

diluted in LB and added to 3 ml of melted 0.3% LB-soft agar. The solution was then 

overlaid onto a 1% LB-agar plate and swirled for even distribution. For host range 

testing, serial dilutions of phage were spotted onto a bacterial lawn. A mixture of 100 µl 
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cells (OD600 of ∼0.2) and 0.3% LB-soft agar was overlaid onto a 1% LB-agar plate. Once 

the cells solidified, 5 µl of phage dilutions were spotted onto the soft agar. Plates were 

incubated for 1–2 days to allow plaque formation. 

 

Preparation of Virion DNA, Genome Sequencing, and Genome Assembly 

DNA was isolated from purified virions using phenol-chloroform extraction as 

described previously [10]. Libraries for genome sequencing were constructed from virion 

DNA following the manufacturer’s protocol and reagents supplied in Illumina’s TruSeq 

DNA PCR-free sample preparation kit (FC-121-3001) [10]. The purified library was 

quantified using a KAPA library quantification kit (KK4824), and library fragment sizes 

were confirmed by Fragment Analyzer (Advanced Analytical Technologies, 

Inc.). Libraries were diluted, pooled, and sequenced using a paired-end 75-base read 

length according to Illumina’s standard sequencing protocol for the MiSeq. Library 

preparation and sequencing were conducted by the University of Missouri DNA core 

facility. 

 

DNA Restriction Analysis 

 Phage genomic DNA was digested with restriction endonucleases from New 

England Biolabs using the standard protocol. All reactions contained 500 ng DNA, which 

was incubated for 2 h at 37qC. Digested DNA was analyzed on a 0.7% agarose gel. Gel 

electrophoresis was performed at 100 V for 1 h and stained with SYBR Safe DNA Gel 

Stain (Thermo Scientific).  
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Growth Curves 

Growth curves were performed by growing bacteria at a starting OD600 of 0.05 in 

LB. Cells were mixed with purified phage in liquid media at the MOIs indicated. Cell 

growth was measured by the culture turbidity, represented by the absorbance at OD600. 

Measurements were taken every 10 min for 36 h. Cells were grown at 28qC and shaken 

for 1 min prior to each reading. The OD600 was measured using a BioTek Synergy H1 

Hybrid reader. Results were taken in quadruplicate and averaged.  

 

Transmission Electron Microscopy 

Virion morphology was observed by applying a small volume of concentrated 

purified virions onto a freshly, glow-discharged carbon-coated TEM grid and negatively 

stained with 2% Nano-W (Nanoprobes, LLC, Brookhaven NY) or 2% uranyl acetate. 

Specimens were observed on a JEOL JEM-1400 transmission electron microscope at 120 

kV. Capsid diameters of Atu_ph04 (n=103 virions) and Atu_ph08 (n=61 virions), as well 

as tails of Atu_ph04 (n=15 virions) and Atu_ph08 (n=15 virions) were measured using 

ImageJ (v.2.0.0) [16].  

 

Genome Annotation 

The sequences were annotated by the RAST server [17] and ORFs with no 

homology in the database, or ORFans, were defined as having an e-value greater than 1e-

03 by PSI-BLAST v 2.8.1 [18]. All gene products were analyzed by TMHMM [19]. The 

presence of tRNAs were detected by tRNAscan-SE (version 2.0) [20]. G + C content was 
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analyzed by Geneious (v.11.0.5) [21]. Pairwise (%) nucleotide identity was determined 

using the Mauve plugin in Geneious [22]. 

 

Phylogenetic Analysis  

Homologs of the large terminase subunit in Atu_ph08 and portal vertex protein in 

Atu_ph04 were identified by BLASTp using an E-value cutoff of 1e-03. Protein 

alignment was performed by Geneious using ClustalW (v.2.1) and the BLOSUM matrix 

[21,23]. Maximum-likelihood trees based on phylogeny (PhyML) were built using a 

Geneious plugin with 100 bootstrap models [24].  

 

GenBank Accession Number 

The genome sequences of Agrobacterium phage Atu_ph04 and Atu_ph08 are 

available in GenBank under accession numbers MF403007 and MF403009, respectively. 

 

Results and Discussion 

Phage Atu_ph08 has Higher Lytic Activity than Atu_ph04  

Waste water includes agricultural runoff and provides an enriched mixture of 

bacterial populations making this a prime environment for isolation of bacteriophages. 

We isolated phages that infect A. tumefaciens from waste water using a phage enrichment 

protocol as described previously [10]. Infection of A. tumefaciens C58 with Atu_ph04 or 

Atu_ph08 results in the formation of small, clear plaques (Figure 4-1A) or larger, clear 

plaques (Figure 4-1B), respectively. Negative-staining transmission electron microscopy 

(TEM) of Atu_ph04 reveals an icosahedral head and tail (Figure 4-1C) classifying  
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Figure 4-1. Characterization of Atu_ph04 and Atu_ph08. Plaque assays of Atu_ph04 (A) 

and Atu_ph08 (B). Scale bars represent 10 mm. Transmission electron microscopy of (C) 

Atu_ph04 shows it is in the Myoviridae family. Scale bars represent 100 nm. (D) 

Atu_ph08 is in the family Podoviridae. Scale bar (right) represents 100 nm and scale bar 

in inset represents 25 nm. (E) Growth curve of A. tumefaciens C58 cells growing in the 

presence and absence of phage at an MOI of 0.001.   
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Atu_ph04 in the family Myoviridae [25]. The average capsid head diameter of Atu_ph04 

is 84.7 nm and its tail length is 79.8 nm. TEM of Atu_ph08 reveals the presence of an 

icosahedral head with an average diameter of 65.0 nm and a short, stubby tail with a 

length of 21.9 nm (Figure 4-1D) indicating that this phage belongs to the Podoviridae.  

Growth curves of A. tumefaciens strain C58 infected with Atu_ph04 and 

Atu_ph08 at an MOI of 0.001 reveals that Atu_ph04 begins to exhibit lethal activity at 4 

h post-infection, whereas the modest lytic activity of Atu_ph08 is observable after 8 h 

post-infection (Figure 4-1E). While both phages exhibit lytic activity, Atu_ph04 would 

be preferred for biocontrol purposes because it significantly reduces cell turbidity. 

 

Host Ranges of Atu_ph04 and Atu_ph08 are Limited to A. tumefaciens Strains  

Host range was determined by performing plaque assays of phage dilutions and is 

summarized in Table 4-2. Atu_ph04 causes lysis of most C58-derived A. tumefaciens 

strains, including C58, EHA101, EHA105, GV3101, but does not infect AGL-1. 

Furthermore, Atu_ph04 is able to lyse NTL4 and LBA4404 but unable to infect A. 

tumefaciens Chry5 or other bacterial species. Atu_ph08 lyses C58-derived A. 

tumefaciens, however it is only moderately infective in AGL-1. Atu_ph08 does not infect 

Chry5 or other bacterial species. This host range is comparable to the range of other A. 

tumefaciens-infecting phages described. The narrow range suggests that Atu_ph04 and 

Atu_ph08 will not disrupt other, beneficial bacterial strains in the rhizosphere, an 

important consideration when selecting phages for biocontrol.  

 

Genomic Characteristics of Atu_ph04  
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The genome of Atu_ph04 is 143,349 bp in length, with a G + C content of 49.4% 

(Figure 4-2, Supplementary Table 4-S1, Table 4-3). Interestingly, attempts to digest the 

Atu_ph04 genomic DNA with 9 different restriction enzymes failed, despite the presence 

of the restriction sites in the genome sequence, suggesting that the DNA may be modified 

(Supplementary Figure 4-S1). The genome of Atu_ph04 encodes 223 open reading 

frames (ORFs), of which, 73 have predicted functions, 83 are ORFans, meaning they 

have no obvious homologs, and 67 conserved hypothetical proteins. Atu_ph04 only 

encodes one predicted tRNA, but its anticodon is undetermined, as predicted by 

tRNAscan-SE v 2.0 [20].  

Of the 73 gene products with predicted functions encoded by Atu_ph04, many 

include structural proteins such as the portal vertex of the head (gp72), the major capsid 

protein (gp76), and a T4-like phage large terminase (gp53). The Atu_ph04 major capsid 

protein shares 76% identity with Sinorhizobium phage phiM9 major head subunit, gp23, 

as characterized by Johnson, et al [26]. Atu_ph04 also encodes DNA synthesis proteins, 

including DNA topoisomerase (gp110, gp113), nucleotide metabolism proteins, such as 

ribonucleotide reductase of class 1a alpha (gp24) and beta subunits (gp25), and proteins 

involved in translation, like RNA polymerase sigma factor (gp89, 119).  

 

Phylogenetic Analysis Shows Atu_ph04 is Closely Related to T4-Like Sinorhizobium 

Phage phiM9 and Rhizobium Phage vB_RleM_P10VF 

Phage Atu_ph04 shares pairwise identity with Rhizobium phage 

vB_RleM_P10VF (21.6%) and Sinorhizobium phage phiM9 (19.7%) and whole genome 

alignments constructed using Mauve [22] reveal that the three genomes contain blocks of  
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Figure 4-2. Genome annotation of Atu_ph04, color-coded by functional annotation. G + 

C content represented by inner circle: AT=green and GC=blue. 
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genomic synteny (Figure 4-3A) suggesting that Atu_ph04 joins this recently-described 

group of T4 superfamily phages [26]. This analysis is consistent with the phylogenetic 

tree built using an alignment of the portal vertex protein (Figure 4-3B). This group of 

rhizophages is clustered into a larger group of cyanophages and Synechococcus phages. 

Comparative analysis of the gene products of Atu_ph04 with those of several 

representative T4-like phages confirms a relatively high degree of gene conservation 

among Rhizobium phage vB_RleM_P10VF and Sinorhizobium phage phiM9 

(Supplementary Table 4-S2).  

 

Atu_ph04 is a T4-like Phage but Lacks Several T4 Core Proteins 

 Though Atu_ph04 is placed in the T4 superfamily, Atu_ph04 only shares 4.5% 

pairwise identity with Enterobacteria phage T4. To determine the relationship between 

Atu_ph04 and T4, we performed a comparative analysis matching T4 core proteins with 

the Atu_ph04 genome (Supplementary Table 4-S3). The genome of Atu_ph04 encodes 

putative homologs of 14 of the 22 T4 core proteins (with an E-value > 1E-03); however, 

it is missing key T4 core proteins, including some structural proteins. Though the 

Atu_ph04 genome encodes a T4-like gp21, the prohead core protein, it does not encode 

gp22, another prohead core protein that is essential in phage T4 [12]. Similar to phages 

phiM9 and vB_RleM_P10VF, Atu_ph04 also has a split T4 gp5 baseplate hub protein 

(gp54, gp213). The Atu_ph04 genome also lacks obvious homologs of T4-like tail fibers 

(T4 gp34, 36). The absence of T4-like tail fibers in the Atu_ph04 genome 

(Supplementary Table 4-S3) may be compensated by the presence of gp222, a predicted 

tail fiber protein and that is conserved in phiM9 and vB_RleM_P10VF (Supplementary  
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Figure 4-3. Phylogenetic analysis of Atu_ph04 with its relatives. (A) Mauve genome 

alignment of Atu_ph04, Sinorhizobium phage phiM9, and Rhizobium phage 

RleM_P10VF. (B) Phylogenetic tree of portal vertex protein.  
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Table 4-S2). This difference in tail fiber proteins likely allows this group of rhizophages 

to infect a different host than T4 does. 

