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1. Introduction

An important technical problem associated with the
design, development and testing of vehicle subsystems
is the definition of the operating conditions faced in use.
Determining vibration missions is critical in the field of
automotive NVH because numerous components are
nonlinear, providing different vibratory behaviour
depending on the nature of the input excitation used. An
example of a nonlinear vehicle component is the person/
seat system. Seat transmissibility measurements in the
vertical direction typically show a softening system
behaviour, with the principal resonance shifting to lower
frequencies as the excitation amplitude at the base of
the seat rises [4]. Industrial testing methods such as
those applied to seats often work around the problem of
nonlinearity by using several test signals [3], each one
selected to represent a specific road surface which was
found through experience to excite important vehicle and
subsystem resonances. Determining these mission
signals has often been a matter of trial and error.

In the durability field, several algorithms are now available
to analyse road data for the purpose of synthesising
excitation signals for fatigue testing [9-10,16-17].
Concepts such as rainflow counting, or techniques based
on the Wiebull distribution have been successfully
applied. No such algorithms have been developed,
however, for the purpose of NVH testing or for the human
comfort testing. This paper describes an algorithm
developed for performing vibration mission synthesis of
mildly nonstationary signals. The algorithm is based on
the use of the Discrete Fourier Transform (DFT), the
Orthogonal Wavelet Transform (OWT) and peak
correcting techniques. The software provides short data
segments, or mission signals, which are representative
of the original road data record in several statistical
metrics including: power spectral density, probability
density function, Crest Factor and Kurtosis. Crest Factor
control with consideration of the Kurtosis value provides
realistic signal sequences for seat comfort testing due
to the close correspondence between these statistics

and methods used for evaluating human comfort such
as the vibration dose value (VDV) [6].

2. Classification of Road Data

The vibration mission synthesis algorithm described in
this paper was developed as part of a research project
[1] which has the objective of defining an experimental
procedure for the comfort testing of automotive seats.
Several EU manufacturers of automobiles, industrial
vehicles and seating systems are members of the project
consortium. Four manufacturers (2 automobile and 2
industrial vehicle) furnished data measured on their most
frequently used NVH proving ground circuits. The
experimental data consisted of vertical acceleration time
histories measured at the rear mounting bolt of the outer
guide of the driver’s seat. One particularly large data set
consisted of measurements from 11 different test tracks
of five types: speed circuit surface, highway surface, good
road surface, country road surface and pavé surface.
Each time history represented steady-state vehicle
motion of more than one minute when the driver kept
the vehicle speed constant. All data was sampled at a
rate of 409.6 Hz. Data from the 11 surface set was used
to investigate the nature of the induced vibration, and
was used during development of the algorithm described
in this paper.

Classical methods of vibration mission synthesis typically
assume that the measured data is both stationary and
Gaussian. By stationary, it is meant that the various
statistical measures of the data do not change within
the system response t imes, and within the time
necessary for a good statistical sample. By Gaussian, it
is meant that the data can be accurately modelled using
the well know Gaussian probability distribution function.
Stationary Gaussian processes are completely described
by their Power Spectral Density (PSD) which
characterises the distribution of vibrational energy in the
frequency domain. Numerous classical mission synthesis
methods work in the frequency domain to summarise a
signal, then invert with various phase angle combinations
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to produce short time histories for laboratory testing
purposes. The overall energy content of the vibration data
is typically quantified by calculating the Root-Mean-
Square (RMS) value of the signal, which for a zero mean
process can be expressed as
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When deviations from Gaussian behaviour are expected,
three statistics are often used to describe the extent of
deviation from a Gaussian stationary model. The first
statistic is the signal skewness, which is defined as the
average of the instantaneous vibration values x(j∆t)
cubed. For a zero mean process, the skewness can be
expressed as
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A second statistic often used to quantify the deviation
from a Guassian stationary model is the Kurtosis, which
is the fourth normalised spectral moment. The Kurtosis
is highly sensit ive to outlying data among the
instantaneous values. For a zero mean process, the
Kurtosis can be expressed as
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A third statistic is the Crest Factor, CF, which is defined
to be the ratio between the maximum value found in the
time history and the RMS value. For a Gaussian
stationary process, the skewness calculated from the
vibration data should be close to zero (λ = 0), while the
Kurtosis should result close to three (γ = 3.0) and the
Crest Factor should normally be in the range 3.5 < CF < 4.0.

