
DRTC – ICT Conference on
Digital Learning Environment
11th –13th January 2006
DRTC, Bangalore

Paper: N

Implementing LOM Schema in DSpace

A.R.D. Prasad
Documentation Research and Training Centre

Indian Statistical Institute Bangalore
ard@drtc.isibang.ac.in

Abstract

DSpace facilitates Qualified Dublin Core. There have
been attempts to extend DSpace ability to host other
metadata schemes e.g. electronic theses and dissertations
like Tapir. However, the user community has often
expressed the requirement for other metadata formats like
VRA core, IMS LOM etc. Support for many metadata
formats will greatly enhance the use of DSpace and the
type of resources that could be preserved using DSpace.
Since version (1.2.2), DSpace comes with much needed
input forms with which one can define ones own
submission forms. This feature provides additional ability
of adding any metadata format to DSpace, in addition to
existing Qualified Dublin Core. This papers attempts to
provide guidelines for modifying DSpace files to
accommodate additional metadata formats like IMS-LOM.

Paper: N A.R.D. Prasad

 2

1. Learning Object Metadata (LOM)

The LOM standard is also referred as IEEE P1484. The full name of the
standard is “Standard for Information Technology – Education and Training
System – Learning Object and Metadata. There are 4 sibling standards in
IEEE series.

1. 1484.1.2.1: IEEE standard for Learning Object Metadata
2. 1484.1.2.2: Standard for ISO/IEF 11404 Binding for Learning

Object Metadata Model
3. 1484.1.2.3: Standard for Learning Technology – XML Schema

Definition Language Binding for LOM
4. 1484.1.2.4: Standard for RDF Binding for LOM Data Model

Some of the basic unqualified data elements of LOM are given below, as
full list of data-elements is quite large.

• General: General information about the learning object as a
whole

• Identifier: A globally unique identifier
• Catalog: Identification or catalogue entry for the entry. Ex:

ISBN, URI
• Entry: The value of the id within the identifier
• Title: Title of the learning object
• Language: Language or languages used in the learning object
• Description: Text describing the document
• Keyword: Keywords representative of the learning object

content
• Coverage: The time, culture, geography to which learning

object belongs
• Structure: Organizational structure of the learning object
• Aggregation Level: granularity of the learning object
• Life Cycle: History of the current status of the learning object
• Version: The edition statement of Learning Object
• Status: Completion status like draft, final, revised etc
• Contribute: People and organizations contributed to the

learning object
• Role: Kind of contribution like author, publisher, editor etc

Implementing LOM Schema in DSpace Paper: N

 3

• Entity: Identification of people and organizations that have
contributed

• Date: Date of contribution

2. DSpace and Metadata

Any digital library software like DSpace should be ideally metadata-
schema-independent, so that the DSpace administrators may adopt
whichever metadata scheme is most ideal to his repository or a collection in
his repository. Presently DSpace follows Qualified Dublin Core for input
and exposes Unqualified Dublin core through OAI-PMH protocol, Dublin is
the only W3C approved metadata schema and generally accepted as lowed
common denominator.

With the introduction of ‘inputforms.xml’ in DSpace 1.2.2 version, it
has become easier to create user defined submission workflow. The earlier
versions of DSpace, always offered mechanism to add non-DC elements,
though for submission workflow screens for metadata input, one has to
modify the java programs. This was typically the case with tapir (2), which
incorporated a few metadata elements for describing electronic theses and
dissertations (ETD). Of course, tapir has many java programs for additional
functionalities (required for ETD) other than submission workflow.

To accommodate a metadata schema other than Dublin core like LOM, the
following issues are to be addressed.

1. Adding New Elements to the database
2. Input Forms for submission process
3. Indexing
4. Display of search results
5. Import/Export
6. OAI-PMH and crosswalks

2.1 Adding New Elements

One should undertake a good study of the available metadata schemes to
identify the best-suited scheme for a collection of digital resources. For
example, if the collection contains images, one should perhaps adopt VRA

Paper: N A.R.D. Prasad

 4

Core. It is necessary to identify which elements of the newly adopted
scheme already map with existing Dublin Core elements, so that the
elements not mapped with DC can be created. This is normally achieved by
adding metadata elements either through DSpace administration or directly
to the 'dctyperegistry' table in PostgreSQL. Though, ideally, DSpace
administrator should be able to create different registries for the required
schemes in addition to Dublin Core, creating different tables for each
scheme may result in programming complexity. It is simpler to rename the
‘Dublin Core Registry; to ‘Metadata Registry’ and allow the administrator
to add elements from various metadata schemes under one umbrella i.e.
‘Metadata Registry’. This is fairly a trivial issue and could be implemented
in all the DSpace versions.