Another feature of Atu_ph04, phiM9, and vB_RleM_P10VF genomes is the lack 

of genes encoding T4 protein gp33, which is involved in late transcription. Instead, it is 

hypothesized that phiM9 and vB_RleM_P10VF encode an RpoE stress response sigma 

factor, which compensates for the missing protein [26]. In the Atu_ph04 genome, not 

only is T4 protein gp33 missing, but the core sigma factor for late transcription protein 

gp55 is also not encoded. The Atu_ph04 genome encodes a DNA-directed RNA 

polymerase RpoE sigma factor (gp89) that shares 20.3% pairwise identity with the sigma 

factor in phiM9. It also encodes gp119, a putative sigma factor for late transcription, 

which shares 49% identity with the one encoded by phiM9. Additionally, the Atu_ph04 

genome encodes T4 core protein NrdA (gp24), the alpha subunit of ribonucleotide 

reductase class 1a, which is involved in nucleotide metabolism. Yet, instead of nrdB, 

which encodes the beta subunit in T4, it encodes a presumably diverged ribonucleotide 

reductase class 1a, beta subunit homolog (gp25), adjacent to its alpha partner. Together, 

these data suggest that the rhizophages have diverged from the T4-phages with respect to 

regulation of transcription throughout the phage replication cycle and nucleotide 

metabolism. 

 

Major Gene Categories of Atu_ph04 

The Atu_ph04 genome encodes 24 predicted structural gene products, including 2 

putative tail fiber proteins (gp1, 222), 4 tail completion and sheath proteins (gp66, 70, 71, 

218), 11 baseplate subunits (gp41, 42, 43, 54, 82, 83, 84, 93, 94, 213, 219), 4 capsid head 
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proteins (gp69, 72, 74, 76), 1 terminase (gp53), and 2 neck proteins (gp215, 216). Protein 

VrlC (gp220) is predicted to be responsible for the structure of double-layered, or double 

ring-like, baseplates [27,28], which are a feature of some T4-like phages but not T4 itself. 

Atu_ph04 has an abundance of genes involved in DNA replication, repair, and 

recombination. It encodes 34 DNA-associated proteins involved in DNA replication, 

repair, and recombination. The DNA replication proteins include 2 DNA primases (gp26, 

gp195), single-stranded DNA-binding proteins (gp47, 67), ribonuclease H (gp63) [29], 

DNA helicase (gp78), two topoisomerase subunits (gp110, 113), and 3 sliding clamp 

loader subunits (gp122, 123, 124). The DNA polymerase is predicted to be gp133. There 

is a cluster of DNA-associated proteins: DNA primase/helicase (gp97), a putative 

holliday junction resolvase (gp98), 5’-deoxynucleotidase (gp100), a deoxynucleotide 

monophosphate kinase (gp101), and deoxycytidylate 5-hydroxymethyltransferase 

(gp104).  

The presence of 3 putative homing endonucleases (gp52, 58, 68) in close 

proximity to the large terminase (gp53) is consistent with the hypothesis that these 

endonucleases are involved in DNA packaging [30]. Gp60 shares similarity with T4 

protein DenV, which is responsible for the removal of pyrimidine dimers caused by UV 

damage, a process necessary for DNA repair [31].  

Several proteins involved in nucleotide metabolism are often encoded by phages. 

The Atu_ph04 genome encodes 6 proteins involved in this process. These include the 

MutT/Nudix family protein (gp17), a putative glutaredoxin (gp23), ribonucleotide 

reductase alpha (gp24) and beta (gp25) subunits, thymidylate synthase (gp145), and GT1 

glycosyltransferase (gp148). 
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Atu_ph04 also encodes several genes that enhance the survival of their bacterial 

hosts. One such example is the phosphate starvation-inducible protein PhoH (gp87), 

which is suggested to enhance the phosphate metabolism in the host under stress [32]. 

Another bacterial gene product (gp6) encodes UDP-galactopyranose mutase, which is 

involved in the synthesis of the essential bacterial cell wall component, galactofuranose 

[33]. Finally, Atu_ph04 encodes 2 putative lysis proteins: gp10, which is an N-

acetylmuramoyl-L-alanine amidase, and gp116, which is a predicted hydrolase of the 

conserved HD superfamily consistent with our classification of Atu_ph04 as a lytic 

phage.  

 

Atu_ph08 Genomic Summary  

The genome of Atu_ph08 is 59,034 bp in length, with a G + C content of 59.7% 

(Figure 4-4, Table 4-3, Supplementary Table 4-S4). The Atu_ph08 genome encodes 75 

ORFs, only 3 of which are ORFans (gp45, gp63, gp75). Of the 75 ORFs, 43 encode 

conserved hypothetical proteins and 32 have predicted functions. Atu_ph08 does not 

contain any obvious tRNA-encoding genes.  

 

Gene Organization of Atu_ph08 

 The Atu_ph08 genome encodes 8 predicted structural proteins (Figure 4-4, purple 

arrows), including two potential major capsid proteins (gp31, 36). The tail fiber proteins 

gp23, 28), the portal protein (gp15) and the large terminase (gp13). Remarkably, the 

Atu_ph08 genome does not encode any gene products involved in DNA replication, such 

as DNA polymerase, with the exception of the DarB-like gp21, suggesting that it may use  
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Figure 4-4. Genome annotation of Atu_ph08, color-coded by functional annotation. G + 

C content represented by inner circle: AT=green and GC=blue. 
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host machinery to replicate its DNA. The genome does encode several gene products 

predicted to be involved in DNA modification. These include gp7, which is a cytosine-

specific DNA methylase and a NERD domain-containing protein (gp10), predicted to be 

involved in DNA processing [34]. Other DNA modification proteins include: N-

acetyltransferase (gp24), 3’-5’ exoribonuclease (gp49), methyltransferase (gp53), a 

metal-dependent phosphohydrolase (gp56), and a class I SAM-dependent 

methyltransferase (gp67).  

Atu_ph08 also encodes transcription regulators, including the GcrA cell cycle 

regulator (gp5), which activates transcription at methylated promoter sequences by 

interacting with RNA polymerase, previously characterized in Caulobacter crescentus 

[35]. The putative GcrA regulator in the Atu_ph08 genome is 89.74% identical to a 

hypothetical protein (WP_080842116.1) in Agrobacterium genomospecies 3. The GcrA 

protein is conserved within the Alphaproteobacteria [36], as well as phiCbk-like C. 

crescentus phages [37], suggesting that phage may have acquired this protein from their 

hosts potentially enabling the phage to upregulate host DNA replication machinery.  

There are two predicted genes involved in posttranslational modifications. Gp71 

is predicted to be a Clp protease, and gp9 contains a PRK12775 domain, which is 

predicted to be involved in amino acid transport and metabolism.  

 

Atu_ph08 has Some Features of a Temperate Phage and Shares High Homology with 

A. tumefaciens genomospecies 3 

 The genome of Atu_ph08 shares most of its genes with A. tumefaciens and 

Rhizobium species, leading us to hypothesize that Atu_ph08 and the Alphaproteobacteria 
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have exchanged genes through horizontal gene transfer. Furthermore, the G + C content 

of the genomes of A. tumefaciens and phage Atu_ph08 are similar (~59%), in contrast 

with the G + C content of the other Agrobacterium phages, which are all lower. An initial 

analysis of the Agrobacterium genomospecies 3 strain CFBP 6623 genome (Accession 

number: NZ_LT009723) reveals the existence of 3 intact prophage regions and 1 

incomplete prophage at the 1.5 million bp [38]. Mauve genome alignment of Atu_ph08 

with this region in Agrobacterium genomospecies 3 strain CFBP 6623 (1,555,808-

1,601,554 bp) revealed a 60.2% pairwise identity between the genomes (Figure 4-5).  

Interestingly, while attempts to UV induce lysogens from A. tumefaciens C58 

cells infected with Atu_ph08 have been unsuccessful thus far, the Atu_ph08 genome 

encodes an integrase (gp41) and an XRE transcriptional regulator (gp1). The XRE 

transcriptional regulator belongs to a family of transcriptional regulators that contains 

Cro and cI repressors [39], suggesting that Atu_ph08 may exhibit lysogenic activity or be 

derived from an ancestor with lysogenic activity. The Atu_ph08 integrase shares 34% 

identity to the integrase encoded by Salmonella phage vB_SemP_Emek, which is a P22-

like phage. P22 is a transducing phage that encodes the C2 repressor, so we sought to 

determine if the Atu_ph08 genome encodes a transcriptional repressor. Remarkably, 

gp65, annotated as a transcriptional regulator, shares 28% identity with the C2 repressor 

in vB_SemP_Emek. Directly upstream of the gene encoding the integrase is the gene 

encoding an Arc family phage regulatory protein (gp42), which acts as a transcriptional 

repressor in phage P22 [40]. Directly downstream of these genes is another peculiar gene 

encoding an AlpA family phage regulatory protein (gp40). AlpA has been characterized 

in E. coli to suppress sensitivity to UV light [41]. The presence of these genes strongly  
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Figure 4-5. Mauve genome alignment of 1540-1610 kbp region of Agrobacterium 

genomospecies 3 and Atu_ph08. 
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suggests that Atu_ph08 may be lysogenic and it should be explored as a candidate 

transducing phage for A. tumefaciens. 

 

The Atu_ph08 Genome is Highly Syntenic with the Genome of the T7-Like 

Sinorhizobium Phage, PBC5 

 Phylogenetic analysis of Atu_ph08 reveals that it is closely related to 

Sinorhizobium phage PBC5 and Ochrobactrum phage POI1126. The Atu_ph08 genome 

shares 38.2% pairwise identity with Sinorhizobium phage PBC5 and 24.0% identity with 

Ochrobactrum phage POI1126. The large terminase tree (Figure 4-6A) shows that 

Atu_ph08 forms a distinct group with PBC5 and POI1126, and is placed within a larger 

group with T7-like Burkholderia phage Bcepmigl and Erwinia phage PEp14. These 

phages are distant relatives of the T7-superfamily of Podoviridae phages. The close 

relation to PBC5 and POI1126 are observed in the Mauve genome alignment (Figure 4-

6B). These alignments show evidence that genomic rearrangements have taken place 

among phages in this family. The mosaicism of phage genomes is a common result of 

horizontal gene transfer [42]. 

 

The Atu_ph08 Genome Encodes a DarB-like Protein, Commonly Found Among 

PBC5-Like Phages 

 The Atu_ph08 genome encodes a 4,877 aa gene product (gp21), previously 

discussed in the context of this phage family in Gill et al. [43], which has 4 major 

domains that suggest it may have helicase and methylase activity (Supplementary Figure 

4-S2A). This unusually large gene product is described as a DarB homolog. DarB, or  
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Figure 4-6. Relatives of Atu_ph08. (A) Phylogenetic tree of large terminase protein. 

Mauve genome alignment of Atu_ph08 with (B) Sinorhizobium phage PBC5 and (C) 

Ochrobactrum phage POI1126.     

