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On Basicity of the Perturbed System of Exponents in

Morrey-Lebesgue Space

A.A. Huseynli∗, V.S. Mirzoyev, A.A. Quliyeva

Abstract. In this work, the double system of exponents with complex-valued coefficients is con-
sidered. Special cases of these systems often arise when solving problems of mathematical physics
by Fourier method. A lot of research by Paley-Wiener, N. Levinson and others have been dedicated
to the basis properties of these systems. We find conditions on the coefficients of the system which
guarantee its basicity in Morrey-Lebesgue type spaces.

Key Words and Phrases: Morrey-Hardy classes, Riemann problem, bases, double system of
exponents.

2010 Mathematics Subject Classifications: 46E30, 30E25

1. Introduction

The Morrey spaces were introduced by C. Morrey in 1938. Since then, various prob-
lems related to these spaces have been intensively studied. Playing an important role
in the qualitative theory of elliptic differential equations (see, for example, [1, 2]), these
spaces also provide a large class of examples of mild solutions to the Navier-Stokes system
[3]. In the context of fluid dynamics, Morrey spaces have been used to model fluid flow
when vorticity is a singular measure supported on some sets in Rn [4]. There appeared
lately a large number of research works which considered fundamental problems of the
theory of differential equations, potential theory, maximal and singular operator theory,
approximation theory, etc in these spaces (see, for example, [5] and the references above).
More details about Morrey spaces can be found in [6, 7].

In view of the aforesaid, there has recently been a growing interest in the study of
various problems in Morrey-type spaces. For example, some problems of harmonic analysis
and approximation theory have been considered in [8, 9, 10, 11, 12].

∗Corresponding author.

http://www.azjm.org 191 c© 2010 AZJM All rights reserved.
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Note that when solving many problems of mathematical physics by the Fourier method
[13, 14, 15, 16], there often arise perturbed systems of sines and cosines of the following
form:

{sin (nt+ α (t))}n∈N , (1)

{cos (nt+ α (t))}n∈N , (2)

where α (t) = 1
2 (β t+ γ) , β, γ ∈ R are real parameters, and N is the set of all natural

numbers. The justification of this method requires the study of basis properties (complete-
ness, minimality, basicity of the above systems in Lebesgue and Sobolev function spaces.
Their basis properties in Lebesgue spaces Lp (−π, π) with γ = 0, have been comprehen-
sively studied in [17, 18, 19, 20, 21]. The weighted case of Lp has been considered by
E.I.Moiseev [22, 23]. Basis properties of some perturbed systems of exponents in Sobolev
spaces have been studied in [27, 28, 29, 30]. See also [31, 32, 33, 34, 35, 36].

One of the methods to study basis properties of systems like (1), (2) is a method of
boundary value problems of the theory of analytic functions. It dates back to a note by
A.V. Bitsadze [37]. This method was successfully used in [18, 19, 20, 21, 22, 23, 24, 25, 26].
To apply this method to the study of basis properties of systems like (1), (2) in Morrey-
type spaces, we first have to investigate the solvability of the Riemann boundary value
problems in Morrey-type Hardy spaces.

In [11], the Morrey-Hardy and Morrey-Lebesgue classes have been treated and their
subspaces have been defined with the shift operator being continuous. Basicity of the
classical system of exponents and some of its parts in these subspaces has been studied.

Moreover, the homogeneous and non-homogeneous Riemann boundary value problems
have been considered in Morrey-Hardy classes in [38]. Conditions on the coefficient of the
problem are obtained which are sufficient for the Noetherness of the considered problems
in these classes.

In this work, we consider the Riemann boundary value problem in Morrey-type Hardy
spaces. We study the solvability of this problem and construct a general solution for both
homogeneous and non-homogeneous problems under some conditions on the coefficients
of the problem. The obtained results are applied to the study of basicity properties of
double system of exponents with complex coefficients. Using the results of [38], we derive
a sufficients condition for the basicity of this system in Morrey-Lebesgue type spaces.

2. Needful Information

We need some facts about the theory of Morrey-type spaces. Let Γ be some rectifiable
Jordan curve on the complex plane C. By |M |Γ we denote the linear Lebesgue measure
of the set M ⊂ Γ.
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The expression f (x) ∼ g (x), x ∈ M , means

∃δ > 0 : δ ≤

∣

∣

∣

∣

f (x)

g (x)

∣

∣

∣

∣

≤ δ−1,∀x ∈ M.

