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Abstract: In this paper, the authors propose the generic concept of machining instability 

based on the analysis of all kinds of machining instable behaviors and their features. The 

investigation covers all aspects of the machining process, including the machine tool 

structural response, cutting process variables, tooling geometry and workpiece material 

property in a full dynamic scenario. The paper presents a novel approach for coping with the 

sophisticated machining instability and enabling better understanding of its effect on the 

surface generation through a combination of the numerical method with the characteristic 

equations and using block diagrams/functions to represent implicit equations and nonlinear 

factors. It therefore avoids the lengthy algebraic manipulations in deriving the outcome and 

the solution scheme is thus simple, robust and intuitive. Several machining case studies and 

their simulation results demonstrate the proposed approach is feasible for shop floor CNC 

machining optimisation in particular. The results also indicate the proposed approach is 
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useful to monitor the machining instability and surface topography and to be potentially 

applied in adaptive control of the instability in real time. 

Keywords: machining instability, surface generation, surface topography, simulation 

 

 

 

Nomenclature 

b    width of cut (mm) 

Ff     feed force (N) 

Fr     normal force (N) 

Ft     main cutting force (N) 

Fx
(m), Fy 

(m), Fz
(m) Laplace transforms of the cutting forces in the X, Y and Z directions respectively 

Gab(w)   the relative response of the structure in ath direction due to a force acting 

in the bth direction when the other two force components are zero 

G    transfer matrix 

h    uncut chip thickness (mm) 

H    Height vector of the intersection points of the sequence tool path 

i     the oblique angle (deg.) 

r    the projection of the intersection points of the sequence tool path on the 

 XZ plane 

R    tool nose radius (mm) 

ti    index for the tool tip position in the tangential direction 



tj    index for the tool tip position along the feed direction 

αn    normal rake angle of cutting tool (deg) 

βn    normal friction angle (deg) 

Φn    normal shear angle (deg) 

η    chip flow angle (deg.) 

τs    shearing yield stress (MPa) 

1  INTRODUCTION 

 

Chatter vibration as a primarily involved machining instability has been studied for several decades. 

The basic mechanism of chatter is the “regeneration of waviness”, i.e. the vibrating tool leaves a 

wavy surface, which in turn excites the tool at the same frequency during the next tooth passage. 

Since the cutting force is proportional to the chip thickness, the structural modes in the overall 

machining system are self-excited and lead to unstable vibrations [1]. Since 1960s, many 

researchers including Tobias and Tlusty had developed the basic theory of machining chatter [2-3]. 

Based on their work, many useful guidelines were formulated for both machine tools designers and 

manufacturing engineers. 

 

  Hanna and Tobias carried out a study of face-milling and turning processes in 1970s [1], in which 

both structural nonlinearities and cutting force nolinearities were taken into account. Quadratic and 

cubic nonlineraities were included in a differential equation with constant coefficients and the 

stability of the zero solution was studied. A two-term harmonic balance scheme was used to 

determine the amplitude of the periodic motion following the instability. Tlusty and Ismail 
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investigated the basic nonlinearity in machining chatter. Both turning and milling are considered. 

The mode coupling self-excitation was demonstrated [3]. Altintas et al have undertaken a lot of 

research on milling processes with stability analysis [4, 5]. They looked at the processes with many 

kinds of cutters and dropped the feed term from the expression for the instantaneous chip thickness 

prior to the stability analysis. To determine the onset of instability, they examined the stability of the 

zero solution of a linear homogeneous differential equation with constant coefficients. This 

equation was obtained after time averaging the periodic terms associated with the cutting force. 

They obtained an analytical expression for roots of the characteristic equation in terms of the system 

transfer function. This is useful for predicting the onset of instability, but not for investigating the 

post-instability motion. Davies et al have carried out the investigations on chatter in turning 

processes [6, 7]. In the studies, they provided experimental, numerical and analytical evidence 

suggesting that the onset of segmented chip formation was the result of a hopf bifurcation in 

material flow. They introduced a concept of the local plastic deformation zone that accounted for 

indentation of the material near the tool tip. They also simulated and measured the chatter in 

diamond turning of aluminum [8]. A nonlinear chip area model was formulated as a function of the 

change in depth of cut between consecutive passes. The cutting model was deduced based on the 

chip area model and further extended to include an impact disturbance to the cutting process. The 

Simulations of the resulting tool displacement showed close agreement with experimental 

measurements. 

