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[ Classical laws of bibliometrics – Bradford’s law, Lotka’s and 

Zipf’s law – are discussed, with emphasis on to law of scattering 

and inverse square law of scientific productivity.  Two different 

approaches to bibliometric distributions – size and rank frequency 

approaches, characteristics of bibliometric distributions are 

discussed] 

 
 
 
1.  LAW OF SCATTERING  
 
 
 The topic in bibliometrics that has received a great deal of attention is the problem related 

to the scattering of articles.  The tabulation of the distribution of the  number of references on a 

specific subject area among the journals is the traditional  way of summarizing  scattering of 

articles.  In most of the bibliographies covering a short period on a particular scientific subject, it 

may be observed that : 
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i)  most of the journals contribute only one article each; the other articles in the journals 

obviously are not relevant to the said subject. 

ii)  a few journals contribute on an average  5 to 10 articles each; 

iii) very few journals, as compared to the first two groups, contribute a large number of 

articles 

 

 This was first observed by Bradford (1934).  In his article on “sources of  information”, 

he studied the extent in which literature in a single discipline is scattered over a range of 

journals.  His study was based on the literature in geophysics and lubrication.  He plotted the 

partial sums of references against the natural  logarithm of the partial sum of numbers of 

journals, and he noticed that the resulting graph is a straight line.  On the basis of this 

observation, he suggested following log-linear relation to describe a scattering phenomena. 

 

 F(x) = a + b * log x 

 

F(x) is the partial sum of references (-- cumulative number of references)  contained in the first x 

most productive journals; a and b are constants.  The following figure is a typical log-linear 

curve, as observed by Bradford. 
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Baed on this graph, by plotting  Y1 P1, Y2 P2 and Y3 P3 as parrrllel to X- axis,  P1 X1,  P2 X2 and 

P3 X3 as perpendiculars to X axis and further 0Y1 = Y1 Y2 = Y2 Y3, Bradford stated that  “if 

scientific journals are arranged in order of decreasing productivity of articles on a given subject, 

they may be divided into a  nuclear of periodicals more particularly devoted to subject and 

several groups or zones containing the same number of articles on the nuclear, when the zone 

will be 1:n:n2:…”. 

 

 Later in 1948, Bradford, based on his analytical approach, he again argued that the ratio 

of the zone size will be as 1:n:n2.    In his analytical approach, he assumed the collection of 

journals is ranked (or arranged) in decreasing productivity (-- in terms of number of articles it 

contains, on a given subject).  He then divided these journals into k groups/zones, such that 

 

m1 r1 = m2 r2  = m3 r3 = .. = mk rk     (A) 

 

where mi is the number of journals and ri  is the average number of articles per journal in the ith 

zone.  Thus, from the relation (A), we have : 

 

  mi-1 ri-1 = mi  ri 

 

    i = 2, 3, ….  k   

and with the supposition that  ni-1 = ni = n 

 

Where 
ir

ir
in 1

1
−=−  

     i = 2, 3, 4 ….. k 
 
he suggested that the ratio  of the zone size will be  1: n:n2: ….  This n is known as Bradford 

multiplier. 

 

 Bradford infact argued that “we have no reason why n1 and n2  should differ and the 

simple supposition we can make is that they are equal”.   He thus assumed n1=n2=n.  How far 
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his assumption is correct?  Based on a small sample of 12 databases, Ravichandra Rao (1997) 

has shown in his study that n1 and n2 are not likely to be equal and it is most likely that Bradford  

multipliers vary from zone to zone.   

 

Since 1948, many have worked in this area  and suggested modifications to this law.  For 

instance, Vickery (1948) observed that Bradford’s explanation based on the graphical and his 

verbal statements  are slightly different.  By defining, Skr as number of journals in the top most k 

groups, k = 1,2,3,…., Vickery pointed out that 

 

a)  based on Bradford’s graph, the following statement  

 

  S2r : S3r: Skr : …. = 1:n:n2:….  is true 

 

b)  based on the verbal statements, the following is true : 

 

  S1r : S2r - S1r : S3r - S2r : …. = 1:n :n2:….   (B) 

 

Thus, there is a difference between graphical and verbal statements.  Wilkingon (1972) 

elaborately discusses  this difference and then based on the verbal statements he derives the 

following equation : 

rSnfor
t
njnR 11log)( >






 +=

 

R(n) is the cumulative number of  references in  n most productive journals;  t  is a constant. 

 

From the relation as stated in (B), Vickery derived : 

 

 Skr = s (nk - 1) 
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where s = S1r / (n-1) and n is the Bradford multiplier.  Further he argued that 
   
 
 log Skr - log S(k-1) r  ~   log n 
 
 
It implies that the curve approaches a straight line as the logarithmic interval tends to log n. With 

the assumption that (A) is true, Leimkuhler (1967) derived an equivalence of Bradford’s law to a 

log form.  By defining  F(x) as relative cumulative number of references in topmost x proportion 

of journals, Leimkuhler   suggested that 

  
    

 ( )
( )β

β
+

+
=

1log
1log)( xXF  

  
  0 ≤ x ≤ 1 

     β > 0 
 

The derivation  of the above  distribution function is given here.  Let us consider a 

collection of journals arranged in decreasing order of productivity and divided into m groups of 

relative sizes d1, d2, d3, d4, …. dm ;  di is the proportion of journals in ith group; .  If the 

groups are chosen such that each group yields the same number of references, then according to 

Bradford : 

d i
i

m

=
∑ =

1
1

 

   di
mbidmbid 1

1
−=−=

     

i = 1,2,3,…m 

    m = 2,3,4,… 

0 ≤  di  ≤  1  ≤  bm       
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bm is known as Bradford multiplier, in this multiplier, m indicates that there are m divisions.  

