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RIEMANN BOUNDARY VALUE PROBLEMS IN

GENERALIZED WEIGHTED HARDY SPACES

BILAL T. BILALOV, ALI A. HUSEYNLI, AND FIDAN SH. SEYIDOVA

Abstract. Riemann boundary value problem of analytic function the-
ory in weighted Hardy classes with variable summability index is con-
sidered in this work. The Fredholmness of this problem is investigated
under certain conditions on coefficients and a weight. The general so-
lution for homogeneous problem is obtained in weighted Hardy classes
with variable summability index. In the case where the weight function
satisfies the Muckenhoupt condition with variable summability index,
the solvability of the non-homogeneous Riemann problem with the right
side from the generalized weighted Lebesgue space is studied.

1. Introduction

The boundary value problems of analytic functions theory has a deep history.
Well-known monographs like [12, 24, 13, 27, 20], have been dedicated to the
boundary value problems of analytic functions. In the classical formulation these
problems are well studied (see [24, 13, 27, 20]). In terms of Lp-metrics in Hardy
and Smirnov classes, the theory of boundary value problems has been developed
by various mathematicians and has been illuminated in monographs I.I. Danilyuk
[12], G.S.Litvinchuk [20], etc. Since recently, there arose an interest in the study
of the Riemann boundary value problems in different spaces of analytic functions
(see e.g. [17, 22, 15, 21, 14, 23, 8, 9, 2, 3, 4, 5, 6, 7, 10], etc). All the above-cited
works dealing with weighted spaces of analytic functions consider the spaces with
power weights.

In the present paper, we consider the Riemann boundary value problem in the
weighted Hardy space with general weight and piecewise Hölder coefficient. We
will find a sufficient condition on the weight under which this problem is Noe-
therian. We will also calculate the index of the problem. The general solution
for homogeneous problem is obtained in weighted Hardy classes with variable
summability index. In the case where the weight function satisfies the Muck-
enhoupt condition with variable summability index, the solvability of the non-
homogeneous Riemann problem with the right side from the generalized weighted
Lebesgue space is studied. It should be noted that in [25] the Noetherness of
Riemann problem is studied in generalized weighted Hardy classes with power
weight.
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2. Needful information

Let C be the complex plane, ω ≡ {z ∈ C : |z| < 1} be the unit circle, and
∂ω ≡ {z ∈ C : |z| = 1} be the unit circumference. We will need some notion
from the theory of generalized Lebesgue spaces.

Let p : [−π, π] → [1,+∞) be some Lebesgue-measurable function. By L0 we
denote the class of all functions measurable on [−π, π] with respect to Lebesgue
measure. Denote

Ip (f)
def
≡
∫ π

−π
|f (t)|p(t) dt.

Let

L ≡ {f ∈ L0 : Ip (f) < +∞} .
With respect to the usual linear operations of addition and multiplication by a
number L is a linear space as p+ = sup vrai

[−π,π]
p (t) < +∞. With respect to the

norm

‖f‖p(·)
def
≡ inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
,

L is a Banach space, and we denote it by Lp(·). Let

WL
def
≡ {p : p(−π) = p(π);∃C > 0, ∀t1, t2 ∈ [−π, π] : |t1 − t2| ≤ 1

2 ⇒
⇒ |p (t1)− p (t2)| ≤ C

− ln|t1−t2|

}
.

Throughout this paper, q (t) will denote the conjugate of a function p (t): 1
p(t) +

1
q(t) ≡ 1. Denote p− = inf vrai

[−π,π]
p (t). The following generalized Hölder inequality

is true ∫ π

−π
|f (t) g (t)| dt ≤ c

(
p−; p+

)
‖f‖p(·) ‖g‖q(·) ,

where c (p−; p+) = 1 + 1
p− −

1
p+

. Directly from the definition we get the property,

which will be used in the sequel.