A similar meaning will be attached to the expression f (x) ∼ g (x), x → a.
By the Morrey-Lebesgue space Lp,α (Γ), 0 ≤ α ≤ 1, p ≥ 1, we mean a normed space of

all functions f ( · ) measurable on Γ, equipped with a finite norm ‖ · ‖Lp,α(Γ):

‖f‖Lp,α(Γ) = sup
B

(

∣

∣

∣
B
⋂

Γ
∣

∣

∣

α−1

Γ

∫

B
⋂

Γ
|f (ξ)|p |dξ|

)1/p

< +∞.

Lp,α (Γ) is a Banach space and Lp,1 (Γ) = Lp (Γ), L
p,0 (Γ) = L∞ (Γ). Weighted version

of the Morrey-Lebesgue space Lp,α
µ (Γ) on Γ with a weight function µ ( · ) and a norm

‖ · ‖Lp,α
µ (Γ) can be defined in a natural way:

‖f‖Lp,α
µ (Γ) = ‖fµ‖Lp,α(Γ) , f ∈ Lp,α

µ (Γ) .

The embedding Lp,α1 (Γ) ⊂ Lp,α2 (Γ) is valid for 0 ≤ α1 ≤ α2 ≤ 1. Thus, Lp,α (Γ) ⊂ L1 (Γ),
∀α ∈ [0, 1], ∀p ≥ 1. The case of Γ ≡ [−π, π] will be denoted by Lp,α (−π, π) ≡ Lp,α.

By SΓ we denote the following singular integral operator:

(SΓf) (τ) =
1

2πi

∫

Γ

f (ζ) dζ

ζ − τ
, τ ∈ Γ.

Unit circle centered at z = 0 will be denoted by γ with int γ = ω. Define the Morrey-
Hardy space Hp,α

+ of functions f (z) analytic inside ω with a norm ‖ · ‖Hp,α
+

:

‖f‖Hp,α
+

= sup
0<r<1

∥

∥f
(

reit
)
∥

∥

Lp,α .

The following theorem was proved in [11].

Theorem 1. The function f (·) belongs to Hp,α
+ , 1 < p < +∞, if and only if f+ ∈ Lp,α

and the following Cauchy integral formula is true:

f (z) =
1

2πi

∫

γ

f+ (τ) dτ

τ − z
,

where f+ ( · ) are nontangential boundary values of f ( · ) on γ.

The analog of Smirnov’s theorem in Morrey-Hardy classes is also true:

Theorem 2. Let f ∈ Hp1,α
+ , 1 ≤ p1 < +∞, 0 ≤ α ≤ 1, and f+ ∈ Lp2,α, where p1 < p2 <

+∞, f+ are nontangential boundary values of the function f on γ. Then f ∈ Hp2,α
+ .
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Denote by L̃p,α the linear subspace of Lp,α consisting of functions whose shifts are
continuous in Lp,α, i.e. ‖f (· + δ)− f ( · )‖Lp,α → 0 as δ → 0. The closure of L̃p,α in Lp,α

will be denoted by M
p,α. The following theorem was proved in [11]:

Theorem 3. Infinitely differentiable functions on [0, 2π] are dense in the space M
p,α.

Similarly, define the M
p,α
ρ space with the weight ρ ( · ). Denote by M̃

p,α
ρ the set of

functions whose shifts are continuous in Lp,α
ρ , i.e.

‖f ( · + δ) − f ( · )‖p,α;ρ → 0, δ → 0.

M̃
p,α
ρ is a linear subspace of Lp,α

ρ . The closure of M̃p,α
ρ in Lp,α

ρ will be denoted by M
p,α
ρ . It

is easy to see that if ρ ∈ Lp,α, then C [−π, π] ⊂ M
p,α
ρ .

The following lemma plays an important role in obtaining our main results.

Lemma 1. Let f ( · ) ∈ L∞; g ( · ) ∈ M
p,α ∧1 ≤ p < +∞, 0 < α ≤ 1. Then the inclusion

f ( · ) g ( · ) ∈ M
p,α is valid.

Consider the following singular operator

(Sf) (τ) =
1

2πi

∫

γ

f (ξ) dξ

ξ − τ
, τ ∈ γ.

Using the results of [9, 10, 12], it is easy to prove the following

Theorem 4. Singular operator S acts boundedly in M
p,α (γ) when 0 < α ≤ 1 and 1 <

p < +∞.

The following theorem can also be proved.

Theorem 5. Let f ∈ M
p,α, 0 < α ≤ 1, 1 < p < +∞. Then

∥

∥(Kf) (rξ)− f+ (ξ)
∥

∥

Lp,α → 0, r → 1− 0,

where (Kf) (z) is a Cauchy type integral

(Kf) (z) =
1

2πi

∫

γ

f (ξ) dξ

ξ − z
, z /∈ γ.