Atu_ph08 
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defense against restriction, is an Escherichia phage P1 protein that protects the phage 

from host restriction enzymes, EcoB and EcoK [44]. In phage P1, DarB is prepackaged 

inside the capsid, allowing DNA methylation to occur immediately upon infection, 

protecting the DNA from host killing by restriction [45,46].  

The DarB-like protein in Atu_ph08 is 21.6% identical to the DarB-like protein of 

Burkholderia phage Bcep22 and is predicted to have both methyltransferase and helicase 

domains. Similar to Bcep22, Atu_ph08 does not have a DarA homolog encoded in the 

genome, which was thought to be required for DarB incorporation into the capsid. The 

DarB protein in Bcep22 also has a lytic transglycosylase domain on its N-terminus. The 

Atu_ph08 DarB protein appears to have an N-terminal cell wall hydrolase domain 

followed by a peptidase domain.  

 This DarB-like protein appears to be conserved in several T7-like phages 

(Supplementary Figure 4-S2B). A bioinformatic search found that Agrobacterium phages 

Atu_ph02 and Atu_ph03 also have a DarB-like protein. Since Atu_ph02 and Atu_ph03 

share a host with Atu_ph08, acquisition of similar proteins to protect phage DNA from A. 

tumefaciens restriction and modification systems that destroy foreign DNA is plausible. 

Remarkably, DarB homologs are often found on mobile genetic elements, including the 

Ti plasmid of A. tumefaciens, suggesting that DarB likely confers a benefit to invading 

foreign DNAs [43].  

 

The Atu_ph08 Genome Encodes a Putative Holin-Endolysin Cassette 

 The genome of Atu_ph08 encodes three possible gene products involved in cell 

lysis, which are consecutively located (gp37-9). The first, gp37, encodes a lysozyme-like 
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domain. Directly adjacent, gp38 shares homology with a putative 3TM holin, named after 

a family of holins for gene-transfer release with 3 transmembrane domains, encoded by 

Alphaproteobacterium Mesorhizobium australicum. All three genes are predicted to 

encode transmembrane domains—gp37 contains 1, gp38 contains 2, and gp39 contains 3. 

As holins are typically located in the inner membrane where they form a pore, it is likely 

that gp38 exhibits holin activity. 

 

Conclusions  

 In this study, we characterize two additional Agrobacterium phages, which is 

important given the under-sampling of phages from soil and rhizosphere environments. 

Despite sharing a common host, no conserved proteins are identified among all the 

Agrobacterium phage genomes, suggesting that the phages may not share mechanisms of 

host entry or lysis. Atu_ph04 forms a group with Rhizobium phage RleM_P10VF and 

Sinorhizobium phage phiM9, which are in the T4 superfamily, and Atu_ph08 is closely 

related to Sinorhizobium phage PBC5 and Ochrobactrum phage POI1126, which are T7-

like. Through our comparative analysis, we found that Atu_ph08 may be a temperate 

phage, as it encodes several genes that are commonly expressed in phages that undergo 

the lysogenic cycle. Together, this data, along with previously published data on 

Agrobacterium phages, illustrates the diversity of phages that share a common host and 

provides examples of the breadth of genes these phages express, which can further our 

understanding of microbial diversity. Further studies are required to understand the 

impact these phages play in the environment where they reside. 
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Tables 
 
Table 4-1. Bacterial strains used in this study. 

Strain or 

plasmid 

Relevant characteristics Growth 

medium 

Reference or 

source 

A. 

tumefaciens 

strains 

   

C58 Nopaline type strain; pTiC58; 

pAtC58 

LB [47] 

EHA105 C58 derived, succinamopine strain, 

T-DNA deletion derivative of 

pTiBo542 

LB MU plant 

transformation core 

facility 

EHA101 C58 derived, nopaline strain, T-DNA 

deletion derivative of pTiBo542 

LB MU plant 

transformation core 

facility 

GV3101 C58 derived, nopaline strain LB MU plant 

transformation core 

facility 

NTL4 C58 derived, nopaline-agrocinopine 

strain, ∆tetRA 

LB [48] 

AGL-1 C58 derived, succinamopine strain, 

T-DNA deletion derivative of 

pTiBo542 ∆recA 

LB MU plant 

transformation core 

facility 

LBA4404 Ach5 derived, octopine strain, T-

DNA deletion derivative of pTiAch5 

YM MU plant 

transformation core 

facility 

Chry5 Succinamopine strain, pTiChry5 LB [49] 
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Other 

bacterial 

strains 

   

A. vitis S4 Vitopine strain, pTiS4, pSymA, 

pSymB 

Potato 

dextrose 

[50] 

Caulobacter 

crescentus 

CB15 

Alphaproteobacterium PYE [51] 

Escherichia 

coli DH5D 

Gammaproteobacterium LB Life Technologies 

 

Table 4-2. Host range testing of Atu_ph04 and Atu_ph08. (S) indicates strain is 

susceptible to phage infection, (I) indicates strain has an intermediate phenotype and is 

only somewhat susceptible at a reduced MOI, and (R) indicates that the strain is resistant 

to phage infection.  

Strain Susceptibility to Phage 

Atu_ph04  Atu_ph08  

A. tumefaciens C58 S S 

A. tumefaciens EHA105 S S 

A. tumefaciens EHA101 S S 

A. tumefaciens GV3101 S S 

A. tumefaciens NTL4 S S 

A. tumefaciens AGL-1 R I 

A. tumefaciens LBA4404 I I 

A. tumefaciens Chry5 R R 
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A. vitis S4 R R 

C. crescentus CB15 R R 

E. coli DH5α R R 

 

Table 4-3. Summary of key genomic features of Atu_ph04 and Atu_ph08. 

 

Phage Genom

e 

length 

(bp) 

G+C 

conten

t (%) 

Numbe

r of 

ORFs 

Number of 

hypothetic

al proteins 

Number 

of ORFs 

with 

predicte

d 

function

s 

Numbe

r of 

ORFan

s 

Numbe

r of 

tRNAs 

Atu_ph0

4 

143,349 49.4 223 67 73 83 1 

Atu_ph0

8 

59,034 59.7 75 43 32 3 0 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 4-S1: Restriction fragment analysis of digested Atu_ph04 

genomic DNA loaded onto a 0.7% agarose gel.  

 

 

  

uncut AseI BamHI HinP1I NcoI SacIλBstEII λBstEIIHaeIII
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Supplementary Figure 4-S2: Analysis of DarB-like protein in Atu_ph08. (A) Domain 

structure of DarB-like protein in Atu_ph08. (B) ClustalW alignment of DarB-like 

proteins in other T7-like phages. Dark black blocks indicate regions of synteny. 

 

  

A

B
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SUPPLEMENTARY TABLES 

Supplementary Table 4-S1: Atu_ph04 genes organized by predicted function. 

CD
S # 

RAST annotated function Updated assigned 
function 

Len
gth 
(bp) 

