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ON BASICITY IN L, (0,1) (1< p< o) OF THE
SYSTEM OF EIGENFUNCTIONS OF ONE
BOUNDARY VALUE PROBLEM. I

Abstract

The basis properties of the spectral problem is investigated for differential
operator of the second order with the spectral parameter in both boundary con-
ditions. In this part of the paper the oscillation properties of eigenfunctions
are established and the asymptotic formulae are derived for eigen values and
eigenfunctions.

Introduction. Consider the spectral problem

—" +q@)y=Ny, 0<z<I1, (0.1)

(aoX + bo)y(0) = (coX + do)y'(0), (0.2)

(a1A +b1)y(1) = (A +d1)y'(1), (0.3)

where A— is a spectral parameter, ¢(x) is a real-valued function from the class C|0, 1]

and ag, b, ¢k, di (kK =0,1) are real constants.

The present paper is devoted to the investigation of basis properties in the spaces
L,(0,1) (1 < p < o0) of the system of eigenfunctions of boundary value problem
(0.1)-(0.3) and consists of two parts: in the first part the oscillation properties of
eigenfunctions of problem (0.1)-(0.3) are established and the asymptotic formulae
for eigenvalues and eigenfunctions of this problem are derived; in the second part
the basicity in L,(0,1) (1 < p < 0o) of system of eigen functions of boundary value
problem (0.1)-(0.3) is investigated.

The boundary value problems for ordinary differential operators with the spectral
parameter in boundary conditions in different statements were studied in different
papers (see, for example [1-16]). In the paper [3] the list of papers is reduced in
which such problems were considered in connection with the physical problems.

In [14] (see also [11, 12]) the basicity in L2(0,1) of system of eigenfunctions of
the boundary value problem

—" +q@)y=Ny, 0<x<I1,

y(0) =0, (a—A)y'(1) —dry(1) =0,

is investigated in detail, where a and b are positive constants, ¢(z) is continuous
non-negative function on the segment [0, 1].

The basis properties of a system of eigenfunctions of boundary value problem
(0.1)-(0.3) in L2(0,1) provided ag = ¢o = 0, |bo| + |do| # 0, a1dy — bic; > 0 were
investigated completely in [6].

In the sequel everywhere we’ll assume that ¢(z) is a real-valued function from
the class C[0, 1] and the following conditions

oo = agdg — bgcg < 0, o1 = aid; — bicy > 0. (0.4)
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are fulfilled.

Note that the reality and the simplicity of eigenvalues of boundary value problem

(0.1)-(0.3) under the condition (0.4) were proved in many papers (see, for example
[3] and [8]).

1. Oscillation properties of eigenfunctions of boundary value problem
(0.1)-(0.3).

To study the basicity properties in L,(0,1) of a system of eigenfunctions of
boundary value problem (0.1)-(0.3) we need oscillation properties of solutions of
this problem.

Along with boundary value problem (0.1)-(0.3) consider the following boundary
value problems:

{ -y +qlx)y=y, 0<xz<l, (1.1)
y(0) =0, y(1)=0; (1.2')
—y" +qlx)y=Ny, O0<z<l1, (1.1)
(ao + bo)y(0) = (coA + do)y'(0), (1.2)
y(1) =0. (1.3)

The eigenvalues of boundary value problem (1.1°)-(1.2") we denote by pu
(n=0,1,2,...) s py < py < ... <, < ...
In case ¢y # 0 we determine the non-negative integer Ny from the inequality

/
n

fing—1 < —do/co < piy, (1.4)

(at this it is assumed that p’ | = —o0).
In [10] it is proved that the eigenvalues of boundary value problem (1.1)-(1.3)
form unbounded increasing sequence {p,}oo o (pg < g < -+ < p, < ---) and

besides the following assertions are true:

(A) if ¢y = 0 then the eigenfunction y,(x) corresponding to the eigenvalue pu,,
has exactly n simple zeros in the interval (0, 1);

(B) if ¢p # 0 then the eigenfunction y,, (z) corresponding to the eigenvalue p,, has
at n < Ny exactly n, and at n > Ny exactly n — 1 simple zeros in the interval (0, 1),
moreover from the inequality M3V0—1 < —dp/cy < ,u’NO it follows the inequality at
Ny < —do/co < pny11, and from the equality —do/co = iy, it follows the equality
_dO/CO = ,U,NOJrl.