The similar assertion is also true for f− (ξ) as r → 1+0, where f− ( · ) are nontangential
boundary values of f ( · ) outside ω.

The final result of [11] is the following

Theorem 6. System of exponents
{

ei nt
}

n∈Z
forms a basis for Mp,α when 1 < p < +∞,

0 < α ≤ 1.
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Consider the space Hp,α
+ . Denote by Lp,α

+ the subspace of Lp,α, generated by the
restrictions of the functions from Hp,α

+ to γ. It follows directly from the above results that
the spaces Hp,α

+ and Lp,α
+ are isomorphic and f+ (τ) = (Jf) (z), where f ∈ Hp,α

+ , f+ are
nontangential boundary values of f on γ, and J performs a corresponding isomorphism.
Let M

p,α
+ = M

p,α
⋂

Lp,α
+ . It is clear that M

p,α
+ is a subspace of Mp,α with regard to the

norm ‖ · ‖Lp,α . Let MHp,α
+ = J−1

(

M
p,α
+

)

. This is a subspace of Hp,α
+ . Let f ∈ Hp,α

+ and
f+ be its boundary values. It is absolutely clear that the norm ‖f‖Hp,α

+
can be also defined

as ‖f‖Hp,α
+

= ‖f+‖Lp,α .

Similar to the classical case, we define the Morrey-Hardy class outside ω. So let
D = C\ω. We will say that the function f analytic in D− has finite order k at infinity, if
its Laurent series in a neighborhood of the point at infinity has the following form:

f (z) =

k
∑

n=−∞

anz
n, k < +∞, ak 6= 0. (3)

Thus, when k > 0, the function f (z) has a pole of order k; when k = 0, it is bounded;
and when k < 0, it has a zero of order (−k). Let f (z) = f0 (z)+ f1 (z), where f0 (z) is the
main, and f1 (z) is the regular part of expansion (1) for the function f (z). Consequently,
if k ≤ 0, then f0 (z) ≡ 0. When k > 0, f0 (z) is a polynomial of degree k. We will say
that the function f (z) belongs to the class mHp,α

− , if f has an order at infinity less than
or equal to m, i.e. k ≤ m and f1

(

1
z

)

∈ Hp,α
+ .

Absolutely similar to the case of MHp,α
+ , we define the class mMHp,α

− . In other words,

mMHp,α
− is a subspace of functions from mHp,α

− , whose shifts on a unit circle are continuous
with regard to the norm ‖ · ‖Lp,α(γ).

To study the basicity of the system of exponents, we will need the following result of
[11]:

Theorem 7. Systems
{

ei nt
}

n∈Z+
;
{

e−i nt
}

n∈N
({z n}n∈Z+

;{z−n}n∈N) form bases for

spaces M
p,α
+ ; −1M

p,α
− (MHp,α

+ ; −1MHp,α
− ), respectively.

We will use also the following concepts. Let Γ ⊂ C be some bounded rectifiable curve,
and t = t (σ) , 0 ≤ σ ≤ l, be its parametric representation with respect to the length of
arc σ, where l is the length of Γ. Let dµ (t) = dσ, i.e. µ ( · ) is a linear measure on Γ. Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} ,Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is absolutely clear that Γt(s) (r) ⊂ Γt (r).

Definition 1. Curve Γ is called a Carleson curve if ∃ c > 0:

sup
t∈Γ

µ (Γt (r)) ≤ cr, ∀r > 0.
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Curve Γ is said to satisfy the chord-arc condition at the point t0 = t (s0) ∈ Γ, if
there exists a constant m > 0, independent of t, such that |s− s0| ≤ m |t (s)− t (s0)|,
∀t (s) ∈ Γ. Γ satisfies the chord-arc condition uniformly on Γ, if ∃m > 0 : |s− σ| ≤
m |t (s)− t (σ)| , ∀t (s) , t (σ) ∈ Γ.

Let’s state the following lemma from [12], which is interesting in itself:

Lemma 2. [12] Let Γ be a bounded rectifiable curve. If the exponential function |t− t0|
γ , t0 ∈

Γ, belongs to the space Lp,α (Γ) , 1 ≤ p < ∞, 0 < α < 1, then γ ≥ −α
p
. If Γ is a Carleson

curve, then this condition is also sufficient.

