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This paper investigates the inverse problem of determining the time-dependent heat
source and the temperature for the heat equation with a non-classical boundary and an
integral over-determination conditions. The existence, uniqueness and continuous depen-
dence upon the data of the classical solution of the inverse problem is shown by using the
generalised Fourier method. Furthermore in the numerical process, the boundary element
method (BEM) together with the second-order Tikhonov regularization is employed with
the choice of regularization parameter based on the generalised cross-validation (GCV) cri-
terion. Numerical results are presented and discussed.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Inverse time-dependent source problems for the heat equation with local, nonlocal, integral or nonclassical (boundary)
conditions have become the point of interest in many recent papers, [1–7], to name only a few. In the present paper, we con-
sider yet another reconstruction of a time-dependent heat source from an integral over-determination measurement of the
thermal energy of the system and a new dynamic-type boundary condition.

Let T > 0 be a fixed number and denote by DT ¼ fðx; tÞ : 0 < x < 1;0 < t 6 Tg ¼ ð0;1Þ � ð0; T�. Consider the following ini-
tial-boundary value problem for the heat equation:
ut ¼ uxx þ rðtÞf ðx; tÞ; ðx; tÞ 2 DT ; ð1:1Þ
uðx;0Þ ¼ uðxÞ; x 2 ð0;1Þ; ð1:2Þ
uð0; tÞ ¼ 0; t 2 ð0; T�; ð1:3Þ
auxxð1; tÞ þ duxð1; tÞ þ buð1; tÞ ¼ 0; t 2 ð0; T�; ð1:4Þ
where f ;u are given functions and a; b; d are given numbers not simultaneously equal to zero. When the function rðtÞ is
given, the problem of finding uðx; tÞ from the heat Eq. (1.1), initial condition (1.2), and boundary conditions (1.3) and
(1.4) is termed as the direct (or forward) problem. The well-posedness of this direct problem has been established elsewhere,
[8].
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This model can be used in heat transfer and diffusion processes with a source parameter present in (1.1). Also, in acoustic
scattering or damage corrosion the dynamic boundary condition (1.4) is also known as a generalised impedance boundary
condition, [9–12].

Taking into account the Eq. (1.1) at x ¼ 1, the boundary condition (1.4) becomes
autð1; tÞ þ duxð1; tÞ þ buð1; tÞ ¼ arðtÞf ð1; tÞ; t 2 ð0; T�: ð1:5Þ
In order to add further physics to the problem, we mention that the boundary condition (1.5) is observed in the process of
cooling of a thin solid bar one end of which is placed in contact with a fluid [13]. Another possible application of such type of
boundary condition is announced in [14, p. 79], as this boundary condition represents a boundary reaction in diffusion
of chemical. We finally mention that we have also previously encountered the dynamic boundary condition (1.5) when
modelling a transient flow pump experiment in a porous medium [15].

When the function rðtÞ for t 2 ½0; T� is unknown, the inverse problem formulates as that of finding a pair of functions
ðrðtÞ;uðx; tÞÞ which satisfy the Eq. (1.1), initial condition (1.2), the boundary conditions (1.3) and (1.4) (or (1.5)), and the
energy/mass overdetermination measurement
Z 1

0
uðx; tÞdx ¼ EðtÞ; t 2 ½0; T�: ð1:6Þ
It is also worth mentioning that a related parabolic inverse source problem given by equations (1.1)–(1.3), (1.6) and the
following dynamic boundary condition
utð1; tÞ þ uxð1; tÞ þ rðuð1; tÞÞ ¼ 0; t 2 ð0; T�; ð1:7Þ
where r is a given Lipschitz function, has very recently been investigated in [16]. However, no numerical results were pre-
sented and the boundary condition (1.7) is different of the boundary condition (1.5) considered in the present study.

The condition (1.6) is encountered in modelling applications related to particle diffusion in turbulent plasma, as well as in
heat conduction problems in which the law of variation EðtÞ of the total energy of heat in a rod is given, [17].

If we let uðx; tÞ represent the temperature distribution, then the above-mentioned inverse problem can be regarded as a
source control problem. The source control parameter rðtÞ needs to be determined from the measurement of the thermal
energy EðtÞ.

Because the function r is space independent, a; b and d are constants and the boundary conditions are linear and homo-
geneous, the method of separation of variables is suitable for studying the problem under consideration. It is well-known
that the main difficulty in applying the Fourier method is the explicit availability of a basis, i.e. the expansion in terms of
eigenfunctions of the auxiliary spectral problem
y00ðxÞ þ lyðxÞ ¼ 0; x 2 ½0;1�;
yð0Þ ¼ 0;
ðal� bÞyð1Þ ¼ dy0ð1Þ:

8><>: ð1:8Þ
In contrast to the classical Sturm–Liouville problem, this problem has the spectral parameter also in the boundary con-
dition. It makes it impossible to apply the classical results on expansion in terms of eigenfunctions [18]. The spectral analysis
of such type of problems was started by [19]. After that, important developments were made by [20–24]. It is useful to note
the reference [25] whose results on expansion in term of eigenfunctions will be used in the present paper.

The paper is organised as follows. In Section 2, the eigenvalues and eigenfunctions of the auxiliary spectral problem and
some of their properties are introduced. Then the existence, uniqueness, and continuous dependence upon the data of the
solution of the inverse problem (1.1)–(1.3), (1.5), (1.6) are proved. The numerical discretisation of the inverse problem is
based on the boundary element method (BEM) which is described in Section 3. Section 4 discusses numerical results
obtained for a couple of benchmark test examples and emphasises the importance of employing regularization in order
to achieve a stable numerical solution. Finally, Section 5 presents the conclusions of the paper.

