
1

GSM 이하빈. Habin Lee. Knowledge-based Approach for Flexible Workflow
935291 Management System. 유연한 워크플로우 자동화 시스템을 위한 지식
 기반 접근법에 관한 연구. Graduate School of Management. 1998.
 148p. Advisor Prof. Sung Joo Park. Text in ENGLISH.

ABSTRACT

 Today's business environments are characterized by dynamic and uncertain environments. In

order to effectively support business processes in such contexts, workflow management systems

must be able to adapt themselves effectively. In this dissertation, the workflow is redefined in

concept and represented with a set of business rules. Business rules play a central role in

organizational workflows in context of cooperation among actors. To achieve business goals,

they constrain the flow of works, use of resources, and responsibility mapping between tasks

and actors using role concept. Business rules are explicitly modeled in the Knowledge-based

Workflow Model (KWM) using frames.

 To increase the adaptability of workflow management system, KWM has several distinctive

features. First, it increases expressiveness of workflow model so that exception handling rules

and responsibility mapping rules between tasks and actors as well as task scheduling rules are

explicitly modeled. Secondly, formal definition of KWM enables one to define and to analyze

correctness of workflow schema. Knowledge-based approach enables more powerful analysis

on workflow schema including checking consistency and compactness of routing rules as well

as terminality of a workflow. Thirdly, providing change propagation mechanism which assures

correctness of workflow after the modification of workflow schema increases adaptability.

Change propagation rules for the modification primitives are provided to manage workflow

evolution. On the other hand, metarules that control rules in KWM are used to handle

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

exceptions that occur in a running workflow instance. Workflow participants can easily change

workflow schema of a workflow instance with the support of extra rules and a metarule.

 Based on KWM, K-WFMS (Knowledge-based WorkFlow Management System) has been

implemented in client/server architecture. Inference shell of knowledge-based systems is

employed for enactment of business rules and integrated with database systems. From a real

application based on the KWM architecture, it has been shown that system performance can

increase notably by reducing the number of rules and facts that are used in the course of

workflow enactment.

3

Table of Contents

Abstract

Table of Contents

List of Figures

List of Tables

Chapter1. Introduction 1

 1.1 Research Background and Motivation 1

 1.2 Objectives and Scope of the Research 5

 1.3 Organization of the Dissertation 7

Chaper 2. Literature Review 9

 2.1 Workflow Management System 9

 2.2 Office Information System and WFMS 12

 2.3 Workflow Modeling 14

 2.4 Workflow Verification 16

 2.5 Change Mangement in WFMS 18

 2.6 Business Rule Modeling 18

Chapter 3. KWM : Knowledge-based Workflow Model 20

 3.1 Introduction 20

4

 3.2 Classification of Business Rules 21

 3.3 Modeling Constructs of KWM 22

 3.4 Entity and Relationship Frames 24

 3.5 Rule Frames 26

 3.5.1 Procedural-rule frames 27

 3.5.2 Responsibility-rule frames 28

 3.5.3 Metarule frames 29

 3.5.4 Logic-based representation of procedural-rule frames 31

 3.6 Routing Constructs 32

 3.7 An Illustrative Example 34

 3.7.1 Procedural-rule frames 34

 3.7.2 Responsibility-rule frames 38

 3.7.3 Metarule frames 42

 3.8 Formal Definition of KWM 44

Chapter 4. Verification of KWM 51

 4.1 Properties for Sound KWM 51

 4.2 KWM Verification Algorithm 58

Chapter 5. Change Management in KWM 65

 5.1 Introduction 65

 5.2 Dependency Predicates 66

5

 5.3 Management of schema-level changes 69

 5.3.1 Propagation rules for changes on tasks 71

 5.3.2 Propagation rules for changes on exceptional rules 80

 5.3.3 Propagation rules for changes on responsibility rules 81

 5.3.4 An illustrative example 82

 5.3.5 Migration of workflow instances into new schema 84

 5.4 Management of instance-level changes 87

 5.4.1 Propagation rules for dynamic workflow configuration 89

 5.4.2 An illustrative example 92

Chapter 6. Knowledge-based Workflow Management System (K-WFMS) 97

 6.1 Introduction 97

 6.2 Overall Architecture of K-WFMS 97

 6.3 K-WFMS Client 99

 6.3.1 KWM manager 99

 6.3.2 Workflow client 100

 6.4 K-WFMS Server 103

 6.4.1 Generation of CLIPS codes 104

 6.4.2 Controlling rule execution 106

 6.4.3 Coupling KBS with DBS 108

Chapter 7. Conclusion 112

6

 7.1 Introduction 112

 7.2 Summary of the Research and its Contributions 112

 7.3 Further Research Directions 114

Summary (in Korean) 116

References 118

Appendices 130

 Appendix A. Specification of rule frames for example workflow 130

 Appendix B. Algorithms for checking soundness properties 136

 Appendix C. Algorithms that generate dependencies between frames in KWM. 138

 Appendix D. CLIPS source codes for frames in business trip approval workflow.140

Acknowledgement (in Korean)

Curriculum Vitae (in Korean)

7

List of Figures

Figure 2-1. A workflow model (Vendor selection) based on ICN 15

Figure 2-2. A workflow model based on Action Workflow Loop 16

Figure 3-1. Hierarchy of frames in KWM. 23

Figure 3-2. Frame Specification Syntax of KWM . 24

Figure 3-3. The specification structure of rule frames. 27

Figure 3-4. An example of procedural_rule frame. 28

Figure 3-5. Metarule frames for procedural-rule frames. 30

Figure 3-6. Four routing constructs: (a) sequential routing; (b) parallel routing;

 (c) conditional routing; (d) iterative routing. 32

Figure 3-7. Business trip approval process at KAIST (AS-IS) 35

Figure 3-8. Specification examples of procedural-rule frames 37

Figure 3-9. A specification example of responsibility_rule frame for “supervisor” 39

Figure 3-10. A specification examples of responsibility_rule frame for “Account

 Controller” 40

Figure 3-11. Specification examples of metarule frames. 43

Figure 4-1. Occurrence of circularity. 51

Figure 4-2. Occurrence of missing rule. 52

Figure 4-3. Occurrence of missing value. 54

Figure 4-4. Occurrence of dangling task. 55

Figure 4-5. Occurrence of conflicting rules. 56

8

Figure 5-1. Workflow schema evolution 65

Figure 5-2. Inserting a task between two sequential tasks 72

Figure 5-3. Inserting a task between conditional routing 73

Figure 5-4. Inserting a task between a fork task and its successor. 73

Figure 5-5. Inserting a task between conditional routing. 74

Figure 5-6. Inserting a task between conditional routing 75

Figure 5-7. Inserting a task between a join task and its predecessor. 76

Figure 5-8. An example workflow for task deletion. 76

Figure 5-9. Changing order between two sequential tasks. 80

Figure 5-10. Change propagation chains for the example workflow. 83

Figure 5-11. Inheritance of workflow schema for handling instance-level changes. 88

Figure 5-12. An example workflow for instance-level changes. 89

Figure 5-13. An example process for group project in a virtual classroom. 93

Figure 5-14. An example process for group project in a virtual classroom (after

 dynamic decomposition) 95

Figure 6-1. Overall architecture of K-WFMS. 97

Figure 6-2. Screen example of smart form. 102

Figure 6-3. Screen example of workflow monitoring service. 103

Figure 6-4. Translation of an entity frame into CLIPS codes. 105

9

List of Tables

Table 4-1. Anomalies that violate soundness of KWM. 59

Table 5-1. Classification of changes on workflow and their features. 66

Table 5-2. The predicates that represent dependencies among frames of KWM. 67

10

Chapter 1. Introduction

1.1 Background and Research Motivation

 Although efficiency is still a central business goal, flexibility and changeability are

becoming more and more prominent in business processes (Scott-Morton, 1994). Furthermore,

increasing agility of an organization is considered as a critical success factor in a competitive

environment of continually and unpredictably changing customer opportunities (Goldman et al.,

1995). Agile organizations are apt to frequently change their business processes to satisfy

fluctuating customers needs. Development of information system that supports business

processes should be flexible to adapt to the changing business processes.

 The workflow management system (WFMS) is considered as a key technology that

automates business processes. The WFMS should be highly adaptive to changes on business

processes in agile organizations. In a WFMS, business processes are represented using

workflow model which has three main constructs; routes, rules, and roles (Marshak, 1994).

Routing construct represents task sequences and a role represents one who is responsible for a

task. Based on organizational model, a role can be defined with actor’s department, position,

and skills, etc. Rule is used to define routing and role constructs. It enables to define conditional

or exceptional routings and conditional assignment of tasks to actors through role constructs. An

adaptive WFMS should be flexible enough to handle the changes on these three constructs.

 Some WFMSs are flexible (Reichert and Dadam, 1998; Casati et al., 1998; Dellen et

al., 1997) in the sense that they provide adaptability for the changes on routing

constructs such as adding or deleting tasks, or changing task sequences. These systems,

however, do not provide capability to handle changes on the organizational structure

11

and business rules. The role definition can be affected by the changes on the

organizational structure such as the merger and abolition of departments, change on the

position hierarchy, and creation of temporal task force, etc. In an organization, there

may exist heterogeneous departments and actor types, different routing conditions

according to the types of actors, and flexible role instances that are responsible for a

task. The rules change frequently due to BPR (Business Process Reengineering),

empowerment, or restructuring. The existence of exceptional rules that may be applied

for special workflow instances aggravates the complexity of rule management. The

business rules can be directly affected by the changes on the routing and role constructs,

of which the effects can also be cascaded, i.e. change on a business rule can affect other

related business rules. Thus providing a change propagation facility for the changes on

the three constructs is an inevitable component of adaptive WFMSs.

One of the main reasons that make WFMS inflexible can be found from the approach

for describing workflows. There are three fundamentally different approaches: (1)

communication-based models developed from the language/action perspective of

Winograd and Flores (1986); (2) activity-based models that view workflow as a chain of

production activities; and (3) object-based models that view workflow as a “complex

web of interactions” among highly skilled knowledge workers. The first two approaches

have been criticized for their inability to realistically and flexibly represent how work is

performed (Lubich, 1995). The difficulty seems to be that the communication-based

approaches only model commitments among humans (by representing conditions of

satisfaction in the performance of work), and the activity-based approaches only model

inputs, transformations, and outputs of a work process (while ignoring “human

processes” in the performace of work). Thus work is viewed only as a sequence of

12

business functions (Sachs, 1995). Unfortunately, the most prevalent problem in

workflow management systems (that are based on pre-planned routines) is that in work

environments with task uncertainty, task allocation and coordination cannot be planned

in advance (Hurts and de Greef, 1994). Thus the use of such proedures has resulted in a

loss of flexibility to cope with exceptions that characterize “real-life” tasks (Lubich,

1995). The object-based model views an organization as a knowledge-processing

system which acquires, processes, stores, and disseminates knowledge to its

environment. Workflows modeling is to identify organizational resources including

human and computers that are represented as objects or agents and to represent their

interactions. Ganapathy (1996) proposed an approach which redefines the workflow

concept so that it is viewed as the interactions among problem-solving entities in an

organization. He subscribes to the view that an organization is a knowledge-processing

system, and that the interactions among knowledge workers constitute knowledge-

management episodes. The workflow concept is more closely aligned with the tacit

view of work, i.e., it refers to activities such as problem-finding and problem-solving

that occur in the performance of work. With object-based model, the role concept is

highlighted because objects (or agents) interact each other with assessed role. However,

business rules are hidden into the objects (or agents), which results in difficulty of rule

management.

For an ideal adaptive WFMS for agile organizations, workflow models need to be

enhanced in the following aspects:

! Expressiveness : It should provide constructs to represent conditional mapping

relationships between roles and actors based on organizational model as well as

complex business rules including exceptional rules.

13

! Model verification : It should allow analysis that assures the correctness of

workflow specification including checking the occurrence of inconsistent,

redundant, and incomplete business rules as well as non-terminality of processes.

! Change management : It should allow easy development of propagation

mechanism against changes on the organizational structure and business rules as

well as organizational procedures to assure the correctness of workflow model.

Furthermore, exception handling mechanism in instance-level should be provided.

 In this dissertation, a knowledge-based approach for workflow modeling and

enactment is proposed. We define workflow as a set of business rules. This view is

based on that an organization can be described with business rules. Business rules are

appropriate to represent organizational context or policies (Ong and Lee, 1996). Usually,

the execution order of tasks and responsible actors for the tasks are predefined through

business rules in an organization. Furthermore, the existence of exceptional rules

reflects culture of the organization.

 The advantage of the approach proposed in this dissertation is as follows:

(1) Workflows can be defined under organizational context. Provision of rule modeling

constructs enhances the expressiveness of workflow model, which enables complex

business rules including exceptional rules in workflows.

(2) Adaptability of WFMS is increased. One of main issues for adaptable WFMS is

providing a mechanism that permits workflow participants to customize the

workflow schema according to the situations. Rule-based approach enables dynamic

interpretation of workflow schema, i.e., different version of workflow schema can

coexist and can be selectively fired for special workflow instances. This reduces the

14

burden having additional mechanism for handling instance level exceptions.

(3) Various kinds of workflow verification are possible. Conventional workflow

verification is focused on the checking terminality of workflows. Knowledge-based

approach enables consistency and compactness of rules as well as terminality of

workflows.

1.2 Scope and Objectives of the Research

 In this dissertation, KWM (Knowledge-based Workflow Model) is designed as an

adaptive workflow model and K-WFMS (Knowledge-based Workflow Management

System) is implemented based on KWM. As an adaptive workflow model, KWM

should have following desirable features: (1) the expressive power of business rules of

KWM are improved using knowledge-based approach to represent complex and

heterogeneous business rules, (2) properties that assure correctness of KWM are

proposed which can be analyzed using a rule verification technique, (3) management of

organizational changes in KWM can be easier due to change propagation mechanism.

Dependencies between modeling constructs are explicitly represented in KWM, and

organizational changes that affect routes, rules, and roles in a workflow are propagated

to corresponding constructs using the dependencies to assure the correctness of KWM.

The objectives of the research can be summarized as follows:

(1) Development of an workflow model

 We develop a knowledge-based workflow model which adopt rule as a major

modeling construct. The conditional routing, assignment of tasks to actors using role

15

concept, and exception handling for special workflow instance are represented as If-

Then rules. KWM needs a formal foundation for self-complacency, accurate

communication, extension and modification of the model, and formal comparisons with

other frameworks. We develop a set-theoretic formalism of KWM.

(2) Development of an approach for workflow verification

 Verification of a model is necessary to assure consistent, complete, and compact

workflow modeling. In this thesis, soundness property of KWM is formally defined.

Some properties that assure sound KWM are defined, and analysis techniques that can

be used to verify the soundness property are developed.

(3) Development of a change propagation mechanism

 A change propagation mechanism assures a sound workflow model against changes

on the modeling constructs of KWM. In this research, dependency-based change

propagation mechanism is developed. Dependencies between modeling constructs are

represented as predicates. Based on the dependency predicates, propagation rules that

assure soundness of workflow are proposed. Furthermore, an exception handling

mechanism in instance-level is provided.

(4) Designing and implementation of a WFMS

 Based on KWM, we design and implement K-WFMS. It has client/server

architecture. Rules in KWM are translated into executable rule language (CLIPS), and

are chained to schedule tasks and assign tasks to actors based on organizational facts

that are extracted from organizational database. To help easy management of KWM, a

16

GUI (Graphic User Interface)-based model editor is developed.

1.3 Organization of the Dissertation

 This dissertation is composed as follows. Chapter 2 reviews related research. The

basic concept of WFMS is reviewed, and the relationship with organizational

information systems (OIS) is characterized. Furthermore, researches on workflow

modeling approach, workflow verification, and change management in WFMS are

reviewed in chapter 2.

 Chapter 3 describes the detail of KWM. Basic principles, modeling constructs, and

formal definitions of KWM are addressed. An illustrative example is used to prove

validity of KWM.

 Chapter 4 defines properties for the soundness of KWM. Based on the soundness

property, analysis techniques for checking the properties are described.

 Chapter 5 presents a change propagation mechanism for KWM. Changes are

classified as schema-level and instance-level changes. Propagation rules for schema-

level changes are proposed using dependency predicates that are generated from

workflow designer specified workflow schema. Instance-level exceptions are handled

using metarule cocept. Propagatin rules that generate metarules for each exception are

provided.

 Chapter 6 describes on the implementation of K-WFMS. The overall architecture of

K-WFMS, implementation strategy, and characteristics of each module of K-WFMS are

described.

 Finally, the contribution of the research and future research directions are discussed

17

in chapter 7.

Chapter 2. Literature Review

 In this chapter, some researches are reviewed that are related with KWM. In section

2.1, the basic concept of WFMS is reviewed. The relationship between office

information system and WFMS is reviewed in section 2.2. The workflow models

proposed in literature are reviewed in section 2.3, and researches on workflow

verification and change management of workflow model are reviewed in section 2.4 and

section 2.5, respectively. Lastly, researches on business rule modeling in information

system development are reviewed in section 2.6.

2.1 WFMS

 Workflow Management Coalition (WfMC: 1994) defines a workflow management

system as “a system that completely defines, manages and executes ‘workflows’

through the execution of software whose order of execution is driven by a computer

representation of the workflow logic”. As a cooperative information system, WFMS is

considered as a key technology that automates business processes.

 A WFMS consists of two basic components: a workflow modeling component and a

workflow execution component (Ellis and Nutt, 1993). The workflow modeling

component enables administrators, users, and analysts to define procedures and

activities, analyze and simulate them, and allocate them to people. The execution

18

component is referred to as the “workflow engine”. The workflow engine routes

artifacts among the tasks according to predefined routing conditions, and assigns tasks

to actors using organizational roles. Handling exceptions that are caused by failures of

workflow transaction or the occurrence of special workflow instance which needs

special treatment is another important functionality of workflow engine. Lastly,

workflow engine automatically launches an application system that supports execution

of assigned task.

 Abott and Sarin (1994) proposed three dimensions to classify WFMSs available on

the market.

! Design versus runtime. Design-oriented workflow products emphasize the creation.

Modeling, analysis, and simulation of workflow processes. Runtime workflow

products are engines that provide generic routing and tracking services to

applications.

! Mail- versus database-driven. Mail-driven workflow systems build on electronic

mail as the basic underlying mechanism for routing and presenting work to users.

Database-driven workflow system use underlying database technology to drive the

process. Routing and status information is stored in tables that are queried by clients.

! Document- versus process-oriented. Document- (or data-) oriented workflow

systems associate routing information with the particular data objects being worked

on. Folder management and image routing systems fall into this category. They are

good for handling manual, paper-based procedures electronically. Process-oriented

workflow systems model the work process as a sequence of steps. Data objects are

attached to steps in the process, but different objects can be routed at different steps

in the process.

19

 Figure 2.1 illustrates the major components and interfaces within the workflow

architecture (WfMC, 1994). The workflow enactment service provides the run-time

environment in which process instantiation and activation occurs, utilising one or more

20

[Figure 2.1] Workflow Reference Model (cited from WfMC(1994))

workflow management engines, responsible for interpreting and activating part, or all,

of the process definition and interacting with the external resources necessary to process

the various activities. The interface between the modeling and definition tools and the

runtime workflow management software (interface 1) is termed the process definition

import/export interface. The nature of the interface is an interchange format and API

calls, which can support the exchange of process definition information over a variety of

physical or electronic interchange media. Interface 2 defines communications between

workflow enactment service and workflow client applications. The communications are

for process control function, process status function, worklist/workitem handling

function, and process supervisory functions etc. Interface 3 is for handling workflow

enabled applications. Interface 4 is to handle the information and control flows between

heterogeneous workflow systems. Lastly, interface 5 is a common interface standard for

Proess
Definition Tool

Administratio
n &
Monitoring

Workflow
Client
Appliations

Invoked
Applications

Workflo

Workflow Enactment Service

Workflow API and Interchange formats

Workflo

Other Workflow
Enactment Service(s)

Interafce 1

Interafce 2 Interafce 3

Interafce 4

Interafce 5

21

administration and monitoring functions which will allow one vendor’s management

application to work with another’s engine(s). This will provide a common interface

which enables several workflow services to share a range of common administration

and system monitoring functions.

2.2 Office Information System and WFMS

 The researches on the office information system (OIS) in the early eighties

contributed to the development of WFMS. OIS tried to address the automation of daily

tasks performed by office workers. The development of these systems started in

research laboratories under the basic assumption that office tasks are structured.

 Bracchi and Pernici (1984) have classified office conceptual models which are the

main component of OIS, on the basis of the fundamental elements that they take into

consideration, into the four categories: data-based models, process-based models, agent-

based models, and mixed models. Data-based models group data into forms, which are

similar to paper forms in the traditional office. Types of data and the operations on data

(storage, retrieval, manipulation, transmission) are the basic elements of these office

conceptual models. Office activities are then seen as a series of operations on data.

OFFICETALK-ZERO (Ellis and Nutt, 1980), OMEGA (Barber 1983), OFFIS

(Konsynski et al., 1982), and OBE (Zloof, 1982) are the examples of data-based model.

Process-based models analyze and describe office work by looking at different activities

performed concurrently by the users and the system. The goal of process-based models

is that of representing office activities in a coordinated way: thus the approach is not

founded (as in data-based models) on operations performed by single users, but instead

22

on an integrated vision of all the activities performed in an office in order to execute

certain tasks, with the purpose of a general control of office work. SCOOP (Zisman,

1978), ICN (Cook, 1980), OAM (Sirbu, 1981), OSL (Hammer and Kunin, 1980), and

Ticom-II (Bailey et al., 1983) are the examples of process-based model. Agent-based

models model an office from the viewpoint of the functions performed by active

elements of the office environment (the agents). It describes the office by associating to

the different agents a set of functions (i.e., the different roles that they take in

performing their tasks, the domain within which they are authorized to act, and the set

of relationships that link them to other agents). The example of agent-based model is

Structural Model (Aiello et al., 1984). Lastly, mixed models explicitly assume more that

one type of element as the basis for system specification, and define the relationships

among these elements. OFS (Tsichritzis, 1982), DOMINO (Victor and Sommer, 1991),

IML (Richter, 1981), OPAS (Lum et al., 1982), OFFICETALK-D (Ellis and Bernal,

1982), and SOS (Bracchi and Pernici, 1983) are the example of mixed-model.

 In the beginning of the nineties, these research prototypes, which never moved out

of the research labs in to offices and organizations before, were either directly adopted

by industry or strongly influenced the design of WFMS. Although there exists a

significant overlap between WFMS and OIS, three significant differences exist between

them (Abott and Sarin, 1994) (Mahling et al, 1995). At first, the emphasis in workflow

management is on using computers to help manage business processes that may be

comprised of many individual tasks. On the other hand, OIS focused on the automation

of specific office tasks. The latter may be applied selectively to some tasks, but such

task automation is not a prerequisite for using and benefiting from workflow. Secondly,

workflow is tightly controlled and decisions are based on event results while OIS is

23

loosely controlled encouraging free wheeling. Thirdly, the target processes to be

automated of the two systems are different. OIS usually aimed to automate business

processes that are executed in office environment. WFMS consider both of business

processes in office environment and manufacturing processes.