Since , we have 1=∑ id

 

( )
( )1

1
11

1 −
−

==∑
= mb

m
mbd

m

i id  

 

d1 is therefore : 

 

  
1

1
1 −

−
= m

mb
mbd  

Thus, 

 

  
( )

)1(

11

1
1

−

−−
=−= m

mb
mbi

mb
di

mbid   

 

The cumulative proportion of journals (Dj,m) in the first j of m group and containing the 

fraction j/m of all  of  references is defined by : 

 

  
1
1

1, −
−

=∑
=

= m
mb

j
mb

id
j

imjD  

     j = 1, 2, 3,…m 

 

Define a parameter b, such that bm=b1/m,  b is only a function of the total number of references 

and is independent of m, the number of zones into which the collection has been divided.  Thus, 

for each j, we have 

 

  
1

1/
, −

−
=

b

mjb
mjD  
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Further, for each j, if we can associate a value of x such that x=Dj, m and F(x)=j/m, we then have: 

  

  
1

1)(

−
−

=
b

xFbx  

 

Thus, for β=b-1, we have : 

 

)1log(
)1log()(

β
β

+
+

=
xxF  ,     0 ≤  x  ≤ 1 

      β > 0 

 

F(x) is called the Bradford distribution.  Its density function is given by : 

 

 
)1log()1(

)(
xx

xf
ββ

β
++

=  

 

The mean of the distribution is 

  

 
µ

β β
=

+
−

1
1

1
log( )  

 

In Wilkinson’s equation, if we define F(n) = R(n)/R(N) and substituting for R(n) and 

R(N) we have. 

( )
)1/(log

1/log)(
+
+

=
tNj
tnjnF  

 

 Since x = n/N, Leimkuhler’s equation can be obtained from the above equation as 

follows: 
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)1(log
)1(log)(

β
β

+
+

=
xxF   for 

t
N

=β . 

 

Brookes (1969a, 1969b) on the basis of the graphical formulation argued that 

 

 
R n k

n
s

( ) log=
 

 

where k and s are constants.  The j and t in Willkinson’s equation and k and s in Brooke’s 

equation are not equal (k≠j and s≠t).  This again indicates that, the verbal and graphical equations 

are not equal.  In fact, they do not even converge to the same limit for a large n. 

 

1.1 Bradford-Zipf Distribution 

 

 Brookes (1968), after reviewing the literature of journal productivity, restates  the law of 

scattering in the form of a hypothesis where the number of pertinent articles yielded by the nth  

ranking periodical exceeds that of the (n+1)th by b  where b is the ratio between 

successive equity yielding  zone of periodicals.  Brookes then agrees with Vickery that 
“Bradford’s  law requires 

n
n

log
− 1

 

 R(n) = R(n2) - R(n) = R(n3) - R(n2) = … 

 

for all integral values of n greater than unity”.  R(n) is the cumulative number of references 

found in the n most productive journals.  According to this relation R(nm)=mR(n), where m is a 

positive integer.  Brookes therefore claims that “the only function which perfectly satisfies the 

condition is: 

  

 R(n) = k log n 
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where k is a constant.  We then have R(nm)=k log nm =m′  log n as required.  The graph of 

R(n)=k log n is obtained by plotting R(n) on a linear scale along the y-axis and n on a 

logarithmic scale along the x-axis.  This graph is likely to be a straight line with slope k.  Thus, 

Brookes has developed the graphical formulation of the law.  However, in most cases, a straight 

line is attained only in part.  The cumulative total of relevant papers found in the first n journals, 

when all the journals are ranked in order of decreasing productivity is unlikely to be zero for 

n=1; but in the equation as suggested by Brookes, R(1)=0.  This form of the Bradford’s 

distribution is therefore a crude approximation. 

 

 The density function r(n) which expresses the number of reference corresponding to the 

nth journal is therefore given by: 

 

 
r n

d
dn

R n
k
n

( ) ( )= =
 

 

which is similar to Zipf’s function.  In fact, 

 

  
r n R n R n( ) ( ) ( )= − − 1

  =  )/11(log)1(loglog nknknk −=−−

 

  
n
k

nnn
k ~...

3
1

2
11

32 



 +++=  

as n increases.  He calls this the complete Bradford-Zipf curve.  He also points out that the 

following distribution are likely to fit into the Bradford-Zipf curve: 

 

1.  Distribution of number of books published by each publisher; 

2.  Distribution of number  of references to each periodical; and 

3.  Distribution of the number of the times a particular  books is issued 
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 Brookes (1969a, 1969b) in another paper further attempts to get a better  fits by 

expressing the curve in two parts as show below : 

  

R(n) = α nβ 
 

1
0

≤ ≤
>









n c
α β,   

 

 
s
nN log=               

c n N
s

< ≤
>






0

  

 

 In another paper Brookes (1977),  also argued that a mixed Poisson model describes the 

Bradford law and he claims that it elucidates the uncertainties surrounding the law and its 

applications.  Since Poisson probabilities converge to zero for a large n, much repaidly it is 

unlikely that it can describe a tail of the journal productivity curve. 

 

1.2 Size-Frequency Model 

  

 Kendall (1960) in his analysis of the bibliography upto 1958, pertaining to Operation 

Research claims that the scattering of articles in journals is similar to that of income distribution.  

