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Chapter 1

Introduction

Paired comparison based ranking problems are given by a tournament matrix

representing the performance of some objects against each other. They arise in

many different fields like social choice theory (Chebotarev and Shamis, 1998), sports

(Landau, 1895, 1914; Zermelo, 1929) or psychology (Thurstone, 1927). The usual

goal is to determine a winner (possibly a set of winners) or a complete ranking for

the objects. There were some attempts to link the two areas (i.e. Bouyssou (2004)),

however, they achieved a limited success. We will deal only with the latter issue,

allowing for different preference intensities (including ties), incomplete and multiple

comparisons among the objects.

The ranking includes three areas: representation of the practical problem as a

mathematical model, its solution, and interpretation of the results. The third issue

strongly depends on the actual application, therefore it is not addressed in the thesis,

however, it will appear in Chapter 7.

All papers using these methods obviously discuss the first question, however,

there is a lack of general review. Nevertheless, it is worth mentioning that Jiang

et al. (2011) revisit the aggregation of individual evaluation into paired compar-

isons. Besides an extensive application, we want to overview some fields where these

rankings are used.

Regarding the second issue, we will follow an axiomatic approach. A number of

papers present a characterization of a specific scoring procedure, and some works

discuss the problem on a domain more restricted than our (see, for example, Laslier

(1997) or Altman and Tennenholtz (2008)). We mention three articles giving a sim-

ilar discussion. Chebotarev and Shamis (1998) give a survey of paired comparisons

based scoring procedures, and their known axiomatizations. Chebotarev and Shamis

(1999) introduce the concepts of win-loss combining and win-loss unifying proce-

dures, and argues for the use of the latter, among them the score, generalised row

sum, and least squares methods. It also promises some future axiomatic construction

of procedures, but this work has not been completed yet. Despite that the recent
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1. Introduction 5

paper of González-Díaz et al. (2014) does not substitute for the lack of characteri-

zations, it contains 14 properties and adds some new aspects for the comparison of

different methods, supporting the choice of an appropriate scoring procedure.

Our discussion about the solution of paired comparison-based ranking problems

follow González-Díaz et al. (2014). We define some novel axioms and thoroughly

analyse their connections. Other properties can be found in Csató (2013b) and Csató

(2014b). However, we focus on score, generalised row sum, and least squares. Fair

bets is examined in Csató (2013d) and Csató (2014b), while maximum likelihood is

disregarded due to its non-linearity.

The thesis is structured as follows. Chapter 2 presents our framework for paired

comparison ranking, based on Chebotarev and Shamis (1998) and González-Díaz

et al. (2014). The concepts of results and matches matrices are introduced in order

to represent the structure of comparisons with graphs. We also review two different

approaches of ranking, the approximation of paired comparisons by linear orders

and the use of scoring procedures. Bouyssou (2004) has persuaded us that the lat-

ter direction requires more attention, thus an overview is given about the scoring

procedures from an axiomatic perspective. Chapter 3 discusses some of them, with

a focus on the score, generalised row sum, and least squares methods.

Chapter 4 derives a graph interpretation for generalised row sum and least

squares methods on the basis of the balanced comparison multigraph, which is one

of the main contributions of our thesis. We will compare it to similar methods pro-

posed in the literature, like Brozos-Vázquez et al. (2008) or Herings et al. (2005).

In Chapter 5, we define some known and novel axioms for scoring procedures, and

analyse the performance of chosen methods with respect to them. The results of

Chebotarev (1994) and González-Díaz et al. (2014) are supplemented, moreover,

one of them is proved to be false. The connection of certain properties will also be

revealed. Chapter 6 gives a characterization of the score on the set of round-robin

ranking problems, by using the main theorem of Bouyssou (1992). It is presented

that the axiomatization is not valid on the extended sets of balanced or unweighted

ranking problems. Finally, we revisit the relationship with the score method through

other properties.

In Chapter 7, an application of paired comparison-based scoring procedures for

Swiss-system chess team tournaments is investigated. The competition can be rep-

resented as a ranking problem, and two examples are analysed with the proposed

methods. We argue for the use of least squares method with a generalised result

matrix favouring match points. Chapter 8 presents the fields where the use of these

scoring procedures has been considered. Some recommendations are formulated on

the basis of our knowledge and experiences.

Own results are detailed in short summaries after each topic and in Chapter 9.



Chapter 2

A model of paired comparison

ranking

In order to solve problems similar to those discussed in Chapter 1, we need to

formalize a model of paired comparisons and set the task.

2.1 The ranking problem

Notation 2.1. 0 ∈ R𝑛 is the zero vector.

e ∈ R𝑛 is the unit column vector.

𝑂 ∈ R𝑛×𝑛 is the zero matrix.

𝐼 ∈ R𝑛×𝑛 is the unit matrix with 1-s in the diagonal, and 0-s off the diagonal.

𝐽 ∈ R𝑛×𝑛 is the matrix whose all elements are 1.

Definition 2.1. Set of objects : 𝑁 = {𝑋1, 𝑋2, . . . , 𝑋𝑛}, 𝑛 ∈ N is the set of objects.

Definition 2.2. Individual paired comparison matrix : 𝑅(𝑝) =
(︁
𝑟
(𝑝)
𝑖𝑗

)︁
∈ R𝑛×𝑛

+ is a

partially defined individual paired comparison matrix such that

∙ 𝑟
(𝑝)
𝑖𝑗 and 𝑟

(𝑝)
𝑗𝑖 are unknown, or 𝑟(𝑝)𝑖𝑗 + 𝑟

(𝑝)
𝑗𝑖 = 1 for all 𝑖 ̸= 𝑗;

∙ 𝑟
(𝑝)
𝑖𝑖 = 0 for all 𝑖 = 1, 2, . . . , 𝑛.

𝑟
(𝑝)
𝑖𝑗 represents the outcome of paired comparison between objects 𝑋𝑖 and 𝑋𝑗 by

decision maker 𝑝.

Definition 2.3. Preference profile: The pair (𝑁,R) is a preference profile, where 𝑁

is the set of objects, and R =
(︀
𝑅(1), 𝑅(2), . . . , 𝑅(𝑚)

)︀
, 𝑚 ∈ N is an 𝑚 × 𝑛 × 𝑛 array

such that 𝑅(𝑝) is an individual paired comparison matrix for all 𝑝 = 1, 2, . . . ,𝑚.

Notation 2.2. The set of preference profiles with 𝑛 objects is denoted by ℛ𝑛
* .
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2. A model of paired comparison ranking 7

Notation 2.3. 𝜒(𝑁,R) : {1; 2; . . . ;𝑚} × 𝑁 × 𝑁 → {0; 1} is the indicator function of

known elements in the preference profile (𝑁,R):

𝜒(𝑁,R)(𝑝,𝑋𝑖, 𝑋𝑗) =

{︃
1 if 𝑋𝑖 ̸= 𝑋𝑗 and 𝑟

(𝑝)
𝑖𝑗 is known

0 otherwise.

Definition 2.4. Aggregated paired comparison matrix : The aggregated paired com-

parison matrix 𝑅 = (𝑟𝑖𝑗) ∈ R𝑛×𝑛
+ corresponds to preference profile (𝑁,R), where

𝑟𝑖𝑗 =

{︃
0 if

∑︀𝑚
𝑝=1 𝜒(𝑁,R)(𝑋𝑖, 𝑋𝑗, 𝑝) = 0∑︀𝑚

𝑝=1, 𝜒(𝑁,R)(𝑝,𝑋𝑖,𝑋𝑗)=1 𝑟
(𝑝)
𝑖𝑗 otherwise.

Definition 2.5. Ranking problem: The pair (𝑁,𝑅) is the ranking problem corre-

sponding to preference profile (𝑁,R) such that 𝑅 is the aggregated paired compar-

ison matrix.

Notation 2.4. The set of ranking problems is denoted by ℛ. The set of ranking

problems defined over set of objects 𝑁 (i.e. those with 𝑛 objects) is denoted by ℛ𝑛.

Our definitions follow the models of Chebotarev and Shamis (1998) and González-

Díaz et al. (2014). Now another representation is given, which is not as parsimonious

but useful.

Definition 2.6. Results matrix : The results matrix 𝐴 = (𝑎𝑖𝑗) ∈ R𝑛×𝑛 corresponds

to preference profile (𝑁,R), where 𝑎𝑖𝑗 = 𝑟𝑖𝑗 − 𝑟𝑗𝑖 for all 𝑋𝑖 ̸= 𝑋𝑗 and 𝑎𝑖𝑖 = 0 for all

𝑋𝑖 ∈ 𝑁 .

Results matrix is skew-symmetric (𝐴⊤ = −𝐴). It is identical to a the pairwise

comparison matrix of the Analytic Hierarchy Process (AHP) (Saaty, 1980) by taking

the logarithm of the latter’s elements (Csató, 2012b).

Definition 2.7. Matches matrix : The matches matrix 𝑀 = (𝑚𝑖𝑗) ∈ R𝑛×𝑛 corre-

sponds to preference profile (𝑁,R), where 𝑚𝑖𝑗 = 𝑟𝑖𝑗 + 𝑟𝑗𝑖 for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Matches matrix is symmetric (𝑀⊤ = 𝑀).

Remark 2.1. 𝑎𝑖𝑗 ∈ [−𝑚𝑖𝑗, 𝑚𝑖𝑗] for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , that is, 𝑚𝑖𝑗 = 0 implies 𝑎𝑖𝑗 = 0.

Moreover, 𝑚𝑖𝑗 =
∑︀𝑚

𝑝=1 𝜒(𝑁,R)(𝑋𝑖, 𝑋𝑗, 𝑝) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , hence 𝑀 ∈ N𝑛×𝑛.

Definition 2.8. Ranking problem: The triple (𝑁,𝐴,𝑀) is the ranking problem cor-

responding to preference profile (𝑁,R) such that 𝐴 is the results and 𝑀 is the

matches matrix.

Ranking problem (𝑁,𝐴,𝑀) ∈ ℛ𝑛 can be represented by graphs such that the

nodes are the objects, 𝑘 times (𝑋𝑖, 𝑋𝑗) ∈ 𝑁×𝑁 undirected edge means 𝑎𝑖𝑗(= 𝑎𝑗𝑖) =

0, 𝑚𝑖𝑗 = 𝑘, and 𝑘 times (𝑋𝑖, 𝑋𝑗) ∈ 𝑁 ×𝑁 directed edge means 𝑎𝑖𝑗 = 𝑘 (𝑎𝑗𝑖 = −𝑘),

𝑚𝑖𝑗 = 𝑘.
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Figure 2.1: Ranking problem of Example 2.1

𝑋1 𝑋2

𝑋3

Example 2.1. Condorcet paradox (Condorcet, 1785) is given by the ranking prob-

lem in Figure 2.1 with the set of objects 𝑁 = {𝑋1, 𝑋2, 𝑋3} .

Definition 2.9. Special ranking problems: A ranking problem (𝑁,𝐴,𝑀) ∈ ℛ𝑛 is

∙ balanced if
∑︀

𝑋𝑘∈𝑁 𝑚𝑖𝑘 =
∑︀

𝑋𝑘∈𝑁 𝑚𝑗𝑘 for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 ;

∙ round-robin if 𝑚𝑖𝑗 = 𝑚𝑘ℓ for all 𝑋𝑖 ̸= 𝑋𝑗 and 𝑋𝑘 ̸= 𝑋ℓ;

∙ unweighted if 𝑚𝑖𝑗 ∈ {0; 1} for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 ;

∙ tournament if 𝑚𝑖𝑗 = 1 and 𝑎𝑖𝑗 ∈ {−𝑚𝑖𝑗;𝑚𝑖𝑗} for all 𝑋𝑖 ̸= 𝑋𝑗.