2.2 Input Forms for submission process

Since DSpace 1.2.2, one can define the submission workflow in 'input-
forms.xml' however, if a repository adopts many metadata schemes for
various collections, the inputforms.xml will tend to be large and unwieldy to
make modifications. Perhaps, a kind modular approach may be adopted in
the future versions of DSpace, where each schema will have separate file
and the inputforms.xml file only contains the information on collection
handle and the respective file to be used for the elements to appear in input
form.

2.2.1 Tags in input-forms.xml

Input-forms.xml:
For a clear understanding of the notation, $DSPACE_HOME is the home
directory of DSpace installation. It could be any directory like ‘/dspace’ or
‘/home/dspace’ or ‘/user/local/dspace’ or ‘/opt/dspace’. For example, if you
come across $DSPACE_HOME/config, it means the ‘config’ directory
under DSpace home directory where DSpace is installed.

If one wants to create a separate input form for LOM, one has to modify the
$DSPACE_HOME/config/inputforms.xml file. The file ‘input-
forms.xml’ is fairly well commented. However, more notes are given in the
following paragraphs.

Implementing LOM Schema in DSpace Paper: N

 5

Just as a CDS/ISIS database can have any number of input worksheets, in
DSpace provision is given to create any number of input forms for a given
digital library. One can define an input form for each collection in DSpace.
Though it is not mandatory to have collections created by the type of
document, the general practice is to create collections by type of digital
document. For example, the collection can be books, theses and
dissertations, learning objects etc. For such an organization of collection,
each collection required a different set of metadata elements. These sets of
metadata ideally should be in conformity with existing standards. For
example, for theses one may follow ETDMS; for learning objects one may
follow LOM and for general collections one may follow Dublin Core. One
may create any number of input forms, however, all them should be defined
in the $DSPACE_HOME/config/input-forms.xml file.

<form-map>
In this tag you should add the new forms with their ‘form-name’ along with
associated collection-handle. e.g.
<form-map>
<name-map collection-handle=”default” form-
name=”traditional” />
<name-map collection-handle=”1849/4” form-name=”lom” />
<name-map collection-handle=”1849/5” form-name=”etd” />
<name-map collection-handle=”1849/6” form-name=”lom” />

</form-map>

The third and fifth lines in above code indicates that form ‘lom’ will be used
for the collections 1849/4 and 1849/6, whereas form ‘etd’ will be used for
the collection 1849/4. The ‘default’ form will be used for the rest of the
collections. If you remove the second line, i.e. the default-handle, you
should ensure every collection in your repository is associated with a
‘name-map’ entry (This is not advised). It goes without saying that ‘<form-
map>’ should have an end tag i.e. </form-map>

<form-name>
As all the different forms are accommodated in the same file, they should be
distinguished from each other with a name, which is called ‘form-name’.
Each input ‘form-name’ should be associated with one or more collections.

Paper: N A.R.D. Prasad

 6

There is a form-name called ‘default’ which is used for collections where no
form is defined. If you do not add your own input form, DSpace uses
default form for input.

<collection-handle>
In DSpace, its handle addresses each collection. This is to ensure
uniqueness, even if you have defined collection under different communities
or sub-communities with the same name. For example, you have defined a
collection by name ‘books’ under the community ‘Physics’ and also another
collection with same name ‘books’ under the community ‘Chemistry’. The
DSpace will have no way of resolving such situations. That is why
collection handle is used, as handle is unique to each collection. You can
see the handle of the collection at the bottom of the browser when you place
your mouse pointer on the collection or when you click the collection, you
may see the handle as a part of the URL in the browser. For example, if you
see http://drtc.isibang.ac.in/1849/4. Here the collection handle is 1849/4.

For digital repositories not registered with CNRI, the handle may look like
123456789/4

Note: DSpace assigns handles not only to each digital object in the
repository, but also to each community, sub-community and collection.