2.3 Workflow Modeling

 Workflow modeling is a process in which major elements of target workflow are

captured and represented using modeling constructs. Many workflow models in the

literature are based on the office models of OISs in eighties (Mahling et al, 1995). For

instance, X-Workflow (Olivetti Inc.) and FlowPath (Bull Inc.) are based on DOMINO

and OFFIETALK, respectively.

 Workflow models in literature can be classified as three categories according to their

basic approaches. At first, many works for workflow modeling are based on the input-

process-output (IPO) approach (Gruhn, 1995; Ellis and Nutt, 1993; Wolf and Reimer,

1996; van der Aalst et al., 1994; van der Aalst, 1998). It provides task-oriented view on

workflows, that is, a workflow is considered as a set of interrelated tasks which process

inputs and produce outputs. This approach uses Petri net (Peterson, 1981) or IDEF

(Bravoco and Yadav, 1985) as a basic model, and is good to model structured

workflows such as business trip approval process and purchasing process. Figure 2.1

illustrates a workflow model based on extended Petri net (ICN). Secondly, language /

action approach is also used for workflow modeling (Winograd, 1987; Flores et al.,

1988; Michelis and Grasso, 1994; Kaplan et al., 1992). It is based on the conversations

between workflow participants, and has merits for modeling unstructured workflow

24

[Figure 2.1] A workflow model (Vendor selection) based on ICN

such as project planning and customer complaint process. Based on the speech / act

theory (Searl, 1969), it manages and automates conversation procedures in workflows.

In Figure 2.2, each loop represents conversation process between two actors. A loop

(i.e., a conversation) consists of four stages (represented as arrows): preparation,

negotiation, performance, and acceptance. A customer name resides on the left-hand

PR

Assimilate details
(talk to purchaser)

Vendor DB
Select vendor candidate

negotiate

order

verbal OK
verbal order

25

side of the loop,

[Figure 2.2] A workflow model (customer complaint) based on Action Workflow Loop

and the right-hand side of the loop is performer. Thirdly, some research employ object-

oriented approach for workflow modeling and enactment (Bose, 1996; Chang and Scott,

1996; Jennings et al., 1996). Bose (1996) presented five classes of objects as a key

construct: roles, organization structures, procedures, transitions, and documents. In his

model, workflows are executed through message passing between participating objects

of the workflows. Both of Chang and Scott (1996) and Jennings et al. (1996) suggested

agent based approach for workflow management. In their architecture, autonomous and

problem solving agents interact via their own protocol to achieve workflow

management goals.

2.4 Workflow Verification

Resolution
offer

Customer
complaint

Customer

non-standard
resolution

Track non-standard
Resolution

Product change
resolution

Customer
representive

Customer
Customer
representive

Customer
representive

Customer
service

Customer
service
manager

Director
Customer
service

Customer
service
manager

Product
Manager

26

 Researches on the verification of workflow model are mainly performed using Petri-

net theory (Hofstede et al., 1998; Adam et al., 1998; and Van der Aalst, 1998). Hofstede

et al. (1998) some typical verification problems in workflow specifications are

identified and their complexity is addressed. With their definition on the workflow

structure, they proved that the initiation problem of tasks is NP-complete, and the

termination problem and determining safeness of workflow structure are DSPACE(exp)-

hard problems. Furthermore, they proved that the safeness of restricted workflow

structure that a workflow structure without synchronisers and without cyclic

decomposition structures can be verified in polynomial time.

Adam et al. (1998) and Van der Aalst (1997) use Petri nets as a tool for the

representation, validation and verification of workflow procedures. Van der Aalst (1997)

proposed WF-nets a workflow model that can be verified in polynomial time. Adam et

al (1998) proposed Temporal Constraint Petri Net (TCPN) an extended Petri nets as a

workflow model. Based on TCPN, they provided algorithms to verify followings;

! Identify inconsistent dependency specifications among tasks

! Test for workflow safety, i.e. test whether the workflow terminates in an acceptable

state

! For a given starting time, test whether a workflow is schedulable with the specified

temporal constraints.

 It is possible to check termination of workflow and occurrence of dangling tasks

using Petri-net, but it is difficult to check the correctness of routing condition or

mapping rule between role and actor. The rule-based approach for workflow modeling

given in this paper enables checking the correctness of the specification of routing

conditions, the redundancy of rules, as well as the termination of workflow.

27

2.5 Change Management of Workflow Model

 The issue of flexible workflow management has been addressed in Casati et al.

(1998), Reichert and Dadam (1998), Dellen et al. (1997), and Bogia and Kaplan (1995).

Casati et al. (1998) suggested a set of primitives that allow modifications of workflow

schema, and introduced a taxonomy of policies to manage the evolution of running

instances when the corresponding workflow schema is modified. Reichert and Dadam

(1998) defined a complete and minimal set of change operations (ADEPTflex) that

support users in modifying the structure of a running workflow while maintaining its

structural correctness and consistency. Dellen et al. (1997) suggested CoMo-Kit system

which defines and implements an ontology for project planning. In the CoMo-Kit, it is

possible to refine and extend the software process model during process execution using

dependency management and change notification mechanism. In these researches,

managing the changes such as adding or deleting tasks and changing predefined task

sequences are the main concern without considering mechanisms to handle changes on

organizational structure and business rules.

2.6 Business Rule Modeling

 The importance of business rule modeling is addressed in the database system and

information system development fields.

 Business rule related research originally started from DBMS field. Researchers on

database management system (DBMS) noticed that to develop intelligent business

28

databases and to manage evolution of these databases, it is necessary to analyze and

manage the meaning of data as well as data itself. They stressed the importance of

business rule base (Appletone, 1984), classified business rules to entity rules, attribute

rules, and event rules (Moriarty, 1993), and suggested business rule analysis steps

(Halle 1993). With the emphasis on business rules in database system, a system analysis

methodology with rules as central constructs has been suggested (Herbst, 1996). In the

research, business rules are defined and structured as a main component of system

analysis and presented a meta-model for business rules.

 On the other hand, business rules are considered as major means for requirement

analysis in information system development. Some researches have studied business

rules to automate business rule enforcement to deal with unanticipated situations in

doing business activities (Sibley et al., 1992a, 1992b; Michael et al. 1992]. In these

studies, logic or theorem was used to represent and model business policies, which is

synonymous terms with business rules. An experimental policy workbench, which is a

set of tools to model and analyze policies, to maintain a policy database, and to assist

policy enforcement, was developed in these studies. Loucopoulos and Layzell (1989)

stressed that the information system representation formalism should provide with

semantic account, and suggested a conceptual modeling language based on object-

oriented and logic paradigm. In their studies, business rules are one of three kinds of

knowledge to be represented to build office model. Moriarty (1993b) claimed a new IS

analysis paradigm, business rule analysis paradigm, to emphasize the importance of

business rule modeling in IS development. Martin (1993) and Odell (1993a, 1993b)

suggested a new object-oriented system analysis and design methodology, in which

business rule model is an important constituent.

29

Chapter 3. KWM: Knowledge-based Workflow Model

3.1 Introduction

 The basic principles of designing Knowledge-based Workflow Model (KWM) are

the flexibility of the model, the expressiveness for complex business rules, and the

formality for enabling the analysis of workflow. In KWM, a workflow is defined as a

set of business rules for scheduling of tasks, mapping role and actors and routing work

items. Business rules restrict and guide a workflow execution according to the state of

an organization. The state of organization is represented as a set of attribute values of

the organizational objects. For effective modeling of business rules in workflow, two

heterogeneous knowledge, i.e., declarative knowledge representing state of an

organization and procedural knowledge representing state-based behavior, are

represented using frames.

 The organization of this chapter is as follows. In section 3.2, business rules for

supporting organizational activities are categorized, and business rules for managing

workflows are extracted. The basic modeling constructs of KWM are explained in

section 3.3, section 3.4, and 3.5 in detail. In section 3.6, the basic routing constructs of

workflow are represented using KWM. The usefulness of KWM is shown by applying

to an illustrative example in section 3.7. Lastly, the formal definition of KWM is

explained in section 3.8.

30

3.2 Classification of Business Rules

 In this dissertation, business rules for supporting organizational activities are

classified as three categories, i.e., object integrity rule, task rule, and workflow rule.

Object integrity rules deal with integrity constraints to accomplish the accuracy of

objects in organizational database systems. These rules can take following forms and

are referred for developing organizational database system [Codd, 1990].

- Domain integrity constraint : constraints about domains of attributes

- Column integrity constraint : extension of domain constraints. Additional

constraints for a specific column.

- Entity integrity constraint : implies that no components of a primary key is allowed

to have missing value

- Referential integrity constraint : for every value of a foreign key in a relation, there

must exist a matching value of a primary key

- User-defined integrity constraint : organization practices, policy, or governmental

registration to be reflected in the database

 Task rules guide how tasks in an organization should be performed and are referred

for developing application systems for supporting the tasks. For example, following

business rules guide executing the task “Calculate trip cost” in a business trip approval

workflow.

- “Traveling by airplane can be allowed in case of urgent duty”

- “Trip cost should be calculated based on the standard unit cost”

31

 Lastly, workflow rules drive workflows according to organizational policy.

Marshark (1994) suggested three main constructs for representing workflows, i.e., route,

role, and rule. Route is the execution order among tasks, role is the representative name

of agents who are in charge of a task, and rule is used to represent conditional routing or

conditional assignments of tasks to actors. Accordingly, business rules that drive

workflows are classified as three categories, i.e. procedural rule, responsibility rule, and

exceptional rule. The procedural rule guides execution order among tasks in a workflow.

The responsibility rule prescribes who are responsible for a task. And the exceptional

rule is applied to special workflow instances.

3.3 Modeling Constructs of KWM

 Workflow rules prescribe which tasks should be executed after completion of a task

and who are responsible for the execution of the tasks using organizational context

information. The organizational context information includes organizational structure,

organizational resources, and state of the tasks composing a workflow. Accordingly, two

heterogeneous knowledge, i.e., declarative knowledge representing state of an

organization and procedural knowledge representing state-based behavior, should be

modeled for representing workflow rules.

 KWM represent workflows as a set of workflow rules and organizational objects. To

represent the two heterogeneous knowledge, frame is used as a basic modeling construct.

As shown in Figure 3.1, KWM provides three basic types of frame, i.e. entity frame,

relationship frame, and rule frame to represent workflow rules. The entity and

32

relationship frames contain information which is necessary to control workflow, that is,

[Figure 3.1] Hierarchy of frames in KWM.

Entity

KWM Object

IS_A

SUBPART_OF

Sub Class

Frame

Procedural Rule

Responsibility Rule

User Defined

Task

Resource

Organizational Unit

Role

Actor

Relationship

Rule

Metarule

33

 <frame> ::= (<frame-identifier>, {<slot>})
 <slot> ::= (<slot-spec>, <slot-value>)
 <slot-spec> ::= (<attribute-name, <domain-type>) | ‘CONDITION’
 <slot-value> ::= <attribute-value> | {<condition-predicate>}

<condition-predicate> ::= <variable-declaration> | <existential-element> |
 <comparative-element> | <functional-element>
<variable-declaration> ::= ‘(’ <frame-name> {‘(’ <slot-name> <variable> ‘)’} ‘)’
 <variable> ::= ‘?’<variable-name>
 <existential-element> ::= ‘(’ <frame-name> {‘(’ <slot-name> <value> ‘)’} ‘)’
<comparative-element> ::= ‘(test (’ <operator> <argument> <value> ‘))’
 <operator> ::= [> | >= | < | <= | = | !=]
 <argument> ::= <variable> | <constant>

 <functional-element> ::= ‘(’ <function-name> {<argument>} ‘)’

[Figure 3.2] Frame Specification Syntax of KWM.

they are used to represent organizational model and resources. The rule frames contain

rules that control execution of workflow based on the states of entity and relationship

frames. The workflow execution rules are classified as procedural rule, responsibility

rule, and exceptional rule. Procedural rule schedules workflow tasks, responsibility rule

can be considered as a function which relate a task to an actor or a group of actors

according to role, and exceptional rule processes exceptional situations during task

scheduling and mapping tasks to actors. The basic specification syntax of a KWM

frame is shown in Figure 3.2.

3.4 Entity and Relationship Frames

 The Entity frame is an abstraction of all entities in an organization. As shown in

34

Figure 3.1, entity frame has five sub-frames (i.e., task, resource, organizational unit, role,

and actor frame). The frame “Task” represents structural and behavioral properties of all

the tasks that are performed in a workflow. Every workflow has two artificial tasks

called “Initiate” denoting the start of a workflow and “Terminate” denoting the end of a

workflow. The frame “Resource” abstracts all the resources that are used to execute

tasks or to control workflow instances. Forms, files, desks, skills, and application

software that support executing tasks in a workflow are examples of the resource frame.

The frame “Organizational unit” abstracts all the organizational units that compose an

organizational structure. Departments, research centers, and special units etc. are

example of organizational units. The frame “Actor” abstracts organizational members

who perform workflow tasks. Organizational members can be classified according to

their skills, titles, and shapes etc. Students, professors, and employees can be sub frames

of “Actor” frame.

 The frame “Role” abstracts organizational roles that execute tasks with

organizational responsibilities. In general, role is defined as “a set of activities that are

generally carried out by an individual or group with some organizationally relevant

responsibility” (Huckvale 1995). For example, an important role may be that of project

managing. This role would be acted by one person at a time, and within the role there

are many activities that that person would undertake: planning, reporting, monitoring,

managing staff, liaising with suppliers, working with the client, and so on. The role of

managing project X could be acted by me today, and by another person tomorrow. The

role is separate from the people who act it.

 Organizational roles can exist with different forms in an organization. The name of a

department can be used as a role like “Accounts”. A functional position (like “Financial

35

Director”), a class of person (like “Customer”), a job title (like “Project Manager”) also

can be used as a role. In KWM, organizational roles are classified as deterministic role

and non-deterministic role according to the number of role instances. The non-

deterministic role is that the number of role instance is multiple and the role instance

that is responsible for a task instance can be changed according to the state of workflow

instances. The examples of the non-deterministic role are project manager, supervisor,

etc. On the other hand, a deterministic role instance is the same for all workflow

instances. Manager of finance department and President are the examples of

deterministic role.

 In KWM, relationship frame is an abstraction of the structural and behavioral

relatedness between two entity frames. The relationships without own properties are

represented using slot values of entity frames. On the other hand, the relationships with

own properties are represented as frames. Using the entity frames and relationship

frames, organizational model including organizational chart and resources are

represented.

3.5 Rule Frames

 Rule frames represent knowledge on the dynamic behavior of workflow engine such

as task scheduling, assignment of tasks to actors, and exception handling. Each rule

frame contains multiple slots to represent attribute values for rule management purpose

as well as condition and action parts of a rule.

 Figure 3.3 shows the specification structure of rule frames. Every rule frame is a sub

class of the Rule frame with three slots; PROCESS, DESCRIPTION, and CONDITION.

36

 [Figure 3.3] The specification structure of rule frames

The PROCESS slot represents the process to which the rule is applied, and the

DESCRIPTION slot represents verbal meaning of the rule. In the CONDITION slot,

one or more condition predicates can be specified, and multiple condition predicates are

connected with conjunctive relationship, that is, all the conditions should be satisfied to

fire a rule.

3.5.1 Procedural-Rule frames.

 The Procedural-Rule frames represent procedural view of a workflow. They define

conditional sequences between tasks and also establish a communication network

among actors in charge of tasks. In Figure 2, a Procedural-Rule frame illustrates that if

the state of the task in the PRE_TASK slot is the value specified in the

PRE_TASK_STATE slot, and all the conditions in the CONDITION slot are satisfied,

FRAME : Rule

PROCESS : Process;
DESCRIPTION : STRING;

CONDITION : set of
 CONDITION-PREDICATE

FRAME : Procedural_Rule

PRE_TASK : Task;
PRE_TASK_STATE : STRING;
NEXT_TASK : Task;

IS_A : KWM_Object; IS_A : Rule;

FRAME : Responsibility_Rule

ROLE : Role;
ACTOR : Actor;

IS_A : Rule;

FRAME : Metarule

SOURCE_RULE : set of Rule;
TARGET_RULE : set of Rule;

IS_A : Rule;

37

[Figure 3.4] An example of procedural_rule frame.

then the task that is specified in the NEXT_TASK slot is followed.

3.5.2 Responsibility-Rule frames.

 In WFMS, the organizational view of a workflow is represented in role concept.

Tasks are specified to be performed by roles to increase the flexibility of WFMS. The

effective role modeling protects workflow model from the frequent organizational

changes including the changes on the department hierarchy, employment or retirement

of employees, and changes on the job position in an organization.

 The role concept is implemented with the Responsibility-Rule frames in KWM. The

Responsibility-Rule frame guides workflow engine to find actors who are in charge of a

role. In a Responsibility-Rule frame, the ACTOR slot contains a frame and a slot from

which the actor’s identifiers can be extracted. The CONDITION slot contains

constraints that instances of the frame specified in the ACTOR slot should satisfy.

 The Responsibility-Rule frame for a deterministic role is defined uniquely for all

A

B

C

FRAME : pr1

PRE_TASK : A
PRE_TASK_STATE : “Completed”
NEXT_TASK : B

IS_INSTANCE_OF : Procedural-Rule;
pr1

pr2

CONDITION : (CP1)

38

workflows. The responsibility rule for finding an actor who is in charge of manager of

finance department can be uniquely defined to find anyone who works for finance

department with a managerial position. On the other hand, the Responsibility-Rule

frames for a non-deterministic role can be contingently defined for each workflow. In a

trip request processing workflow, the actor who is in charge of the role ‘supervisor’ can

be determined by who the trip applicant is.

3.5.3 Metarule frames.

 Metarule frames are needed to handle exceptional rules. Exceptional rules are

defined as the rules that are applied to special workflow instances. It is often prescribed

how to handle special workflow instances in an agile organization. Exceptional rules are

defined to handle special instances such as a business process for a special task force,

temporary appointment to reduce overload of a special position, and emergency

measure to process special customer needs, etc.

 Conceptually, a special workflow instance can be handled by substituting rules for

the workflow instance. The specification structure of a metarule in Figure 2 represents

that the set of rules specified in the SOURCE_RULE slot is substituted by the set of

rules specified in the TARGET_RULE slot if the conditions specified in the

CONDITION slot are satisfied for a workflow instance.

 In Figure 3.5, frames mr1, mr2, and mr3 represent metarules that handle exceptions

for procedural rules. The metarule frame mr1 handles an exception that skips a task for

a special workflow instance. The metarule frame mr2 is defined to change the order

between two tasks. Lastly, the metarule frame mr3 is to resolve conflicts. It fires only

procedural-rule frame pr1 when conditions of two procedural-rule frames (pr1 and pr2)

39

[Figure 3.5] Metarule frames for procedural-rule frames.

A B C

pr3

FRAME mr2

 IS_A : Meta_Rule;

 SOURCE_RULE: pr1, pr2, pr3;

 TARGET_RULE: pr4 pr5 pr6;

 CONDITION : ((CP21)…(CP2n));

END FRAME

B C Dpr1
pr2 pr3

a) Skip task B

b) Change the order between two tasks B and C

A

FRAME mr3

 IS_A : Meta_Rule;

 SOURCE_RULE: pr1, pr2;

 TARGET_RULE : pr1;

 CONDITION :

 (pr1 (CONDITION TRUE))

 (pr2 (CONDITION TRUE));

END_FRAME

A

B

C

pr1

pr2

pr3

c) Resolving conflicting rules

pr4

pr5

pr6

Legend : Exceptional Route

Normal Route

FRAME mr1

 IS_A : Meta_Rule;

 SOURCE_RULE: pr1, pr2;

 TARGET_RULE : pr3;

 CONDITION : ((CP11)…(CP1n));

END_FRAME

pr1 pr2

40

are satisfied concurrently.

 The metarule frames for responsibility rules are useful for a situation when actor of

a task is restricted to someone who has special skills or position for a specific workflow

instance. There are two types of metarule frames for responsibility-rule frames. The first

type represents the substitution relationship between responsibility-rule frames for non-

deterministic role and deterministic role. The situation can arise when the mapping rule

for a non-deterministic role (for instance, supervisor) should be ignored and other rule

that finds actor of a deterministic role (for instance, the President) should be applied.

The second type of metarule frames represents the substitution relationship between

responsibility-rule frames for a non-deterministic role.

 Logically, the exceptional rules can be handled using procedural-rule or

responsibility-rule frames by adding additional conditions that distinguish the special

workflow instances. The exceptional rules are, however, apt to change compared with

normal rules. Separating exceptional rules from normal rules allows the easy

management of rules.

3.5.4 Logic-based representation of procedural-rule frames

 The procedural-rule frames are equivalent to well-formed formulas (wffs) of the

first order predicate calculus for abstract representation. Every rule in a procedural-rule

set Rp can be represented as the following wff;

 TASK-STATE(x, COMPLETED) ∧ CP1 ∧ … ∧ CPn

 ⇒ TASK-STATE(y,INITIATED)

 The left-hand side (LHS) of the rule contains two kinds of predicates. The TASK-

STATE predicate contains two terms representing a task and a state of the task,

41

respectively. The two terms are taken from the PRE-TASK slot and the PRE-TASK-

STATE slot of a procedural-rule frame. The predicate CPi represents a condition

predicate specified in the CONDITION slot. The right-hand side of the rule represents

the successor of the task in LHS.

3.6 Routing Constructs

 One of the main issues for workflow management is the routing of tasks to be

(a)

(b)

(c) C1

 C2

(d) C1

 C2

[Figure 3.6] Four routing constructs: (a) sequential routing; (b) parallel routing;

 (c) conditional routing; (d) iterative routing.

X Y Z

W

X1 X2

Y1 Y2

Z

W

X1 X2

Y1 Y2

Z

X Y Z

42

executed. The workflow management coalition (WfMC) identified four routing

constructs (WfMC, 1996). In KWM, the four routing constructs in Figure 3.6 are

represented using procedural rules as follows;

! Sequential routing

 Rule 1 : TS(X, C) ⇒ TS(Y, I)

! Parallel routing

 Rule 2A : TS(W, C) ⇒ TS(X, I) Rule 2B : TS(W, C) ⇒ TS(Y, I)

 Rule 3A : TS(X, C) ⇒ TS(Z, I) Rule 3B : TS(Y, C) ⇒ TS(Z, I)

! Conditional routing

 Rule 4A : TS(W, C) ∧ COND1 ⇒ TS(X, I) Rule 4B : TS(W, C) ∧ ¬COND1

⇒ TS(Y, I)

 Rule 5A : TS(X, C) ⇒ TS(Z, I) Rule 5B : TS(Y, C) ⇒ TS(Z, I)

! Iterative routing

 Rule 6A : TS(X, C) ∧ COND2 ⇒ TS(Y, I) Rule 6B : TS(X, C) ∧ ¬COND2

⇒ TS(X, I)

 The predicate “TS” is used for “TASK-STATE” and constant terms “C” and “I” are

also used for “COMPLETED” and “INITIATED”, respectively.