2. Mathematical analysis

Consider the spectral problem (1.8) with ad > 0. It is known from [20] that its eigenvalues ln;n ¼ 0;1;2; . . . are real and
simple. They form an unbounded increasing sequence and the eigenfunction ynðxÞ corresponding to ln has exactly n simple
zeros in the interval ð0;1Þ. We can also give the sign of the first eigenvalue l0 as
l0 < 0 < l1 < l2 < � � � ; if � b
d > 1;

l0 ¼ 0 < l1 < l2 < � � � ; if � b
d ¼ 1;

0 < l0 < l1 < l2 < � � � ; if � b
d < 1:

8><>:

It was shown in [25] that the eigenvalues and eigenfunctions have the following asymptotic behaviour:
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ffiffiffiffiffiffi
ln

p
¼ pnþ O

1
n

� �
; ynðxÞ ¼ sinðpnxÞ þ O

1
n

� �
;

for sufficiently large n.
Let n0 be arbitrary fixed non-negative integer. It was shown in [25] that the system of eigenfunctions ynðxÞf g

ðn ¼ 0;1;2; . . . ; n – n0Þ is a Riesz basis for L2½0;1�. The system unðxÞf g ðn ¼ 0;1;2; . . . ; n – n0Þwhich is biorthogonal to the sys-
tem ynðxÞf g ðn ¼ 0;1;2; . . . ; n – n0Þ has the form
unðxÞ ¼
ynðxÞ � ynð1Þ

yn0
ð1Þ yn0

ðxÞ

ynk k
2
L2 ½0;1� þ

a
d y2

nð1Þ
:

The following Bessel-type inequalities are true for the systems ynðxÞf g and unðxÞf g ðn ¼ 0;1;2; . . . ; n – n0Þ, see [8].

Lemma 1 (Bessel-type inequalities). If wðxÞ 2 L2½0;1�, then the estimates
X1
n¼0
ðn–n0 Þ

ðw; ynÞj j2 6 c1 wk k2
L2 ½0;1�;

X1
n¼0
ðn–n0 Þ

ðw; unÞj j2 6 c2 wk k2
L2 ½0;1�
hold for some positive constants c1 and c2, where ðw; ynÞ ¼
R 1

0 wðxÞynðxÞdx and ðw;unÞ ¼
R 1

0 wðxÞunðxÞdx denote the usual inner
products in L2½0;1�.

Let us denote U4
n0
½0;1� :¼ fwðxÞ 2 C4½0;1�; wð0Þ ¼ w00ð0Þ ¼ 0;wð1Þ ¼ w0ð1Þ ¼ w00ð1Þ ¼ w000ð1Þ ¼ 0;

R 1
0 wðxÞyn0

ðxÞdx ¼ 0g.

Lemma 2. If wðxÞ 2 U4
n0
½0;1�, then we have:
l2
nðw; ynÞ ¼ ðwð4Þ; ynÞ; l2

nðw;unÞ ¼ ðwð4Þ;unÞ; n P 0; ð2:1Þ

X1
n¼0
ðn–n0 Þ

jlnðw; ynÞj 6 c3kwkC4 ½0;1�;
X1
n¼0
ðn–n0 Þ

jlnðw;unÞj 6 c4kwkC4 ½0;1�; ð2:2Þ

X1
n¼0
ðn–n0 Þ

jðw; ynÞj 6 c5kwkC4 ½0;1�;
X1
n¼0
ðn–n0 Þ

jðw;unÞj 6 c6kwkC4 ½0;1�; ð2:3Þ
where c3; c4; c5 and c6 are some positive constants.
Proof. From (1.8), since lnyn ¼ �y00n and ynð0Þ ¼ 0, the identities (2.1) follow by applying four times integration by parts in

(1.8) and using that w 2 U4
n0
½0;1�. The estimates (2.2) are obtained from Lemma 1, Eq. (2.1) and using the Schwarz inequality.

Finally, since for a sufficiently large m the series
P1

n¼mjlnðw; ynÞj is majorant for the series
P1

n¼mjðw; ynÞj, the estimates
(2.3) also hold. h
Theorem 1 (Existence and uniqueness). Let the following conditions be satisfied:

(A1) uðxÞ 2 U4
n0
½0;1�.

(A2) EðtÞ 2 C1½0; T�; Eð0Þ ¼
R 1

0 uðxÞdx.

(A3) f ðx; tÞ 2 CðDTÞ; f ðx; tÞ 2 U4
n0
½0;1�;8t 2 ½0; T�;

R 1
0 f ðx; tÞdx – 0;8t 2 ½0; T�.

Then the inverse problem (1.1)–(1.3), (1.5), (1.6) has a unique classical solution ðrðtÞ;uðx; tÞÞ 2 C½0; T� � ðC2;1ðDTÞ \ C2;0ðDTÞÞ.
Moreover, uðx; tÞ 2 C2;1ðDTÞ.
Proof. For given rðtÞ 2 C½0; T�, to construct the formal solution uðx; tÞ of the direct problem (1.1)–(1.3), (1.5) we will use the
generalised Fourier method. Based on this method, the solution uðx; tÞ is sought in a Fourier series in terms of the eigenfunc-
tions ynðxÞf g ðn ¼ 0;1;2; . . . ; n – n0Þ of the auxiliary spectral problem (1.8), namely,
uðx; tÞ ¼
X1
n¼0
ðn–n0 Þ

vnðtÞynðxÞ; vnðtÞ ¼ ðu;unÞ:
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The functions vnðtÞ;n ¼ 0;1;2; . . . ; n – n0, satisfy the Cauchy problem
v 0nðtÞ þ lnvnðtÞ ¼ rðtÞf nðtÞ;
vnð0Þ ¼ un;

�

where f nðtÞ ¼ ðf ;unÞ and un ¼ ðu;unÞ. Solving these Cauchy problems, we obtain
vnðtÞ ¼ une�lnt þ
Z t

0
rðsÞf nðsÞe�lnðt�sÞds;
and then formally,
uðx; tÞ ¼
X1
n¼0
ðn–n0 Þ

une�lnt þ
Z t

0
rðsÞf nðsÞe�lnðt�sÞds

� �
ynðxÞ: ð2:4Þ
Under the conditions ðA1Þ and ðA3Þ, the series (2.4) and its x-partial derivative are uniformly convergent in DT since their
majorizing sums are absolutely convergent, see the inequalities (2.2) and (2.3). Therefore, their sums uðx; tÞ and uxðx; tÞ are
continuous in DT . The t-partial derivative and the xx-second-order partial derivative series also are uniformly convergent in
DT . Thus, uðx; tÞ 2 C2;1 DT

� 	
and satisfies the conditions (1.1)–(1.3), (1.5) for arbitrary rðtÞ 2 C½0; T�.