We will essentially use the following theorem of N. Samko [12]:

Theorem 8. [12] Let the curve Γ satisfy the chord-arc condition and the weight ρ ( · ) be
defined as follows:

ρ (t) =

m
∏

k=1

|t− tk|
αk ; {tk}

m
1 ⊂ Γ, ti 6= tj, i 6= j. (4)

Singular operator SΓ is bounded in the weighted space Lp,α
ρ (Γ) , 1 < p < +∞, 0 ≤ α < 1,

if the following inequalities are valid:

−
α

p
< αk < −

α

p
+ 1, k = 1,m. (5)

Moreover, if Γ is smooth in some neighbourhoods of the points tk, k = 1,m, then the
validity of the inequalities (5) is necessary for the boundedness of SΓ in Lp,α

ρ (Γ).

In what follows, as Γ we will consider a unit circle γ = ∂ω. Consider the weighted
space Lp,α

ρ (γ) =: Lp,α
ρ with the weight ρ ( · ). Let the weight ρ ( · ) satisfy the condition

(5). Then, by Theorem 8, the operator S is bounded in Lp,α
ρ , i.e. ∃ c > 0:

‖Sf‖Lp,α
ρ

≤ C ‖f‖Lp,α
ρ

, ∀f ∈ Lp,α
ρ .

Let’s show that Mp,α
ρ is an invariant subspace with respect to the singular operator S,

if the inequalities (5) are fulfilled. It is absolutely clear that to do so it suffices to prove
the continuity of the shift of S. Take ∀δ ∈ R and consider

(Sf)
(

τeiδ
)

=
1

2πi

∫

γ

f (ξ) dξ

ξ − τeiδ
.

We have

(Sf)
(

eiδτ
)

=
1

2πi

∫

γ

f
(

e−iδξeiδ
)

d
(

e−iδξ
)

ξeiδ − τ
=
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=
1

2πi

∫

γ

f
(

ξeiδ
)

d (ξ)

ξ − τ
.

It follows

(Sf)
(

eiδτ
)

− (Sf) (τ) =
1

2πi

∫

γ

f
(

ξeiδ
)

− f (ξ)

ξ − τ
dξ =

=
(

S
(

f
(

· eiδ
)

− f ( · )
))

(τ) .

Let f ∈ M
p,α
ρ . Then Theorem 8 of [12] immediately implies

∥

∥

∥
(Sf)

(

τeiδ
)

− (Sf) (τ)
∥

∥

∥

L
p,α
ρ

=
∥

∥

∥

(

S
(

f
(

· eiδ
)

− f ( · )
))

(τ)
∥

∥

∥

L
p,α
ρ

≤

≤ C
∥

∥

∥
f
(

· eiδ
)

− f ( · )
∥

∥

∥

L
p,α
ρ

→ 0, δ → 0.

Thus, the following theorem is valid.

Theorem 9. Let the weight function ρ ( · ) be defined by (4) with Γ ≡ γ. If the inequalities
(5) are fulfilled, then the singular operator S acts boundedly in M

p,α
ρ .

Let I be some interval and f ∈ Lp,α (I), g ∈ Lq,α (I); throughout this paper 1
p
+ 1

q
= 1.

We have

∫

I

|fg| dt ≤ |I|1−α sup
x∈I,r>0

rα−1

∫

Ir(x)
|fg| dt = |I|1−α ‖fg‖1,α ,

where |I| is a Lebesgue measure of I, Ir (x) ≡ I
⋂

(x− r, x+ r). Applying Hölder’s
inequality, we obtain

∫

I

|fg| dt ≤ |I|1−α sup
x∈I,r>0

(

rα−1

∫

Ir(x)
|f |p dt

)
1

p

×

×

(

rα−1

∫

Ir(x)
|g|q dt

)
1

q

≤ |I|1−α sup
x∈I,r>0

(

rα−1

∫

Ir(x)
|f |p dt

)
1

p

×

× sup
x∈I,r>0

(

rα−1

∫

Ir(x)
|g|q dt

)
1

q

= |I|1−α ‖f‖p,α ‖g‖q,α .

Thus, the following lemma is valid:
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Lemma 3. Let f ∈ Lp,α (I) ∧ g ∈ Lq,α (I),1
p
+ 1

q
= 1, p ∈ [1, +∞). Then the following

Hölder inequality holds

‖fg‖L1
≤ |I|1−α ‖fg‖1,α ≤ |I|1−α ‖f‖p,α ‖g‖q,α .

In the sequel, we will often use the following obvious lemma:

Lemma 4. Let |f (t)| ≤ |g (t)| for almost every t ∈ [−π, π]. Then ‖f‖Lp,α
ρ

≤ ‖g‖Lp,α
ρ

.