<form-definition>
This tag includes the definitions of all the forms and ends with an ending tag
</form-definitions>. You should ensure that new forms are defined in
between the starting and ending tag.

<form-name>
Each of the newly defined forms should start with <form name ... > and end
with </form>. For example, if you have defined two forms, one for etd
collection and the other for lom collection, you should have the following.

<form name=”etd”>
 ...
 ...
</form>

Implementing LOM Schema in DSpace Paper: N

 7

<form name=”lom”>
 ...
 ...
</form>

Here ‘form’ is the tag and ‘name’ is the attribute and ‘etd’ and ‘lom’ are
attribute values.

<page>
DSpace allows you to have any number of pages in designing an input form.
You may divide all the elements of particular metadata standard into any
number of pages. What should go into first page or second page is
immaterial and you can intuitively decide what elements should go in the
first page, second page and so on. The syntax of this tag is
<page number=”1”>
 ...
 ...
</page>

<field>
Each <field> tag contains one element of metadata, where one can define
various attributes of a field like its name, what is the data type, whether it is
repeatable, what should be its heading in the input form, whether any help
message should be displayed, whether it is mandatory or optional etc.

<dc-element>
This is the tag where we define an element in a metadata schema. As
DSpace supports Dublin core, the tag name appears as ‘dc-element’. e.g.
 <dc-element>title</dc-element>

Though we can define a new element, which is not in Dublin core, still we
should use this tag as ‘dc-element’. Presently, there is no mechanism to use
‘lom-element’ or ‘etd-element’, as ‘input-forms.xml’ uses fixed pre-defined
tags. However, this really does not prevent any one to define ones own
elements from other metadata schemes. If the element does not have a
qualifier, it requires only one line definition.

Paper: N A.R.D. Prasad

 8

<dc-qualifier>
As the very name suggests, this meant to be a qualifier to an element. It
cannot occur alone and should be preceded by <dc-element>. e.g.
 <dc-element>contributor</dc-element>
 <dc-qualifier>advisor</dc-qualifier>

<repeatable>
It can have two values i.e. either true or false. If the field is repeatable like
author names, it should be true. If the field is not repeatable like date.
issued, it is false. e.g.
 <repeatable>true</repeatable>
 <repeatable>false</repeatable>

<label>
This tag is used as the heading of the column. For example,
<label>Title</label>, can be used as caption to the title field.

<input-type>
One should be clear about what type of input is required for a particular
field. DSpace allows the following types of input. In DSpace, input type
can be any one of the following:
name, textarea, onebox, twobox, date, dropdown, qualdrop_value

name: typically used for names of persons, where it will have first name
and last name, but will be stored as one element in the database. Note
that Dublin Core does not have two separate elements for first name and
last name. It is assumed that they are treated as rendered. However, under
the input-type ‘name’ DSpace allows you to enter last name and first
name separately. While displaying the field, it shows in rendered format.
That is the reason, in case of South Indian names, I suggest to enter first
name of the author in last name column and last name (which is normally
initials) in the first name column, so that in the display it will appear
correctly. For example, to make it appear as Ranganathan, S.R. you
should enter Ranganathan as the last name, though it is first name and
‘S.R.’ in last name!!!

Implementing LOM Schema in DSpace Paper: N

 9

textarea: used in case of abstracts or any other field where a large text
requires to be entered.

onebox: creates only one input-column (box) to enter the data. e.g. Title

twobox: used in case of keywords, where we required the input area to
appear in two columns, more a display sugar. One can do away with and
can use one box.

date: meant for entering dates

dropdown: provides a drop down menu. For example, type of document,
where the drop down menu may contain values like book, article, theses
etc. The ‘dropdown’ should be used with value-pairs, which is explained
below. e.g.
<input-type value-pairs-name=”common
types”>dropdown</input-type>
<input-type value-pairs-
name=”common_iso_languages”>dropdown</input-type>

qualdrop_value: It is mandatory to use it with repeatable fields. It is
similar to two boxes, except the first box is used for drop down menu
where you choose one of the values in the drop-down menu. The second
box is used for entering data. For example, in case of Identifier, the first
box, which is drop-down menu, will have values like ISSN, URI, etc and
in the second box, you have to enter the actual ISSN or URI. The
‘qualdrop_value’ should be used with value-pair. e.g.