Preliminary analysis of the data from the 11 road surfaces

showed that only 2 of the 11 could be considered
stationary Gaussian random processes. An example of
the data from one of the road surfaces which could be
considered both stationary and Gaussian is presented
in part (a) of Figure 1. The 9 remaining data records
failed to match the Gaussian stationary model. Two data
records presented strongly nonstationary behaviour, as
shown in the example of part (b) of Figure 1. Such heavily
nonstationary signals are best described as containing
one or more large transient events. Their frequency
content, RMS and mean values vary over time. The
remaining 7 proving ground road surfaces were
intermediate situations, between the purely stationary
random and the purely transient. For the purposes of
this paper, such surfaces have been classified as mildly
nonstationary vibration. Mildly nonstationary vibration is
taken in this paper to mean a random vibration process
with stable mean and RMS values for most of the record,
but containing a few high peaks due to short duration
transients. The high peaks correspond to bump events
which occur when the vehicle moves over a considerable
road irregularity such as a pot-hole. An example of a
vibration signal obtained from a mildly nonstationary road
surface is presented in part (c) of Figure 1, where it can
be seen that the high peaks are reflected in the signal
statistics by an increase of Kurtosis to  γ = 3.23 and
Crest Factor up to CF = 5.9 in value.

3. Mildly Nonstationary Mission Synthesis (MNMS)

Vibration mission synthesis for road surfaces which
produce large shocks or transients is quite difficult, and
is the subject of ongoing research. This paper describes,
instead, an algorithm [5] developed for the purpose of
synthesising mission signals for mildly nonstationary road
surfaces, the most numerous class found in the proving
ground data. The Mildly Nonstationary Mission Synthesis
algorithm (MNMS) represents one approach to the
problem. It is based on well known signal processing
algorithms and the use of simple peak correcting. The
signal processing algorithms used are: the Discrete
Fourier Transform (DFT), the Orthogonal Wavelet
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0 20 40 60 Time [s]

a) stationary Gaussian signal with  λ = 0.04, γ = 3.04, CF = 5.9 (Highway Surface)

0 20 40 60 Time [s]

b) heavily nonstationary signal  (Good Surface with a Climb)

0 20 40 60 Time [s]

c) mildly nonstationary signal with λ = 0.01, γ = 3.23, CF = 5.9 (Speed Circuit Surface)

Figure 1. Examples of seat guide vertical acceleration data produced by three different road surfaces.

Transform and correlation functions. The application-
specific heuristics include: grouping of wavelet levels,
counting of bump events, Crest Factor control and
Kurtosis monitoring. The algorithm consists of three
processing stages:

• application of the Discrete Fourier Transform to the
road data, and use of the resulting spectra to
construct a short artificial basis signal which has the
same power spectral density as the prescribed road
data;

• application of the Orthogonal Wavelet Transform to
the road data, and grouping of wavelet levels into a
small number of filter banks which subdivide the
vibrational energy;

• counting of bump events for each wavelet group in
both the original road data and the artificial Fourier
basis signal, and peak correction of the basis signal
to introduce needed bump events into selected
wavelet groups.

An algorithm for mildly nonstationary mission synthesis (MNMS)
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3.1 MNMS Processing Stage 1

In the first stage, traditional Fourier analysis is applied to
the data to determine the overall Power Spectral Density
function. Each frequency line in the obtained PSD is
characterised by an amplitude

)(2 fkSfAk ∆∆=

where S(f) is the underlying power spectral density of
the Gaussian signal and  k ∆f  is the frequency of the
harmonic in question. The amplitudes  Ak  are then used
to generate a short artificial signal which serves as the
basis for constructing the vibration mission signal. The
time history of the short artificial basis signal is calculated
from a Fourier expansion with a large number N of
harmonics
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with phase angles  ϕκ chosen in a random manner, in
line with the traditional assumption of stationary Gaussian
behaviour. Constructing a short summary signal by
means of Fourier techniques is a basic procedure [11]
traditionally used in digital random controllers for shakers
and similar test benches [17]. The approach guarantees
that the short test signal reproduces precisely the PSD
of road data prescribed.