Categor
y 

1 hypothetical protein CDS putative T7-like tail 
fiber protein 

186 Structura
l 

2 hypothetical protein CDS 
 

600 Hypothe
tical 

3 hypothetical protein CDS 
 

321 Hypothe
tical 

4 hypothetical protein CDS 
 

246 Hypothe
tical 

5 hypothetical protein CDS 
 

210 Hypothe
tical 

6 UDP-galactopyranose mutase (EC 
5.4.99.9) CDS 

 
117
3 

Other/Ba
cterial 

7 hypothetical protein CDS 
 

315 Hypothe
tical 

8 hypothetical protein CDS 
 

159 Hypothe
tical 

9 hypothetical protein CDS 
 

354 Hypothe
tical 

10 N-acetylmuramoyl-L-alanine 
amidase (EC 3.5.1.28) CDS 

 
942 Lysis 

11 hypothetical protein CDS 
 

216 Hypothe
tical 

12 hypothetical protein CDS 
 

516 Hypothe
tical 

13 hypothetical protein CDS 
 

366 Hypothe
tical 

14 Phage protein CDS 
 

351 Hypothe
tical 

15 hypothetical protein CDS 
 

399 Hypothe
tical 

16 hypothetical protein CDS 
 

213 Hypothe
tical 

17 Phosphohydrolase (MutT/nudix 
family protein) CDS 

 
588 Nucleoti

de 
metaboli
sm 

18 hypothetical protein CDS 
 

600 Hypothe
tical 



 192 

19 hypothetical protein CDS 
 

249 Hypothe
tical 

20 hypothetical protein CDS 
 

309 Hypothe
tical 

21 hypothetical protein CDS 
 

546 Hypothe
tical 

22 hypothetical protein CDS 
 

198 Hypothe
tical 

23 hypothetical protein CDS putative glutaredoxin 282 Nucleoti
de 
metaboli
sm 

24 Ribonucleotide reductase of class 
Ia (aerobic), alpha subunit (EC 
1.17.4.1) CDS 

 
166
2 

Nucleoti
de 
metaboli
sm 

25 Ribonucleotide reductase of class 
Ia (aerobic), beta subunit (EC 
1.17.4.1) CDS 

 
105
3 

Nucleoti
de 
metaboli
sm 

26 Phage-associated DNA primase 
(EC 2.7.7.-) #gp61 CDS 

 
104
1 

DNA 
replicati
on 

27 hypothetical protein CDS 
 

339 Hypothe
tical 

28 hypothetical protein CDS 
 

402 Hypothe
tical 

29 hypothetical protein CDS 
 

354 Hypothe
tical 

30 hypothetical protein CDS 
 

297 Hypothe
tical 

31 hypothetical protein CDS 
 

510 Hypothe
tical 

32 hypothetical protein CDS 
 

480 Hypothe
tical 

33 hypothetical protein CDS putative uracil DNA 
glycosylase 

468 DNA 
repair 

34 hypothetical protein CDS 
 

273 Hypothe
tical 

35 hypothetical protein CDS 
 

405 Hypothe
tical 

36 hypothetical protein CDS 
 

255 Hypothe
tical 

37 hypothetical protein CDS 
 

219 Hypothe
tical 
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38 hypothetical protein CDS 
 

291 Hypothe
tical 

39 hypothetical protein CDS 
 

207 Hypothe
tical 

40 Phage DNA end protector during 
packaging CDS 

 
627 DNA 

associate
d 

41 hypothetical protein CDS putative baseplate tail 
tube initiator 

537 Structura
l 

42 Phage baseplate hub subunit # T4-
like gp26 CDS 

 
702 Structura

l 
43 hypothetical protein CDS putative baseplate hub 

assembly catalyst 
177 Structura

l 
44 hypothetical protein CDS 

 
381 Hypothe

tical 
45 hypothetical protein CDS 

 
181
2 

Hypothe
tical 

46 hypothetical protein CDS 
 

273 Hypothe
tical 

47 Single stranded DNA-binding 
protein, phage-associated CDS 

 
101
1 

DNA 
replicati
on 

48 hypothetical protein CDS 
 

555 Hypothe
tical 

49 hypothetical protein CDS 
 

312 Hypothe
tical 

50 hypothetical protein CDS 
 

288 Hypothe
tical 

51 hypothetical protein CDS 
 

540 Hypothe
tical 

52 hypothetical protein CDS putative homing 
endonuclease 

654 DNA 
replicati
on 

53 Phage terminase, large subunit 
#T4-like phage Gp17 CDS 

 
173
4 

Structura
l 

54 T4-like phage baseplate hub + tail 
lysozyme CDS 

 
256
2 

Structura
l 

55 hypothetical protein CDS 
 

126 Hypothe
tical 

56 hypothetical protein CDS 
 

285 Hypothe
tical 

57 hypothetical protein CDS 
 

507 Hypothe
tical 

58 T4-like phage protein, T4 GC1630 
CDS 

putative homing 
endonuclease 

459 DNA 
replicati
on 
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59 probable ATP-dependent helicase 
CDS 

 
161
4 

DNA 
replicati
on 

60 Phage endonuclease CDS denV endonuclease V, 
N-glycosylase UV 
repair enzyme 

318 DNA 
repair 

61 hypothetical protein CDS 
 

264 Hypothe
tical 

62 hypothetical protein CDS 
 

414 Hypothe
tical 

63 Phage ribonuclease H (EC 
3.1.26.4) #T4-like phage Rnh #T4 
GC0870 CDS 

 
909 DNA 

replicati
on 

64 hypothetical protein CDS 
 

720 Hypothe
tical 

65 hypothetical protein CDS 
 

438 Hypothe
tical 

66 hypothetical protein CDS tail completion and 
sheath stabilizer 
protein 

522 Structura
l 

67 Single stranded DNA-binding 
protein, phage-associated #T4-like 
phage Gp32 CDS 

 
486 DNA 

replicati
on 

68 hypothetical protein CDS putative homing 
endonuclease 

765 DNA 
replicati
on 

69 Phage head completion protein 
CDS 

 
459 Structura

l 
70 Phage tail sheath CDS 

 
251
7 

Structura
l 

71 hypothetical protein CDS putative tail tube 
monomer 

627 Structura
l 

72 Phage portal vertex of the head 
#T4-like phage Gp20 CDS 

 
157
5 

Structura
l 

73 hypothetical protein CDS 
 

153 Hypothe
tical 

74 Phage prohead core protein CDS 
 

666 Structura
l 

75 MJ0042 family finger-like protein 
CDS 

 
113
1 

Hypothe
tical 

76 Phage major capsid protein of 
Caudovirales CDS 

 
133
2 

Structura
l 

77 hypothetical protein CDS 
 

183 Hypothe
tical 



 195 

78 DNA helicase, phage-associated 
CDS 

 
150
3 

DNA 
replicati
on 

79 hypothetical protein CDS 
 

324 Hypothe
tical 

80 hypothetical protein CDS putative terminase 
DNA packaging 
enzyme small subunit 

504 DNA 
associate
d 

81 hypothetical protein CDS 
 

186 Hypothe
tical 

82 hypothetical protein CDS putative base plate 
wedge subunit 

387 Structura
l 

83 gp6 baseplate wedge subunit CDS 
 

178
2 

Structura
l 

84 hypothetical protein CDS baseplate wedge 
subunit-like protein 

311
4 

Structura
l 

85 hypothetical protein CDS 
 

122
7 

Hypothe
tical 

86 Phage protein CDS 
 

154
5 

Hypothe
tical 

87 Phosphate starvation-inducible 
protein PhoH, predicted ATPase 
CDS 

 
783 Other/Ba

cterial 

88 hypothetical protein CDS 
 

348 Hypothe
tical 

89 RNA polymerase ECF-type sigma 
factor CDS 

 
483 Transcri

ption 
90 hypothetical protein CDS 

 
294 Hypothe

tical 
91 hypothetical protein CDS 

 
345 Hypothe

tical 
92 hypothetical protein CDS 

 
150 Hypothe

tical 
93 hypothetical protein CDS putative baseplate tail 

tube cap 
780 Structura

l 
94 hypothetical protein CDS putative base plate 

wedge component 
579 Structura

l 
95 hypothetical protein CDS 

 
414 Hypothe

tical 
96 Phage recombination protein CDS 

 
116
4 

DNA 
associate
d 

97 hypothetical protein CDS DNA primase/helicase 143
4 

DNA 
replicati
on 
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98 hypothetical protein CDS putative holliday 
junction resolvase 

624 DNA 
associate
d 

99 hypothetical protein CDS 
 

435 Hypothe
tical 

100 hypothetical protein CDS 5'-deoxynucleotidase 621 DNA 
associate
d 

101 hypothetical protein CDS putative 
deoxynucleotide 
monophosphate kinase 

786 DNA 
associate
d 

102 hypothetical protein CDS 
 

363 Hypothe
tical 

103 hypothetical protein CDS 
 

465 Hypothe
tical 

104 Deoxycytidylate 5-
hydroxymethyltransferase (EC 
2.1.2.8) CDS 

 
744 DNA 

modifica
tion 

105 hypothetical protein CDS 
 

101
7 

Hypothe
tical 

106 hypothetical protein CDS 
 

642 Hypothe
tical 

107 hypothetical protein CDS 
 

594 Hypothe
tical 

108 hypothetical protein CDS 
 

423 Hypothe
tical 

109 hypothetical protein CDS 
 

378 Hypothe
tical 

110 Phage DNA topoisomerase large 
subunit (EC 5.99.1.3) #T4-like 
gp60 #T4 GC1464 CDS 

 
193
8 

DNA 
replicati
on 

111 hypothetical protein CDS 
 

306 Hypothe
tical 

112 hypothetical protein CDS 
 

552 Hypothe
tical 

113 Topoisomerase IV subunit A (EC 
5.99.1.-) CDS 

 
136
5 

DNA 
replicati
on 

114 hypothetical protein CDS 
 

120 Hypothe
tical 

115 hypothetical protein CDS 
 

336 Hypothe
tical 

116 COG1896: Predicted hydrolases of 
HD superfamily CDS 

 
723 Lysis 

117 hypothetical protein CDS 
 

336 Hypothe
tical 
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118 hypothetical protein CDS 
 

360 Hypothe
tical 

119 hypothetical protein CDS sigma factor for late 
transcription 

513 Transcri
ption 

120 hypothetical protein CDS recombination 
endonuclease subunit 

951 DNA 
associate
d 

121 Phage recombination-related 
endonuclease Gp46 CDS 

 
164
7 

DNA 
associate
d 

122 hypothetical protein CDS sliding clamp DNA 
polymerase accessory 
protein 

729 DNA 
replicati
on 

123 Replication factor C small subunit 
CDS 

Sliding clamp loader 
subunit 

948 DNA 
replicati
on 

124 hypothetical protein CDS putative clamp loader 
subunit 

405 DNA 
replicati
on 

125 hypothetical protein CDS 
 

177 Hypothe
tical 

126 hypothetical protein CDS 
 

159 Hypothe
tical 

127 hypothetical protein CDS 
 

267 Hypothe
tical 

128 hypothetical protein CDS 
 

690 Hypothe
tical 

129 hypothetical protein CDS 
 

258 Hypothe
tical 

130 hypothetical protein CDS 
 

381 Hypothe
tical 

131 hypothetical protein CDS 
 

210 Hypothe
tical 

132 hypothetical protein CDS 
 

234 Hypothe
tical 

133 DNA polymerase (EC 2.7.7.7), 
phage-associated #T4-like phage 
gp43 #T4 GC0178 CDS 

 
264
0 

DNA 
replicati
on 

134 hypothetical protein CDS 
 

768 Hypothe
tical 

135 hypothetical protein CDS 
 

120 Hypothe
tical 

136 hypothetical protein CDS 
 

303 Hypothe
tical 

137 hypothetical protein CDS 
 

546 Hypothe
tical 
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138 DNA ligase, phage-associated CDS 
 

125
7 

DNA 
replicati
on 

139 hypothetical protein CDS 
 

336 Hypothe
tical 

140 hypothetical protein CDS 
 

213 Hypothe
tical 

141 hypothetical protein CDS 
 

189 Hypothe
tical 

142 hypothetical protein CDS 
 

201 Hypothe
tical 

143 hypothetical protein CDS 
 

594 Hypothe
tical 

144 hypothetical protein CDS 
 

165 Hypothe
tical 

145 Phage protein CDS predicted alternative 
thymidylate synthase 

984 Nucleoti
de 
metaboli
sm 

146 hypothetical protein CDS 
 

282 Hypothe
tical 

147 hypothetical protein CDS 
 

165 Hypothe
tical 

148 hypothetical protein CDS putative GT1 
glycosyltransferase 
protein 

116
4 

Nucleoti
de 
metaboli
sm 

149 hypothetical protein CDS 
 

405 Hypothe
tical 

150 FIG00451076: hypothetical protein 
CDS 

 
255 Hypothe

tical 
151 hypothetical protein CDS putative homing 

endonuclease 
714 DNA 

associate
d 

152 hypothetical protein CDS putative ParB-like 
nuclease domain 
containing protein 

450 DNA 
associate
d 

153 hypothetical protein CDS 
 

474 Hypothe
tical 

154 hypothetical protein CDS 
 

216 Hypothe
tical 

155 hypothetical protein CDS 
 

303 Hypothe
tical 

156 hypothetical protein CDS 
 

303 Hypothe
tical 
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157 hypothetical protein CDS 
 

267 Hypothe
tical 

158 hypothetical protein CDS 
 

183 Hypothe
tical 

159 hypothetical protein CDS 
 

246 Hypothe
tical 

160 hypothetical protein CDS 
 

501 Hypothe
tical 

161 hypothetical protein CDS 
 

156 Hypothe
tical 

162 hypothetical protein CDS 
 

357 Hypothe
tical 

163 Glycine-rich cell wall structural 
protein 1.8 precursor CDS 

 
657 Other/Ba

cterial 
164 hypothetical protein CDS 

 
480 Hypothe

tical 
165 hypothetical protein CDS 

 
489 Hypothe

tical 
166 hypothetical protein CDS 

 
279 Hypothe

tical 
167 hypothetical protein CDS 

 
555 Hypothe

tical 
168 hypothetical protein CDS 

 
135 Hypothe

tical 
169 hypothetical protein CDS DNA repair 

exonuclease 
489 DNA 

repair 
170 hypothetical protein CDS 

 
267 Hypothe

tical 
171 hypothetical protein CDS 

 
207 Hypothe

tical 
172 hypothetical protein CDS 

 
195 Hypothe

tical 
173 hypothetical protein CDS 

 
198 Hypothe

tical 
174 hypothetical protein CDS 

 
201 Hypothe

tical 
175 hypothetical protein CDS 

 
417 Hypothe

tical 
176 hypothetical protein CDS 

 
363 Hypothe

tical 
177 hypothetical protein CDS 

 
300 Hypothe

tical 
178 hypothetical protein CDS 

 
198 Hypothe

tical 
179 hypothetical protein CDS 

 
225 Hypothe

tical 
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180 hypothetical protein CDS von Willebrand factor 
type A domain 
containing protein 