The formulas (2.4) and (1.6) yield a following Volterra integral equation of the first kind with respect to rðtÞ:
Z t

0
Kðt; sÞrðsÞdsþ FðtÞ ¼ EðtÞ; ð2:5Þ
where
FðtÞ ¼
X1
n¼0
ðn–n0Þ

une�lnt
Z 1

0
ynðxÞdx

� �
; Kðt; sÞ ¼

X1
n¼0
ðn–n0Þ

f nðsÞe�ln t�sð Þ
Z 1

0
ynðxÞdx

� �
: ð2:6Þ
By using (2.2), under the assumptions ðA1Þ and ðA3Þ, the term FðtÞ and the kernel Kðt; sÞ are continuously differentiable
functions in ½0; T� and ½0; T� � ½0; T�, respectively. From (2.6), it is easy to show that
Fð0Þ ¼
X1
n¼0
ðn–n0 Þ

un

Z 1

0
ynðxÞdx

� �
¼
Z 1

0
uðxÞdx; Kðt; tÞ ¼

X1
n¼0
ðn–n0 Þ

f nðsÞ
Z 1

0
ynðxÞdx

� �
¼
Z 1

0
f ðx; tÞdx:
Further, under the assumption ðA2Þ, by differentiating Eq. (2.5) yields the following Volterra integral equation of the sec-
ond kind:
Kðt; tÞrðtÞ þ
Z t

0
Ktðt; sÞrðsÞdsþ F 0ðtÞ ¼ E0ðtÞ: ð2:7Þ
Note that the function Kðt; tÞ is never equal to zero because of the assumption
R 1

0 f ðx; tÞdx – 0;8t 2 ½0; T� in ðA3Þ. In addi-
tion, the functions F 0ðtÞ; E0ðtÞ and the kernel Ktðt; sÞ are continuous functions in ½0; T� and ½0; T� � ½0; T�, respectively. We there-
fore obtain a unique function rðtÞ, continuous in ½0; T�, which, together with the solution of the problem (1.1)–(1.3), (1.5)
given by the Fourier series (2.4), form the unique solution of the inverse problem (1.1)–(1.3), (1.5), (1.6). Theorem 1 has been
proved. h

The solution of (2.7) is given by the series
rðtÞ ¼
X1
n¼0

ðKnBÞðtÞ;
where ðKBÞðtÞ :¼
R t

0 Qðt; sÞBðsÞds with BðtÞ ¼ E0 ðtÞ�F0 ðtÞ
Kðt;tÞ and Qðt; sÞ ¼ � Kt ðt;sÞ

Kðt;tÞ . It is easy to verify that
ðKnBÞðtÞ


 

 6 Bk kC 0;T½ �

t Qk kC ½0;T��½0;T�ð Þ

� �n

n!
; t 2 0; T½ �; n ¼ 0;1; . . . :
Thus, we obtain the estimate
rk kC 0;T½ � 6 Bk kC 0;T½ �e
T Qk kC ½0;T��½0;T�ð Þ : ð2:8Þ
We finally prove the continuous dependence on the data of the solution of the inverse problem (1.1)–(1.3), (1.5), (1.6).
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Theorem 2 (Continuous dependence upon the data). Let I be the class of triples ff ;u; Eg which satisfy the assumptions
ðA1Þ � ðA3Þ of Theorem 1 and
kfkC4;0ðDT Þ
6 N0; kukC4 ½0;1� 6 N1; kEkC1 ½0;T� 6 N2; 0 < N3 6

Z 1

0
f ðx; tÞdx





 



;

for some positive constants Ni; i ¼ 0;3. Then the solution pair rðtÞ;uðx; tÞð Þ of the inverse problem (1.1)–(1.3), (1.5), (1.6) depends
continuously upon the data in I.
Proof. Let ff ;u; Eg and f~f ; ~u; eEg be two sets of data in I. Let rðtÞ;uðx; tÞð Þ and ð~rðtÞ; ~uðx; tÞÞ be the solutions of inverse prob-
lems (1.1)–(1.3), (1.5), (1.6) corresponding to these data.

According to (2.7) we have
rðtÞ ¼
Z t

0
Qðt; sÞrðsÞdsþ BðtÞ; ~rðtÞ ¼

Z t

0

eQ ðt; sÞ~rðsÞdsþ eBðtÞ; ð2:9Þ
with BðtÞ ¼ E0ðtÞ � F 0ðtÞ
Kðt; tÞ , Qðt; sÞ ¼ �Ktðt; sÞ

Kðt; tÞ , eBðtÞ ¼ eE0ðtÞ � eF 0ðtÞeK ðt; tÞ and eQ ðt; sÞ ¼ � eK tðt; sÞeK ðt; tÞ .

Differentiating (2.6) we obtain
F 0ðtÞ ¼ �
X1
n¼0
ðn–n0 Þ

lnune�lnt
Z 1

0
ynðxÞdx

� �
; Ktðt; sÞ ¼ �

X1
n¼0
ðn–n0 Þ

lnf nðsÞe�ln t�sð Þ
Z 1

0
ynðxÞdx

� �
:

According to (2.2) we have
BðtÞj j 6 1
Kðt; tÞj j E0ðtÞ



 

þ F 0ðtÞ


 

� 	

6
1

N3
Ek kC1 0;T½ � þ c4M uk kC4 ½0;1�

� �
6

1
N3

N2 þ c4MN1ð Þ; ð2:10Þ
where M is the constant such that M P ynðxÞj j, 8n 2 N;8x 2 ½0;1�.
Analogously, we can show that
eQ ðt; sÞ


 