He equates journals to persons and number of articles to the size of income.  Thus, he obtains 

a pattern in which many journals (people) have a few articles (low income) in a subject, 

comparing to a few journals (few millionaires) with a large number of articles in a subject.  

Kendall substantatites this fact in the following model: 

  )1(
1
+= ρp

pJ  

 

where Jp is the relative number of journals having p reference each; p=1, 2, 3, ….. He also shows 

that this distribution is structurally similar to the Zipf distribution.  In fact he is the first to 
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publish the Bradord-Zipf equivalence.  Naranan (1970, 1971) shows with certain assumptions 

that a frequency distribution of the number of journals with p articles is given by : 

 

 J(p)  ∝  p- θ;   

θ > 0,   

p = 1, 2, 3,…. 

 

He fits this function to the data collected by Goffman and by many others.  His assumptions are: 

 

1.  The number of journals in a subject grows exponentially in time; 

2.  Each journal augments in the number of papers in the subject exponentially in time; 

3.  The rate of growth of articles in each individual journal is the same. 

 

But, Hubert (1976) argues that Narnan’s interpretation of the original form of Bradford’s 

law does not follow a stochastic argument based on his assumptions.  Infact Hubert gets an 

equation similar to the “Naranan variable”.  Naranan considers “number of papers” as a 

variable; Hubert by considering the number of journals with p papers as a variable (say, Yp- 

number of journals with p papers) shows: 

 

 E (Yp) = kp - θ     p = 1, 2, 3, …. 

       θ > 0 

where k and θ are constants; E is the expected value in a statistical sense. 

 

1.3 Rank Frequency Model 

 

By defining the rank of a journal as the “number of distinct journals, including itself, that 

have occurred at least as frequently as it has” (Hubert (1977), p 465) and also defining f(r) as the 

number of occurrences of a journal of rank r, Hubert suggested the following law for journal 

productivity: 
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 f (r) = αrβ 

 

where α and  β are positive constants.  His approach is an inverse of the size-frequency 

approach.  In the size-frequency formulation, Nj is the number of journals which have j 

references each.  For an observed sample of K references in N distinct journals, it will be 

 

    NN
n

j
j =∑

=1
∑

=

=
n

j
j KNj

1

 

where n is the number of frequency classes.  From empirical evidences, Hubert assumes that the 

expected value of Nj for each j is: 

 

 E (Nj) = K Cn (b) j - (b+1) 

where 

 

   
1

1

)1()(
−

=

+−








= ∑

n

j

b
n jbC

  

 It may be noted that Cn(b) is a Zeta function and the function E(Nj) is similar to that of 

Zipf’s function.  For a large n, E(Nj) implies that the frequency of references (x) is a function of 

the rank of journal of the following form : 

 

 x = f(r) = (r/c)-1/b 

or    x = f(r)  = (r/c) – 1/b 

 

 f(r) = α r-β,  β = 1/b and  α = c1/b 

 

 One estimates b with the size-frequency approach and β is estimated with the rank-

frequency approach.   Hubert also observes that for a few sets of data, β is more suitable than b. 
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1.4 Other Studies 

 

 Chung (1977) suggests a model to portray the scattering of articles on a subject among 

journals.  Chung class this model a non-Bradfordian model.  It is given below : 

 

 αx
xp 1)( =  

   x = 1, 2, 3, ….. 

 

 This model explains the relation between the number of references and the proportion of 

periodicals containing x references.  This model appears to be similar to Naranan’s model or a 

generalized version of Lotka’s law.  Also, for x=1, p(x)=1 which is very unlikely. 

 

 Since 1948, many have worked in this area and suggested different models to explain law 

of scattering.  Simon (1955) proposed a Beta model under the following two assumptions. 

 

i)  There is a constant probability α that the kth paper be published in a new journal that 

has not published in the first (k-1) papers. 

ii)  The probability the kth paper is published in a journal that has published i paper is 

prepositional  to i*f (i, k-1);  i.e. to the total number of papers of all journals that have 

published exactly i papers.  The β model is given by 

 

 )1()( ρ+=
r

Nrj  

N is the total number of periodicals containing at least one paper n the subject, ρ is the 

distance between origin and the point at which straight line meets at x-axis, and j(r) is the 

distribution of the number of journals j with exactly r papers. 

 

Cole (1958) suggested a semi-log model, as mentioned by Bradford to explain 

law of scattering.  Groos(1967) observed a S-shape curve (with a droop, at  the end of the 
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curve) to explain law of scattering.  Fairthorne (1969) and also Asai (1981) suggested a 

log model.  Karmeshu and others  (1982) presented two models to explain the mechanism 

that could produce Bradford distributions.  These models are called as subdivisions  

model and multiple factor model.  Burrell (1988) suggested Waring process to explain 

general features of Bradford’s law.  Basu (1992, 1995) suggested a model to explain 

distribution of articles in journals based on probabilistic considerations. 

 

Some of these models are based on size-frequency approach with probabilistic 

considerations and most of them are based on rank-frequency approach.  Some of models 

are  theoretical in nature and they are not tested with real-life data.  To identify a suitable 

model to explain the law of scattering, Ravichandra Rao (1997) fitted about 24 different 

models to the 12 different sets of data.  He has  observed that log-normal model fits much 

better than the many other models, including the log-liner model.  

 

 Law of scattering is an area where much work has been done.   However, till 

now, no one has come out with a single model which fits fairly well to most of the data 

sets.  Various models, suggested by the different authors are summarized  in Table 1. 