Lemma 1.1. Let hi(z) € C[0,1] and ug(x) be a solution of the equation uj +
hi(x)ur, = 0 satisfying the conditions ui(0) = copy + do, ui(0) = aopy + bo, (k =
1,2). Besides, let hi(z) < ho(x) (0 <z < 1) and one of the following conditions
be fulfilled: (a’) co = 0, p; < po; (V') co # 0, p1 < py < —dp/co; () co # 0,
—do/co < p1 < py. Then if ui(z) in interval (0,1] has m zeros, then us(x) in the
same interval has no less than m zeros and k-th zero of ua(x) less than k-th zero
of uy(x).

Proof. The case (a') was considered in [8]. The cases (b') and (¢) are considered
absolutely analogously.

Let y(x, \) be a solution of equation (0.1) satisfying the initial conditions y(0, \) =
coA + do, y'(0,\) = ag\ + by. Denote by mg(\) the quantity of zeros of the function
y(x, A) in the interval (0, 1).
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Assume that n is an arbitrary fixed non-negative integer and p_; = —oc.

Lemma 1.2. The following assertions are true: (ai) if co = 0 and \ €
€ (fp_1s ), then mo(N) = n; (b1) if co # 0, X € (fp_1, 1y,] and n < Ny, then
mo(A) = n; (1) if co # 0, X € (Wp_1, 1) and n > Ny + 2, then mo(\) = n — 1;
(di) if co # 0 and A € (uy,, —do/co), then mo(X) = No +1; (e1) if co # 0 and
A€ [—do/co, tny 1], then mo(X) = No.

Proof. Let one of the conditions (a1), (b1), (¢1) be fulfilled and besides \ # u,,.
Since y(1,\) # 0, then by virtue of lemma 1.1 the function y(z,A) in the interval
(0,1) has no less than mg(u,,_;) + 1 and no more than mg(u,,) zeros. Since in the
considered cases mg(u,,_1)+1 = mo(u,,) then the truth of the assertion of the lemma
follows from (A) and (B).

Let ¢o # 0 and X\ € (py,, —do/co). Since y(1,A) # 0, then by virtue of lemma
1.1 the function y(x,\) in the interval (0,1) has no less than Ny + 1 zeros. Let
mo(A) > No+2. By virtue of Sturm theorem [17, p.28] between each two zeros of the
function y(z, A) there is at least one zero of the function y (z, —dp/co). Consequently,
mo (—do/co) > Ny + 1. The last contradicts to the equality mg (—do/co) = No.

The case (e1) is considered absolutely analogously. The proof of lemma 1.2 is
complete.

Let’s prove that y(z,A\) # 0 (0 < 2z < 1) at A < py. Note, that if ¢y # 0 then
po < —do/co. Consequently, y(0,A) # 0 at A < . Since p is the first value of the
parameter A for which y(1,\) = 0, then it is obvious that y(1,X) # 0 at A < pq.
Consequently if y(z1, ) = 0, then it must be 0 < z1 < 1. In this case by virtue of
lemma 1.1 for some point z¢ € (0,21) it would be true the equality y(xo, o) = 0,
that is contradiction.