702 Other/Ba
cterial 

181 hypothetical protein CDS 
 

225 Hypothe
tical 

182 hypothetical protein CDS 
 

303 Hypothe
tical 

183 hypothetical protein CDS 
 

207 Hypothe
tical 

184 hypothetical protein CDS 
 

276 Hypothe
tical 

185 Polymerase epsilon subunit CDS 
 

858 DNA 
associate
d 

186 hypothetical protein CDS 
 

285 Hypothe
tical 

187 hypothetical protein CDS 
 

291 Hypothe
tical 

188 hypothetical protein CDS 
 

264 Hypothe
tical 

189 dCMP deaminase (EC 3.5.4.12); 
Late competence protein ComEB 
CDS 

 
600 DNA 

associate
d 

190 hypothetical protein CDS 
 

510 Hypothe
tical 

191 hypothetical protein CDS 
 

210 Hypothe
tical 

192 hypothetical protein CDS 
 

234 Hypothe
tical 

193 hypothetical protein CDS 
 

462 Hypothe
tical 

194 Phage protein CDS putative exonuclease 825 DNA 
associate
d 

195 hypothetical protein CDS DNA primase 531 DNA 
replicati
on 

196 hypothetical protein CDS 
 

282 Hypothe
tical 

197 hypothetical protein CDS 
 

363 Hypothe
tical 

198 hypothetical protein CDS 
 

372 Hypothe
tical 

199 hypothetical protein CDS 
 

231 Hypothe
tical 
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200 hypothetical protein CDS 
 

234 Hypothe
tical 

201 hypothetical protein CDS 
 

261 Hypothe
tical 

202 hypothetical protein CDS 
 

423 Hypothe
tical 

203 hypothetical protein CDS 
 

300 Hypothe
tical 

204 hypothetical protein CDS 
 

330 Hypothe
tical 

205 hypothetical protein CDS 
 

744 Hypothe
tical 

206 hypothetical protein CDS 
 

609 Hypothe
tical 

207 hypothetical protein CDS 
 

231 Hypothe
tical 

208 hypothetical protein CDS 
 

201 Hypothe
tical 

209 hypothetical protein CDS 
 

435 Hypothe
tical 

210 hypothetical protein CDS 
 

510 Hypothe
tical 

211 hypothetical protein CDS 
 

579 Hypothe
tical 

212 hypothetical protein CDS 
 

134
7 

Hypothe
tical 

213 T4-like phage baseplate hub + tail 
lysozyme CDS 

 
876 Structura

l 
214 hypothetical protein CDS 

 
297 Hypothe

tical 
215 Phage neck protein #Gp13 CDS 

 
756 Structura

l 
216 Gp14 neck protein CDS 

 
843 Structura

l 
217 hypothetical protein CDS 

 
360 Hypothe

tical 
218 Phage tail assembly CDS 

 
882 Structura

l 
219 hypothetical protein CDS baseplate wedge 146

1 
Structura
l 

220 Phage virulence-associated VriC 
protein CDS 

VrlC protein 508
8 

Structura
l 

221 hypothetical protein CDS 
 

207 Hypothe
tical 

222 Phage tail fibers CDS 
 

179
1 

Structura
l 



 202 

223 FIG00920814: hypothetical protein 
CDS 

 
114
9 

Hypothe
tical 
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Supplementary Table 4-S2: Comparative analysis of Atu_ph04 gene products with 
related phages. 
 

gp Functional 
annotation 

vB_RleM_
P10VF 

phiM
9 

Cr3
0 

syn
9 

syn
30 

syn
33 

T4 Atu_p
h07 

phi
M12 

CcrCol
ossus 

phi
N3 

KV
P40 

Melv
ille 

6 UDP-
galactopyranose 
mutase  

3.00E-125 1.00E
-128 

           

9 hypothetical 9.00E-22 
            

10 N-
acetylmuramoyl-
L-alanine 
amidase  

4.00E-90 1.00E
-87 

           

11 hypothetical 6.00E-12 5.00E
-14 

           

12 hypothetical 1.00E-31 2.00E
-38 

           

13 hypothetical 
 

4.00E
-27 

           

14 hypothetical 1.00E-26 1.00E
-21 

           

15 hypothetical 9.00E-17 
       

4.00
E-11 

    

17 Phosphohydrola
se (MutT/nudix 
family protein)  

  7.0
0E-
16 

     
5.00
E-23 

9.00E-
24 

6.0
0E-
23 

  

20 hypothetical 
         

2.00E-
11 

   

23 hypothetical 2.00E-23 1.00E
-20 

           

24 Ribonucleotide 
reductase of 
class Ia 
(aerobic), alpha 
subunit  

0 0 
 

3.0
0E-
17 

2.0
0E-
16 

2.0
0E-
16 

9.0
0E-
17 

0 
 

5.00E-
70 

 
2.00
E-17 

1.00
E-16 

25 Ribonucleotide 
reductase of 
class Ia 
(aerobic), beta 
subunit  

4.00E-156 1.00E
-162 

     
3.00E-
104 

     

26 Phage-associated 
DNA primase  

3.00E-87 2.00E
-108 

 
4.0
0E-
42 

1.0
0E-
41 

8.0
0E-
34 

2.0
0E-
37 

 
1.00
E-37 

 
8.0
0E-
37 

7.00
E-22 

9.00
E-34 

27 hypothetical 1.00E-32 1.00E
-43 

           

28 hypothetical 6.00E-29 3.00E
-36 

           

29 hypothetical 9.00E-10 1.00E
-23 

           

30 hypothetical 3.00E-24 4.00E
-21 

           

33 hypothetical 1.00E-17 1.00E
-19 

           

36 hypothetical 1.00E-06 
            

40 Phage DNA end 
protector during 
packaging 

3.00E-102 3.00E
-100 

2.0
0E-
17 

   
6.0
0E-
29 

 
2.00
E-25 

   
3.00
E-28 

41 putative 
baseplate tail 
tube initiator 

7.00E-56 3.00E
-67 

 
3.0
0E-
06 

 
6.0
0E-
08 

     
2.00
E-08 

 

42 Phage baseplate 
hub subunit  

1.00E-80 3.00E
-84 

         
3.00
E-05 

9.00
E-07 
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43 hypothetical 3.00E-18 5.00E
-13 

3.0
0E-
04 

          

44 hypothetical 8.00E-17 2.00E
-19 

           

45 hypothetical 2.00E-122 1.00E
-141 

           

46 hypothetical 
 

7.00E
-07 

           

47 Single stranded 
DNA-binding 
protein 

6.00E-125 4.00E
-105 

1.0
0E-
25 

 
3.0
0E-
26 

7.0
0E-
28 

  
3.00
E-24 

 
2.0
0E-
24 

5.00
E-16 

 

48 hypothetical 7.00E-12 2.00E
-16 

           

49 hypothetical 5.00E-20 7.00E
-14 

           

50 hypothetical 5.00E-16 1.00E
-14 

           

51 hypothetical 4.00E-66 9.00E
-70 

           

52 hypothetical 5.00E-22 2.00E
-36 

6.0
0E-
10 

   
2.0
0E-
13 

 
2.00
E-07 

 
3.0
0E-
07 

  

53 Phage terminase, 
large subunit  

0 0 2.0
0E-
114 

9.0
0E-
114 

7.0
0E-
117 

1.0
0E-
112 

2.0
0E-
105 

3.00E-
33 

5.00
E-
120 

 
8.0
0E-
120 

2.00
E-99 

2.00
E-
108 

54 T4-like phage 
baseplate hub + 
tail lysozyme  

0 0 8.0
0E-
16 

   
6.0
0E-
14 

 
6.00
E-18 

 
2.0
0E-
17 

7.00
E-20 

7.00
E-16 

58 putative homing 
endonuclease 

4.00E-79 2.00E
-66 

      
3.00
E-72 

6.00E-
60 

2.0
0E-
71 

2.00
E-57 

7.00
E-60 

59 probable ATP-
dependent 
helicase  

0 0 
           

60 Phage 
endonuclease  

1.00E-31 4.00E
-37 

    
2.0
0E-
18 

    
2.00
E-07 

 

62 hypothetical 8.00E-36 2.00E
-32 

     
7.00E-
20 

 
1.00E-
24 

   

63 Phage 
ribonuclease H  

2.00E-135 8.00E
-140 

1.0
0E-
28 

     
3.00
E-32 

    

64 hypothetical 6.00E-53 3.00E
-56 

           

65 hypothetical 9.00E-16 2.00E
-27 

           

66 tail completion 
and sheath 
stabilizer protein 

3.00E-55 9.00E
-55 

    
2.0
0E-
08 

     
7.00
E-12 

67 Single stranded 
DNA-binding 
protein 

4.00E-52 5.00E
-48 

  
1.0
0E-
14 

3.0
0E-
14 

3.0
0E-
08 

 
9.00
E-15 

   
1.00
E-11 

68 hypothetical 
 

2.00E
-23 

           

69 Phage head 
completion 
protein  

1.00E-76 2.00E
-77 

9.0
0E-
08 

5.0
0E-
36 

6.0
0E-
35 

6.0
0E-
37 

5.0
0E-
34 

1.00E-
25 

4.00
E-36 

  
2.00
E-40 

1.00
E-41 

70 Phage tail sheath  0 0 6.0
0E-
47 

2.0
0E-
46 

1.0
0E-
43 

4.0
0E-
42 

3.0
0E-
31 

 
4.00
E-61 

 
3.0
0E-
61 

3.00
E-34 

2.00
E-33 

71 putative tail tube 
monomer 

5.00E-87 2.00E
-98 

 
3.0
0E-
14 

2.0
0E-
16 

7.0
0E-
18 

       

72 Phage portal 
vertex of the 
head  

0 0 9.0
0E-
98 

3.0
0E-
109 

7.0
0E-
113 

3.0
0E-
76 

5.0
0E-
97 

7.00E-
19 

3.00
E-87 

 
4.0
0E-
87 

4.00
E-86 

3.00
E-93 
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74 Phage prohead 
core protein  

7.00E-93 7.00E
-94 

3.0
0E-
26 

8.0
0E-
34 

5.0
0E-
34 

3.0
0E-
33 

1.0
0E-
14 

 
3.00
E-38 

 
3.0
0E-
38 

2.00
E-30 

2.00
E-16 

75 MJ0042 family 
finger-like 
protein  

2.00E-52 4.00E
-55 

           

76 Phage major 
capsid protein  

0 0 2.0
0E-
71 

1.0
0E-
83 

4.0
0E-
81 

9.0
0E-
85 

5.0
0E-
48 

5.00E-
31 

1.00
E-92 

 
1.0
0E-
92 

2.00
E-55 

3.00
E-48 

78 DNA helicase 0 0 2.0
0E-
78 

1.0
0E-
68 

3.0
0E-
66 

7.0
0E-
65 

2.0
0E-
69 

3.00E-
18 

2.00
E-67 

 
4.0
0E-
66 

2.00
E-72 

1.00
E-71 

80 putative 
terminase DNA 
packaging 
enzyme small 
subunit 

6.00E-48 2.00E
-43 

           

82 putative base 
plate wedge 
subunit 

5.00E-58 2.00E
-57 

           

83 baseplate wedge 
subunit  

0 0 2.0
0E-
54 

5.0
0E-
46 

2.0
0E-
46 

1.0
0E-
43 

  
1.00
E-55 

 
2.0
0E-
56 

  

84 baseplate wedge 
subunit-like 
protein 

0 0 
      

5.00
E-06 

 
5.0
0E-
06 

  

85 hypothetical 
 

0.001 
           

87 Phosphate 
starvation-
inducible protein 
PhoH, predicted 
ATPase 

2.00E-99 2.00E
-111 

1.0
0E-
23 

1.0
0E-
21 

2.0
0E-
21 

1.0
0E-
22 

 
2.00E-
54 

 
8.00E-
29 

1.0
0E-
17 

3.00
E-29 

 