Notation 2.5. The set of balanced ranking problems is denoted by ℛ𝐵.

The set of round-robin ranking problems is denoted by ℛ𝑅.

The set of unweighted ranking problems is denoted by ℛ𝑈 .

The set of tournaments is denoted by ℛ𝑇 .

Remark 2.2. ℛ𝑅 ⊂ ℛ𝐵 ⊂ ℛ and ℛ𝑇 ⊂ (ℛ𝑅 ∩ℛ𝑈) ⊂ ℛ𝐵 ⊂ ℛ.

Definition 2.10. Special matches matrices (Brozos-Vázquez et al., 2008): Matches

matrix 𝑀 is called block diagonal and block anti-diagonal, respectively, if the set of

objects 𝑁 has a partition 𝑁1 ∪𝑁2 = 𝑁 , |𝑁1| = 𝑛1 and |𝑁2| = 𝑛2 such that with a

possible reordering of the objects,

𝑀 =

(︃
𝑀1

𝑛1×𝑛1
𝑂𝑛1×𝑛2

𝑂𝑛2×𝑛1 𝑀2
𝑛2×𝑛2

)︃
and 𝑀 =

(︃
𝑂𝑛1×𝑛1 𝑀1

𝑛1×𝑛2

𝑀2
𝑛2×𝑛1

𝑂𝑛2×𝑛2

)︃
,

respectively, where the subscripts denote the dimensions of (sub)matrices.

Definition 2.11. Multiset (multiset) (Chebotarev and Shamis, 1998): In a multiset,

as distinct from sets, multiple occurrence of elements is allowed.

Notation 2.6. ⊎ denotes the union of sets such that multiple occurrence of elements

is preserved.

Definition 2.12. Opponent set and multiset : Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking

problem. Then



2. A model of paired comparison ranking 9

∙ the 𝑝th opponent set of object 𝑋𝑖 ∈ 𝑁 is the set of elements compared

with it in the 𝑝th round: 𝑂𝑝
𝑖 = {𝑋𝑗 : 𝑚𝑖𝑗 = 1} for all 𝑋𝑖 ∈ 𝑁 and

𝑝 = 1, 2, . . . ,𝑚;

∙ the opponent multiset of object 𝑋𝑖 ∈ 𝑁 is the multiset of other elements,

which contains the replications of objects equal to the number of compar-

isons between them: 𝑂𝑖 = {𝑋𝑗 : ♯𝑋𝑗 = 𝑚𝑖𝑗} for all 𝑋𝑖 ∈ 𝑁 .

Objects of the opponent multiset 𝑂𝑖 are called opponents of 𝑋𝑖.

Notation 2.7. {𝑋𝑗}𝑚𝑖𝑗 ⊆ 𝑂𝑖 denotes that object 𝑋𝑗 has 𝑚𝑖𝑗 replications in the

opponent multiset of 𝑋𝑖.

Corollary 2.1. 𝑂𝑖 = ⊎𝑚
𝑝=1𝑂

𝑝
𝑖 or all 𝑋𝑖 ∈ 𝑁 .

Definition 2.13. Number of comparisons : Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking prob-

lem. Then

∙ the number of comparisons of object 𝑋𝑖 is 𝑑𝑖 =
∑︀

𝑋𝑗∈𝑁 𝑚𝑖𝑗 = |𝑂𝑖| for all
𝑋𝑖 ∈ 𝑁 ;

∙ the maximal number of comparisons is d = max{𝑑𝑖 : 𝑋𝑖 ∈ 𝑁}.

2.2 Graph representation of the matches matrix

Basic graph-theoretic concepts used can be found in Mohar (1991) and Csató

(2014a, Section 2: Notations and rating methods). Here we mention only a few.

Notation 2.8. The adjacency matrix of multigraph 𝐺 = (𝑁,𝐸) is denoted by 𝑇 =

(𝑡𝑖𝑗) ∈ R𝑛×𝑛.

The Laplacian matrix of multigraph 𝐺 = (𝑁,𝐸) is denoted by 𝐿 = (ℓ𝑖𝑗) ∈ R𝑛×𝑛.

Lemma 2.1. The Laplacian matrix of multigraph 𝐺 = (𝑁,𝐸) is symmetric, and

its eigenvalues 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑛 = 0 are real, so it is positive semidefinite. The

eigenvector corresponding to 𝜇𝑛 = 0 is e.

Definition 2.14. Comparison multigraph: Undirected multigraph 𝐺 := (𝑁,𝐸) is

the comparison multigraph of the ranking problem (𝑁,𝐴,𝑀) ∈ ℛ𝑛 such that the

number of (𝑋𝑖, 𝑋𝑗) ∈ 𝐸 edges is 𝑚𝑖𝑗.

Definition 2.15. Connected ranking problem: A ranking problem (𝑁,𝐴,𝑀) ∈ ℛ𝑛

is connected if the corresponding comparison multigraph 𝐺 = (𝑁,𝐸) is connected.

Notation 2.9. The set of connected ranking problems is denoted by ℛ𝑂.

Lemma 2.2. Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem. The matches matrix 𝑀 is

block diagonal if and only if the comparison multigraph 𝐺 is connected.



10 2.3. Some approaches for ranking

2.3 Some approaches for ranking

Notation 2.10. 𝑋𝑖 ⪰(𝑁,𝐴,𝑀) 𝑋𝑗 means that𝑋𝑖 is at least as good as𝑋𝑗 in the ranking

problem (𝑁,𝐴,𝑀) ∈ ℛ𝑛. It defines the following binary relations:

∙ 𝑋𝑖 ≻(𝑁,𝐴,𝑀) 𝑋𝑗 if 𝑋𝑖 ⪰(𝑁,𝐴,𝑀) 𝑋𝑗 and 𝑋𝑗 �(𝑁,𝐴,𝑀) 𝑋𝑖;

∙ 𝑋𝑖 ∼(𝑁,𝐴,𝑀) 𝑋𝑗 if 𝑋𝑖 ⪰(𝑁,𝐴,𝑀) 𝑋𝑗 and 𝑋𝑗 ⪰(𝑁,𝐴,𝑀) 𝑋𝑖;

∙ 𝑋𝑖 ⊥(𝑁,𝐴,𝑀) 𝑋𝑗 if 𝑋𝑖 �(𝑁,𝐴,𝑀) 𝑋𝑗 and 𝑋𝑗 �(𝑁,𝐴,𝑀) 𝑋𝑖.

Definition 2.16. Ranking : The reflexive and transitive (but not necessarily total)

binary relation ⪰(𝑁,𝐴,𝑀) on the object set 𝑁 is a ranking.

Notation 2.11. The set of rankings with 𝑛 objects is denoted by 𝒫𝑛.

Definition 2.17. Linear order : The irreflexive, transitive, and total binary relation

≻(𝑁,𝐴,𝑀) on the object set 𝑁 is a linear order.

Notation 2.12. The set of linear orders with 𝑛 objects is denoted by ℒ𝑛.

Definition 2.18. Ranking method : A function ℛ𝑛
* → 𝒫𝑛 is a ranking method.

Definition 2.19. General scoring procedure: A function 𝑓 : ℛ𝑛
* → R𝑛 is a general

scoring procedure.

Remark 2.3. Every general scoring procedure 𝑓 : ℛ* → R𝑛 defines a ranking method

⪰𝑓 : ℛ → 𝒫𝑛 such that 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀) ⇒ 𝑋𝑖 ⪰𝑓
(𝑁,𝐴,𝑀) 𝑋𝑗. This ranking

is well-defined and total.

Definition 2.20. Scoring procedure (scoring method): A function 𝑓 : ℛ𝑛 → R𝑛 is

a scoring procedure.

Definition 2.21. Proportionality : Scoring procedures 𝑓 1, 𝑓 2 : ℛ𝑛 → R𝑛 are called

proportional if there exists a constant 𝜅 > 0 such that 𝑓 1(𝑁,𝐴,𝑀) = 𝜅𝑓 2(𝑁,𝐴,𝑀)

for all (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Notation 2.13. The proportionality of scoring procedures 𝑓 1, 𝑓 2 : ℛ𝑛 → R𝑛 is de-

noted by 𝑓 1 ∝ 𝑓 2.

Lemma 2.3. Proportional scoring procedures define the same ranking.

Definition 2.22. Equivalence: Scoring procedures 𝑓 1, 𝑓 2 : ℛ𝑛 → R𝑛 are called

equivalent if 𝑓 1
𝑖 (𝑁,𝐴,𝑀) ≥ 𝑓 1

𝑗 (𝑁,𝐴,𝑀) ⇔ 𝑓 2
𝑖 (𝑁,𝐴,𝑀) ≥ 𝑓 2

𝑗 (𝑁,𝐴,𝑀) for all

𝑋𝑖, 𝑋𝑗 ∈ 𝑁 and (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Notation 2.14. The equivalence of scoring procedures 𝑓 1, 𝑓 2 : ℛ𝑛 → R𝑛 is denoted

by 𝑓 1 ≈ 𝑓 2.
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Lemma 2.4. Proportional scoring procedures are equivalent, but equivalence does

not imply proportionality.

The second approach is based on the approximation of the (generalized) tourna-

ment by linear orders (Kemeny, 1959; Slater, 1961).

Definition 2.23. Optimal linear order : The solution 𝐿 ∈ ℒ𝑛 of

min
𝐿∈ℒ𝑛

∑︁
𝑋𝑖,𝑋𝑗∈𝑁

(𝑟𝑗𝑖 : 𝑋𝑖 ≺ 𝑋𝑗) = min
𝐿∈ℒ𝑛

∑︁
𝑋𝑖,𝑋𝑗∈𝑁

(0, 5𝑎𝑗𝑖 + 0, 5𝑚𝑗𝑖 : 𝑋𝑖 ≺ 𝑋𝑗)

is an optimal linear order of the ranking problem (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

It usually leads to interesting combinatorial and algorithmic problems (Ali et al.,

1986; Coleman, 2005; Hudry, 2009), however, from a theoretical viewpoint these

methods have two disadvantages: the possible occurrence of multiple optimal solu-

tions and the difficulties arising in the examination of their (normative) properties

(Bouyssou, 2004; Pasteur, 2010). Consequently, the thesis will follow the former

approach, we will discuss scoring procedures since Chebotarev and Shamis (1999)

prove that only the methods using the aggregated paired comparison matrix 𝑅 can

satisfy self-consistent monotonicity.

2.4 An axiomatic review of scoring procedures

See Csató (2014a, Section 1: Introduction).

2.5 Summary

In this chapter we have presented our framework for paired comparison ranking

on the basis of Chebotarev and Shamis (1998) and González-Díaz et al. (2014).

The concepts of results and matches matrices were introduced in order to connect

the model to Saaty’s pairwise comparison matrix and represent the structure of

comparisons with graphs. Finally, we have reviewed two different approaches of

ranking, the approximation of paired comparisons by linear orders and the use of

scoring procedures. According to Bouyssou (2004), the latter method have been

chosen. We have given an overview about the methods proposed in the literature,

focusing on axiomatic results in Subsection 2.4.



Chapter 3

Scoring procedures

In this chapter we present some scoring procedures and discuss them.