3.2 MNMS Processing Stage 2

The first procedure of Stage 2 performs an Orthogonal
Wavelet Transform [2,7,8] of the road data. Previous
research [12-15] has shown that signal analysis and
synthesis is greatly facilitated if the original vibration time
history is first decomposed by means of the OWT.
Wavelets are mathematical functions  ψ(t)  which are
used to decompose a signal  x(t)  into scaled wavelet
co-coefficients  Wψ(a,b).  The continuous wavelet

transform is a time-scale method which can be expressed
as
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where  ψa,b(t)  are the scaled wavelets and  ψ*  the
complex conjugate of ψ.  The basis wavelet  ψ(t)  can be
any of a number of functions which satisfy a set of
admissibility conditions [7]. A natural extension of
continuous analysis is a discretisation of time  b  and
scale  a  according to  a = a0m, b = n a0

n b0 where  m
and  n  are integers, b0 ≠ 0  is the translation step. This
implies the construction of a time-scale grid, and thus a
Discrete Wavelet Transform can be defined by

( )dtnbtaatxnmW mm

00
2

0 ,)(),( −ψ= −∗−
∞

∞−
ψ ∫      (6)

When the wavelets ψm,n(t)  form a set of orthonormal
functions, there is no redundancy in the analysis. The
discrete wavelet transform based on such wavelet
functions is called the Orthogonal Wavelet Transform.
These transforms are particularly convenient in damage
detection and other feature selection applications, and
have thus been adopted as a basic component of the
algorithm described in this paper. The algorithm makes
use of wavelet levels, which are reconstructed signals
from the wavelet decomposition for a given value of scale
a0

-m.  Twelfth order Daubechies wavelets have been
used in the analysis performed to date. Results from a
country road surface are presented in the Figures 2, 3,
4, 5 and 8 of this paper to illustrate the MNMS procedure.
For the 30,000 data points and 409.6 Hz sampling rate
of the country road surface, 15 wavelet levels were
defined which were counted in the direction from high to
low frequencies.

The coefficients from the transform are used to construct
an individual time history for each wavelet level. This is
equivalent to using the wavelet transform as a filter bank,
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dividing the vibrational energy among the levels. To further
aid the identification of bump events in the data, a
grouping stage was introduced to permit the user to group
levels to cover frequency bands of particular interest.
For example, in the case of automobiles, a low frequency
band up to 3 Hz can be defined which contains all the
rigid body resonances of the chassis on the suspensions.
For automobiles, higher frequency bands containing
predominately suspension modes, chassis modes or tyre
modes can also be defined by grouping the wavelet levels
which cover the relevant resonance frequencies. The
procedure of grouping wavelet levels into application
specific bands is helpful in that it becomes less likely
that vibrational energy from one subsystem resonance
covers that of others during analysis.

Figure 2 presents an example of the wavelet grouping
procedure. The vibration signal is from an accelerometer
aligned with the vertical direction, placed over the outer
rear mounting bolt of the seat guide of the driver’s seat.
The measurement was performed during driving over
the country road test track at a constant speed of 90
km/h. The vibrational energy from 0 to 60 Hz covered 15
wavelet levels, which were grouped according to the
natural energy distribution (in frequency) of the signal
into four wavelet groups labelled 1 to 4. The wavelet
coefficients from the levels contained in each group were
used to construct a time history for each group. The time
signals from wavelet groups 2 and 1 are presented, along
with the complete original t ime history of the
measurement in Figure 3. The selective filtering provided
by the wavelet groups separates the vibrational
phenomena, and the behaviours of the different wavelet
groups are typically quite different in accordance with
the subsystems whose resonances fall within the
frequency band considered. In the data segment shown
in Figure 3, wavelet group 2 is relatively free of bump
events while wavelet group 1 presents a sharp bump
event in the neighbourhood of .45 seconds. Comparison
of the wavelet group 2 and 1 time histories to the overall
signal suggests that the level 1 bump event would have
been difficult to identify without wavelet filtering of the

original signal.