Lemma 1.3. The relation /\hm Z((l )\)) +o00 holds.
——00

Proof. Let A be sufficiently large by the modulus negative number. The funda-
mental system of solutions of equation (1.1) we denote by ,(z,\)
(7 =1,2). It is evident [18, p.59] that

v = (6 W) e (6 A2) (1e0 (W), )

where j =1,2;s=0,1 and 61 = —05 = 1.
For the function ¢(z) € C[0,1] we determine the expression U(p,\) in the
following way:
U(p, A) = (aoA + bo)p(0) — (coA + do)¢'(0). (1.6)

It is easy to check that

y(l’, )‘) = Wil {U(l/}l(a:v )‘)7 >‘)¢2(x7 >‘) - U(wQ(‘% )‘)7 )‘)1/}1(377 )‘)} ’

where

¢1(07 )‘) 1/}2(07 >‘)
W =

P10, A)  5(0, )
It is obvious that

)

(
2

1,A) .
) (L.7)

)

(1 (z,2) >\)¢
(wQ(x7A)7)‘)
(1 (z,A) >\)¢
(P2 (2,A),A)

)



56 Proceedings of IMM of NAS of Azerbaijan
[N.B.Kerimov, R.G.Poladov]

The immediate calculation using formulae (1.5)-(1.7) shows that Z((ll”)’\\)) = A2+

0 <|)\|71/2> . Lemma 1.3 is proved (see also [13]).
In case ¢; # 0 we determine the nonnegative integer N7 from the inequality

dy
/"LNl—]. <= S HN1'
C1

Let n be an arbitrary fixed non-negative integer and k,, be a quantity of eigenval-
ues of the boundary value problem (0.1)-(0.3) contained in the interval (g,,_;, t,]-
Below we’ll show that either k, = 1 (in this case we denote the corresponding eigen-
value by )\%0)), or k, = 2 (in this case we denote the corresponding eigenvalues by
AD and AP).

Theorem 1.1 The following assertions are true:

(a) if co=c1 =0, then k, =1, A0 ¢ (ty—15 ) and Mg (/\510)> = mo(iy,);

(b) if co =0,c1 # 0 and —di /1€ (15 ] then kn = 1,\0 ¢ (p—1, Hty) and
mo(Ay)) = = mo(u,);

(¢) ifco #0, c1 =0 and —do/coZ(fp_1, 1ty,] then k, =1, A0 ¢ (op—1s o) and
mo(AS") = = mo(u,);

(d) if coc1 # 0, —do/coZ(fp_1, ) and —di/c1E(pp_1, 1) then k, = 1, A e
€ (Hn_1:11) and mo(AY) = ko(p,);

(e) if co # 0, c1 = 0 and —do/co € (fy_1, ) then k, = 1 and either A e
(tty—1, —do/co) (in this case mo(}\%o)) = mo(pty,—1) +1) or A e [—do/co, ity,) (in

this case mo(A%O)) = mo(py,));

(f) if cocr # 0, —do/co € (fip_1spn) and —di/cr&(pp_1, tby) then ky, = 1 and
cither A\ € (p—1,—do/co) (in this case mo(A%O)) = mo(fp,_y) + 1) or A ¢

[~do/co, ) (in this case mo () = mo(u,) )
(1)

(9) if co =0, c1 #0 and —dy/cr € (1, 1tn) then kn = 2, p, 1 < An’ <
—difer < NP < gy and mo(AD) = mo(Ai) = mo(p,);

(h) ifco =0, c1 #0 and —di/c1 = p,, then ky =2, p,_1 < /\%1) < )\7(12) =—di/1
and mo()\q(ll)) = mo()\g)) = mo(,);

(1) if cocr # 0,—do/coZ(op_1, 1) and —di/c1E(fhy_1, ty) then kyp = 2, p,_ 1 <
/\7(11) < —di/e < )\512) < W, and mo()\g)) = mo(/\%z)) =mo(,);

() if coer # 0, —do/cof (i1, 1) and —dy/er = i, then kip =2, p,y < A <
AP = = —dyi/c1 and mo()\;l)) = mo()\g)) = mo(py,);

(k) if cocr # 0 and p,_; < —do/co < —di/c1 < p, then k, = 2, A e
(=di/c1, py), mo()w(f)) = mo(p,) and either AV e (tp—1,—do/co); (in this case
mO(AS)) = mo(p,—1) +1) or A e [—do/co, —di/c1) (in this case mo()\g)) =
mo(kn) )i