3.1 Some scoring procedures

Definition 3.1. Fixed-order method (Slutzki and Volij, 2005): fo : ℛ𝑛 → R𝑛 such

that 𝑓𝑜𝑖(𝑁,𝐴,𝑀) = 𝑖 for all 𝑋𝑖 ∈ 𝑁 and (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Definition 3.2. Flat method (Slutzki and Volij, 2005): f l : ℛ𝑛 → R𝑛 such that

𝑓𝑙𝑖(𝑁,𝐴,𝑀) = 0 for all 𝑋𝑖 ∈ 𝑁 and (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Definition 3.3. Score method (Borda, 1781; Copeland, 1951): s : ℛ𝑛 → R𝑛 such

that s(𝑁,𝐴,𝑀) = 𝐴e for all (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Definition 3.4. Generalised row sum method, 𝐺𝑅𝑆 (Chebotarev, 1989): x(𝜀) :

ℛ𝑛 → R𝑛 such that (𝐼 + 𝜀𝐿)x(𝜀)(𝑁,𝐴,𝑀) = (1 + 𝜀𝑚𝑛)s for all (𝑁,𝐴,𝑀) ∈ ℛ𝑛,

where 𝜀 > 0 is a parameter.

Lemma 3.1. The score and generalised row methods are proportional if 𝜀 → 0, that

is, lim𝜀→0 x(𝜀) ∝ s, moreover, lim𝜀→0 x(𝜀) = s.

Definition 3.5. Reasonable choice of 𝜀 (Chebotarev, 1994, Proposition 5.1): Let

(𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem. Reasonableness for the choice of 𝜀 of gener-

alised row sum method amounts to satisfying the constraint

0 < 𝜀 ≤ 1

𝑚(𝑛− 2)
.

Reasonable upper bound of 𝜀 is 𝜀 = 1/ [𝑚(𝑛− 2)].

Proposition 3.1. For the generalised row sum method with a reasonable choice of

𝜀, −𝑚(𝑛− 1) ≤ 𝑥𝑖(𝜀) ≤ 𝑚(𝑛− 1) for all 𝑋𝑖 ∈ 𝑁 .

12
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Proof. See Chebotarev (1994, Property 13).

Proposition 3.2. Both the score and the generalized row sum methods are well-

defined for all (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Proof. See Chebotarev (1994, Property 1).

For comments and other details, see Csató (2014a, Section 2: Notations and

rating methods).

3.2 About the least squares method

See Csató (2014a, Section 3: The least squares method and its solution).

3.3 Existence of a well-defined solution

Regarding the least squares method, see Csató (2014a, Section 3: The least

squares method and its solution).

Three main conditions are known for the existence of a unique solution of scoring

procedures:

1. Irreducibility of 𝑅. It is a necessary and sufficient condition for maximum

likelihood (Zermelo, 1929; Bradley and Terry, 1952), invariant, and fair bets

methods (Daniels, 1969; Moon and Pullman, 1970).

2. Irreducibility of 𝑀 . It is a necessary and sufficient condition for least squares

(Csató, 2014a, Proposition 1). It is a weaker requirement than the former.

3. There is no need for restrictions on ℛ. It is the case in score, generalised

row sum, the extension of maximum likelihood (Conner and Grant, 2000), or

PageRank (Brin and Page, 1998).

Methods defined on irreducible problems are inapplicable to ’decomposable’ pref-

erences, where 𝑁 can be ordered such that the objects of a league with a lower num-

ber are never preferred to those of a higher league. This constraint is not critical in

the case of round-robin ranking problems, because the leagues have a natural order,

and they may be handled separately. In fact, still Zermelo (1929) discussed this ex-

tension to a larger class (a recent version can be found in Slutzki and Volij (2005)).

However, this is not true for problems with unknown or multiple comparisons: in

Csató (2014a, Example 1), there exists no natural order between the leagues {𝑋1}
and {𝑋2}, but they are connected, the matches matrix is irreducible. According to

Chebotarev (1994), it is an important argument for the use of generalised row sum

(and therefore, least squares) method.
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3.4 Summary

In Chapter 3, some scoring procedures were discussed. Two methods, fixed-order

and flat are used for technical purposes only, they help in understanding the fol-

lowing properties. The thesis focuses on the score, generalised row sum, and least

squares scoring procedures. The second is not a single method, but a parametric

family of methods. Choice of 𝜀 is not a trivial question, although Chebotarev (1994)

gives some idea about it. Nevertheless, according to González-Díaz et al. (2014, Ex-

ample 2.1), in certain cases the reasonable upper bound is not high enough to allow

for an appropriate role of opponents. Csató (2014a, Example 1) also reveals that

this restriction can be contrasted with the existence of linear order.

It suggests that the least squares method is worth to analyse. We have taken

this step in Subsection 3.2. After that, the issue of domain have been discussed,

which offered arguments for the scoring procedures discussed as methods requiring

the irreducibility of aggregated paired comparison matrix 𝑅 are unable to give a

ranking in some relevant cases.



Chapter 4

A graph interpretation of the least

squares method

4.1 An alternative calculation

See Csató (2014a, Section 3: The least squares method and its solution).

4.2 The iterative decomposition

See Csató (2014a, Section 4: The iterative calculation of the least squares rating).

4.3 An extension of the graph interpretation

The decomposition of the least squares ranking makes possible to extend it and

define a family of rating methods similarly to the generalized row sum method, where

the least squares correspond to a special case of the family. The graph interpretation

shows that the main idea of the least squares method is that the paths (represented

by the powers of matrix 𝐶) between the objects play a correcting role in order

to address the different schedules, by taking the scores of opponents into account.

It is a well-known assumption in the literature to take exponentially decreasing

weights with the length of paths, which is a relevant consideration since the very

long paths have probably slight significance (see, for example, Katz (1953)). In our

case the possible presence of loops yields inherently greater weights for shorter paths,

nevertheless, it seems to be a valid generalization.

Definition 4.1. Generalised Buchholz method : w(𝛿) : ℛ𝑛 → R𝑛 such that

w(𝛿) =
1

d

∞∑︁
𝑘=0

(︂
1

𝛿
𝐶

)︂𝑘

s =
1

d

[︃
s +

1

𝛿
𝐶s +

(︂
1

𝛿
𝐶

)︂2

s +

(︂
1

𝛿
𝐶

)︂3

s + . . .

]︃
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for all (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Proposition 4.1. Generalised Buchholz method is well-defined for all (𝑁,𝐴,𝑀) ∈
ℛ𝑛.

Proposition 4.2. The rating vector w(𝛿) of generalised Buchholz method is the

unique solution of the equation system

d

(︂
𝛿 − d

𝛿
𝐼 +

1

𝛿
𝐿

)︂
w(𝛿) = s.

Remark 4.1. The limit of generalised Buchholz method is proportional to the least

squares method if 𝛿 → d, moreover, lim𝛿→dw(𝛿) = q. The limit of generalised

Buchholz is proportional to the score method if 𝛿 → ∞, moreover, lim𝛿→∞ w(𝛿) =

(1/d)s.

Theorem 4.1. Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem. Generalised Buchholz and

generalised row sum methods are proportional, vectors w(𝛿) and x(𝜀) can be obtained

from each other by scalar multiplication with an appropriate choice of parameters:

x(𝜀) =

(︂
1 +

𝑚𝑛

𝛿 − d

)︂
𝛿

d(𝛿 − d)
w(𝛿) if 𝜀 = 1/ (𝛿 − d) , and

w(𝛿) =
1

1 + 𝜀𝑚𝑛

d

1 + 𝜀d
x(𝜀) if 𝛿 = 1/𝜀 + d, respectively.

Remark 4.2. According to Definition 3.5 the reasonable choice of generalised row

sum’s parameter is 0 < 𝜀 ≤ 1/ [𝑚(𝑛− 2)]. For the generalised Buchholz method it

corresponds to 𝛿 ≥ 𝑚(𝑛−2)+d. The condition d ≤ 𝑚(𝑛−1) for all (𝑁,𝐴,𝑀) ∈ ℛ𝑛

means that in the subsequent steps of the iteration score should be corrected not by

the average score of the opponents, but by at most half of it since usually 𝛿 ≥ 2d.

If d is significantly lower than the theoretical maximum 𝑚(𝑛 − 1), the influence of

opponents should be small to remain in the reasonable interval. For instance, in

Csató (2014a, Example 1), 𝑚 = 1, d = 3, and 𝑛 = 7, hence 𝛿 ≥ 8. The difference is

significant when d ≪ 𝑚(𝑛− 2).

We emphasize that from the viewpoint of their origin, generalized row sum was

obtained as the set of ranking methods satisfying certain conditions on how the

pairwise results or the players are to be aggregated (Chebotarev, 1994), whereas

the generalized Buchholz was obtained from the graph interpretation of the least

squares method. The use of comparison multigraph seems to be more intuitive than

the generalized row sum, and the nice graph interpretation of generalized Buchholz

makes it acceptable for a wide audience.
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4.4 Summary

In Chapter 4, a graph interpretation was given for generalised row sum and least

squares methods on the basis of the balanced comparison multigraph. Regarding

the latter, decomposition does not work if the comparison multigraph is regular

bipartite. The rating vector can be obtained as the limit of an iteration process

using the score of objects and the discount factor 1/𝛿 ≤ 1/d. Here d = max{𝑑𝑖 : 𝑖 =

1, 2, . . . , 𝑛}, the maximal number of comparisons is endogenously given by matches

matrix 𝑀 .

They are entirely new results founded on elementary linear algebra and graph

theory. It has a strong connection to the suggestions of existing literature like Brozos-

Vázquez et al. (2008) or Herings et al. (2005). We hope the presented graph inter-

pretation will give incentives for practical applications since it immediately shows

the calculation from the scores as well as the main idea behind the methods.



Chapter 5

Some properties of scoring

procedures

Bouyssou (2004, p. 270) states that there is a real need for a thorough study

of ranking procedures. In this chapter, similarly to González-Díaz et al. (2014), we

give an axiomatic overview of scoring procedures. The focus will be on the score,

generalised row sum and least squares methods. Chebotarev (1994) has analysed

generalised row sum, while González-Díaz et al. (2014) have examined the score and

least squares methods as well as generalised row sum with a fixed 𝜀 = 1/ [𝑚(𝑛− 2)].

Therefore, some results are given in these papers, but the discussion of new axioms

and some complementary comments are our own contribution. Part of the results

can be found in Csató (2014b), where fair bets and some derivatives of it are also

analysed.

5.1 Insensitivity of the ranking

Definition 5.1. Anonymity (𝐴𝑁𝑂) (Young, 1974): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a rank-

ing problem and 𝜎 : {1; 2; . . . ;𝑚} → {1; 2; . . . ;𝑚} be a permutation on the set of

voters. Let 𝜎𝐴 be the results matrix obtained from 𝐴 by the permutation. Gener-

alised scoring procedure 𝑓 : ℛ𝑛
* → R𝑛 is anonymous if 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀) ⇔

𝑓𝑖(𝑁, 𝜎𝐴,𝑀) ≥ 𝑓𝑗(𝑁, 𝜎𝐴,𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Lemma 5.1. A scoring procedure 𝑓 : ℛ𝑛 → R𝑛 is anonymous.

Lemma 5.2. The score, generalised row sum and least squares methods satisfy

𝐴𝑁𝑂.

Definition 5.2. Neutrality (𝑁𝐸𝑈) (Young, 1974): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking

problem and 𝜎 : 𝑁 → 𝑁 be a permutation on the set of objects. Let 𝜎(𝑁,𝐴,𝑀) ∈

18
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ℛ𝑛 be the ranking problem obtained from (𝑁,𝐴,𝑀) by permutation 𝜎. Scoring pro-

cedure 𝑓 : ℛ𝑛 → R𝑛 is neutral if for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 : 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀) ⇔
𝑓𝜎𝑖 [𝜎(𝑁,𝐴,𝑀)] ≥ 𝑓𝜎𝑗 [𝜎(𝑁,𝐴,𝑀)].

This property is mentioned as anonymity in González-Díaz et al. (2014).