To obtain our main result, we will also use the following lemma that follows directly
from Lemma 2 of [12]:

Lemma 5. Let {tk}
m
1 ⊂ [−π, π]. The finite product ω (t) =

∏m
k=1 |t− tk|

αk belongs to the
space Lp,α, if the inequalities αk ≥ −α

p
, ∀k, are valid, where 0 < α < 1, 1 < p < +∞.

3. Homogeneous Riemann problem in Morrey-Hardy classes

We need some results from [38] concerning the solvability of the homogeneous and
nonhomogeneous Riemann problems in Morrey-Hardy classes.

Let’s consider the following homogeneous Riemann problem in classes
(

Hp,α
+ ;

mHp,α
−

)

:







F+ (τ)−G (τ)F− (τ) = 0 , τ ∈ γ,

F+ (z) ∈ Hp,α
+ ; F− (z) ∈ mHp,α

− ,
(6)

where

G
(

eit
)

=
∣

∣G
(

eit
)
∣

∣ eiθ(t), θ (t) = argG
(

eit
)

, t ∈ [−π, π) .

Introduce the following functions X±
i (z) analytic inside (with the sign +) and outside

(with the sign -) the unit circle:

X1 (z) ≡ exp

{

1

4π

∫ π

−π

ln
∣

∣G
(

eit
)
∣

∣

eit + z

eit − z
dt

}

,

X2 (z) ≡ exp

{

i

4π

∫ π

−π

θ (t)
eit + z

eit − z
dt

}

.

Define

Zi (z) ≡

{

Xi (z) , |z| < 1 ,

[Xi (z)]
−1 , |z| > 1 .

Denoting Z (z) ≡ Z1 (z)Z2 (z), we have
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Z+ (τ)−G (τ)Z− (τ) = 0, τ ∈ γ. (7)

Following classics, we call the function Z (z) a canonical solution of the problem (6).

Theorem 10. Let the coefficient G ( · ) of the problem (6) satisfy the following conditions:
i) G±1 ∈ L∞ (γ);
ii) θ (t) ≡ argG

(

eit
)

is piecewise continuous in [−π, π] , {sk}
r
1 : −π < s1 < ... <

sr < π are the points of discontinuity, hk = θ (sk + 0) − θ (sk − 0), k = 1, r, are the
corresponding jumps, h0 = θ (−π)− θ (π).

If the inequalities

−
α

q
≤

hk
2π

≤
α

p
, k = 0, r, (8)

are fulfilled, where p ∈ (1,+∞) is some number, then the homogeneous Riemann problem
(4) has a general solution in classes Hp,α

+ × mHp,α
− of the form F (z) ≡ Z (z)Pm (z), where

Z ( · ) is a canonical solution, and Pm ( · ) is an arbitrary polynomial of degree k ≤ m.

This theorem has the following corollary.

Corollary 1. Let all the conditions of Theorem 10 be fulfilled. Then the homogeneous
Riemann problem (6) has only a trivial solution in classes Hp,α

+ × mHp,α
− , when m ≤ −1.

Note that in case where the conditions i), ii) are satisfied with respect to the coefficient
G ( · ), the solution of the homogeneous problem (6) belongs to the class MHp,α

+ × mMHp,α
− .

In fact, it follows from the expression of solution that it suffices to show that the boundary
values of Z

±

( · ) belong to the space M
p,α. We have Z

±

( · ) = Z±
1 ( · ) × Z±

2 ( · ). As
Z±
1 ∈ L∞, it follows from Lemma 1 that it suffices to prove the validity of inclusion

Z±
2 ∈ M

p,α. Lemma 1 directly implies the validity of inclusion L∞ ⊂ M
p,α. As θ ( · ) ∈

L∞, applying Stokhotski-Plemelj formulas to Z2 (z), we obtain from Theorem 8 that the
inclusion Z±

2 ∈ L̄p,α is valid. So the following statement is true.

Statement 1. Let all the conditions of Theorem 7 be satisfied. Then the solution of the
problem (6) belongs to the class MHp,α

+ × mMHp,α
− .

Remark 1. It should be noted that for α → 1− 0 the inequalities (8) become

−
1

q
<

hk
2π

<
1

p
, k = 0, r, (9)

which are sufficient for finding the general solution of the homogeneous Riemann problem
(6) in Hardy classes Hp

+ × mHp
−. For this case, the theory of Riemann problem has been

well developed by I.I. Daniliuk [39]. So we obtain that if the inequalities (8) are true for
some α ∈ (0, 1), then the general solution of homogeneous Riemann problem (6) in Hardy
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classes Hp
+× mHp

− has the form F (z) ≡ Z (z)Pm (z), where Z ( · ) is a canonical solution,
and Pm ( · ) is an arbitrary polynomial of degree k ≤ m.