<input-type value-pairs-
name=”common_identifiers”>qualdrop_value</input-type>

<hint>
This is meant to provide help message to the end user. e.g.
<hint>In case of South Indian names enter first name in the last name
column and the last name or initials in the first name column</hint>.

This help message appears below the input box.

Paper: N A.R.D. Prasad

 10

<required>
Using this tag you can make some fields mandatory. If this tag is empty,
DSpace assumes it is optional to fill up the values in a field. For example,
DSpace makes title field mandatory and the rest of the fields optional.
However, if you feel a few more fields should be made mandatory, you can
make them. The optional fields are written as follows:

<required></required>

However, mandatory fields are written as, e.g. the title field can be defined
as

<required>Enter the title of the item</required>

When a user does not fill up title and moves to the next page, DSpace shows
the message embedded between the starting and ending statement of the tag
and does not allow you to move forward until you enter a value in this field.

<form-value-pairs>
The following tags are defined outside the ‘form-definitions’. If you do not
have pull down menus in your input sheet, you can totally ignore these tags.
These are mainly used for pull-down and qualdrop_value data types. Again
these tags can be commonly used by any number of forms. For example,
you have defined ‘<form-definitions>’ for LOM, ETD, VRA Core etc,
the value-pairs need not be defined for every form-definition, they can be
shared by all the different meta-data schemes.

<value pairs ... >
Here, we define the name of each value pair and to which element of the
metadata schema it is associated. e.g.

<value-pairs value-pairs-name=”common_idetifiers” dc-
term=”identifier”>

The above line states that the name of the value pair is “common-
identifiers” and it is associated with the ‘identifier’ element in the metadata
scheme. When we define an element in the metadata scheme the definition
(refer the earlier definitions under ‘field’) should look like the following:

Implementing LOM Schema in DSpace Paper: N

 11

<field>
 <dc-element>identifier</dc-element>
 <dc-qualifier></dc-qualifier>
 ...
 <input-type value-pairs-
name="common_identifiers">qualdrop_value</input-type>
 ...
 <required></required>
 </field>

<pair>
The ‘pair’ tag contains actual pairs of displayed values (in the drop down
menu) and the values stored in the database. e.g.

<pair>
 <displayed>ISSN</displayed>
 <stored-value>ISSN</stored-value>

</pair>

2.3 Indexing

If one feels the necessity of indexing some of the newly added elements,
one can modify dspace.cfg file, so that the required elements can be
indexed. When you open the dspace.cfg, look for the lines given below:

Fields to Index for Search #####

DC metadata elements.qualifiers to be indexed for
search
format: - search.index.[number] = [search
field]:element.qualifier
- * used as wildcard

changing these will change your search results,

but will NOT automatically change your search
displays ###

Paper: N A.R.D. Prasad

 12

search.index.1 = author:contributor.*
search.index.2 = author:creator.*
search.index.3 = title:title.*
search.index.4 = keyword:subject.*
search.index.5 = abstract:description.abstract

The first column search.index[number] simply indicates how many fields
you are indexing. In the second column you have to state which field
should be indexed. There is a difference between the field names used by
metadata schema like Dublin Core and the way Lucene search engine’s
naming pattern for the field name. DSpace uses qualified Dublin core where
the notation is represented as ‘fieldname.qualifier’, the Lucene search
engine uses only field names. Once the difference is clear, it should not be
difficult to index the required fields in a metadata schema. First we mention
under what field name Lucene should index, followed by ‘:’ (colon),
followed by metadata element, followed by ‘.’ (dot), followed by qualifier
or wild card e.g.
Search.index.11 = abstract:description.abstract
Search.index.8 = abstract:description.tableofcontents

The above two lines index the metadata elements description.abstract and
description.table of contents under abstract. That is while searching, if you
enter

abstract:database
If the term ‘database’ is found either in abstract or table of contents, it will
be retrieved.

The use of wild card ‘*’ for qualifiers indicates all the qualifiers under the
element to be indexed. e.g.
search.index.4 = keyword:subject.*
indexes the words occurring in any of the qualifiers of ‘subject’ like ddc,
lcc, lcsh, mesh, etc. under the field name ‘keyword’. That means one can
give a search expression like

keyword:lung

If the word lung occurs in any of the qualifiers like mesh, lcc, lcsh etc. it
will be retrieved.