 6 c4M
N3

max
t2½0;T�

~f ð�; tÞ
 

C4 ½0;1�
6

c4MN0

N3
: ð2:11Þ
Let us estimate the difference r � ~r. From (2.9) we obtain:
rðtÞ � ~rðtÞ ¼
Z t

0

eQ ðt; sÞ rðsÞ � ~rðsÞ½ �dsþ
Z t

0
Qðt; sÞ � eQ ðt; sÞh i

rðsÞdsþ BðtÞ � eBðtÞ: ð2:12Þ
Denoting RðtÞ ¼ rðtÞ � ~rðtÞj j and H1 ¼ B� eB 
C 0;T½ �
þ T Q � eQ 

C 0;T½ ��C 0;T½ �
rk kC 0;T½ �, identity (2.12) implies that
RðtÞ 6 H1 þ
Z t

0

eQ ðt; sÞ


 


RðsÞds:

Then, a Gronwall’s-type inequality, see Theorem 16 of [26], implies that
RðtÞ 6 H1 exp
Z t

0
sup
r2½s;t�

eQ ðt; sÞ


 


ds !
; t 2 ½0; T�:
Using (2.11) we obtain
r � ~rk kC 0;T½ � 6 M0 B� eB 
C 0;T½ �
þ T Q � eQ 

C 0;T½ ��C 0;T½ �
rk kC 0;T½ �

� �
; ð2:13Þ
where M0 ¼ exp T c4MN0
N3

� �
. Since rk kC 0;T½ � 6

M0
N3

N2 þ c4MN1ð Þ (see (2.8) and (2.11)), it can be seen from (2.13) that r continuous-

ly depends upon B and Q.
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By using the inequalities:
F 0ðtÞ � eF 0ðtÞ


 


 ¼ X1
n¼0
ðn–n0 Þ

ln un � ~unð Þe�lnt
Z 1

0
ynðxÞdx
















 6 c4M u� ~unk kC4 ½0;1�;

Ktðt; sÞ � eK tðt; sÞ



 


 ¼ X1

n¼0
ðn–n0 Þ

ln f nðsÞ � ~f nðsÞ
� �

e�ln t�sð Þ
Z 1

0
ynðxÞdx
















 6 c4M f � ~f

 
C4;0ðDT Þ

;

Kðt; tÞ � eK ðt; tÞ


 


 ¼ Z 1

0
f ðx; tÞ � ~f ðx; tÞ
� �

dx




 



 6 f � ~f

 
CðDT Þ

;

simple manipulations yield the estimates
BðtÞ � eBðtÞ


 


 6 M1 E� eE 
C1 0;T½ �

þM2 u� ~uk kC4 0;1½ � þM3 f � ~f
 

C4;0ðDT Þ
;

Qðt; sÞ � eQ ðt; sÞ


 


 6 M4 E� eE 
C1 0;T½ �

þM5ku� ~ukC4 0;1½ � þM6 f � ~f
 

C4;0ðDT Þ
;

where Mk; k ¼ 1;6 are constants that are determined by c4;M and Nk; k ¼ 0;3. By using these inequalities, from (2.13) we
obtain
r � ~rk kC 0;T½ � 6 M7 E� eE 
C1 0;T½ �

þ u� ~uk kC4 0;1½ � þ f � ~f
 

C4;0 DTð Þ

� �

for some positive constant M7. This means that r continuously depends upon the data.

Similarly, we can prove that u, which is given in (2.4), depends continuously upon the data. Theorem 2 has been
proved. h

Theorems 1 and 2 in fact establish that the inverse problem under investigation given by Eqs. (1.1)–(1.3), (1.5), (1.6) is
well-posed in appropriate spaces of regular functions. However, in practice the input data, especially the measured one, such
as the energy (1.6), is non-smooth and hence, the solution of the inverse problem becomes unstable under unregularised
inversion. The next section describes the discretisation of the inverse problem using the BEM, whilst Section 4 will discuss
the regularization of the numerical solution.

3. Boundary element method (BEM)

In this section, we explain the numerical procedure for discretising the inverse problem (1.1)–(1.3), (1.5), (1.6) by using
the BEM. First of all, let us introduce the fundamental solution G of the one-dimensional heat equation, as
Gðx; t; y; sÞ ¼ Hðt � sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðt � sÞ

p exp � ðx� yÞ2

4ðt � sÞ

 !
;

where H is the Heaviside step function. On multiplying the heat Eq. (1.1) by this fundamental solution and using the Green’s
identity, we obtain the following boundary integral equation, see e.g. [1]:
gðxÞuðx; tÞ ¼
Z t

0
Gðx; t; n; sÞ @u

@nðnÞ ðn; sÞ � uðn; sÞ @G
@nðnÞ ðx; t; n; sÞ

� �
n2f0;1g

dsþ
Z 1

0
Gðx; t; y;0Þuðy;0Þdy

þ
Z 1

0

Z T

0
Gðx; t; y; sÞrðsÞf ðy; sÞdsdy; ðx; tÞ 2 ½0;1� � ð0; T�; ð3:1Þ
where gð0Þ ¼ gð1Þ ¼ 1
2 ;gðxÞ ¼ 1 for x 2 ð0;1Þ, and n is the outward normal to the space boundary f0;1g. For discretising (3.1),

we divide the boundaries f0g � ½0; T� and fLg � ½0; T� into N small time-intervals ½tj�1; tj�; j ¼ 1;N, with tj ¼ jT
N ; j ¼ 0;N, whilst

the initial domain ½0; L� � f0g is divided into N0 small cells ½xk�1; xk�; k ¼ 1;N0 with xk ¼ k
N0
; k ¼ 0;N0. Over each boundary ele-

ment, the temperature u and the flux @u
@n are assumed to be constant and take their values at the midpoint ~tj ¼

tj�1þtj

2 , i.e.
uð1; tÞ ¼ uð1;~tjÞ ¼: h1j;
@u
@n
ð0; tÞ ¼ @u

@n
ð0;~tjÞ ¼: q0j;

@u
@n
ð1; tÞ ¼ @u

@n
ð1;~tjÞ ¼: q1j;