Property 2.1. If |f (t)| ≤ |g (t)| a.e. on (−π, π), then ‖f‖p(·) ≤ ‖g‖p(·).

We will need the following easy-to-prove statement.

Statement 2.1. Let p ∈ WL, p (t) > 0, ∀t ∈ [−π, π]; {αi}m1 ⊂ R. The weighted

function ρ (t) =
∏m
i=1 |t− τi|

αi, belongs to the space Lp(·), if αi > − 1
p(τi)

, ∀i =

1,m; where −π = τ1 < τ2 < ... < τm = π.

By S we denote the singular integral

Sf =
1

2πi

∫
∂ω

f (τ)

τ − t
dτ, t ∈ ∂ω,

Let ρ : [−π, π]→ (0,+∞) be some weight function. Define the weighted classes
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Lp(·),ρ(·) : Lp(·),ρ(·)
def
≡
{
f : ρ f ∈ Lp(·)

}
,

with a norm ‖f‖p(·),ρ(·)
def
≡ ‖ρf‖p(·). The validity of the following statement is

established in [16].

Statement 2.2. [16] Let p ∈WL , 1 < p−. Then, singular operator S is acting
boundedly from Lp(·),ρ(·) to Lp(·),ρ(·) if and only if

− 1

p (τk)
< αk <

1

q (τk)
, k = 1,m. (2.1)

We also will use the following variable Muckhenhoupt condition.

Definition 2.1. Given p (·) : [−π, π] → [1,+∞], and a weight function ω (·). We
say that ω ∈ Ap(·) if

sup
I⊂[−π,π]

|I|−1 ‖ω (·) χI (·)‖p(·)
∥∥ω−1 (·) χI (·)

∥∥
q(·) < +∞.

It should be noted that for more details on these and other facts one can see
works [11, 19, 28, 26].

We will also need the weighted Hardy classes. By H+
p we denote the usual

Hardy class of analytical functions in ω. Let A be the σ-algebra of Borel sets in
[−π, π] and ρ− be a σ-finite measure on A . Lp(·);dρ ≡ Lp(·);dρ (−π, π) will denote
the Banach space A of measurable functions on [−π, π] furnished with the norm

‖f‖p(·)
def
≡ inf

{
λ > 0 : Ip(·);dρ

(
f

λ

)
≤ 1

}
,

where

Ip(·);dρ (f) =

∫ π

−π
|f (t)|p(t) dρ (t) .

Assume

H̃ ≡
{
f ∈ H+

1 : f+ ∈ Lp(·);dρ
}
,

where f+
(
eit
)

are non-tangential boundary values of function f on ∂ω. The

norm in space H̃ is defined by

‖f‖H̃ =
∥∥f+

(
eit
)∥∥
p(·);dρ . (2.2)

Let us show that if the continuous inclusion Lp(·);dρ ⊂ L1 is true, then H̃ is a
Banach space with respect to the norm (2.2), where L1 ≡ L1 (−π, π) is a Lebesgue

space of summable functions on (−π, π). Let {fn}n∈N ⊂ H̃ be some fundamental
sequence, i.e. ∥∥f+

n

(
eit
)
− f+

m

(
eit
)∥∥
p(·);dρ → 0 , n,m→∞,

where f+
n = fn/∂ω are non-tangential boundary values of function fn on ∂ω.

From completeness of Lp(·);ρ it follows that

∃ϕ ∈ Lp(·);ρ : f+
n

(
eit
)
→ ϕ (t) , n→∞, in Lp(·);ρ.
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We have

‖fn − fm‖H+
1

=
∥∥f+

n

(
eit
)
− f+

m

(
eit
)∥∥
L1
≤

≤M
∥∥f+

n

(
eit
)
− f+

m

(
eit
)∥∥
p(·);dρ → 0 , n,m→∞,

where M is a constant depending only on p (·) and ρ (·). This immediately implies
that {fn}n∈N is fundamental in H+

1 and, consequently

∃f ∈ H+
1 : fn → f , n→∞, in H+

1 .

