

United States Educational Foundation in India,
DRTC/Indian Statistical Institute,
DLIS/University of Mysore
Joint Workshop on Digital Libraries
12th – 16th March, 2001

Paper: I

Library Digital Resources: Relational

Databases or Catalogues?

(A Short Tutorial)

Gurunandan R. Bhat

Department of Computer Science and Technology

Goa University, Goa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Librarians' Digital Library

https://core.ac.uk/display/333967114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Paper: I Gurunandan R. Bhat

 2

Abstract

With the rush to deploy Information Technology in all service areas, there is
tremendous pressure on small and medium size (around 1 lakh holdings) libraries in
India to digitize their records. In doing so, Librarians wishing to go digital face the
risk of opting for platforms and back-ends not truly designed for managing library
records. The fact that designers of almost all Library Management Systems currently
popular, have opted for the Relational Database model in structuring library data,
further confounds the Librarian's choice and almost always leads to the deployment of
inappropriate tools. This article (tutorial) argues that Library records cannot be
conveniently cast in the conventional RDBMS framework without significant
modifications to the structures of Library data as librarians have conventionally
structured it, as well as key concepts in conventional RDBMS. It is the premise of this
article that these modifications can be made only at the risk of seriously detracting
from the effectiveness of the tools as well as the quality of the data. The premise here
is that Library data are not relational databases but catalogs in the sense that they
cannot be normalized to fit the canonical normal forms. An alternative framework of
tools (WWWISIS back-end from the ISIS family) and structured data (ISO 8059) is
suggested and explained.

1 Introduction

Designers of Library Management Systems will notice that Library records cannot be
forced in the conventional Relational Database Model without either seriously
comprising the effectiveness of the data or making significant and usually ugly
changes to the Database Model itself. Here are a few examples and typical scenarios:

• Library Records frequently demand multivalued attributes: Books can have
more than one author and Authors write many books. In view of the fact that
RDBMSs demands atomicity (one field one value) forces the need for three
tables where one would have sufficed1. While this perfectly legitimate and
indeed more robust2 real world exigencies frequently require modifications in
design. This can happen where an author presents himself differently on
different titles. Is William Shakespeare the same bloke as W. Shakespeare or
Shakespeare William? Should he appear as different records in the author
table? Or should one create a table of all known aliases of an author?3 What if
an alias for an individual author happens to be the legitimate name of another

1 A table of book-titles and their identification tag (id), a table of author details and its id and separate
table linking each author-id to a single book-id spread over multiple records spanning all authors and all
books
2 If the details of an Author change, a change at one single point (the table of author details only)
reflects everywhere. The data is always in a consistent state no matter when the change is made.
3 Again since aliases are not atomic, records proliferate!

Library Digital Resources: Relational Databases……… Paper: I

 3

author?4 The core problem here is that conventional RDBMSs treat (as they
rightly should) each record as an ”entity” rather than a collection of fields.
When two entities frequently have similar (or even identical) attributes, the
conventional designer is forced to incorporate other attributes to distinguish
between them5

• Most OPAC6 queries are free-text or pattern searches and conventional
RDBMSs need to work very hard when asked to process these. While there has
been tremendous progress in optimizing pattern searches via the regular
expressions syntax, these have yet to be incorporated fully or most efficiently
in most RDB back-ends. The key here is the way a conventional RDB indexes
fields. Indices are almost always atomic, never for multiple sub-parts. Client
side SQL does support the ‘LIKE’ keyword but has to work extremely hard to
support it at the back-end. What is required in OPACs is an intelligent method
to index records based on patterns rather than atomic values.

• Most Libraries require an OPAC that is integrated with a Management System
to handle lending, acquisitions, payments and reminders. The problem is that
OPACs work best in the catalog (pattern indices rather than atomic indices)
mode whereas the management system works best in the conventional
RDBMS mode and resource starved libraries are reluctant to deploy multiple
systems with these disparate capabilities. The need here is for a catalog like
application that also allows the rich capabilities of conventional RDBMSs like
efficient inserts/updates, transaction control, replicability and rapid
deployability.

• Serial (Technical Journals and Magazines) control has always been the bane of
Library management Systems in developing countries where periodicals are
hardly ever delivered periodically. Many suppliers bundle several issues
together to save mailing costs. Publishers frequently bring out non-periodic
special issues to commemorate events. To compound the misery of the
conventional database designer, each serial has its own method of naming
volumes depending on its periodicity. Trying to fit wildly varying serials
systems into a structured conventional RDB is extremely difficult to say the
least. An unpredictable system such as this is further disturbed by the fact that
serials are first separate and then after a period (more than one year) bound
together in an independent volume. Since the Library Bindery is probably the
most stretched section, it is not unusual for this period to stretch to around five
years.