(1) if cocr # 0 and p,_; < —difcr < —dofco < p, then k, = 2, AP e
(1, —d1/c1), mg ( S)> = mo(py_1) and either AP e (—di/c1,—do/co) (in this

case mg()\g)) = m(py_1) +1) or AP e [—do/co, b)) (in this case mo()\,(f)) =
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(m) if coc1 # 0 and p,_1 < —do/co = —di/c1 < py,, then k, = 2 and A e
(1.~ o). M) € (=do/eo. ). mo(A) = mo (1) + 1, mo(A?) = mo(p, )
(n) if coc1 # 0 and p,,_; < —do/co < —di/c1 = p,, then k, = 2, AP =
T mo()\g)) = mo(p,) and either AV e (1, —do/co) (in this case mo()\g)) =
mo(fp—1) +1) or AV e [—do/co, pi,) (in this case mo(/\sll)) =mo(py,));
(0) if coc1 # 0 and p,_ < —do/co = —difc1 = p,, then k, = 2, AP e
(1. 41n)s M2 = —doco, mo(A) = mo(jun1) + 1. mo(A) = mo(y,).

Proof. At first we’ll prove that the function Z?/,((1 ;\)) in the interval (u,_q, ;)

strongly decreases. For this it is sufficient to prove that at A € (p,_q,H1,) the

inequality -2 I <y(( ))> < 0 is true.
Let A* be a fixed point from the interval (p,,_, i,,). By virtue of (1.1) we have

A @ X)) — o )y A7)} = = Nyl A,

where p is an arbitrary real number. Integrating this identity in the range from 0
to 1 we obtain

1

Y (LAY, 1) —y(L,A)Y (1, ) = (=A%) /y(xn A)y(z, p)dr — ag

0

By dividing the both parts of the latter into (u — A*)y(1, A*)y(1, 1) and by the
subsequent limit passage p — \* we’ll obtain

1

a y/(]-a)‘) go 2
_ _ A)d
B3 <y(1,)\) NN 1 ) /y o A")dz < 0.
0

Hence from lemma 1.3 and from the equalities y(1, ;) = 0 (k = 0,1,...) it follows

that in the interval (p,,_1, it,,) the function y((17 )) must strongly decrease from (+00)

to (—o0).

Let P(\) = (a1\ + b1)/(ciA + d1). We have P'(\) = o1(ciA + d1)~2. Since
by the conjecture of (0.4) o; > 0, then under the condition ¢; = 0 the function
P()) strongly increases in the interval (—oo; +00), and under the condition ¢ # 0
the function P()\) strongly increases at each of the intervals (—oo;—d;/c1) and

(—dy/c1;+00), moreover lim  P(\) = +o0o, lim P\ =-—
)\—>—d1/01—0 )\—>—d1/01+0

Let ¢ =0 or ¢; # 0, —di/c1€(py—1, tby). From aforesaid it follows that in the
interval (1,1, it,,) it will be found the unique value A = A for which

y'(1,7)
y(1,7)

= P()\), (1.8)
i.e., condition (0.3) is fulfilled. Consequently, /\7(10) is an eigenvalue of the boundary
value problem (0.1)-(0.3) and y (m, )\7(10)) is a corresponding eigenfunction. Hence

and from lemma 1.2 we obtain the validity of the assertions (a) — (f).
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Let ¢; # 0 and —d;/c1€(py,_1, 4y,).- By an analogous way at each of intervals
(thy—1,—d1/c1) and (—dy /c1, ) the unique value A ()\7(11) and )\7(12), respectively) will
be found for which (1.8) is fulfilled, i.e., condition (0.3) is fulfilled. Since in the
considered case (—dj/c1) is not the eigenvalue of boundary value problem (0.1)-
(0.3), then from here and from lemma 1.2 it follows the validity of the assertions
(), (1), (k) — (m).

The case ¢1 # 0, —dy/c1 = p,, (see (h),(j),(n),(0)) is considered absolutely
analogously. Here it is used the fact that in this case u,, is also an eigenvalue of
boundary value problem (0.1)-(0.3). The proof of theorem 1.1 is complete.