6264 A. Hazanee et al. / Applied Mathematical Modelling 39 (2015) 6258–6272
for t 2 ðtj�1; tj�. Similarly, in each cell, the initial temperature uðx;0Þ is assumed to be constant and takes its value at the mid-
point ~xk ¼ xk�1þxk

2 , i.e.
uðx;0Þ ¼ uðxÞ ¼ uð~xkÞ ¼: uk for x 2 ½xk�1; xkÞ:
Applying the boundary condition (1.3), i.e. uð0; tÞ ¼ 0, and using the constant BEM interpolations above, the boundary
integral Eq. (3.1) becomes
gðxÞuðx; tÞ ¼
XN

j¼1

A0jðx; tÞq0j þ A1jðx; tÞq1j � B1jðx; tÞh1j
� �

þ
XN0

k¼1

Ckðx; tÞuk þ sðx; tÞ; ð3:2Þ
where the coefficients are given by
Anjðx; tÞ ¼
Z tj

tj�1

Gðx; t; n; sÞds for n ¼ f0;1g; ð3:3Þ

B1jðx; tÞ ¼
Z tj

tj�1

@G
@n
ðx; t;1; sÞds; Ckðx; tÞ ¼

Z xk

xk�1

Gðx; t; y;0Þdy; ð3:4Þ
for j ¼ 1;N; k ¼ 1;N0, and the source double integral term is given by
sðx; tÞ ¼
Z 1

0

Z t

0
Gðx; t; y; sÞrðsÞf ðy; sÞdsdy: ð3:5Þ
This integral term can also be approximated using piecewise constant approximations for the functions f ðx; tÞ and rðtÞ as
f ðx; tÞ ¼ f ðx;~tjÞ; rðtÞ ¼ rð~tjÞ ¼: rj; x 2 ð0;1Þ; t 2 ðtj�1; tj�; j ¼ 1;N:
Then we can approximate the double integral (3.5) as
sðx; tÞ ¼
Z t

0
rðsÞ

Z 1

0
Gðx; t; y; sÞf ðy; sÞdyds ¼

XN

j¼1

Djðx; tÞrj; ð3:6Þ
where
Djðx; tÞ ¼
Z 1

0
f ðy;~tjÞAyjðx; tÞdy; j ¼ 1;N: ð3:7Þ
The integrals in (3.3) and (3.4) can be evaluated analytically, [1], whereas the Simpson’s rule is used as a numerical inte-
gration for calculating the integral (3.7). With the approximation (3.6), Eq. (3.2) becomes
gðxÞuðx; tÞ ¼
XN

j¼1

A0jðx; tÞq0j þ A1jðx; tÞq1j � B1jðx; tÞh1j þ Djðx; tÞrj
� �

þ
XN0

k¼1

Ckðx; tÞuk: ð3:8Þ
Applying (3.8) at the boundary nodes ð0;~tiÞ and ð1;~tiÞ for i ¼ 1;N gives the system of 2N equations
A0q0 þ A1q1 � B1h1 þ Dr þ Cu ¼ 0; ð3:9Þ
where
A0 ¼
A0jð0;~tiÞ
A0jð1;~tiÞ

" #
2N�N

; A1 ¼
A1jð0;~tiÞ
A1jð1;~tiÞ

" #
2N�N

; B1 ¼
B1jð0;~tiÞ

B1jð1;~tiÞ þ 1
2 dij

" #
2N�N

;

C ¼ Ckð0;~tiÞ
Ckð1;~tiÞ

" #
2N�N0

; D ¼ Djð0;~tiÞ
Djð1;~tiÞ

" #
2N�N

;

q0 ¼ q0j

� �
N
; q1 ¼ q1j

� �
N
; h1 ¼ h1j

� �
N; u ¼ uk½ �N0

; r ¼ rj
� �

N ;
where dij is the Kronecker delta symbol.
In order to apply the boundary condition (1.5) we need to approximate the time-derivative utð1; tÞ by using finite differ-

ences. For this, we use the Oðh2Þ finite difference formulae
utð1;~t1Þ ¼
uð1;~t2Þ=3þ uð1;~t1Þ � 4uð1Þ=3

h
;

utð1;~t2Þ ¼
5uð1;~t2Þ=3� 3uð1;~t1Þ þ 4uð1Þ=3

h
;

utð1;~tiÞ ¼
3uð1;~tiÞ=2� 2uð1;~ti�1Þ þ uð1;~ti�2Þ=2

h
; i ¼ 3;N;
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where h ¼ T=N. Applying the expressions above into the boundary condition (1.5) yields the linear system of N equations as
follows:
Table 1
The RM

N ¼

20
40
80
a
h uð1;~t1Þ þ a

3h uð1;~t2Þ þ buð1;~t1Þ ¼ arð~t1Þf ð1;~t1Þ þ 4a
3h uð1Þ � duxð1;~t1Þ;

� 3a
h uð1;~t1Þ þ 5a

3h uð1;~t2Þ þ buð1;~t1Þ ¼ arð~t2Þf ð1;~t2Þ � 4a
3h uð1Þ � duxð1;~t2Þ;

a
2h uð1;~ti�2Þ � 2a

h uð1;~ti�1Þ þ 3a
2h uð1;~tiÞ þ buð1;~tiÞ ¼ arð~tiÞf ð1;~tiÞ � duxð1;~tiÞ; i ¼ 3;N:

8><>:

This system can be rewritten as
Sh1 ¼ Fr þ ~u� dq1; ð3:10Þ
where F ¼ diagðf ð1;~t1Þ; . . . ; f ð1;~tNÞÞ, and
S ¼

a=hþ b a=3h 0 :

�3a=h 5a=3hþ b 0 :

a=2h �2a=h 3a=2hþ b :

: : : :

0 a=2h �2a=h 3a=2hþ b

26666664

37777775
N�N

; ~u ¼

4auð1Þ=3h

�4auð1Þ=3h

0
:

0

26666664

37777775
N

:

Assuming d – 0, eliminating q1 between (3.9) and (3.10) results in
h1

q0

" #
¼ 1

d
A1Sþ B1

� �



� A0

� ��1 1
d

A1Fr þ 1
d

A1 ~uþ Cuþ Dr
� �

; ð3:11Þ
where the matrix which is inverted is a 2N � 2N matrix formed with the 2N � N block matrices 1
d A1Sþ B1
� 	

and �A0 separat-
ed by the vertical line.

