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Chapter 1

Price discrimination in asymmetric

Cournot oligopoly
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Chapter 2

Progressive bonuses in a spatial

Bertrand duopoly

Bakó, B. � Kálecz-Simon, A. (2013), Progressive managerial bonuses in
a spatial Bertrand duopoly, Society and Economy, 35(4), 531-538.
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Chapter 3

On the equivalence of quota bonuses

and quantity bonuses

3.1 Introduction

Even though a wide variety of bonuses were analysed in recent years,
quota bonuses � though often applied in practice � were usually ignored
as a nonlinear scheme. We try to demonstrate that this bonus system
is closest to sales bonuses; in some sense, they could be understood as
�local� sales bonuses. Since they are more focused, the expected cost of
this scheme is lower than that of sales bonuses, assuming risk neutral
managers.

In practice, nonlinear elements, e.g. quota bonuses are not uncom-
mon. According to an empirical study by Joseph and Kalwani (1998), 5
percent of the �rms participating in the survey used �xed salaries for their
salespeople, 24 percent used only commissions, while the overwhelming
majority included some kind of bonus payment in their compensation
packages. By far the most important factor in determining bonus pay-
ments was the comparison of actual sales and a predetermined quota.
As Oyer (1998) remarks, executive contracts also often include quota-
like features. The behavior of salespeople � eg. their attitudes toward
risk, as demonstrated by Ross (1991) � is strongly in�uenced by how
quotas are set.

Oyer (1998) also points out a potential dynamic problem with the use
of quotas. This could lead to uneven e�ort during the year, since agents
increase their e�ort when the deadline for determining quota bonus is



10 On the equivalence of quota bonuses and quantity bonuses

near. Executives or salespeople could behave in an opportunistic man-
ner and engage in "timing games", ie. rushing sales or using creative
accounting to ensure the quota bonus. However, the �ndings of Steen-
burgh (2008), based on analysing individual-level salesforce data, seem
to indicate that timing games are less common in practice and the main
e�ect of quotas are to increase the e�orts of the agents.

3.2 The model

Our model features a Cournot duopoly. Each �rm has an owner, max-
imizing their1 pro�t, and a manager, maximizing their salary. For sim-
plicity we assume away costs for either �rm.

Products are homogenous, thus inverse demand is: P = 1−Q, where
P is price and Q is industry output. We further assume that there is some
uncertainty regarding actual sales within the period. This could be due
to involuntary timing issues, such as delays in contracts, or last-minute
sales. This quantity shock is drawn from a normal distribution with with
zero mean and σ2 variance. The shocks to the �rms are independent.
Thus if the manager of �rm i chooses to sell qi units and the manager of
�rm j chooses to sell qj units, then the realized sales within the period
are qi + εi and qj + εj respectively, where εi ∼ N(0, σ2), εj ∼ N(0, σ2)
and Cov(εi, εj) = 0.

We assume both owners and managers to be risk neutral2. In sec-
tion 3.4, we discuss the possible implications of risk averse actors.

We investigate three possible bonus systems.

• Pure pro�t evaluation: in this case, the variable part of the man-
ager's salary is proportional to the pro�t of the �rm. Thus the
manager maximizes the expected pro�t, ie. the manager of �rm i
maximizes

E[(1− (qi + εi)− (qj + εj))(qi + εi)] = (1− qi − qj)qi − σ2

.

• Sales bonus: here the variable part of the manager's salary depends
both on the pro�t of the �rm and the quantity sold. The manager

1From here on in I am using the singular they when referring to actors in
order to maintain gender neutrality.

2Similarly to Ferstmann and Judd(1987).
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of �rm i therefore maximizes

E[(1− (qi + εi)− (qj + εj))(qi + εi) + λi(qi + εi)] =

= (1− qi − qj)qi − σ2 + λiqi,

where λi is the bonus coe�cient as determined by the owner of
�rm i.

• Quota bonus: in this setup, the variable part of the manager's
salary depends on the pro�t of the �rm, but fulfulling the pre-
scribed quota means a further lump-sum bonus. Hence the man-
ager of �rm i maximizes

E[(1− (qi + εi)− (qj + εj))(qi + εi) + λiP [(qi + εi) ≥ q̄)] =

= (1− qi − qj)qi − σ2 + λ

(
1

2
+

1√
π

∫ qi−q̄√
2σ

0

e−t
2

dt

)
,

where λi is the bonus coe�cient and q̄ is the quota as determined
by the owner of �rm i and P [(qi + εi) ≥ q̄] is the probability that
actual sales exceed the quota, given that the manager intends to
sell qi units.

We posit the following game. In period 0 owners announce the re-
spective managers' share of pro�t and hire the managers3. In period 1
the owners �x the bonus system they are going to use. In period 2 the
owners choos the size of the bonus, as well as its conditions, if necessary.
In period 3 managers choose their planned output respectively, shocks
are realized and markets clear.

We assume that managers maximize their salary. We also assume �
in line with the existing literature � that owners maximize their gross
pro�t, ie. their pro�t before paying bonuses. However, we posit that if
two methods achieve the same gross pro�t, the owner would prefer the
one with lower expected cost of implementation.

3.3 Results

3.3.1 Cases not involving quota bonuses

The following results are well-known and repeated here for later compar-
ison.

3Note that due to uncertainty and symmetry all �rms o�er the same pro�t
share.
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Lemma 3.1 If both owners apply pure pro�t evaluation, then we have a
classical Cournot duopoly, thus the respective outputs and pro�ts are:

q1 =
1

3

q2 =
1

3

π1 =
1

9

π2 =
1

9

Lemma 3.2 If the owner of �rm 1 applies pure pro�t evaluation, while
the owner of �rm 2 applies sales bonus, then the bonus coe�cient, re-
spective outputs and pro�ts are corresponding to those of a Stackelberg
duopoly 4:

q1 =
1

4

q2 =
1

2

π1 =
1

16

π2 =
1

8

λ2 =
1

4

Lemma 3.3 If both owner applies sales bonuses, then the respective out-
puts, pro�ts and bonus coe�cients are5:

q1 =
2

5

q2 =
2

5

π1 =
2

25

π2 =
2

25

4See Basu (1995).
5See eg. Vickers (1985).
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λ1 =
1

5

λ2 =
1

5

3.3.2 Pure pro�t vs quota

Let us now consider the case, when the owner of �rm 1 applies pure pro�t
evaluation, whilst the owner of �rm 2 applies quota bonus.

