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In memory of M. G. Gasymov on his 75th birthday

Abstract. In this paper, we consider the spectral problem

− y′′ + q (x) y = λy, 0 < x < 1,

y (0) = 0, y′ (0)− dλy (1) = 0,

where λ is a spectral parameter, q (x) ∈ L1 (0, 1) is a complex-valued
function and d is an arbitrary nonzero complex number. We study
the spectral properties ( asymptotic formulae for eigenvalues and eigen-
functions, minimality and basicity of the system of eigenfunctions, the
uniform convergence of expansions in terms of eigenfunctions ) of the
considered boundary value problem.

1. Introduction

Consider the spectral problem

−y′′ + q (x) y = λy, 0 < x < 1, (1.1)

y(0) = 0, (1.2)

y′(0)− dλy(1) = 0, (1.3)

where λ is a spectral parameter, q (x) ∈ L1 (0, 1) is a complex-valued function
and d is an arbitrary nonzero complex number.
This article is devoted to studying the basis properties of the system of eigenfunc-
tions of the boundary value problem (1.1)-(1.3) in the space Lp (0, 1) (1 < p <∞)
and the uniform convergence of spectral expansion of functions in the system of
eigenfunctions of the problem (1.1)-(1.3).
There are many articles which investigate the various aspects of boundary value
problems for ordinary differential operators with a spectral parameter in the
boundary conditions (see, for example,[4], [5], [7]- [9], [12], [13] ).
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It is important to notice the paper [13] which the basis property for the system
of eigenfunctions of the boundary value problem

u′′ (x) + λu (x) = 0, u (0) = 0, u′ (0)− dλu (1) = 0, d > 0 (1.4)

is studied in Lp (0, 1) (1 < p <∞). It is also verified that the system of root
functions of the problem (1.4) with one function deleted, is a basis in the space
Lp (0, 1) (1 < p <∞).
In [12] the conditions of the uniform convergence of spectral expansions of func-
tions in the system of eigenfunctions of the problem (1.4) are established.

2. Asymtotic formulae for the eigenvalues and the eigenfunctions
of the problem (1.1)-(1.3)

Let u (x, λ) denote a solution of the differential equation (1.1) which satisfies
the initial conditions

u (0, λ) = 0, u′ (0, λ) = 1. (2.1)

The eigenvalues of the problem (1.1)-(1.3) are the zeros of the entire function
F (λ) = 1− dλu (1, λ) or the roots of the equation

1− dλu (1, λ) = 0. (2.2)

This function does not vanish, because F (0) = 1. Since d 6= 0 , the equation
F ′ (λ) = 0 is equivalent to the equation

u (1, λ) + λ · ∂u (1, λ)

∂λ
= 0.

Let E defines the roots of the last equation. E is a countable set.
The set D is defined by the following:

D = {d ∈ C : ∃λ ∈ E, 1− dλu (1, λ) = 0} .

It is obvious that D also is a countable set. Henceforth we assume that d /∈ D.

Theorem 2.1. All eigenvalues of the boundary value problem (1.1)-(1.3) for all
values of d, except for a countable number of its values, are simple and they have
form infinite sequence λn, n = 0, 1, 2, ... which has no finite limit points. Morever,
for sufficiently large numbers of n, the asymtotic formulae

λn = (nπ)2 +O (1) , (2.3)

un (x) = u (x, λn) =
sinnπx

nπ
+O

(
n−2

)
(2.4)

are valid, where un (x) is eigenfunction corresponding to λn, n = 0, 1, 2, ....

Proof. Let λ = s2 and s = σ + it. Then there exist s0 > 0 such that for |s| > s0
the estimate

u (x, λ) =
sin sx

s
+O

(
e|t|x|s|−2

)
(2.5)

is valid [11, Chapter I, §1.2, Lemma1.2.2], where the function O
(
e|t|x|s|−2

)
is

the entire function of s for any fixed x in the interval [0, 1] . Moreover, (2.5) holds
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uniformly in x for 0 ≤ x ≤ 1.
Thus, according to (2.5) the equation (2.2) takes the form

s · sin s+O
(
e|t|
)

= 0. (2.6)

Note that for sufficiently large |t|

|s · sin s| ≥ 1

4
e|t| |t| .