Implementing LOM Schema in DSpace Paper: N

 13

Note: Presently, use only the DSpace stated Lucene field name only. For
example, if you use

search.index.14 = guide:contibutor.advisor,
it does not work. It requires a lot more modification in DSIndexer.java file.

2.4 Search Result Display

DSpace allows you to display all the elements with data in 'show full item
record' though for short description of the record (default display), one has
to modify the Java program, ItemTag.java. However, one should have a bit of
programming knowledge to modify the display of search results. In
ItemTag.java, there are two functions called renderFull() and renderDefault()
or render(). We need not modify the renderFull() function, as it will display
all the elements including the newly added ones. However, renderDefault()
or render() should be modified, if you wish to display some of newly added
elements. Here, the code is not given because DSpace verions 1.2.2 used the
function renderDefault() and version 1.3.2 used the function render() for
default rendering. In any case if you modify any Java programs, you have
to run
 ant update
 rm -rf $TOMCAT_HOME/webapps/dspace*

cp $DSPACE_SOURCE/build/*.war
$TOMCAT_HOME/webapps/

 $TOMCAT_HOME/bin/startup.sh

2.5 Import/Export

Normally, when a collection is exported, DSpace exports the bitstream,
handle, license, contents and dublin_core.txt file for each item. Though the
dublin_core.txt file contains dc-like format, it is not the format that DSpace
exposes metadata through OAIcat. In fact, dublin_core.xml uses
qualifiers too. In any case, as the purpose is to export metadata, it really
does not matter, whether the element tags are in conformity with newly
adopted metadata scheme. However, this will be an issue when one wishes
to use the exported records in a digital repository which uses other than
DSpace software, in which case one has to convert the entire set of records
to suit the import operation of non-DSpace digital repository software. In

Paper: N A.R.D. Prasad

 14

essence, Export/Import issue is a non-issue as long as these operations are
performed within DSpace user community or digital repositories using
DSpace.

2.6 OAI-PMH

This is the most critical aspect in dealing with the metadata schemes other
than Dublin core. DSpace filters the Qualified Dublin Core elements and
exposes only the Dublin Core elements in response OAI requests. It is fairly
simple to add new metadata schemes to DSpace by modifying
oaicat.properties files and writing a java program similar to that of
OAIDC Crosswalk.java. Modification to oaicat.properties should
result in responding correctly to the OAI verb ListmetadataFormats.

The Crosswalk.java for the new schema, should

1) extend Crosswalk class
2) have the name space entry for the new scheme
3) create crosswalk for the dcregistry entries for the new metadata

format
4) have the tags of the new metadata format
5) suppress the dcregistry elements which are not relevant

One can borrow the idea from the recent versions of DSpace, as they expose
contributor.author as creator. If one uses the new metadata scheme in its OAI
verb, the output will convert all the records in the digital repository into the
new scheme, which in fact may not be quite meaning full. For example,
crosswalk from a collection described in VRA Core to ETDMS may result
in not quite full data. This becomes more apparent when Harvesters collect
the cross walked metadata. If the repository has more than one scheme, one
has to resort selective harvesting on a collection by giving the metadata
scheme used for that collection.

3. Conclusion

Implementing LOM Schema in DSpace Paper: N

 15

Many metadata formats are emerging and with so many schemes, it will
become too difficult to ensure inter-operability. In addition, unlike Dublin
Core, many metadata schemes have very large set of elements. Hence, these
elements are categorized administrative metadata, descriptive metadata etc.
Presently, DSpace can only address descriptive metadata, which is similar to
traditional cataloguing. DSpace in the context of e-learning could only be
used to offer courseware without the elaborate features of dedicated e-
learning software like Moodle, Manhattan etc. where specific roles for
teachers, students are assigned. DSpace model is simple, that it allows
storage and retrieval of learning objects.

4. References

1. Dublin Core Metadata Initiative. http://dublincore.org/
2. Introduction to the Tapir for DSpace.

http://www.thesesalive.ac.uk/dsp_home.shtml
3. DSpace at University of Manitoba.

https://mspace.lib.umanitoba.ca/ETDMS.zip

	DRTC – ICT Conference on