The existence of unbounded increasing sequences of the eigenvalues {\,},~; of
boundary value problem (0.1)-(0.3) and oscillation properties of the eigenfunctions
yn(x)(n =0,1,...) follows from theorem 1.1.

Corollary 1.1. The following assertions are true:

(a2) if co = c1 = 0 then the eigenfunction yy,(z) has exactly n simple zeros in
the interval (0,1);

(b2) if co =0 and c1 # 0 then the eigenfunction yn(z) at n < Ny has exactly
n, and at n > Ny exactly n — 1 simple zeros in the interval (0,1), moreover either
AN, < —difer < Anyq1 (provided py, # —difc1) or Ay, < —difci = Anjq1
(provided py, = —di/c1);

(c2) if co # 0 and c¢1 = 0 then the eigenfunction y,(x) at n < Ny has exactly
n simple zeros, and at n > Ny + 1 exactly n — 1 simple zeros in the interval (0,1);
the eigenfunction yn,41(x) has either evactly No + 1 (in this case piyn, < Ang+1 <
—dp/co) or evactly No (in this case —dyjc, < ANg+1 < finy41) Simple zeros in the
interval (0,1).

Noteci that items (a2) and (bz) of corollary 1.1 were proved as well as in the
papers [8] and [13].

In the case cgcp # 0 the oscillation properties of eigenfunctions of boundary value
problem (0.1)-(0.3) have more difficult character.

Consider the following spectral problem:

— =My, 0<z<1,
y(0) = (2/m)°Ay'(0), (1) = —(2/m)’ M/ (1).
It is easy to be sure that for this problem ay = dyp = a1 = dy = 0, bg = by = 1,

co=—c1 = (2/7)3, 00 =—(2/7)% < 0,01 = (2/m)% > 0. The immediate calculations
show that

Xo = —p3, yo(x) = expug(z — 1)) + exp(—pox); M = —p3,

m\ 2 . TX X
yi(@) = exp(n (@ — 1)) = exp(—pa); A= (5) + v2(@) = sin T~ +cos T,
where p5 and p; are corresponding unique positive roots of the equations
219/7)3 — 1 1—(2u /)3
exp(—p) = 7( o/) exp(—py) = (2py/ )

(2up/m)3 +17 1 (2 /m)3

It is obvious that Ag < —(7/2)? < ;. Note that the functions yo(x) and ya(z)
in the interval (0,1) have no zeros, and the function y;(z) in the interval (0,1) has
a unique zero xg = %
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Corollary 1.2. Let cycy # 01 and Ny + 2 < Ny. Then the eigenfunction y,(z)
has at n < Ny exactly n, at No+2 < n < N evactly n — 1, and at n > N1 + 1
exactly n — 1 zeros in the interval (0,1); the eigenfunction yn,+1(z) has either
ezactly No + 1 (in this case puy, < Ang+1 < —do/co) or ezactly No (in this case
—do/co < Ang+1 < iy, zeros in the interval (0,1). Besides, if —di/c1 # py, then
ANy < —di/cr < Anpq1 and if —di/cy = pp, then Ay, < —di/c1 = ANy 41

Corollary 1.3. Let coc; # 0, No+ 1 = Ny and —dy/co < —dyi/c1. Then the
eigenfunction y,(x) has at n < Ny exactly n, and at n > N1+ 1 exactly n—2 zeros
in the interval (0,1); the eigenfunction yn,+1(x) has either exactly No+ 1 (in this
case iy, < ANy+1 < —do/co) or evactly Ny (in this case —do/co < Any+1 < —di/c1)
zeros in the interval (0,1). Besides if —di/c1 # py, then —di/cy < Ani41 < iy,
and if —dy/c1 = py, then Ay, 41 = —di/c1.