From here we obtain that limit of modulus of the left side of the equation (2.6)
is +∞ as |t| → ∞. So, there exists M > 0 that, |t| ≤M for any solution s of the
equation (2.6). Because of this, the equation (2.6) is equivalent to the equation

s · sin s+O (1) = 0. (2.7)

We denote that s = 0 is not a root of the equation (2.7) since λ = 0 is not an
eigenvalue of the boundary value problem (1.1)-(1.3). It is obvious that the roots
of the equation (2.7) are simple. Otherwise, λ is a multiple root of the equation
(2.2) and this is contrary to d /∈ D.
We choose the positive number H such that all roots of the equation (2.7) settle
in the domain {z ∈ C : |Im z| < H} and the condition sinhH ≥ 1 satisfies. We

now find the number of the roots of the equation (2.7) inside the domain Rn
(1) ={

z ∈ C : |Im z| ≤ H, |Re z| ≤ nπ + π
2

}
for sufficiently large n.

Note that the inequalities

|sin z| ≥ |sinx| , |sin z| ≥ |sinh y| (2.8)

are valid, where z = x+iy ∈ C. From (2.8) if z = x±iH,−
(
nπ + π

2

)
≤ x ≤ nπ+π

2

then |sin z| ≥ sinhH ≥ 1 and if z = ±
(
nπ + π

2

)
+ iy,−H ≤ y ≤ H then

|sin z| ≥
∣∣sin (nπ + π

2

)∣∣ = 1 . By virtue of the Rouche theorem [2, Chapter IV,
§6, Theorem6.2], there are as many zeros of the equation (2.7) inside the domain

Rn
(1) as of the equation s·sin s = 0, i.e., 2n+2. Since λ = s2, we only need to con-

sider the roots which satisfy the condition s ∈ D1 =
{
z ∈ C : −π

2 < arg z ≤ π
2

}
of

the equation (2.7) for the eigenvalues of the boundary value problem (1.1)-(1.3).
It is obvious that the number of the roots of the equation (2.7) are n + 1 inside

the domain Rn
(2) =

{
z ∈ C : −π

2 < arg z ≤ π
2 ,Re z ≤ nπ + π

2

}
.

By using the Rouche theorem again, it is easy to see that there is only one root
of the equation (2.7) at the neighborhood O

(
n−1

)
of the number nπ (n ∈ N) for

sufficiently large n.
We number the roots (which satisfy the condition s ∈ D1) of the equation (2.7)
in ascending order of Re sn, (n = 0, 1, ...) .
From these discussions, we obtain the following:

sn = nπ +O
(
n−1

)
. (2.9)

The formulae (2.3) and (2.4) are established by the equalities λn = sn
2, (2.9) and

(2.5). �
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3. The basis property of the system of eigenfunctions of the
boundary value problem (1.1)-(1.3) in L2 (0, 1)

Theorem 3.1. Let q (x) = q (1− x) (0 ≤ x ≤ 1) and r be an arbitrary fixed non-
negative integer. Then the system un (x) (n = 0, 1, ...;n 6= r) is an unconditional
basis in the space L2 (0, 1).

Proof. First we verify that the system un (x) (n = 0, 1, ...;n 6= r) is minimal in the
space L2 (0, 1). It suffices to prove the existence of the system vn (x) (n = 0, 1, ...;
n 6= r) which is biorthogonally conjugate to the system un (x) (n = 0, 1, ...;n 6= r)
in the space L2 (0, 1).
The following equalities are true:

1∫
0

un (x) · um (1− x) dx =
1

dλnλm
(n 6= m;n,m = 0, 1, 2, ...) , (3.1)

1∫
0

un (x) · un (1− x) dx = −∂u (1, λn)

∂λ
(n = 0, 1, ...) . (3.2)

Note that the equality

d

dx

{
un
′ (x)um (1− x) + un (x)um

′ (1− x)
}

= (λm − λn)un (x)um (1− x)

holds for 0 ≤ x ≤ 1. Integrating with respect to x from 0 to 1, we obtain

(λn − λm)

1∫
0

un (x)um (1− x)dx =
(
un
′ (x)um (1− x) + un (x)um

′ (1− x)
)∣∣1

0
.