• There are hundreds (or even thousands?) of libraries in India that have the a
huge number of common titles7. It would be advantageous to distribute the
digitised catalog of one library to another so as to leverage the automation

4 Matrix Diagonalisations'' by L. Prokofievich and L.Prokofievich!!
5 for example L. Prokofievich (the father) and L. Prokofievich (the son) thus necessitating, say an age
attribute in the author table
6 Online Public Access Catalogs
7 Think of all the College and University Libraries. Most College and University Texts and Reference
books are the same. A random intersecting sample of our University Library with that of the
neighboring Mangalore University showed up an overlap of more than 80%

Paper: I Gurunandan R. Bhat

 4

process. All that a new Library is required to do is to keep the bulk of the fields
the same and only change a few attributes to reflect locale. Most RDBMSs
store data in proprietary formats and require tricky inter-format translations
making leveraging other initiatives difficult or sometimes impossible. What is
required here is robust and active support from RDBMSs for a Common
Communication Format for titles and serials.

• Conventional High-end databases (at least those with enough feature list to be
useful to Libraries) are expensive and Commercial Library Management
Systems built around these even more prohibitive8. A commercial solution (not
costing upgrades) weighs equal to three years annual subscription of a leading
and valuable American Physics Journal.

• In view of these and other problems in using conventional RDBM tools, the
Goa University Library is currently experimenting with the ISIS family of
Bibliographic tools for its Library OPAC and Management back-end. While
the ISIS suite has not yet matured to the extent of providing a complete
solution to Library needs, it is definitely a frontline candidate in terms of its
potential.

2 The ISIS family of bibliographic tools

2.1 The backend view

The ISIS view of a Database is more akin to a Catalog or a Directory, where data is
structured not in terms of related but rigid tables with strong integrity relationships,
but more in terms of a loose hierarchy of attributes. In this sense the ISIS view of data
is similar to that taken by Network Directory services such as X.25 and LDAP or flat
text Unix databases such as gdbm. In what follows we shall describe the the structure
of an ISIS database

2.1.1 The data definition scheme

Data in the ISIS family of tools is organised in conformance with the ‘Field Definition
Table’ (FDT). The Field Definition Table describes the structure, type and
characteristics of the records in the Database completely. Every field is characterised
by a numerical tag used to reference it. A field (unlike those in a RDB) can have
multiple sub-fields. To the ISIS backend, a field (or a sub-field for that matter) is just a
continuous string of characters. In the event that a field consists of sub-fields, the FDT
also defines the ‘sub-field delimiter’ that separates one sub-field from the next. To the
backend, a sub-field is treated in the same manner as an independent field in the sense
that sub-fields can be independently indexed9. The address field of a publishing house
for example can be structured in terms of four sub-fields (say) address-line-1, address-
line-2, city-name and country-name. The sub-field delimiter is usually a caret ^

8 A leading library management system comes with a total bill of around Rs. 4.00 lakhs and rising!
9 and therefore can form the parametric basis of a faster search

Library Digital Resources: Relational Databases……… Paper: I

 5

followed by an alphanumeric character such as â. For example the address field of a
Publisher manifests in the database of Publishers may appear as

^a66, Samudra Mahal^bDaryaganj^cNew Delhi^dIndia

In many cases however, the number of sub-fields of a field cannot be known a-priori.
A good example is the author field. Since the number of authors of a title is variable, it
is not possible to fix the number of sub-fields in the FDT. In such cases, one uses a
‘repeatable’ field to characterise this attribute. While the individual occurrences of a
repeatable field cannot be referenced separately (as can be done for sub-fields) one can
index them and use them as parameters in a search. In summary then, the FDT
characterises the records in a particular database by specifying the following
parameters:

The Field Tag is a (arbitrary) numerical tag for each field. This tag is used for
extracting the tagged field from the record and to pass it as a label for use by the
indexing engine

The Field Name is a descriptive name for the field. It is used as a heading for fields
but there is no way of accessing it directly and exists only for informational purposes
only. Internally ISIS uses only the tag to label or reference the field.

Field Length The field length can be up 1650.

Field Type Field types can be one of four: X for alphanumeric, A for exclusively
alphabetic, N for exclusively numeric and P for a field that conforms to a predefined
pattern.

Repeatability Whether the field is repeatable (R). Since there is no limit (except total
record size) to the number of times that a field may repeat this number is not specified
separately10.