Thus

f+
n

(
eit
)
→ f+

(
eit
)
, n→∞, in L1, where f+ = f/∂ω.

On the other hand, from∥∥f+
n

(
eit
)
− ϕ (t)

∥∥
L1
≤M

∥∥f+
n

(
eit
)
− ϕ (t)

∥∥
p(·);dρ → 0 , n→∞,

it follows that, f+
n

(
eit
)
→ ϕ (t), n → ∞, in L1. Then it is absolutely clear that

f+
(
eit
)

= ϕ (t) a.e. on (−π, π), and, as a result, fn → f , n → ∞, in H̃, i.e. H̃

is a Banach space, and we denote it by H+
p(·),dρ. Thus, we get the validity of

Theorem 2.1. Let the embedding Lp(·);dρ ⊂ L1, 1 ≤ p < +∞, be continuous.

Then H+
p(·),dρ is a Banach space.

Let us define the class mH
−
p(·) , where m ∈ Z is some integer. So, let Φ (z) be

an analytic function outside ω, which has finite order at infinity, i.e. let

Φ (z) =

n=k∑
n=−∞

anz
n , k < +∞,

be the Laurent series in a neighborhood of the infinitely remote point of the
function Φ (z).

Under the order of the function Φ (z) at the infinitely remote point we will
mean the largest number n = k of these expansions, for which an 6= 0. In the
case of k = 0 the function Φ (z) is bounded and different from zero at the point
z =∞; in the case of k > 0 it has a pole of order k; and in the case of k < 0−has a
zero order (−k). Thus, Φ (·) has a form Φ (z) = Φ0 (z)+Φ1 (z), where Φ0 (z)−is a
regular part, and Φ1 (z) is a main part of Laurent series of Φ (z) at the infinitely

remote point. If in this case k ≤ m and the function Φ0

(
1
z̄

)
belongs to the

class H+
p(·), then we will say that the function Φ (·) belongs to Hardy class mH

−
p(·)

outside ω. Denote

H̃− ≡
{
f ∈ mH

−
1 : f−(eit) ∈ Lp(·),dρ

}
,

where f−
(
eit
)

= f/∂ω are non-tangential boundary values of f on ∂ω from the

outside of ω. The norm in H̃−is defined as follows

‖f‖H̃− ≡
∥∥f− (eit)∥∥

p(·);dρ , ∀f ∈ H̃
−. (2.3)
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Similarly to the previous case, we can prove that for Lp(·);dρ ⊂ L1, the class H̃−

is a Banach space with respect to the norm (2.3), and we denote it by mH
−
p(·);dρ.

Thus, we have

Theorem 2.2. Let Lp(·);dρ ⊂ L1, 1 ≤ p < +∞, be true. Then the space defined

above mH
−
p(·);dρ is a Banach space.

3. General solution of homogeneous problem

In the sequel, we will assume that the measure ρ (·) is absolutely continuous

with respect to a Lebesgue measure on [−π, π] and dρ (x) = ϑp(x) (x) dx. Cor-
responding spaces are denoted by Lp(·);ϑ and H±p(·);ϑ , respectively. Consider the

following homogeneous Riemann problem

F+(τ)−G(τ)F−(τ) = 0, τ ∈ ∂ω, (3.1)

where G : ∂ω → C is some complex-valued function (coefficient of the problem).
By solution of the problem (3.1) we mean a pair of analytic functions(

F+(z);F−(z)
)
∈ H+

p(·);ϑ ×m H−p(·);ϑ,

whose non-tangential boundary values on ∂ω a.e. satisfy the relation (3.1), where
p (·) ∈ WL ∧ p− > 1 and m < 0 is some fixed integer. In the sequel, we will
assume that G satisfies the following conditions:
α) G±1 ∈ L∞ (∂ω) ;
β) θ(t) ≡ argG

(
eit
)

is a piecewise Hölder function on [−π, π] and −π < s1 <
... < sr < π are the corresponding points of discontinuity.