 Tasks are executed sequentially if the execution of one task is followed by the next

task (Rule 1). The parallel routing implies that X and Y can be executed at the same

time or in any order if W is completed (Rule 2A and Rule 2B), and Z can be completed

when X and Y have been completed (Rule 3A and Rule 3B). On the other hand,

conditional routing expresses that X or Y can be executed after W is completed

according to the conditions (Rule 4A and Rule 4B). Z is executed after either X or Y is

43

completed (Rule 5A and Rule 5B). Lastly, the iterative routing means that one or more

tasks should be repeated until certain condition is satisfied (Rule 6A and Rule 6B).

3.7 An illustrative example

 The KWM is applied to the business trip approval process at a university (KAIST:

Korea Advanced Institute of Science and Technology) in Korea which has implemented

BPR. The overall flow of the “AS_IS” business trip approval process is depicted in

Figure 3.7, where each rectangle represents a task and a directed arc represents

transition of a workflow instance. In a rectangle, task name and the role that is in charge

of the task are specified. Each arc is attached with corresponding procedural rule, and

tasks are attached with responsibility rules. The goal of the process is to deal with

business trip requests and grants travel allowance according to the organizational rules.

The trip applicants can be all members of the university, professors, students, employees,

or researchers who work for affiliated research institutes.

3.7.1 Procedural-Rule frames

 A workflow instance is initiated when a trip applicant submits electronically a

filled-in trip request form for approval. For the case when a secretary fills in the form

and submit on behalf of the applicant, all the trip applicants should confirm first (rp1). If

the applicant is an employee or a professor assigned to an administrative position,

he/she must notify the trip to his/her mandatary to assure the continuity of his/her duties

(rp2).

44

Create Trip Request Form
(Form Creator)

Confirm Task Delegation
(Task Mandatary)

Approve Traveling Allowance
(Account Manager)

Approve Subordinator’s Trip
(Supervisor)

Check Trip Request Form
(Department Officer)

Inspect Trip Purpose
(Auditor)

Grant Traveling Allowance
(Account Controller)

Update Traveler Ledger
(Dept. of Personnel)

Confirm Travel
(Trip Applicant)

Initiate

Terminate

rp3 rp2

rp5

rp6

rp8rp9

rr6-1, rr6-2, rr-s1

rr8-1, rr8-2, rr8-3

rp1

rp4

rp7

rp10

rp11

rr1

rr2

rr3rr4

rr5

rr7

rr9

rp12

rp0

45

[Figure 3.7] Business trip approval process at KAIST (AS-IS)

The trip request form is routed to an account manager for approval (rp3). After the

approval of fund, the request form is routed to a department officer if the trip applicant

is a student (rp5). Otherwise, the form is routed directly to the applicant’s supervisor

(rp6). After the supervisor’s approval, the form can be routed in different route

according to the duration of the trip. If the trip duration exceeds 7 days, the auditor

inspects the purpose of the trip (rp8) who can approve or reject the trip request. When

the request is approved, the request form is routed to account controller who grants the

traveling allowance to the trip applicant’s account. Then the applicant’s trip is notified

to the department of personnel, and the workflow is finished.

 Figure 3.8 shows the specification of procedural-rule frames for the example. The

procedural-rule frame rp10 has null value for the CONDITION slot. If the task “Inspect

Trip Purpose” is completed and the state of the task is ‘Approved’, the workflow

instance is directly routed to the task “Grant Traveling Allowance”. On the other hand,

rp8 conditionally routes workflow instance from the task “Approve Subordinator’s

Trip” to “Inspect Trip Purpose”. If trip duration that is specified in the ‘duration’ slot of

the “Trip Request Form” frame exceeds 6 days, the rule frame is fired.

46

FRAME : rp8

 IS_INSTANCE_OF(procedural_rule)
 PROCESS : “Business_Trip_Approval”;

 DESCRIPTION : “If a supervisor approve subordinator’s trip request and

 the trip duration exceeds 6 days, the inspector should

 inspect the trip request”;

 PRE_TASK : Approve_Subordinator’s_Trip

 PRE_TASK_STATE : “Approved”

 NEXT_TASK : Inspect_Trip_Purpose

 CONDITION : (Trip_Request_Form (duration ?dur))

 (test (>= ?dur 7))

FRAME : rp10

 IS_INSTANCE_OF(procedural_rule)
 PROCESS : “Business_Trip_Approval”;

 DESCRIPTION : “If a supervisor approve subordinator’s trip request and

 the trip duration exceeds 6 days, the inspector should

 inspect the trip request”;

 PRE_TASK : Inspect_Trip_Purpose

 PRE_TASK_STATE : “Approved”

 NEXT_TASK : Grant_Traveling_Allowance

 CONDITION : NULL

[Figure 3.8] Specification examples of procedural-rule frames

47

3.7.2 Responsibility-rule frames

 In general, the supervisor of a trip applicant is the manager of the department where

the trip applicant belongs (rr6-1). If a trip applicant is a manager of a department,

however, his/her supervisor is the manager of the trip applicant’s next super department

(rr6-2).

 On the other hand, the account controller of a trip account is determined according

to the type of trip applicant. If the trip applicant is a student or professor without any

administrative position, the account controller is the one who works for the academic &

student services department (rr8-1). Otherwise, the account controller is determined

according to the type of the account from which the traveling allowance is granted. If

the traveling allowance is granted from the research project account, the account

controller is the one who works for the research management department (rr8-2). In

other cases, the account controller is the one who works for the finance department (rr8-

3).

 In Figure 3.9 – 3.10, the rule frames are used to determine actors for the non-

deterministic role ‘Supervisor’ and ‘Account_Controller’. The predicates in the

CONDITION slot of the rule frames represent entity frames, and the occurrence of the

same variable (represented by attaching ‘?’) in different frames means that the slot

values for the variables should be identical.

48

FRAME : rr6-1

 IS_INSTANCE_OF(responsibility_rule)

 PROCESS : “Business_Trip_Approval”;

 DESCRIPTION : “Traveler’s supervisor is one who works for the

 Department with manager position which the traveler belongs”;

 ROLE : Supervisor

 ACTOR : WorkFor.actor_id

 CONDITION : (Traveler (Department ?dept-id))

 (Department (dept_id ?dept-id) (mnger_pos ?m-pos))

 (WorkFor (dept_id ?dept-id)(actor_id ?supervisor_id)(position ?m-pos))

FRAME : rr6-2

 IS_INSTANCE_OF(responsibility_rule)

 PROCESS : “Business_Trip_Approval”;

 DESCRIPTION : “The supervisor of a department manager is the manager

 Of super-department of the department he belongs.”

 ROLE : Supervisor

 ACTOR : WorkFor.actor_id

 CONDITION : (Traveler (Department ?dept-id))

 (Department (dept_id ?dept-id) (super-dept ?s-dept))

 (Department (dept_id ?s-dept) (mnger_pos ?m-pos))

 (WorkFor (dept_id ?s-dept)(actor_id ?supervisor_id)(position ?m-pos))

[Figure 3.9] A specification example of responsibility_rule frame for “supervisor”

49

FRAME : rr8-1
 IS_INSTANCE_OF(responsibility_rule)
 PROCESS : “Business_Trip_Approval”;
 DESCRIPTION : “If a traveler is a student or professor without assigned
 Position, the account controller of Academic & Student
 Service department grants the traveling allowance”
 ROLE : Account_Controller
 ACTOR : Task_Charge.actor
 CONDITION : (Traveler (T_Id ?t-id) (T_Department ?dept))
 (or (Student (S_Id ?t-id))(Professor (P_Id ?t-id) (Position NIL)))
 (Task_Charge (Task ‘Grant_Traveling_Allowance’)
 (Department ‘Academic_&_Student_Service’) (Actor ?a-id))

FRAME : rr8-2
 IS_INSTANCE_OF(responsibility_rule)
 PROCESS : “Business_Trip_Approval”;
 DESCRIPTION : “If a traveler is not a student or professor with assigned
 Position and the account type is ‘project’, the account controller of
 Research Management department grants the traveling allowance”
 ROLE : Account_Controller
 ACTOR : Task_Charge.actor
 CONDITION : (Traveler (T_Id ?t-id) (T_Department ?dept))
 (Trip_Request_Form (Account ?acc))
 (not (Professor (P_Id ?t-id) (Position NIL)))
 (not (Student (S_Id ?t-id)))
 (Account (Account_Id ?acc) (Type ‘project’))
 (Task_Charge (Task ‘Grant_Traveling_Allowance’)
 (Department ‘research_management’) (Actor ?a-id))

[Figure 3.10] A specification examples of responsibility_rule frame for “Account
 Controller” (Continue)

50

FRAME : rr8-3

 IS_INSTANCE_OF(responsibility_rule)

 PROCESS : “Business_Trip_Approval”;

 DESCRIPTION : “If a traveler is not a student or professor with assigned

 Position and the account type is ‘general’, the account controller of

 Research Management department grants the traveling allowance”

 ROLE : Account_Controller

 ACTOR : Task_Charge.actor

 CONDITION : (Traveler (T_Id ?t-id) (T_Department ?dept))

 (Trip_Request_Form (Account ?acc))

 (not (Professor (P_Id ?t-id) (Position NIL)))

 (not (Student (S_Id ?t-id)))

 (Account (Account_Id ?acc) (Type ‘general’))

 (Task_Charge (Task ‘Grant_Traveling_Allowance’)

 (Department ‘finance’) (Actor ?a-id))

[Figure 3.10] Specification examples of responsibility-rule frames for “Account

 Controller”

51

3.7.3 Metarule frames

 Two exceptional rules exist in the example workflow. At first, if a trip applicant is a

director of an affiliated research institute, the vice President of KAIST becomes the

applicant’s supervisor although the formal supervisor of the research institute is the

President (rm2). This exceptional rule existed temporarily to reduce the workload of the

President. Secondly, if trip applicant is an employee who is delegated to another

department, then the sequence between tasks “Approve Traveling Allowance” and

“Approve Subordinator’s Trip” is reversed (rm3). In Figure 3.11, metarule frame rm1

substitutes the responsibility-rule frame rr6-1 with rr6-2 for the trip of a manager of a

department. On the other hand, metarule frame rm2 handles an exceptional situation for

the trip of a director of an affiliated research institute. The responsibility-rule frame rr-

s1 represents mapping relationship between an actor and the deterministic role

‘Vice_President’.

52

FRAME : rm1

 IS_INSTANCE_OF(metarule)

 PROCESS : “Business_Trip_Approval”;

 DESCRIPTION : “If a traveler is manager of a department, the manager of

 Superdepartment of the department becomes his supervisor”

 SOURCE_RULE : rr6-1

 TARGET_RULE : rr-s1

 CONDITION : (Traveler (T_Id ?t-id) (T_Department ?dept))

 (Department (dept_id ?dept) (mnger_pos ?m-pos))

 (WorkFor (dept_id ?dept)(actor_id ?t-id) (position ?m-pos))

FRAME : rm2

 IS_INSTANCE_OF(metarule)

 PROCESS : “Business_Trip_Approval”;

 DESCRIPTION : “If a traveler is a director of an affiliated reseach

 institute, the supervisor is the vice President although his

 formal supervisor is the President.”

 SOURCE_RULE : rr6-1

 TARGET_RULE : rr6-2

 CONDITION : (Traveler (T_Id ?t-id))

 (WorkFor (actor_id ?t-id)

 (position ‘director-of-affiliated-research-institute’))

[Figure 3.11] Specification examples of metarule frames.

53

3.8 Formal Definition of KWM

 In this section, a set-theoretic formalism of KWM is presented. Formal definition is

required for several reasons; self-complacency, communication support, extension and

modification of the framework, and formal comparisons with other models. It can be

also used as formal foundations to develop the computerized modeling environments

based on KWM, because different development tools and underlying platforms can be

applied toward more integrated and intelligent modeling environment.

 Set theory provides the means to construct formalisms which specify objects

[Ziegler 84]. Since this approach is mathematically sound and provides primitive

constructs, it has been frequently adopted, e.g. [Kim 94], and [Kang 95].

Each class of frames is represented by a formalism which prescribes its parameters and

any governing constraints. Thus, formal model definitions prescribe a list of parameters

which are set-theoretic constructs, and list of constraints.

A KWM w is defined as follows;

DEFINITION 3.1 (WORKLFOW MODEL)

A KWM defines a workflow with a 3-tuple, w = (E, Rl, Ru), where w ∈ W, E is a set of

entity frames and Rl is a set of relationship frames and Ru is a set of rule frames. A

frame f in E, Rl, or Ru is defined as a product of slot and value pairs, that is,

 f = (s1, v1)× (s 2, v2)×……× (s n-1, vn-1)× (sn, vn).

 If two frames are the instances of the same class, these two frames have the same

slots. Also, a slot of a frame can be a relationship of the frame, and the value of the slot

54

can be another frame with which the frame has a relationship.

DEFINITION 3.2 (ENTITY FRAME)

An entity frame in E belongs to one category among five kinds of objects; tasks,

resources, organizational units, roles, and actors. That is, E = T ∪ Re ∪ U ∪ Ro ∪ A

where T is a set of tasks, Re is a set of resources, U is a set of organizational units, Ro is

a set of roles, and A is a set of actors.

DEFINITION 3.3 (RELATIONSHIP FRAME)

A relationship frame is 3-tuple, rl = (so, si, P), where rl ∈ Rl, so is a source slot that

contains source entity for the relationship, si is a sink slot that contains sink entity for

the relationship, and P is a set of property slots of the relationship.

 The definitions 3.4 and 3.5 are the formal definitions related with system-defined

relationships, IS_A and Is_Part_Of.

DEFINITION 3.4 (IS_A RELATIONSHIP)

A relation IS_A is a binary relation on E and R, that is IS_A ⊆ E × E ∪ R × R, that

defines a patial order on the sets, E and R. For a pair (x,y) ∈ IS_A, denoted by IS_A(x,

y), it is said that x is a subobject of y or y is a superobject of x. Sup is a function from E

∪ R to ℘ (E) ∪ ℘ (R) such that Sup(x) = {y| (x,y) ∈ IS_A} where ℘ (E) and ℘ (R) are

the power sets of E and R, respectively. Sup(x) is called the set of parent objects of x.

Sub is a function from E ∪ R to ℘ (E) ∪ ℘ (R) such that Sub(x) = {y | (y, x) ∈ IS_A}.

Sub(x) is called the set of child objects of x.

55

DEFINITION 3.5 (IS_PART_OF RELATIONSHIP)

An IS_PART_OF relation is a binary relation on E. For a pair (x, y) ∈ IS_PART_OF,

denoted by IS_PART_OF(x, y), it is said that x is an aggregation object of y. Agg is a

function from O to ℘ (O) such that Agg(y) = {x | (x, y) ∈ IS_PART_OF}. Agg(y) is

called the set of aggregated object of y.

 The definitions from 3.6 to 3.9 are formal definitions on the rule frames of KWM.

DEFINITION 3.6 (RULE FRAME)

A rule frame in Ru belongs to one category among three kinds of rules; procedural rules,

responsibility rules, and metarules. That is, Ru = Rp ∪ Rr ∪ Rm where Rp is a set of

procedural rule, Rr is a set of responsibility rule, and Rm is a set of metarule. The set

Rp is a set of rules that conditionally connect tasks with the tasks followed. The set Rr

is a set of rules that conditionally relate roles with actors. The set Rm is a set of rules

that conditionally relate two or more procedural rules or responsibility rules.

DEFINITION 3.7 (PROCEDURAL_RULE FRAME)

A procedural_rule frame is 6-tuple, pr = (p, d, pT, pTS, nT, c) where pr ∈ Rp, p is a

source slot that contains target process, d is a description slot on the rule frame, pT is a

source task slot, pTS is a state slot of the source task, nT is a sink task slot, and c is a

condition slot.

DEFINITION 3.8 (RESPONSIBILITY_RULE FRAME)

56

A responsibility_rule frame is 5-tuple, rr = (p, d, ro, a, c) where rr ∈ Rr, p is a source

slot that contains target process, d is a description of the rule frame, ro is a slot that

contains a role frame, a is a slot that contains an actor frame, and c is a condition slot.

DEFINITION 3.9 (METARULE FRAME)

A metarule frame is a 5-tuple, rm = (p, d, Sr, Tr, c) where rm ∈ Rm, p is a source slot

that contains target process, d is a description of the rule frame, Sr is a set of source rule

frames, Tr is a set of target rule frame, and c is a condition slot.

 The definition from 3.10 to 3.16 are concerned with condition slot of rule frames.

DEFINITION 3.10 (VALUE OF A CONDITION SLOT)

The value of a condition slot is a formula which returns TRUE or FALSE, and consists

of series of conditional elements that have conjunctive relationship each other, i.e.,

cv = ce1 ∧ ce2 ∧ … ∧ cen where cei is ith conditional element.

 In the definition 3.10, the CONDITION slot of a rule frame takes a formula that

consists of conditional elements that are connected conjunctively. If the formula returns

TRUE, the rule frame can be fired (i.e., a work item can be routed to followed tasks, a

task can be assigned to actors, and exceptional rules are applied to the workflow

instance).

DEFINITION 3.11 (CONDITIONAL PREDICATE)

A conditional predicate is expressed as one or two conjunctive predicate elements. Each

57

predicate element can be one of the variable declaration, existential element,

comparative element, functional element, i.e.,

cp = pe1 ∧ pe2 ∧ … ∧ pem where pej is jth predicate element and

 pej = pce ∨ test-ce ∨ not-ce ∨ or-ce ∨ and-ce

 where vd is variable declaration,

 ee is existential element,

 ce is comparative element, and

 fe is functional element.

 The conditional predicate is again composed of one or two conditional element. The

conditional element can be classified as four types. Variable binding binds a variable

with an attribute value of an object. The following conditional element declares a

variable (?sno) which takes a value of the student_no attribute of an entity frame

“Student”.

 CP1: (Student (student_no ?sno))

 Existential elements check whether there exists any frame instance that has certain

values. The values can be a constant or a variable a value is bound to at the predefined

conditional element. The following conditional predicates are legal expression.

 CP2: (Book (title “Excellence in Practice”) (publisher “Future Strategies Inc.”))

 CP3: (Book (title ?title) (publisher ?pub))

 (CSBook (title ?title) (publisher ?pub))

 Comparative elements compare two or more values according to the operator of the

element. The reserved words “test” indicates that the conditional element is a

comparative element.

 CP4: (Student (student_no ?sno))

58

 (test (>= ?sno 950000))

 CP5: (Student (student_no ?sno))

 (test (= ?sno ?pno))

 A functional element is an element that contains a function call. A function returns a

value or a list of values after processing on the input arguments. The number of input

arguments can be multiple.

 CP6: (test (= (sum 5 6) 11))

DEFINITION 3.12 (EQUALITY OF EXISTENTIAL ELEMENT)

Two existential elements ee1 and ee2 are equal if and only if the followings are satisfied;

 i) ee1.frame = ee2.frame,

 ii) ee1.slot = ee2.slot, and

 iii) ee1.value = ee2.value

DEFINITION 3.13 (EQUALITY OF COMPARATIVE ELEMENT)

Two comparative elements ce1 and ce2 are equal if and only if the followings are

satisfied;

 i) ce1.operator = ce2.operator,

 ii) if (ce1.argument = variable) ∧ (ce2.argument = variable)

 get_frame_slot(ce1.argument) = get_frame_slot(ce2.argument)

where get_frame_slot() is a function that returns frame and slot names a variable

is bound to.

 else ce1.argument = ce2.argument

 iii) ce1.value = ce2.value

59

DEFINITION 3.14 (EQUALITY OF FUNCTIONAL ELEMENT)

Two functional elements fe1 and fe2 are equal if and only if the followings are satisfied;

 i) fe1.function = fe2.function,

 ii) for each argument arg of fe1

 if (fe1.argi = variable) ∧ (fe2.argi = variable)

 get_frame_slot(fe1.argi) = get_frame_slot(fe2.argi) where argi is ith

argument of the function

 else fe1.argi = ce2.argument

DEFINITION 3.15 (EQUALITY OF CONDITIONAL PREDICATE)

Two conditional predicates cp1 and cp2 are equal if and only if their predicate elements

are the same.

DEFINITION 3.16 (EQUALITY OF CONDITION SLOT)

Two condition slots c1 and c2 are equal if and only if their conditional predicates are the

same.

DEFINITION 17 (DIFFERENCE BETWEEN CONDITION SLOTS)

A function DiffCond(c1, c2) returns conditional predicates in c1 excepting that are

contained also in c2

DEFINITION 18 (INTERSECTION BETWEEN CONDITION SLOTS)

A function IntersCond(c1, c2) returns the conditional predicates in c1 that are contained

also in c2

60

Chapter 4. Verification of KWM

4.1 Properties for Sound KWM

 The purpose of workflow model verification is to determine whether the model

represents target workflow correctly. There exist some verification techniques for

workflow based on Petri-net (Hofstede et al., 1998; Adam et al.,1998; Van der Aalst,

1998). The techniques are limited to the verification of routes such as checking

termination of workflow or occurrence of dangling tasks. The rule-based approach of

KWM allows verification of correct specifications of rules as well as routes of

workflow model. To ensure a KWM represents a workflow correctly, it should satisfy a

specific property, soundness. To define soundness of KWM, some properties are defined.

DEFINITION 4.1 (CIRCULARITY) A KWM w has a circularity iff any of the following

conditions is satisfied;

 for each pr ∈ Rp,

i) ∃∃∃∃ pr such that (pr.NEXT_TASK = t) ∧∧∧∧ (t ∈ Tp) ∧∧∧∧ (pr.CONDITION = Ø)

 where Tp is a set of predecessors of t.

 ii) ∃∃∃∃ pr such that (pr.NEXT_TASK = t) ∧∧∧∧ (t ∈ Tp) ∧∧∧∧ (pr.CONDITION ≠ Ø) ∧∧∧∧

 (dom(pr.CONDITION) ∧ dom(pr.CONDITION) ≠ Ø)

 Occurrence of circularity in a KWM means that workflow instance enters into a

loop which prevents termination of the workflow instance. The situation can be

happened under two situations. In Figure 4.1, procedural_rule frame prn2 routes work

61

 …

(prn2.CONDITION = ∅) ∨ (dom(prn1.CONDITION) ∧ dom(prn2.CONDITION) ≠ ∅)

[Figure 4.1] Occurrence of circularity

items to a predecessor of the task Y. If the CONDITION slot of the prn2 has null value,

work items are always returned to the predecessor of Y which results in a loop. In the

case that the CONDITION slot of the prn2 has non-null value, the domain of the

CONDITION slot of the prn2 should not be duplicated with that of prn1. If it is duplicated

with that of prn1, there happens a loop for the workflow instance which has the

duplicated value.