 

  So far, many aspects of self-excited machine tool vibrations or chatters have been discussed. In 

practice, however, many problems of poor work surface finish are due to forced vibrations and the 
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methods of reducing forced vibrations should be known. Forced vibrations are usually caused by an 

out-of-balance force associated with a component integral with, or external to, the machine tool. 

Whereas a self-excited vibration is spontaneous and increases rapidly from a low vibratory 

amplitude to a large one, the forced vibration results in an oscillation of constant amplitude. The 

exploration on the chatter vibration enables the better understanding of machining instability in 

practice. However, there are many sources of nonlinearities in the machining process, which are 

difficult to be precisely defined by the regeneration theory alone. 

 

  In the work presented, the authors not only have researched the dynamic instability based on linear 

regeneration chatter theory but also attempted to cover all of the variables in the machining system. 

In this paper the turning process is taken as an example as it is the most typical machining process 

where a stationary tool normally removes chips from the circumference of a rotating workpiece. 

Milling processes are similar from the viewpoint of chatter analysis, where the cutting tool rotates 

and the workpiece remains stationary. Based on the corresponding cutting force, a novel modelling 

approach is proposed to model the dynamic turning and milling process. The approach is in the light 

of transfer functions and block diagrams which are used to represent the nonlinear factors or 

functions in particular. The approach and models developed can not only be used to predict the 

onset of instability, but also to illustrate the post-instability motion in time domain and to simulate 

the generation of the surface topography and the effects of various process variables on the surface 

generation. 

 

2  CONCEPTION OF MACHINING INSTABILITY 
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From the machining point of view, with the designed machining conditions, a desired surface finish 

will be produced under the stable machining process. But as a complicated dynamic system, various 

mechanisms inherent in the machining process may lead the innately stable machining system to 

work at a dynamic instable status which invariably results in unsatisfactory workpiece surface 

quality [9]. The machining instability coined here is a new generalized concept, which includes all 

phenomena making the machining process departure from what it should be. For instance, a variety 

of disturbances affect the machining system such as such as self-excited vibration [10], 

thermomechanical oscillations in material flow [11], Feed drive hysteresis [12] etc., but the most 

important one is self-excited vibrations resulted from dynamic instability of the overall 

machine-tool/machining-process system [5]. However, sometimes the machining process is carried 

out with a relative vibration between the workpiece and the cutting tool especially in heavy cutting 

and rough machining in order to obtain high material removal rates. The relative vibration is not 

necessarily a sign of the machining instability for the designed machining conditions and prescribed 

surface finish. In another extreme case, ultra-precision machining or micro/nano metric machining, 

the relative vibration between the workpiece and the cutting tool is too small to be measured, but the 

machining is sensitive to environmental disturbances. The surface generated may be unsatisfactory 

because of the disturbance, even though the machining system itself operates in the stable state. 

Therefore, the machining instability is related to the level of the surface quality required and the 

designed machining conditions. 

 

  Depending on above conception, the authors summarize all kinds of machining instability and 
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their features as listed in Table 1 [13, 14]. The instability is classified as the chatter vibration, which 

includes regenerative, frictional, mode-coupling and thermo-mechanical chatter, and the random or 

free vibration usually includes any shock or impulsive loading on the machine tool. A typical 

random vibration is the tool vibration when the tool strikes at a hard spot during the cutting process. 

The tool will bounce or vibrate relative to the workpiece, which is the beginning of the phenomenon 

of the self-excited vibration. The initial vibration instigated by the hard spot is heavily influenced 

by the dynamic characteristics of the machine tool structure which must be included in any rational 

chatter analysis. Being different from the work carried out by others, this paper is not only focused 

on the chatter vibration, but also on the random and free vibration. Using the approach presented, 

the nonlinearities in the machining process will be modeled and analysed and thus the random or 

free vibration be quantitatively determined. 

Table 1  The classification of machining instability 

Machining Instability 

Chatter vibrations Random and free vibrations  

Regenerative 
(Dominate) 

Frictional Mode 
coupling

Thermo-m-
echanical 

Tool 
depend-

ent 

Workpiece 
dependent 

Environment 
dependent 
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Location 

Between 
cutting edge 
and 
workpiece 

Tool flank 
–workpie-
ce;  
 
Chip- 
too rake 
face 

In cutting 
and thrust 
force 
directions

Tool-chip 
plastic zone

Tool 
flank 
–work-
piece; 
Chip- 
rake 
face 

Cutting 
zone 

Whole cutting 
process 

Causes 

Overlapping  
cut 

Rubbing 
on the 
flank face 
and the 
rake face 

Friction 
on the 
rake and 
clearance 
faces; 
Chip-thi-
ckness 
variation, 
shear 
angle 
oscillati-, 
on etc. 