Consider the following functions:

X1(z) = exp

{
1

4π

∫ π

−π
ln
∣∣G (eit)∣∣ eit + z

eit − z
dt

}
,

X2(z) = exp

{
i

4π

∫ π

−π
θ(t)

eit + z

eit − z
dt

}
,

which are analytic inside and outside ω, respectively. Let

Zk(z) ≡


Xk(z), |z| < 1,

[Xk(z)]
−1 , |z| > 1, k = 1, 2 .

Denote

Z(z) ≡ Z1 (z)Z2 (z) .

As usual, by Z±(τ) we denote non-tangential boundary values of Z(z) on ∂ω
from inside and outside ω, respectively. Using Sohockii-Plemelj formulas, we
directly obtain

∣∣G(eit)
∣∣ =

Z+
1 (eit)

Z−1 (eit)
, exp iθ (t) =

Z+
2 (eit)

Z−2 (eit)
.

Consequently, we have
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G(eit) =
Z+(eit)

Z−(eit)
, a.e. on (−π, π). (3.2)

Z(z) will be called the canonical solution of the problem (3.1). Taking into
account the relation (3.2), from (3.1) we get

F+(τ)

Z+(τ)
=
F−(τ)

Z−(τ)
, a.e. τ ∈ ∂ω.

Assume

Φ(z) ≡ F (z)

Z(z)
.

Due to the fact that Z(z) has neither zeros and nor poles at z /∈ ∂ω, it is clear
that the functions Φ(z) and F (z) have the same order at infinity. By definition
of solution, we have F ∈ H±1 . Let us express the function θ(t) as the sum

θ(t) = θ0(t) + θ1(t),

where θ0 is a continuous part, and θ1 is a jump function defined by

θ1(−π + 0) = 0 , θ1 (t) =
∑

−π<sk<t
hk + [θ (t)− θ (t− 0)] ,

where

hk = θ(sk + 0)− θ(sk − 0), k = 1, r,

are jumps of the function θ(·) at sk. Following [12], we denote

h0 = h
(1)
0 − h

(0)
0 ,

where

h
(1)
0 = θ1(−π + 0)− θ1(π − 0), h

(0)
0 = θ0(−π − 0)− θ0(π − 0).

Let

U0(t) ≡
{

sin

∣∣∣∣ t− π2

∣∣∣∣}−
h
(0)
0
2π

exp

{
− 1

4π

∫ π

−π
θ0(s)ctg

t− s
2

ds

}
.

As shown in [12], from condition α) it follows that the following inequality is true∥∥Z−1 (eit)∥∥±1

∞ < +∞,
where ‖ · ‖∞ denotes the norm of L∞(−π, π). Using the results of [12] again, we
find that the boundary values of Z2 (z) can be represented as

∣∣Z−2 (eit)∣∣ = U0 (t)U (t)

∣∣∣∣sin t− π2

∣∣∣∣−
h0
2π

,

where

U(t) =
r∏

k=1

∣∣∣∣sin t− sk2

∣∣∣∣
−hk
2π

.

Using this notation, we can write the boundary values of |Z (τ)| as follows
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∣∣Z− (eit)∣∣ = U0 (t)
∣∣Z−1 (eit)∣∣ ∣∣∣∣sin t− π2

∣∣∣∣−
h0
2π

U (t) .

According to the results of [12], the functions U±1
0 (t) belong to Lp (−π, π) , ∀p ∈

(0,+∞), and, moreover, for sufficiently small values of δ > 0 we have Z±1 (z) ∈
H+
δ . As a result, we obtain that the function Φ(z) belongs to the Hardy class

H+
µ for some µ > 0. It is absolutely obvious that if Φ+(eit) ∈ L1 (−π, π), then

Φ ∈ H+
1 . Since we have Φ+ (τ) = Φ− (τ) a.e. τ ∈ ∂ω, it is clear that it suffices

to prove that Φ−(eit) belongs to L1 (−π, π). We have∣∣Φ− (eit)∣∣ =
∣∣F− (eit)∣∣ ∣∣Z− (eit)∣∣−1

, a.e. t ∈ (−π, π) .