DEFINITION 4.2 (MISSING RULE) A KWM w has a missing rule iff any of the

followings is not satisfied;

 i) ∃ pr1 such that (pr1∈ Rp) ∧∧∧∧ (pr1.PRE_TASK = INITIATE)

 ii) ∃ pr2 such that (pr2∈ Rp) ∧∧∧∧ (pr2.NEXT_TASK = TERMINATE)

 iii) for each t ∈ IMT where IMT = T - {INITIATE, TERMINATE}

 ∃ pr1, pr2 such that

 (pr1, pr2 ∈ Rp) ∧∧∧∧ (pr1.PRE_TASK = t) ∧∧∧∧ (pr2.NEXT_TASK = t)

 The occurrence of missing rule in a KWM means that some procedural_rule frames

are not defined which results in disconnection of a workflow. In Figure 4.2, a

A X Y Z
prn1

prn2

prn-1

62

 … …

[Figure 4.2] Occurrence of missing rule

procedural_rule frame that connects task M or its predecessor with task X or its

successors should be defined.

DEFINITION 4.3 (MISSING VALUE) A set of rule frames Rp(t) which connect from task

t to its successors has missing value for constraining o ∈ O(t) where O(t) is a set of

objects that are constrained by Rp(t) if and only if,

 for each o ∈ O(t),

 ∨ for all pr∈ Rp(t) pr.CONDITION|o != dom(o)

 where pr.CONDITION|o is a projected condition of pr.CONDITION, which is

restricted as a condition of object o.

 The occurrence of missing value can be happened in the course of defining

conditional routing constructs. In Figure 4.3, procedural_rule frame prn1 and prn2 have an

exclusive relationship that one of them can be fired after completion of task A. The rule

frames route work item according to the value of a variable x which represents state of

object attribute. As the two rule frames do not consider the case variable x binds

$50,000, the two rule frames have missing value.

I A M X Z T

63

[Figure 4.3] Occurrence of missing value

 From the above three properties, we can define the first property of soundness of

KWM.

DEFINITION 4.4 (TERMINALITY) A KWM w can be terminated if and only if circularity,

missing-rule, and missing-value are not occurred in the set of rule frames.

 The definition 4.5 defines the second property to be a sound KWM.

DEFINITION 4.5 (COMPLETENESS) A KWM w is complete iff termination of a

workflow instance means all the task instances that compose the workflow instance are

completed. i.e., the following condition should be satisfied

 for each t ∈ MT where MT = T - terminate

 ∃ pr such that (pr ∈ Rp) ∧ (pr.PRE_TASK = t)

 The completeness of KWM can be assured if there is no dangling task which has no

predecessor or successor. The occurrence of dangling task can generate the situation that

a workflow instance can be terminated even though some tasks are not completed. In

A

B

C

prn1

prn2

prn1.CONDITION : x < $50,000

prn2.CONDITION : x > $50,000

64

 … …

[Figure 4.4] Occurrence of dangling task

Figure 4.4, task Y does not has successors, which could be uncompleted even though

the workflow instance has been terminated.

DEFINITION 4.6 (COMPACTNESS) A KWM w is compact iff any of the rule frame is not

subsumed or duplicated with other rule frame, i.e., the following conditions should be

satisfied

 i) for each pr1 such that pr1 ∈ Rp

 !∃ pr2 such that (pr2 ∈ Ru) ∧∧∧∧ (pr1.NEXT_TASK = pr2.NEXT_TASK) ∧∧∧∧

 (pr1.PRE_TASK = pr2.PRE_TASK) ∧∧∧∧

 (IntersCond(pr1.CONDITION, pr2.CONDITION) = pr1.CONDITION)

 ii) for each rr1 such that rr1 ∈ Rr

 !∃ rr2 such that (rr2 ∈ Rr) ∧∧∧∧ (rr1.ROLE = rr2.ROLE) ∧∧∧∧

 (IntersCond(rr1.CONDITION, rr2.CONDITION) = rr1.CONDITION)

 The compactness property can be violated if there are redundant rules. The

occurrence of redundancy means that some rules or literals in a rule can be removed

without affecting the soundness of a KWM. A rule is redundant if it is subsumed or

I A M X Z T

Y

65

duplicated with other rules. A subsumed rule is that the antecedents of the rule consist

of a subset of the antecedents of other rule that has the same consequents with the

subsumed rule. If two rules have the same antecedents and consequents, the rules are

duplicated. The redundancy between rule frames can be happened in both of procedural

rule set and responsibility rule set.

DEFINITION 4.7 (CONSISTENCY) A KWM w is consistent iff unintended consequents

are not produced from Ru, i.e.,

 for each pr1 such that pr1 ∈ Rp

 !∃ pr2 such that pr2 ∈ Rp ∧∧∧∧ IntersCond(pr1.CONDITION, pr2.CONDITION) ≠ ∅

[Figure 4.5] Occurrence of conflicting rules

 Finally, we define soundness of KWM as follows;

DEFINITION 4.7 (SOUNDNESS OF KWM) A KWM, w={E, Rl, Ru}, is sound if and only

if it satisfies the following properties:

(i) Terminality : The set Ru assures termination of all instances of a workflow.

A

B

C

prn1

prn2

prn1.CONDITION : x < $50,000

prn2.CONDITION : x > $40,000

66

(ii) Task Completeness : The set Ru assures not occurring dangling tasks.

(iii) Compactness (Rule Minimality) : The set Ru assures not occurring redundant rules.

(iv) Routing Consistency : There are no conflicting rules in the set Ru.

(v) Referential Integrity : There does not exist illegal reference in W.

 The first four properties guarantee the soundness apart from certain anomalies in the

set of rule frames. The meaning of referential integrity is twofold. First, it restricts the

participants to relationships in KWM to be valid entities. That is, if an entity instance

that participates in a relationship is removed, the relationship instance should also be

removed. Secondly, the referential integrity prevents illegal constraints which constrain

the state of non-existent entities or relationships. The rule frames constrain their

activation time using the state of entities or relationships in the CONDITION slot. If the

condition is defined on the state of non-existing objects, the referential integrity is

violated.

67

 4.2 KWM Verification Algorithm

 Table 1 summarizes the anomalies that violate the soundness of KWM. The

verification of the first four properties can be performed by detecting the anomalies in

the set of rules defined in a KWM, which cause violation of the properties. Generally,

the development of techniques for detecting anomalies in knowledge-base is difficult as

the determination of rules to be checked for an anomaly can not be previously defined.

The rule frames in KWM can be categorized according to target frame to which the

rules are related. For example, checking conflicting rules for routing consistency can be

performed to only a set of rules that connect a task with its successor.

ALGORITHM 4-1 (CHECKING CIRCULARITY)
Given a set of procedural_rule frames Rp,
1. set T1 = T2 = {initiate}, T3 = ∅ ,
2. while (T1 != T)

set T1 = T1 ∪ T2

for each tp ∈ T2,
 set T3 = { tS |∃ pr ∈ Rp such that pr.PRE_TASK = tp ∧ pr.NEXT_TASK = tS }
 for each tS ∈ T3 ,

 if (tS ∈ T1) ∧ (pr.CONDITION = NULL)
 print “There is a cycle which is started from ts to tp ”.
 else if tS ∈ T1 ∧ pr.CONDITION ≠ NULL

 execute algorithm 4.6
 if (algorithm4.6 returns conflicting rule)

 print “There is a cycle which is started from ts to tp ”.
 else add task tn to T1.

 set TS = TS ∪ T3

 end

68

Table 4-1. Anomalies that violate soundness of KWM.
Property Rule Set Explanation

Circularit
y

Rp1 = {TS(Initiate, C) ⇒ TS(X,I),
TS(X, C)⇒ TS(Y, I), TS(Y, C)⇒ TS(X, I),
TS(Y, C) ⇒ TS(Terminate, I),
∀ (u) [TS(u, I) ⇒ TS(u, C)]}

The set Rp1 has circularity so
that a workflow instance
enters a loop between task X
and Y.

Missing
Rule

Rp2 = { TS(Initiate, C) ⇒ TS(X, I),
TS(Y, C) ⇒ TS(Z, I),
TS(Z, C) ⇒ TS(Terminate, I),
∀ (u) [TS(u, I) ⇒ (TS(u, C)]}

The sub set Rp2 is missing a
rule that connects task X and
task Y. In the case, the
workflow instances can not
progress after task X is
completed.

Termi-
nality

Missing
Values

Rp3 = { TS(Initiate, C) ⇒ TS(X, I),
TS(X,C) ∧ LARGER(v,10)⇒ TS(Y,I),
TS(X,C) ∧ SMALLER(v, 5)⇒ TS(Z, I),
 …, ∀ (u) [TS(u, I) ⇒ TS(u, C)]}

If a workflow instance that
binds the variable with a
value between 5 and 10 is
created, the workflow
instance becomes dead.

Completeness Rp4 = {TS(Initiate, C) ⇒ TS(X, I),
TS(X, C)⇒ TS(Y, I),TS(X, C) ⇒ TS(Z, I),
TS(Y, C) ⇒ TS(Terminate, I),
∀ (u) [TS(u, I) ⇒ TS(u, C)]}

The task Z does not affect the
route of workflow instances.
The task Z should be
connected to the task
Terminate.

Compactness Rp5 = {
TS(X,C)∧ COND1(x)∧ COND2(y)
⇒ TS(Y, I),
TS(X, C) ∧ COND1(x) ⇒ TS(Y, I),
COND1(x) ∧ TS(X, C) ⇒ TS(Y, I)}

In the set Rp5, the first rule is
subsumed by the second rule,
and the second rule is
duplicated with the third rule.

Consistency Rp6 = {
TS(X, C) ∧ LARGER(x, 5) ⇒ TS(Y, I),
TS(X, C) ∧ SMALLER(x, 10)
 ⇒ TS(Z, I)}

The first two rules in the set
Rp6 may infer conflicting
hypotheses when a workflow
instance binds the variable x
with a value between 5 and
10.

69

end

set T2 = TS – T1

set T3 = TS = ∅

end

 In the algorithm 4.1, the set T1, T2, T3, and TS means the set of predecessors of

current task, the set of current tasks, the set of successors of current task, and the set of

successors of T2 respectively. The algorithm checks for each current task (tp ∈ T2)

whether any of its successors is the element of its predecessors (T1). In the case that the

successor is the element of its predecessors, the algorithm checks whether the condition

slot value of the procedural rule which connects from the current task to the successor is

NULL. If the value is NULL, it concludes an occurrence of circularity. On the other

hand, if the value is not NULL, it checks whether there exists any conflicting rule. The

existence of any conflicting rule with the rule means that there happens a circularity if a

workflow instance has a value in the duplicated region that are restricted by the two

rules commonly.

 ALGORITHM 4.2 (CHECKING MISSING VALUES)

Given a set of rule frames Rp,

for each task t ∈ T,

 set Rp(t) = {pr ∈ Rp | pr.PRE_TASK = t}

 set O(t) = { o ∈ O | o is restricted in pr.CONDITION and pr ∈ Rp(t)}

 for each o ∈ O(t),

 set IV(o) = {dom(pr.CONDITION|o) | pr.CONDITION|o is a projected

 condition of pr.CONDITION, which is restricted as a condition

70

 on object o}

 DIFF = dom(o)

 while IV(o) ≠ ∅

 DIFF = DIFF - dom(pr.CONDITION|o)

 IV(o) = IV(o) – dom(pr.CONDITION|o)

 end

 if DIFF ≠ ∅

 print “missing value for constraining o”

 end

end

 The algorithm 4.2 determines whether there exists any missing value in a set of

procedural-rule frames. The occurrence of missing values in a procedural rule set means

that some parts of domain of an object, which is Cartesian product of domains of the

object’s slots, are not used for defining routing rules after the completion of a task. To

check missing values in a set of procedural-rule frames, following steps are followed.

At first, for each task t in the task set T, all the procedural-rule frames that have task t as

the value of the PRE_TASK slot are extracted. Secondly, all the objects that are used to

define conditions in the CONDITION slot of the procedural-rule frames extracted in the

first step are selected. Lastly, for each object in the second step, the union of restricted

domains of the object that are determined by conditions of procedural-rule frames is

calculated. If the union of restricted domain of the object is equal to the domain of the

object, there is no missing value. Otherwise, the procedural-rule frames in the first step

have missing values for the restriction of the object.

71

ALGORITHM 4.3 (CHECKING MISSING RULES AND DANGLING TASKS)

IMT = T - {INITIATE, TERMINATE}

For each t ∈ IMT

 pRp(t) = {pr ∈ Rp | pr.PRE_TASK = t}

 nRp(t) = {pr ∈ Rp | pr.NEXT_TASK = t}

 if pRp(t) = ∅

 print “Task t has no successor”

 else if nRp(t) = ∅

 print ‘Task t has no predecessor”

 else if nRp(t) = ∅ and nRp(t) = ∅

 print “Task t is an isolated task”

 The algorithm 4.3 is used for checking missing rules and dangling tasks. In the

algorithm, for each task of the set of intermediary tasks (IMT), procedural_rule frames

are identified that connect the task with its predecessors or successors. If there does not

exist any procedural_rule frame that connects the task with its successor, the task is

concluded as a dangling task. On the other hand, if the task has no predecessor, missing

rules exist.

ALGORITHM 4.5 (CHECKING REDUNDANT RULES)

Given a set of procedural rule frames Rp,

for each pair (t1, t2) ∈ T

 set Rp(t1, t2) = {pr|∃ pr ∈ Rp s.t pr.PRE_TASK = t1 ∧ pr.NEXT_TASK = t2}

72

 if ∃ pr1, pr2 in Rp(t1, t2)

 s.t. (IntersCond (pr1.CONDITION, pr2.CONDITION) = pr1.CONDITION) ∧

 (DiffCond(pr2.CONDITION , pr1.CONDITION) ≠ ∅)

 print “procedural rule pr2 is subsumed by procedural rule pr1”

 end

 else if ∃ pr1, pr2 in Rp(t1, t2)

 s.t. (DiffCond(pr1.CONDITION , pr2.CONDITION) = ∅) ∧

 (DiffCond(pr2.CONDITION , pr1.CONDITION) = ∅)

 print “procedural rule pr1 is duplicated with procedural rule pr2”

 end

end

ALGORITHM 4.6 (CHECKING CONFLICTING RULES)

Given a set of rule frames Rp,

for each task t ∈ T,

 set Rp(t) = {pr ∈ Rp | pr.PRE_TASK = t}

 set O(t) = { o ∈ O | o is restricted in pr.CONDITION and pr ∈ Rp(t)}

 for each o ∈ O(t),

 set IV(o) = {dom(pr.CONDITION|o) | pr.CONDITION|o is a projected

 condition of pr.CONDITION, which is restricted as a

 condition of object o}

 set DIFF = dom(o)

 set COMPL = ∅

 while IV(o) ≠ ∅

 if (COMPL ∩ dom(pr.CONDITION|o) ≠ ∅)

 print “part of dom(pr.CONDITION|o) is duplicated”

 set DIFF = DIFF - dom(pr.CONDITION|o)

73

 set COMPL = dom(o) - DIFF

 set IV(o) = IV(o) - dom(pr.CONDITION|o)

 end

 end

end

 Algorithm 4.5 identifies subsumed or duplicated rule frames. In the algorithm 4.6,

the set COMPL is complementary of difference of restricted regions of object attribute

values. If any of them duplicates with the set COMPL, the duplicated region results in

confliction between two rules.

Chapter 5. Change Management in KWM

5.1 Introduction

 In this chapter, a mechanism for managing changes on KWM is proposed. Changes

are classified as schema-level change or instance-level change. A schema-level change

modifies the structure (routing path and assignment of tasks to actors) of a workflow

schema, and all the workflow instances that are running under the old workflow schema

are changed to follow the new schema. Schema-level changes are usually, performed by

workflow designers. The main issues of management of schema-level changes are

version management of evolving workflow schema, assuring soundness of modified

workflow schema, and migrating workflow instances that are running under old

workflow schema into new schema. On the other hand, an instance-level change

74

modifies workflow schema for a workflow instance. The changes are usually performed

by workflow participants of a workflow instance. In this case, the original workflow

schema is used to generate normal workflow instances, and the modified workflow

schema exists temporarily until the special workflow instance is terminated.

Management of instance-level changes provides a mechanism for handling exceptions

for special workflow instances. The main issues of management of instance-level

changes are to provide modification primitives that derive the temporal workflow

schema from original workflow schema without violation of soundness, a mechanism

that monitors status of dynamically changed workflow instance, and a mechanism that

undo a temporal change effect. The two types of change are summarized in Table 5.1.

 Feature
Level

Trigger Scope Duration Management Issues

Schema-level WF Designer All instance Long-term . Version Management

. Maintaining soundness

. Migration of workflow

 instances into new schema

Instance-level WF Participant An instance Temporal . Maintaining soundness

. Status tracking

. Propagation for “Undo”

Table 5.1 Classification of changes on workflow and their features.

 The dependencies between frames are used for propagating change effects in KWM.

75

Section 5.2 identifies the main dependencies in KWM. The approaches for management

of schema-level changes and instance-level changes are addressed in section 5.3 and 5.4.

5.2 Dependency Predicates

 Predicates that represent dependencies among frames of KWM are listed in Table

5.2. Three types of dependency predicates are considered. The first one is predicate that

represents dependencies between entity frames. The relationships that are explained in

section 3.2 are transformed into predicates that represent dependencies between entity

frames.

 The second one is predicate that represents dependency between rule frames. Three

predicates are considered; ‘XOR-firing’, ‘AND-firing’, and ‘Substitute’. Only one of
Type Predicate Meaning

Entity vs.

Entity

IS_A(o1, o2)

SUBPART_OF(o1, o2)

works_for(a, u, p)

used_at(re, t)

responsible_for(ro, t)

…

Object o1 inherits from object o2

Object o1 is subpart of object2

Actor a work for organizational unit u with

position p

Resource re is used at task t

Role ro is responsible for task t

…

XOR-firing(r1, r2,…rn) One of the rules r1 , r2, …, rn can be fired

AND-firing(r1, r2,…rn) All of the rules r1 , r2, …, rn should be fired

Rule vs. Rule

Substitute(r1, r2, rm) Metarule rm substitute a set of rules r1 with

a set of rule r2

Rule vs. Entity Splitted(t1, Ts, Rps) Task set Ts is splitted from t1 with

procedural rule set Rps

76

Jointed(t1, Tj, Rpj) Task set Tj is jointed at t1 with procedural

rule set Rpj

Precedence(t1, t2, rp) Task t1 precedes t2 with procedural rule rp

Role-charge(ro, rr) A responsibility-rule frame rr finds actors

who are in charge of role ro.

Table 5.2 The predicates that represent dependencies among frames of KWM.

the rule frames that are used as arguments of the predicate ‘XOR- firing’ can be fired.

On the other hand, the rule frames that are used as arguments of the predicate ‘AND-

firing’ should be fired concurrently. The predicate ‘Substitute’ represents the

substitution relationship between normal rules and special rules that are represented by a

metarule frame.

 The last type of predicate represents dependencies between entity and rule frames.

The predicates ‘Splitted’, ‘Joined’, ‘Precedence’, and ‘Role-charge’ correspond to the

type. The predicate ‘Splitted’ contains three arguments that represent a fork task (t1), a

set of splitted tasks (Ts), and a set of procedural-rule frames (Rps) respectively. It means

that tasks in Ts are splitted from a fork task t1, and procedural-rule frames in Rps connect

the fork task with the splitted tasks. The predicate ‘Joined’ also contains three

arguments. The first argument represents join task, and the second argument represents

predecessors of the join task. The procedural-rule frames that are contained in the third

argument connect the join task with its predecessors. The predicate ‘Precedence’ is

derived from procedural-rule frame. It represents dependencies between ordered tasks

and a procedural rule that define the order. On the other hand, the predicate ‘Role-

charge’ is derived from responsibility-rule frame. It represents dependencies among a

role, charged actors, and a responsibility-rule frame that define the mapping relationship.
 The dependency predicates are derived from user defined workflow schema. For

77

example, algorithm 5.1 derives XOR-firing dependencies from a workflow schema. The

algorithm for deriving XOR-firing dependencies between procedural-rule frames is to

find a set of rule frames that exclusively constrain on the domain of the same objects.

 The exclusive procedural-rule frames can be found from conditional routing

constructs. The algorithm 5.1 constructs a set (Rp(t1)) of procedural-rule frames that

should be checked after completion of a task. For each procedural-rule frame in the set

Rp(t1), the rule frame is added to a pseudo-exclusive rule set (XOR(pr1)). The other rule

frames in the set Rp(pr1) that constrain the same objects with the procedural-rule frame

are, then, successively compared to check whether their intersection of constrained

domains of the objects is null or not. If the intersection is null, the procedural-rule

frames are added to the set pseudo-exclusive rule set.

ALGORITHM 5.1 (FINDING EXCLUSIVE PROCEDURAL-RULE FRAMES)
Given a set of procedural-rule frames Rp,

∀ t, t ∈ T where T is set of tasks,

 Rp(t1) = {pr∈ Rp| pr.PRE_TASK = t}

 ∀ pr1, pr1∈ Rp(t),

 O(pr1) = {o | o is an object whose domain is restricted in pr1.CONDITION}

 Rp(pr1) = {pr | pr∈ Rp(t1), O(pr)=O(pr1), where
O(pr) is defined as similar with O(pr1)}

 XOR(pr1) = { pr1}

 ∀ pr, pr∈ Rp(pr1),

 if pr ∧ (∧ pri∈ XOR(pr1)pri.CONDITION) = ∅

pr∈ XOR(pr1)

 if (∨ pri∈ XOR(pr1)pri.CONDITION = Xoi∈ O(pr1)dom(Oi) where X means cartesian product)

exit

78

 if ∨ pri∈ XOR(pr1)pri.CONDITION = Xoi∈ O(pr1)dom(Oi)

 Add predicate XOR-firing(pr1, pr2, …, prn) for all pr1, pr2, … , prn ∈ XOR(pr1)

If the comparison is finished for all other rule frames, the union of the constrained

domain of rule frames in pseudo-exclusive rule set is calculated. If the union is the same

with the entire domain of the objects, then the set of procedural-rule frames constitutes

an XOR-firing dependency. The algorithm for deriving XOR-firing dependencies

between responsibility-rule frames is similar with the algorithm 5.1. The difference is to

compose the set Rp(t1) with the responsibility-rule frames that have the same value in

the ROLE slot.

5.3 Management of schema-level changes

 Schema-level changes transform from old version of workflow schema to a new

version. As shown in Figure 5.1, all modifications on a workflow schema should be

WF0 = < E0, Rl0, Ru0 >

WF1 = < E1, Rl1, Ru1 >

wf01

…

evolve

migrate

Change
Propagation Rule

…

wf02

wf0n

wf11

wf12

wf1m

instantiate

79

[Figure 5.1] Workflow schema evolution

followed with propagation of the change effects to assure soundness of the new

workflow schema. Furthermore, the workflow instances that are running under old

version should be able to migrate to the new version.