The equality (3.1) is obtained by the last equation, the initial conditions (2.1)
and the boundary conditions (1.2), (1.3).
We obtain in the same way the equality

d

dx

{
un
′ (x)u (1− x, λ) + un (x)u′ (1− x, λ)

}
= (λ− λn)un (x)u (1− x, λ)

for λ 6= λn. From here and (2.1), the equality

1∫
0

un (x)u (1− x, λ) dx =
un (1)− u (1, λ)

λ− λn

is valid. We obtain the equality (3.2) by passing to limit as λ→ λn from the last
equality.
Since λn is a simple root of the equation (2.2) for every n, we have

λn
∂u (1, λn)

∂λ
+ u (1, λn) 6= 0

or

λn
∂u (1, λn)

∂λ
+

1

dλn
6= 0.
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The functions vn (x) (n = 0, 1, ...;n 6= r) are defined by the following:

vn (x) = −λnun (1− x)− λrur (1− x)

λn
∂u(1,λn)

∂λ + 1
dλn

. (3.3)

Assume that n 6= m,n 6= r,m 6= r. The equality

(un, vm) = −
λm

1∫
0

un (x)um (1− x) dx− λr
1∫
0

un (x)ur (1− x) dx

λm
∂u(1,λm)

∂λ + 1
dλm

= 0

holds by (3.1)-(3.3).
Assume that n 6= r. The equality

(un, vn) = −
λn

1∫
0

un (x)un (1− x) dx− λr
1∫
0

un (x)ur (1− x) dx

λn
∂u(1,λn)

∂λ + 1
dλn

=

= −
−λn ∂u(1,λn)∂λ − λr 1

dλrλn

λn
∂u(1,λn)

∂λ + 1
dλn

= 1

is valid. Hence we can easily verify that

(un, vm) = δnm (n,m 6= r) ,

where δnm is the Kronecker symbol.
The system yn (x) (n = 0, 1, ...) is defined by the following:

yn (x) =
√

2snun (x) . (3.4)

According to the equalities (2.4) and (2.9), the equality

yn (x) =
√

2 sinnπx+O
(
n−1

)
(3.5)

is valid. By (3.4), the system yn (x) (n = 0, 1, ...;n 6= r) is biorthogonally conju-
gate to the system

ψn (x) =
1

sn
√

2
vn (x) (n = 0, 1, ...;n 6= r) . (3.6)

Hence the system yn (x) (n = 0, 1, ...;n 6= r) is minimal in the space L2 (0, 1).
In section 4, we will obtain that the asymptotic formulae

ψn (x) =
√

2 sinnπx+O
(
n−1

)
(3.7)

holds.
Let us compare the system yn (x) (n = 0, 1, ...;n 6= r) with the known system{√

2 sinnπx
}∞
n=1

which is an orthonormal basis for L2 (0, 1). By (3.5), the fol-
lowing inequality is valid for a sufficiently large n:∥∥∥yn (x)−

√
2 sinnπx

∥∥∥ ≤ C1 · n−1,

where C1 is independent of n. From this inequality, we obtain that the series
r∑

n=1

∥∥∥yn−1 (x)−
√

2 sinnπx
∥∥∥2 +

∞∑
n=r+1

∥∥∥yn (x)−
√

2 sinnπx
∥∥∥2
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is convergent (for r = 0 the first sum is absent). Thus, the system yn (x)

(n = 0, 1, ...;n 6= r) is quadratically close to the system
{√

2 sinnπx
}∞
n=1

.
Since the system yn (x) (n = 0, 1, ...;n 6= r) is minimal in the space L2 (0, 1), it

is a Riesz basis in this space [3, Chapter VI, §2.4, Theorem2.3]. �

4. The basis property of the system of eigenfunctions of the
problem (1.1)-(1.3) in Lp (0, 1) (1 < p <∞)

Lemma 4.1. The equality

λn
∂u (1, λn)

∂λ
=

(−1)n

2
+O

(
n−1

)
(4.1)

holds for sufficiently large n.

Proof. Note that the equality

u (x, λ) =
sin sx

s
+

1

s

x∫
0

q (τ)u (τ, λ) sin s (x− τ) dτ (4.2)

is valid [11, Chapter I, §1.2, Lemma1.2.1]. By using (4.2), we obtain the equality

∂u (1, λ)

∂s
=

cos s

s
− sin s

s2
− 1

s2

1∫
0

q (τ)u (τ, λ) sin s (1− τ) dτ+

+
1

s

1∫
0

(1− τ) q (τ)u (τ, λ) cos s (1− τ) dτ+

+
1

s

1∫
0

q (τ)
∂u (τ, λ)

∂s
sin s (1− τ) dτ.