On the contrary, if the inequalities (9) are true, then it is clear that there exists
α ∈ (0, 1) such that the inequalities (8) are also true. Hence it follows that the assertion
of Theorem 10 is valid.

Consider the non-homogeneous Riemann boundary value problem

F+ (τ)−G (τ)F− (τ) = f (arg τ) , τ ∈ ∂ω, (10)

in Morrey-Hardy classes Hp,α
+ × mHp,α

− , α ∈ (0, 1), 1 < p < +∞, where f ∈ Lp,α is some
given function.

Let Z ( · ) be a canonical solution of a homogeneous problem corresponding to the
problem (10). Consider the integral

F1 (z) =
Z (z)

2π

∫ π

−π

[

Z+
(

eit
)]−1

Kz (t) f (t) dt, (11)

with Cauchy kernel Kz (t) ≡
eit

eit−z
. The following theorem was proved in [38].

Theorem 11. Let the coefficient G ( · ) of the problem (8) satisfy the conditions i), ii),
and

hk = θ (sk + 0)− θ (sk − 0) , k = 1, r,

be the jumps of the function θ (t) ≡ arg G
(

eit
)

at the points of discontinuity

{sk}
r
1 ⊂ (−π, π) ;h0 = θ (−π)− θ (π) .

Assume that the following inequalities are fulfilled:

−
α

q
≤

hk
2π

<
α

p
, k = 0, r. (12)

Then the following assertions concerning the solvability of non-homogeneous problem (8)
in the class Hp,α

+ × mHp,α
− are true:

α) when m ≥ −1, the problem (10) has a general solution F ( · ) of the form

F (z) = Z (z)Pm (z) + F1 (z) ,

where Z ( · ) is a canonical solution of the homogeneous problem (6), Pm ( · ) is an arbitrary
polynomial of degree k ≤ m, F1 ( · ) is a particular solution of the form

F1 (z) =
Z (z)

2π

∫ π

−π

f (t)

Z+ (eit)
Kz (t) dt, (13)
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Kz ( · ) is a Cauchy kernel, and f ∈ Lp,α is an arbitrary function;
β) when m < −1, the problem (10) is solvable if and only if the orthogonality condi-

tions

∫ π

−π

f (t)

Z+ (eit)
eiktdt = 0, k = 1,−m− 1, (14)

are true, and F (z) ≡ F1 (z) is a unique solution of this problem.

This theorem has the following

Corollary 2. Let all the conditions of Theorem 11 be fulfilled. Then the non-homogeneous
problem (10) with arbitrary f ∈ Lp,α has a unique solution F1 ( · ) in the class Hp,α

+ ×

−1H
p,α
− , which can be represented in the form of Cauchy type integral (13).

Let’s consider the case where the right-hand side of the problem (10) belongs to the
space M

p,α. It follows directly from Theorem 9 that the boundary values F±
1 ( · ) of the

function F1 (z) defined by (11) also belong to M
p,α if the inequalities (5) are true. Then

the condition i) and Lemma 1 imply that the product G ( · )F−
1 ( · ) belongs to Mp,α.

Consequently, similar to the proof of Theorem 11, we get the validity of the following
theorem.

Theorem 12. Let all the conditions of Theorem 11 be fulfilled. Then the following asser-
tions concerning the solvability of the problem (10) with a right-hand side f ( · ) ∈ M

p,α in
the class MHp,α

+ × mMHp,α
− are true:

α) when m ≥ −1, the problem (10) has a general solution F ( · ) of the form

F (z) = Z (z)Pm (z) + F1 (z) ,

where Z ( · ) is a canonical solution, Pm ( · ) is a polynomial of degree ≤ m, and F1 ( · ) is
a particular solution of the form (13);

β) when m < −1, the problem (10) is solvable if and only if the orthogonality conditions
(14) are true.