 In this section, change propagation rules for workflow modification primitives are

proposed. The focus is mainly on the structural changes such as insertion and deletion

of tasks in a workflow schema. The propagation rules for the changes of exceptional

rules that affect other rules, however, are also suggested. The propagation rules are

based on the dependency predicates introduced in the former section. Using the

predicates in Table 5.2, change propagation scope is identified, and proper update on the

affected frames by the change is performed. The change propagation rules, then, are

used to automatically modify frames of KWM or notify model builder the anomalies

caused by the changes. At the last part of this section, policies that can be adopted for

workflow instance migration are reviewed, and an approach for workflow migration is

proposed.

5.3.1 Propagation rules for changes on tasks

 The changes on tasks that should be considered are insertion of a new task, deletion

of an existing task, and altering order between tasks. The changes mainly affect

procedural-rule frames that have dependencies with the tasks. The propagation rules

consist of antesequents (marked by IF) and consequents (marked by THEN). An

antesequent is composed of a modification primitive and dependency predicates. A

consequent is composed of one or more actions that should be performed in order.

80

(1) Insertion of a new task

Six cases of task insertion can be considered.

- AddSeqTask (predecessor tp, successor ts, task ti) : inserts a new task ti between two

sequential tasks tp and ts in the schema. Figure 5.2 describes the effect of this

primitive.

IF : AddSeqTask (tp, ts, ti) ∧ Precedence(tp, ts, prps)

THEN: update prps.PRE_TASK = ti;

Rp = Rp ∪ {pre}

 where pre ∉ Rp ∧ pre.NEXT_TASK = ti ∧ pre.PRE_TASK = tp;

 prps pre prps

[Figure 5.2] Inserting a task between two sequential tasks

- AddSplitTask(preTask tp, sucTask ts, task ti, Condition cond): insert a new task ti

between two tasks tp and ts as a conditional successor of tp in the schema. In this case,

tp is a splitting task and ts is a join task. As shown in Figure 5.3, this primitive insert

a new branch from splitting task tp.

tp ts

ti

tp tsti

81

Case 1;

IF: AddCondTask(tp, ts, ti, cond) ∧ Splitted(tp, Ts, Rps) ∧ XOR-firing(Rps)

THEN:

∀ pr, pr ∈ Rps, update pr.CONDITOIN;

Rp = Rp ∪ {pre} where pre ∉ Rp ∧ pre.NEXT_TASK = ti

 ∧ pre.PRE_TASK = tp ∧ pre.CONDITOIN = cond;

 Case 2;

IF: AddCondTask(tp, ts, ti, cond) ∧ Splitted(tp, Ts, Rps) ∧ AND-firing(Rps)

THEN: Rp = Rp ∪ {pre} where pre ∉ Rp

 ∧ pre.NEXT_TASK = tI ∧ pre.PRE_TASK = tp

Ts = { ti1, ti2} Rps = {pr1, pr2}

[Figure 5.3] Inserting a task between conditional routing

- AddInterFolkTask(preTask tp, sucTask ts, task ti): insert a new task ti between two

tp ts

ti1

ti2

ti

tp tsti1

ti2

tipr1

pr2

pr1

pr2

pre

82

tasks tp and ts that is splitted from tp as a sequential predecessor of ts in the schema.

In this case, ti becomes a splitting task from tp instead of ts (Figure 5.4).

Ts = { ts, tq} Rps = {pr1, pr2}

[Figure 5.4] Inserting a task between a fork task and its successor

IF : AddInterFolkTask(tp, ts, ti) ∧ Splitted(tp, Ts, Rps) ∧ ts ∈ Ts

THEN : Update pr.NEXT_TASK = ti where pr ∈ Rp ∧ pr.NEXT_TASK = ts;

Rp = Rp ∪ {pre} where pre ∉ Rp ∧ pre.NEXT_TASK = ts

 ∧ pre.PRE_TASK = ti;

- AddFolkTask(preTask tp, sucTask Ts, task ti): insert a new task ti between a fork task

tp and a set of splitted tasks Ts in the schema. As shown in Figure 5.5, the inserted

task ti becomes the fork task instead of tp.

IF : AddFolkTask(tp, Ts, ti) ∧ Splitted(tp, Ts, Rps)

THEN : ∀ pr, pr ∈ Rps, update pr.PRE_TASK = ti;

tp tt

ts

tq

ti

tp tt

tsti

tq

pr1

pr2

pr1

pr2

pre

83

Rp = Rp ∪ {pre} where pre ∉ Rp ∧ pre.NEXT_TASK = ti

 ∧ pre.PRE_TASK = tp;

Ts = { ti1, ti2} Rps = {pr1, pr2}

[Figure 5.5] Inserting a task between conditional routing

- AddJoinTask(preTask Tj, sucTask ts, task ti): insert a new task ti between a set of

splitted tasks Tj and a join task ts in the schema. As shown in Figure 5.6, the inserted

task ti becomes the join task instead of ts.

IF : AddJoinTask(Tj, ts, ti) ∧ Splitted(ts, Tj, Rpj)

THEN : ∀ pr, pr ∈ Rpj, update pr.NEXT_TASK = ti

Rp = Rp ∪ {pre} where pre ∉ Rp ∧ pre.NEXT_TASK = ts

 ∧ pre.PRE_TASK = ti;

tp ts

ti1

ti2

ti

tp ts

ti1

ti2

ti

pr1

pr2

pr1

pr2

pre

84

Tj = {ti1, ti2}, Rpj = {pr1, pr2}

[Figure 5.6] Inserting a task between conditional routing

- AddInterJoinTask(preTask tp, sucTask ts, task ti) : insert a new task ti between two

tasks tp and ts that is a join task of tp, as a sequential successor of tp in the schema. In

this case, ti becomes a predecessor of join task ts instead of tp (Figure 5.7).

[Figure 5.7] Inserting a task between a join task and its predecessor

IF : AddInterJoinTask(tp, ts, ti) ∧ Joined(ts, Tj, Rpj) ∧ tp ∈ Tj

THEN : Update pr.PRE_TASK = ti where pr ∈ Rp ∧ pr.PRE_TASK = tp;

tp ts

ti1

ti2

ti

tsti

ti1

ti2

tp

ti1 ts

tp

ti2

ti

ti1 ts

tp ti

ti2

pr1

pr2

pr1

pr2

pre

pr1

pr2

pr1

pr2

pre

85

Rp = Rp ∪ {pre} where pre ∉ Rp ∧ pre.NEXT_TASK = ti

 ∧ pre.PRE_TASK = tp;

(2) Deletion of a task

 When a task is deleted from workflow schema, the effects of the change are

different according to the position of the task in the workflow net. Five cases can be

considered; i.e. the task is in the middle of a sequential routing, the task is fork task, the

task is join task, the task is a splitted task from its predecessor, and the route is joined at

[Figure 5.8] An example workflow for task deletion

its successor. The five cases are explained using an example workflow in Figure 5.8.

- Deletion of a task (t5) in the middle of a sequential routing:

IF : Delete(t5) ∧ Precedence(t4, t5, pr5) ∧ Precedence(t5, t6, pr6)

THEN : Rp = Rp – { pr5 }; update prp.NEXT_TASK = ts;

- Deletion of a fork task (t1): predecessor of the deleted fork task becomes fork task

instead of the deleted task.

t1 t4

t2

t3

t5 t6

pr3

pr4

pr1

pr2

pr6pr5t0
pr0

86

IF : Delete(t1) ∧ Precedence(t0, t1, pr0) ∧ Splitted(t1, {t2, t3}, {pr1, pr2})

THEN : Rp = Rp – { pr0 }; update pr1.PRE_TASK = t0; update pr2.PRE_TASK = t0;

- Deletion of a join task(t4): successor of the deleted join task becomes join task

instead of the deleted task.

IF : Delete(t4) ∧ Precedence(t4, t5, pr5) ∧ Joined(t4, {t2, t3}, {pr3, pr4})

THEN : Rp = Rp – { pr5 }; update pr3.NEXT_TASK = t5;

 update pr4.NEXT_TASK = t5;

- Deletion of a successor of a fork task (t2): procedural-rule frames that connect the

task with its predecessor and successor are removed. Furthermore, some dependency

predicates should be modified. Two cases should be considered; i.e. whether the

procedural-rule frame that connects the task with its predecessor has XOR-firing

relationship or AND-firing relationship with other rule frames.

Case 1:

IF : Delete(t2) ∧ Precedence(tp, t2, prp) ∧ Precedence(t2, ts, prs)

∧ Splitted(tp, Tp, Rpp) ∧ (t2 ∈ Tp) ∧ XOR-firing(Rpp)

THEN : Rp = Rp – { prp, prs }; Rpp = Rpp – { prp};

∀ pr, pr ∈ Rpp , update pr.CONDITION

Case 2:

IF : Delete(t2) ∧ Precedence(tp, t2, prp) ∧ Precedence(t2, ts, prs)

∧ Splitted(tp, Tp, Rpp) ∧ (t2 ∈ Tp) ∧ AND-firing(Rpp)

87

THEN : Rp = Rp – { prp, prs }; Rpp = Rpp – { prp};

- Deletion of a predecessor of a join task (t2): procedural-rule frames that connect the

task with its predecessor and successor are removed. Furthermore, some dependency

predicates should be modified.

IF : Delete(t2) ∧ Precedence(tp, t2, prp) ∧ Precedence(t2, ts, prs)

∧ Joined(ts, Ts, Rps) ∧ (t2 ∈ Ts)

THEN : Rp = Rp – { prp, prs }; Rps = Rps – { prs};

(3) Modify operation

 Modify operations that can trigger other operations are modification of condition-

slot value of a rule frame and changing the order between tasks.

- ModifyCondition (procedural-rule pr, Condition cond) : This primitive substitute

existing value of condition-slot of rule frame ‘pr’ with new value ‘cond’. In this case,

condition values of other rule frames that have XOR-firing relationship with the rule

frame should be also modified. The following rule propagate the change effects.

IF ModCondition(pr, cond) ∧ XOR-firing(Rpp) ∧ (pr ∈ Rpp)

THEN ∀ prn, prn ∈ Rpp ∧ prn ≠ pr, update prn.CONDITION

- AltTaskOrder (preTask tp, nextTask tn): this primitive alter an order between two

sequential tasks. Altering an order between two tasks are permitted to tasks that are

connected only sequentially.

88

IF : AltTaskOrder(tp, tn) ∧ Precedence(tpp, tp, prp) ∧ Precedence(tp, tn, prn) ∧

Precedence(tn, tnn, prnn)

THEN: Rp = Rp ∪ {prp’, prn’ , prnn’} where (prp’, prn’ , prnn’ ∉ Rp) ∧

 (prp’.PRE_TASK = prp.PRE_TASK) ∧ (prp’.NEXT_TASK = tn) ∧

 (prn’.PRE_TASK = prn.NEXT_TASK) ∧ (prn’.NEXT_TASK = prn.PRE_TASK) ∧

 (prnn’.PRE_TASK = tp) ∧ (prnn’.NEXT_TASK = prnn.PRE_TASK);

 Rp = Rp - {prp, prn, prnn};

[Figure 5.9] Changing order between two sequential tasks.

5.3.1 Propagation rules for changes on exceptional rules

tpp tp tn

prnprp prnn

tpp tn tp

prn’prp’ prnn’

89

 One of the complex changes that affect other constructs is the change on the

exceptional rule. In general, the exceptional rules are changed more frequently than

workflow structure that is composition of tasks. They are easily affected by the change

of organizational structure, and policy for doing business in turbulent environment. In

KWM, the special workflow instances that deviate from normal workflow schema are

processed by metarule frames. Insertion or deletion of metarule frames affect existence

of other rule frames or dependency predicates. For example, the deletion of a task from

a workflow schema is chained to deletion of procedural-rule frames. If a metarule frame

has the procedural-rule frames as the value of SOURC_RULE slot, the metarule frame

should be removed.

 The change primitives for exceptional rules are as follows.

- ModChange(rm, cond) : This primitive modifies the value of CONDITION slot of a

metarule frame rm. This means that the condition that classify special workflow

instances is changed. In this case, the effect of the change is relatively small. The

value of the CONDITION slot of a metarule that handles the exceptional rule should

be changed and the change does not affect other frames.

IF ModCondition(rm, cond)

 THEN update rm.CONDITION = cond;

- AddMetaRule(metarule rm, rule Ru, Entity E, Relationship Rl) : This primitive

inserts a new exceptional rule. Additional exceptional rule can be added for routing

work items or assigning tasks to actors. To handle the change a metarule frame and

additional exceptional rule frames should be added to rule set.

IF AddMetaRule(rm, Rue, Ee, Rle)

THEN Rm = Rm ∪ {rm}; Ru = Ru ∪ Rue; E = E ∪ Ee; Rl = Rl ∪ Rle

90

- RemoveMetaRule(metarule rm) : This primitive removes an exceptional rule. An

exceptional rule can be removed because organizational policy is changed. In this

case, the metarule frame and exceptional rule frames which handle the exception

should be removed from rule set.

IF RemoveMetaRule(rm) ∧ Substitute(R1, R2, rm)

THEN Rm = Rm - {rm}; Ru = Ru – R2;

- Changes on the rules in the TARGET_RULE slot :

5.3.2 Propagation rules for changes on responsibility rules

 The assignment of tasks to actors is mainly changed because of management

techniques like empowerment and restructuring. As a result of applying the techniques,

organizational members take new roles and delegate some roles to others. These

changes can be propagated through responsibility-rule frames. Organizational changes

that affect responsibility rules are as follows.

- Task delegation : Usually some tasks are performed in several departments in a large

organization. For example, the task “Grant trip allowance” is performed in department

of finance, department of research management, and the academic & student services

departments of each school at KAIST. The business rule can be changed to delegate the

task of department of research management to department of finance.

- Merge of departments: In this case, tasks that are performed in a department is

delegated into new department to assure continuity of workflows.

- Changes of role characteristics : Usually, actors who are in charge of a role need

special skills or organizational position for executing some tasks. The needs can be

changed as organization evolves.

91

 The changes on the responsibility rules can be propagated by removing (or

inserting) responsibility-rule frame, or modifying conditions of responsibility-rule

frames.

5.3.4 An illustrative example

 The business trip approval process in Figure 3.7 has been changed as a result of

BPR project at KAIST. At first, the task “Check Trip Request Form” executed by a

department officer is going to be removed from the process because computerized form

processing system automatically checks the correctness of the form (Event1). Secondly,

the task “Grant Traveling Allowance” is going to be executed only in the finance

department and the academic & student services department (deletion of rule rr8-3),

and

• For Event1 = DELETED(Check_Trip_Request_Form),
(1) DELETED(Check_Trip_Request_Form) ∧

 Precedence(Check_Trip_Request_Form, Approve Subordinator’s_Trip, rp7) ∧
 Precedence(Approve_Traveling_Allowance, Check_Trip_Request_Form, rp5)

 ⇒ DELETED(rp5) ∧ DELETED(rp7)
DELETED(rp5) ∧ XOR-firing(rp5, rp6)

 ⇒ UPDATE-SLOT(rp6.CONDITION)
// In this case, condition spec. of rp6 should be removed
(2) DELETED(Check_Trip_Request_Form) ∧

 Charged(Check_Trip_Request_Form, Department_Officer)
 ⇒ DELETED(Department_Officer)

DELETED(Department_Officer) ∧ Role-charge(Department_Officer, rr5)
 ⇒ DELETE(rr5)

// rr5 is a responsibility rule for the role Department Officer
! For Event2 = DELETED(rr8-3),

DELETED(rr8-3) ∧ XOR-firing(rr8-1, rr8-2, rr8-3, rr8-4)
⇒ UPDATE-SLOT(rr8-1.CONDITION) ∧ UPDATE-SLOT(rr8-2.CONDITION)

 ∧ UPDATE-SLOT(rr8-4.CONDITION)
! For Event3 = DELETED(rm3),

92

DELETED(rm3) ∧
Substitute({rp2,rp3,rp4,rp5,rp6,rp7,rp8,rp9},{rp-s1, rp-s2, rp-s3, rp-s4, rp-s5},rm3)

 ⇒ DELETE(rp-s1, rp-s2, rp-s3, rp-s4, rp-s5)

[Figure 5.10] Change propagation chains for the example workflow.

the mapping conditions of other rule frames that are related with XOR-firing

dependency should be changed (Event2). Lastly, the exceptional rule for delegated

employees is going to be removed, and the workflow instances for the trip of delegated

employees should be processed as other normal instances (Event3). Figure 5.10 shows

the change propagation chains using the propagation rules. The change propagation

chains are used to notify workflow modeler the frames that should be updated.

5.3.5 Migration of workflow instances into new schema

 Casati et al. (1998) suggested the policies the workflow administrator (WFA) can

adopt to manage running workflow instances upon a modification of their schema. They

are summarized as follows:

- Abort: all instances of old schema are aborted, and the newly created instances will

start following new schema;

- Flush: all existing instances terminate following old schema. In the meantime, no

new instance of old schema will be started. When all instances are finished, new

instances can start following new schema

- Progressive: different decisions for different instances are taken, according to

instance state or instance history. Multiple schema versions may exist at the same

time.

93

 The three policies can be adopted in K-WFMS to manage running instances. The

first two solutions are the simplest from the WFMS point of view, since only one

version of the schema exists at the same time, and all active instances therefore follow

the same schema version. From the client point of view, the first two solutions are,

however, inconvenient, since they should initiate instances again or could not initiate

instances during the schema-evolution period. In this section, an approach that adopts

the third policy is detailed.

 To define instance migration rules, workflow instance history should be defined.

DEFINITION 5.1 (INSTANCE HISTORY) An instance history is a 9-tuple,

ΗI = < ti, s, di, dc, α, rα, tp, D, Od >

 where ti is task instance, s is state of ti, di is initiated date of ti, dc is completed date

of ti, α is actor identifier, rα is the role which the actor α is in charge of ti, tp is a task

instance which transited work item to ti, D is a set of data instances processed by ti, and

Od is a set of operations on data items.

 Whether a workflow instance actually can be migrated to new version, depends on

the current states of the workflow instance. In K-WFMS, the migration of running

instances to the new version is restricted only to that do not violate consistency of

organizational state. Organizational state is represented by entity and relationship

frames in KWM. Actors in a workflow read or update organizational state during

executing assigned tasks to them. Migration of workflow instances should be

determined based on the dependencies between tasks which update data instances. For

example, a running workflow instance that has a completed task instance which wrote

to a data item and the task schema is removed from new schema could not be migrated

94

to the new version. The migration rules are defined according to the modification

primitives that are applied to old version resulting in new version. The changes that

affect the migration decision are that affect workflow schema that is composed with

predecessors of currently initiated tasks. For each workflow instance, the task schema

that compose a workflow schema are classified as following three categories:

- The set of task schema which any of their instances are member of instance history,

and the state of the task instance is “initiated” or “pended”, i.e.,

 Tinitiated = { ϕ(hi.tc) | (hi ∈ ΗI) ∧ (hi.s = “INITIATED” ∨ hi.s = “PENDED”) }

 where ϕ(t) is a function which returns task schema of a task instance t.

- The set of task schema which any of their instances are member of instance history,

and the state of the task instance is “completed”, i.e.,

 Tbefore = {ϕ(hi.tb) | (hi ∈ ΗI) ∧ (hi.s = “COMPLETED”)}

- The set of task schema which are successor of currently initiated or pended tasks,

i.e., Tafter = { Ta | ∀ Ti ∈ Tinitiated, Ta ∈ Succ(Ti)}

 where Succ(T) is a function which returns a set of successors of T.

 For each workflow instance, the modification primitives that affect task schema in

Tinitiated, Tafter, or Tbefore are checked to determine whether the workflow instance can be

migrated to new version or not. The cases considerable are as follows;

- Addition of new tasks to Tafter : When the tasks are added into Tafter, the workflow

instance can be migrated to new version if any of added tasks does not read from

data instance which any predecessor of currently initiated task have been updated.

That is, if following condition is satisfied, the workflow instance can not be

migrated to new version.

95

 (WFnew = WFold ∪ Tnew) ∧ (Ts ∈ Tnew) ∧ (∀ Ti, Ts ∈ Succ(Ti)) ∧ (Tp ∈ Tbefore) ∧

 writes(Tp, d) ∧ reads(Ts, d)

- Addition of tasks in Tinitiated : If tasks are added to old version as siblings of currently

initiated task, the workflow instance can be migrated to new version by initiating

added tasks.

- Deletion of tasks in Tinitiated : If tasks are deleted from old version, the workflow

isntance can be migrated to new version by aborting the initiated task.

- Deletion of tasks : Any of predecessors of currently initiated task is deleted from old

version. In this case, the workflow instance can be migrated if the deleted task

schema is not element of Tbefore. That is, if following condition is satisfied, it can not

be migrated to new version.

(WFnew = WFold - To) ∧ (To ⊆ Tbefore)

- Changing routing conditions : if the history of the workflow instance is changed

because of the changed routing conditions, the workflow instance can not be

migrated. Otherwise, it can be migrated to new version.

- Changing order between two tasks: If the taks are elements of Tafter, the workflow

instance can be migrated to new version.

5.4 Management of instance-level changes

 Management of instance-level changes is critical issue for increasing adaptability of

WFMS. The effects of the change exist temporarily and are abolished after termination

of the workflow instance. Using the mechanism which manages instance-level changes,

workflow participants are able to deviate from premodeled task sequences of a

workflow at run-time. In this dissertation, the basic ideas for handling instance-level

96

changes are inheriting original workflow schema and dynamic interpretation of

workflow schema. Inheritance of workflow schema means that the workflow schema

that are applied to a special workflow instance inherits frames from original workflow

schema and additional frames that are needed to handle exception of the workflow

instance are added. With this approach, the original workflow schema is not affected

from the instance-level changes, and various version of workflow schema for special

workflow instances coexist with the original workflow schema. This results in the needs

for dynamic interpretation of workflow schema. Dynamic interpretation of workflow

schema means that for each time a workflow schema is interpreted, frames can be added

or removed dynamically. This is the characteristic of rule-based system.

 To manage instance-level changes, three mechanisms should be considered. At first,

system should guarantee that all consistency constraints that have been ensured prior to

a dynamic change are also ensured after the modification. Secondly, the mechanism for

providing workflow status tracking service is also important as temporal existence of

workflow tasks. Lastly, an authorization mechanism that permits the instance-level

changes only to authorized workflow roles. As the provision of the authorization

mechanism is less critical to discuss than mechanism for handling the effect of instance-

level changes, we do not consider them further in this research.