Remark 5.1. Let 𝑓 : ℛ𝑛 → R𝑛 be a neutral scoring procedure. If for objects

𝑋𝑖, 𝑋𝑗 ∈ 𝑁 𝑎𝑖𝑗 = 0, and 𝑎𝑖𝑘 = 𝑎𝑗𝑘, 𝑚𝑖𝑘 = 𝑚𝑗𝑘 for all 𝑋𝑘 ∈ 𝑁 , then 𝑓𝑖(𝑁,𝐴,𝑀) =

𝑓𝑗(𝑁,𝐴,𝑀).

Lemma 5.3. The score, generalised row sum and least squares methods satisfy

𝑁𝐸𝑈 .

Definition 5.3. Centering (𝐶𝑁𝑇 ) (Chebotarev, 1994): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a

ranking problem. Scoring procedure 𝑓 : ℛ𝑛 → R𝑛 has the property centering if∑︀
𝑋𝑖∈𝑁 𝑓𝑖(𝑁,𝐴,𝑀) = 0.

Lemma 5.4. The score, generalised row sum and least squares methods satisfy

𝐶𝑁𝑇 .

Definition 5.4. Linear relation with comparison results (𝐿𝑅𝐶𝑅) (Chebotarev,

1994): Let (𝑁,𝐴,𝑀), (𝑁,𝐴′,𝑀), (𝑁,𝐴′′,𝑀) ∈ ℛ𝑛 be three ranking problems with

the same 𝑁 set of objects and 𝑀 matches matrix such that 𝛼, 𝛽 ∈ R and

s(𝑁,𝐴′′,𝑀) = 𝛼s(𝑁,𝐴,𝑀)+𝛽s(𝑁,𝐴′,𝑀). Scoring procedure 𝑓 : ℛ𝑛 → R𝑛 is in lin-

ear relation with comparison results if 𝑓(𝑁,𝐴′′,𝑀) = 𝛼𝑓(𝑁,𝐴,𝑀) + 𝛽𝑓(𝑁,𝐴′,𝑀).

Proposition 5.1. The score, generalised row sum and least squares methods satisfy

𝐿𝑅𝐶𝑅.

Neutrality is discussed by Csató (2014b), too.

5.2 Multiplicative transformations

Homogeneity (𝐻𝑂𝑀) is analysed in Csató (2014b, Section 3: Multiplicative prop-

erties).

Definition 5.5. Admissible transformation of the results : Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be

a ranking problem. An admissible transformation of the results provides a ranking

problem (𝑁, 𝑘𝐴,𝑀) ∈ ℛ𝑛 such that 𝑘 > 0, 𝑘 ∈ R and 𝑘𝑎𝑖𝑗 ∈ [−𝑚𝑖𝑗,𝑚𝑖𝑗] for all

𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Definition 5.6. Scale invariance (𝑆𝐼): Let (𝑁,𝐴,𝑀), (𝑁, 𝑘𝐴,𝑀) ∈ ℛ𝑛 be two

ranking problems such that (𝑁, 𝑘𝐴,𝑀) is obtained from (𝑁,𝐴,𝑀) through an ad-

missible transformation of the results. Scoring procedure 𝑓 : ℛ𝑛 → R𝑛 is scale

invariant if 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀) ⇔ 𝑓𝑖(𝑁, 𝑘𝐴,𝑀) ≥ 𝑓𝑗(𝑁, 𝑘𝐴,𝑀) for all

𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .
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Corollary 5.1. 𝐿𝑅𝐶𝑅 implies 𝑆𝐼.

𝑆𝐼 is further discussed in Csató (2014b, Section 3: Multiplicative properties).

5.3 Additive transformations

See the analysis of properties consistency (𝐶𝑆), flatness preservation (𝐹𝑃 ), and

result consistency (𝑅𝐶𝑆) in (Csató, 2014b, Section 4: Additive properties).

5.4 The connection of results matrix and ranking

Definition 5.7. Symmetry (𝑆𝑌𝑀) (González-Díaz et al., 2014): Let (𝑁,𝐴,𝑀) ∈
ℛ𝑛 be a ranking problem such that 𝐴 = 𝑂. Scoring procedure 𝑓 : ℛ𝑛 → R𝑛 is

symmetric if 𝑓𝑖(𝑁,𝐴,𝑀) = 𝑓𝑗(𝑁,𝐴,𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Lemma 5.5. The score, generalised row sum and least squares methods satisfy

𝑆𝑌𝑀 .

Definition 5.8. Inversion (𝐼𝑁𝑉 ) (Chebotarev and Shamis, 1998): Let (𝑁,𝐴,𝑀)

∈ ℛ𝑛 be a ranking problem. Scoring procedure 𝑓 : ℛ𝑛 → R𝑛 is invertible if for all

𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀) ⇔ 𝑓𝑖(𝑁,−𝐴,𝑀) ≤ 𝑓𝑗(𝑁,−𝐴,𝑀) .

Remark 5.2. Let 𝑓 : ℛ𝑛 → R𝑛 be a scoring procedure satisfying 𝐼𝑁𝑉 . Then

𝑓𝑖(𝑁,𝐴,𝑀) > 𝑓𝑗(𝑁,𝐴,𝑀) ⇔ 𝑓𝑖(𝑁,−𝐴,𝑀) < 𝑓𝑗(𝑁,−𝐴,𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Corollary 5.2. 𝐼𝑁𝑉 implies 𝑆𝑌𝑀 .

Proposition 5.2. 𝑅𝐶𝑆 and 𝑆𝑌𝑀 imply 𝐼𝑁𝑉 .

Lemma 5.6. The score method satisfies 𝐼𝑁𝑉 .

Proposition 5.3. 𝐿𝑅𝐶𝑅 and 𝑆𝑌𝑀 imply 𝐼𝑁𝑉 . Moreover, if scoring procedure 𝑓

satisfies 𝐶𝑁𝑇 , then 𝑓𝑖(𝑁,−𝐴,𝑀) = −𝑓𝑖(𝑁,𝐴,𝑀) for all 𝑋𝑖 ∈ 𝑁 and (𝑁,𝐴,𝑀) ∈
ℛ𝑛.

Lemma 5.7. The generalised row sum and least squares methods satisfy 𝐼𝑁𝑉 .

A further discussion of 𝑆𝑌𝑀 and 𝐼𝑁𝑉 can be found in Csató (2014b, Section 2:

Structural invariance properties).

Definition 5.9. Existence of a linear order of the objects : Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be

a ranking problem. There exists a linear order of the objects if

min
𝐿∈ℒ𝑛

∑︁
𝑋𝑖,𝑋𝑗∈𝑁

(𝑟𝑗𝑖 : 𝑋𝑖 ≺ 𝑋𝑗) = min
𝐿∈ℒ𝑛

∑︁
𝑋𝑖,𝑋𝑗∈𝑁

(0.5 𝑎𝑗𝑖 + 0.5𝑚𝑗𝑖 : 𝑋𝑖 ≺ 𝑋𝑗) = 0.
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Definition 5.10. Linear order preservation (𝐿𝑂𝑃 ): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a rank-

ing problem with an 𝐿 linear order of the objects. Scoring procedure 𝑓 : ℛ𝑛 → R𝑛

preserves linear order if 𝑋𝑖 ≻𝐿
(𝑁,𝐴,𝑀) 𝑋𝑗 ⇒ 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀).

Proposition 5.4. The score and generalised row sum methods violate 𝐿𝑂𝑃 .

Proof. Take Chebotarev (1994, Example 1), where 𝐿𝑂𝑃 implies 𝑋3 ⪰ 𝑋5 but

𝑋3 ≺s
(𝑁,𝐴,𝑀) 𝑋5 and 𝑋3 ≺x(1/5)

(𝑁,𝐴,𝑀) 𝑋5.

Theorem 5.1. (joint work with Lajos Rónyai) The least squares method violates

𝐿𝑂𝑃 .

Figure 5.1: Ranking problem of Example 5.1

𝑋1 𝑋2

𝑋3

𝑋4

𝑋5𝑋6

𝑋7

𝑋8

Proof.

Example 5.1. Let (𝑁,𝐴,𝑀) ∈ ℛ8
𝐵 ∩ℛ8

𝑈 be the balanced and unweighted ranking

problem in Figure 5.1. The conditions of linear orders are 𝑋1 ≻ 𝑋2, 𝑋2 ≻ 𝑋𝑖,

𝑖 = 3, 4, 5 and 𝑋𝑖 ≻ 𝑋𝑗, 𝑖 = 3, 4, 5, 𝑗 = 6, 7, 8.

Now the score method satisfies 𝐿𝑂𝑃 but the least squares method gives

q(𝑁,𝐴,𝑀) =
[︁

11/16 13/16 3/16 3/16 3/16 −11/16 −11/16 −11/16
]︁⊤

,

where 𝑋1 ≺q
(𝑁,𝐴,𝑀) 𝑋2, in contradiction with preservation of linear order.

Conjecture 1. The generalised row sum method violates 𝐿𝑂𝑃 for all fixed 𝜀-s.

Conjecture 2. Example 5.1 is minimal with respect to the number of objects.
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5.5 Irrelevant comparisons

Definition 5.11. Independence of irrelevant matches (𝐼𝐼𝑀) (González-Díaz et al.,

2014): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem and 𝑋𝑖, 𝑋𝑗, 𝑋𝑘, 𝑋ℓ ∈ 𝑁 be four

different objects. Let 𝑓 : ℛ𝑛 → R𝑛 be a scoring procedure such that 𝑓𝑖(𝑁,𝐴,𝑀) ≥
𝑓𝑗(𝑁,𝐴,𝑀), and (𝑁,𝐴′,𝑀 ′) ∈ ℛ𝑛 be a ranking problem identical to (𝑁,𝐴,𝑀)

except for the result 𝑎′𝑘ℓ ̸= 𝑎𝑘ℓ and match 𝑚′
𝑘ℓ ∈ N. 𝑓 is called independent of

irrelevant matches if 𝑓𝑖(𝑁,𝐴′,𝑀 ′) ≥ 𝑓𝑗(𝑁,𝐴′,𝑀 ′).

Remark 5.3. Property 𝐼𝐼𝑀 has a meaning if 𝑛 ≥ 4.

A somewhat weaker property is the following.

Definition 5.12. Independence of irrelevant results (𝐼𝐼𝑅): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a

ranking problem and 𝑋𝑖, 𝑋𝑗, 𝑋𝑘, 𝑋ℓ ∈ 𝑁 be four different objects. Let 𝑓 : ℛ𝑛 → R𝑛

be a scoring procedure such that 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀), and (𝑁,𝐴′,𝑀) ∈ ℛ𝑛

be a ranking problem identical to (𝑁,𝐴,𝑀) except for the result 𝑎′𝑘ℓ ̸= 𝑎𝑘ℓ. 𝑓 is

called independent of irrelevant results if 𝑓𝑖(𝑁,𝐴′,𝑀) ≥ 𝑓𝑗(𝑁,𝐴′,𝑀).

Remark 5.4. Property 𝐼𝐼𝑅 has a meaning if 𝑛 ≥ 4.

Corollary 5.3. 𝐼𝐼𝑀 implies 𝐼𝐼𝑅.

Proposition 5.5. The score method satisfies 𝐼𝐼𝑀 .

Lemma 5.8. The score method satisfies 𝐼𝐼𝑅.

Proposition 5.6. The generalised row sum and least squares methods violate 𝐼𝐼𝑅.

Figure 5.2: Ranking problems of Example 5.2

(a) Ranking problem (𝑁,𝐴,𝑀)

𝑋1

𝑋2

𝑋3

𝑋4

(b) Ranking problem (𝑁,𝐴′,𝑀)

𝑋1

𝑋2

𝑋3

𝑋4

Proof.