Since there is no strategic decision on the behalf of Owner 2, we can
guess that just like in the case of the sales bonus6, owner 1 is able to set
incentives in order to commit their manager to produce the Stackelberg
leader output.

The manager of �rm 1 maximizes7:

S(q1) = q1(1− q1 − q2),

thus chooses quantity according to the �rst-order condition:

∂S(q1)

∂q1
= 1− 2q1 − q2 = 0.

The manager of �rm 2 maximizes

S(q2) = q2(1− q1 − q2) + λ2

(
1

2
+

1√
π

∫ q2−q̄√
2σ

0

e−t
2

dt

)
thus chooses quantity according to the �rst-order condition:

∂S(q2)

∂q2
= 1− q1 − 2q2 + λ2

e
− (q̄−q2)2

2σ2

√
2πσ

= 0.

We could obtain the outputs and thus the pro�ts by solving the sys-
tem of equations consisting of the above equations, but that is by no
means trivial. So we �rst guess the incentives set by the owner of �rm

6As well as the case of market share bonus (see Jansen et al.(2007)) or the
case of relative pro�ts performance bonus (see van Witteloostuijn et al.(2007).

7Henceforth I omit the variance terms, since they do not e�ect the �rst-
order conditions
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2, then we verify, that they are indeed optimal.

It is easy to check that if Owner 2 chooses the following incentive
system:

q̄ =
1

2

λ2 =
1

2

√
π

2
σ

then the respective outputs are:

q1 =
1

4

q2 =
1

2

Since these are the Stackelberg output levels, �rstly the respective
pro�ts are:

π1 =
1

16

π2 =
1

8

and secondly, we have shown that the above incentive system is op-
timal.

Proposition 3.1 If the other �rm chooses pure pro�t evaluation, then
choosing sales bonus or quota bonus leads to the same outcome. However,
since

qs ∗ λs =
1

2
∗ 1

4
>

1

2
∗ 1

2

√
π

2
σ = P [(qq + εq) ≥ q̄)]λq

if σ < σ∗ ≈ 0.398942, for su�ciently low σs, the system of quota bonus
is less costly to implement.

3.3.3 Sales bonus vs quota

Now let us investigate the case when the owner of �rm 1 applies sales
bonus and the owner of �rm 2 applies quota bonus.
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The manager of �rm 1 maximizes:

S(q1) = q1(1− q1 − q2) + λ1q1,

thus chooses quantity according to the �rst-order condition:

∂S(q1)

∂q1
= 1− 2q1 − q2 + λ1 = 0.

The manager of �rm 2 maximizes

S(q2) = q2(1− q1 − q2) + λ2

(
1

2
+

1√
π

∫ q2−q̄√
2σ

0

e−t
2

dt

)

thus chooses quantity according to the �rst-order condition:

∂S(q2)

∂q2
= 1− q1 − 2q2 + λ2

e
− (q̄−q2)2

2σ2

√
2πσ

= 0.

We see that in the latter case we cannot express the best-response
function of Manager 2 in a closed form. However, under certain condi-
tions, we can invoke the Implicit Function Theorem.

We can apply the theorem if the Jacobian of the partial derivatives of
the �rst-order conditions with respect to the quantities is not zero, ie.8:

|J | =

∣∣∣∣∣ ∂F1
q1

∂F1
q2

∂F2
q1

∂F2
q2

∣∣∣∣∣ =

∣∣∣∣∣∣
−2 −1

−1 −2− λ2
e
− (q2−q̄)

2

2σ2
√

2πσ

q2−q̄
σ2

∣∣∣∣∣∣ 6= 0

The �rst-order condition of Owner 1 is:

∂Π1

∂λ1
= (1− 2q1 − q2)

∂q1
∂λ1
− q1

∂q2
∂λ1

= 0

and that of Owner 2:

8From now on, we will refer to the above two �rst-order conditions as (3.1)
and (3.1) as F1 and F2, respectively.
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∂Π2

∂λ2
= (1− q1 − 2q2)

∂q2
∂λ2
− q2

∂q1
∂λ2

= 0

Assuming that previous inequality holds, the partial derivatives can
be found using the Implicit Function Theorem.

∂q1
λ1

=

∣∣∣∣∣ ∂F1
λ1

∂F1
q2

∂F2
λ1

∂F2
q2

∣∣∣∣∣
|J | =

λ2
e
− (q2−q̄)

2

2σ2
√

2πσ

q2−q̄
σ2 − 2

|J |

∂q2
λ1

=

∣∣∣∣∣ ∂F1
q1

∂F1
λ1

∂F2
q1

∂F2
λ1

∣∣∣∣∣
|J | =

1

|J |

∂q1
λ2

=

∣∣∣∣∣ ∂F1
λ2

∂F1
q2

∂F2
λ2

∂F2
q2

∣∣∣∣∣
|J | =

e
− (q̄−q2)2

2σ2
√

2πσ

|J |

∂q2
λ2

=

∣∣∣∣∣ ∂F1
q1

∂F1
λ2

∂F2
q1

∂F2
λ2

∣∣∣∣∣
|J | =

−2 e
− (q2−q̄)

2

2σ2
√

2πσ

|J |

Substituting the partial derivatives into owners' �rst-order consitions,
we get the following equations:

∂Π1

∂λ1
= 3q1 + 2q2 − 2 + (1− 2q1 + q2)λ2

e
− (q2−q̄)

2

2σ2

√
2πσ

q̄ − q2
σ2

= 0

∂Π2

∂λ2
= 2q1 + 3q2 − 2 = 0

However, notice that from a previous �rst-order condition:
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λ2
e
− (q2−q̄)

2

2σ2

√
2πσ

= q1 + 2q2 − 1

so the �rst-order-condition for Owner 1 can be expressed as:

∂Π1

∂λ1
= 3q1 + 2q2 − 2 + (1− 2q1 + q2)(q1 + 2q2 − 1)

q̄ − q2
σ2

= 0

Let k be equal to q̄−q2
σ2 . Optimal k cannot be negative, since in that

case choosing −k provides the same incentives to the manager, while
decreasing the expected cost of the bonus system.