3.3 MNMS Processing Stage 3

When Fourier based techniques are used for mission
synthesis, the Power Spectral Density of the original data
is preserved in the mission signal, but deviations from
the Gaussian stationary model are normally lost. Figure
4 illustrates this situation by presenting the wavelet group
2 and 1 time histories for the road data and for a Fourier
synthesised signal of the same PSD and time extent.
Wavelet group 2 is similar for both the road data and the
synthetic Fourier signal, but the situation is different for
wavelet group 1, where the road data has more than
twice the number of high amplitude bump events as the
synthetic signal. Figure 5 further highlights the differences
by presenting the tails of the Probability Density Functions
(PDFs) for the wavelet group 2 and 1 times histories.
From Figure 5 it can be seen that the mildly nonstationary
road data of the country road surface produced a wider
PDF function than the standard Gaussian model of the
synthetic Fourier data. Accurate construction of short
mission signals requires that the high valued bump events
of the road data be introduced into the synthetic Fourier
signals. Stage 3 of the MNMS procedure consists of
routines for counting bump events for each wavelet group
in both the original road data and the synthetic Fourier
signal, and peak correction of the artificial basis signal
to introduce needed bump events.

In stage 3 each wavelet group of the road data is analysed
separately to locate and count all bump events. For the
purpose of the MNMS, bump events are defined as high
amplitude transient events which can cause the overall
time history to deviate from a stationary gaussian model.
Formally, a point is considered a bump event if the road
data signal is at a local maximum or minimum, and the
wavelet group time history exceeds a prescribed value
which is unlikely to be reached often if the data follows a
stationary gaussian model. Experience suggested that
this boundary value could be conveniently expressed as
a Crest Factor of 3.5. In the MNMS, the number of bump
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Figure 2. Example of the wavelet grouping procedure
applied to the seat guide vertical acceleration data.

The wavelet levels in the frequency range from 0 to 60
Hz were organised into 4 groups.

Figure 3. Example of the orthogonal wavelet
decomposition of the seat guide acceleration time

histories. The time signals of wavelet groups 2 and 1
are compared with the overall time history.

events in the road data and in the synthetic Fourier data
are compared for each wavelet group to decide whether
the Fourier data is an accurate representation of the
original data, or if it is necessary to introduce bump events
to correct the time histories.

Table 1 presents the number of bump events (CF ≥ 3.5)
counted in the road data and in the synthetic Fourier
data for all four wavelet groups of vertical seat guide

acceleration for the country road surface for 12 minutes
of data measured at 90 km/h. Wavelet groups 2 and 4
are similar in both the original road data and in the
synthetic Fourier representation, but groups 1 and 3
present significant deviations from a Gaussian stationary
model, which requires the introduction of bump events
to produce a representative mission signal.

In the MNMS procedure, needed bump events from a
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Figure 5.  Examples of the PDF tails for the original road data (- - -) and for the synthetic Fourier basis signal
(______) for wavelet groups 2 and 1

Wavelet  Group  Number 1 2 3 4

number of bump events in road data 365 122 151 15

number of bump events in Fourier signal 150 78 51 14

ratio of the above two lines (rounded off) 2.5 1.5 3.0 1.0

Table 1.  Bump event count (CF ≥ 3.5) for the automobile seat guide vertical acceleration data from the country
road test track

wavelet group of the original road data are introduced
into the same wavelet group of the synthetic Fourier signal
with minimum disturbance to the latter. The events found
in all automobile road data analysed were found to consist
of rapid transients which oscillated for two or more cycles
before becoming lost in the background vibration. The
events were found to take some time to develop from
the background vibration and, then, to be accompanied
by a decay process which depended on the level of

system damping. Thus it was decided to introduce several
cycles of the bump event into the synthetic signal, both
preceding the peak value and subsequent to it.

If all bump events extracted from long road data record
were introduced into the short mission signal, the
correction would be excessive, and the final mission signal
would deviate from the original data in several statistics.
It was therefore decided to introduce a number of bump
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events selected to be in direct proportion to the signal
compression ratio. During the process of bump event
counting, a ranking based on the size of the maximum
peak value is performed for the events found in the
particular wavelet group of the original road data. All
identified bumps are ranked in descending order
according their peak value. Having ranked all bump
events, and having specified a compression ratio of n,
bump events are selected by moving down the ranking
list with a step equal to n. In so doing, bump events of
various intensities appear in the mission signal (corrected
synthetic signal). Each of them will be also a
representative of (n-1) other bumps of close height not
included into the vibration mission. Closeness of road
and mission statistical characteristics is ensured by the
fact that probability of appearance of a particular bump
existing in the vibration mission is equal to the probability
of appearance of n bumps of similar height in the road
record which is n-times longer than the vibration mission.