Example 5.2. Let (𝑁,𝐴,𝑀), (𝑁,𝐴′,𝑀) ∈ ℛ4
𝐵 ∩ ℛ4

𝑈 be the balanced and un-

weighted ranking problems in Figure 5.2.
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Here

𝑥1(𝜀) = 𝑥2(𝜀)
′ = (1 + 𝜀𝑚𝑛)

𝜀

(1 + 2𝜀)(1 + 4𝜀)
=

𝜀

1 + 2𝜀
and

𝑥1(𝜀)
′ = 𝑥2(𝜀) = (1 + 𝜀𝑚𝑛)

−𝜀

(1 + 2𝜀)(1 + 4𝜀)
=

−𝜀

1 + 2𝜀
,

that is 𝑋1 ≻x(𝜀)
(𝑁,𝐴,𝑀) 𝑋2, but 𝑋1 ≺x(𝜀)

(𝑁,𝐴′,𝑀) 𝑋2.

Regarding the least squares method, on the basis of Proposition Csató (2014a,

Corollary 1):

𝑞1 =
lim𝜀→∞ 𝑥1(𝜀)

𝑚𝑛
= 𝑞′2 =

lim𝜀→∞ 𝑥2(𝜀)
′

𝑚𝑛
=

1

2
· 1

4
=

1

8
and

𝑞′1 =
lim𝜀→∞ 𝑥1(𝜀)

′

𝑚𝑛
= 𝑞2 =

lim𝜀→∞ 𝑥2(𝜀)

𝑚𝑛
= −1

2
· 1

4
= −1

8
.

Hence 𝑋1 ≻q
(𝑁,𝐴,𝑀) 𝑋2, but 𝑋1 ≺q

(𝑁,𝐴′,𝑀) 𝑋2.

Lemma 5.9. The generalised row sum and least squares methods violate 𝐼𝐼𝑀 .

Theorem 5.2. 𝑁𝐸𝑈 , 𝑆𝑌𝑀 and 𝐶𝑆 imply 𝐼𝐼𝑀 .

Proof. For the round-robin case, see Nitzan and Rubinstein (1981, Lemma 3).

Assume to the contrary: let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem, 𝑋𝑖, 𝑋𝑗, 𝑋𝑘,

𝑋ℓ ∈ 𝑁 be four different objects such that 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀), (𝑁,𝐴′,𝑀) ∈
ℛ𝑛 be identical to (𝑁,𝐴,𝑀) except for the result 𝑟′𝑘ℓ ̸= 𝑟𝑘ℓ but 𝑓𝑖(𝑁,𝐴′,𝑀) <

𝑓𝑗(𝑁,𝐴′,𝑀).

Proposition 5.2 implies that a symmetric and consistent scoring procedure satis-

fies 𝐼𝑁𝑉 , hence 𝑓𝑖(𝑁,−𝐴,𝑀) ≤ 𝑓𝑗(𝑁,−𝐴,𝑀). Denote 𝜎 : 𝑁 → 𝑁 the permutation

𝜎(𝑋𝑖) = 𝑋𝑗, 𝜎(𝑋𝑗) = 𝑋𝑖, and 𝜎(𝑋𝑘) = 𝑋𝑘 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}. By neutral-

ity, 𝑓𝑖 [𝜎(𝑁,𝐴,𝑀)] ≤ 𝑓𝑗 [𝜎(𝑁,𝐴,𝑀)]. 𝑓𝑖 [𝜎(𝑁,−𝐴′,𝑀)] < 𝑓𝑗 [𝜎(𝑁,−𝐴′,𝑀)] due to

𝐼𝑁𝑉 and Remark 5.2. With the definition 𝐴′′ = 𝜎(𝐴) − 𝜎(𝐴′) − 𝐴 + 𝐴′ = 𝑂,

(𝑁,𝐴′′,𝑀 ′′) = 𝜎(𝑁,𝐴,𝑀) + 𝜎(𝑁,−𝐴′,𝑀) + (𝑁,−𝐴,𝑀) + (𝑁,𝐴′,𝑀).

Symmetry implies 𝑓𝑖(𝑁,𝐴′′,𝑀) = 𝑓𝑗(𝑁,𝐴′′,𝑀), whereas consistency results in

𝑓𝑖(𝑁,𝐴′′,𝑀) < 𝑓𝑗(𝑁,𝐴′′,𝑀), a contradiction.

Proposition 5.7. 𝑁𝐸𝑈 , 𝑆𝑌𝑀 and 𝑅𝐶𝑆 imply 𝐼𝐼𝑅.

Proof. It is almost the same as the proof of Theorem 5.2. According to Proposi-

tion 5.2 a symmetric and result consistent scoring procedure also satisfies 𝐼𝑁𝑉 .

However, 𝑓𝑖(𝑁,𝐴′′,𝑀 ′′) < 𝑓𝑗(𝑁,𝐴′′,𝑀 ′′) holds only if 𝑀 = 𝑀 ′.

González-Díaz et al. (2014, p. 165) refers to 𝐼𝐼𝑀 as a drawback of the score

method. Since 𝑁𝐸𝑈 and 𝑆𝑌𝑀 are difficult to debate, 𝐶𝑆 is an axiom one would
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rather not have in the general case. It highlights the significance of Section 5.3 as

weakening of consistency seems to be desirable in axiomatizations valid on the whole

set of ℛ.

Definition 5.13. Admissible transformation of draws : Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a

ranking problem and 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 two objects. An admissible transformation of

draws between 𝑋𝑖 and 𝑋𝑗 provides a ranking problem (𝑁,𝐴,𝑀 ′) ∈ ℛ𝑛 such that

𝑚′
𝑖𝑗 ≥ |𝑎𝑖𝑗|, and 𝑚′

𝑘ℓ = 𝑚𝑘ℓ for all (𝑋𝑘, 𝑋ℓ) ̸= (𝑋𝑖, 𝑋𝑗).

Definition 5.14. Independence of draws (𝐼𝐷): Let (𝑁,𝐴,𝑀), (𝑁,𝐴,𝑀 ′) ∈ ℛ𝑛

be two ranking problems such that (𝑁,𝐴,𝑀 ′) is obtained from (𝑁,𝐴,𝑀) through

an admissible transformation of draws between 𝑋𝑖 and 𝑋𝑗. Scoring procedure 𝑓 :

ℛ𝑛 → R𝑛 is independent of draws if 𝑓𝑖(𝑁,𝐴,𝑀) > 𝑓𝑗(𝑁,𝐴,𝑀) ⇔ 𝑓𝑖(𝑁,𝐴,𝑀 ′) >

𝑓𝑗(𝑁,𝐴,𝑀 ′).

Remark 5.5. Let 𝑓 : ℛ𝑛 → R𝑛 be a scoring procedure satisfying 𝐼𝐷. Then for all

𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , 𝑓𝑖(𝑁,𝐴,𝑀) = 𝑓𝑗(𝑁,𝐴,𝑀) ⇔ 𝑓𝑖(𝑁,𝐴,𝑀 ′) = 𝑓𝑗(𝑁,𝐴,𝑀 ′).

Corollary 5.4. 𝑆𝐼𝐼𝑀 implies 𝐼𝐷.

Lemma 5.10. The score method satisfies 𝐼𝐷.

Proposition 5.8. The generalised row sum, and least squares methods satisfy 𝐼𝐷.

Proposition 5.9. Let (𝑁,𝐴,𝑀), (𝑁,𝐴,𝑀 ′) ∈ ℛ𝑛 be two ranking problems such

that (𝑁,𝐴,𝑀 ′) is obtained from (𝑁,𝐴,𝑀) through an admissible transformation of

draws between 𝑋𝑖 and 𝑋𝑗. Let ∆𝑓𝑘 = 𝑓𝑘(𝑁,𝐴,𝑀 ′) − 𝑓𝑗(𝑁,𝐴,𝑀) for all 𝑋𝑘 ∈ 𝑁 .

For the score, generalised row sum, and least squares methods:

∙ 𝑓𝑖(𝑁,𝐴,𝑀) = 𝑓𝑗(𝑁,𝐴,𝑀) implies 𝑓𝑘(𝑁,𝐴,𝑀 ′) = 𝑓𝑘(𝑁,𝐴,𝑀) for all

𝑋𝑘 ∈ 𝑁 ;

∙ 𝑓𝑖(𝑁,𝐴,𝑀) > 𝑓𝑗(𝑁,𝐴,𝑀), 𝑚𝑖𝑗 < 𝑚′
𝑖𝑗 imply 𝑓𝑖(𝑁,𝐴,𝑀 ′) > 𝑓𝑗(𝑁,𝐴,𝑀 ′)

and ∆𝑓𝑖 ≤ ∆𝑓𝑘 ≤ ∆𝑓𝑗 for all 𝑋𝑘 ∈ 𝑁 ;

∙ 𝑓𝑖(𝑁,𝐴,𝑀) > 𝑓𝑗(𝑁,𝐴,𝑀), 𝑚𝑖𝑗 > 𝑚′
𝑖𝑗 imply 𝑓𝑖(𝑁,𝐴,𝑀 ′) > 𝑓𝑗(𝑁,𝐴,𝑀 ′)

and ∆𝑓𝑖 ≥ ∆𝑓𝑘 ≥ ∆𝑓𝑗 for all 𝑋𝑘 ∈ 𝑁 .

Remark 5.6. Condition (2) of Chebotarev (1994, Property 14)’s axiom of dynamic

monotonicity partly corresponds to 𝐼𝐷 as it implies Proposition 5.9 for generalised

row sum with a reasonable parameter 0 ≤ 𝜀 ≤ 1/ [𝑚(𝑛− 2)].

Proposition 5.10. An admissible transformation of the draws can influence the

ranking of the objects in the case of the least squares method.

Conjecture 3. An admissible transformation of the draws can influence the ranking

of the objects in the case of the generalised row sum method with all fixed 𝜀-s.
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5.6 Summary

In this chapter we have reviewed a number of properties for scoring procedures,

and have given an analysis similar to González-Díaz et al. (2014). However, we have

restricted our focus to the score, generalise row sum, and least squares methods.

We have proved that the generalised row sum does not satisfy 𝐻𝑂𝑀 , which makes

its use questionable. Property 𝑆𝐼 is a new one with some significance for practi-

cal applications. The additivity of methods were widely examined through axioms

𝐶𝑆, 𝐹𝑃 , and 𝑅𝐶𝑆 (the latter is our contribution), differentiating among the three

procedures.

We have discussed the connection of known properties 𝑆𝑌𝑀 and 𝐼𝑁𝑉 . Further-

more, 𝐿𝑂𝑃 was defined in order to relate scoring procedures to the other approach,

the approximation of paired comparison results with linear orders (Kemeny, 1959;

Slater, 1961). In this respect, the findings are mostly negative. Finally, the role

of irrelevant comparisons were analysed, and dynamic axiom of Chebotarev (1994,

Property 14) was also extended. Since 𝐼𝐼𝑀 is an unfavourable property in the pres-

ence of unknown and multiple comparisons (González-Díaz et al., 2014, p. 165), the

use of score method may be debated. Theorem 5.2 reveals that with approving 𝑁𝐸𝑈

and 𝑆𝑌𝑀 (two natural properties), 𝐶𝑆 also becomes adverse in the general case.