Using the equalities (2.4) and (2.9), it is not hard to see the estimate

∂u (1, λn)

∂s
=

(−1)n

nπ
+

1

sn

1∫
0

q (τ)
∂u (τ, λn)

∂s
sin sn (1− τ) dτ +O

(
n−2

)
. (4.3)

Let Mn = max
0≤x≤1

∣∣∣∂u(x,λn)∂s

∣∣∣ and max
n∈N

max
0≤τ≤1

|sin sn (1− τ)| = C2. By virtue of

(4.3), the inequality

Mn ≤ C3

(
Mn

|sn|
+

1

n

)
holds, where C3 is a constant which is independent of n. From the last inequality
and (2.9), the inequality

Mn ≤
C4

n
is valid for sufficiently large n, where C4 is a constant which is independent of n.
Thus, by (4.3), we obtain the estimate

∂u (1, λn)

∂s
=

(−1)n

nπ
+O

(
n−2

)
. (4.4)
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By virtue of the (4.4) and (2.9), we can easily seen that the estimate

λn
∂u (1, λn)

∂λ
=

λn
2sn
· ∂u (1, λn)

∂s
=

(−1)n

2
+O

(
n−1

)
holds. �

Note that the formulae (3.7) is a consequence of (3.3), (3.6) and (4.1).

Theorem 4.1. Let q (x) = q (1− x) (0 ≤ x ≤ 1) and r be an arbitrary fixed
nonnegative integer. Then the system un (x) (n = 0, 1, ...;n 6= r) is a basis in the
space Lp (0, 1) (1 < p <∞).

Proof. It suffices to prove the system yn (x) (n = 0, 1, ...;n 6= r) which is defined
by (3.4) is a basis in the space Lp (0, 1) (1 < p <∞). The system ψn (x) (n = 0, 1,
...;n 6= r) which is biorthogonally conjugate to the system yn (x) (n = 0, 1, ...;
n 6= r) is defined by (3.6).
Let

ϕn (x) =
√

2 sinnπx (n = 1, 2, ...) . (4.5)

Note that the system (4.5) is a basis of the space Lp (0, 1) (1 < p <∞) [1, Chapter
VIII, §20, Theorem 2]; moreover, in the case p = 2 this basis is orthonormal.
Consequently [6, Chapter I, §4, Theorem 6] there exists a constant Mp > 0
ensuring the inequality∥∥∥∥∥

N∑
n=1

(f, ϕn)ϕn

∥∥∥∥∥
p

≤Mp‖f‖p, N = 1, 2, ... (4.6)

for any function f ∈ Lp (0, 1), where ‖.‖p means the norm in Lp (0, 1) (1 < p <∞).

By virtue of (3.5), (3.7) and (4.5), the estimates

yn (x) = ϕn (x) +O
(
n−1

)
, ψn (x) = ϕn (x) +O

(
n−1

)
(4.7)

holds.
Let 1 < p < 2 and p be fixed. Since the system yn (x) (n = 0, 1, ...;n 6= r) is
complete in the space L2 (0, 1), then this system is complete in Lp (0, 1) as well.
Consequently [6, Chapter VIII, §4, Theorem 6], in order to prove the basicity of
this system in Lp (0, 1), it is enough to prove the existence of a constant M > 0
ensuring the inequality∥∥∥∥∥∥

N∑
n=0,n6=r

(f, ψn) yn

∥∥∥∥∥∥
p

≤M‖f‖p, N = 1, 2, ... (4.8)

for any function f ∈ Lp (0, 1).

Note that there exists M̃1 such that the inequality

‖(f, ψ0) y0‖p ≤ M̃1‖f‖p
holds for every f ∈ Lp (0, 1). So, the inequality (4.8) is equivalent to the inequality

EN (f) =

∥∥∥∥∥∥
N∑

n=1,n 6=r
(f, ψn) yn

∥∥∥∥∥∥
p

≤ M̃‖f‖p, N = 1, 2, ..., (4.9)
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where M̃ is a constant. According to (4.7) and (4.9), the inequality

EN (f) ≤ EN,1 (f) + EN,2 (f) + EN,3 (f) + EN,4 (f) (4.10)

is valid, where N = 1, 2, ... and

EN,1 (f) =

∥∥∥∥∥∥
N∑

n=1,n6=r
(f, ϕn)ϕn

∥∥∥∥∥∥
p

, EN,2 (f) =

∥∥∥∥∥∥
N∑

n=1,n6=r
(f, ϕn)O

(
n−1

)∥∥∥∥∥∥
p

,

EN,3 (f) =

∥∥∥∥∥∥
N∑

n=1,n6=r

(
f,O

(
n−1

))
ϕn

∥∥∥∥∥∥
p

, EN,4 (f) =

∥∥∥∥∥∥
N∑

n=1,n6=r

(
f,O

(
n−1

))
O
(
n−1

)∥∥∥∥∥∥
p

.