In order to reduce the impact of bump correction on the
PSD of the synthetic Fourier basis signal, each selected
bump event is introduced at a location in time where the
synthetic signal most closely resembles the bump event.
This location is determined by means of a correlation
procedure in which the bump event is moved along the
whole time history of the synthetic signal and compared
with it in terms of root-mean-square difference at each
position. The root-mean-square difference is computed
as
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Where  M  is the number of data points of the bump
event. The point with the lowest RMS difference (highest
correlation) is selected as the insertion point, and the
bump event of time extent  M ∆t  then substitutes the
similar event of time extent  M ∆t   of the synthetic signal.
When all required bump events are introduced, the

synthetic Fourier signal can be considered to be upgraded
to mission signal status, and the total sum of all wavelet
group time histories produces the final mission signal.
Selection by the user of a large compression ratio can
make it difficult for the algorithm to provide an optimal
mission signal, therefore the MNMS procedure produces
at the end of each run not just the mission time history,
but also the PSD plots, Crest Factor values, RMS values
and Kurtosis values for each wavelet level of both the
original road data and the mission signal for comparison
purposes. If significant deviations occur in any of the
metrics due to an unfavourable combination of phase
angles during Fourier signal generation, and MNMS
algorithm can be re-launched to attempt to achieve a
more favourable result.

4 Mission Synthesis Results

Figures 6 and 7 present the flow chart for the complete
MNMS algorithm in its current form. Operations listed
as user inputs are either performed directly from terminal
or inputted by means of a parameter file. The program is
currently written in Fortran, and runs on DOS compatible
PCs. Figure 8 presents the PSDs of the mission signals
obtained for the seat guide vertical acceleration data of
the country road surface at 90 km/h using compression
ratios of 1, 2, 4 and 8. The PSDs at all compression
ratios are close to those of the original data, and well
within the variance of the PSD estimate itself. The
Kurtosis value of each wavelet group of the final mission
signal is within +/- 7% of the corresponding wavelet group
in the road data. The results obtained for the country
road surface are representative of the MNMS results
obtained for other data sets, and can thus be considered
typical. The MNMS algorithm introduced nonstationary
bump events into the data to correct the high amplitude
characteristics of the signal, while at the same time
maintaining the overall spectral characteristics. The run
times for the 4 compression ratios illustrated (1, 2, 4 and
8) were 24 minutes, 12 minutes, 6 minutes and 3 minutes
respectively.



input and display road vibration time history

calculation of PSD of road data
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time compression
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user decides if the PSD of the
synthetic signal is precise
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perform grouping of wavelet levels

check if all wavelet
levels are done

return and
repeat for

next wavelet
level

wavelet decomposition of road and synthetic signals

yes

no

yes

Figure 6.  Flow-chart of MNMS algorithm (Fourier
generation and wavelet grouping)

Whilst the MNMS algorithm has been found to be robust
over all the data sets analysed to date, the statistical
properties of the final mission signal are checked for
deviations from the originally prescribed road data. Two
possible sources of error in the final signal statistics are:

• inaccurate determination of the mission signal PDF
at high compression ratios due to the small number
of data points involved;

• Crest Factor and/or Kurtosis differences due to lack
of bump event co-ordination across wavelet levels.

The first point is relative to the process of comparing an
obtained mission signal to the original road data. As the
compression ratio requested by the user increases, the
time extent of the final mission signal is reduced. Cases
have been observed where the time extent of the mission
signal is very short, thus including very few bump events.
The accuracy of the estimated probability density function
tails is reduced in such cases due to the small number
of data points involved. This sampling problem is
unavoidable when large compression ratios are chosen
in conjunction with a short road data record. When this
situation occurs, the differences in the PDF tails between
the originally prescribed data and the mission signal
cannot be accurately evaluated.