Our main results are as follow:

1. On the basis of homogeneity and result consistency, generalised row sum

method should be used by a variable parameter 𝜀 depending on the num-

ber of matches (Csató, 2014b, Proposition 4.1 and 4.2; Lemma 5.8, Proposi-

tion 5.5);1

2. Introduction of scale invariance (Definition 5.6), a property with great the-

oretical and practical significance (Csató, 2014b, Section 4: Multiplicative

properties);

3. Generalised row sum break consistency (Csató, 2014b, Proposition 5.1);2

4. Definition of result consistency (Csató, 2014b, Definition 5.4) and its exami-

nation (Csató, 2014b, Proposition 5.4; Lemma 5.8, Proposition 5.5);

5. Connection of 𝑆𝑌𝑀 and 𝐼𝑁𝑉 (Propositions 5.2 and 5.3);

6. Introduction of linear order preservation (Definition 5.10) and its examination

(Proposition 5.4, Theorem 5.1, joint work with Lajos Rónyai);

1 Although homogeneity was introduced by González-Díaz et al. (2014, p. 145), they do not
mention this issue since the use of the reasonable upper bound 𝜀 = 1/ [𝑚(𝑛− 2)].

2 Note that González-Díaz et al. (2014, Example 4.2) have shown the violation of a somewhat
weaker property called order preservation in the case of 𝜀 = 1/ [𝑚(𝑛− 2)].
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7. Introduction of axiom 𝐼𝐼𝑅 (Definition 5.12), connection of 𝐶𝑆 (𝑅𝐶𝑆) and

𝐼𝐼𝑀 (𝐼𝐼𝑅) on the set ℛ (Theorem 5.2, Proposition 5.7);

8. Introduction of independence of draws (Definition 5.14) and its examination

(Proposition 5.8 and 5.9).

Publication of main results is in progress (Csató, 2014b).



Chapter 6

Connection with the score method

In the following, we give a characterization of the score method on a subset of

ranking problems, and discuss its relation to other scoring procedures.

6.1 A characterization in the round-robin case

Definition 6.1. Strong monotonicity (𝑆𝑀) (Bouyssou, 1992): Let (𝑁,𝐴,𝑀) ∈
ℛ𝑛 be a ranking problem. Let 𝑓 : ℛ𝑛 → R𝑛 be a scoring procedure such that

𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀), and (𝑁,𝐴′,𝑀) ∈ ℛ𝑛 be a ranking problem identical to

(𝑁,𝐴,𝑀) except for the result 𝑎′𝑖𝑘 > 𝑎𝑖𝑘. 𝑓 is strongly monotonic if 𝑓𝑖(𝑁,𝐴′,𝑀) ≥
𝑓𝑗(𝑁,𝐴′,𝑀).

Definition 6.2. Close strong monotonicity (𝐶𝑆𝑀) (Rubinstein, 1980): Let

(𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem. Let 𝑓 : ℛ𝑛 → R𝑛 be a scoring procedure

such that 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀), and (𝑁,𝐴′,𝑀) ∈ ℛ𝑛 be a ranking problem

identical to (𝑁,𝐴,𝑀) except for the result 𝑎′𝑖𝑘 > 𝑎𝑖𝑘 between objects 𝑋𝑖 ∈ 𝑁 and

𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}. 𝑓 is closely strong monotonic if 𝑓𝑖(𝑁,𝐴′,𝑀) ≥ 𝑓𝑗(𝑁,𝐴′,𝑀).

Corollary 6.1. 𝑆𝑀 implies 𝐶𝑆𝑀 .

Lemma 6.1. The score, and generalised row sum methods satisfy 𝑆𝑀 .

Lemma 6.2. The score, and generalised row sum methods satisfy 𝐶𝑆𝑀 .

Proposition 6.1. The least squares method violates 𝐶𝑆𝑀 .

Proof.

Example 6.1. Let (𝑁,𝐴,𝑀), (𝑁,𝐴′,𝑀) ∈ ℛ3
𝑈 be the ranking problems in Fig-

ure 6.1.

The least squares method results in q(𝑁,𝐴,𝑀) = [0, 0, 0]⊤ and q(𝑁,𝐴′,𝑀) =

[1/3, 1/3, −2/3]⊤, that is, 𝑋1 ∼q
(𝑁,𝐴,𝑀) 𝑋2 and 𝑋1 ∼q

(𝑁,𝐴′,𝑀) 𝑋2, however, 1 = 𝑎′23 >

𝑎23 = 0.

27
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Figure 6.1: Ranking problems of Example 6.1

(a) Ranking problem (𝑁,𝐴,𝑀)

𝑋1

𝑋2𝑋3

(b) Ranking problem (𝑁,𝐴′,𝑀)

𝑋1

𝑋2𝑋3

Lemma 6.3. The least squares method violates 𝑆𝑀 .

Remark 6.1. The axiom, called monotonicity by Chebotarev (1994, Property 11)

contains much more information about the generalised row sum method than 𝑆𝑀 .

Definition 6.3. Admissible transformation on an elementary circuit (Bouyssou,

1992): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem and (𝑋𝑖 = 𝑋𝑘0 , 𝑋𝑘1 , . . . , 𝑋𝑘𝑡 = 𝑋𝑖)

an elementary circuit in the corresponding 𝐺 comparison multigraph. An admissible

transformation on an elementary circuit provides a ranking problem (𝑁,𝐴′,𝑀) ∈
ℛ𝑛 such that 𝑎′𝑖𝑗 = 𝑎𝑖𝑗 for all (𝑋𝑖, 𝑋𝑗) ̸= (𝑋𝑘ℓ𝑋𝑘ℓ+1

) and 𝑎′𝑘ℓ𝑘ℓ+1
= 𝑎𝑘ℓ𝑘ℓ+1

+ 𝑔 for all

ℓ = 0, 1, . . . , 𝑡− 1, where 𝑔 ∈ R and 𝑎𝑘ℓ𝑘ℓ+1
+ 𝑔, 𝑎𝑘ℓ+1𝑘ℓ − 𝑔 ∈

[︀
−𝑚𝑘ℓ𝑘ℓ+1

, 𝑚𝑘ℓ𝑘ℓ+1

]︀
for

all ℓ = 0, 1, . . . , 𝑡− 1.

Definition 6.4. Independence of circuits (𝐼𝐶) (Bouyssou, 1992): Let (𝑁,𝐴,𝑀),

(𝑁,𝐴′,𝑀) ∈ ℛ𝑛 be two ranking problems such that (𝑁,𝐴′,𝑀) is obtained from

(𝑁,𝐴,𝑀) through an admissible transformation on an elementary circuit. Scoring

procedure 𝑓 : ℛ𝑛 → R𝑛 is independent of circuits if 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀) ⇔
𝑓𝑖(𝑁,𝐴′,𝑀) ≥ 𝑓𝑗(𝑁,𝐴′,𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Remark 6.2. 𝐼𝐶 means that the ranking is not sensitive to the direction of cyclic

triads. For example, if 𝑚𝑖𝑗 = 𝑚𝑖𝑘 = 𝑚𝑗𝑘 = 1 and 𝑎𝑖𝑗 = 𝑎𝑗𝑘 = 𝑎𝑘𝑖 = 1, that is, 𝑋𝑖

defeated 𝑋𝑗, 𝑋𝑗 defeated 𝑋𝑘, and 𝑋𝑘 defeated 𝑋𝑖, then 𝑔 = −2 is an admissible

transformation on the elementary circuit (𝑋𝑖, 𝑋𝑗, 𝑋𝑘, 𝑋𝑖), resulting in a ranking

problem with 𝑎′𝑖𝑗 = 𝑎′𝑗𝑘 = 𝑎′𝑘𝑖 = −1, where 𝑋𝑗 won over 𝑋𝑖, 𝑋𝑘 over 𝑋𝑗, and 𝑋𝑖

over 𝑋𝑘. If 𝑔 = −1, then all results along the elementary circuit (𝑋𝑖, 𝑋𝑗, 𝑋𝑘, 𝑋𝑖) is

a draw.

Lemma 6.4. The score, generalised row sum, and least squares methods satisfy 𝐼𝐶.

Proposition 6.2. A neutral (𝑁𝐸𝑈), strongly monotonic (𝑆𝑀) and independent of

the circuits (𝐼𝐶) scoring procedure 𝑓 : ℛ𝑛
𝑅 → R𝑛 is equivalent to the score method.

Proof. According to Lemmata 5.3 (𝑁𝐸𝑈), 6.1 (𝑆𝑀), and 6.4 (𝐼𝐶), the score method

satisfies the three axioms.
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Bouyssou (1992) examines directed graphs, where the flow 𝑅𝑖𝑗 ∈ [0, 1] between

nodes 𝑋𝑖 and 𝑋𝑗 reflects the paired comparison result, and unknown comparisons

are not allowed. In this model, all scoring procedures satisfying 𝑁𝐸𝑈 , 𝑆𝑀 , and 𝐼𝐶

is equivalent to the score method.

𝑎𝑖𝑗 := 𝑅𝑖𝑗 − 𝑅𝑗𝑖 is a one-to-one correspondence with our model. However, it is

not the whole set ℛ𝑅 since 𝑅𝑖𝑗 − 𝑅𝑗𝑖 ∈ [−1, 1]. It can be checked that the proof of

Bouyssou (1992) remains valid if 𝑅𝑖𝑗 ∈ [0, 𝑚].

Lemma 6.5. On the set of round-robin ranking problems ℛ𝑅, the three properties

of Proposition 6.2 are independent.

Proposition 6.3. The characterization of Proposition 6.2 is valid neither on the

set of balanced ranking problems ℛ𝐵 nor the set of unweighted ranking problems ℛ𝑈 .

Proof. According to Lemmata 5.3 (𝑁𝐸𝑈), 6.1 (𝑆𝑀), and 6.4 (𝐼𝐶), generalised

row sum satisfies the three axioms. Because of Example 5.2, it is not equivalent

to the score method on the set of balanced and unweighted ranking problems as

𝑠1(𝑁,𝐴,𝑀) = 𝑠2(𝑁,𝐴,𝑀), but 𝑥1(𝜀)(𝑁,𝐴,𝑀) > 𝑥2(𝜀)(𝑁,𝐴,𝑀), and (𝑁,𝐴,𝑀) ∈
ℛ𝐵 ∩ℛ𝑈 .

6.2 Scoring procedures as an extension of score

Definition 6.5. Score consistency (𝑆𝐶𝐶) (González-Díaz et al., 2014): Scoring

procedure 𝑓 : ℛ𝑛 → R𝑛 is score consistent if it is equivalent to the score method for

all round-robin ranking problems (𝑁,𝐴,𝑀) ∈ ℛ𝑛
𝑅.

Remark 6.3. Regarding the generalised row sum method, Chebotarev (1994, Prop-

erty 3) introduces a more general axiom called agreement : if (𝑁,𝐴,𝑀) ∈ ℛ𝑛
𝑅 is a

round-robin ranking problem, then x(𝑁,𝐴,𝑀) = s(𝑁,𝐴,𝑀). Moreover, according

to local agreement (Chebotarev, 1994, Property 4), if 𝑟(𝑝)𝑖𝑗 is known for all 𝑋𝑗 ∈ 𝑁

and 𝑝 = 1, 2, . . . ,𝑚, then 𝑥𝑖(𝑁,𝐴,𝑀) = 𝑠𝑖(𝑁,𝐴,𝑀).

Definition 6.6. Homogeneous treatment of victories (𝐻𝑇𝑉 ) (González-Díaz et al.,

2014): Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem such that 𝑚𝑖𝑘 = 𝑚𝑗𝑘 for all

𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}. Scoring procedure 𝑓 : ℛ𝑛 → R𝑛 treats victories homogeneously

if 𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀) ⇔ 𝑠𝑖(𝑁,𝐴,𝑀) ≥ 𝑠𝑗(𝑁,𝐴,𝑀).

Corollary 6.2. 𝐻𝑇𝑉 implies 𝑆𝐶𝐶.