 

Table 1 : Different Models to Explain law of Scattering 

 

Sl. Author Model Remark 
 
1. 
 

 
Bradford 

 
F(x)  =  a + b  * log (x) 

 
F(x) : no. of articles contained in the x top 
most periodicals; periodicals are arranged 
in decreasing productivity. 
 

2. Vickery Skr  =  s (nk-1) Skr is the no. of journals in the most 
productive k groups; n is a constant 
       s = S1r / ( n-1) 
 

 
 
 
 
 

 
 
 
 
 

 

 

 

 

This is derived under the assumption that 
Bradford’s verbal statement is correct. 
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3. 
 
 
 
4.   
 
 
5. 
 
 
 
 
 
 
6. 
 
 
 
 
7. 
         
 
8. 
 
 
9. 
 
 
 
 
10. 
 
 
 
11. 
 
 

Wilkinson 
 
 
 
Cole 
 
 
Brookes 
 
 
 
 
 
 
Leimkuhler 
 
 
 
 
Hasper 
 
 
Asai 
 
 
Brookes 
(1984) 
 
 
 
Egghe 
 
 
 
Basu(1992) 

)1(log)( +=
t
njnR  

 

 
F(x)  = 1 + b. log (x) 

 

 

s
nknR log.)( =  

        

R(n)  =  α n β 

 

  

)1log(
)1log()(

β
β

+
+

=
xxF                 

  

 

)0(1log)( R
a
rjnR +






 +=   

 
Y = A log (x +c) + B 
 
 
R(n) = j1 log ( 1 + n / a1) 
 
R ( n) = j2 log ( 1 + n / a2)  
 
 
Y = A log [ B + CX                          
 + D log  (1+CX)  ]               
 
 
    Y = x-x log x 
    
    Y = (x - bx log x )a 

 

n > S1r; R(n) is the cumulative no. of 
references in n most productive journals; t 
is a constant. 
 
As in the case of (1) 
 
 
R (n) is as in case of (3) 
For n  ≤ c 
 
for  > c and R(n) is as in case of (3) 
 
 
F(x) is the relative cumulative frequency 
of references contained in top most x 
proposition of journals; β > 0. 
 
 
R(n) is as defined in (3) a is constant. 
 
 
A and B are constants; x is the rank of 
journals. 
 
X<C, R(n) is as defined in (3) 
 
X ≥ C, R(n) is as defined in (3) 

 
 
 
 
 
 



16   I.K. Ravichandra Rao 
 
 
 
2.  INVERSE SQUARE LAW OF SCIENTIFIC PRODUCTIVITY 
 
 
 In an “Informetrics Production  Process” ( Egghe(1990)), often known as generalized 

source-item relationship, distributions of publications over different authors  are well recognized.  

Authors are considered as sources and papers as items.  Since 1926, such a distribution is 

explained by an “inverse square law of scientific productivity” known as Lotka’s law.  It is 

discussed in detail in this section. 

 

 In  recent past, distribution  of articles/papers is approximated by a number of related 

distributions; the following are some of the important models or distributions : 

 

• Law of  Inverse Square (Lotka (1926)) 

• generalized bibliometric distributions (Bookstein (1976)) 

• negative  binominal  and as a special case sometimes geometric distribution 

(Ravichandra Rao (1980)) 

• lognormal distribution, etc. (Ravichandra Rao (1995), Shocklay  (1957) 

 

 In most of these studies, the number of publications are considered as a measure of 

scientific productivity.  As pointed out by Egghe (1993) and Lindsey (1980), there are three 

methods of counting of the number  of publications.  They are : 

 

• method of total counting / normal counting : assigning every author a weight one for 

each of his/her publications during a time period, irrespective of whether he/she is a 

first author or a second author, etc.  

• method of straight counting : assigning only the first author a weight one for each of 

his/her publications during a time period; for other authors a weight zero; In deriving  

inverse square law of scientific productivity, Lotka  adopted this method while 

collecting data from Author Index of the Chemical Abstracts and Auerbach’s  

Geschichtstafeln der physik. 
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• method of fractional counting: assigning every author a weight 1/n in a n-authored 

paper published during a time period. 

 

 In distribution of papers, baed on the first two methods, the domain of the variable (-- the 

number of papers) is positive integers; i.e. i = 1,2,3, … m and thus the variable is discrete in 

nature.  Lotka’s law and similar other models or distributions are likely to fit such data.  In 

distributions of papers, based on the third method, the domain of the variable is the positive real 

numbers; i.e. 0 < i  ≤ m .  In the above said three methods, the first two methods give rise to an 

incorrect size of population of authors/papers.  Only the third method gives the correct size of 

population of authors as well as papers. 

 

2.1 Lotka’s Law 

 

 Lotka (1926), in his classic paper published in 1926 in the Journal of the Washington 

Academy of Sciences  on the frequency distribution of scientific productivity presented an 

analysis of the number of publications listed in Chemical Abstracts from 1907 to 1916 with the 

frequency of publications by  particular authors.  He  excluded the names of  corporate authors, 

but only considered the names of authors whose names begin with A and B as listed in the index.  

He neither adopted a sampling design nor computed a sample size by using scientific methods.  