Assuming positive k, solving the above equations simultaneously yields9:

q1 =
5k − 3

(
5−

√
25− (6− k)k

)
8k

q2 =
5 + k −

√
25− (6− k)k

4k

Thus Owner 2 maximizes

(
5+k−

√
25−(6−k)k

)2

32k2 .
However, the �rst derivative of the above expression is negative for

all positive ks, thus the optimal k is zero. Hence

q1 =
2

5

q2 =
2

5

and thus

q̄ =
2

5

This implies

λ1 =
1

5

λ2 =
1

5

√
2πσ

9We ignore the solutions that would imply negative output and/or negative
sales bonus.
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Proposition 3.2 If the other �rm chooses sales bonus, then choosing
sales bonus or quota bonus leads to the same outcome. However, since:

qs ∗ λs =
2

5
∗ 1

5
=

2

25
>

1

2
∗ 1

5

√
2πσ = P [(qq + εq) ≥ q̄)] ∗ λq

if σ < σ∗ ≈ 0.319154, the expected cost of implementing a quota
bonus is lower for the owner of �rm 2, for su�ciently low σs.

3.3.4 Quota vs quota

Finally let us discuss the case when both owners rely on quota bonuses.
The manager of �rm 1 maximizes:

S(q1) = q1(1− q1 − q2) + λ1

(
1

2
+

1√
π

∫ q1−q̄1√
2σ

0

e−t
2

dt

)
thus chooses quantity according to the �rst-order condition:

∂S(q1)

∂q1
= 1− 2q1 − q2 + λ1

e
− (q̄1−q1)2

2σ2

√
2πσ

= 0.

The manager of �rm 2 maximizes:

S(q2) = q2(1− q1 − q2) + λ2

(
1

2
+

1√
π

∫ q2−q̄2√
2σ

0

e−t
2

dt

)
thus chooses quantity according to the �rst-order condition:

∂S(q2)

∂q2
= 1− q1 − 2q2 + λ2

e
− (q̄2−q2)2

2σ2

√
2πσ

= 0.

Invoking the Implicit Function Theorem yields10:

∂q1
λ1

=
e
− (q̄1−q1)2+(q̄2−q2)2

2σ2 (λ2(q̄2 − q2)− 2e
(q̄2−q2)2

2σ2
√

2πσ3)

2πσ4

10To simplify things, we are not giving the actual partial derivatives here,
but the right hand sides are multiplied by |J |
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∂q2
λ1

=
e
− (q̄1−q1)2

2σ2

√
2πσ

∂q1
λ2

=
e
− (q̄2−q2)2

2σ2

√
2πσ

∂q2
λ2

=
e
− (q̄2−q2)2+(q̄1−q1)2

2σ2 (λ1(q̄1 − q1)− 2e
(q̄1−q1)2

2σ2
√

2πσ3)

2πσ4

Using the partial derivatives and some simpli�cation leads to the
following �rst-order conditions:

∂Π1

∂λ1
= λ2(2q1 + q2 − 1)(q2 − q̄2) + e

(q̄2−q2)2

2σ2
√

2π(3q1 + 2q2 − 2)σ3 = 0

∂Π2

∂λ2
= λ1(2q2 + q1 − 1)(q1 − q̄1) + e

(q̄1−q1)2

2σ2
√

2π(3q2 + 2q1 − 2)σ3 = 0

Next, notice that from the �rst-order condition we can conclude that

λ1 =
√

2πσ(2q1 + q2 − 1)e
(q̄1−q1)2

2σ2

λ2 =
√

2πσ(q1 + 2q2 − 1)e
(q̄2−q2)2

2σ2

Using these equations we can rewrite the owners' �rst-order condi-
tions as:

∂Π1

∂λ1
= (1− q1 − 2q2)(2q1 + q2 − 1)

q̄2 − q2
σ2

+ (3q1 + 2q2 − 2) = 0

∂Π2

∂λ2
= (1− 2q1 − q2)(2q2 + q1 − 1)

q̄1 − q1
σ2

+ (3q2 + 2q1 − 2) = 0

Let k1 be q̄1−q1
σ2 and let k2 be q̄2−q2

σ2 Firstly, realize that if �rm i
chooses ki to be 0, then we are back to the previous case (equivalent to
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sales bonus vs. quota bonus) and the best response of the other �rm is
going to be setting k−i equal to zero. Limiting our solution set to the
symmetric solutions, it is easy to see that this is going to be the case.
If one of the �rms would choose a positive k, then choosing a similar k
would lead to individual output levels higher than 2

5
, thus choosing k to

be equal to zero is preferable.
Therefore

q1 =
2

5

q2 =
2

5

q̄1 =
2

5

q̄2 =
2

5

λ1 =
1

5

√
2πσ

λ2 =
1

5

√
2πσ

Thus we can state:

Proposition 3.3 If the other �rm chooses quota bonus, then choosing
sales bonus or quota bonus leads to the same outcome. However, since:

qs ∗ λs =
2

5
∗ 1

5
=

2

25
>

1

2
∗ 1

5

√
2πσ = P [(qq + εq) ≥ q̄)] ∗ λq

if σ < σ∗ ≈ 0.319154, the expected cost of implementing a quota
bonus is lower for the owner of �rm 2, for su�ciently low σs.

3.4 Discussion

We have seen that quota bonus is going to lead to the same outcome
as sales bonuses, however, at a lower expected cost. So we can con-
clude that assuming risk neutral actors quota bonus is preferable to sales
bonuses. However, one can speculate that in the case of risk averse ac-
tors the advantage provided by quota bonuses can diminish or become a
disadvantage. This can further explain the coexistence of sales bonuses
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and quota bonuses. Firms with less risk averse actors are going to choose
quota bonus systems, while �rms with more risk averse actors can choose
sales bonuses.