Remark 6.4. Regarding the generalised row sum method, Chebotarev (1994, Prop-

erty 10) introduces a more general axiom called domination: if for objects 𝑋𝑖, 𝑋𝑗 ∈
𝑁 , 𝑚𝑖𝑘 = 𝑚𝑗𝑘 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}, then with the notation 𝑑0 = 𝑑𝑖 = 𝑑𝑗:

𝑥𝑖(𝑁,𝐴,𝑀) − 𝑥𝑗(𝑁,𝐴,𝑀) =
1 + 𝑚𝑛

1 + 𝑑0 + 𝑚𝑖𝑗

[𝑠𝑖(𝑁,𝐴,𝑀) − 𝑠𝑗(𝑁,𝐴,𝑀)] .



30 6.3. Summary

Notation 6.1. Let 𝑔 : 𝑁 ↔ 𝑁 be a one-to-one correspondence. In this case g :

{1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} such that 𝑋g(𝑘) = 𝑔(𝑋𝑘).

Definition 6.7. Homogeneous treatment of opponents (𝐻𝑇𝑂): Let (𝑁,𝐴,𝑀) ∈
ℛ𝑛 be a ranking problem, and 𝑓 : ℛ𝑛 → R𝑛 be a scoring procedure such that

there is a one-to-one correspondence 𝑔 : 𝑂𝑖 ∖ {𝑋𝑗}𝑚𝑖𝑗 ↔ 𝑂𝑗 ∖ {𝑋𝑖}𝑚𝑖𝑗 between the

opponents of 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , where 𝑓𝑘(𝑁,𝐴,𝑀) = 𝑓g(𝑘)(𝑁,𝐴,𝑀) for all (𝑋𝑘, 𝑔(𝑋𝑘)) ∈
(𝑂𝑖 ∖ {𝑋𝑗}𝑚𝑖𝑗)× (𝑂𝑗 ∖ {𝑋𝑖}𝑚𝑖𝑗). 𝑓 treats opponents homogeneously if 𝑓𝑖(𝑁,𝐴,𝑀) ≥
𝑓𝑗(𝑁,𝐴,𝑀) ⇔ 𝑠𝑖(𝑁,𝐴,𝑀) ≥ 𝑠𝑗(𝑁,𝐴,𝑀).

Corollary 6.3. 𝐻𝑇𝑂 implies 𝐻𝑇𝑉 (therefore 𝑆𝐶𝐶).

Proposition 6.4. The score, generalised row sum and least squares methods satisfy

𝐻𝑇𝑂.

Remark 6.5. For generalised row sum and least squares methods, 𝐻𝑇𝑂 may be

written in a more general form if equivalence is disregarded.

Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem, and 𝑓 : ℛ𝑛 → R𝑛 be a scoring procedure

such that there is a one-to-one correspondence 𝑔 : 𝑂𝑖 ∖ {𝑋𝑗}𝑚𝑖𝑗 ↔ 𝑂𝑗 ∖ {𝑋𝑖}𝑚𝑖𝑗

between the opponents of 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , where 𝑓𝑘(𝑁,𝐴,𝑀) ≥ 𝑓g(𝑘)(𝑁,𝐴,𝑀) for all

(𝑋𝑘, 𝑔(𝑋𝑘)) ∈ (𝑂𝑖 ∖ {𝑋𝑗}𝑚𝑖𝑗) × (𝑂𝑗 ∖ {𝑋𝑖}𝑚𝑖𝑗). Then 𝑠𝑖(𝑁,𝐴,𝑀) ≥ 𝑠𝑗(𝑁,𝐴,𝑀) ⇒
𝑓𝑖(𝑁,𝐴,𝑀) ≥ 𝑓𝑗(𝑁,𝐴,𝑀), moreover, 𝑓𝑖(𝑁,𝐴,𝑀) > 𝑓𝑗(𝑁,𝐴,𝑀) if any inequality

is strict (>).

It is a possible extension of self-consistency (Chebotarev and Shamis, 1997;

Csató, 2013b).

Lemma 6.6. The score, generalised row sum and least squares methods satisfy 𝑆𝐶𝐶

and 𝐻𝑇𝑉 .

Lemma 6.7. The generalised row sum method satisfies 𝐻𝑂𝑀 and 𝑅𝐶𝑆 on the set

of round-robin ranking problems ℛ𝑅.

Lemma 6.8. The generalised row sum, and least squares methods satisfy 𝐶𝑆, 𝐼𝐼𝑅

and 𝐼𝐼𝑀 on the set of round-robin ranking problems ℛ𝑅.

Lemma 6.9. The least squares method satisfies 𝑆𝑀 and 𝐶𝑆𝑀 on the set of round-

robin ranking problems ℛ𝑅.

6.3 Summary

In this chapter we have dealt with the score method and its relation to other

scoring procedures. Based on Bouyssou (1992, Theorem 1), a characterization was

given on the set of round-robin ranking problems. It requires three independent,
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more or less natural axioms, 𝑁𝐸𝑈 , 𝑆𝑀 , and 𝐼𝐶. However, we have proved that the

axiomatization is not valid on the extended sets of balanced or unweighted ranking

problems.

The characterization suggests that the score method is appropriate for ranking in

the round-robin case. With respect to this fact, a chain of axioms was introduced to

ensure the equivalence with the score on this set. 𝑆𝐶𝐶 and 𝐻𝑇𝑉 were still defined

by González-Díaz et al. (2014) (and, implicitly, by Chebotarev (1994)). We were

able to extend them, comparing not the opponents, but their valuations. It was

demonstrated that all the three scoring procedures discussed in the thesis satisfy

these properties.

Other characterizations on the general domain of ℛ are also known. On the basis

of Slutzki and Volij (2005), González-Díaz et al. (2014) show that fair bets is the only

scoring procedure satisfying 𝐴𝑁𝑂, 𝐻𝑂𝑀 , 𝑆𝑌𝑀 , 𝐹𝑃 , and nonnegative response to

losses (𝑁𝑅𝐿). The first four of them are satisfied by score and least squares, so 𝑁𝑅𝐿

plays a key role in the characterization. However, it is a property with a subjective

background, defined for giving the right eigenvector of the appropriate matrix. A

similar axiom can also yield the left eigenvector Slutzki and Volij (2005), but both

procedures violate 𝐼𝑁𝑉 , a more natural property.

Characterizations of the score method in social choice theory Young (1974);

Hansson and Sahlquist (1976); Nitzan and Rubinstein (1981) are difficult (but prob-

ably not impossible) to build in our model. However, all of them contains 𝐶𝑆, which

is strongly connected to 𝐼𝐼𝑀 : according to Theorem 5.2, they are equivalent in the

case of neutral and symmetric scoring procedures. Since González-Díaz et al. (2014,

p. 165) claims that it is an unfavourable axiom in the general model, the significance

of these extensions seems to be moderate from a practical point of view.



Chapter 7

Ranking in Swiss-system chess team

tournaments

Csató (2014c) uses paired comparison-based scoring procedures in order to de-

termine the result of Swiss-system chess team tournaments. We present the main

challenges, the features of individual and team competitions as well as the failures of

official lexicographical orders. Our model is discussed with respect to the properties

of the score, generalised row sum and least squares methods. The proposed method

is illustrated with a detailed analysis of the two recent chess team European cham-

pionships. Final rankings are compared through their distances on the basis of Can

(2014) and visualized with multidimensional scaling (MDS). Rankings are evaluated

by prediction accuracy, retrodictive performance, and stability.

It is actually a more thorough analysis of the problem discussed in Csató (2013a).

Publication of main findings is in progress.

7.1 Modelling of the problem

See Csató (2014c, Summary: Modelling of the problem).

7.2 An application: chess team European champi-

onships

See Csató (2014c, Summary: An application: chess team European champi-

onships).

7.3 Summary

See Csató (2014c, Summary: Conclusion).
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Chapter 8

Further applications of paired

comparisons

In this part we review some problems where the use of paired comparisons proved

to be fruitful.

8.1 Promising fields of use

Paired comparisons were adapted on the following research areas:

∙ Statistics, international price comparisons. In purchasing power calcula-

tions, the non-transitivity of the Fisher index (Fisher, 1922) implies that

the derivation of a common scale is not a trivial task. The problem is

usually addressed by the EKS (Éltető-Köves-Szulc) method (Éltető and

Köves, 1964; Szulc, 1964). Weighting can be based on external information

(Rao and Timmer, 2003).

∙ Scientometrics, where citations represent paired comparisons (Pinski and

Narin, 1976; Palacios-Huerta and Volij, 2004; Kóczy and Nichifor, 2013;

Kóczy and Strobel, 2010).

∙ Ranking of web pages via hyperlinks (Brin and Page, 1998).

∙ Psychology as individuals are often not able to judge on the same scale

(Thurstone, 1927; Gulliksen, 1956; Kaiser and Serlin, 1978).

∙ Rankings from user ratings (Bozóki et al., 2014; London and Csendes,

2013; Jiang et al., 2011).

∙ Voting theory (Chebotarev and Shamis, 1998).

∙ University rankings based on the preferences of applicants (Avery et al.,

2013; Telcs et al., 2013a; Csató, 2013c; Telcs et al., 2013b).
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∙ Sport (Zermelo, 1929; Radicchi, 2011; Temesi et al., 2012; Csató, 2013a).

8.2 Paired comparisons from individual ratings

Definition 8.1. Voter-alternative matrix : Let 𝑞𝑝𝑖 be the evaluation of 𝑋𝑖 ∈ 𝑁 by

decision maker 𝑝. Then 𝑄 = (𝑞𝑝𝑖) ∈ R𝑚×𝑛, 𝑝 = 1, 2, . . . ,𝑚, 𝑖 = 1, 2, . . . , 𝑛 is a

voter-alternative matrix.

Four ideas about the construction of paired comparisons from raw datasets on

the basis of Jiang et al. (2011) are given. They are arithmetic mean of valuation

differences, geometric mean of valuation ratios, binary comparison, and logarithmic

odds ratio.

8.3 A framework for the solution of paired compar-

ison problems

A central issue of applications is modelling as a ranking problem (𝑁,𝐴,𝑀) ∈ ℛ𝑛.

Usually, the choice of matches matrix𝑀 is obvious like in Swiss system tournaments,

or scientometrics. However, multiple comparisons may arise due to various causes.

In certain cases, matrix 𝑀 is worth to derive together with the results matrix 𝐴

since overwhelming comparison outcomes may lead to weird rankings (Temesi et al.,

2012).

In order to determine matrix 𝐴, one should consider different features of the

problem. Monotonicity is a natural condition, namely, a larger victory corresponds to

a greater value. If it does not provide an exact definition, alternative representations

are worth to compare. For example, Csató (2013a) shows that its rankings for the

Chess Olympiad 2010 are not sensitive to scaling. Sometimes the construction can

be founded axiomatically, like in the application presented in Chapter 7.

Another important question is the differentiation between known and unknown

comparisons, especially if the objects are individuals behaving strategically, or paired

comparisons are derived from a voter-alternative matrix. In this case, taking the

motivations and informations of decision makers into account becomes indispensable.

It is not a simple task, for a debate, see Telcs et al. (2013a), Csató (2013c), and Telcs

et al. (2013b).

Therefore we propose to take the following steps in the investigation of paired

comparisons problems:

1. Check the preconditions of mathematical models. For example, if the objects

can influence the outcomes, were they prompted to achieve a better result,

or can they manipulate them.
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2. Define the number of comparisons through matches matrix 𝑀 .

3. Transform paired comparison outcomes into the results matrix 𝐴.

4. Choose a suitable scoring procedure focusing on the axiomatic approach (if

it is possible).

5. Examine the sensitivity of rankings with respect to research hypothesis.

6. Analyse the results, compare them to known rankings and solutions.

This process is not necessarily sequential, the calculated rankings can show the

problems of initial assumptions or point to some properties of the method chosen.

