
Semantic Web Domain Knowledge Representation Using
Software Engineering Modeling Technique

Minal Bhise

DAIICT, Gandhinagar, Gujarat, India 382007

minal_bhise@daiict.ac.in

Abstract. The semantic web offers a great deal of deviation from the
way in which the current search engines which are based on the
traditional information search theory work. Semantic search is carried
out by ontology based intelligent information retrieval. So a good
semantic search needs a good ontology. The ontology developers need
more familiar notations and tools for a uniform representation of
ontologies. UML being a standard modeling language in software
engineering, it is better supported in terms of expertise and the tools as
compared to the upcoming semantic web languages. This work
proposes a representation technique which is based on software
engineering standards namely UML for modeling domain knowledge
of the Semantic Web. The ontology for Company Domain has been
presented using this software engineering modeling technique. The
UML tool like Rational Rose tool can be used to provide support for
modeling complex ontologies of the given domain.

Keywords: semantic web, ontology, UML, domain knowledge
modeling, Ontology Representation Language ORL

1 Introduction
The semantic web will let the computer software relieve us of much of
the burden of locating resources on the web that are relevant to our
needs and let the system access and use the information more
efficiently. The semantic web is an extension of the current web in
which information is given well-defined meaning, better enabling
computers and people to work in cooperation (Berners-Lee,Hendler &
Lassila, 2001). Facilities to put machine-understandable data on the
web are becoming a high priority for many communities. The web can

reach its full potential only if it becomes a place where data can be
shared and processed by automated tools as well as by people. To
enable automation, integration and reuse of data resources on the web
need to be encoded in structured machine-readable descriptions of their
contents expressed using terms defined in domain ontology. Ontologies
are set of knowledge terms, including the vocabulary, the semantic
interconnections, and some simple rules of inference and logic of some
particular topic (Thomas & Gruber, 1993). In order to create, interpret
and compare meta-data annotations, ontologies, explicit definitions of
the vocabulary used in an information source, are needed. While meta-
data can often be generated from the content of an information source,
interpretation and comparison of this data needs the machine to
understand these different, new and the existing ontologies.

The various Ontology Representation Languages (ORLs) like KIF,
SHOE, Topic Maps, DAML, OIL and OWL lack good visual modeling
tools which are a must for human comprehension of ontologies
(Cranefield, 2001). Further these visual models should have an ability
to map to machine understandable representations which will be used
by the agents for inferencing and integration. While ontologies are built
on the Artificial Intelligence concepts, the ontology building tools are
not. The techniques used so far for knowledge representation are based
on Knowledge Interchange Format KIF which has very small following
and that too within AI community only (Genesereth & Fikes, 1994).
The software experts need more familiar notations and tools for a
uniform representation of ontologies. UML being a standard modeling
language in software engineering, it is better supported in terms of
expertise and the tools as compared to the upcoming semantic web
languages. The UML is expressive and standardized modeling language
which has large user community and very good commercial tool
support in the form of IBM Rational Rose, MagicDraw, JUDE and
ArgoUML (UML Tool Survey, 2005). The use of UML for ontology
representation will allow many mature UML tools, models and
expertise to be applied to knowledge representation systems not only
for visualizing the complex ontologies but also for managing the
ontology development process. The UML is a graphical modeling
language hence very easy for human comprehension. The UML is
designed for model building by human experts, while ORLs are
designed to be used at run time to help intelligent processing methods.
But there are certain differences in the languages. One has to identify

the corresponding elements in the two languages and also need to make
sure that translations are backed by the semantics of the languages. The
UML class diagrams provide a static modeling capability that is
integral part of ontology representation (Cranefield & Purvis, 1999).
UML Object Diagrams represent instances of the Class Diagram hence
can represent the instances of the concepts represented by Class
Diagram. Semantic Web Technology has been built on the object-
oriented paradigm so it is better to use the same paradigm for modeling
and representing knowledge (Cranefield 2001).