Temperatur
-e and 
strain-rate 
affects chip 
formation 

Tool 
wear 
and 
breaka-
ge; 
BUE, 
etc. 

Material 
soften and 
harden; 
Hard grain 
and other 
kinds of 
flaws 

E Environmental 
disturbances 

Features 

Self–excited 
vibration; 
 
 
Left a wavy 
surface on 
workpiece 

Self-exci-
ted 
vibration; 
 
Vibration 
amplitude 
depends 
on the 
system 
damping 

Mode 
coupling 
vibration;
 
Simultan-
eous 
vibration 
in two 
directions

Velocity- 
dependent  
vibration 

Rando-
m and 
chaotic;
 
Depen-
des on 
cutting 
conditi-
ons 

Random 
and 
chaotic; 
 
Depends 
on 
material 
property 
and its 
heat 
treatment 

Random and  
chaotic; 
 
 
Depends on  
work  
environment 

Suppressi-
on method 

Select proper 
depth of cut 
and spindle 
speed 
according to 
regenerative 
stability chart 

Select 
proper 
clearance 
and rake 
angles 

Change 
the tool 
path; 

Select 
proper 
cutting 
varialbles

Select 
proper 
cutting 
speed 

Select 
high 
quality 
tool 
materi-
als and 
proper 
cutting 
parame
-ters 

Select 
proper 
cutting 
tool and 
cutting 
parameters 

If needed, 
isolate the 
machine tool 

Modeling 

Linear 
differential 
equation 

Nonlinear 
differenti-
al 
equation 

A set of 
linear 
different-
ial 
equations

A set of 
partial and 
ordinary 
differential 
equations 

Nonlin-
ear 
factors 
in 
cutting 
process

Non-linear 
factors in 
cutting 
process 

Non-linear 
factors in 
cutting 
process 
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3  MODELLING 

 

3.1 Cutting force model of oblique turning process  

The basic cutting force model is as follows [15] for typical oblique turning process as shown in Fig. 

1. 
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where Ft, Ff  and Fr are the main cutting force, feed force and normal force respectively. h is the 

uncut chip thickness, η is the chip flow angle, and b is the width of cut. τs is the shearing yield stress, 

βn is the normal friction angle, and Φn is the normal shear angle. αn is the tool normal rake angle and 

i is the oblique angle. 

 

 

X

Y

Z 

Fig. 1 Oblique turning process illustration  

3.2 Modal analysis of the machine tool structure 
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Although the machine tool/cutting system is a very complex system, for its dynamics analysis it is 

sufficient to focus on the structural dynamics only at the cutting zone. The cutting force applied on 

the tool is decomposed into three components along there perpendicular directions as illustrated in 

Fig. 1. If Fx
(m), Fy 

(m), Fz
(m) are Laplace transforms of these forces, and x(m), y(m), z(m) are Laplace 

transforms of the relative displacement components between the tool and the workpiece, then the 

dynamics at the cutting zone can be expressed by the following matrix equation: 
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where G is the transfer matrix. This matrix consists of nine transfer function elements. Gab(ω) 

provides the relative response of the structure in ath direction due to a force acting in the bth 

direction when the other two force components are zero. For a linear system, the matrix G is 

symmetric (Gab=Gba). The assumption of linearity is generally accepted, although it is known that 

the static stiffness of the machine tool structure and guideways behave with non-linear 

characteristics. On the other hand, the nonlinearities can be expressed by special designed single 

block in the modelling and simulation. The nine transfer functions in Eq.(1) can be determined by 

structural dynamics test. The reference [15] provides quite useful information on the feasibility and 

experimental practices of determining the transfer functions. 
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3.3 Major aspects within the machining system 

Machine tool 
•  Design 
    - rigidity 
    - percision 
    - dynamic stability 
    - thermal stability 
•  Feature 
    - axes/slideway motions accuracy 
    - power, speed, etc. 
    - control system 
    - precision infeed device 
•  Coolant 
    - type, pressure, flow rate 
    - filtration system 

Operation 
•  Processing parameters 
    - cutting speed 
    - depth of cut 
    - feed rate 
•  Machining method 
    - turning 
    - milling 
    - drilling 
    - grinding 
    - …… 
•  Coolant application 
•  Fixture 
•  Inspection method 

Surface generation 
●  Surface quality: roughness, finish, hardness, residual stress, etc. 