The second point is a procedural issue which is the
subject of further investigation. The MNMS algorithm in
its current form performs all operations on a wavelet group
by wavelet group basis. The corrections assume
independence of the signal properties of each wavelet
group, which is not rigorously the case when vehicle
resonances fall in more than one wavelet group. Mission
signals synthesised to date have corresponded closely
in their statistics to the prescribed road data time
histories. Nevertheless, MNMS results are being
monitored to identify any future cases where the
assumption of wavelet group independence causes the
mission signal quality to degrade.
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calculate and display RMS, PSD, Crest Factor and Kurtosis of
both synthetic and original signals

construction of final synthetic signal by adding contributions of
corrected and non-corrected wavelet groups

stop
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check if all wavelet
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no
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Figure 7.  Flow chart of MNMS algorithm (bump
extraction and synthetic signal correction)

5. Conclusions

Examination of experimentally measured vibration data
from the most commonly used test tracks of a major
European manufacturer of automobiles showed that the
records could be grouped into three categories: stationary
Gaussian vibration, heavily nonstationary vibration and
mildly nonstationary vibration. The final category, that of
mildly nonstationary vibration, was the most common
case found in the proving ground data, accounting for 7
of the 11 surfaces analysed. The Mildly Nonstationary
Mission synthesis algorithm (MNMS) represents one
possible method of summarising such vibration records
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Figure 8.  PSD comparison between the final mission
signals (- - -) for the seat guide vertical acceleration
data and the original road data (___).  Compression

ratios of 1, 2, 4 and 8 are presented.

so as to obtain a short mission signal which can be used

for experimental or numerical testing purposes.

The MNMS algorithm uses the Discrete Fourier
Transform, the Orthogonal Wavelet Transform with the
12th order Daubechies wavelet, a wavelet grouping
procedure, a bump counting procedure and peak
correction with Crest Factor control to condense
experimentally measured vibration data into short test



sequences. The mission signals obtained are
representative of the original data record in terms of PSD,
Crest Factor and Kurtosis value. Compression ratios of
up to 8 have been achieved for seat guide vertical
accelerat ion data from automobiles, without
compromising the statistical quality of the resulting
mission signal. Research is continuing to establish what
average, and what maximum compression ratios can be
achieved for data from automobiles, vans and heavy
lorries.

Two areas requiring attention on the part of the user have
been defined. The first regards the problem of comparing
the obtained mission signal to the original road data when
the road data record is very short, or the required
compression ratio is very high. In such cases, one or
both of the signals is short in duration, thus it is not
possible to perform an accurate PDF comparison due to
the small number of data points in the sample. The
second area requiring attention is the lack of coordination
between wavelet groups. There is a potential risk of
mission signal degradation in the presence of closely
spaced modes of vibration which simultaneously effect
more than one wavelet group. While potentially of
concern, there has been little evidence of mission signal
degradation in the results obtained to date.

Future research will add a classification stage to the
MNMS algorithm to analyse the structure of each bump
event and to cluster bump vectors so as to provide a
complete documentation of the road features.
Classification is expected to be achieved by means of
non-linear principal components analysis or a neural
clustering network. The combination of event analysis
and mission synthesis would serve as an intelligent black-
box recorder for testing and monitoring applications.

Acknowledgements

The research described in this paper was financed by
the European Commission as part of the activities of
Brite-Euram Project BE-97-4186 SCOOP “Seat Comfort

Optimisation Procedure”. The authors would like to
express their gratitude to Dr. Mohamed Karouia of
Renault Technocentre for providing the experimental data
and for aiding in data interpretation.

References

[1] Cavallo, C. and Giovannini, I 1999, A new seat
vibrational comfort testing procedure: outline of the
on going BRITE “SCOOP” (Seat Comfort
Optimisation Procedure) research project, ATA 6th

Int. Conf. on The New Role of Experimentation in
the Automotive Product Development Process, 17-
19 November, Florence, Italy.

[2] Daubechies, I. 1992, Ten lectures on wavelets, SIAM,
Philadelphia, PA.

[3] Giacomin J. and Bracco R. 1995, An experimental
approach for the vibration optimisation of automotive
seats, ATA 3rd Int. Conf. on Vehicle Comfort and
Ergonomics, Bologna, Italy, March 29-31.