By virtue of (4.6), the inequality

EN,1 (f) ≤ C5‖f‖p (4.11)

holds. From the Riesz theorem [14, Chapter XII, §2, Theorem 2.8] it follows that

EN,2 (f) ≤ C6

N∑
n=1

|(f, ϕn)|n−1 ≤ C6

(
N∑
n=1

|(f, ϕn)|q
) 1

q
(

N∑
n=1

n−p

) 1
p

≤ C7‖f‖p,

(4.12)
where 1

p + 1
q = 1. Further,

EN,3 (f) ≤

∥∥∥∥∥
N∑
n=1

(
f,O

(
n−1

))
ϕn

∥∥∥∥∥
2

=

(
N∑
n=1

∣∣(f,O (n−1))∣∣2) 1
2

≤

≤ C8‖f‖1

(
N∑
n=1

n−2

) 1
2

≤ C9‖f‖p. (4.13)

Moreover,

EN,4 (f) ≤ C10‖f‖1
N∑
n=1

n−2 ≤ C11‖f‖p. (4.14)

The inequality (4.9) is a consequence of the inequalities (4.10)-(4.14). Thus,
the basicity of the system yn (x) (n = 0, 1, ...;n 6= r) in the space Lp (0, 1) for
1 < p < 2 is proved.
Let 2 < p <∞ and 1

p + 1
q = 1. It is evident that the system ψn (x) (n = 0, 1, ...;

n 6= r) is a basis in the space Lp (0, 1). Consequently, this system is complete in
the space Lq (0, 1). Note that 1 < q < 2. By means of absolute analogous discus-
sions used above, the basicity in Lq (0, 1) of the system ψn (x) (n = 0, 1, ...;n 6= r)
is proved. Hence, it follows the basisity in Lp (0, 1) (2 < p < ∞) of the system
yn (x) (n = 0, 1, ...;n 6= r) .

�
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5. On the uniform convergence of the expansion in terms of
eigenfunctions of the boundary value problem (1.1)-(1.3)

The asymtotic formulae of the eigenvalues and the eigenfunctions must be
sharpened to investigate uniform convergence of the expansion in terms of eigen-
functions of the boundary value problem (1.1)-(1.3).

Lemma 5.1. The following asymptotic formulae are valid for sufficiently large
n:

sn = nπ +
(−1)n + c0

dnπ
+O

(
δn
n

)
, (5.1)

un (x) =
sinnπx

nπ

1 +
1

2nπ

x∫
0

q (τ) sin 2nπτdτ

+

+
cosnπx

2(nπ)2

2Anx−
x∫

0

q (τ) dτ +

x∫
0

q (τ) cos 2nπτdτ

+O

(
δn
n2

)
,

(5.2)

where

c0 =
d

2

1∫
0

q (τ) dτ,An =
(−1)n + c0

d
, (5.3)

δn =

∣∣∣∣∣∣
1∫

0

q (τ) cos 2nπτdτ

∣∣∣∣∣∣+
1

n
. (5.4)

Proof. By (2.5) and (2.9), we can easily see the estimate

u (x, λn) =
sin snx

sn
+O

(
sn
−2) .

The last estimate and (4.2) yields the following:

u (x, λn) =
sin snx

sn
− cos snx

2sn2

x∫
0

q (τ) dτ+

+
cos snx

2sn2

x∫
0

q (τ) cos 2snτdτ +
sin snx

2sn2

x∫
0

q (τ) sin 2snτdτ +O
(
sn
−3) .

(5.5)

Since

cos snx = cosnπx+O
(
n−1

)
, sin snx = sinnπx+O

(
n−1

)
,

the equality (5.5) can be taken form

u (x, λn) =
sin snx

sn
− cosnπx

2(nπ)2

x∫
0

q (τ) dτ+

+
cosnπx

2(nπ)2

x∫
0

q (τ) cos 2nπτdτ +
sinnπx

2(nπ)2

x∫
0

q (τ) sin 2nπτdτ +O
(
n−3

)
.