92 hypothetical 1.00E-05 
            

93 putative 
baseplate tail 
tube cap 

5.00E-123 5.00E
-135 

           

94 putative base 
plate wedge 
component 

2.00E-60 4.00E
-66 

           

95 hypothetical 2.00E-28 2.00E
-27 

           

96 Phage 
recombination 
protein  

0 0 7.0
0E-
55 

   
2.0
0E-
71 

5.00E-
17 

8.00
E-65 

 
5.0
0E-
65 

5.00
E-72 

5.00
E-71 

97 DNA 
primase/helicase 

0 0 6.0
0E-
79 

4.0
0E-
83 

5.0
0E-
84 

1.0
0E-
84 

2.0
0E-
56 

1.00E-
27 

9.00
E-76 

 
1.0
0E-
74 

1.00
E-68 

2.00
E-56 

98 putative holliday 
junction 
resolvase 

3.00E-63 8.00E
-51 

1.0
0E-
13 

          

10
0 

hypothetical 1.00E-70 1.00E
-59 

           

10
1 

putative 
deoxynucleotide 
monophosphate 
kinase 

6.00E-58 4.00E
-66 

           

10
3 

hypothetical 4.00E-71 3.00E
-65 

           

10
4 

Deoxycytidylate 
5-
hydroxymethyltr
ansferase  

9.00E-79 2.00E
-85 

           

10
5 

hypothetical 5.00E-89 9.00E
-91 

           

10
6 

hypothetical 3.00E-10 7.00E
-20 
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10
7 

hypothetical 
  

3.0
0E-
09 

  
8.0
0E-
16 

       

10
9 

hypothetical 1.00E-28 
            

11
0 

Phage DNA 
topoisomerase 
large subunit  

0 0 
    

5.0
0E-
26 

3.00E-
146 

   
2.00
E-49 

5.00
E-53 

11
3 

Topoisomerase 
IV subunit A  

0 0 
    

8.0
0E-
33 

1.00E-
98 

   
2.00
E-37 

3.00
E-31 

11
9 

sigma factor for 
late transcription 

1.00E-47 2.00E
-51 

           

12
0 

recombination 
endonuclease 
subunit 

1.00E-67 4.00E
-70 

           

12
1 

Phage 
recombination-
related 
endonuclease  

6.00E-164 2.00E
-173 

9.0
0E-
56 

7.0
0E-
59 

1.0
0E-
59 

5.0
0E-
62 

6.0
0E-
65 

 
4.00
E-59 

 
8.0
0E-
59 

5.00
E-28 

1.00
E-59 

12
2 

sliding clamp 
DNA 
polymerase 
accessory 
protein 

6.00E-58 8.00E
-70 

           

12
3 

Replication 
factor C small 
subunit  

5.00E-128 4.00E
-117 

    
7.0
0E-
05 

2.00E-
31 

   
7.00
E-51 

6.00
E-04 

12
4 

putative clamp 
loader subunit 

4.00E-50 4.00E
-48 

3.0
0E-
09 

5.0
0E-
05 

3.0
0E-
05 

        

12
9 

hypothetical 2.00E-36 2.00E
-30 

           

13
1 

hypothetical 
 

2.00E
-05 

           

13
3 

DNA 
polymerase (EC 
2.7.7.7), phage-
associated  

0 0 3.0
0E-
89 

2.0
0E-
109 

6.0
0E-
103 

1.0
0E-
105 

2.0
0E-
81 

8.00E-
23 

8.00
E-
104 

 
9.0
0E-
104 

6.00
E-74 

2.00
E-80 

13
4 

hypothetical 2.00E-90 5.00E
-102 

           

13
8 

DNA ligase, 
phage-associated  

8.00E-145 1.00E
-153 

         
6.00
E-26 

 

13
9 

hypothetical 2.00E-21 3.00E
-14 

           

14
3 

hypothetical 1.00E-43 7.00E
-38 

         
6.00
E-13 

 

14
5 

predicted 
alternative 
thymidylate 
synthase 

  
       

3.00E-
39 

   

14
8 

putative GT1 
glycosyltransfera
se protein 

2.00E-127 1.00E
-118 

           

15
0 

FIG00451076: 
hypothetical 
protein  

7.00E-22 8.00E
-20 

1.0
0E-
22 

          

15
1 

putative homing 
endonuclease 

 4.00E
-41 

           

15
2 

putative ParB-
like nuclease 
domain 
containing 
protein 

1.00E-22 5.00E
-19 

           

15
3 

hypothetical 3.00E-61 2.00E
-59 

           

15
7 

hypothetical 2.00E-08 
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15
9 

hypothetical 4.00E-12 3.00E
-13 

     
3.00E-
23 

     

16
0 

hypothetical 8.00E-07 
            

16
4 

hypothetical 7.00E-13 2.00E
-23 

           

16
5 

hypothetical 3.00E-30 4.00E
-37 

           

16
6 

hypothetical 
 

0.001 
     

2.00E-
04 

     

16
7 

hypothetical 1.00E-09 
            

16
8 

hypothetical 4.00E-04 
            

16
9 

DNA repair 
exonuclease 

1.00E-25 2.00E
-33 

     
3.00E-
16 

2.00
E-31 

 
1.0
0E-
31 

  

18
0 

von Willebrand 
factor type A 
domain 
containing 
protein 

1.00E-81 
            

18
2 

hypothetical 
       

6.00E-
16 

7.00
E-27 

  
4.00
E-04 

 

18
5 

Polymerase 
epsilon subunit  

7.00E-112 3.00E
-112 

     
7.00E-
28 

     

18
8 

hypothetical 5.00E-14 
            

18
9 

dCMP 
deaminase (EC 
3.5.4.12); Late 
competence 
protein ComEB  

1.00E-49 1.00E
-49 

    
9.0
0E-
10 

    
3.00
E-14 

4.00
E-11 

19
0 

hypothetical 2.00E-09 1.00E
-10 

           

19
2 

hypothetical 0.001 7.00E
-04 

           

19
4 

putative 
exonuclease 

7.00E-112 1.00E
-100 

1.0
0E-
26 

6.0
0E-
22 

5.0
0E-
21 

1.0
0E-
21 

 
2.00E-
14 

  
3.0
0E-
22 

  

20
1 

hypothetical 2.00E-07 7.00E
-07 

           

20
2 

hypothetical 3.00E-27 
            

20
6 

hypothetical 6.00E-14 
      

2.00E-
12 

     

20
7 

hypothetical 2.00E-06 
            

20
9 

hypothetical 2.00E-11 3.00E
-20 

           

21
2 

hypothetical 0 0 
   

2.0
0E-
06 

       

21
3 

T4-like phage 
baseplate hub + 
tail lysozyme  

3.00E-147 3.00E
-141 

2.0
0E-
18 

8.0
0E-
13 

3.0
0E-
13 

4.0
0E-
14 

3.0
0E-
15 

 
4.00
E-12 

 
4.0
0E-
12 

 
9.00
E-16 

21
5 

Phage neck 
protein  

4.00E-106 3.00E
-106 

3.0
0E-
25 

4.0
0E-
24 

7.0
0E-
20 

 
7.0
0E-
09 

 
5.00
E-24 

 
2.0
0E-
24 

5.00
E-04 

4.00
E-06 

21
6 

Gp14 neck 
protein  

3.00E-122 7.00E
-109 

1.0
0E-
14 

1.0
0E-
08 

    
2.00
E-15 

 
3.0
0E-
15 

  

21
7 

hypothetical 8.00E-37 6.00E
-31 

           

21
8 

Phage tail 
assembly  

1.00E-82 3.00E
-106 

7.0
0E-
24 

9.0
0E-
24 

6.0
0E-
19 

2.0
0E-
26 

  
2.00
E-18 

  
5.00
E-14 
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21
9 

baseplate wedge 4.00E-147 2.00E
-170 

7.0
0E-
09 

          

22
0 

Phage virulence-
associated VriC 
protein  

0 0 3.0
0E-
28 

6.0
0E-
41 

4.0
0E-
43 

2.0
0E-
42 

  
9.00
E-69 

 
4.0
0E-
67 

  

22
1 

hypothetical 
 

7.00E
-17 

9.0
0E-
05 

          

22
2 

Phage tail fibers  8.00E-175 2.00E
-167 

          
2.00
E-06 

22
3 

FIG00920814: 
hypothetical 
protein  

5.00E-66 7.00E
-76 

           

 
TOTAL 115 109 32 23 23 24 25 22 30 7 25 29 26 
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Supplementary Table 4-S3: T4 core proteins found in Atu_ph04. *Atu_ph04 matches 
with E-values above 1E-10 are considered “yes” matches and those between 1E-10 and 
1E-03 are “unresolved.” Matches with E-values lower than 1E-03 were not considered 
significant. 
 

T4 
protein T4 protein function 

Match in 
Atu_ph04* 

Identity 
(%) E-value 

Query 
cover 
(%) 

Atu_ph04 
protein name 

Atu_ph04 
gp # 

Phage morphogenesis        

gp4 
head completion 
protein yes 39 1e-35 96 

Head 
completion 
protein 69 

gp5 
baseplate lysozyme 
hub component yes; two 45 2e-16 17 

T4-like phage 
baseplate hub 
+ tail 
lysozyme 213 

"   30 1e-15 32 

T4-like phage 
baseplate hub 
+ tail 
lysozyme 54 

gp13 
head completion 
protein unresolved 21 6e-08 

 
99 Neck protein 215 

gp15 
tail completion 
protein yes 25 1e-11 74 

Phage tail 
assembly 218 

gp17 

subunit of the 
terminase for DNA 
packaging yes 37 7e-107 81 

Terminase 
large subunit 53 

gp18 tail tube subunit yes 28 9e-32 91 Tail sheath 70 

gp20 
head portal vertex 
protein yes 36 2e-98 85 

Portal vertex 
of the head 72 

gp21 
prohead core protein 
and protease yes 33 6e-16 66 

Prohead core 
protein 74 

gp22 prohead core protein no      

gp23 
precursor of major 
head protein yes 34 4e-17 96 

Major capsid 
protein 76 

gp25 
base plate wedge 
subunit no      

gp34 
proximal tail fiber 
protein subunit no      

gp36 
small distal tail fiber 
protein subunit no      

DNA replication, repair, and 
recombination       

gp43 DNA polymerase yes 28 7e-83 97 
DNA 
polymerase 133 

gp44 
sliding clamp loader 
complex tetramer yes 32 6e-47 99 

Replication 
factor C small 
subunit 123 

gp41 
helicase-primer 
complex hexamer no      

gp46 

subunit of a 
recombination 
nuclease complex yes 29 2e-66 99 

Phage 
recombinatio 121 
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required for 
initiation of DNA 
replication 

n-related 
endonuclease 

gp47 

subunit of a 
recombination 
nuclease complex 
required for 
initiation of DNA 
replication no      

UvsW 

recombination 
DNA-RNA helicase, 
DNA-dependent 
ATPase yes 33 8e-71 82 DNA helicase 78 

Auxillary metabolism       

nrdA 

subunit of an 
aerobic 
ribonucleotide 
reductase complex  yes 23 4e-18 58 

Ribonucleotid
e reductase of 
1a (aerobic), 
alpha subunit 24 

nrdB 

subunit of an 
aerobic 
ribonucleotide 
reductase complex  no      

Gene expression       

gp55 
sigma factor for late 
transcription  no      
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Supplementary Table 4-S4: Atu_ph08 genes organized by predicted function.  