He also made a similar study in the field of physics.  He applied the same process to the name 

index of Auerbach’s Geschichtstafeln der physic which covers the entire range of history upto 

the year 1900.  For these two sets of data, he computed  the theoretical frequencies  of 

publications of authors using the least square method.   For large values of  X (when X is the 

number of papers published by an author), the Fluctuation  is too high; perhaps, owing to the 

limited number of persons in the sample.  He, therefore, considered only the first 17 points of the 

data in physics and first 30 points in chemistry.  Based on his data, he proposed the following 

inverse square law of scientific productivity. 

 
y

xx =
6
2π α

   x = 1, 2, 3, …… 

     α > 0 
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yx is the relative frequency of authors publishing x number of papers.  The value of α is found to 

be 2 for physicists and 1.89 for chemists.  This difference in the value of α is possibly due to the 

sampling error, especially in the data pertaining to chemists.  Lotka’s law is based on a meager 

set of data and it has not been statistically tested.  It is indeed reasonable to say that it is more a 

conjecture than a “law”.  If N is the total number of authors, Ny1, in Lotka’s equation, gives the 

number of authors who have published single paper each.  Thus, Lotka’s equation is determined 

in  its general form by three parameters : 

 

1.  The number of scientists with minimal productivity (authors with single paper each - 

Ny1); 

2.  The maximal productivity of a scientist (xmax); 

3.  The characteristic exponent α. 

 

Lotka’s equation can also written in the following form : 

 

 
y

k
xx = α

   x = 1, 2, 3, …. 

     k = 6/π2 for α = 2 

 Thus, Lotka’s equation suggests that the proportion of single author papers (k) is a 

function of α.  That is,  

 

  
1

max

1
1)(

−









∑
=

=
x

x x
k

α
α  

 

 This suggests that increase of α is accompanied by the increase of low productivity 

scientists.  This implies that for a given N and for a large value of α, the proportion of highly 

productive scientists will decrease.  Yoblonsky (1980), therefore, argues that the larger the 
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parameter α, the greater is the gap between the productivity of individual groups of scientists.  In 

this sense, the α is considered as a measure of inequality in the distribution  of scientific papers. 

 

 The other models which are used to describe scientific productivity and which are related 

to Lotka’s  law are discussed in the following sections. 

 

2.2   Scientific Productivity 

  

 ‘Scientific productivity’ is frequently measured in terms of published output.  This is 

because, the data on the number of publications by the authors can easily be collected and are 

also quite reliable.  Many have used the number of publications of an individual scientist as a 

measure of his/her scientific productivity.  Dennis (1954) studies the relationship between 

quantity of publication   by outstanding  scientists and scientific recognition.  His study was 

based on 71 members of the National Academic of Sciences.  He observed that all these scientists 

substantially contribute to literature, with the range of publication s between  27 and 768 and the 

median is 145.  He also asserts that the members of the National  Academy of Sciences 

contribute a large number of publications.  He shows that almost without exception., those who 

have published many papers have also achieved eminence by being listed in the Encyclopedia  

Britannica.  He obtains a similar result in a study on the pattern  of publications by European 

scientists.  He observes a close correlation between the quantity of scientific publication and the 

achievement of eminence as a contributor.  We can therefore take the number of publications as 

a measure of scientific productivity.  Since the number of articles published by an author can 

usually take only discrete values, it is reasonable to assume a discrete  probability distribution 

function to describe the phenomenon of scientific productivity.  In recent years, there have been 

many analytical approaches different from Lotka’s Law for scientific productivity.  Narin (1976) 

reviewed the early studies of scientific  productivity and he concluded that “scientific talent is  

highly concentrated in a limited number of individuals”.  He, therefore, points out that the 

science policy should be designed to encourage the most productive scientists.  He further 

observes that there are very few studies in his area. 
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 Price (1971) conjectures that the number of the elite in science is small compared to the 

total number of scientists.  Taking this clue and further  assuming that exchange among scientists 

in general is a rare event, Griffith et al (1971) suggest that informal  contacts in science might 

follow a Poisson distribution.  Using the data gathered by Crane (1971) they attempt to  estimate 

the value of the parameter of the Poisson distribution that would fit into the empirical data on 

scientists in the areas of rural sociology  and finite mathematics.  They suggest the following two 

groups : 

 

1.  A majority having a low average rate of contact which follow a Poisson distribution; 

2.  Elites whose frequency of contact deviates considerably from what the Poisson 

distribution would predict which is in fact about 8 times higher than the majority. 

 

 Their study suggests that Price’s elite concept must be valid as far as the size of the elite 

group is concerned.  Price also claims that “any population of size N contains an effective elite of 

size √ N” (Price (1971), p.74). be tested by statistical techniques.  Neelameghan and others 

(1970a, 1970b) in heir papers on the pattern of duplication of discovery, use regression analysis, 

analysis of variance and a modified Poisson distribution to analyses the data and study the trend 

of duplication, the distribution of duplication, and the relationship between duplication and 

discovery.  Their observations are: (1) the total number of discoveries, new discoveries, and 

duplications are predictable by assuming a linear relationship between the respective pairs of 

variables; (2) the patten of duplication is not due to chance alone; there is a regularity in its 

behaviours in the statistical sense; (3) the reputed discoveries and duplications both increase with 

time; (4) the behaviour of the functional relationship between the number of reported discoveries 

of antibiotics and the number of duplications in relation to time are different; (5) from 1937 to 

1966, the rate of duplication has been nearly halved. 