22 On the equivalence of quota bonuses and quantity bonuses



Chapter 4

Strategic segmentation

4.1 Introduction

Picture an industry where consumers who di�er in their quality valuation
and price elasticity. Will the �rm producing high quality good leave the
low valuation segment? If yes, how will this demarketing a�ect prices
and welfare?

We consider the following set-up: there are two segments of con-
sumers di�ering in their valuation of quality and price-elasticity. We
show that as the price-sensitive segment decreases the equilibrium prices
increase. Hence, the high quality �rm may bene�t from excluding some
of its most price-sensitive consumers. Our main �nding suggests that a
high-quality �rm quits the low-end market entirely if the quality valu-
ation is high enough and the price-sensitive segment size is su�ciently
low.

Rodrigues et al. (2014) present a model with vertical and horizontal
di�erentiation to explain the phenomenon of pseudo-generics in the phar-
maceutical industry. Our model answers a similar question, however with
a di�erent approach and somewhat di�erent conclusions1. While the au-
thors focus on the competitive aspect of introducing pseudo-generics, we
show that segmentation might play an even more important role. Our
results do not contradict their proposition that introduction of generics

1Regarding this paper, a technical question might arise regarding assump-
tions about costs and locations; linear transportation costs would not be con-
sistent with locations chosen at endpoints. To avoid this problem, we used
quadratic costs.
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and pseudo-generics lead to price increases2, however we show that due
to re-positioning, it could increase social welfare. We aim to contribute
to this literature, believing that studies of the pharmaceutical industry
(e.g. Grabowski and Vernon (1992)) support the emphasis on our focus
on the segmentation of the markets.

4.2 The model

Consider a mass of consumers with a high-end (H) and a low-end (L) seg-
ment. Each consumer group is uniformly distributed on the [0, 1] interval.
The mass of high-end market is normalized to 1 and the total number
of consumers in the low-end market is µ. In order to consume, each
consumer has to travel to a manufacturer where the desired product can
be purchased, and we assume that transportation costs are quadratic in
distance. The two groups di�er fundamentally in (a) their travel cost and
(b) their valuation for the quality of service they receive while shopping.
The high-end segment has a transportation cost of tH , and the low-end
group of tL, and consistent with the above mentioned tH > tL > 0. That
is, the low-end consumer group is more price sensitive than the high-
end group. Furthermore, we assume that consumers from the high-end
group value the service as sH while the price-sensitive group as sL, where
sH > sL. Consumers in H demand only a product with complementary
service, while consumers from the low-end group are indi�erent between
a product with or without service. Both consumer groups have a reser-
vation utility of v for the product and each consumer demands at most
one unit. We assume that v is high enough to ensure that all consumers
buy one product in equilibrium.3 To simplify our calculation we normal-
ize the value of tH to 1 and set sL to zero. Morover, we assume that
sH − sL > tH − tL, hence consumers are more di�erentiated in the way
they value the services as they are in travel costs.

We consider the following game. First �rm choose their location,
then set a price subject to market regulations, �nally the market clears.
We solve the game for its subgame perfect equilibrium using backward
induction.

2Consistent with the �ndings of Ward et al. (2002) in the food industries.
3In the subsequent analysis we give the exact lower bound of such a v.
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4.2.1 Competition for the low valuation segment

Suppose, there is a �rm located at a ∈ [0, 1] producing a product and
selling it by providing a complementary service to it without being able
to price discriminate between the consumers. Also consider that a low-
quality �rm, l, with no marginal cost is also present in the market and
o�ers a product without any additional service. In the further analysis
we refer to the product without any complementary service as low-quality
product, and to the product with complementary service as high-quality
product.

In this duopoly game, the two �rms make their decision on both
location and pricing. Tackling the �rst question, we make use of

Lemma 4.1 In location games with quadratic transportation costs the
equilibrium locations are the two extremes.

Proof: See d'Aspremont et al. (1979). �

Without loss of generality we assume that �rm l is located at 1,
while the incumbent �rm (from now on denoted as �rm h) is located at
0. Notice that unlike in the monopoly case, we see maximum product
di�erentiation here.

Since consumers in H demand only the product with an additional
service they keep purchasing the product from �rm h, and the surplus of
a consumer located at x obtained from consumption is

CSH =

{
v + sH − x2 − ph if she buys from �rm h
0 if she buys from �rm l

where ph is the price of the product with complementary service.

Consumers in L value both products similarly, and for that reason
they are indi�erent which product to consume as far as their price is
equal. Denoting the price of the low-quality product by pl, the utility of
a consumer in L at x can be given as

CSL =

{
v − tLx2 − ph if she buys from �rm h
v − tL(1− x)2 − pl if she buys from �rm l

Consumers purchase the product which yields them to the highest
surplus. Thus, the consumer i from the low-end market located at x
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buys from �rm h if xi ≤ 1
2
− ph−pl

2tL
, otherwise she buys from �rm l.

Hence, the demand functions of the �rms are as follows

DH(ph, pl) = 1 + µ

(
1

2
− ph − pl

2tL

)
and

DL(ph, pl) = µ

[
1−

(
1

2
− ph − pl

2tL

)]
Using the above demand equations, the pro�t functions of the �rms

can be given as

πh =

[
1 + µ

(
1

2
− ph − pl

2tL

)]
(ph − c)

πl = µ

(
1

2
+
ph − pl

2tL

)
pl

Solving the �rst-order conditions, leads to

Lemma 4.2 In equilibrium �rms charge

pDh =
1

3

[
3tL + 2c+

4tL
µ

]
and pDl =

1

3

[
3tL + c+

2tL
µ

]
.

These are equilibrium prices only if the market is fully covered. For
that we need the surplus of the consumer from group H located at 1
to be non-negative with the given prices. By evaluating this we set the
lower bound of v consistent with the model. Thus, we need, that

v + sH − 1− 1

3

[
3tL + 2c+

4tL
µ

]
≥ 0

Simplifying the above expression yields

v ≥ v ≡ 1 + tL +
2

3
c+

4

3

tL
µ
− sH

That is, if the above condition is satis�ed, the market is fully covered
in equilibrium and prices given by our previous lemma are indeed the
equilibrium prices.
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Corollary 1 More di�erentiation results in higher equilibrium prices.

Proof:

∂pDj
∂tL

> 0 for every j = h, l.