Next, we collocate the over-determination condition (1.6), by using the midpoint numerical integration approximation, at
the discrete time ~ti for i ¼ 1;N, as
Ei :¼ Eð~tiÞ ¼
Z 1

0
uðx;~tiÞdx ¼ 1

N0

XN0

k¼1

uð~xk;~tiÞ; i ¼ 1;N: ð3:12Þ
Using (3.2) at ð~xk;~tiÞ, expression (3.12) can be rewritten as
1
N0

XN0

k¼1

Að1Þ0;kq0 þ Að1Þ1;kq1 � Bð1Þ1;kh1 þ Cð1Þk uþ Dð1Þk r
h i

¼ E; ð3:13Þ
where
Að1Þ0;k ¼ A0jð~xk;~tiÞ
� �

N�N ; Að1Þ1;k ¼ A1jð~xk;~tiÞ
� �

N�N; Bð1Þ1;k ¼ B1jð~xk;~tiÞ
� �

N�N ;

Cð1Þk ¼ Clð~xk;~tiÞ
� �

N�N0
; Dð1Þk ¼ Djð~xk;~tiÞ

� �
N�N; E ¼ Ei½ �N;
for k; l ¼ 1;N0 and i; j ¼ 1;N. Finally, eliminating q0; q1 and h1 between (3.9)–(3.11), (3.13) the unknown discretised source r
can be found by solving the N � N linear system of equations
Xr ¼ y; ð3:14Þ
where
X ¼ 1
N0

XN0

k¼1

1
d

Að1Þ1;kSþ Bð1Þ1;k

� �



� Að1Þ0;k

� �
1
d

A1Sþ B1

� �



� A0

� ��1 1
d

A1F þ D
� �

� 1
d

Að1Þ1;kF þ Dð1Þk

� �( )
;

y ¼ 1
N0

XN0

k¼1

Cð1Þk uþ 1
d

Að1Þ1;k
~u� 1

d
Að1Þ1;kSþ Bð1Þ1;k

� �



� Að1Þ0;k

� �
1
d

A1Sþ B1

� �



� A0

� ��1

Cuþ 1
d

A1 ~u
� �( )

� E:
SE for uð1; tÞ;uxð0; tÞ;uxð1; tÞ and EðtÞ obtained using the BEM for the direct problem with N ¼ N0 2 f20;40;80g, for Example 1.

N0 RMSE

uð1; tÞ uxð0; tÞ uxð1; tÞ EðtÞ

6.43E�3 2.79E�3 8.85E�3 2.65E�3
2.20E�3 9.68E�4 2.98E�3 9.07E�4
7.46E�4 3.32E�4 1.00E�3 3.08E�4



Fig. 1. The analytical (—) and numerical results ð� � �Þ of (a) rðtÞ, (b) uð1; tÞ, (c) uxð0; tÞ, and (d) uxð1; tÞ for exact data, for Example 1.
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4. Numerical results and discussion

This section presents two benchmark test examples with smooth and non-smooth continuous source functions in order
to test the accuracy of the BEM numerical procedure introduced earlier in Section 3. The following root mean square error
(RMSE) is used to evaluate the accuracy of the numerical results:
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

Exactð~tiÞ � Approximateð~tiÞ
� 	2

vuut : ð4:1Þ
4.1. Example 1

In this example, we consider the analytical solution given by
rðtÞ ¼ et; uðx; tÞ ¼ x2et ; ð4:2Þ
for the inverse problem (1.1)–(1.3), (1.5), (1.6) with the input data T ¼ 1; a ¼ d ¼ 1; b ¼ �4;uðxÞ ¼ uðx;0Þ ¼ x2 and f ðx; tÞ ¼
x2 � 2. The direct problem (1.1)–(1.3), (1.5), when rðtÞ ¼ et is known, is considered first with N ¼ N0 2 f20;40;80g obtained
by (3.10), (3.11) and (3.13), and the RMSE results are shown in Table 1. From this table it can be concluded that the BEM
numerical solution is convergent to the corresponding exact values
uð1; tÞ ¼ et ; uxð0; tÞ ¼ 0; uxð1; tÞ ¼ 2et ; EðtÞ ¼ et=3; t 2 ½0;1�; ð4:3Þ
as the number of boundary elements increases.
Next, we consider the inverse problem (1.1)–(1.3), (1.5), (1.6) and we use the BEM with N ¼ N0 ¼ 40 for solving the

resulting system of Eqs. (3.14). Fig. 1 displays the analytical and numerical results of rðtÞ;uð1; tÞ;uxð0; tÞ, and uxð1; tÞ and very
good agreement can be observed.

In practice, the contamination of measured data by unplanned error is unavoidable. Thus we add noise to the input
energy data EðtÞ in (1.6) in order to test the stability of the solution. The perturbed input data E� is defined as



Fig. 2. The analytical (—) and numerical results of (a) rðtÞ, (b) uð1; tÞ, (c) uxð0; tÞ, and (d) uxð1; tÞ obtained using the straightforward inversion ð� � �Þwith no
regularization, and the second-order Tikhonov regularization ð� � �Þwith the regularization parameter k = 4.3E�6 suggested by the GCV method, for p ¼ 1%

noise, for Example 1.
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E� ¼ Eþ �; ð4:4Þ
where � ¼ randomð0Normal0;0;r;N;1Þ is a set of N variables generated randomly by the MATLAB command from a normal
distribution with the zero mean and standard deviation r given by
r ¼ p�max
t2½0;T�
jEðtÞj ¼ ep

3
; ð4:5Þ
where p is the percentage of noise. This perturbation means that the known right-hand side vector y is contaminated with
noise, denoted as y�. Then, when noise is present, we have to solve the following system of linear equations instead of (3.14):
Xr ¼ y�: ð4:6Þ
Fig. 2 illustrates the analytical and numerical results for p ¼ 1% noise in the input data (4.4) obtained by the straightfor-
ward inversion of (4.6), i.e. r ¼ X�1y�. From this figure it can be seen that the numerical solutions for rðtÞ;uxð0; tÞ and uxð1; tÞ
shown by the dash-dot line (� � �) are unstable. However, the result for uð1; tÞ seems to remain stable and accurate.