●  Dimensions/tolerance: size, bilateral/unilateral tolerance, etc. 

●  Geometric form: roundness, parallelism, flatness, squareness. 

Nonlinearities 
•  Cutting built-up edge 
    and its removal  
•  Friction/lubrication 
•  Hard spots in work  
    material 
•  Spindle run-out 
•  Environmental  
    disturbances 
•  …… 

Cutting tool 
•  Design 
    - rake angle 
    - clearance angle 
    - cutting edge radius 
    - tool nose radius 
•  Material properties 
    - mechanical 
    - chemical 
    - thermal 
•  Condition 
    - newly changed 
    - used 
    - near to life limit 

Workpiece material 
•  Properties 
    - mechanical 
    - chemical 
    - thermal 
    - microstructure 
•  Geometry 
    - tool-workpiece conformity 
    - access to coolant 
    - shape/form required 
•  Workpiece quality 
    - geometry 
    - dimension/tolerance 
    - consistency 

Fig. 2  Major aspects associated with the machining process 

Machined surface 

There are four categories of elements that particularly affect the machining process. They are the 

machine tool, operational factors, cutting tool, and workpiece material [16]. There are also many 

nonlinear factors in the machining process. These nonlinear factors were normally ignored in the 

past because of the difficulty and limitation of the modelling. Figure 2 illustrates the major aspects 

associated with the four categories of elements as well as the nonlinearity. 

 

3.4 Modelling of the overall machining system 

 11



 

It is extremely difficult to model the whole machining system by using an exact mathematical 

model, since there are not only linear factors but also nonlinear factors in the process. Therefore, a 

block diagram model is proposed as shown in Fig. 3, to model the complicated machining process 

including the nonlinearity of the process. The model was implemented with MATLAB SIMULINK 

programming. The nonlinearity is built into the model by using different kinds of functions as 

specified. For instance, the sinusoidal function is used to denote the spindle imbalance which 

imposes an additional force acting on the machining system, the assumption is consistence with the 

error analysis on ultra-precision diamond turning machines by Precitech Inc. [17]. The amplitude of 

the sinusoidal function equals to the spindle specification provided by the Machine tool 

manufacturer, its frequency is just that of the spindle revolution; the intervally repeated ramp 

 

Machined Surface

Transfer functions of 
the machining 
process: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

zzzyzx

yzyyyx

xzxyxx

GGG
GGG
GGG

 

Cutting point 
position: 
 
[ ] [ ] [ ]FGX ⋅=  

Nonlinear effects 
on operation 

factors 

Nonlinear 
effects on 

cutting forces 

Delay: 

e-iωT

Nonlinear effects 
on transfer 
functions 

Cutting forces model: 
Fx=f(α, β, γ, f, ap, …) 
Fy=f(α, β, γ, f, ap, …) 
Fz=f(α, β, γ, f, ap, …) 

Operation factors 
Tooling properties 
Work material 
Machining method 

Fig. 3  A comprehensive model of the machining process 
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function denoted for the variation of the tool rake angle duo to the generation and removal of the 

built-up edge during the machining process, the frequency and amplitude of the ramp function can 

be acquired from the measured cutting forces; a series of impulse values randomly generated at 

regular intervals to emulate the workpiece hard spots and their effects on the work material’s 

characteristics, i.e. the changing of shear stress during the machining process. Furthermore, those 

non-linear factors can be switched on or off very easily and their effects on the surface generation 

can thus be interactively visualized and quantitatively investigated on the basis of an individual 

isolated event as specified. The proposed model can be used to predict the surface generated and to 

optimise the cutting conditions in the light of machining instability avoidance. 

 

3.5 Modelling of the surface generation 

 

Having set up the cutting conditions and the system transfer function and defined the nonlinear 

factors, the dynamic displacement between the cutting tool and the workpiece can be achieved by 

running the cutting system model. Taking the turning process as a case study, the modelling 

outcome will be the real tool path. After getting the real tool path on the workpiece, the intersection 

points of the sequence tool path are calculated by the following equation: 
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  (5) 

Where r and H are the projection on plane XZ and height vector of the intersection points of the 

sequence tool path, respectively. ti is the index for the tool tip position in the tangential force 
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direction. tj is the index for the tool tip position along the feed direction. R is the tool nose radius. 

Trimming the line above the intersection points, the machined surface will be generated. Using the 

similar method, a milled surface can also be modelled and digitally generated. 