 

2.3 Probability Distribution of Scientific Papers 

 

 There are many analytical approaches apart from Lotka’s law describing scientific 

productivity.  Williams (1944) examined the geometric model and Fisher’s logarithmic series in 
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a study of publication patterns of biologists.  Simon (1955) proposed a Beta function which he 

calls “Yule distribution”.  Shockeley (1957) proposed a lognormal model.  Price (1976) proposed 

the Cumulative Advantage Distribution, similar to a Beta function.  Coile (1977)  proposed a 

continuous  distribution (Weibull) for the data collected by Hersh (1942) and compared his 

results with those obtained by the use of other models.  On the other hand, Bookestein (1977) 

argued the Lotka’s Law is invariant under the impact of society on patterns of scientific 

productivity. 

 

2.4  Social Change and Scientific Productivity 

 

 The environment of scientific research has undergone enormous changes both 

qualitatively and quantitatively.  Under these circumstances, it is reasonable to presume that the 

patterns of scientific productivity have also charged.  Bookstein (1977) shows  that social change 

can affect overall levels of production, but not the pattern of individual productivity under this 

assumption that the scientific productivity follows Lotka’s law. Bookstein also states that 

Lotka’s law is invariant under the following two impacts of society on patterns of scientific 

productivity. 

 

1.  Society’s ability to increase the calibre of scientists; and 

2.  Society’s ability to encourage scientists by the way of rewards or threats to get the 

maximum research output. 

 

 Ravichandra Rao (1980) in his analytical study shows that the negative binominal 

distribution describes a pattern of scientific productivity under the “success-breeds-success” 

condition in a wide variety of social circumstances. 

 

2.5  A  Stochastic Model of Concentration 

 

 Ravichandra Rao (1995)  suggested a model  concerning the concentration of papers over 

authors, based on the data on author productivity in Mathematics.  This model is mostly used in 
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econometrics to analyse the market concentration over time and size distribution of firm (Hay 

and Moris (1991)).   Like in the  market concentration, a familiar  common feature of 

distributions of papers is that they are generated by a stochastic process in which the  variable 

(no. of papers) is subjected to cumulative random shocks over time and thus the distribution of 

papers at a given point in time is the product of a series of random growth patterns.  In this 

section, a general non-linear model has been proposed to explain the distribution  of the levels of 

scientific productivity by scientists, in the context of stochastic process.  The general model 

suggested is : 

 

 
)1(

,,

,1 −
=+ s

sty
sty

sty β
α  

 

where yt,s refers to the number of authors who have published t papers during a sub-period s.  In 

this section,  an empirical study is explained only for one year (i.e. for s=1).  Hence the 

stochastic model suggested above, would simply be, for a given period : 

  

)1(1 −=+ βα ty
ty

ty
 , where 

 

 yt is the number of authors who have published t papers each; yt is the number of authors 

in group t. yt  thus refers to those authors who have published one paper less as compared to yt+1. 

 

The term “growth” is used below in a sense that at what proportion the number of authors 

are moving from one group to the other group. Say, for example, yt+1/yt gives the proportion at 

which authors capable of moving to the next higher productive group. 

 

As in the case of size distribution of firms, it is conjectured here that the productivity of 

scientists may also be analyzed under two different situations.  The first is of the type where the 

ratio of the number of authors in group t+1 to group t is constant; the constant ratio is common to 

all scientists. i.e., we have 
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This ratio can be treated as “productivity-growth” of scientists; rate at which they are 

moving from low productive group to high productive group. The second situation is of the type 

of where the number of authors with (t+1) papers is related to the initial size of authors, who are 

less productive 

)1(1 −+ == βα t
t

t
t y

y
yR     (2) 

Further, 

 

dR
dy

yt

t
t= − −α β β( ) (1 2)     (3) 

Equation (3) is either negative or equal to zero or positive depending on the value of β and the 

effect of initial size of growth is determined by the value of β, since α>0; if β = 1, the exponent 

of yt is zero in equation (2).  If  β>1 scientists of “high productivity” grow much faster than 

scientists of “less productivity” and vice versa for  β<1 .  The case where  β is less than 1 implies 

that the elite group consisting of very high productive group is quite small in the total population 

i.e., the tendency for a variate to return to the “mean of populations”. Such situation is also called 

as regression.  For the data in mathematics,  Ravichandra Rao observed that β = 0.918068.  It 

implies that mathematicians of “ less productivity” publish papers much faster (with a higher rate 

of publications!) than mathematicians of “higher productivity”. 

 

3.   ZIPF’s LAW 

 

 This is a third well known bibliometric law/distribution.  It is argued by many that Zipf’s  

law has a number of good applications in Information Retrieval environment; particularly, to 

select the terms for indexing in automated text retrieval systems.  Further, it is  closely related to 

Bradford’s distribution. 
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 Zipf (1949) developed and extended an empirical law, as observed by Estoup (1916), 

governing a relation between the rank of a word and the frequency of its appearance in a long 

text.  If r is a rank of a word and ƒ  is its frequency, then Zipf’s  law is stated as follow: 

 r ƒ = c 

where c is a constant.  Zipf drved his law from a general “principle of least efforts”.  Words 

whose cost of usage is small or whose transmit demands the least effort are frequently used in a 

large text.  A hypothetical, but a typical example of a Zipfian curve is shown in the figure below.  

The other models which are used to describe word frequency distributions and which are related 

to Zipf’s law are discussed in the following sections. 

 

      ƒ 

 

   

 

 

 

                          

r 

    A Zipfian Curve 

 

 Based on observations of many empirical distributions of word frequencies, Simon 

(1955) characterizes word frequency distribution by a Yule distribution rather than by a 

commonly used contagious distribution  such as the negative binomial or its limiting form called 

the Fisher’s logarithmic series.  The Yule distribution is 

 

 ƒ( r ) = ρ β (r, ρ + 1),     r = 1, 2, 3, 4, ….. 