The weighting of comparisons is not independent from the derivation of results

(Temesi et al., 2012). In some cases, some steps may be left out, too.

8.4 Summary

In this chapter we have dealt with applications of paired comparisons models.

Some relevant areas have been presented, as well as the transformation of a voter-

alternative matrix into our model has been investigated. Finally, we have formulated

some suggestions for users on the basis of our knowledge and experiences.



Chapter 9

Conclusions

In the introduction we have mentioned two aims addressed by this thesis: to give

an overview about how to represent practical problems in a mathematical model as

well as about the solution concepts of the latter. The first issue was discussed in

Chapters 7 and 8, and the second question was investigated by Chapters 2-6.

Chapter 2 presented two representations of the ranking problem. The first is

analogous to the models of Chebotarev and Shamis (1998) and González-Díaz et al.

(2014), it is favourable for analysing examples and used by some scoring procedures

(invariant, fair bets, maximum likelihood). The second is not as parsimonious but

it helps in the understanding and makes possible the graph representation.

We also reviewed two approaches of ranking, the approximation of paired com-

parisons by linear orders and the application of scoring procedures. On the basis of

Bouyssou (2004) we argued for use of the latter. Some of them were examined in

Chapter 3. Our focus was on generalised row sum and least squares, for which a new

graph interpretation was given in Chapter 4.

In the following two chapters González-Díaz et al. (2014) were followed by a

theoretical investigation of the score, generalised row sum, and least squares scoring

procedures.

Figure 9.1 gives a comprehensive picture about the axioms discussed in Chap-

ter 5. Homogeneity (𝐻𝑂𝑀) can only be partially derived from result consistency

(𝑅𝐶𝑆), exploration of their connection remains the topic of further studies. How-

ever, common roots are revealed by the generalised row sum method, which satisfies

both conditions only for certain 𝜀-s.3

In Chapter 6 we examined a characterization of the score method (Bouyssou,

1992). It is shown that this result is not valid in our general model as both generalised

row sum and least squares satisfy the necessary axioms. An analysis of the connection

with the score method was carried out on the basis of some known and novel axioms.

3 See the green, dotted line in 9.1. 𝐻𝑂𝑀 is certainly not equivalent to 𝑅𝐶𝑆 as fair bets satisfies
only the first.
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Figure 9.1: Connections among the axioms of Chapter 5

Arrows sign implications. In certain cases an axiom can be derived from a set of properties like
𝑁𝐸𝑈 + 𝑆𝑌𝑀 + 𝐶𝑆 ⇒ 𝐼𝐼𝑀 . Red, dashed nodes mean novel axioms; blue solid lines represent
our contributions; black, dashed lines indicate trivial or known results; the green, dotted line is a
special relationship (see the text).

𝑁𝐸𝑈

𝐿𝑅𝐶𝑅
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𝐼𝑁𝑉

𝐼𝐼𝑀 𝐼𝐼𝑅𝐼𝐷

Their consideration seems to be important for the potential use of our procedures.

Axiomatic results are summarized in Table 9.1. We have collected some known

properties (in certain cases with minor modifications and extensions) as well as six

new ones: scale invariance (𝑆𝐼), result consistency (𝑅𝐶𝑆), preservation of linear or-

der (𝐿𝑂𝑃 ), independence of irrelevant results (𝐼𝐼𝑅), independence of draws (𝐼𝐷),

and homogeneous treatment of opponents (𝐻𝑇𝑂). Score satisfies all axioms beyond

𝐿𝑂𝑃 but we have seen that 𝐼𝐼𝑀 is not favourable in the presence of missing and

multiple comparisons. According to a central theorem it essentially excludes consis-

tency, adding relevance to the differentiation of results and matches matrices.

Our findings recommend the use of generalised row sum with a variable param-

eter, somewhat proportional to the number of matches like the reasonable upper

bound. It is not surprising given the statistical background of the method (Cheb-

otarev, 1994). Then generalised row sum and least squares are distinguished by

monotonicity.4 Our scoring procedures do not satisfy the axiom 𝐿𝑂𝑃 which is prob-

ably true for a much larger set of these measures.

Three main directions occur for future research. The first is to extend the scope

of the analysis to other scoring procedures. For example, Slikker et al. (2012) suggest

4 Some of their other differences are highlighted by González-Díaz et al. (2014); Csató (2013b).
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Table 9.1: Axiomatic comparison of scoring procedures

Axiom Fixed-order Flat Score† Generalised
row sum‡

Least
squares

(𝐴𝑁𝑂) 4 4 (4) (4) (4)
(𝑁𝐸𝑈) 7 4 (4) (4) (4)
(𝐶𝑁𝑇 ) 7 4 (4) (4) (4)
(𝐿𝑅𝐶𝑅) 7 4 4 (4) 4

(𝐻𝑂𝑀) 4 4 (4) (4)7* (4)
𝑆𝐼 4 4 4 4 4

(𝐶𝑆) 4 7 (4) (7) (7)
(𝐹𝑃 ) 4 4 (4) (4) (4)
𝑅𝐶𝑆 4 7 4 47* 4

(𝑆𝑌𝑀) 7 4 (4) (4) (4)
(𝐼𝑁𝑉 ) 7 4 (4) (4) (4)
𝐿𝑂𝑃 7 7 7 7 7

(𝐼𝐼𝑀) 4 4 (4) (7) (7)
𝐼𝐼𝑅 4 4 4 7 7

𝐼𝐷♦ 4 4 4 4 4

(𝑆𝑀) 7 7 (4) (4) (7)
(𝐶𝑆𝑀) 7 7 (4) (4) (7)
(𝐼𝐶) 4 4 (4) 4 4

(𝑆𝐶𝐶) 7 7 (4) (4) (4)
(𝐻𝑇𝑉 ) 7 7 (4) (4) (4)
𝐻𝑇𝑂 7 7 4 4 4

Known axioms and results are in parentheses, others are our contributions
†
González-Díaz et al. (2014) defines score method differently; their results are in parentheses

‡
González-Díaz et al. (2014) examines only the case of 𝜀 = [1/𝑚(𝑛− 2)]; their results are in
parentheses

*
Depends on the choice of 𝜀

♦
An extension of condition (2) of Chebotarev (1994, Property 14)

a general framework for ranking the nodes of directed graphs, resulting in fair bets

as a limit. Positional power (Herings et al., 2005) is also worth to examine since its

links to least squares from a graph-theoretic point of view (Csató, 2014a).

The second course is the introduction of new axioms with the final aim to get new

characterizations, an intended end goal of our analysis. Some additional properties

are discussed by Csató (2013b). However, it remains doubtful whether exact results

may be expected in this general framework.

The third issue is the meaning of a unique ranking in the presence of inconsis-

tency, an issue considered by Jiang et al. (2011). These methods behave relatively

well from a mathematical point of view, therefore an error estimation seems to be

possible, which can provide the probability that an object is ranked above the other

(Horváth et al., 2013).
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The first topic gets a somewhat restricted attention since we have still examined

similar problems (Csató, 2012a,b, 2013a,c, 2014c; Temesi et al., 2012). In Chapter 8

a number of areas were reviewed, as well as some suggestions were given on the basis

of our experiences. Chapter 7 applied paired comparison-based scoring procedures

for ranking in Swiss-system chess team tournaments. Two examples were analysed

with the proposed methods. Our results give strong arguments for the use of least

squares method with a generalised result matrix favouring match points.

To conclude, we think that essential contributions were added to both issues

investigated. We do not want to appreciate their relative importance, it depends

on the reader. However, our later research will probably follow the analysis of rel-

evant problems. In this way we can avoid the difficulties arising from the lack of

characterizations.



Appendix: The case of regular

bipartite comparison multigraph

Csató (2014a, Theorem 1) contains the condition that the comparison multi-

graph is not regular bipartite. This issue was not addressed in Section 4.2. Then the

matches matrix 𝑀 is block anti-diagonal, number of objects is even, and the two

subsets of 𝑁 have the same number of objects. Now Neumann series is not conver-

gent, but the critical eigenvalue 𝜆 = −1 of 𝐵 is on the boundary of the unit circle,

therefore it is bounded and oscillates.

Conjecture 4. Let (𝑁,𝐴,𝑀) ∈ ℛ𝑛 be a ranking problem. Csató (2014a, Theo-

rem 1) is valid if and only if the comparison multigraph is not regular bipartite or

s = 0.

Conjecture 5. If the iteration process

q(0) = (1/d)s

q(𝑘) = q(𝑘−1) +
1

d

(︂
1

d
𝐶

)︂𝑘

s, 𝑘 = 1, 2, . . . ,

does not converge for a regular bipartite comparison multigraph 𝐺, then the rating

vectors obtained after an even and an odd number of steps converge, respectively.

Furthermore, the arithmetic mean of the two limit gives the least squares ranking q.

Formally, for all 𝜏 > 0, there exists 𝑡 ∈ N such that

⃦⃦
q(2𝑧+2) − q(2𝑧)

⃦⃦
2
< 𝜏,

⃦⃦
q(2𝑧+3) − q(2𝑧+1)

⃦⃦
2
< 𝜏

and ⃦⃦
q−

(︀
q(2𝑧+1) + q(2𝑧)

)︀
/2
⃦⃦
2
< 𝜏,

for all 𝑧 ≥ 𝑡.

There are also some open questions regarding the decomposition of the least

squares rating vector q.

40
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Problem 1. Are there exactly three possible outcomes of the iteration if 𝐺 is a

regular bipartite comparison multigraph:

I. The iterated rating vectors q(𝑧) are unchanged;

II. The same iterated rating vector occurs with period 2, that is, q(𝑧) = q(𝑧+2)

for all 𝑧 ∈ N;

III. The iterated rating vectors q(𝑧) converge separately for even and odd 𝑡 values?

If the answer is affirmative, does it hold that the least squares rating vector can

be obtained as the arithmetic mean of rating vectors for even and odd 𝑡 values in

case II and as the limit of rating vectors for even and odd 𝑡 values in case III?

What are the specific features of ranking problems (𝑁,𝐴,𝑀) in cases I, II and

III, respectively?

For a given matches matrix 𝑀 associated with a regular bipartite comparison

multigraph 𝐺, is it possible to produce all the three cases above by an appropriate

choice of the results? As the convergence of q(𝑧) is provided when s = 0, for case I

the answer is affirmative.

From the viewpoint of potential applications, the oscillation of the iterated rat-

ings does not seem to be a serious problem since regular bipartite graphs determine

a very special comparison structure. In particular, they imply the lack of cycles

of odd length, specifically, the existence of triplets (𝑋𝑖, 𝑋𝑗, 𝑋𝑘) with all possible

comparisons (𝑋𝑖, 𝑋𝑗), (𝑋𝑖, 𝑋𝑘), (𝑋𝑗, 𝑋𝑘) are excluded.

Regarding the necessary conditions in (Csató, 2014a, Theorem 1), the connect-

edness of 𝐺 can be interpreted as for the uniqueness of the least squares rating, it is

a natural requirement for the objects to be comparable. Lack of convergence is due

to bipartiteness and regularity. For these graphs the calculation of optimal weights

is cyclic: in order to determine the aggregated rating of the second group of objects,

it should be known for the first group, and vice versa.

It is less restrictive than the requirement for recursive performance by Brozos-

Vázquez et al. (2008), since now only regular bipartite comparison multigraphs are

excluded, not all bipartite graphs. A possible reason can be the presence of loops

in bipartite but not regular decomposition multigraphs; however, critical cases arise

strictly from mathematical argumentation. Convergence for some regular bipartite

graphs is guaranteed by the results matrix 𝐴, not by Csató (2014a, Lemma 3).
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