�

Corollary 2 If the price sensitive segment is increasing the equilibrium
prices are decreasing.

Proof:

∂pDj
∂µ

< 0 for every j = h, l.

�

The intuition behind these corollaries is that as the di�erentiation
between products increases the substitution is becoming more di�cult
which softens the competition in the market. This gives the �rms the
incentives and the possibilities to increase their prices. However, as the
more elastic group is becoming more dominant relative to the less price
sensitive segment the equilibrium prices drop.

Substituting the equilibrium prices into the pro�t functions yields

Lemma 4.3 In equilibrium �rms pro�ts are

πDh =
µ

18tL

(
3tL − c+

4tL
µ

)2

and πDl =
µ

18tL

(
3tL + s− c+

2tL
µ

)2

4.3 Strategic de-marketing

In fact, under certain conditions the high quality �rm has the incentive to
deviate from the equilibrium given in our previous lemma. To illustrate
this consider the following. From out previous lemma on the equilibrium
pro�ts we have
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Corollary 3 The high-quality �rm bene�ts from excluding some con-
sumer of the most price sensitive segment if the size of this segment is
less than moderate.

Proof:

∂πDh
∂µ

=
1

18tL

[
(3tL − c)2 −

(
4tL
µ

)2]
This is negative whenever µ < µS ≡ 4tL

3tL−c
. �

This corollary suggests that the high-quality producer might be bet-
ter o� by quitting the more elastic segment. In this case prices and
pro�ts can be easily calculated, since in both segments only a speci�c
�rm operates and therefore it will charge a price which binds consumers
reservation utility.

Formally, the �rms pro�ts can be given as follows

πh = (ph − c)DH(ph) and πl = plDL(pl)

where DH(ph) and DL(pl) stands for the demands faced by �rm h and
l, respectively. Since consumers' reservation utilities are high enough
to provide non-negative surplus even for the consumer farthest away
from the company she buys from, in equilibrium �rms charge prices that
consumers with the biggest distance from the company can still a�ord.

Notice that instead of a duopoly, we have in fact two separate mo-
nopolies in two separate markets. The choices of location therefore will
aim to minimize the distance from the farthest consumer of the respec-
tive customer, each �rm setting product characteristics to cater to the
median customer.

Formally, we can state the following

Lemma 4.4 Suppose �rm h quits the low-end segment. In equilibrium
�rms will locate at the middle of the unit interval and equilibrium prices
and pro�ts are as follows:

pSh = v + sH −
1

4
pSl = v − tL

4

and

πSh = v + sH −
1

4
− c πSl = µ

(
v − tL

4

)
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Comparing the pro�ts in the two cases we can determine conditions
under which strategic demarketing is indeed an equilibrium. For this we
need

µ

18tL

(
3tL − c+

4tL
µ

)2

< v + sH −
1

4
− c (4.1)

A di�erent way to write this is

sH > sSH ≡
µ

18tL

(
3tL − c+

4tL
µ

)2

− v +
1

4
+ c (4.2)

Hence, we have the following result

Proposition 4.1 The high-quality �rm stops serving the low-end seg-
ment if the consumers di�er fundamentally in their complementary ser-
vice valuation and if the more price-sensitive segment size is su�ciently
low.

The intuition behind this statement is the following. To serve any of
the consumers from L �rm h has to lower its price below the reservation
utility of the least valuable consumer from H. The price decrease is
more signi�cant if the service provided by the �rm is more valuable to
the consumers. Hence, there is a signi�cant consumer surplus what the
high-end consumers obtain because of the low prices. By quitting the low-
end segment, �rm h is not facing any competition from the low-quality
�rm and therefore can set its price higher. However, if the low-segment
is remarkable is size quitting the price-sensitive group can hurt the �rm`s
pro�t, since the price increase cannot o�set the loss caused by the major
demand loss. Actually, the same happens when consumers reservation
utility is high enough. Softening the competition by leaving a segment
and operating only on one segment, drives prices higher. As the demand
loss is not signi�cant, the pro�t rises as well.

Notice that when strategic de-marketing is pro�table it always leads
to higher average prices as well. This is because the low-end prices are
not decreasing after the demarketing and the high-end consumers pay
more for their products.

Additionally, choosing de-marketing has essentially di�erent impli-
cations regarding product characteristics. The entry of a low quality
provider would most likely lead to maximum product di�erentiation. In
the case of de-marketing, however, both �rms will cater to the tastes of
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the median consumers of their respective segments. Notice that due to
convex costs, in this case we end up with lower aggregate transportation
costs.

This latter result also has consequences regarding social welfare. In
our model, lower aggregate transportation costs necessarily mean higher
aggregate welfare. Hence de-marketing could lead to higher social welfare
than just competition for the low valuation segment.

Proposition 4.2 If the high-quality �rm stops serving the low-end seg-
ment average prices are going to increase, however, due to the reposi-
tioning of the products, social welfare will increase.

4.4 Conclusion

If the price sensitive segment is not signi�cant in size the manufacturer
is better of by quitting the low-end market entirely. To achieve this goal
the incumbent could (1) forbid the price-sensitive consumers to purchase
its product, (2) pursue a negative de-marketing campaign or (3) launch
a low quality product by itself and segment its consumers e�ectively.
Thus the high quality �rm should not necessarily get involved in price
competition but rather focus on (de-)marketing strategies.

Even though this demarketing will lead to higher prices, this is coun-
tered by the e�ects of product repositioning and thus social welfare can
increase. Our �ndings therefore carry a caveat that in certain cases de-
marketing could be considered desirable by regulators.



Chapter 5

Anchoring in an oligopolistic market

5.1 Introduction

Even though economic models usually posit rational actors, behavioral
economics have established the existence of quite a handful of well-
researched decision-making biases. One of these is anchoring, which
refers to the phenomenon that original guesses for a certain question
could act as anchors and could in�uence our �nal answers. For example
if we are asked �rst whether we would be willing to pay $10 for a watch,
our valuation for it could be lower then if we are �rst asked a similar
question but with $1000. Of course, this is clearly not consistent with
our model of the rational consumers who derive their valuations from
their system of preferences.