        ρ > 0 

 

ƒ( r) is the probability mass function; it is the theoretical relative frequency of words whose rank 

is r; β (.) is a Beta function.  He also observes that the Yule distribution fits the tail much better 
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than the top of the frequency curve.  He further points out that ƒ(r ) is proportional to r- - (ρ-1) for a 

sufficiently large r.  The ratio of relative frequencies of  1’s and 2’s in the Yule distribution for 

ρ=2, as in the case of Lotka’s law, is 4:1.  But Simon, on the other hand, observes in actual 

practice that the values of this ratio are close to 3:1 and sometimes even less.  He, therefore, 

argues that the Yule distribution with ρ approximately equal to 1 fits the empirical data in most 

cases, especially towards the top of the curve. 

 

 Booth (1967) suggests a method for estimating the Zipf constant c (in the equation rf = c) 

for a given author.  He argues that 

 

1.  His estimate provides a measure of the author’s richness in vocabulary, and 

2.  The general form of the law of occurrence  for law frequency  words is independent  

of the detailed validity of Zipf’s law for the distribution as a whole. 

 

 Booth further observes  that a rank distribution  of rare words can be expressed as r(1+ƒ) 

= c where r  is the rank of a rare word occurring ƒ times.  Donohue (1973), in his book draws 

attention to Goffman’s suggestion to derive a truncation point between high and low frequency 

words.   The formula is as follows: 

 

 T
I

=
− +1 1 8

2
1  

where T is the truncation point, I1 is the number of distinct words of which occurs only once in a 

text.  This formula is unlikely to be most useful in a highly positively skewed distribution 

(Ravichandra Rao, 1978, 1981) Mandelbrot (1952) shows that “under quite general conditions 

that word  frequencies should follow a law of the type: 

  

 p ( r) = (B-1) VB-1 (r+V)-B 

 

where B and V are constants”.  In this formula, r is the rank of a word and p( r) is the relative 

frequency of words.  This equation is equivalent to the following form : 
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 p ( r) = c (r--a) -s 

where c, a and s are contents. 

 

4. CHARACTERISTICS  OF BIBLIOMETRIC DISTRIBUTIONS 

4.1 Success-bareeds- Success Phenomenon 

 

 Price (1976) and many others argue that the success-needs-success  phenomenon 

characterizes bibliometric distributions as they do in the other social processes.  Price gives a few 

examples where such a phenomenon occurs in bibliometrics.  They are : 

 

1.  A journal which has been frequently used is more likely to be used again than an 

infrequently used journal ; 

2.  An article in a journal which has been cited many  times is more likely to be cited 

again than the one which has been rarely cited; 

3.  An author of many papers is more likely to publish again than the one who is less 

prolific. 

 

 Similarly, Ravichandra Rao (1981) in his thesis argued that : 

 

1.  Those documents which have been borrowed frequently  are more likely to be 

borrowed again than those borrowed infrequently  in an academic library in an 

academic year; 

2.  Those users who borrow documents frequently are more likely to borrow documents 

again than those who seldom borrowed documents in an academic year. 

 

 In statistics, such a phenomenon is generally described by a hyperbolic  distribution 

function.  Price characterized such a distribution  by a Cumulative Advantage Distribution.  In 

statistics, it is known as Yule distribution.  The probability mass function of the Cumulative 

Advantage Distribution is : 
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 p(x)=(m+1)B(x, m+2) 

    x=1, 2, 3, …. 

    m>0 

 

 Price also points that the success-breeds-success phenomenon can be described by a 

negative binomial  distribution.  Tague (1981) and Ravichandra Rao (1980) show analytically 

that a negative binomial distribution  describes the success-breeds-success phenomenon.  

Ravichandra Rao empirically shows that the negative binomial distribution describes the success 

breeds-success phenomenon much better than the Cumulative Advantage Distribution. 

 

4.2 Other Characteristics 

 

 Bird (1977) in a study of the characteristics of bibliometric distributions, argues that 

increasing sample size leads to an increasing number of represented classes and an increase in 

both the mean and variance of distribution.  He also shows for several bibliometric data that Yule 

characteristic : 

  k  
sample iance mean mean

number of classes
=

+ −1 2( var ) /

 

changes with the sample size. 

 

 Bookstein (1976) briefly discussed different bibliometric distributions that allow one to 

understand  them as being different versions of a single theoretical distribution.  He suggests the 

following to describe the bibliometric processes : 

 

 f x
k
x

( ) = α  

    x=1, 2, 3, …. 

    K, α>0 
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 This function can be used to describe Zipf’s Lotka’s and Bradford’s laws as follows : 

 

1.  ƒ(x), the number of words occurring x times, is proportional to 1/xα; 

2.  ƒ(x), the number of authors who have published x papers, is proportional to 1/xα; 

3.  ƒ(x), the number of journals which contain x articles in a given subject, is proportional 

to 1/xα. 