CDS 
# 

RAST annotated 
function 

Updated assigned 
function 

Lengt
h (bp) 

Category 

1 Phage protein CDS XRE transcriptional 
regulator 

300 Transcription 

2 hypothetical protein 
CDS 

 
297 Hypothetical 

3 Phage protein CDS 
 

417 Hypothetical 
4 FIG00451076: 

hypothetical protein 
CDS 

DUF2312 domain-
containing protein 

396 Hypothetical 

5 hypothetical protein 
CDS 

GcrA cell cycle regulator 588 Transcription 

6 hypothetical protein 
CDS 

 
495 Hypothetical 

7 C-5 cytosine-specific 
DNA methylase CDS 

 1866 DNA 
modification 

8 hypothetical protein 
CDS 

 
351 Hypothetical 

9 hypothetical protein 
CDS 

putative PRK12775-
containing protein 

246 Posttranslation
al 
modification 

10 hypothetical protein 
CDS 

NERD domain-containing 
protein 

741 DNA 
processing 

11 Phage protein CDS 
 

627 Hypothetical 
12 Phage protein CDS 

 
804 Hypothetical 

13 probable terminase 
large subunit CDS 

 1557 Structural 

14 Phage protein CDS 
 

429 Hypothetical 
15 Phage portal protein 

CDS 

 
2232 Structural 

16 Phage protein CDS 
 

1011 Hypothetical 
17 hypothetical protein 

CDS 

 
195 Hypothetical 

18 hypothetical protein 
CDS 

 
294 Hypothetical 

19 hypothetical protein 
CDS 

 
477 Hypothetical 

20 Methyl-accepting 
chemotaxis protein I 
(serine chemoreceptor 
protein) CDS 

 786 Other/Bacteria
l 

21 helicase, Snf2 family 
CDS 

Adenine-specific DNA 
methylase, N12 class 

14634 DNA 
modification 
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22 Phage protein CDS 
 

1311 Hypothetical 
23 Phage protein CDS tail fiber domain-

containing protein 
1161 Structural 

24 Phage protein CDS N-acetyltransferase 450 DNA 
modification 

25 hypothetical protein 
CDS 

 
246 Hypothetical 

26 Phage protein CDS putative virion structural 
protein 

1740 Structural 

27 hypothetical protein 
CDS 

DUF4376 domain-
containing protein  

603 Hypothetical 

28 Phage tail fibers CDS 
 

1074 Structural 
29 Phage protein CDS 

 
279 Hypothetical 

30 hypothetical protein 
CDS 

 
312 Hypothetical 

31 Phage protein CDS major capsid protein  417 Structural 
32 Phage protein CDS DUF4238 domain-

containing protein  
627 Hypothetical 

33 Phage protein CDS 
 

702 Hypothetical 
34 hypothetical protein 

CDS 

 
363 Hypothetical 

35 Phage protein CDS 
 

462 Hypothetical 
36 Phage protein CDS N4-gp56 family major 

capsid protein 
1131 Structural 

37 protein of unknown 
function DUF847 CDS 

secretion activator 
protein; lysozyme-like 
protein 

753 Lysis 

38 hypothetical protein 
CDS 

Holin of 3TMs, for gene-
transfer release 

525 Lysis 

39 Phage protein CDS 
 

333 Hypothetical 
40 hypothetical protein 

CDS 
AlpA family phage 
regulatory protein 

231 Transcription 

41 Integrase CDS 
 

1299 DNA 
recombination 

42 hypothetical protein 
CDS 

Arc family DNA-binding 
protein 

192 DNA-
associated 

43 hypothetical protein 
CDS 

 
402 Hypothetical 

44 hypothetical protein 
CDS 

 
498 Hypothetical 

45 hypothetical protein 
CDS 

 
189 Hypothetical 

46 hypothetical protein 
CDS 

DUF551 domain-
containing protein 

186 Hypothetical 
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47 hypothetical protein 
CDS 

 
324 Hypothetical 

48 hypothetical protein 
CDS 

 
219 Hypothetical 

49 hypothetical protein 
CDS 

3'-5' exoribonuclease  705 DNA-
associated 

50 hypothetical protein 
CDS 

 
264 Hypothetical 

51 hypothetical protein 
CDS 

 
645 Hypothetical 

52 Phage protein CDS 
 

330 Hypothetical 
53 Phage DNA 

modification 
methyltransferase CDS 

 753 DNA 
modification 

54 hypothetical protein 
CDS 

 
219 Hypothetical 

55 Bacteriophage protein 
gp37 CDS 

DUF5131 family protein  921 Hypothetical 

56 COG1896: Predicted 
hydrolases of HD 
superfamily CDS 

metal-dependent 
phosphohydrolase 

606 DNA 
modification 

57 Phage protein CDS 
 

687 Hypothetical 
58 hypothetical protein 

CDS 

 
426 Hypothetical 

59 Phage-related protein 
CDS 

morphogenetic protein 708 Structural 

60 Phage protein CDS 
 

399 Hypothetical 
61 hypothetical protein 

CDS 

 
231 Hypothetical 

62 hypothetical protein 
CDS 

 
525 Hypothetical 

63 hypothetical protein 
CDS 

 
159 Hypothetical 

64 Phage protein CDS C4-dicarboxylate ABC 
transporter substrate-
binding protein 

882 Other/Bacteria
l 

65 Transcriptional 
regulator CDS 

C2-like repressor protein 417 Transcription 

66 hypothetical protein 
CDS 

 
219 Hypothetical 

67 hypothetical protein 
CDS 

class I SAM-dependent 
methyltransferase 

582 DNA 
modification 

68 hypothetical protein 
CDS 

 
288 Hypothetical 

69 Phage protein CDS 
 

309 Hypothetical 
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70 hypothetical protein 
CDS 

 
123 Hypothetical 

71 Predicted periplasmic 
protein CDS 

Clp protease 651 Posttranslation
al 
modification 

72 hypothetical protein 
CDS 

XRE family 
transcriptional regulator 

306 Transcription 

73 hypothetical protein 
CDS 

 
240 Hypothetical 

74 hypothetical protein 
CDS 

 
243 Hypothetical 

75 hypothetical protein 
CDS 

 
207 Hypothetical 
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Supplementary Table 4-S5: Comparative analysis of Atu_ph08 gene products with 
related phages. 
 

g
p 

Functional 
annotation 

PBC5 POI11
26 

SopranoG
ao 

Pavtok DC1 Bcep22 PS-1 phiKM
V 

T
7 

Atu_ph
03 

1 XRE 
transcriptional 
regulator 

7.00E-
44 

         

3 Hypothetical 4.00E-
26 

1.00E-
10 

        

4 Hypothetical 1.00E-
38 

5.00E-
20 

        

1
0 

NERD 
domain-
containing 
protein 

 1.00E-
32 

        

1
1 

Hypothetical 8.00E-
66 

         

1
2 

Hypothetical 1.00E-
77 

         

1
3 

probable 
terminase 
large subunit  

0 0 1.00E-143 5.00E-
145 

2.00E-
127 

1.00E-
127 

2.00
E-
100 

   

1
4 

Hypothetical 6.00E-
72 

2.00E-
40 

3.00E-17 1.00E-
17 

 
9.00E-
15 

    

1
5 

Phage portal 
protein  

0 0 0 0 0 0 
    

1
6 

Hypothetical 7.00E-
79 

6.00E-
07 

9.00E-11 2.00E-
18 

4.00E-
18 

2.00E-
19 

    

1
7 

Hypothetical 
    

6.00E-
05 

     

2
1 

Adenine-
specific DNA 
methylase, 
N12 class; 
helicase, Snf2 
family  

0 0 0 0 0 0 
   

5.00E-
48 

2
2 

Hypothetical 1.00E-
106 

2.00E-
45 

5.00E-08 2.00E-
20 

      

2
3 

tail fiber 
domain-
containing 
protein 

0 4.00E-
160 

1.00E-110 2.00E-
114 

1.00E-
75 

3.00E-
73 

    

2
4 

N-
acetyltransfera
se 

3.00E-
84 

2.00E-
43 

9.00E-36 1.00E-
35 

3.00E-
41 

1.00E-
39 

    

2
5 

Hypothetical 
 

2.00E-
13 

  
5.00E-
08 

2.00E-
08 

    

2
6 

putative virion 
structural 
protein 

0 0 2.00E-140 1.00E-
148 

0.00E+
00 

1.00E-
179 

    

2
8 

Phage tail 
fibers  

2.00E-
31 

3.00E-
28 

9.00E-23 4.00E-
17 

1.00E-
26 

2.00E-
26 

    

2
9 

Hypothetical 7.00E-
38 

1.00E-
31 

  
2.00E-
18 

3.00E-
18 

    

3
1 

major capsid 
protein  

1.00E-
46 

5.00E-
49 

  
2.00E-
36 

6.00E-
38 

    

3
2 

Hypothetical 4.00E-
76 

6.00E-
28 

7.00E-30 1.00E-
33 

8.00E-
45 

2.00E-
37 

    

3
3 

Hypothetical 6.00E-
105 

2.00E-
54 

4.00E-45 2.00E-
38 

8.00E-
29 

9.00E-
23 

    

3
4 

Hypothetical 
 

3.00E-
12 

        

3
5 

Hypothetical 
 

2.00E-
31 

4.00E-12 
 

2.00E-
24 

5.00E-
34 
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3
6 

N4-gp56 
family major 
capsid protein 

0 0 2.00E-155 0 3.00E-
179 

0 
    

3
7 

secretion 
activator 
protein; 
lysozyme-like 
protein 

 7.00E-
61 

        

3
8 

Holin of 
3TMs, for 
gene-transfer 
release 

 8.00E-
18 

        

3
9 

Hypothetical 7.00E-
26 

         

4
1 

Integrase 3.00E-
179 

         

4
2 

Arc family 
DNA-binding 
protein 

 
1.00E-
22 

        

5
2 

Hypothetical 5.00E-
31 

         

5
5 

Hypothetical 2.00E-
89 

7.00E-
34 

        

5
9 

morphogenetic 
protein 

8.00E-
29 

1.00E-
27 

        

6
0 

Hypothetical 2.00E-
32 

         

6
4 

C4-
dicarboxylate 
ABC 
transporter 
substrate-
binding 
protein 

2.00E-
165 

         

6
5 

Transcriptiona
l regulator  

7.00E-
39 

         

6
7 

class I SAM-
dependent 
methyltransfer
ase 

7.00E-
91 

         

6
9 

Hypothetical 1.00E-
21 

         

7
2 

XRE family 
transcriptional 
regulator 

 8.00E-
14 

        

 
TOTAL  30 27 14 13 16 16 1 0 0 1 
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Supplementary Table 4-S6: Atu_ph08 gene products present in other Agrobacterium 
phages. 
 