WF0 = < E0, Rl0, Ru0 > wf02

wf0n

WF01 = < E01, Rl01, Ru01 >

…

inherited

instantiate

97

[Figure 5.11] Inheritance of workflow schema for handling instance-level changes

 In Figure 5.11, the workflow schema WF01 ~ WF0i inherit from original workflow

schema and additional rule frames are added according to participants’ modification of a

workflow instance. The additional rule frames are stored in another knowledge set, and

they are merged with original workflow schema in the middle of progress of the

workflow instance.

5.4.1 Propagation rules for dynamic workflow configuration

 The instance-level changes that should be considered can be classified as follows;

(1) skip some tasks, (2) Insert undefined tasks, (3) Delegate assigned tasks to other

actors, and (4) Change sequences between tasks

 The instance-level changes that are requested by workflow participants are handled

using temporal metarule frames. The temporal metarule frames are created in the middle

of a workflow instance execution and abolished after termination of it. In the remained

part of this section, propagation rules that generate the temporal rule frames are

WF1 = < E1, Rl1, Ru1 >

wf01

…

evolve

instantiate

wf0i

instantiate
WF0i = < E0i, Rl0i, Ru0i >

…

98

explained for each modification primitives for instance-level changes. Figure 5.12 is

used as an example workflow. The modification primitives whose meanings are

explained in section 5.3 are used again.

[Figure 5.12] An example workflow for instance-level changes

(1) Skip some tasks : A workflow participants can change workflow schema for a

workflow instance by skipping some successors of currently activated task. To skip

a task, delete primitive can be used. For the request, following rule create a temporal

metarule frame and additional procedural rule frames.

IF Delete(t4) ∧ Precedence(t2, t4, pr3) ∧ Precedence(t3, t4, pr4) ∧

 Joined(t4, {t2, t2}, {pr2, pr3})

THEN

Rpi = Rpi ∪ {pr3’, pr4’} where pr3’, pr4’ ∉ Rp ∧

 (pr3’.PRE_TASK = pr3.PRE_TASK) ∧ (pr4’.PRE_TASK =

 pr4.PRE_TASK) ∧ (pr3’.NEXT_TASK = t5) ∧ (pr4’.NEXT_TASK = t5);

Rmi = Rmi ∪ {rm} where rm ∉ Rmi ∧

t1 t4

t2

t3

t5

pr3

pr4

pr1

pr2

pr5t0
pr0 t6

pr6 pr7

99

 rm.SOURCE_RULE = {pr3, pr4, pr5} ∧ rm.TARGET_RULE = {pr3’, pr4’};

(2) Insert additional tasks : In this case, the insert primitives that are discussed in

section 5.3.1 can also be considered. The propagation rules for the primitives,

however, are different with those of them in that they add additional rule frames and

do not update any existing rule frames.

- AddSeqTask (t5, t6, ti) :

IF : AddSeqTask (t5, t6, ti) ∧ Precedence(t5, t6, pr6)

THEN:

 Rpi = Rpi ∪ {pr5i, pri6} where pr5i, pri6 ∉ Rp

 (pr5i.PRE_TASK = pr6.PRE_TASK) ∧ (pr5i.NEXT_TASK = ti) ∧

 (pri6.PRE_TASK = ti) ∧ (pri6.NEXT_TASK = pr6.PRE_TASK);

 Rmi = Rmi ∪ {rm} where rm ∉ Rm ∧ rm.SOURCE_RULE = {pr6} ∧

 rm.TARGET_RULE = {pr5i, pri6};

(3) Change order between tasks

 The order between two tasks can be changed only if the tasks are sequentially

connected.

- AltTaskOrder(t5, t6) :

IF : AltTaskOrder(t5, t6) ∧ Precedence(t4, t5, pr5) ∧ Precedence(t5, t6, pr6) ∧

100

Precedence(t6, t7, pr7)

THEN:

 Rpi = Rpi ∪ {pr5’, pr6’ , pr7’} where (pr5’, pr6’ , pr7’ ∉ Rp) ∧

 (pr5’.PRE_TASK = pr5.PRE_TASK) ∧ (pr5’.NEXT_TASK = t6) ∧

 (pr6’.PRE_TASK = pr6.NEXT_TASK) ∧ (pr6’.NEXT_TASK = pr6.PRE_TASK) ∧

 (pr7’.PRE_TASK = t5) ∧ (pr7’.NEXT_TASK = pr7.PRE_TASK);

Rmi = Rmi ∪ {rm} where rm ∉ Rm ∧ rm.SOURCE_RULE = {pr5, pr6, pr7}

 ∧ rm.TARGET_RULE = { pr5’, pr6’ , pr7’};

(4) Delegate assigned tasks to other actors

- DelegateTask (task ti, actor aj, role rk) : this primitive delegates a task instance to other

actor with role.

(5) Decomposition of a task : Decomposing a running task instance is explained in the

following sub section using example workflow.

5.4.2 An illustrative example

 Figure 5.13 shows an ad-hoc process. The goal of the process is to support

execution of students’ group project in virtual classroom. A workflow instance is

created when a professor notifies a group project by filling in a group project

notification form (“Initiate a group project”). After completion of the first task, a

teaching assistant builds groups of students. After that, each student group prepares

101

report for the project. If due date of the project is over, the professor evaluates the

reports and marks grades for the reports. Finally, each student gets feedback from the

professor.

 A special requirement for supporting the example workflow is that each student

group should configure partial workflows for preparing report for the project. That is,

the task “Execute group project” is assigned to manager of each group, and the group

managers should define sub tasks and sequence among them and assign new tasks to

their group members for executing the assigned task. In this case, each group manager

dynamically configures its own workflow instance during the execution of workflow

instance. For example, assume there are three groups and group project notification

form is used to carry information for executing the group project. The original

workflow

102

[Figure 5.13] An example process for group project in a virtual classroom

schema is as follows;

WFold = {T, Re, Ro, A, U, Rp, Rr, Rm} where

T = {Initiate_Group_Project, Build_Groups, Execute_Group_Project,

 Evaluate_Report, Get_Feedback},

Re = {Group_Project_Notification_Form, Report_Evaluation_Form},

Ro = {Professor, TA, Group_Manager, Student},

Initiate a group project
<Professor>

Build Groups
<Teaching Assistant>

Execute group project
(C) <Group_Manager>

Evaluate report
<Professor>

Get Feedback
<Student_Group>

Initiate

Terminate

pr1

pr0

pr2

pr3

pr4

pr5

rr1

rr2

rr3

rr4

rr5

103

A = {Class_Member, Professor}, U = {∅ }

Rp = {pr0, pr1, pr2, pr3, pr4, pr5}, Rr = {rr1, rr2, rr3, rr4, rr5}, Rm = {∅ }

 A professor “Park” initiate a workflow instance by filling in some fields (class id,

subject, due date etc.) of Group_Project_Notification_Form (assume its instance id is

GPN00001). The teaching assistant “Lee” (determined by responsibility rule rr2) of the

class, then, builds groups for executing the project and assigns managers for the groups

(i.e., fills in group session fields of the routed form). After the completion of the second

task, the form is routed to group managers (“Cho”, “Ahn”, and “Kim” are determined

by responsibility rule rr3). The instance history of the example workflow is as follows;

ΗI = < ti, s, di, dc, α, rα, tp, D, Od >

<t1, “COMPLETED”, “1998/10/5”, “1998/10/5”, “Park”, Professor, t0, {GPN00001}, write>

<t2, “COMPLETED”, “1998/10/5”, “1998/10/6”, “Lee”, TA, t1, {GPN00001}, write>

<t3, “INITIATED”, “1998/10/6”, NULL, “Cho”, Group_Manager, t2, {GPN00001}, read>

<t4, “INITIATED”, “1998/10/6”, NULL, “Ahn”, Group_Manager, t2, {GPN00001}, read>

<t5, “INITIATED”, “1998/10/6”, NULL, “Kim”, Group_Manager, t2, {GPN00001}, read>

 At this time, each group manager should add new tasks to execute the group project

according to the guide of Group_Project_Notification_Form. Assume that the group

managers dynamically decompose the task “Execute group project” as shown in Figure

5.14. In this case, the history information for the task instances (t3, t4, and t5) are updated

as follows;

104

[Figure 5.14] An example process for group project in a virtual classroom (after

 dynamic decomposition)

Build Groups

C31C11 C21

C22

pr1

prt11

Initiate group project

pr0

C32C11

C13 C23 C33

Evaluate Report

pr4

Initiate

C24

prt12

prt13

prt14

prt21

prt22

prt23

prt24

prt25

prt31

prt32

prt33

prt34

Execute group
project DT

DI

pr2

pr3

rrt11

rrt12

rrt13

105

<t3, “DECOMPOSED”, “1998/10/6”, NULL, “Cho”, Group_Manager, t2, {GPN00001}, read>

<t4, “DECOMPOSED”, “1998/10/6”, NULL, “Ahn”, Group_Manager, t2, {GPN00001}, read>

<t5, “DECOMPOSED”, “1998/10/6”, NULL, “Kim”, Group_Manager, t2, {GPN00001}, read>

 By the decomposition of the group manager “Cho”, the workflow schema is

changed as follows;

WFnew = WForg ∪ {WFt1 } where

WFt1 = {Tt1, Rpt1, Rrt1, Rmt1} where

Tt1 = {C11, C12, C13, DI, DT},

Rp t1 = {prt11, prt12, prt13, prt14}, Rr = { rrt11, rrt12, rrt13},

Rm t1 = {rm t11, rmt12} where rm t11.SOURCE_RULE=∅ ∧

 rm t12.SOURCE_RULE=∅ ∧ rm t11.TARGET_RULE = { prt11, prt12, prt13, prt14}

 ∧ rm t12.TARGET_RULE = { rrt11, rrt12, rrt13}

 The tasks DI and DT are dummy tasks that represent initial and terminal task of

decomposed task respectively. When a task is decomposed, the state of the dummy task

DI is initialized as “COMPLETED”, which results in initialization of successor of DI.

The state of the task instance t3 is changed as “COMPLETED” when the dummy task

DT is completed. The history information of the task decomposition is contained in sub

history of the task instance. That is, a sub history is 10-tuple,

 ΗS = < ts, ti, s, di, dc, α, rα, tp, D, Od > where ts is super task instance of ti.

106

Chapter 6. Implementation of K-WFMS

6.1 Introduction

 K-WFMS (Knowledge-based Workflow Management System) has been fully

implemented using CLIPS and integrated as a component of a campus-wide information

system called Intelligent Campus at KAIST (Park et al, 1995 & 1996). K-WFMS is

integrated with other application information systems for executing tasks in business

processes. In this chapter, overall architecture of K-WFMS and detailed implementation

approach is explained. With the successful real application, KWM are proved to be a

useful framework to implement the fully automated workflow under the agile

environment.

6.2 Overall Architecture

 Figure 6.1 illustrates the overall architecture of the K-WFMS. It has client-server

architecture. Client part consists of KWM model manager and workflow client, and

workflow server is composed of workflow status manager and workflow scheduler. We

give detailed descriptions on each part in the following two sub sections.

 K-WFMS is implemented under the SOLARIS operating system on a Sun SPARC

10. The workflow server has been implemented with OpenServer library of Sybase Inc.,

and the Sybase has been used as database server. OpenServer provides C libraries for

building a server. Using the libraries, system developers access database using C

functions and are able to integrate with other applications encoded with C language. We

chose CLIPS (The C Language Integrated Production System) as the inference shell of

107

the rule system because it is appropriate tool to implement frames and easy to integrate

with C language. All the frame constructs are compiled into CLIPS source codes before

the inference is performed. The Workflow client has been implemented with

PowerBuilder of PowerSoft Inc., and the KWM model manager has done with Visual

C++ and CLIPS.

[Figure 6.1] Overall architecture of K-WFMS

Workflow Client

Task Supporting Module

Workflow Monitoring Module

KWM Manager

Syntax driven
Frame Editor

Rule Processor

Model Editor

Workflow Server

Workflow Scheduler

Communication Handler

Rule System Controller

Inferencing
Shell

Knowledge
Base

Database
Coupler

Workflow Status Manager

Model
Verifier

108

6.3 K-WFMS Client

 Client part of K-WFMS consists of KWM manager and workflow client. The former

is used by workflow designer and enables the designer easy modeling of workflows.

The other is used by workflow participants and supports the participants to manage and

execute assigned tasks.

6.3.1 KWM Manager

 KWM manager consists of model editor and rule processor. Model editor supports

model builder’s easy modeling of KWM by providing syntax-driven frame editor. Using

the syntax-driven frame editor, workflow designer defines frames in KWM. All the

frames of a workflow schema are inserted into workflow definition tables in a database.

The editor provides metadata of the organizational database. The metadata includes

database servers, databases, tables and fields information. When a workflow designer

selects objects that should be used to control the target workflow, the frame editor

inserts the information into workflow definition tables after translation of the objects

into frames. The automatic translation prevents the model builder’s syntactic error that

might be occurred in the course of manual definition of frames. The model editor also

provides query service on the information in KWM. Model builders can obtain the

following information on the defined frames:

109

! List of all frames classified by frame styles

! List of frames that are defined for certain workflow

! All the rules expressed by verbal style

! Dependencies between rules including hierarchical relationships and horizontal

relationships in the same level in the hierarchy

! Predecessors and pre-conditions of a task

! Successors and post-conditions of a task

! Documents and resources needed for a task execution

 The model verifier verifies designer defined rules using algorithms proposed in

chapter 4. Another functionality of model editor is to provide change propagation

mechanism. According to the propagation rules in chapter 5, users are guided to modify

workflow schema. The rule processor compiles frames in KWM into executable rule

scripts (CLIPS program). The source codes that are generated from frames for example

workflow in section 3.5 can be found in Appendix D.

6.3.2 Workflow Client

 On the other hand, the workflow client supports an actor’s execution of assigned

tasks and provides him/her workflow monitoring-service. The task supporting-module

lists all the tasks assigned to him/her with information on the role-in-charge and

attached forms. When the actor selects a task in order to execute it, the task supporting-

module launches an application system automatically if the application system is

110

defined as supporting tool of the task execution. Figure 6.2 shows a screen example of

form management supporting tool. Using smart form management system, Users could

build a form easily without violating business rules that restrict filling-in the field values

of the form. When the task is finished, the task supporting-module notifies workflow

server the state of the task. The state of a task can be one of “initiated”, “completed”,

“pending” and “canceled”. The workflow monitoring-module provides the information

concerned with history of workflow instances. The information includes followings:

! Initiator of a workflow instance

! All participants of a workflow instance

! Tasks executed already

! The states of the workflow instance that the actor initiated

! All forms created in a workflow instance

 Figure 6.3 shows a screen example of workflow monitoring service. In Figure 6.3,

the upper window lists all the workflow instances a workflow participant created. When

the participant selects an item, the history information of the workflow instance is listed

in the lower window.

111

[Figure 6.2] Screen example of smart form

112

[Figure 6.3] Screen example of workflow monitoring service

6.4 Workflow Server

 Workflow server is composed of two cooperative environments, Workflow Status

Manager (WSM) dedicated to workflow status management and Workflow Scheduler

(WSD) to workflow scheduling.

113

 The WSM is responsible for updating workflow control data in database. When an

actor finishes a task, the workflow client notifies the workflow server the state of the

finished task through remote procedure call (RPC) protocol. The WSM updates the

value of “state” field of “task” table in database and requests the WSD via RPC protocol

to find next tasks and charged actors. On receiving the results from the WSD, the WSM

inserts the results into the workflow instance table.

 The WSD finds next tasks and actors by firing rules model builder defined. It has

two sub modules, i.e., RPC handler and rule system controller. The RPC handler is

responsible for the communication with the WSM. When a request from the WSM is

occurred, the RPC handler parses the contents of message from the WSM. The message

contains information needed for workflow scheduling, and includes workflow type,

workflow instance identifier, and task number which has been finished. The RPC

handler passes the rule system controller the message contents. The rule system

controller configures rule base and fact base in inferencing shell to determine the next

tasks that should be followed after finished task and actors who are in charge of the next

tasks. The detailed description on the rule firing mechanism and the functionality of

database coupler are given in section 6.4.2 because it would be more explanatory if we

describe it by mentioning implementation tools.

6.4.1 Generation of CLIPS codes

 All the frames in KWM are compiled into CLIPS codes. The compiled CLIPS codes

are stored as files in knowledge base in the workflow server. Every change on a frame is

automatically propagated into the CLIPS codes file by re-compiling the changed frame.

Entity and relation frames are compiled into ‘deftemplate’ constructs of CLIPS, and rule

frames into ‘defrule’ constructs. Figure 6.4 shows a translation example of an entity

frame into CLIPS codes.

114

Ex-F1 : Ex-C1 :
FRAME Department (deftemplate Department
 IS_A : Entity; (field dept_id (type NUMBER))
 dept_id : number; (field parent (type NUMBER))
 parent : number; (field mnger_pos (type NUMBER)))
 mnger_pos : number;
END-FRAME

[Figure 6.4] Translation of an entity frame into CLIPS codes.

 The compiling rule frames into ‘defrule’ constructs is more complicated. The

compiler applies different rules for each rule type. For procedural rule type, the

compiler uses four slots (“pre-task”, “pre-task-event”, “condition”, and “next-task”) of

the rule frame. The “defrule” construct of CLIPS is composed of two parts, i.e.,

condition part and action part. The compiler uses three slots (“pre-task”, “pre-task-

event” and “condition”) to compose condition part and “next-task” slot to compose

action part. The compiler uses two slots of the responsibility rule frame to compose

mapping rule between roles and real actors. The procedural_rule frame ‘rp8’ in Figure

3.8 and the responsibility_rule frame rr6-1 are translated into following CLIPS codes

respectively:
(defrule rp8
 (Task (task_id “Approve_Subordinator’s_Trip”)(state "Completed"))
 (WF_DomTripMaster (Duration ?dur))
 (test (>= ?dur 7))
 =>
 (assert (Task (pretask_id “Approve_Subordinator’s_Trip”)
 (task_id “Inspect_Trip_Purpose”)(state "Initiated"))))

115

 (defrule find-supervisor

 (Task (pretask_id ?pr_task)(task_id “Approve_Subordinator’s_Trip”)(state "completed"))
 (WF_DomTripTraveller (T_Id ?t_id)(T_Department ?dept))
 (Department (dept_id ?dept)(mnger_pos ?m-pos))
 (WorkFor (dept_id ?dept)(actor_id ?supervisor_id)(position ?m-pos))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_id “Approve_Subordinator’s_Trip”)
 (actor_id ?supervisor_id))))

 The compilation of metarules are somewhat complicated. We use “undefrule”

command of CLIPS to compile a substituting metarule. At the following CLIPS codes,

the condition part represents the situation the metarule applied. In the action part

“undefule” removes normal procedural_rule frames from inferencing shell and

exceptional procedural_rule frames which are stored in another knowledge base

substitute the normal rule frames.

(defrule undefrule-for-delegated-employee
(declare (salience 200))
(WF_DomTripTraveller (T_Id ?t-id))
(WorkFor (actor_id ?t-id)(outside "y"))
=>
(undefrule from-traveller-to-account)
(undefrule from-account-to-department)
(undefrule from-account-to-supervisor)
(undefrule from-supervisor-to-auditor)
(undefrule from-supervisor-to-controller)
(load "./wfdef/exception100-1.clp"))

6.4.2 Controlling Rule Execution

116

 In this sub section, we describe the procedure for determining of next tasks and real

actors who are in charge of the tasks, which is implemented in K-WFMS. First, The rule

system controller in the WSD initializes CLIPS environment and automatically

generates following initial facts;

 (deffacts (WFinstance (instance_id “WF001”))

 (deffacts (Task (task-name “Approve_Subordinator’s_Trip”) (state “approved”))

 The fact can be inferred from the message contents received from the RPC handler

by identifying the task that has been finished. The state of the task is extracted from the

task instance table in database. The rule system controller, then, selects procedural rules

and metarules that have to do with for scheduling tasks of the target workflow type and

loads them into rule base in the inference shell. The selection of rules is performed by

checking “pre-task” slot value of procedural rules. If a rule contains the name of the

finished task in the slot, the rule is inserted into rule base. After inserting all the selected

procedural rules into rule base, the controller selects all the metarules that contain the

selected rules as value of the ‘target-rule’ slot, and again inserts them into rule base.

When the rule selection is finished, the database coupler extracts data from database and

inserts it into fact base after processing it as the format used in the inference shell. The

next section explains the work of database coupler in detail.

 When the configuration is completed, the controller fires the rule base. In the course

of inferencing, metarules may retract some procedural rules if their condition parts

evaluate true. The result of the firing is inserting new facts into fact base, and the new

facts take following form;

 (Next-Task (task-name “task-name”))

 If the inserted fact is “(Next-Task (task-name NIL))”, this means that other task

117

should be executed before the next tasks are ready. Otherwise, the controller

reconfigures the rule base and fact base to find real actors who are in charge of the next

tasks using role concept. The controller inserts responsibility rules and metarules into

rule base by loading CLIPS files that contain “defrule” constructs. After inserting new

facts into fact base from database, the inference shell is executed and produces the

following facts;

 (Result (next-task “task-name”) (actor “actor-id”))

 When all the procedures above finished, the rule system controller notifies the RPC

handler the successful execution of inference shell. The RPC handler, then, parses the

output file that created as a result of the execution and sends the information to the

WSM.

6.4.3 Coupling KBS with DBS

 The role of the database coupler in the WSD is to provide the inference shell

organizational facts from organizational database. The database coupler parses the rule

constructs in rule base, and makes a list of data to be extracted from database using

meta-knowledge on the KWM. Then, it extracts data from database and inserts it into

fact base of the rule system. This approach is loose coupling of KBS and DBS, that is,

the DBS provides the KBS data before rules are fired, and no data is provided to KBS in

the middle of KBS execution (Vassiliou, Clifford & Jarke, 1985).

 The entity and relation frames in KWM are tightly connected with the tables in the

database system. The connection information is kept in the database interface that

defines mapping relationships between frames in the KWM and data schema in the

database. The table is mapped with an entity or a relation frame, and the fields of the

118

table are mapped with the attribute slots of the frame.

 One approach to couple KBS with DBS is to transfer all records of a table into fact

base. The approach, however, has limits to apply in our system because the amount of

records in some tables is too many. Currently, the number of students in KAIST exceeds

7,000. Furthermore, the existing database keeps all the data about graduated students,

and the size of the table “Student” in database exceeds 20,000 records. The size of the

table “Employee” and “Professor” is smaller than “Student” table, but exceeds 7,000

and 1,000 respectively. If we transfer all the data about organizational structure and

resources into fact base, the performance of the inference shell might notably decrease.

 To overcome the problem, we suggested an approach that filters data from database

that is needed to fire rules in rule base. The database coupler makes a list of the rules

that exist in the rule base. For each rule, the coupler checks conditions and makes SQL

command for each condition using database interface. The database interface is to

connect frames and data schema in a database. It contains the one-to-one mapping

relationships between frame slots and fields of table in the database.