By definition of solution, F−
(
eit
)
∈ Lp(·);ϑ. Therefore, if∣∣Z− (eit)∣∣−1 ∈ Lq(·);ϑ−1 ,

then Φ− (τ) ∈ L1, which follows directly from the generalized Hölder’s inequality
in Lp(·). So assume that the following inequality is fulfilled∫ π

−π

∣∣w (t)ϑ−1 (t)
∣∣q(t) dt < +∞, (3.3)

where

w (t) =

∣∣∣∣sin t− π2

∣∣∣∣
h0
2π

r∏
k=1

∣∣∣∣sin t− sk2

∣∣∣∣
hk
2π

. (3.4)

If the condition (3.3) holds, then |Z− (τ)|−1
belongs to Lq(·);ϑ−1 , and, as a result,

Φ− (τ) ∈ L1, so F− ∈ Lp(·),ϑ and Φ−
(
eit
)

= F−
(
eit
) (
Z−
(
eit
))−1

.Then, by

Smirnov theorem,Φ ∈ H±1 , and, as a result, it follows from the uniqueness theorem
that Φ (z) is a polynomial of order k ≤ m (because Φ+ (τ) = Φ− (τ) a.e. τ ∈ ∂ω),
i.e. Φ (z) ≡ Pk (z), where Pk (z) is a polynomial of order k ≤ m. Thus

F (z) ≡ Z (z)Pk (z) . (3.5)

Assume that the inequalities

hk < 2π , k = 0, r, (3.6)

are fulfilled. Then we have Z±(eit) ∈ L1 (−π, π) and, again by Smirnov theorem,
we obtain Z (z) ∈ H±1 . So, Z (·) has a zero order at infinity, then it follows
directly from (3.5) that F ∈ H±1 . Let the following inequality also be fulfilled∫ π

−π

∣∣w−1 (t)ϑ (t)
∣∣p(t) dt < +∞. (3.7)

Then from the expression for boundary values Z−
(
eit
)

it follows Z−
(
eit
)
∈

Lp(·);ϑ, which means that F−
(
eit
)
∈ Lp(·);ϑ. As a result, we obtain that if m ≥ 0

and k ≤ m, then it is true(
F+ (z) ;F− (z)

)
∈ H+

p(·);ϑ ×m H−p(·);ϑ.
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Thus, if m ≥ 0, then the expression (3.5) is the general solution of the homoge-
neous problem (3.1) in the classes H+

p(·);ϑ×mH
−
p(·);ϑ, where Pm (·) is an arbitrary

polynomial of order k ≤ m. So the following theorem is true.

Theorem 3.1. Let p (·) ∈WL ∧ p− > 1 and the coefficient G (τ) of the problem
(3.1) satisfy the conditions α) and β). Suppose that the jumps of functions θ (t) ≡
argG

(
eit
)

satisfy the relations (3.3), (3.6), (3.7), where w (t) is defined by (3.4).
Then, under m ≥ 0, the general solution of the homogeneous problem (3.1) in
classes H+

p(·);ϑ ×m H−p(·);ϑ can be represented in the form of (3.5), where Z (z)

is a canonical solution, and Pk (z) is an arbitrary polynomial of order k ≤ m.
If m ≤ −1, then under the conditions (3.3), (3.6), (3.7), the problem (3.1) in
H+
p(·);ϑ ×m H−p(·);ϑ has only trivial, i.e. zero solution.