Corollary 1.4. Let coc; # 0, No+1 = Ny and —di/c; < —dy/co. Then the
eigenfunction yn(x) has at n < No + 1 exactly n (at this An,+1 < —d1/c1), and at
n > N1+ 2 exactly n—1 zeros in the interval (0,1); the eigenfunction yn,+2(x) has
either exactly No + 1 (in this case —di/c1 < Any+2 < —do/co) or exactly Ny (in
this case —do/Co < ANgt2 < fin,+1) zeros in the interval (0,1).

Corollary 1.5. Let cocy # 0 and Ny < No+ 1. Then the eigenfunction y,(z)
has at n < Ny ezxactly n (at this Ay, < —di/c1) at N1 +1 <n < Ny+ 1 ezactly
n —1 (at this either —di/c1 < Anyj41 < py, 0 Any4+1 = —di/c1 = py, ), and at
n > No+3 exactly n —2 zeros in the interval (0,1); the eigenfunction yn,+2(x) has
exactly either No + 1 (in this case py, < Any42 < —do/co) or exactly Ny (in this
case —do/co < ANg+2 < Hn,11) 2eros in the interval (0,1).

2. Asymptotic formulae for eigenvalues and eigenfunctions of bound-
ary value problem (0.1)-(0.3).

Let yn(z) be an eigenfunction of boundary value problem (0.1)-(0.3) correspond-
ing to the eigenvalue A,.

Denote by A the greatest element of the set of roots of the functions a;\ + b;,

cjA+dj, (j = 0,1). It is obvious that the function P;(\) = 2?”:;;

sign in the interval (A, +o00). Let p; = Alim sgn P;(X\) and Ny be such a natural
——4-00

has a constant

number that at n > N() the inequality A, > Ay is true where Ay = max {A,2C + 1},

C = .
Jnax, lq(z)]

Everywhere in future we’ll assume that n > No.

Introduce the corner variable 0,,(x) = Arctg Z?gg

or exactly

0, () = arg {y;(ac) + Zyn(:n)} . (2.1)
Allowing for (0.2) we’ll determine the initial value 6,,(0) by the equality

codn +do 1 —Po_

0,(0) = t
(0) = arc gao)\n b 5

(2.2)

For the other x the function 6, (z) is given by formula (2.1) to within arbitrary
addend divisible by 27 since the functions y,,(z) and ¥/, (z) can’t vanish simultane-
ously. This expression divisible by 27 is to be fixed such that the function 6, (z)
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satisfy condition (2.2) and be continuous by z. By this the function 6, (x) is deter-
mined by a unique way [19, p.244].
Lemma 2.1 [9]. The function 0,,(x) satisfies the differential equation

0! (x) = cos® O, () + (\n — q()) sin? 0, () (2.3)

and increases on the segment [0, 1].

From (2.1) it is clear that the zeros of the function y,, (z) coincide with the points
in which 6, (x) is divisible by 7. Considering the function y,(z) when x increases
from 0 to 1 we see that it has zero at the point z € (0,1) iff at this point 6, (z)
increasing passes the value divisible by .

Since 0 < 0,(0) < 7 we see that by increasing = from 0 to 1 the function 6, (z)
takes the finite number of values 7, 27, ..., consecutively. As the function 6,,(z) can’t
decreasing converge to angle divisible by 7 then it achieves the angles divisible by
7 in increase order.

Denote by x, 1 (k= 1,my) the zeros of the eigenfunction y,(x) in the interval
(0,1).

From the oscillation properties of eigenfunctions of boundary value problem
(0.1)-(0.3) (see corollaries 1.1-1.5) it follows that at n > Ny

my, = n — sgn|co| — sgn |c1] (2.4)

holds.
Besides it is easy to see that
c1\n + dp 1—p

0,(1) = t - 2.
(1) arcgalAn+b1+ 5 T+ Tm (2.5)

Lemma 2.2 (see [9] and [20]). For eigenvalues A, of boundary value problem
(0.1)-(0.3) at n > Ny the estimation

Cin? < M\, < Con?, (2.6)

1s true, where C1 and Co are some positive constants.
Lemma 2.3. The asymptotic formulae

A = (m(n —0))? +O(1), (2.7)

2712y, (2) = sgn|co| - cos(n — o)mx + (1 — sgn|co|) - sin(n — o)rz + O(n™Y), (2.8)

are valid, where o = 1+ %(sgn |co| + sgn|ci]).