Sub-field Delimiters/Pattern Specifier This attribute of a field specifies the
alphanumeric character that will separate each sub-field (for example abcd above). If
the field happens to be one that is required to conform to a pattern, then that pattern is
specified here.

2.1.2 The data reference scheme

Any database requires an identification scheme to refer to the individual fields in a
record. In conventional query languages like SQL, the field name is the identifying
tag. In ISIS, references to fields (or sub-fields) is through the tag as specified in the
Field Definition Table (FDT). For example one specifies the field with tag number 32
as v32. The sub-field c of this field (if it has one) is referred to as v32^c. In addition to

10 If the number of times a field could repeat is known a-priori, then it might be better formatted as a
sub-field

Paper: I Gurunandan R. Bhat

 6

individual fields, sub-fields or patterns, ISIS also provides a referencing scheme for
fragments of a field using the *offset.length to refer to character starting at offset (base
is taken to be zero) and continuing up to length11 as well as entire records.

In addition to referring to individual fields, ISIS also has a rich scheme for formatting
or indenting a field or successive sub-fields within a field. These may be gleaned from
the ISIS manuals.

 2.1.3 Control, logic structures and inter-database references

In addition to referring to individual fields and sub-fields, we also need control and
logic structures to add power to our applications. These are provided through the
simple boolean comparison operators and structures such as:

IF condition THEN tag-1 ELSE tag-2 FI

In addition to these elementary control structures, one can maintain a simple level of
referential integrity between databases with the REF feature. While this is certainly
not at the same degree of power as foreign and primary key mechanism in
conventional RDBs, it is adequate for bibliographic applications. There are no triggers
(yet!) in the ISIS family.

2.1.4 Database backend file scheme

Apart from the data (records) in a database, an efficient back-end also requires a host
of files with pre-cooked indexes to speed up access. All these files are formatted to be
accessed speedily without regard to their readability. The ISIS family uses the
following files for this purpose

The iso file contains the records packed using the ISO 2709 format. A simple perl
script to unpack and extract the individual fields and records is described later.

The mst file is the master file containing all records packed in a proprietary format.
Each record is divided into 3 sections: the leader to keep track of sequencing (both
forward and backward), a directory to speed up the location of individual fields and
the data itself. The mst file is stored as series of 512 byte blocks.

The xrf file contains pointers to individual records in the master mst file. Using this
cross-reference file, one can get at individual records speedily.

The inverted files are six files with extensions cnt, ifp, n01, n02, l01 and l02. All
these files contain indexes of the fields in the master table. You can visualize them as
binary files that record the position of each indexed term in the master file. The ISIS
tools store two indexes, one of terms with ten or less characters and the other with

11 For example if we want the fifth, sixth and seventh characters of the sub-field c of field tagged 32,
we refer to it as v32^c*4.2. Notice that the offset begins with 0, the fifth character is at offset 4

Library Digital Resources: Relational Databases……… Paper: I

 7

terms of more than 10 characters. ISIS provides tools to generate these index files
(inverted files) from the iso file.

3 The application layer

3.1 Introduction

To develop useful applications, one needs extensible tools to query the backend.
While the ISIS family does come with CDS-ISIS (for DOS and SCO Unix) and Win-
ISIS (for the Microsoft Windows platform) Goa University has chosen to use the
WWWISIS-4 (also referred to as wxis, to distinguish it from the WWWISIS-3) API
layer for all its bibliographic applications including its OPAC, Serial Control and
Library Management Suite. There are several reasons for this:

• WWWISIS uses public domain protocols like HTTP and CGI overlaid on the
universal base TCP/IP layer for all its transactions. We find this use of open
standards both free from dependence on proprietary network protocols as well
as free from dependence on proprietary OS platforms. WWWISIS makes no
demand on the client side platform as it will (through the web server) happily
talk to any IETF compliant browsers (almost all browsers are IETF compliant).

• WWWISIS is blazingly fast. This is due to the superb indexing schemes that
are used to generate the indexes and dictionaries.

• WWWISIS is completely extensible since the core API is based on XML12.
• Core API control structures are much more richer than anything available so

far in the ISIS family.
• The WWWISIS API allows for integration of OPAC like query features as

well as database like insert, update and delete features allowing us to integrate
management function functions seamlessly into our application.

• Since WWWISIS uses the HTTP and CGI protocols to service client side
applications, it also allows us to seamlessly integrate modern alert services via
e-mail, and home-pages of our Library.