(5.6)
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By using (5.3), (5.4) and (5.6), we obtain the estimate

u (1, λn) =
sin sn
sn

− (−1)nc0

d(nπ)2
+O

(
δn
n2

)
. (5.7)

Let sn = nπ + εn. By (2.9), it is obvious that εn = O
(
n−1

)
. Then,

sin sn
sn

=
(−1)nεn
nπ

+O
(
n−4

)
.

Substituting the last equality and (5.7) in the equation 1− dλnu (1, λn) = 0, we
obtain the equation

1− d
[
(nπ)2 +O (1)

] [(−1)nεn
nπ

− (−1)nc0

d(nπ)2
+O

(
δn
n2

)]
= 0.

By this equation, it is easily seen that the estimate (5.1) is valid.
By (5.1), it is easy to see the estimate

sin snx

sn
=

sinnπx

nπ
+
Anx cosnπx

(nπ)2
+O

(
δn
n2

)
, (5.8)

where An is defined by (5.3). The estimate (5.2) is the consequence of (5.6) and
(5.8). �

Theorem 5.1. Suppose that q (x) ∈ L2 (0, 1), r is an arbitrary nonnegative in-
teger and f ∈ C [0, 1] has a uniformly convergent Fourier series expansion in the

system
{√

2 sinnπx
}∞
n=1

on the interval [0, 1]. Then this function can be expanded
in Fourier series in the system un (x) (n = 0, 1, ...;n 6= r) and this expansion is
uniformly convergent on every interval [0, b] , 0 < b < 1. If (f, ur (1− x)) = 0,
then the Fourier series of f in the system un (x) (n = 0, 1, ...;n 6= r) is unifomly
convergent on [0, 1].

Proof. Consider the Fourier series of f (x) on the interval [0, 1] in the system
un (x) (n = 0, 1, ...;n 6= r):

F (x) =
∞∑

n=0,n6=r
(f, vn)un (x). (5.9)

Let

dn = − 1

λn
∂u(1,λn)

∂λ + 1
dλn

.

Then accordig to (3.3), we obtain

vn (x) = dn (λnun (1− x)− λrur (1− x)) . (5.10)

By virtue of (2.3) and (4.1), the estimate

dn = (−1)n−1 · 2 +O
(
n−1

)
(5.11)

holds.
Note that the series (5.9) is uniformly convergent if and only if the series

F1 (x) =
∞∑

n=r+1

(f, vn)un (x) (5.12)
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is uniformly convergent.
Suppose that the sequence {SN (x)}∞N=r+1 is the partial sum of the series (5.12).
By using (5.10), the equality

SN (x) = SN,1 (x) + SN,2 (x)

holds, where

SN,1 (x) =
N∑

n=r+1

dnλn

(
f, un (1− x)

)
un (x) , (5.13)

SN,2 (x) = −λr
(
f, ur (1− x)

) N∑
n=r+1

dnun (x) . (5.14)

First, we analyze the uniform convergence of the sequence (5.13). By (2.9) and
(5.2), the equality

snun (x) = sinnπx

1 +
1

2nπ

x∫
0

q (τ) sin 2nπτdτ

+

+
cosnπx

2nπ

2Anx−
x∫

0

q (τ) dτ +

x∫
0

q (τ) cos 2nπτdτ

+O

(
δn
n

) (5.15)

is valid.
Suppose that

αn (x) =

x∫
0

q (τ) sin 2nπτdτ, βn (x) =

x∫
0

q (τ) cos 2nπτdτ,

γn (x) = 2Anx−
x∫

0

q (τ) dτ, dn = (−1)n−1 · 2 +
∆n

n
.

(5.16)

It is easy to see that the functional sequences {αn (x)}∞n=r+1 , {βn (x)}∞n=r+1 ,
{γn (x)}∞n=r+1 are uniformly bounded and the numerical sequences {dn}∞n=r+1 ,
{∆n}∞n=r+1 are bounded (see (5.11)). From (5.15) and (5.16), we obtain

dnλn

(
f, un (1− x)

)
un (x) = dn

(
f, snun (1− x)