To overcome this instability, we employ the second-order Tikhonov regularization method which gives
rk ¼ XtrX þ kRtr
2 R2

� 	�1
Xtry�; ð4:7Þ
where k > 0 is a regularization parameter to be prescribed and R2 is a second-order differential regularization matrix, given
by [27,28],
Rtr
2 R2 ¼

1

ðT=NÞ4

1 �2 1 0 0 : : :

�2 5 �4 1 0 : : :

1 �4 6 �4 1 0 : :

0 1 �4 6 �4 1 0 :

: : : : : : : :

26666664

37777775: ð4:8Þ



Fig. 3. The analytical (—) and numerical results of (a) rðtÞ, (b) uð1; tÞ, (c) uxð0; tÞ, and (d) uxð1; tÞ obtained using the second-order Tikhonov regularization
with the regularization parameter suggested by the GCV method, for p ¼ 3% ð� � �Þ and p ¼ 5% ð� � �Þ, for Example 1.

Table 2
The regularization parameters k and the RMSE for rðtÞ;uð1; tÞ;uxð0; tÞ and uxð1; tÞ, obtained using the BEM with N ¼ N0 ¼ 40 combined with the second-order
Tikhonov regularization for p 2 f0;1;3;5g% noise, for Example 1.

p k RMSE

rðtÞ uð1; tÞ uxð0; tÞ uxð1; tÞ

0 (no noise) 0 4.16E�3 2.47E�4 1.20E�3 8.85E�4

1% 0 2.70 1.72E�2 1.12E�1 2.64E�1
1% 4.3E�6 1.73E�2 2.57E�3 8.92E�3 5.47E�3

3% 0 5.21 4.13E�2 3.51E�1 5.02E�1
3% 7.4E�6 3.32E�2 9.73E�3 1.97E�2 2.25E�2

5% 0 4.74 5.51E�2 4.64E�1 4.54E�1
5% 2.7E�5 1.95E�1 4.63E�2 1.29E�1 9.79E�2
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As it happened previously with some of our investigations [3,4], we report that the second-order Tikhonov regularization
has produced more accurate results than the zeroth- or first-order regularization and therefore, only the numerical results
obtained using the former regularization are illustrated in this section.

A popular method for choosing the regularization parameter is the generalised cross-validation (GCV) criterion, which is
based on minimising the following GCV function, [29]:
GCVðkÞ ¼
kX XtrX þ kRtr

2 R2
� 	�1

Xtry� � y�k2

traceðI � XðXtrX þ kRtr
2 R2Þ

�1
XtrÞ

h i2 : ð4:9Þ
For p ¼ 1% noise, this minimization yields the minimum point of (4.9) occurring at k = 4.3E�6. Then the numerical results
obtained using (4.7) with this value of k, illustrated by circles ð� � �Þ in Fig. 2, show that accurate and stable numerical solu-
tions are achieved.



Fig. 4. The numerical results of (a) uð1; tÞ, (b) uxð0; tÞ, (c) uxð1; tÞ, and (d) EðtÞ obtained by solving the direct problem with
N ¼ N0 2 f20ð� � �Þ;40ð� � �Þ;80ð� � �Þg, for Example 2.

A. Hazanee et al. / Applied Mathematical Modelling 39 (2015) 6258–6272 6269
Next, we increase to p ¼ 3% and 5% the percentage of noise with which the data (4.4) is contaminated. Fig. 3 presents the
analytical and numerical results obtained using the second-order Tikhonov regularization with the regularization parameter
suggested by the GCV method, namely k = 7.4E�6 for p ¼ 3%, and k = 2.7E�5 for p ¼ 5%. From this figure one can observe
that stable and accurate results for rðtÞ;uð1; tÞ;uxð0; tÞ and uxð1; tÞ with p ¼ 3% noise are attained, whereas the numerical
results for p ¼ 5% noisy input are rather inaccurate, but they remain stable. For completeness, the RMSE errors (4.1) are dis-
played in Table 2.

4.2. Example 2

The previous example possessed an analytical solution being explicitly available; however the source function f ðx; tÞ cho-
sen did not satisfy the condition in (A3) of Theorem 1 that f 2 U4

n0
½0;1�. Therefore, in this subsection we aim to construct an

example for which the conditions of existence and uniqueness of solution of Theorem 1 are satisfied. We choose
T ¼ 1;uðxÞ ¼ 0; a ¼ d ¼ 1 and b ¼ 0.

In the case a ¼ d ¼ 1; b ¼ 0 the problem (1.8) has the eigenvalues ln ¼ m2
n, where mn are the positive roots of the transcen-

dental equation m sinðmÞ ¼ cosðmÞ. The corresponding eigenfunctions are ynðxÞ ¼ sinðmnxÞ. The first eigenvalue is given by

m0 ¼
ffiffiffiffiffiffil0
p ¼ 0:860333. Then choosing f ðx; tÞ ¼ x3ð1� xÞ4ðb1xþ b2Þ we can determine the constants b1 and b2 such that

f 2 U4
0½0;1� (choosing n0 ¼ 0 for simplicity), as required by the condition (A3) of Theorem 1. This imposes
0 ¼
Z 1

0
f ðx; tÞ sinðm0xÞdx ¼

Z 1

0
x3ð1� xÞ4ðb1xþ b2Þ sinðm0xÞdx:
After some calculus, choosing b2 ¼ �1 it follows that b1 � 2:011. With these values of b1 and b2 we also satisfy thatR 1
0 f ðx; tÞdx ¼ �0:00037 is non-zero, as required by condition (A3). We aim to retrieve a non-smooth source function given by
rðtÞ ¼ t � 1
2





 



; t 2 ½0; t�: ð4:10Þ



Fig. 5. The analytical solution (4.10) and the direct problem numerical solution from Fig. 4(a)–(c) (—) and numerical results of (a) rðtÞ, (b) uð1; tÞ, (c) uxð0; tÞ,
and (d) uxð1; tÞ, with no regularization, for exact data ð� � �Þ and noisy data p ¼ 1% ð� � �Þ, for Example 2.