Remark 2. Again it should be noted that for α → 1− 0 the inequalities (12) become

−
1

q
≤

hk
2π

<
1

p
, k = 0, r. (15)

The inequalities (14) are sufficient for finding the general solution of non-homogeneous
problem (10) in classical Hardy classes Hp

+ × mHp
−. The theory of this problem has been

developed by I.I. Daniliuk [39]. So, if the inequalities (12) hold, then the assertions α) and
β) of Theorem 11 are true with regard to the solvability of non-homogeneous problem (10)
in the class Hp

+ × mHp
−. On the contrary, if the inequalities (12) hold, then there exists

α ∈ (0, 1) such that the inequalities (14) are true, and hence the assertions of Theorem 11
are valid.
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4. Basicity of perturbed system of exponents in Morrey-Lebesgue space

Consider the following dual system of exponents:

{

A (t) ei nt;B (t) e−i nt
}

n∈Z+,k∈N
, (16)

with complex coefficients

A (t) = |A (t)| eiα(t);B (t) = |B (t)| eiβ(t),

on an interval [−π, π], where Z+ = {0} ∪ N . We require the fulfillment of the following
conditions

α) A±; B± ∈ L∞ ≡ L∞ (−π, π) ;

β) θ (t) ≡ β (t)− α (t) is a piecewise continuous function on [−π, π] with the points of
discontinuity {sk}

r
1 : −π < s1 < ... < sr < π, and hk = θ (sk + 0) − θ (sk − 0), k = 1, r -

are the jumps of this function at the points sk, and let h0 = θ (−π)− θ (π).

Let

G
(

eit
)

=
A (t)

B (t)
, t ∈ [−π, π] .

Take ∀f ∈ M
p,α and consider the following Riemann boundary value problem in classes

MHp,α
+ × −1MHp,α

− :

F+ (τ)−G (τ)F− (τ) = A−1 (arg τ) f (arg τ) , τ ∈ γ. (17)

Assume that the following inequalities are fulfilled:

−
α

q
≤

hk
2π

<
α

p
, k = 0, r. (18)

We apply Theorem 12 to the solution of the problem (17). From the condition α) and
Lemma 1 it follows that the function A−1 ( · ) f ( · ) belongs to the space L̄p,α. Therefore,
if the inequality (18) is fulfilled, then, as it follows from Theorem 12, the problem (17) is
uniquely solvable in the class MHp,α

+ ×−1 MHp,α
− , and this solution can be represented as

an integral

F (z) =
Z (z)

2π

∫ π

−π

f (t)

A (t)Z+ (eit)

dt

1− ze−it
.

It is absolutely clear that the following inclusion is true

F+ ( · ) ∈ M
p,α
+ ;F− ( · ) ∈ −1M

p,α
− .
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By Theorem 7, the systems
{

ei nt
}

n∈Z+
,
{

e−i nt
}

n∈N
form a basis for the spaces Mp,α

+ and

−1M
p,α
− , respectively. Let us expand the functions F+ ( · ) and F− ( · ) on these systems.

We have

F+
(

eit
)

=

∞
∑

n=0

ane
i nt;F−

(

eit
)

=

∞
∑

n=1

bne
i nt.

Taking into account these decompositions in (17), we obtain that the function f ( · ) has
an expansion on the system (16) in M

p,α:

f (t) = A (t)
∞
∑

n=0

a+n e
i nt +B (t)

∞
∑

n=1

a−n e
−i nt, (19)

where a+n = an, a
−
n = −bn. Let us find an expression for the coefficients {a±n }. Let

Z (z) =

∞
∑

n=0

c+n z
n, |z| < 1,

be a Taylor expansion of the function Z ( · ) in the neighborhood of the point z = 0. We
have

1

2π

∫ π

−π

f (t)

A (t)Z+ (eit)

dt

1− ze−it
=

∞
∑

n=0

d+n z
n,

where

d+n =
1

2π

∫ π

−π

e−i nt

A (t)Z+ (eit)
f (t) dt, n ∈ Z+.

As a result, for F ( · ) we have the decomposition

F (z) =

∞
∑

n=0

A+
n z

n, |z| < 1,

where A+
n =

∑n
k=0 c

+
n−kd

+
k . Taking into account the expression for d+n , we have

A+
n =

∫ π

−π

v+n (t)f (t) dt,

where

v+n (t) =
1

2π

n
∑

k=0

c̄+n−k

e+i kt

A (t)Z+ (eit)
, n ∈ Z+.
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Similarly, let us expand the function F ( · ) in a Taylor series in the neighborhood of
z = ∞. Again, using the expression for F ( · ), we have

Z (z) =
∞
∑

n=0

c−n z
−n, |z| > 1.

Also we have

1

2π

∫ π

−π

f (t)

A (t)Z+ (eit)

dt

1− ze−it
=

∞
∑

n=1

d−n z
−n,

where

d−n = −
1

2π

∫ π

−π

ei nt

A (t)Z+ (eit)
f (t) dt, n ∈ N.

So, F ( · ) has an expansion

F (z) =

∞
∑

n=1

A−
n z

−n, |z| > 1,

where

A−
n =

n
∑

k=1

c−n−kd
−
k .