4. General solution of nonhomogeneous problem

Consider an nonhomogeneous Riemann problem

F+ (τ)−G (τ)F− (τ) = g (τ) , τ ∈ ∂ω, (4.1)

where g ∈ Lp(·);ϑ is a given function. By the solution of problem (4.1) we mean
a pair (

F+ (z) ;F− (z)
)
∈ H+

p(·);ϑ ×m H−p(·);ϑ,

for which the boundary values F± (τ) satisfy the relation (4.1) a.e. on ∂ω. It is
clear that the general solution of (4.1) can be represented as

F (z) = F0 (z) + F1 (z) ,

where F0 (z) is a general solution of the corresponding homogeneous problem
(3.1), and F1 (z) is some particular solution of the nonhomogeneous problem
(4.1). We will construct a particular solution of (4.1). Let Z (z) be a canonical
solution of (3.1). Consider the piecewise analytic function

F1 (z) ≡ Z (z)

2π

∫ π

−π

g
(
eiσ
)

Z+ (eiσ)

dσ

1− ze−iσ
. (4.2)

Applying Sokhotskii-Plemelj formulas to (4.2), we obtain that the boundary val-
ues F±1 (τ) satisfy (4.1) a.e. on ∂ω. We have

F+
1

(
eit
)

=
1

2
g
(
eit
)

+
Z+
(
eit
)

2π

∫ π

−π

g
(
eiσ
)

Z+ (eiσ)

dσ

1− ei(t−σ)
.

Let

f (σ) = g
(
eiσ
) [
Z+
(
eiσ
)]−1

.

Consequently

F̃+
1 (t) =

1

2
f (t) +

1

2π

∫ π

−π

f (σ) dσ

1− ei(t−σ)
,

where
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F̃1 (t) ≡ F+
1

(
eit
) [
Z+
(
eit
)]−1

.

It is absolutely clear that f (·) belongs to the weighted space Lp(·);ν , where

ν (t) = w−1 (t)ϑ (t) .

It is known that the singular operator

S (f) =

∫ π

−π

f (σ) dσ

1− ei(t−σ)
,

is bounded in Lp(·);ν , 1 < p− ≤ p+ < +∞ , p ∈ WL, if and only if the weight
ν (·) satisfies the Muckenhoupt condition Ap(·), i,e, ν ∈ Ap(·) ( see, for example,

[11, 16]). Consequently, if ν ∈ Ap(·), then F̃1 ∈ Lp(·);ν . It is not difficult to see
that

F̃1 ∈ Lp(·);ν ⇔ F1 ∈ Lp(·);ϑ.
The condition ν ∈ Ap(·) implies ν ∈ L1 and ν−1 ∈ Lq(·). Then from Hölder’s
inequality it follows∫ π

−π
|f (t)| dt =

∫ π

−π
|f (t)| ν (t) ν−1 (t) dt ≤ cp(·) ‖ |f (·)| ν (·)‖p(·)

∥∥ ν−1 (·)
∥∥
q(·) .

Thus, f belongs to L1, and, as a result, the Cauchy-Lebesgue type integral∫ π

−π

f (σ) dσ

1− ze−iσ
,

belongs to the Hardy class H±p1 , for ∀p1 : 0 < p1 < 1, (see, for example, [18]).

From expression for F1 (z) it directly follows that it belongs to the space H+
µ

for sufficiently small µ > 0. As we have already established, F+
1

(
eit
)
∈ Lp(·);ϑ.

Then it is evident that if ϑ−1 ∈ Lq(·), then F+
1

(
eit
)
∈ L1. Then, by Smirnov

theorem [18], the function F+
1 (z) belongs to the class H+

1 . As a result, we
obtain F+

1 (z) ∈ H+
p(·);ϑ. Consider F−1 (z), and let all the above conditions be

satisfied. Similar reasoning yields F−1 (z) ∈−1 H
−
p(·);ϑ. It is absolutely clear that

F−1 (∞) = 0. Therefore

F−1 (z) ∈m H−p(·);ϑ , ∀m ≥ −1.