 

 This is also the view of Mandelbrot (1952).  He suggested the following formula : 

 

 f x
k

x
( )

( )
=

+1 α β  

 

ƒ(x) is the number of words with rank x; k is a normalizing factor; αand β are constants.  Thus, 

one can argue that the bibliometric distributions have the following characteristics in  common : 

 

1.  Distributions are reverse-J shaped; 

2.  Distributions are highly skewed; 

3.  Generally, the distributions have long tails; 

4.  The most general form of the distribution is : 

 ƒ(x)=c(x+a)k 

      c, a and k are constants; 

5.  The bibliometric distributions are usually due to a success-breeds-success 

phenomenon; it can be described by a negative binomial described by a negative 

binomial distributions 
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4.3 80-20 Rule 
 

Many have observed in library and information field that : 

 

i. Most of the documents are hardly circulated/used/cited and very few books are 

frequently circulated/used/cited 

ii. Most of the authors publish very few articles and very few authors publish most 

frequently. 

 

This phenomenon is explained fairly by a 80-20 rule. i.e. 80% of the documents 

contribute to 20% of the total circulations/uses/citations received; 20% of the documents 

contribute 80% of the total circulations/uses/citations received; the 20% of the such documents 

are usually called  “core documents/core collection”.  Similarly many have observed that 20% 

of the authors (at any given time and ; called most productive authors) contribute 80% of he 

total publications and 80% of the authors contribute hardly 20% of the publications. 

 

In general, if we define  

 x = x (n) : the fraction of sources having n or more items 

 θ = θ (n) : the fraction of items yielded by the sources having n or more   

    items. 

Burrell  (1985) has shown (under the assumption that f(n) : the number of sources with n 

items, follows negative bibominal distribution) that 
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where µ  is  the  mean  number  of circulations.  For θ = 0.8, x = 0.57 if  µ ~ 2.0 and x = 0.48 if 

µ = 5.  i.e., the greater the µ, the smaller is the x.  i.e., libraries with lower average borrowing 
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(µ) tend to require larger proportions (x) of their collections to account for say θ = 0.8 (80%) of 

the borrowings. 

 

Egghe (1986) in his study on the other hand argued that for α = 2, in Lotka’s law, 

 

 ( ) ( )
µπ

πµπ
µθ 2

22 /6log66, xEx −−
=  

 

where E = 0.5772 is Euler’s constant.  Thus, Egghe also observe that x increase if and only if  µ 

decreases. 

 

 For much of the library applications, we may be satisfied with 80-20 rule!, 

especially to identify the core collection.  Thus, most of the bibliometric data may be analysed 

using Lorenz Curve. 

 

5. RANK AND SIZE FREQUENCY DISTRIBUTIONS 

 

 Explanations of Bradford’s law, Zipf’s law and many other similar laws or rank-size 

relations are to be usually sought in the statistical theory of events that might show these 

relations instead of the nature of object to which the relations apply.  Let us consider a frequency 

density function y= ƒ(x) in which the independent random variable X represents non-negative 

integer (size),  and  ƒ(x) represents the relative frequency of objects in a population of N objects.  

Therefore, 

 

  f x dx( ) =∑ 1

 

Let F(x) be the number of objects having a size greater than or equal to x.  That is : 
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  F x N f t dt
x

( ) ( )=
∞

∫

 

 This is exactly the rank of the objects whose size x, under the assumption that the ranks 

of objects of equal size are assigned arbitrarily among them.  The rank-frequency curve is 

therefore essentially the cumulative curve of the size-frequency distribution.  For example, Zipf’s 

law, ƒ(x)=k/x, holds approximately if the size frequency is of the form k/x2, since 

 

  
x
kdt

t
k

x

=∫
∞

2  

 

Hubert (1978) similarly argues that even for Bradford’s law, the rank-frequency and  size 

frequency distributions are similar. 

 

 It is worthwhile to mention here that Zipf;s law and Bradford’s law are due to a rank-

frequency analysis of the data.  Lotka’s law is due to a size frequency analysis of the data. 

 

 Although the rank-frequency and size-frequency distribution are closely related to each 

other, based on Shannon’s theory of information, Brookes (1980) argues that the rank-frequency 

analysis is richer than conventional size-frequency analysis.  But the fact is that not only a simple 

rule of assigning a rank to an entity can lead us to ties, the rank-frequency approach is also 

tedious in nature since it involves ranking of each individual.  Brookes’ argument is given below. 

 

 If N entities are uniquely ranked, then there are N! possible different orders.  The 

information yielded by any of these rank orders is than (from Shannon’s information theory) 

given by : 

 

 I ( R) = log N! 
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On the other hand, if there are ƒ1 entities with the score of one, ƒ2

  entities with the score of two, 

and so no, we have a conventional frequency distribution wherein ∑    The number of 

all possible permutations of N entities which give exactly the same frequency distribution is : 

f Nr
r

= .

 

 
N

f f f f r

!
! ! !..... !1 2 3

 

 

The corresponding information measure is : 

 

 I F
N
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1 2 3
 

Thus we have  

 

  I R I F fr
r

( ) ( ) log ( !)− = ∑

This shows that the different between I( R) and I (F) is zero only if the frequency distribution is 

such that ƒr=1 for every r, in which case the size frequency distribution is indistinguishable from 

the rank-frequency distribution.  But if  ƒr  > 1, for any r, 

 

 I( R)>I(F) 

 

Hence, Brookes argues that the rank-frequency approach is richer than size-frequency approach. 

 
6. CONCLUDING REMARKS 
 
 
 Most of the  theoretical works in informetrics / bibliometrics are centred around 

Bradford’s law and Lotka’s law; the Bradford’s law is derived based on the rank-frequency 

approach and the Lotka’s law is based on the size frequency approach.  They are closely related.  

However, often 80-20 rule confirming to many of library phenomena and they are very much 

useful in taking library related decisions. 
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