Similar to the previous case, for A−
n we have A−

n =
∫ π

−π
v−n (t)f (t) dt, where

v−n (t) = −
1

2π

n
∑

k=1

c̄−n−k

e−i kt

A (t)Z+ (eit)
, n ∈ N.

On the other hand, it is easy to see that the relations

a+n =
1

2π

∫ π

−π

F+
(

eit
)

e−i ntdt,

A+
n =

1

2πrn

∫ π

−π

F
(

reit
)

e−i ntdt, 0 < r < 1, ∀n ∈ Z+.

are true. Then from Theorem 5 it directly follows that A+
n = a+n , ∀n ∈ Z+. Similarly we

obtain A−
n = a−n , ∀n ∈ N .

And now, as f (t) we take f (t) ≡ A (t) ein0t, where n0 ∈ Z+ is an arbitrary fixed
number. In this case the solution of the problem (17) is the following function:
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Φ+ (z) =

{

zn0 , |z| < 1
0, |z| > 1.

As it follows from Theorem 12, the problem (17) is uniquely solvable in classes MHp,α
+ ×

1MHp,α
− . Therefore, comparing functions F ( · ) and Φ+ ( · ), we have

A+
n =

{

1, n = n0,
0, n 6= n0,

A−
n = 0,∀n ∈ N,

i.e.

∫ π

−π

A (t) ein0tv̄n (t) dt = δnn0
,∀n, n0 ∈ Z+,

∫ π

−π

A (t) ein0tv̄−n (t) dt = 0,∀n0 ∈ Z+,∀n ∈ N.

Similarly, taking f (t) = B (t) e−in0t, we obtain that in this case the solution of the problem
(17) is the following function

Φ− (z) =

{

0, |z| < 1,
z−n0 , |z| > 1.

Again, by similar considerations we obtain

∫ π

−π

B (t) e−in0tv̄+n (t) dt = 0,∀n0 ∈ N,∀n ∈ Z+;

∫ π

−π

B (t) e−in0tv̄−n (t) dt = δnn0
,∀n, n0 ∈ N.

From these relations it follows that if the inclusion {v+n ; v
−
n }n∈Z+,k∈N ⊂ (Mp,α)∗ is

true, then the system (16) is minimal in M
p,α. It suffices to show that

v+n ; v
−
k ∈ Lq,α,∀n ∈ Z+,∀k ∈ N.

We have

∣

∣Z+
(

eit
)
∣

∣

−1
∼ |tr − πr|

h0
2π

r
∏

k=1

|t− sk|
hk
2π , t ∈ [−π, π] .

Let the inequalities

hk
2π

≥
−α

q
, k = 0, r.
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be fulfilled. Then by Lemma 4 it follows that
∣

∣Z+
(

eit
)∣

∣

−1
belongs to Lq,α. Hence, from

the expressions for v±n it follows the inclusion {v±n } ⊂ Lq,α. As a result, we obtain that the
system (16) is minimal in M

p,α. It is clear that the function f ( · ) has a unique expansion
of the form (19) on this system. Thus, the following theorem is true.

Theorem 13. Let the functions A ( · ) and B ( · ) satisfy the conditions α) and β). If the
inequalities

−
α

q
≤

hk
2π

<
α

p
, k = 0, r,

are fulfilled, then the system (16) forms a basis for M
p,α, 1 < p < +∞, 0 < α < 1.

Consider the particular cases of this theorem. Let β ∈ R be some parameter and
consider the following system of exponents

{

ei(n+β signn)t
}

n∈Z
. (20)

In this case, we have A (t) = eiβt; B (t) = e−iβt. Thus, the function θ (t) = −2βt doesn’t
have any point of discontinuity on (−π, π) and h0 = θ (−π) − θ (π) = 4βπ. Applying
Theorem 13 we obtain

Corollary 3. Let the inequality

−
α

2q
≤ β <

α

2p
,

be fulfilled. Then the system of exponents (20) forms a basis for M
p,α, 1 < p < +∞,

0 < α < 1.

Let us consider the other particular case

{

ei(n+β signn sign t)t
}

n∈Z
, (21)

where β ∈ R is some parameter. We have A (t) = eiβ|t|; B (t) = e−iβ|t|. In this case the
function θ (t) = −2β |t| doesn’t have any point of discontinuity, h0 = θ (−π) − θ (π) = 0,
and all the conditions of Theorem 13 are fulfilled.

Corollary 4. Let β be an arbitrary real parameter. Then the system of exponents (21)
forms a basis for M

p,α, 1 < p < +∞, 0 < α < 1.
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