Many studies tried to deepen our understanding of this regular quirk
of consumer behavior. Tversky and Kahneman (1974) asked subjects
about the percentage of African nations in the United Nations. However,
�rstly a wheel of fortune (with numbers between 0 and 100) was used
to obtain an initial guess and before giving their own guess, the subjects
had to answer whether the percentage is higher or lower than the one
drawn. This chance number has clearly in�uenced the �nal guess given
by the subject. Early research on anchoring and reference points and
the connection of these phenomena with prospect theory is presented by
Kahneman (1992).

Northcraft and Neale (1987) have shown that experts are also sus-
ceptible to this phenomenon. Students and real estate agents had to
make pricing choices about properties they were shown. According to
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the results of the experiment, subjects in both groups were in�uenced by
the other listings provided before the decision.

Kalyanaram and Winer (1995) have found three general conclusions
based on the previous empirical literature. Reference prices do have a
non-neglectable e�ect on consumer valuations, past prices play an im-
portant role in shaping this reference price and in a way not inconsistent
with loss aversion, there is an asymmetrical reaction to price increases
and price decreases.

Ariely et al. (2003) carried out ground-breaking experiments on how
anchoring a�ects consumer valuation. They have found that the last dig-
its of the social security numbers � used in a similar fashion as the wheel
of fortune in the experiment by Tversky and Kahneman � could be used
to in�uence the subjects' willingness to pay. At the same time, the valu-
ation of related products is also in�uenced in a consistent fashion. To use
the example of one of the experiments detailed in the article: recalling
the last two digits of the Social Security Number in a priming question
in�uences how much someone is willing to pay for a bottle of average
wine, but everyone is willing to pay more for a bottle of "rare" wine than
for the "average" one. Subjects acted in a somewhat similar way when
their willingness-to-accept was tested. The originally provided anchor
in�uenced how much they accepted to endure a 30-second high-pitched
voice, however the sums accepted for a 10-second or a 60-second voice
were consistent with this. The authors thus �nd that valuations are orig-
inally resilient. After the encounter with an anchor however, they have
been "imprinted", and they create a system of valuations that is inter-
nally consistent, even though its foundation (the anchor) was arbitrary.

Simonson and Drolet (2004) investigated whether there is an asym-
metric anchoring e�ect on willingness-to-pay and willingness-to-accept.
They have found that although smaller di�erences might exist, the im-
pacts of anchoring are very similar in these cases. In the experiment
some subjects set selling prices under the assumption that they want to
sell their item, while others were instructed to assume that they are not
sure whether they want to sell. The experiment has shown that anchor-
ing e�ects are the strongest if there is an uncertainty in the desire to
trade. Nunes and Boatwright (2004) argued that anchors can e�ect the
willingness-to-pay in case of unrelated goods as well. In their experi-
ment they have found that displaying a T-shirt with an expensive ($80)
or a cheap ($10) price tag at their stand a�ected how much visitors are
willing to pay for the CD they were selling. They used the term "inciden-
tal prices" for the advertised or observed prices of completely unrelated
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products which were still able to in�uence consumer decisions.
Amir et al. (2008) asked the question whether there is a strong

relationship between predicted pleasure (utility) and reservation prices.
Subjects had to answer survey questions about a hypothetical concert
where di�erent cues where given about the details of the event. They
have found that there is no such relationship: some cues (like the pro-
duction costs) would a�ect the reservation price, other factors (like the
details about the temperature in the auditorium) would a�ect predicted
pleasure. This further hints towards the fact that numerical data which
does not a�ect utility (such as past prices) can a�ect consumers' willing-
nesses to pay and thus demand. Beggs and Grady (2009) have shown
that data from art auctions strongly supports the existence of the an-
choring e�ect amongst buyers in this market.

Baucells et al. (2011) based on their laboratory experiment tried to
estimate how subjects create reference prices. According to their model,
early and most recent data gets a larger weight, while intermediate data
gets a lower weight. Adaval and Wyer (2011) found that extreme prices
can serve as anchors not only for related goods, but unrelated products as
well if anchoring occurs unconsciously, when consumers encounter prices
by chance. On the other hand, if the consumer consciously seeks out
information on prices, the anchors will only in�uence the valuations of
similar products.

However, Fudenberg et al. (2012) raised questions regarding the
robustness of anchoring results. Their laboratory experiments regarding
common market goods and lotteries have found only very weak e�ect
on the subjects' willingness to pay. Mazar et al. (2013) on the other
hand argue that market dependent valuations1 support the hypothesis
that consumers focus on other factors then the utility obtained from
consuming the product and thus could hint at the signi�cance of an-
choring. In their experiments, they exposed potential buyers of mugs
and gift vouchers to di�erent a priori price distributions before soliciting
their valuations. They have found that the exposure to di�erent price
distributions had signi�cant e�ect on the subjects' willingnesses-to-pay.

As seen above, the study of price anchoring as a phenomenon has
a very expansive literature, however, the logical follow-up of behavioral
economics �ndings (as seen for example in K®szegi and Rabin (2006),
Schipper (2009), or in Jansen et al. (2009)) would be to extend our
previous models of consumer behavior and markets using these results.

1I.e. the phenomenon that the valuation of the consumer is in�uenced by
the prices encountered in the market.
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The �rst step in this direction was taken by Nasiry and Popescu (2011),
who have investigated the e�ect of anchoring on the dynamic pricing
problem of the monopoly and found that ignoring the behavioral e�ects
can lead to under- or overpricing. Under the peak-end rule they applied
(ie. the reference price is a combination of the lowest price and the last
price), they have shown that optimal price path will always be monotone;
thus the monopoly will employ skimming or penetration pricing.

In this paper we continue this direction by incorporating the e�ects
of anchoring into oligopoly models. Even though one might expect that
�rms can exploit anchoring to increase their revenues, as they are able
to do in other cases of consumer bias2, we �nd that in our �nite-horizon
Bertrand game, anchoring can lead to lower prices on average. Further-
more, we �nd stronger price-decreasing e�ect in less competitive markets,
thus the existence of anchoring in some sense protects the consumers from
�rms taking advantage of product di�erentiation.