Let m < −1. In this case, in order for the inclusion F−1 (z) ∈m H−p(·);ϑ , to be

valid, it is necessary that the following orthogonality conditions hold∫ π

−π

g
(
eiσ
)

Z+ (eiσ)
einσdσ = 0 , n = 1,−m. (4.3)

Thus, under these conditions, the expression (4.2) is a particular solution of (4.1)
in classes H+

p(·);ϑ ×m H−p(·);ϑ. If the conditions (3.3), (3.6) and (3.7) are fulfilled,

then the general solution of the corresponding homogeneous problem has the form
(3.5), where Z (z) is a canonical solution, and Pm (z) is an arbitrary polynomial
of order ≤ m. For m ≤ −1 it is clear that Pm (z) ≡ 0. In this case, the problem
(4.2) is uniquely solvable. So we have the following
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Theorem 4.1. Let the coefficient G (τ) of the problem (4.1) satisfy the conditions
α);β). Assume that the jumps of the function θ (t) ≡ argG

(
eit
)

satisfy the
relations (3.3), (3.6), (3.7), where the weight function w (t) is defined by the
expression (3.4). Let ν ∈ Ap(·), p (·) ∈ WL ∧ p− > 1, where ν (t) = w−1 (t)ϑ (t)

and ϑ−1 ∈ Lq(·). Then the nonhomogeneous Riemann problem (4.1) is solvable in

classes H+
p(·);ϑ ×m H−p(·);ϑ, if the orthogonality conditions (4.3) hold. For m ≥ 0

the general solution of (4.1) can be represented as

F (z) = Z (z)Pm (z) + F1 (z) , (4.4)

where Z (z) is a canonical solution of the homogeneous problem, Pm (z) is an
arbitrary polynomial of order ≤ m, and F1 (z) is defined by the expression (4.2).
Moreover, for m ≤ −1 the problem (4.1) is uniquely solvable, and for m = −1 it
has a solution for ∀g ∈ Lp(·);ϑ.

5. Special case

Consider the special case

ϑ (t) =
m∏
k=1

|t− tk|αk , (5.1)

where {tk}m1 ⊂ (−π, π) are different points. For simplicity, we assume

{sk}r1
⋂
{tk}m1 = ∅. (5.2)

In this case, the weight ν (t) has the following form

ν (t) ≡
∣∣∣∣sin t− π2

∣∣∣∣−
h0
2π

r∏
k=1

∣∣∣∣sin t− sk2

∣∣∣∣−
hk
2π

m∏
k=1

|t− tk|αk .

It is known that ν ∈ Ap(·) if and only if (see, for example [16])

− 1

p (sk)
< −hk

2π
<

1

q (sk)
, k = 0, r ;

− 1

p (tk)
< αk <

1

q (tk)
, k = 1,m . (5.3)

Consequently

− 1

q (sk)
<
hk
2π

<
1

p (sk)
, k = 0, r . (5.4)

From this relation it directly follows that the conditions (3.3), (3.6), and (3.7)
are fulfilled. It is obvious that the relation ϑ ∈ L1 also holds. As a result, from
Theorem 4.1 we obtain the following

Corollary 5.1. Let p (·) ∈WL ∧p− > 1 and the coefficient G (τ) satisfy the con-
ditions α);β) and let (5.2)-(5.4) hold. Then the general solution of the Riemann
problem (4.1) in classes H+

p(·);ϑ×mH
−
p(·);ϑ is given by (4.4), where the weight ϑ has

the form (5.1). For m < 0, the orthogonality conditions (4.3) are necessary for
solvability. Then the problem is uniquely solvable and Pm (z) ≡ 0. For m ≥ 0, the
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homogeneous problem has mlinearly independent solutions, while the nonhomo-
geneous problem is solvable for ∀g ∈ Lp(·);ϑ. For m = −1, the nonhomogeneous
problem is uniquely solvable for ∀g ∈ Lp(·);ϑ.
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