3.2 The front-end

The fact that any IETF compliant browser (Netscape or Microsoft Internet Explorer)
can serve as a powerful front-end to the WWWISIS server-side script is the single
most attractive feature for choosing WWWISIS. This model requires no special
configuration at the client side and makes no special demands on the client side
operating system except the fact that it supports TCP/IP as a base protocol.

3.3 A (very) short introduction to WWWISIS-4 scripting

WWWISIS-4 relies on the CGI framework to execute scripts. The CGI framework is
simple. A client browser requests a transaction from the remote HTTP Server13 located

12 WWWISIS-3 was not based on XML, WWWISIS-4 (or wxis) is

Paper: I Gurunandan R. Bhat

 8

on the Library premises. This request could be a search query from a library user or a
request to update or insert a record from a library manager. In either case, the
webserver requests the WWWISIS backend to process the query through the CGI
framework. The process could involve updating the remote database (in case the
request came from an authenticated library manager) or output a set of fields or
records (in case the query came from a OPAC client). In any case the output is passed
back through the CGI gateway to the client browser (success or failure of update, or
the list of matches to the OPAC query).

All queries by the WWWISIS backend are processed via scripts. Application
development in this model therefore requires us to write simple scripts to process
expected queries. What follows below are a set of WWWISIS-4 scripts.

3.3.1 Example I: Salut Mundi!

Here is the traditional first script that just wishes the World a big Hello!

<IsisScript name=HelloWorld>
 <section>
 <display>Hello World!</display>
 </section>
 </IsisScript>

As seen above, each WWWISIS script has a name, a section and an operative task.
The tags are built in extensible XML so that it should not be difficult to extend the
backend functionality by designing your own proprietary tags.

3.3.2 Example II: displaying fields of a record from a database

The second example displays a particular (sub)field (with tag 32, sub-field c of
records 50 to 100, from a database called unigoa

<do>
 <parm name=db>unigoa</parm>
 <parm name=from>51</field>
 <parm name=to>100</field>
 <loop>
 <display>
 <pft>newline('
'),v32^c</pft>
 </display>
 </loop>
 </do>

Notice the control structures like <do> and <loop> which allow us to run through
separate tasks and loop through the results.

13 Goa University uses Apache -- the most popular Web server running on the Linux Operating System
(Red Hat 6.2)

Library Digital Resources: Relational Databases……… Paper: I

 9

3.3.3 Example III: searching a database

The script to search a database for a particular expression (say ‘database’) anywhere
in the record and display the serial numbers of the records as well as the title (tag 56)
that match looks like:

<do task=search>
 <parm name=db>unigoa</parm>
 <parm name=expression>database</parm>
 <loop>
 <display><pft>mfn/,v56</pft></display>
 </loop>
</do>

3.3.4 Example IV: updating a record in a database

The following script enters a new record in the unigoa database. The updated fields
are the authors name (in this case “Davidson A.W.” with tag = 12) and the title (in this
case “Relational Databases” with tag = 56).

<do task=update>
 <parm name=db>unigoa</parm>
 <parm name=mfn>New</parm>
 <update>
 <field action=append tag=12>Davidson A.W.</field>
 <field action=append tag=56>Relational Databases</field>
 <write>Unlock</write>
 </update>
</do>

3.3.5 All the other remaining stuff……

The above scripts give a flavour for the rich structures present in the WWWISIS
scripting language but obviously do not exhaust all. We have not included the
powerful formatting capabilities that can out put the results of the query in a well-
defined structured pattern. This can be seen from the Goa University's Library Web
Site. In addition to these formatting abilities are the sophisticated locking rules
(transactions so that updates are coordinated with each other and queries touching
upon those updates are not affected), task structures and search and query formatting
that is best referred to in the manual. What makes WWWISIS particularly powerful is
the fact that its underlying structure is XML-based making it possible for the user to
add tasks and therefore functionality that is particular to his application.

4 Conclusion

The above discussion shows clearly the power of using Directory and Catalog based
tools as opposed to tools designed around the RDBM paradigm as far as Bibliographic
applications are concerned. It is clear that RDBMSs have much more power, but with
that power also comes the application developer's responsibility to adhere to far

Paper: I Gurunandan R. Bhat

 10

stricter standards of design that eventually make the application inflexible. Catalog
and Directory based tools like WWWISIS combine the flexibility with exactly as
much power as is required, and no more. But with this stripping comes a flexibility
and the ability to extend the application in a short time. Since tools rely on the ISO
2709 format, data exchange is also supported so that other resource starved libraries
can leverage automation in a time frame that is acceptable.