In the following section, we brie�y introduce our model and consider
two versions. Firstly, we show a two-period game that focuses on the
dynamic price changes due to anchoring. Then we analyze the steady
state of an in�nite-horizon game, directing our attention to the long-term
incentives created by anchoring. We end our paper with concluding our
results.

5.2 The model

Suppose that n �rms produce di�erentiated products with zero marginal
costs.3 Demands are given by (i = 1, 2, . . . , n)4:

Di,t(pt, rt) = di,t(pt) + ht(rt, pi,t)

where pt = (p1,t, p2,t, . . . , pn,t), di,t(pt) = 1 − pi,t +
∑
j 6=i βpj,t and

0 < β < 1, while t = 1, 2, . . .. Furthermore, ht(rt, pi,t) captures the price
anchoring e�ect, with rt representing the reference price in period t. We
assume, that ht(rt, pi,t) = λ(

∑
i pi,t−1/n − pi,t), where λ ∈ (0, 1) and

h1(·, ·) = 0.5 That is, we assume that the e�ective reference price in

2See e.g. Heidhues et al. (2012) or Wenzel (2014).
3All our results would hold if we assume positive marginal costs, however the

expressions would be more complicated. Therefore, for simplicity, we assume
symmetric �rms with zero marginal costs.

4Our demand function is based on Nasiry and Popescu (2011).
5We restrict our attention to cases when gains and losses have symmetric

e�ects. That is, we use the same λ even when the actual price is higher or lower
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period t is the industry average price of period t − 1.6 Each �rm seeks
to maximise its sum of discounted pro�t Πi =

∑∞
t=1 δ

t−1pi,tDi,t(pt, rt),
with δ ∈ (0, 1) the common discount factor.7

To give an intuition, �rst we solve the game for the �nite case of two
periods and n = 2 assuming no discounting, and then proceed to the
general game described above.

5.2.1 The �nite duopoly case

To solve this game we use backward induction. Firms' pro�t functions
in period 2 can be written as (i = 1, 2):

πi,2(p2) = pi,2Di,2(p2, r2)

= pi,2

[
1− pi,2 + βpj,2 + λ

(∑
i pi,1

2
− pi,2

)]
Maximizing this expression with respect to pi,2 and imposing sym-

metry, we have that:

p∗i,2 =
λ
∑
i pi,1 + 2

2[2(1 + λ)− β]
for i = 1, 2. (5.1)

Firms' objective functions in the �rst period are (i = 1, 2):

Πi(p1) = πi,1 + πi,2 = pi,1di,1(p1) + pi,2Di,2(p2, r2)

= pi,1(1− pi,1 + βpj,1) +

+ pi,2

[
1− pi,2 + βpj,2 + λ

(∑
i pi,1

2
− pi,2

)]
Plugging into this pi,2 given above and maximizing it with respect to

pi,1, yields:

Lemma 5.1 Equilibrium prices and pro�ts are as follows:

p∗i,1 =
(1 + λ)[4(1− β) + 5λ] + β2

(2− β)3 + 4(2− β)2λ+ (7− 4β)λ2 − λ3

than the average price of the previous period.
6As pointed out by Biswas et al. (2011), the competitors' prices can also

in�uence the reference price for a product.
7One may think of this in�nite horizon game as a �nite game where the

game continues with a probability of δ after each period.
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p∗i,2 =
(2− β + λ)[2(1 + λ)− β]

(2− β)3 + 4(2− β)2λ+ (7− 4β)λ2 − λ3

and

π∗i =
β4(2 + λ)− β3(1 + λ)(16 + 5λ) + 8β2(1 + λ)2(6 + λ)

[(7− 4β)λ2 + 4(2− β)2λ+ (2− β)3 − λ3]2

−β(1 + λ)2[λ(68 + 3λ) + 64]− (1 + λ)3[(32− λ)λ+ 32]

[(7− 4β)λ2 + 4(2− β)2λ+ (2− β)3 − λ3]2

for i = 1, 2.

Comparing equilibrium prices we have that �rms set higher prices in the
�rst period than in the second period. The intuition behind this is that
in the �rst period they give up sales in order to provide a high anchor
for the second period, where they can �nally reap what they have sown,
so to speak. More formally:

Remark 1 p∗i,2 < p∗i,1 for i = 1, 2, whenever β ∈ (0, 1).

To examine the e�ect of price anchoring, let us consider the case
when there is no price anchoring. In this case �rms' per period pro�ts
can be given as (i = 1, 2):

πi,t(pt) = pi,tdi,t(pt) = pi,t(1− pi,t + βpj,t) (5.2)

Maximizing this with respect to pi,t (i, t = 1, 2), straightforward compu-
tation yields to:

Lemma 5.2 With no price anchoring in equilibrium �rms choose p∗∗i,t =
1

2−β in each sequence of period and pro�ts can be given by:

π∗∗i =
2(1 + β)

(2− β)2

for i = 1, 2.

This leads to the following result.

Proposition 5.1 If β is su�ciently small the average price of the two
periods is lower compared to the no-anchoring case.
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Proof: To show this, we need:∑2
t=1 p

∗
i,t

2
< p∗∗i,t

Plugging into this the equilibrium prices we have that

−2β2 + β(7λ+ 8)− (λ+ 1)(7λ+ 8)

2 [(4β − 7)λ2 − 4(β − 2)2λ+ (β − 2)3 + λ3]
<

1

2− β

This inequality holds whenever:

λ < 1− β

�
This result is depicted on Figure 5.1. The shaded area corresponds

to the cases when anchoring yields lower average prices.

λ

1

β1

Figure 5.1: Change of average prices.

Remark 2 Notice, that the output-weighted average price is even lower
than the average price, since with anchoring the second period equilibrium
prices are lower and the equilibrium quantities are greater than in the �rst
period.
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The intuition behind the above result is that in the �rst period, �rms
are increasing prices in order to create a favourable anchor for the sec-
ond period where they can make up for the lost sales. However, prices
in a Bertrand setup are strategic complements, hence when demands are
more interrelated, this leads to a more signi�cant price increase in the
�rst period. Of course this implies that the �rms are also able to charge a
higher price in the second period as well. Therefore the average price in-
creases if the products are close substitutes and decreases when demands
are relatively independent of each other.