Atu_ph
08 gene 
product 

Atu_ph08 protein 
function 

Phage 
Match 

Identity 
(%) E-value 

Query 
cover 
(%) 

Protein 
name 

Phage 
gp# 

gp4 Hypothetical 7-7-1 81 9e-40 59 
Hypothetical 
protein 15 

gp21 Helicase Atu_ph03 36 4e-48 6 
Cell wall 
hydrolyse 35 

“  Atu_ph02 36 4e-48 6 
Cell wall 
hydrolyse 32 

“  Atu_ph07 31 3e-18 3 Mega protein 42 

gp37 
protein of unknown 
function DUF847 7-7-1 28 6e-28 91 

Putative 
membrane 
protein 10 

gp56 
Predicted hydrolases 
of HD superfamily Atu_ph04 29 3e-20 92 

putative HD 
superfamily 
hydrolase 116 

gp65 
Transcriptional 
regulator 7-7-1 47 2e-17 47 

Putative 
transcriptiona
l regulator 68 

gp67 Hypothetical protein Atu_ph07 33 1e-20 80 
Hypothetical 
protein 599 

 
 



 

 

Chapter 5 

 

 

Phages in the Phuture 
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 Bacteriophages are the most abundant biological entities in the world, and yet knowledge 

about them is vastly underrepresented in the field of biology. Despite being major drivers of 

horizontal gene transfer and microbial diversity, phages that infect soil bacteria are especially 

under-studied. The plant pathogen Agrobacterium tumefaciens is one of the most important 

agricultural bacteria [1], causing crown gall disease in plants and leading to decreased crop yield 

[2]. Prior this work, there was only one characterized Agrobacterium phage genome sequence 

[3]. In an effort to find phages to use as biocontrol, we have isolated and characterized 5 novel 

phages that infect Agrobacterium tumefaciens. All of the phages in this study were isolated from 

environmental water or waste water samples and have been classified as dsDNA phages in the 

order Caudovirales. 

 

Phages Atu_ph02 and Atu_ph03 Encode a Unique Endolysin 

 Agrobacterium phages Atu_ph02 and Atu_ph03 are in the family Podoviridae, sharing a 

similar shape comprised of an icosahedral head and short tail [4]. Their genomes share high 

nucleotide identity and are ~45 kbp in size. Our phylogenetic analysis determined that they are 

phi-KMV-like phages that are closely related to a group of Rhizobium phages. Because of the 

phages’ high lytic activity, we were interested in identifying their endolysin. A gene product 

annotated as phage peptidoglycan hydrolase (PPH) appeared to have an unusual domain 

structure, with an N-acetylmuramidase domain on its N-terminal, and a transmembrane domain 

on its C-terminal, and therefore we decided to investigate it further.  

 After expressing PPH under an inducible promoter in A. tumefaciens, it became evident 

that PPH is sufficient to cause cell lysis. Interestingly, we found that PPH causes cell branching 

prior to lysis. Since branching is a phenotype that occurs when the cell division machinery is 
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disrupted, we hypothesized that PPH is interacting with the divisome. Site-specific mutagenesis 

of the conserved glutamate and three lysine residues showed that the glutamate is necessary for 

PPH-mediated cell death and that the positively charged C-terminus is involved in negative 

regulation of the protein. Mutating the positive residues increased the lytic properties of the 

protein, showing that we can enhance the antimicrobial properties of PPH.   

 

Agrobacterium phage Atu_ph07 is a Jumbo Phage 

 Sequencing of phage Atu_ph07 revealed that its genome is 490 kbp, making it one of the 

largest phages identified [5]. Atu_ph07 is classified in the Myoviridae family of phages, with an 

icosahedral head that is 146 nm in diameter and a 136 nm tail. Its closest relative is Salicola 

phage SCTP-2. Our comparative genome analysis shows that Atu_ph07 is closely related to a 

group of Rak2-like phages. Since the genome of Atu_ph07 encodes over 700 ORFs, the majority 

of which have unknown functions, we performed mass spectrometry to help identify the 

structural genes.  

 

Characterization of Agrobacterium phages Atu_ph04 and Atu_ph08 

 Two phages, Atu_ph04 and Atu_ph08, were isolated and characterized from waste water 

samples. Atu_ph04, a member of the Myoviridae family, has a 143 kbp sized genome. Its closest 

relatives are Rhizobium phage vB_RleM_P10VF and Sinorhizobium phage phiM9. Phage 

Atu_ph08 has a 59 kbp genome, a Podoviridae, and closely related to Sinorhizobium phage 

PBC5 and Ochrobactrum phage POI1126. The Atu_ph08 genome encodes genes commonly 

found in transducing phages, including an integrase and transcriptional repressors. Further 

studies will be required to determine if Atu_ph08 is capable of transduction.  
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LIMITATIONS OF GENOMIC-BASED PHAGE CHARACTERIZATION 

 The high degree of phage diversity and the vast numbers of genes that encode proteins of 

unknown functions found in phage genomes suggest that a genomic-based approach to phage 

characterization is inherently limited in scope. Functional characterization of phages is needed to 

determine how they can be exploited for biological and biotechnology purposes. 

 In contrast to most other biological entities, there is no universal gene that is shared 

among phages to enable rapid phylogenetic classification of phages. Thus, studies of phage 

phylogeny are often performed by comparing signature genes to build trees and using 

comparative whole genome analyses. Using comparative genome analysis generally involves the 

comparison of core genes in a phage group. The genetic mosaicism of phages is evident during 

this analysis, as genes are often rearranged within the genome and non-core genes are thought to 

be non-essential.  

 Currently, the standard method of annotating a phage genome involves analyzing the 

sequence through the Rapid Annotations using Subsystems Technology (RAST) server, which 

compares each open reading frame to others in the database [6]. Annotations are created by 

grouping proteins into families based on their function. While this method has been shown to 

give a decent initial prediction, it is incapable of predicting the function of hypothetical proteins 

or those with no homology [7]. Manual annotations using BLAST and comparative genomic 

analysis can improve the genome annotations; however, biological characterization of 

hypothetical genes is required to expand the functional annotations in the database. It is often 

difficult to discover the true origin of phage genes or to predict the host range based on the phage 

genome sequence alone. For this reason, a combination of genomic analysis and phenotypic 
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analysis, including electron microscopy, host range testing, and mass spectrometry can help gain 

a better understanding of the phage biology.   

Increased knowledge about the functions of phage proteins is needed to understand the 

role of phages in the environment, as drivers of microbial diversity, and as potential 

biotechnology tools. In particular, phage proteins with antimicrobial properties are of increasing 

importance as the global health crisis related to the rise in antibiotic resistance among bacteria 

continues to emerge. Here we outline some future directions to expand upon our genomic 

characterization of Agrophages. We expect that these studies should further our understanding of 

how Agrophages may contribute to host cell killing or serve as agents of genetic transfer.   

 

FUTURE DIRECTIONS 

Potential of PPH as an Antimicrobial  

 To further explore the potential of PPH as an antimicrobial, we would purify the protein 

and determine its efficacy in causing lysis of diverse bacteria following exogenous protein 

treatments. If purification of an active version of this membrane protein is difficult, we would 

propose to truncate the protein and purify the soluble protein portion containing the catalytic N-

acetylmuramidase domain. Fusion of the active N-acetylmuramidase domain with a domain that 

allows protein entry into the outer membrane of Gram negative bacteria may be necessary for 

PPH to induce lysis following external application. Such studies should reveal if PPH may be a 

viable antimicrobial, as has been proposed for other phage endolysins [8,9]. 

 

Transposon Mutagenesis to Understand the Cell Division Block Caused by PPH  
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 One major outstanding question that arose from this work is how PPH, the putative 

endolysin expressed by Atu_ph02 and Atu_ph03, causes cells to branch prior to lysis, and why 

mutating the positively-charged C-terminal of PPH eliminates PPH’s ability to cause cell 

branching. Since the phenotype observed when PPH is expressed in A. tumefaciens is 

reminiscent of A. tumefaciens growth with a depleted divisome [10], we hypothesized that PPH 

is interacting with cell division machinery to cause the abnormal phenotype.  

To determine if PPH is interacting with any host cell proteins, we initiated a transposon 

mutagenesis screen. We used a mariner transposon system to mutagenize PPH-expressing A. 

tumefaciens at random sites in the genome [11,12]. To identify survivor strains that are no longer 

killed by PPH expression, we plan to perform high-throughput sequencing of survivor colonies. 

We expect that this screen will elucidate host factors that contribute to PPH-mediated lysis. In 

addition, we have transposon mutagenized PPHE32A and PPHK328A,K334A,K335A strains of A. 

tumefaciens. Since PPHE32A lacks the predicted catalytic site for cell wall hydrolysis, we expect 

that mutants surviving following expression of PPH may reveal the host proteins which interact 

with PPH and cause the changes in cell morphology. Finally, since PPHK328A,K334A,K335A causes 

rapid host lysis, we expect to identify mutants that are blind to PPH expression. Overall, we 

expect that this data will not only reveal host targets of PPH, but also illuminate how the host 

responds, perhaps via stress responses, when exposed to this phage lysis protein. Finally, the host 

targets of PPH, if not already known, may be candidate targets for novel antimicrobial drugs or 

peptides. 

 

Exploring the Transducing Ability of Atu_ph08 
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 The lifestyle of Atu_ph08 merits further study. Our identification of an integrase and 

transcriptional repressors in the Atu_ph08 genome suggest that this phage may be temperate and 

capable of undergoing both lytic and lysogenic cycles. The high degree of similarity of the 

Atu_ph08 genome with the genome of an Agrobacterium genomospecies 3 isolate suggests that 

Atu_ph08 is certainly derived from a temperate ancestor. Since there is not a known transducing 

phage that infects A. tumefaciens and transducing phages are useful for genetic manipulation of 

bacteria, further studies should be completed to determine if Atu_ph08 has transducing abilities.  

 

CONCLUDING REMARKS 

 Despite the success of phage application as a biocontrol agent against phytopathogens 

[13], this is the first study describing phages that infect, A. tumefaciens. The number of unknown 

genes revealed by the characterization of Agrobacterium phages uncovers the vast gap in 

knowledge in regard to phages that reside in the rhizosphere. Though we initially sought to 

isolate phages as conventional biocontrol agents, we found that phage genomes contain an 

untapped reservoir of genes encoding proteins of unknown function, likely including novel lysis 

proteins.  

 It is clear that the so-called canonical endolysin-holin-spanin mechanism is far from the 

only method that phages use to kill their hosts [14]. Non-canonical endolysins and single lysis 

proteins have only recently been well characterized [15], and the known diversity of phages 

suggests that novel mechanisms of lysis are awaiting discovery. With numerous new phage 

genomes available annually due to programs such as SEA-PHAGES [16], the mining of new 

phage lysis proteins could potentially contribute to the engineering of novel phage-based 

therapeutic strategies. In the last decade, the use of endolysins and peptides with shuffled 
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endolysin domains has shown promise as a feasible therapeutic approach [17,18]. Indeed, phage 

therapy in humans is gaining a renewed interest in the West [19] and recent case studies 

highlight that phages can save lives [20,21]. Thus, as the numbers of multi-drug resistant 

bacterial pathogens continue to rise it is vital to invest in fundamental research about diverse 

phages from many environments. While explorations of phages that infect soil dwelling bacteria 

may not improve conventional phage therapy approaches, which typically use naturally-

occurring phages to lyse bacteria at the site infection, biotechnological advances have further 

expanded the repertoire of phage therapeutics to include the use of bioengineered phages and 

purified phage lytic proteins. Modern advances in phage research are likely to yield crucial 

insights necessary for further development and innovation of antibacterial therapies.  
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