[4] Giacomin, J., Scarpa, F. and Caretto, L. 1998, Some
observations regarding the nonlinearity of person/
seat frequency response functions, Int. Conf. on
Noise and Vibration Eng. (ISMA 23), Leuven,
Belgium, Sept. 16-18.

[5] Giacomin, J., Steinwolf, A. and Staszewski, W.J.
1999, A vibration mission synthesis algorithm for
mildly nonstationary road data, ATA 6th Int. Conf. on
The New Role of Experimentation in the Modern
Automotive Product Development Process, 17-19
Nov., Florence, Italy.

[6] Griffin, M.J. 1990, Handbook of human vibration,
Academic Press, London.

[7] Meyer, Y. 1993, Wavelets, algorithms & applications,
SIAM, Philadelphia, PA.

[8] Newland, D.E. 1993, Random vibration, spectral and
wavelet analysis, 3rd edition, Longman, Harlow and
John Wiley, New York.

[9] Raath, A.D. 1993, Service load simulation testing
in the time domain, Environmental Engineering,
September, pp. 8-16.

[10] Sherratt, F and Bishop, N.W.M. 1990, Using recent

55



improvements in frequency-domain signal analysis
to achieve better fatigue testing, Proceedings of the
2nd International Conference of the Engineering
Integrity Society, Birmingham, March 20-22, pp. 97-
108.

[11] Shinozuka, M. and Jan C.-M., 1972, Digital
simulation of random processes and its applications,
Journal of Sound and Vibration, Vol. 25, pp. 111-
128.

[12] Staszewski, W.J. “Wavelets for Mechanical and
Structural Damage Identification”, The Archive of
Mechanical Engineering. Polish Academy of
Sciences”, Wiedza i Zycie, Warsaw. (In Press).

[13] Staszewski, W.J. 1998, Wavelet based compression
and feature selection for vibration analysis, Journal
of Sound and Vibration, Vol. 211, No. 5, pp. 735-
760.

[14] Staszewski, W.J. 1997, Identification of damping in

An algorithm for mildly nonstationary mission synthesis (MNMS)

56

MDOF systems using time-scale decomposition,
Journal of Sound and Vibration, Vol. 203, pp 283-
305.

[15] Staszewski, W.J. and Giacomin, J. 1997, Application
of the wavelet based FRF’s to the analysis of
nonstationary vehicle vibration, 15th Int. Modal
Analysis Conf. IMAC, Orlando Florida, U.S.A., Feb 3-6.

[16] Steinwolf, A. and Maximovich, G.V. 1987, Evaluation
of fatigue longevity with allowance for kurtosis of
instantaneous-value distribution in narrowband
random loading, Soviet Machine Science, Allerton
Press, New York, No. 3, pp 37-47.

[17] Vandeurzen, U., Leuridan, J., Mergeay, M. 1988,
Versatile computer workstation for multiple input/
output structural testing and analysis, Proc. of 18th
Int. Symp. on Automotive Technology and
Automation, Florence, Italy.

Engineeering and the new  deal
Helping people find jobs and improving their chances of
staying in work is key to the Government’s Welfare to
work strategy.  Since April 1998, the New Deal programme
has been vital in turning this strategy into reality, helping
thousands of young and long term unemployed people
find jobs.

A large part of the success of the New Deal initiative is
dependent on participating employers.  Under New Deal,
a signed-up employer receives practical help with
recruitment. If the job qualifies as a subsidised New Deal
vacancy, they will also receive a contribution towards a
structured training programme for the employee and
assistance with wages.

So how can New Deal help the engineering industry? As
New Deal candidates are selected according to their skills
and matched appropriately to vacancies within the
industry, employers can use New Deal as an introductory

period for Modern Apprenticeships or other recognised
training within the industry.

Through New Deal, companies have access to a pool of
motivated, employable candidates. Employers have total
control over the selection of prospective employees and
can also take advantage of a short risk free period of up
to three weeks called a ‘work trial’. Offering choice and
flexibility, the work trial provides both employers and
prospective employees with the opportunity to make sure
that the right person is matched to the right job.

The low “red tape” aspects of administering New Deal
have also added to its popularity among employers.

Says Jacqueline Wainwright-Strachan from Expression
Signs of Distinction:  “New Deal allowed us to choose
employees which matched our requirements. To enable
us to get to know the new recruit(s) our advisor offered