5.2.2 The general case

In this section we consider a more general case with n ≥ 2 �rms playing
an in�nite horizon game. In this case �rms aim to maximise their dis-
counted pro�ts of Πi =∑∞
t=1 δ

t−1pi,tDi,t(pt, rt), with δ ∈ (0, 1). Therefore, the respective Bell-
man equations for this problem can be given as:

Vi,t(pi,t−1) = max
pi,t

pi,t
1− pi,t +

∑
j 6=i

βpj,t + λ (pr,t − pi,t)

+

+δVi,t+1(pi,t)

}

for every i, j = 1, 2, . . . , n (j 6= i), where pr,t =
∑n
i pi,t−1

n
. Dropping

time subscripts from the value function,s Vi,t(pi,t−1), these simplify to:

Vi(pi) = max
pi

pi
1− pi +

∑
j 6=i

βpj + λ (pr − pi)

+ δVi(pi)


Let us assume that Vi(pi) = A + Bpi + Cp2

i . In this case �rst-order
conditions yield:1− pi +

∑
j 6=i

βpj + λ

(∑
j 6=i pj − (n− 1)pi

n

)+

+pi

(
−1− (n− 1)

n
λ

)
+ δB + 2δCpi = 0
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for every i = 1, 2, . . . , n. Imposing symmetry we have that:

p∗i =
1 + δB

2− (n− 1)β + (n−1)
n

λ− 2δC

for every i = 1, 2, . . . , n. For this p∗i the Bellman equation simpli�es to:

A+Bp∗i + Cp∗i
2

= p∗i

1− p∗i +
∑
j 6=i

βp∗i

+ δ
(
A+Bp∗i + Cp∗i

2
)

or

(1− δ)(A+Bp∗i + Cp∗i
2
) = p∗i − [1− (n− 1)β]p∗i

2

From this we have that:

A = 0 B =
1

1− δ C = −1− (n− 1)β

1− δ

Plugging these into our previous equation yields:

p∗i =
1

2− (1 + δ)(n− 1)β + (1− δ) (n−1)
n

λ

Solving the no-anchoring case for n �rms we have that �rms choose
p∗∗i,t = 1

2−(n−1)β
. Comparing this to the prices given by the previous

equation we can show that:

Proposition 5.2 Price anchoring yields lower prices if λ > βδn
1−δ .

Proof: Let us de�ne ∆p ≡ p∗i−p∗∗i =
δ(n−1)β−(1−δ)n−1

n
λ

[2−(1+δ)(n−1)β+(1−δ) (n−1)
n

λ][2−(n−1)β]
.

We shall prove that ∆p < 0. Since the denominator in ∆p is positive we
need that:

δ(n− 1)β − (1− δ)n− 1

n
λ < 0

This implies that:

λ >
βδn

1− δ

�
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Proposition 5.3 Price anchoring yields lower pro�ts if and only if it
yields lower prices.

Proof: Plugging the equilibrium prices into the respective pro�t func-
tions we have that in the case of anchoring pro�ts are:

π∗i =
1− δ(n− 1)β + (1− δ) (n−1)

n
λ

[2− (1 + δ)(n− 1)β + (1− δ) (n−1)
n

λ]2

and without anchoring they equal to

π∗∗i =
1

[2− (n− 1)β]2

for each i = 1, 2, . . . , n. Let ∆π ≡ π∗i − π∗∗i . This is negative if:

[2− (n− 1)β]2[1− δ(n− 1)β + (1− δ) (n− 1)

n
λ] <

< [2− (1 + δ)(n− 1)β + (1− δ) (n− 1)

n
λ]2

or

−[(1− δ)λ− βδn][(1− δ)λ+ β(2− δ − β(n− 1))n] < 0

which simpli�es to:

λ >
βδn

1− δ

Notice that this condition is the same as the one derived in the previous
proposition. �

It is quite interesting that this time we obtain a lower bound for λ,
opposite to our result in the two-period game. The explanation lies in the
fact that the steady-state incentives are somewhat di�erent than the ones
that exist in a dynamic pricing game. The �rms are not setting prices
in order to exploit the anchor in the future. Rather the existence the
anchoring in some sense �pushes down� the price limit in this Bertrand
competition, since a stronger anchoring e�ect makes it more pro�table
to decrease prices further.

Proposition 5.4 The price decreasing e�ect of anchoring is more ap-
parent if fewer �rms are active in the market. The same applies if �rms
produce highly di�erentiated products (i.e. β → 0) or if �rms value future
earnings less (i.e. δ → 0)
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Proof: The proof follows trivially from the previous proposition since
the right-hand side of the inequality condition is increasing in n, β and
δ, respectively. �

If there are fewer �rms in the market, one �rm can in�uence the
average price more, hence they have a larger incentive to lower their
prices. If the products are more di�erentiated, the �rms own demand
is less a�ected by the price decreases of the other �rms, therefore there
is more room to decrease prices. If the �rms value future earnings less,
then they are willing to lower prices more even when this does not lead
to future gains.

5.3 Conclusion

Previous literature warns us that in certain cases �rms are able to exploit
consumer bias to increase their pro�ts, while harming their consumers.
Anchoring is well-known and well-researched bias for psychologists as
well as marketing professionals. Little research was done however on the
issue how price anchoring a�ects the conclusions of our market models.
To at least partially answer this question, we investigated these e�ects
within a �nite horizon Bertrand game with di�erentiated products. We
assumed that the average price of the previous period serves as an anchor
for the consumers, furthermore we assumed that this fact is common
knowledge for the �rms. Solving our model, we �nd that in the case
of anchoring, the consumer bias might lead to lower prices. Somewhat
surprisingly, we also �nd that this price-lowering e�ect is more likely in
more di�erentiated markets, thus �rms with higher market power are
even less likely to exploit anchoring. In our more general in�nite-horizon
model, we have further found that if there are less �rms in an industry, it
is more likely that price anchoring will lead to lower prices, also pointing
in this direction. Even though the e�ects of anchoring on equilibrium
oligopoly prices is ambiguous, we have shown that it can lead to lower
prices, especially in those cases when the �rms have higher market power.
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