6270 A. Hazanee et al. / Applied Mathematical Modelling 39 (2015) 6258–6272
In this case, the analytical solution of the direct problem for the temperature uðx; tÞ is not available. Thus the energy EðtÞ is
not available either. In such a situation, we simulate the data (1.6) numerically by solving first the direct problem (1.1)–(1.3),
(1.5) with r known and given by (4.10). The numerical solutions for uð1; tÞ;uxð0; tÞ;uxð1; tÞ and EðtÞ obtained using the BEM
with N ¼ N0 2 f20;40;80g are shown in Fig. 4. From this figure it can be seen that convergent numerical solutions are
obtained.

To investigate the inverse problem (1.1)–(1.3), (1.5) and (1.6) we use the numerical results for EðtÞ in Fig. 4(d) obtained
using the BEM with N ¼ N0 ¼ 40, as the input data (1.6). In order to avoid committing an inverse crime we keep N ¼ 40, but
we use a different N0, say N0 ¼ 30, than 40 which was used in the direct problem simulation. Fig. 5 shows the numerical
results obtained without regularization, i.e. k ¼ 0, for p ¼ 0 (exact) and p ¼ 1% (noisy) data. Remark that from Fig. 4(d),
the standard deviation in (4.5) for Example 2 is given by r ¼ 1:2� 10�5p. From Fig. 5 it can be seen that, for exact data,
the straightforward inversion of (3.14) produces very accurate results. However, when noise is introduced into the measured
data (4.4), the numerical retrievals of especially rðtÞ and uxð1; tÞ become highly oscillatory unstable.

In order to retrieve the stability, as in Example 1, the second-order Tikhonov regularization with the GCV criterion are
employed and the numerically obtained results are shown in Fig. 6. The numerical results from the direct problem presented
in Fig. 4(a)–(c) are used to compare in Fig. 6(b)–(d) the numerical results for uð1; tÞ;uxð0; tÞ, and uxð1; tÞ, respectively, of the
inverse problem. Whereas the numerical solution for rðtÞ of the inverse problem is compared with the analytical solution
(4.10) in Fig. 6(a). From Fig. 6 it can be seen that stable and accurate numerical solutions are obtained. For completeness,
the RMSE errors (4.1) and the GCV values for k are displayed in Table 3.

If one would like to make a fair comparison between the accuracy of the numerical results obtained for Examples 1 and 2,
the RMSE values presented in Tables 2 and 3 should be divided by the maximum absolute values of the corresponding quan-
tities involved. For example, if we divide the columns of RMSE values for rðtÞ in Tables 2 and 3 by e (maximum value of rðtÞ in
(4.2)) and 0:5 (maximum value of rðtÞ in (4.10)), respectively, then the relative errors for rðtÞ in Example 1 are actually lower
than those in Example 2, as expected from the regularity of these solutions.

Finally, although not illustrated, it is reported that for both Examples 1 and 2 we have experienced with other values of k
close to the optimal ones but there was not much significant difference obtained in comparison with the numerical results of



Fig. 6. The analytical solution (4.10) and the direct problem numerical solutions from Fig. 4(a)–(c) (—), and the numerical results of (a) rðtÞ, (b) uð1; tÞ, (c)
uxð0; tÞ, and (d) uxð1; tÞ obtained using the second-order Tikhonov regularization with the regularization parameters suggested by GCV method, for
p 2 f1ð� � �Þ;3ð� � �Þ;5ð� � �Þg% noise, for Example 2.

Table 3
The regularization parameters k and the RMSE for rðtÞ;uð1; tÞ; uxð0; tÞ and uxð1; tÞ, obtained using the BEM with N ¼ 40 and N0 ¼ 30 combined with the second-
order Tikhonov regularization for p 2 f0;1;3;5g% noise, for Example 2.

p k RMSE

rðtÞ uð1; tÞ uxð0; tÞ uxð1; tÞ

0 (no noise) 0 2.90E�4 2.12E�10 2.94E�8 1.07E�8

1% 0 9.98E�2 2.71E�8 9.55E�6 3.55E�6
1% 3.2E�16 5.47E�3 1.62E�8 1.28E�6 4.12E�7

3% 0 3.63E�1 1.05E�7 3.39E�5 1.27E�5
3% 1.1E�15 1.37E�2 5.96E�8 3.56E�6 9.37E�7

5% 0 5.03E�1 1.70E�7 4.85E�5 1.80E�5
5% 9.0E�16 2.17E�2 9.88E�8 5.68E�6 1.21E�6
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Figs. 2, 3 and 6. This confirms that the GCV criterion performs well in choosing a suitable regularization parameter for
obtaining a stable and accurate numerical solution.
5. Conclusions

The inverse problem of finding the time-dependent heat source together with the temperature in the heat equation,
under a non-classical dynamic boundary condition and an integral over-determination condition has been investigated.
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Firstly, the existence, uniqueness, and continuous dependence upon the data of the classical solution of the inverse problem
have been established. Next, a numerical method based on the BEM combined with the second-order Tikhonov regulariza-
tion has been proposed together with the use of the GCV criterion for the selection of the regularization parameter. The
retrieved numerical results were found to be accurate and stable on both smooth and non-smooth continuous examples.

As for the experimental validation of the proposed inverse mathematical model in terms of bias and inverting real noisy
data we defer this challenging task to a possible future work. We only remark that unlike certain applications, e.g. some
significant mismatch has been reported in [30–32] between experimental data of electromagnetic waves propagating in a
non-attenuating medium and data produced by idealised computational simulations, in inverse heat conduction the math-
ematical models have been shown to perform much better in industrial applications with actual real measured data, [33].
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