This work demonstrates the use of UML to model ontology for the
Company Domain. An Overview of Technology has been presented in
Section 2. The Section 3 represents the application of the UML for
representing ontology for the Company Domain. The Section 4
contains Discussions and Future Work, and the last section, Section 5
presents Conclusions.

2 Overview of the Technology
The technology supporting domain knowledge representation for
semantic web consists of UML domain models, semantic web pillars
namely ontology, agents and markup language and the mapping for
UML models to ORL representations.

2.1 UML Domain Models
A class diagram gives static view of the structure of the system. A class
diagram presents set of classes, interfaces and collaborations and their
relationships. The class diagrams are often used to model vocabulary
and collaborations of the system. The details about the notation are
available elsewhere (Booch, Rum Baugh & Jacobson, 2004). The class
diagram can show association, aggregation and inheritance type of
relationships. UML Object Diagrams can depict the instances of Class
Diagram and hence help in representing knowledge about the domain.
It can be represented as instances of the concepts which are depicted as
classes in the class diagram. The relationships in the object diagrams
are instances of the associations (and other types of relationships)
among concepts in the class diagram.

2.2 Semantic Web and Domain Knowledge Representation
Each of the semantic web pillars is related to the domain knowledge

representation in some way. Together they form an intelligent
information retrieval system which is ontology based.

2.2.1 Ontology
Ontology is a set of logical axioms designed to account for the intended
meaning of a vocabulary. Ontology specifies the meanings of the terms
in a given vocabulary by explicitly defining the relationships between
the terms. By defining shared and common domain information,
ontologies can help people and machines communicate concisely
supporting semantics exchange, not just syntax (Berners-Lee, Hendler
& Lassila, 2001). The ontology building process needs standard
interfaces and tools for creating and updating these ontologies. The
software engineering based modeling technique discussed in this work
addresses this problem.

2.2.2 Markup Languages
A markup language is a tool for adding information to the documents.
Semantic markup is expected to have universal expressive power,
syntactic and semantic interoperability. The XML (eXtensible Markup
Language) does not provide semantic interoperability. Using XML as a
base , a number of new markup languages have been developed to meet
semantic interoperability, these are RDF(Resource Description
Framework), RDFS, SHOE, DAML+OIL and recently OWL (Daconta
Michael, 2003). The work done earlier in domain knowledge
representation using software engineering modeling techniques was
concentrated towards developing the mapping of the software
engineering models to the RDF, RDFS and other markup languages
(Cranefield, 2001). At present the researchers are trying to map the
domain models to the OWL representation (Djuric, Gasevic &
Devedzic, 2004).

2.2.3 Intelligent Agents
Ontologies and markup languages will make the semantics of the
documents available to the machines. Software agents will make use of
the semantic content, actually interpreting and integrating the content of
documents (and queries) to perform tasks for users. Agents will have to
carry out the task of finding out and using the information on the web
from several resources on their own, processing them and integrating
the results and presenting them to the users or carrying out inferencing

based on those results. So the different ontologies should be able to
work together in order to make all this possible (Hendler, 1999).
Therefore we need a standard way of representing these ontologies
which are understandable by human as well as agents for automatic
processing. For the reasons discussed in Section 2, the UML is the
obvious choice.

2.3 UML to ORL Mapping
The UML class diagrams represent the important concepts from the
problem domain in the form of classes and their attributes and methods.
The relationships among these concepts are represented by
relationships among these classes. One can also express the cardinality
and other types of constraints using the UML notation available
(Booch, Rum Baugh & Jacobson, 2004). The ontologies define
concepts from the problem domain and relationships among them. The
XML Model Interchange Language defines a standard way to serialize
the UML diagrams (Cranefield, 2001). So the knowledge expressed in
the form of UML diagrams can be directly comprehended by human
because of its standard graphical representation as well as by ontology
editors. There are also a number of Java class libraries available to
provide an interface to various applications accessing this information.
The UML diagrams also can be accessible and processed by computers
because of XMI and associated libraries or APIs defined by MOF
(Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski &
Aronson, 2001). The XMI specifies how a model stored in a MOF-
based model repository can be represented as an XML document. The
UML class diagrams can be mapped to RDF schemas (Falkovych
2003). UML classes can also be mapped to sets of Java classes. These
classes correspond to the classes in the class diagram.