 We explains the procedures of coupling KBS and DBS using the rule

“Find_Supervisor” defined in Figure 5B. It has following three conditions in condition

part;

 (Trip_Request_Form (traveler_info (traveler_id ?t_id)))

 (WorkFor (actor_id ?t_id) (department ?dept))

 (Department (manager_id ?mng_id) (dept_id ?dept))

 It is assumed that the names of the data variables in a rule definition are unique, and

each condition constrains slot values of a frame. The conditions are, also, assumed

having orders between them. At first, The database coupler checks the variables defined

119

in each condition. If two conditions have the same variable, the two frames are

considered having a relationship, and the attribute that is constrained by the variable is

used as foreign key. The database coupler generates SQL command for each condition

from the one that has highest order, i.e. the condition that is declared on the top of the

condition part. The first condition constraints on the slot value of a composite frame. In

the case, the database coupler generates following SQL command;

 SELECT form_id FROM WFinstnce_FormInstance WHERE wfinst_id

= ?wfinstance

SELECT traveler_id FROM Traveler_Info WHERE form_id = ?form_id

 The table ‘WFinstance_FormInstance’ has been defined to contain all the form

identifiers that are used in a workflow instance. The database coupler fetches the form

identifiers for the given workflow instance, and the result data is used to generate the

second SQL command. The database coupler sends the SQL commands to the database

management system (DBMS) and gets the results of them. Using the SQL commands,

the following CLIPS code is generated, and loaded in CLIPS environment to insert facts

into fact base (we assume that there are two travelers for the workflow instance);

 (deffact (Traveler_Info (traveler_id 935291))

 (Traveler_Info (traveler_id 975211)))

 Next, the database coupler tries to generate SQL commands for the second condition.

In this time, the results (traveler identifiers) from the first SQL command are used to

extract department information as the two conditions have the same variable “?t_id”.

 SELECT department FROM WorkFor WHERE actor_id = 935291 OR

actor_id=975211

 If the database coupler receives any results of the SQL command from DBMS, it

120

inserts the following facts into fact base;

 (WorkFor (actor_id 935291) (department 2100))

 (WorkFor (actor_id 975211) (department 1500))

 Lastly, the database coupler does the same procedure with the second condition for

the third condition. The generated SQL command and new fact would be as follows;

 SELECT manager_id, dept_id FROM Department

 WHERE dept_id = 2100 OR dept_id = 1500

 (Department (dept_id 2100) (mng_id 250))

 (Department (dept_id 1500) (mng_id 342))

Chapter 7. Conclusion

7.1 Introduction

 The emergence of new type of organization such as agile organization has led to the

increased needs of adaptable WFMS. WFMS’s appeal lies in the execution of business

processes as a sequence of pre-planned tasks, so that the cost of coordinating different

tasks is reduced. However, most of the existing WFMSs are rigid for supporting

changing business processes under the turbulent organizational environments.

Furthermore, providing workflow participants the mechanism to dynamically change

their workflow instance is rarely addressed. Understanding changes on workflow under

organizational context is important to support workflows. This, in turn, requires a

121

consideration of the organizational context in which workflow occur. These issues

served as the nucleus for the work presented in this dissertation.

7.2 Contributions of the Dissertation

 The contributions of this dissertation lie in four areas that have not been previously

addressed in the literature:

(1) The concept of workflows is redefined so that it can be understood with

organizational context. KWM defines a workflow as a set of business rules. Business

rules contain rationale of workflow execution. They guide and restrict flow of works

through ordered tasks, and assign responsibilities for tasks to actors using role concept.

Organizational policies that reflect the organization’s special characteristics are

predefined as exceptional rules. KWM provides three basic rule frames, i.e. procedural-

rule, responsibility-rule, and metarule frames, to represent the three types of business

rules. This facilitates the introduction of organizational aspects into the domain of

WFMS.

(2) A set theoretic formalism of KWM is developed and soundness properties based on

the formal definition of KWM are developed and verified. Formalism is necessary for

self-complacency, communication, extension and modification of model, and formal

comparisons with other models. A formal property for correctness of KWM, soundness,

is defined and analyzed using verification techniques. Knowledge-based approach of

122

KWM enables to check consistency and compactness of routing rules as well as

terminality of workflows.

(3) A change propagation mechanism is proposed to enhance adaptability of WFMS.

Changes are classified as schema-level change and instance-level change. The former is

concerned with workflow schema evolution and the other is concerned with occurrence

of exceptions in a workflow instance. Change propagation rules for schema

modification primitives assure the soundness of new version. On the other hand, change

propagation rules for modification primitives for instance-level change create temporal

rule frames without changing the original workflow schema. The temporal rule frames

are added when the target workflow instance progresses. This approach simplifies

version management of workflow schema and undoing temporal changes, which

increases the adaptability of WFMS.

(4) Based on KWM, K-WFMS is developed. The implementation of K-WFMS

integrated two heterogeneous technologies. For effective management of workflow

schema, a knowledge based system, CLIPS, is adopted. On the other hand, database

system, SYBASE, is used to manage huge volume of workflow instances. Integrating

the two technologies is proved to be appropriate for implementing adaptive WFMS.

7.3 Further Research Directions

 Further research areas are as follows:

123

(1) Development of graphic based KWM manager.

 The current implementation of KWM manager is based on syntax-driven frame

editor. Development of graphic based KWM manager provides workflow designer easy

modeling work. The graphic based KWM manager should be able to generate KWM

frames from workflow diagram. The workflow verifier and change propagation

mechanism proposed in this dissertation can be easily integrated with the graphic based

KWM manager.

(2) Development of facility for workflow transaction management

 One of main issues for development of database-based WFMS is providing

transaction management mechanism which performs consistency and concurrency

control or recovery from failure. The results from researches on transactional workflow

(Eder and Liebhart, 1995; McCarthy and Sarin, 1993; and Rusinkiewicz and Shet, 1993)

can be extended to K-WFMS.

(3) Integration with groupwares for supporting ad-hoc workflows

 The current implementation of K-WFMS is applied to application systems for

supporting execution of office tasks. The application systems for office tasks are usually

used by an actor. On the other hand, many of tasks in an ad-hoc workflow such as

software process are usually performed by multiple actors and the use of groupware is

needed. Integration of groupwares with WFMS will increase the performance of group

works in ad-hoc workflows.

124

References

Aielo, L., Nardi, D., and Panti, M. (1984). Structural office modeling: A first step

 toward the office expert system. In Proceedings 2nd ACM Conference on Office

 Information Systems (Toronto, June 1984), ACM New York.

Agostini, A., Michelis, G.D., Grasso, M.A., Prinz, W., and Syri, A. (1996). Contexts,

work processes, and workspaces. Computer Supported Cooperative Work: The

Journal of Collaborative Computing, 5, 223-250.

Appleton, D. S. (1984). Business Rules: The Missing Link”, Datamation, October,

 pp.145-150.

Bailey, A., Gerlach, J., McAfee, P., and Whinston, A. (1983). An OIS model for internal

 accounting control evaluation. ACM Trans. Office Inf. Syst. 1 (1), 25-44.

Barber, G. (1983). Supporting organizational problem solving with a work station. ACM

 Trans. Officce Inf. Syst. 1 (1), 45-67.

Bogia, D. P. and Kaplan, S.M. (1995). Flexibility and control for dynamic workflows in

 the worlds environment. In Proc. Of the Conference on Organizational Computing

 Systems (ACM 1995).

Bose, Ranjit (1996). Intelligent agents framework for development knowledge-based

125

decision support system for collaborative organizational processes. Expert System

With Applications, 11(3), 247-261.

Bose, Ranjit (1995). CMS: An intelligent knowledge-based tool for organizational

 procedure modeling and execution. Expert System With Applications, 8 (1), 1-21.

Bracchi, G., and Pernici, B. (1983). SOS: A conceptual model for office information

 systems. In Proceedings of ACM SIGMOD Database Week Conference (San Jose,

 Calif., May), ACM, New York, 108-116.

Bracchi, G., and Pernici, B. (1984). The design requirements of office systems. ACM

 Trans. On Inf. Syst., 2 (2), 151-170.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1996). Deriving active rules for workflow

 enactment, Proceedings of DEXA 96, Zurich (CH), 1996.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1998). Workflow evolution. Data &

 Knowledge Engineering, 24, 211-238.

Chang, J.W. and Scott, C.T. (1996). Agent-based workflow: TRP Support environment

 (TSE). Computer Networks and ISDN Systems. 28, 1501-1511.

Cook, C. (1980). Streamlining office procedures – an analysis using the information

control net model. In Proceedings AFIPS National Computer Conference (May 1980),

555-565.

126

Curtis, B., Kellner, M. I., and Jim, O. (1992). Process Modeling. CACM, 25 (9), 75-90.

Dellen B., Maurer, F., and Pews, G. (1997). Knowledge-based techniques to increase

 the flexibility of workflow management. Data & Knowledge Engineering, 23, 269-

 295.

Eder, J. and Liebhart, W. (1995). The workflow activity model: WAMO, Proceedings of

 the third international conference on the cooperative information systems, 87 - 98.

Ellis, C., and Nutt, G. (1980). Office information systems and computer science. ACM

 Computing Survey. 12 (1), 27-60.

Ellis, C., and Bernal, M. (1982). OFFICETALK-D: An experimental office information

system. In Proceedings ACM SIGOA Conference on Office Systems (Philadelphia,

June 1982), ACM, New York, 131-140.

Ellis,C., and Nutt, G. (1993). Modeling and enactment of workflow systems,

Application and Theory of Petri Nets 1993, 14th International Conference

Proceedings, Chicago, Illinois, USA, 1-16.

Flores, F., Graves, M., Hartfield, B., and Winograd, T. (1988). Computer systems and

 the design of organizational interaction. ACM Transactions on Office Information

Systems, 6 (2), 153-172.

Ganapathy, B. K. (1996). The representation of organizational workflows as knowledge

127

management episodes. Ph.D Dissertation, Department of Decision Sciene and

Information Systems, University of Kentucky, Lexington, Kentucky.

Grasso, A., Meunier, J., Pagani, D., and Pareschi, R. (1997). Distributed coordination

 and workflow on the world wide web, Computer Supported Cooperative Work: The

Journal of Collaborative Computing, 6, 175-200.

Gruhn, Volker(1995). Business process modeling and workflow management.

 International Journal of Cooperative Information Systems. 4(2&3), 145–164.

Hammer, M., and Kunin, J. (1980). Design principles of an office specification

 language. In Proceedings AFIPS National Computer Conference (May 1980), 541-

547.

Halle, B. V. (1993). Business Rules in Practice. Database Programming & Design, July,

 pp. 15-18

Hurts, K. and de Greef, P. (1994). Cognitive ergonomics of multi-agent systems:

observations, principles and reseach issues. Lecture Notes in Computer Science (B.

Blumenthal, J. Gornostaev, and C. Unger, eds), 876: 164-180, Springer-Verlag.

Jarke, M., Jeusfeld, M.A., Peters, ., and Pohl, K. (1997). Coordinating distributed

 organizational knowledge. Data & Knowledge Engineering, 23, 247-268.

Jennings, N.R., et al. (1996). Agent based business process management. International

128

 Journal of Cooperative Information System. 5 (2), 105-130.

Kang, H. W. (1995). A Modeling Framework for Manufacturing System Integration:

Process-based Approach. Ph.D Dissertation, Department of Industrial Mangement,

Korea Advanced Institute of Science and Technology, Taejon, South Korea,

November, 1995.

Kang, H. W., Kim, J. W., and Park, S. J. (1998). Integrated Modeling Framework for

Manufacturing Systems: A Unified Representation of the Physical Process and

Information Systems. International Journal of Flexible Manufacturing System, 10

(3).

Kappel, G., Lang, P., Rausch-Schott, S., Retschitzegger, W. (1995). Workflow

 management based on objects, rules, and roles. IEEE Bulletin of the Technical

 Committee on Data Engineering, 18(1).

Kaplan, S., Tolone, W., Bogia, D., and Bignoli, C. (1992). Flexible, active support for

collaborative work with ConversatoinBuilder. In Proceedings of the Conference on

Computer Supported Cooperative Work (Toronto, Canada), ACM/SIGCHI and

SIGOIS, NY, 1992, 378-385.

Kim, J. W. (1994). A modeling framework for integrated decision models and

information systems, Ph.D Dissertation, Department of management science, Korea

129

Advanced Institute of Science and Technology, Taejon, South Korea, November 1994.

Kirn, S. (1994). Supporting human experts’ collaborative work: Modeling

 organizational context knowledge in cooperative information system. In CSCW and

Artificial Intelligence, edited by Connolly, John H. and Edmonds, Ernest A. Springer-

Verlag. 127-139.

Konsynski, B., Bracker, L., and Bracker, W. (1982). A model for specification of office

 communications. IEEE Trans. Commun. COM-30, 1, 27-36.

Loucopoulos, P. and Layzell, W. (1989). Improving information system development

and evolution using a rule-based paradigm. Software Engineering Journal,

September, pp. 259-267.

Lubich, H. P. (1995). Towards a CSCW Framework for Scientific Cooperation in

 Europe. Lecture Notes in Computer Science, 889, Spring-Verlag, Berlin.

Lum, V., Choy, D., and Shu, N. (1982). OPAS: An office procedure automation system.

 IBM Syst. J., 21 (3), 327-350.

Mahling, D.E., Woo, C., Bluementhal, R., Sclichter, H., and Horstman, T. (1995),

 Workflow = OIS? A report of a workshop at the CSCW ’94 Conference. SIGOIS

 Bulletin, 16 (1), 59-64.

Marshak,R.T. (1993). Action technologies' workflow products. Workgroup Computing

130

 Report, 16 (5).

Martin J. (1993) Principles of Object-Oriented Analysis and Design, Prentice-Hall.

McCarthy, D. R. and Sarin, S. K. (1993). Workflow and Transactions in InConcert.

 Bulletin of the Technical Committee on Data Engineering, 16 (2).

Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1992). The action workflow

 approach to workflow management technology. Proceedings of Computer

 Supportive Cooperative Work ’92, Toronto, Canada, 281-288.

Michael, J. B., Sibley, E. H., Baum, R. F., and Li, F. (1992). On the Axiomatizaion of

Security Policy: Some Tentative Observations about Logic Representation.

Proceedings of the sixth IFIP TC 11.3 Working Conference on Database Security, pp.

401-429.

Michelis, G. D. and Grasso, M. A. (1994). Situating conversations within the

 language/action perspective: The milan conversation model. In Proceedings of

 Computer Supported Cooperative Work ‘94, Chapel Hill, NC, USA., 89 – 100.

Moriarty, T. (1993a). The Next Paradigm, Database Programming & Design, February,

pp. 66-69.

Moriarty, T. (1993b). Business Rule Analysis. Database Programming & Design, April,

 pp. 66-69.

131

Nguyen, T.A., Perkins, W.A., Laffey, T.J., and Pecora, D. (1985). Checking an expert

 systems knowledge base for consistency and completeness. In Proc. 9 t h

 International Joint Conference on Artificial Intelligence (IJCAI 85) , 1, 375-378.

Nilsson, N. J. (1980). Principles of artificial intelligence. Springer-Verlag.

Odell, J. J. (1993a). Specifying requirements using rules. Journal of object-oriented

 programming, May, pp. 20-24.

Odell, J. J. (1993b). Using business rules with diagrams. Journal of object-oriented

 programming, July/August, pp. 10-16.

Ong, K. and Lee, R. M. (1996). A decision support system for bureaucratic policy

administration: An abductive logic programming approach. Decision Support System,

16, 21-38.

Park, S. J., Kim, J. W., and Kang, H. W. (1996). Heuristic Knowledge Representation of

Production Scheduling: An Integrated Modeling Approach, Expert System with

Applications, 10 (3/4), pp. 325 – 339.

Park, J. Y. and Park, S. J. (1997). A Process Modeling Framework for Change

Management in Business Re-engineering. Working paper, Korea Advanced Institute

of Science and Technology.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice-Hall Inc.

132

Puuronen, S. (1987). A tabular rule-checking method. In Proc. 7th International

Workshop on Expert Systems and their Applications (Avignon, May 13-15, 1987),

257-268.

Ramaswamy, M., Sarkar, S., and Chen, Y.S. (1997). Using directed hypergraphs to

verify rule-based expert systems. IEEE Trans. On Knowledge and Data Engineering,

9 (2), 221-237.

Richter, G. (1981). IML – inscribed nets for modeling text processing and data(base)

 management systems. In Proceedings Very Large Data Base Conference (Cannes,

 Sept. 1981), 363-375.

Rusinkiewicz, M. and Shet, A. (1993). On transactional workflows. Bulletin of the

Technical Committee on Data Engineering, 16 (2).

Sachs, P. (1995). Transforming work: collaboration, learning, and design.

 Communication of the ACM, 38 (9), 36-44.

Scott-Morton, M. S. (1994). The 1990s research program: Implications for management

 and the emerging organization. Decision Support Systems, 12 (2), 251-256.

Searle, J.R. (1969). Speech Acts : An essay in the philosophy of language. Cambridge

 University Press, Cambridge, UK.

Sibley, E. H., Michael, J. B., and Wexelblat, R. L. (1992a). An approach to formalizing

133

policy management. In Economics & Cognitive Science, P. Bourgine and B. Walliser,

Ed. Pergamon Press, 155-169.

Sibley, E. H., Michael, J. B., and Wexelblat, R. L. (1992b). Use of Experimental Policy

Workbench: Description and Preliminary Results. In Database Security, V: Status and

Prospects, C.E. Landwehr and S. Jajodia, eds. Elsevier Science Publishers, pp. 47-

 76.

Sirbu, M., Schoichet, S., Kunin, J., and Hammer, M. (1981). OAM: An office analysing

 methodology. MIT Office Automation Group Memo OAM-016.

Suwa, M., Scott, A.C., and Shortliffe, E.H. (1982). An approach to verifying

completeness and consistency in a rule-based expert system. AI Magazine, 3(4), 16-

21.

Ter Hofstede, A.H.M., Orlowska, M.E., and Rajapakse, J. (1998). Verification problems

 in conceptual workflow specifications. Data & Knowledge Engineering, 24, 239-256.

Tsichritzis, D. (1982). Form management. Commun. ACM, 25 (7), 453-478.

Van der Aalst, W.M.P. (1997), Verification of Workflow Nets . In P. Azema and G.

Balbo , editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture

Notes in Computer Science, pages 407--426. Springer-Verlag, Berlin, 1997.

Van der Aalst, K.W.M. (1998). The application of Petri nets to workflow management.

134

 The Journal of Circuits, Systems and Computers, forthcoming.

Van der Aalst, K.W.M., van Hee, K.M., and Houben, G.J. (1994). Modeling workflow

management systems with high-level Petri nets. Proceedings of the second Workshop

on Computer-Supported Cooperative Work, Petri Nets and Related Formalisms, 31-

50.

Vernadat, F.B. (1996). Enterprise integration: On business process and enterprise

 activity modeling. Concurrent Engineering, 4 (3), 219 - 228.

Victor, F. and Sommer, E. (1991), Supporting the design of office procedures in the

 DOMINO system. In Studies in Computer Supported Cooperative Work, Bowers

 and Benford (eds.), New York: Elsevier Science, 1991, 119-131.

WfMC (1996). Workflow management coalition terminology and glossary (WfMC-TC-

 1011). Technical Report, Workflow Management Coalition, Brussels, 1996.

Winograd, T. (1987). A language/action perspective on the design of cooperative work.

 Human-Computer Interaction, 3 (1), 3-30.

Winograd, T. and Flores, F. (1986). Understanding computers and cognition: A new

 foundation for design. Ablex, Norwood, N.J., 1986 and Addison-Wesley, Reading,

 Mass., 1987.

Wolf, M. and Reimer, U. (1996). Proceedings of the International Conference on

135

 Practical Aspects of Knowledge Management (PAKM ’96), Workshop on Adaptive

 Workflow, Basel, Switzerland, Oct 1996.

Zisman, M. (1978). Use of production systems for modeling asynchronous, concurrent

 processes. In Pattern Directed Inference Systems, Waterman and Hayes-Roth, Eds.,

 Academic Press, New York, 1978, 53-68.

Zloof, M. (1982). Office-by-Example: A business language that unifies data, word

 processing, and electronic mail. IBM Syst. J., 21 (3), 272-304.