)
snun (x) =

= −2 (f, sinnπx) sinnπx+Bn (x) ,

where

Bn (x) =
(−1)n∆n

n
(f, sinnπx) sinnπx+

+
(−1)ndn

2nπ

(
f, αn (1− x) sinnπx

)
sinnπx+

+
(−1)ndnAn

nπ
(f, (1− x) cosnπx) sinnπx+

+
(−1)n−1dn

2nπ

f, 1−x∫
0

q (τ)dτ · cosnπx

 sinnπx+
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+
(−1)ndn

2nπ

(
f, βn (1− x) cosnπx

)
sinnπx+

+
(−1)ndnαn (x)

2nπ
(f, sinnπx) sinnπx+

+
(−1)ndnγn (x)

2nπ
(f, sinnπx) cosnπx+

+
(−1)ndnβn (x)

2nπ
(f, sinnπx) cosnπx+O

(
δn
n

)
. (5.17)

So, the equality

SN,1 (x) = −2

N∑
n=r+1

(f, sinnπx) sinnπx+

N∑
n=r+1

Bn (x)

holds. The series
∞∑

n=r+1

Bn (x) (5.18)

is absolutely and uniformly convergent. Indeed, by (5.17), the estimate

|Bn (x)| ≤

≤ C12

n

[
|(f, sinnπx)|+

∣∣∣(f, αn (1− x) sinnπx
)∣∣∣+ |(f, (1− x) cosnπx)| +

+

∣∣∣∣∣∣
f, 1−x∫

0

q (τ)dτ · cosnπx

∣∣∣∣∣∣+
∣∣∣(f, βn (1− x) cosnπx

)∣∣∣+ δn

 ≤ C13×

|(f, sinnπx)|2 + |((1− x) f (x) , cosnπx)|2 +

∣∣∣∣∣∣
f (x)

1−x∫
0

q (τ) dτ, cosnπx

∣∣∣∣∣∣
2

+

+

 1∫
0

|f (x)αn (1− x)| dx

2

+

 1∫
0

|f (x)βn (1− x)| dx

2

+
δn
n

]
is valid. The numerical series

∞∑
n=1

|(f, sinnπx)|2,
∞∑
n=1

|((1− x) f (x) , cosnπx)|2,

∞∑
n=1

∣∣∣∣∣∣
f (x)

1−x∫
0

q (τ) dτ, cosnπx

∣∣∣∣∣∣
2

,
∞∑
n=1

δn
n
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are convergent. By virtue of the Bessel inequality and (5.16), we obtain

∞∑
n=r+1

 1∫
0

|f (x)αn (1− x)| dx

2

≤ ‖f‖2
∞∑

n=r+1

1∫
0

|αn (1− x)|2dx ≤

≤ ‖f‖2
1∫

0

 ∞∑
n=r+1

∣∣∣∣∣∣
1−x∫
0

q (τ) sin 2nπτdτ

∣∣∣∣∣∣
2
dx ≤

≤ C14‖f‖2
1∫

0

1−x∫
0

|q (τ)|2dτdx ≤ C14‖f‖2‖q‖2.

Similarly, we obtain that the estimate

∞∑
n=r+1

 1∫
0

|f (x)βn (1− x)| dx

2

≤ C15‖f‖2‖q‖2

holds. This means that the functional series (5.18) is absolutely and uniformly
convergent. Since the series

∞∑
n=r+1

(f, sinnπx) sinnπx

is uniformly convergent on the interval [0, 1], the functional sequence
{SN,1 (x)}∞N=r+1 also is uniformly convergent on this interval. If (f, ur (1− x)) =

0, then the equality SN (x) = SN,1 (x) (N = r + 1, r + 2, ...) holds. Hence, the
functional sequence {SN (x)}∞N=r+1 is uniformly convergent on the interval [0, 1].
Consequently, the second part of the theorem is proved.
Suppose that (f, ur (1− x)) 6= 0. We now analyze the uniform convergence of the
functional sequence (5.14). By using (2.4) and (5.11), we obtain

N∑
n=r+1

dnun (x) = − 2

π

N∑
n=r+1

sinnπ (x+ 1)

n
+

N∑
n=r+1

O
(
n−2

)
.

Note that the series
∞∑

n=r+1

sinnt

n

is uniformly convergent on every closed interval which does not contain the points
t = 2πm (m = 0,±1,±2, ...) [10, Chapter XXXVI, §3, Theorem 6]. So, the series

∞∑
n=r+1

sinnπ (x+ 1)

n

is uniformly convergent on the interval [0, b], where 0 < b < 1. Hence, the
functional sequence {SN,2 (x)}∞N=r+1 is uniformly convergent on [0, b]. �
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