The domain experts create an ontology using ontology editor and the
graphical representation of ontology using UML tool like Rational
Rose. The XMI files are created. A pair of XSLT eXtensible Stylesheet
Language Transformation then creates java files and ORL
representation of ontology respectively. The java classes can be used by
the applications for representing knowledge as in memory data
structures. The ORL representation can be used for domain specific
information.

Figure 1: Schematic for Domain Model Mapping

Presently the RDF transformation of XMI files is available and not
much work has been done for XMI to other ORL mapping. There is
some work done for direct XMI representation of UML model mapping
to OWL (Djuric, Gasevic & Devedzic 2004). The schematic for UML
model to ORL and Java mapping has been shown in Figure1.

3 The Company Ontology in UML
The Company has name, director, turnover and head office. The
Company consists of Concepts like Office and Department. These are
depicted as aggregation relation among concepts Department, Office
and Company. The various departments like R&D and Sales are related
to Department concept through inheritance relationship. The ontology
for the company is shown in Figure 2 below using notation described
elsewhere (Bruijn & Krummenacher, 2005).

 Figure 2: Domain Ontology for Company Domain

UML Model

XMI Document

XSLT for

XSLT for

RDF/OWL/ORL

Java Code

Ontology Editor

Application

Concept Company
hasname oftype name
hasdirector oftype name
hasturnover oftype number
hasheadoffice oftype string
hasConcept Office
hasname oftype name
hasaddress oftype string
hasConcept Department
hasname oftype name
hasbudget oftype number
Concept R&D Subconcept of Department
haspatents oftype string
hasprojects oftype string
Concept Sales Subconcept of Department
hasproduct oftype string
hassale oftype number

A portion of the class diagram depicting this ontology has been
represented in Figure 3 using UML. The relationship among Company,
Department and Office has been depicted as aggregation relation
among classes Department, Office and Company in the class diagram.
The Office has name and location. The department has name and
budget. The various classes like R&D and Sales departments are related
to Department class through inheritance relationship.

Schematic showing mapping of UML diagrams to Java and OWL files
which can be used by agents handling corresponding semantic web
applications has already been depicted in Figure1.

Figure 3: UML Class Diagram for Company Domain Ontology

4 Discussion and Future Work
The major problem faced by semantic web ontology developers is the
availability of visual models for ontology representation. This problem
has been addressed in this work through the use of software engineering
based UML class diagram. Some issues still need to be solved. Using
XML encoding of both XMI and OWL one can create an XSLT file
that maps the two models (Djuric et.al., 2004, Djuric, Gasevic &
Devedzic, 2005). But XSLT is very cumbersome when used for
complex ontologies. Further, UML associations are not first class

Company

name:Name
director: name
turnover: number
headoff: string

Department
Office

name: Name
budget: Number name: Name

address: String

product: string
sale: number

1...*
1....*

Sales R&D

projects: string
patents: string

concepts as they need defined end points but properties in ontologies
are first class objects. To reconcile this difference, a modest extension
to the UML infrastructure has been proposed. The metamodel MOF
(Meta-Object Facility) has been introduced (Baclawski et. al., 2001,
Baclawski, Kokar & Aronson, 2001). The architecture followed by this
meta-metamodel is called as Model Driven Architecture MDA. The
MDA divorces implementation details from business functions. Thus it
is not necessary to repeat the process of modeling an application or
system functionality and behaviour each time a new technology comes
along. Also it is driving UML more and more formal, so that is useful
when it comes to using it for the automatic inferencing by agents. A
complete MDA specification consists of a platform independent model
like UML plus one or more PSMs (Platform-Specific Models) (Anneke,
2003). The problem of transformation between ontology and MDA-
based languages is solved using XSLT. But still no commercial MDA
tools are available which can process the models at M3 and M2 layers.
The existing UML tools support the models till M1 layer very well
(Djuric et. al., 2004).