136

Appendix A. Specification of rule frames for example workflow

A.1. Procedural-rule frames

FRAME rp0 FRAME rp1

 PRE_TASK: Initiate; PRE_TASK: Create_Trip_Request_Form;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’;

 NEXT_TASK: Create_Trip_Request_Form; NEXT_TASK: Confirm_Travel;

 CONDITION : NULL; CONDITION : NULL;

END-FRAME END-FRAME

FRAME rp2-1 FRAME rp2-2

 PRE_TASK: Confirm_Travel; PRE_TASK: Confirm_Travel;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’

 NEXT_TASK: Confirm_Task_Delegation; NEXT_TASK: Confirm_Task_Delegation;

 CONDITION : (Traveler (T_Id ?t-id)) CONDITION: (Traveler (T_Id ?t-id))

 (Professor (P_Id ?t-id) (Position ?pos)) (Employee (E_Id ?t-id));

 (test (> ?pos 0)); END-FRAME

END-FRAME

FRAME rp3-1 FRAME rp3-2

 PRE_TASK: Confirm_Travel; PRE_TASK: Confirm_Travel;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’

 NEXT_TASK: Approve_Traveling_Allowance; NEXT_TASK: Approve_Traveling_Allowance;

 CONDITION : (Traveler (T_Id ?t-id)) CONDITION: (Traveler (T_Id ?t-id))

 (Student (S_Id ?t-id)); (Professor (P_Id ?t-id)(Position ?pos))

END-FRAME (test (= ?pos 0));

END-FRAME

FRAME rp4 FRAME rp5

 PRE_TASK: Confirm_Task_Delegation; PRE_TASK: Approve_ Traveling_Allowance;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’

 NEXT_TASK: Approve_Traveling_Allowance; NEXT_TASK: Check_Trip_Request_Form;

 CONDITION : NULL; CONDITION: (Traveler (T_Id ?t-id))

END-FRAME (Student (S_Id ?t-id));

 END-FRAME

137

FRAME rp6 FRAME rp7

 PRE_TASK: Approve_ Traveling_Allowance; PRE_TASK: Check_Trip_Request_Form;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’

 NEXT_TASK: Approve_Subordinator’s_Trip; NEXT_TASK: Approve_Subordinator’s_Trip;

 CONDITION : (Traveler (T_Id ?t-id)) CONDITION: NULL;

 (not (Student (S_Id ?t-id)); END-FRAME

END-FRAME

FRAME rp8 FRAME rp9

 PRE_TASK: Approve_Subordinator’s_Trip; PRE_TASK: Approve_Subordinator’s_Trip;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’

 NEXT_TASK: Inspect_Trip_Purpose; NEXT_TASK: Grant_Traveling_Allowance;

 CONDITION : (Trip_Request_Form (Duration ?dur)) CONDITION: (Trip_Request_Form (Duration ?dur))

 (test (> ?dur 7)); (test (<= ?dur 7));

END-FRAME END-FRAME

FRAME rp10 FRAME rp11

 PRE_TASK: Inspect_Trip_Purpose; PRE_TASK: Grant_Traveling_Allowance;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’

 NEXT_TASK: Grant_Traveling_Allowance; NEXT_TASK: Update_Traveler_Ledger;

 CONDITION : NULL; CONDITION: NULL;

END-FRAME END-FRAME

FRAME rp12

 PRE_TASK: Update_Traveler_Ledger;

 PRE_TASK_STATE: ‘Completed’;

 NEXT_TASK: Terminate;

 CONDITION : NULL;

END-FRAME

FRAME rp-s1 FRAME rp-s2

 DESCRIPTION: “exceptional rule for DESCRIPTION: “exceptional rule for

 delegated employee”; delegated employee”;

 PRE_TASK: Confirm_Travel; PRE_TASK: Confirm_Task_Delegation;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’;

 NEXT_TASK: Confirm_Task_Delegation; NEXT_TASK: Approve_Subordinator’s_Trip;

 CONDITION : NULL; CONDITION : NULL;

138

END-FRAME END-FRAME

FRAME rp-s3 FRAME rp-s4

 DESCRIPTION: “exceptional rule for DESCRIPTION: “exceptional rule for

 delegated employee”; delegated employee”;

 PRE_TASK: Approve_Subordinator’s_Trip; PRE_TASK: Approve_Traveling_Allowance;

 PRE_TASK_STATE: ‘Completed’; PRE_TASK_STATE: ‘Completed’;

 NEXT_TASK: Approve_Traveling_Allowance; NEXT_TASK: Inspect_Trip_Purpose;

 CONDITION : NULL; CONDITION : (Trip_Request_Form (Duration ?dur))

END-FRAME (test (> ?dur 7));

END-FRAME

FRAME rp-s5

 DESCRIPTION: “exceptional rule for

 delegated employee”;

 PRE_TASK: Approve_Traveling_Allowance;

 PRE_TASK_STATE: ‘Completed’;

 NEXT_TASK: Grant_Traveling_Allowance;

 CONDITION : (Trip_Request_Form (Duration ?dur)) (test (<= ?dur 7));

END-FRAME

A.2. Responsibility-rule frames

FRAME rr1 FRAME rr2

 ROLE: Form_Creator; ROLE: Trip_Applicant;

 ACTOR: Trip_Request_Form.Form_Builder; ACTOR: Traveler.Traveler_Id;

 CONDITION: NULL; CONDITION: NULL;

END-FRAME END-FRAME

FRAME rr3 FRAME rr4

 ROLE: Task_Mandatory; ROLE: Account_Manager;

 ACTOR: Traveler.Mandatory; ACTOR: Account.Manager_Id;

 CONDITION: NULL; CONDITION: (Trip_Request_Form (Account ?a-id))

END-FRAME (Account (A_Id ?a-id) (Manager_Id ?m-id));

END-FRAME

FRAME rr5

 ROLE: Department_Officer;

 ACTOR: Task_Charge.Actor;

139

 CONDITION: (Traveler (Department ?dept-id)) (Task_Charge (Task_Id) (Dept_Id ?dept-id) (Actor ?a-id));

END-FRAME

FRAME rr6-1

 ROLE: Supervisor;

 ACTOR: WorkFor.actor_id;

 CONDITION: (Traveler (Department ?dept-id)) (Department (dept_id ?dept) (mnger_pos ?m-pos))

 (WorkFor (dept_id ?dept)(actor_id ?supervisor_id)(position ?m-pos));

END-FRAME

FRAME rr6-2

 ROLE: Supervisor;

 ACTOR: WorkFor.actor_id;

 CONDITION: (Traveler (Department ?dept-id)) (Department (dept_id ?dept) (super-dept ?s-dept))

 (Department (dept_id ?s-dept) (mnger-pos ?m-pos))

 (WorkFor (dept_id ?dept)(actor_id ?supervisor_id)(position ?m-pos));

END-FRAME

FRAME rr7

 ROLE: Auditor;

 ACTOR: Task_Charge.Actor;

 CONDITION: (Task_Charge (Task ‘Inspect_Trip_Purpose’) (Actor ?a-id));

END-FRAME

FRAME rr8-1

 ROLE: Account_Controller;

 ACTOR: Task_Charge.Actor;

 CONDITION: (Traveler (T_Id ?t-id) (T_Department ?dept)) (Student (S_Id ?t-id))

 (Task_Charge (Task ‘Grant_Traveling_Allowance’) (Department ‘Academic_&_Student_Service’) (Actor ?a-id));

END-FRAME

FRAME rr8-2

 ROLE: Account_Controller;

 ACTOR: Task_Charge.Actor;

 CONDITION: (Traveler (T_Id ?t-id) (T_Department ?dept)) (Professor (P_Id ?t-id) (Position NIL))

 (Task_Charge (Task ‘Grant_Traveling_Allowance’) (Department ‘Academic_&_Student_Service’) (Actor ?a-id));

END-FRAME

140

FRAME rr8-3

 ROLE: Account_Controller;

 ACTOR: Task_Charge.Actor;

 CONDITION: (Traveler (T_Id ?t-id) (T_Department ?dept)) (Trip_Request_Form (Account ?acc))

 (not (Professor (P_Id ?t-id) (Position NIL))) (not (Student (S_Id ?t-id)))

 (Account (Account_Id ?acc) (Type ‘project’))

 (Task_Charge (Task ‘Grant_Traveling_Allowance’) (Department ‘research_management’) (Actor ?a-id));

END-FRAME

FRAME rr8-4

 ROLE: Account_Controller;

 ACTOR: Task_Charge.Actor;

 CONDITION: (Traveler (T_Id ?t-id) (T_Department ?dept)) (Trip_Request_Form (Account ?acc))

 (not (Professor (P_Id ?t-id) (Position NIL))) (not (Student (S_Id ?t-id)))

 (Account (Account_Id ?acc) (Type ‘general’))

 (Task_Charge (Task ‘Grant_Traveling_Allowance’) (Department ‘finance’) (Actor ?a-id));

END-FRAME

FRAME rr9

 ROLE: Personnel_Department;

 ACTOR: Task_Charge.Actor;

 CONDITION: (Task_Charge (Task ‘Update_Traveler_Ledge’) (Department ‘personnel’) (Actor ?a-id))

END-FRAME

FRAME rr-s1

 ROLE: Vice_President;

 ACTOR: WorkFor.Actor;

 CONDITION: (WorkFor (Actor ?a-id) (Position ‘Vice_President’))

END-FRAME

A.3. Metarule frames

FRAME rm1 FRAME rm2

 SOURCE_RULE: {rp2-1, rp3-1}; SOURCE_RULE: {rp2,rp3,rp4,rp5,rp6,rp7,rp8,rp9};

 TARGET_RULE: {rp2-1}; TARGET_RULE: {rp-s1, rp-s2, rp-s3, rp-s4, rp-s5};

 CONDITION: (rp2-1 (CONDITION TRUE)) CONDITION: (Traveler (T_Id ?t-id))

141

 (rp3-1 (CONDITION TRUE)); (WorkFor (Actor_Id ?t-id) (Delegated ‘Yes’));

END-FRAME END-FRAME

FRAME rm3

 SOURCE_RULE: {rr6-1, rr6-2};

 TARGET_RULE: {rr6-2};

 CONDITION:

 (Traveler (T_id ?t-id) (Department ?dept-id)) (Department (dept_id ?dept) (mnger_pos ?m-pos))

 (WorkFor (Actor_Id ?a-id) (Dept_Id ?dept) (Position ?m-pos)) (test (= ?a-id ?t-id));

END-FRAME

FRAME rm4

 SOURCE_RULE: {rr6-2};

 TARGET_RULE: {rr-s1};

 CONDITION:

 (Traveler (T_id ?t-id)

 (WorkFor (Actor_Id ?t-id) (Position ‘Manager-of-research-institute-in-affiliation’));

END-FRAME

142

Appendix B. Algorithms for checking soundness properties

B.1. OCCURRENCE OF CIRCULARITY

Given a set of rule frames, Ru={Rp, Rr},

1. Set T1 = T2 = ∅ ,

 add tasks ts to T2 satisfied that

 ∃ pr ∈ Rp such that pr.PRE_TASK = INITIATE and pr.NEXT_TASK = t.

2. While (TERMINATE ∉ T) and (T1 != T2)

 Set T1 = T2

 for each t ∈ T1,

 for each t’ satisfied that ∃ pr ∈ Rp such that pr.PRE_TASK = t and pr.NEXT_TASK = t’,

 if pr.CONDITION = NULL,

 print “There is a cycle which is started from t’ to t’.

 else add task t’ to T2.

B.2. MISSING RULES

Given a set of rule frames, Ru={Rp, Rr},

1. Set T1 = T2 = ∅ ,

 add tasks ts to T2 satisfied that

 ∃ pr ∈ Rp such that pr.PRE_TASK = INITIATE and pr.NEXT_TASK = t.

2. While (TERMINATE ∉ T) and T1 != T2

 set T1 = T2

 for each t ∈ T1,

 if !∃ t’ satisfied that ∃ pr ∈ Rp such that pr.PRE_TASK = t and pr.NEXT_TASK = t’,

 print “There is missing rule to proceed workflow from task t”

 add all t’ to T2 satisfied that ∃ pr ∈ Rp such that pr.PRE_TASK = t and pr.NEXT_TASK = t’

B.3. MISSING VALUES

Given a set of rule frames, Ru={Rp, Rr},

for each task t ∈ T,

 Rp(t) = {pr ∈ Rp | pr.PRE_TASK = t}

 let O(t) = { o ∈ O | o is restricted in pr.CONDITION and pr ∈ Rp(t)}

 for each o ∈ O(t),

143

 ∨ for all pr∈ Rp(t) pr.CONDITION|o != dom(o)

 where pr.CONDITION|o is a projected condition of Pr.CONDITION,

 which is restricted as a condition of object o.

B.4. COMPLETENESS

Given a set of rule frames, Ru={Rp, Rr},

For each t ∈ T, !∃ pr∈ Rp s.t. t = pr.PRE_TASK

B.5. COMPACTNESS

Given a set of rule frames, Ru={Rp, Rr},

For each pair t, t’ ∈ T satisfied that ∃ pr ∈ Rp s.t. t = pr.PRE_TASK and t’ = pr.NEXT_TASK

 set Rp(t,t’) = {pr| t = pr.PRE_TASK and t’=pr.NEXT_TASK}

 if ∃ Pr1, Pr2 in Rp(t,t’) s.t. pr1.CONDITION∧ pr2.CONDITION = pr1.CONDITION

 print “procedural rule pr2 is duplicated with procedural rule pr1”

B.6. STABILITY

Given a set of rule frames, Ru={Rp, Rr},

For each t ∈ T,

 Set Rp(t) = {pr|pr.PRE_TASK = t}

 For each pair pr1, pr2 in Rp(t),

 If pr1.CONDITION ∧ pr2.CONDITION = NULL,

 Print ”The two procedural rule pr1 and pr2 may infer conflicting hypothese” (?)

144

Appendix C. Algorithms that generate dependencies between frames in
 KWM.

C.1. DEPENDENT

If IS_A(o1,o2), then Add Dependent(o1,o2).
If SUBPART_OF(o1,o2), then Add Dependent(o1,o2).
If user_defined_rel(o1,o2), then Add Dependent(o1,o2) and Dependent(o2,o1).

C.2. XOR-FIRING

Given a set of rule frmes, Ru = {Rp, Rr},
set Rp(t1) = {pr∈ Rp| pr.PRE_TASK = t1}
 for each pr1∈ Rp(t1),

set O(pr1) = {o | o is an object whose domain is restricted in pr1.CONDITION}
set Rp(pr1) = {pr | pr∈ Rp(t1), O(pr)=O(pr1), where O(pr) is defined as similar with O(pr1)}
set XOR(pr1) = {pr1}
for each pr∈ Rp(pr1),

pr ∧ (∧ pri∈ XOR(pr1)pri.CONDITION) = ∅
pr∈ XOR(pr1)
if (∨ pri∈ XOR(pr1)pri.CONDITION = Xoi∈ O(pr1)dom(Oi))

exit
 if ∨ pri∈ XOR(pr1)pri.CONDITION = Xoi∈ O(pr1)dom(Oi)

Add predicate XOR-firing(pr1, pr2, …, prn) for all pr1, pr2, … , prn ∈ XOR(pr1)

C.3. AND-FIRING

Given a set of rule frmes, Ru = {Rp, Rr},
for each t ∈ T satisfied that ∃ pr ∈ Rp s.t. pr.PRE_TASK = t
 set Rp(t) = {pr∈ Rp| pr.PRE_TASK = t }
 for each pair pr1 and pr2 in Rp(t1),
 if pr1.CONDITION = pr2.CONDITION,
 add AND-firing(pr1,pr2)

C.4. PRECEDENCE

For each pr∈ Rp,
 if pr.PRE_TASK = t1, pr.NEXT_TASK = t2, add Precedence(t1,t2,pr)

145

C.5. ROLE-CHARGE

For each rr ∈ Rr,
 if rr.ROLE = ro, add Role-charge(ro,rr)

146

Appendix D. CLIPS source codes for frames in business trip approval

 workflow.

D.1 Entity & Relationship Frames

(deftemplate WF_DomTripMaster
 (field Form_No (type NUMBER))
 (field Writer_Id (type NUMBER))
 (field Writer_Name (type STRING))
 (field Theme (type STRING))
 (field Submit_Date (type STRING))
 (field Start_Date (type STRING))
 (field End_Date (type STRING))
 (field Duration (type NUMBER))
 (field Purpose (type STRING))
 (field Status (type NUMBER))
 (field Total_Cost (type NUMBER))
 (field Control_No (type NUMBER))
 (field Comment (type STRING)))

(deftemplate WF_DomTripTraveller
 (field Form_No (type NUMBER))
 (field T_Id (type NUMBER))
 (field T_Name (type STRING))
 (field T_Type (type NUMBER))
 (field T_Position (type NUMBER))
 (field T_Department (type NUMBER))
 (field T_Class (type NUMBER))
 (field A_Id (type NUMBER))
 (field A_Name (type STRING)))

147

(deftemplate WF_DomTripAccount
 (field Form_No (type NUMBER))
 (field Account_No (type STRING))
 (field Account_Name (type STRING))
 (field Account_Type (type NUMBER))
 (field Account_Own_Id (type NUMBER))
 (field Account_Own_Name (type STRING))
 (field Item_Id (type STRING))
 (field Total_Cost (type NUMBER))
 (field Control_No (type NUMBER)))

(deftemplate Department
 (field dept_id (type NUMBER))
 (field parent (type NUMBER))
 (field mnger_pos (type NUMBER)))

(deftemplate w_dept_gyohak
 (field dept_id (type NUMBER))
 (field gyohak_id (type NUMBER)))

(deftemplate w_acti_charge
 (field task_no (type NUMBER))
 (field dept_id (type NUMBER))
 (field worker_id (type NUMBER)))

(deftemplate WorkFor
 (field actor_id (type NUMBER))
 (field dept_id (type NUMBER))
 (field position (type NUMBER)))

(deftemplate Task
(field pretask_no (type NUMBER))
(field task_no (type NUMBER))

148

(field state (type STRING)))

(deftemplate ActorMapping
(field pretask_no (type NUMBER))
(field task_no (type NUMBER))
(field actor_id (type NUMBER)))

149

D.2 Source Codes for Procedural-Rule Frames

;;
;; exception handling for delegator's travel
;;
(defrule undefrule-for-delegated-employee

(declare (salience 200))
(WF_DomTripTraveller (T_Id ?t-id))
(WorkFor (actor_id ?t-id)(outside "y"))
=>
(undefrule from-traveller-to-account)
(undefrule from-account-to-department)
(undefrule from-account-to-supervisor)
(undefrule from-supervisor-to-auditor)
(undefrule from-supervisor-to-controller)
(load "./wfdef/exception100-1.clp"))

;;
;; Routing rules for normal workflow instances
;;
(defrule from-kian-to-traveller
 (Task (task_no 1)(state "completed"))
 (WF_DomTripTraveller (A_Id ?agent))
 (test (= ?agent 0))
 =>
 (assert (Task (pretask_no 1)(task_no 3)(state "completed"))))
(defrule from-kian-to-agent

(declare (salience 100))
 (Task (task_no 1)(state "completed"))
 (WF_DomTripTraveller (A_Id ?agent))
 (test (<> ?agent 0))
 =>

(undefrule from-kian-to-traveller)
 (assert (Task (pretask_no 1)(task_no 2)(state "completed"))))

150

(defrule from-agent-to-traveller
 (Task (task_no 2)(state "completed"))
 =>
 (assert (Task (pretask_no 2)(task_no 3)(state "completed"))))
(defrule from-traveller-to-account
 (Task (task_no 3)(state "completed"))
 =>
 (assert (Task (pretask_no 3)(task_no 4)(state "completed"))))
(defrule from-account-to-department
 (Task (task_no 4)(state "completed"))

(WF_DomTripTraveller (T_Department ?d_id))
 (w_acti_charge (task_no 5)(dept_id ?d_id))
 =>
 (assert (Task (pretask_no 4)(task_no 5)(state "completed"))))
(defrule from-account-to-supervisor
 (Task (task_no 4)(state "completed"))

(WF_DomTripTraveller (T_Department ?d_id))
 (not (w_acti_charge (task_no 5)(dept_id ?d_id)))
 =>
 (assert (Task (pretask_no 4)(task_no 6)(state "completed"))))
(defrule from-department-to-supervisor
 (Task (task_no 5)(state "completed"))
 =>
 (assert (Task (pretask_no 5)(task_no 6)(state "completed"))))
(defrule from-supervisor-to-auditor
 (Task (task_no 6)(state "completed"))
 (WF_DomTripMaster (Duration ?dur))
 (test (>= ?dur 7))
 =>
 (assert (Task (pretask_no 6)(task_no 7)(state "completed"))))
(defrule from-auditor-to-controller
 (Task (task_no 7)(state "completed"))
 =>

151

 (assert (Task (pretask_no 7)(task_no 8)(state "completed"))))
(defrule from-supervisor-to-controller
 (Task (task_no 6)(state "completed"))
 (WF_DomTripMaster (Duration ?dur))
 (test (< ?dur 7))
 =>
 (assert (Task (pretask_no 6)(task_no 8)(state "completed"))))
(defrule from-controller-to-personel-end
 (Task (task_no 8)(state "completed"))
 =>
 (assert (Task (pretask_no 8)(task_no 9)(state "completed")))
 (assert (Task (pretask_no 8)(task_no 0)(state "completed"))))
(defrule from-personel-to-end
 (Task (task_no 9)(state "completed"))
 =>
 (assert (Task (pretask_no 9)(task_no 0)(state "completed"))))

152

D.3 Source Codes for Responsibility-Rule Frames

(defrule find-taskagent
 (Task (pretask_no ?pr_task)(task_no 2)(state "completed"))
 (WF_DomTripTraveller (T_Id ?u_id) (A_Id ?agent_id))

(test (<> ?agent_id 0))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 2)(actor_id ?agent_id))))
(defrule find-trveller
 (Task (pretask_no ?pr_task)(task_no 3)(state "completed"))
 (WF_DomTripTraveller (T_Id ?traveler_id)(A_Id ?agent_id))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 3)(actor_id ?traveler_id))))
(defrule find-accountowner
 (Task (pretask_no ?pr_task)(task_no 4)(state "completed"))
 (WF_DomTripAccount (Account_Own_Id ?owner_id))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 4)(actor_id ?owner_id))))
(defrule find-department-officer
 (Task (pretask_no ?pr_task)(task_no 9)(state "completed"))
 (WF_DomTripTripTraveller (T_Department ?dept_id))

(w_acti_charge (task_no 9)(dept_id ?dept_id)(worker_id ?officer_id))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 9)(actor_id ?officer_id))))
(defrule find-supervisor
 (Task (pretask_no ?pr_task)(task_no 5)(state "completed"))
 (WF_DomTripTraveller (T_Id ?t_id)(T_Department ?dept))
 (Department (dept_id ?dept)(mnger_pos ?m-pos))
 (WorkFor (dept_id ?dept)(actor_id ?supervisor_id)(position ?m-pos))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 5)(actor_id ?supervisor_id)))
 (assert (traveler ?t_id ?dept)))
(defrule manager's-supervisor

153

 (declare (salience 5))
 ?f1<-(ActorMapping (pretask_no ?pr_task)(task_no 5)(actor_id ?supervisor_id))
 ?f2<-(traveler ?supervisor_id ?dept)
 (Department (dept_id ?dept)(parent ?sup_dept))
 (Department (dept_id ?sup_dept)(mnger_pos ?sm_pos))
 (WorkFor (dept_id ?dept)(actor_id ?sm_id)(position ?sm_pos))
 =>
 (retract ?f1 ?f2)
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 5)(actor_id ?sm_id))))
 (defrule president-of-KAIST
 (declare (salience 10))
 (Task (pretask_no ?pr_task)(task_no 5)(state "completed"))
 (WF_DomTripTraveller (T_Id ?president_id))
 (WorkFor (actor_id ?president_id)(position 100))
 =>

(undefrule find-supervisor)
(assert (ActorMapping (pretask_no ?pr_task)(task_no 5)(actor_id ?president_id))))

(defrule find-auditor
 (Task (pretask_no ?pr_task)(task_no 6)(state "completed"))
 (w_acti_charge (dept_id 2003)(task_no 6)(worker_id ?auditor_id))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 6)(actor_id ?auditor_id))))
 (defrule find-account-controller-gyohak
 (declare (salience 100))
 (Task (pretask_no ?pr_task)(task_no 7)(state "completed"))
 (WF_DomTripTraveller (T_Department ?dept))
 (w_dept_gyohak (dept_id ?dept)(gyohak_id ?gyohak))
 (w_acti_charge (dept_id ?gyohak)(task_no 7)(worker_id ?controller_id))
 =>

(undefrule find-account-controller-jaemoo)
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 7)(actor_id ?controller_id))))
(defrule find-account-controller-jaemoo
 (declare (salience 10))

154

 (Task (pretask_no ?pr_task)(task_no 7)(state "completed"))
 (w_acti_charge (dept_id 2093)(task_no 7)(worker_id ?controller_id))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 7)(actor_id ?controller_id))))
 (defrule find-personel
 (Task (pretask_no ?pr_task)(task_no 8)(state "completed"))
 (w_acti_charge (dept_id 2102)(task_no 8)(worker_id ?personel_id))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 8)(actor_id ?personel_id))))
(defrule find-final
 (Task (pretask_no ?pr_task)(task_no 0)(state "completed"))
 =>
 (assert (ActorMapping (pretask_no ?pr_task)(task_no 0)(actor_id 0))))