Proof. We'll prove formula (2.7) only in the case coep # 0. The other cases are
considered analogously.

Note that by virtue of (2.4) in the considered case m,, = n—2. It is obvious that

On(zni) =7k (1<k<n-2). (2.9)
From (2.3) subject to lemma 2.2 we’ll obtain

0, (x)

=1+0(n?).
c0s2 0, (x) + A sin? 0, () +Om™)
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Integrate the both parts of the last equality from 0 to xy, 1:

Tn,1
O (@) -2
n =xp1(1+0 .
/ 082 O, (z) + Ay sin? 0,,(z) Zn (14 0(n ™)
0

Making substitution 6, (z) = ¢ in integral and allowing for (2.9) we’ll obtain:

/ de =zn1 (1+ O(n_2)) .

cos? ¢ + A sin? ¢
60 (0)

Acting by the analogous way we have

0n(1)
dp .
=1 —-zpn 1+0 ,
/ cos? p + A, sin? (1= &nn-2) (1+0(n7%)
w(n—2)
w(k+1)
/ i = (Tpg+1 — Tng) (1+0(n7?) (1<k<n-3).
cos2 p 4+ \psin? o ' ’ ==

7k

Allowing for (2.2), (2.5) and lemma 2.2 by the immediate calculation it is easy

to be sure that
v

dy T _9
- + o),
/ cos2p+ A,sin®p 2\, (™)
0,(0)
On (1)
dy T _9
= +0 )
/ cos2p+ Apsin®o 2\, (™)
m(n—2)
w(k+1) J
© T
= 1<k<n-3).
/ cos? p+ A\psin® o VA, (lsk<n=3)

7k

From the last six equalities it follows that

s
= —— 10, 2.10
Tn1 o +0 (n™?) (2.10)
1= @pp o= ——+0 0%, (2.11)
: 2V,
Tnerl — Tnp = ﬁ +0 (3 (1<k<n-3). (2.12)
By virtue of (2.12) we have
m(n —3) +O(n?)

Ipn—2 — Tnl =
’ LW
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By summing the last equality with equalities (2.10) and (2.11) we’ll obtain 1 =
1

WE%) + O (n™?) that is equivalent to v/A, = m(n — 2) + O (n~!). The derivation
of formulae (2.2) in the case cocq # 0 is complete.
Prove formula (2.8). We denote by ¢, (x, 1) and ¢, (x, 1) the fundamental system

of solutions of the equation v —q(z)u+ p?u = 0 determined by the initial conditions

©1(0, ) =1, @1(0,p) =ip,
(2.13)

©2(0, 1) = 1, 5(0, ) = —ip.

It is known that (see [21] or [18, p.59]) at sufficiently large values of y it holds

(@, 1) = exp(puwjz) (1+0 (1)), (2.14)

where w; = —wy = 3.
The eigenfunction y,(z) we’ll seek in the following form

(pl(xnu'n)? (Pz(l',ﬂn)
Yn(z) = Sp , (2.15)

U (‘pl(xuun)nu%) U ((PQ(xmun)vM%)

where for arbitrary functions (z) € C[0, 1] the expression U(p(x), \) is determined
by equality (1.6), p,, = v/ An and

\/iiclzou%’ Co 7é 0;
S, = (2.16)

1
—= co = 0.
V2iagu?’

Immediate calculation with using (2.13)-(2.16) and formulae /A, = 7(n — o) +
(0] (n_l) shows that

V2cosm(n— o)z +0(nt), ¢y #0;
yn(z) =
V2sinm(n — o)z +O0(n~t), ¢ =0.

The proof of theorem (2.8) is complete.
Note that formula (2.7) was proved in the papers [20] and [9].
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