Most of the work done so far is centered on the use of class diagram for
ontology representation. But UML is much richer beyond class
diagram. Can other diagrams be used for looking at other aspects of the
ontologies? I understand that different knowledge aspects of the agent
based intelligent systems can be looked at using the other UML
diagrams as well. Very less work has been done so far in this direction.
A proposal exists for modeling DAML-S using other UML diagrams
(Falkovych, 2003).

5 Conclusion
Ontologies of semantic web play a major role when information is
accessed by agents handling the applications as described in section 1.
The major problem faced by ontology developers is the availability of
standard and easy to use tools for visualizing the ontologies while
building them. This work addresses this problem by using OMG’s
UML for representing domain ontologies. The mapping of UML
models to Java and OWL representations to be used by agents handling
corresponding semantic web applications is possible. A case study
representing ontology of company domain has been presented. Some
issues still need to be solved as discussed in the previous section.

References
[1] Anneke K. (2003). MDA Explained. Pearson Education.

[2] Baclawski K., Kokar M., Kogut P., Hart L., Smith J., Holmes
W., Letkowski J., Aronson M. (2001) Extending UML to
support Ontology Engineering for the Semantic Web, In the
Proceedings of UML 2001, Toronto, Canada, October 1-5,
2001.

[3] Baclawski K., Kokar M., Kogut & Aronson M. Metamodeling
Facilities, working paper presented at OMG Technical
Meeting, Danvers, MA, USA, July 9-13, 2001.

[4] Berners-Lee T., Hendler J., Lassila O. (2001). The Semantic
Web. Scientific American, 284, 35-43.

[5] Booch G., Rumbaugh J, Jacobson I. (2004). The Unified
Modeling Language User Guide. Pearson Education.

[6] Bruijn J.D., Krummenacher R. (2005). Technical Report on
Ontology Representation Language, DIP

[7] Cranefield, S. UML and the Semantic Web, In Proceedings of
the International Semantic Web Working Symposium SWWS,
Palo Alto, July 30- August 1, 2001.

[8] Cranefield S. and Purvis M. UML as an Ontology Modeling
Language. (1999). In the proceedings of workshop on
Intelligent Information Integration, 16th International Joint
Conference on Artificial Intelligence (IJCAI-99).

[9] Daconta, Michael C. (2003). The Semantic Web. Wiley
Publishing.

[10] Djuric D., Gasevic D., Devedzic D. Converting UML to OWL
Ontologies. WWW 2004, May 17-22, 2004, NY, USA

[11] Djuric D.,Gasevic D.,Devedzic D.(2005). MDA for Ontology
Modeling. Journal of Object Technology, 4(1), 109-128.

[12] Falkovych K. (2003). UML for the Semantic Web:
Transformation-Based Approaches. In Knowledge
Transformation for the Semantic Web, Frontiers in Artificial
Intelligence & Applications. (pp 92-106). IOS press.

[13] Genesereth M.,Fikes R.(1994). The Knowledge Interchange
Format (KIF) Reference Manual. Stanford University, USA.

[14] James H. (1999). Is there an Intelligent Agent in your Future,
Nature, 121-129.

[15] Thomas R. Gruber.A. (1993). Translation Approach to
Portable Ontology Specifications. Knowledge Acquisition,
5(2),199-220.

[16] The UML Tool Survey (2005).

http://www.objectsbydesign.com/tools/umltools_by
Company.html