 

4  SIMULATION AND EXPREIMENTAL VALIDATIONS 

 

The whole machining dynamics model is implemented in a MATLAB simulink environment. It 

includes the cutting force module and machining system response module. In the turning process, 

the frequency of the ramp function for simulating the effects of BUE is about 5.25 Hz. It is assume 

that the increasing of the shear stress is ten percent of the initial shear stress due to the existence of 

hard spots in the workpiece materials. A delay function is used to represent the regenerative 

vibration effects on the variation of the depth of cut and the feed rate, its frequency is that of the 

spindle revolution. 

 

Machining trials are carried out on a lathe to validate the model and simulation. The experimental 

configuration is shown in Fig. 4. The dynamic cutting forces are measured by a Kistler 

dynamometer, 9257BA, on which the carbide tool insert is mounted. The machined surfaces are 

measured by the Zygo Newview 5000 optical microscope. The aluminium alloy and steel sample 

components are turned in the experiments. The machining conditions are listed in Table 2. 

Table 2  Machining trial conditions 

Material Al alloy/Low carbon steel Workpiece 

Diameter φ 50 mm 
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Material Carbide insert 

Nose radius 0.4, 0.8, 1.2  mm 

Initial side rake angle 0°, ± 5° 

Side clearance angle 0°, 5°, 7° 

Back rake angle 10° 

Cutting tool 

Back clearance angle 6° 

Spindle speed 490 rpm ~ 1400 rpm 

Feed rate 0.0397 mm/rev ~ 0.3175 mm/rev 

Operation conditions 

Depth of cut 0.01mm, 0.1 mm, 0.5 mm 

 

Cutting tool
Dynamometer 

Fig. 4  Experimental configuration of the cutting trials 

Spindle 

PC 

A/D Card 

Charge amplifier 
Workpiece 

 

Figure 5 shows the simulated and measured cutting forces in the radial direction when the cutting is 

undertaken at the conditions: cutting speed = 1400 rpm, feed rate = 0.0397~0.3175 mm/rev and 

depth of cut = 0.01mm. It can be seen that the simulated cutting forces are well agreed with the 

measured results (about 38% lower than the measured results). The assumptions about the 

nonlinear factors are reasonable. It also shows the tendency that the radial cutting force increases 

with the increment of the feed rate. When the feed rate 0.0397mm/rev is applied, the simulated 
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Fig. 5  The variation of the radial cutting forces with different feed rate 

 

 

machined surface and the measured surfaces are shown in Fig 6. The direction of lay is evident in 

both the simulated surface and the experimentally generated surface. The root-mean square 

deviation Sq of the simulated surface is 0.071 μm, which is close to the experimental result 0.14 μm. 

The difference between the simulation result and experimental result may be caused by the 

estimated static machining structural parameters. But the simulation results are still in the 

reasonable deviation scale. 

(a) Simulated surface       (b) Machined surfaces 

Fig. 6  Comparison between the simulated surface and machined surface 
(f / d )
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(a) Turning without taking account of non-linear factors            (b) Turning with taking account of non-linear 

Fig. 7  Machined surfaces generated by the simulation 

Two machining process cases are presented below. The turning process simulation is carried out 

with the spindle speed =1,400 rpm, depth of cut = 1.0 mm and Feed rate = 0.1 mm/rev. Figures 7(a) 

and 7(b) show two surfaces generated with and without taking account of nonlinear factors 

respectively. From the simulation results above, it can be easily found that these non-linear factors 

have much effect on the surface topography and texture produced.  

 

5  CONCLUSIONS 
 

In this paper, a novel modelling approach and the simulation system are presented with the case 

studies on turning and milling processes. The preliminary research findings include: 

(1) The modelling and simulation approach proposed is based on combining numerical computing 

method, cutting mechanics, block diagrams and nonlinear functions to simulate the complexity 

of the machining system as a whole. It therefore avoids the lengthy algebraic manipulations in 

deriving the outcome and thus improves the simulation accuracy and comprehensiveness.  

(2) A set of models is developed, which represents the dynamic characteristics of the machining 

system and also includes major non-linear factors within the machining process. 
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(3) The modelling and simulation developed can be used to predict the onset of the machining 

instability, but also to observe the post-instability motion in time domain. 

(4) The approach contributes to the comprehensive understanding of the machining system. The 

models and simulation will assist the machining operators to select optimal machining 

parameters. 

(5) The modelling and simulation will potentially lay down a foundation for researching on-line 

monitoring and control of the machining instability and its control algorithms. 
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