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The basis property in Lp of the boundary
value problem rationally dependent

on the eigenparameter

by

N. B. Kerimov and Y. N. Aliyev (Baku)

Abstract. We consider a Sturm–Liouville operator with boundary conditions ratio-
nally dependent on the eigenparameter. We study the basis property in Lp of the system
of eigenfunctions corresponding to this operator. We determine the explicit form of the
biorthogonal system. Using this we establish a theorem on the minimality of the part of
the system of eigenfunctions. For the basisness in L2 we prove that the system of eigen-
functions is quadratically close to trigonometric systems. For the basisness in Lp we use
F. Riesz’s theorem.

Consider the spectral problem

− y′′ + q(x)y = λy, 0 < x < 1,(0.1)

y(0) cosβ = y′(0) sinβ, 0 ≤ β < π,(0.2)

y′(1)/y(1) = h(λ),(0.3)

where λ is the spectral parameter, q is a real-valued and continuous function
on the interval [0, 1],

h(λ) = aλ+ b−
N
∑

k=1

bk
λ− ck

,

where all the coefficients are real and a ≥ 0, bk > 0, c1 < · · · < cN , N ≥ 0.
If h(λ) = ∞ then (0.3) is interpreted as a Dirichlet condition y(1) = 0. If
N = 0 then there are no ck’s and h(λ) is affine in λ.
In a recent paper [1] existence and asymptotics of eigenvalues and oscil-

lation of eigenfunctions of this problem were studied. It was proved that the
eigenvalues of (0.1)–(0.3) are real, simple and form a sequence λ0 < λ1 < · · ·
accumulating only at ∞ and with λ0 < c1. Moreover, it was proved that if
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ωn is the number of zeros in (0, 1) of the eigenfunction yn, associated with
the eigenvalue λn, then ωn = n − mn, where mn is the number of points
ci ≤ λn. In particular, ω0 = 0 and ωn = n−N when λn > cN .
The basis properties of eigenvectors of the self-adjoint operator on L2 ⊕

C
N+1 (or on L2 ⊕C

N if a = 0), formed by the eigenfunctions of (0.1)–(0.3)
were examined in [2].
The current article concerns the basis properties in Lp(0, 1) (1 < p <∞)

of the system of eigenfunctions of the boundary value problem (0.1)–(0.3).
Basis properties of the boundary value problem (0.1)–(0.3) in cases where

h is affine or bilinear have been analyzed in [5], [6], [8].
A complete discussion of the basis properties in Lp(0, 1) (1 < p <∞) of

the boundary value problem

− y′′ = λy, 0 < x < 1,

y(0) = 0, (a− λ)y′(1) = bλy(1),
where a, b are positive constants, is given in [6].
The basis properties in L2(0, 1) of the boundary value problem

− y′′ + q(x)y = λy, 0 < x < 1,

b0y(0) = d0y
′(0),

(a1λ+ b1)y(1) = (c1λ+ d1)y
′(1),

where q is a real-valued continuous function on [0, 1] and |b0| + |d0| 6= 0,
a1d1 − b1c1 > 0, were studied in more detail in [8].

1. Minimality of the system of eigenfunctions of (0.1)–(0.3). The
following lemma will be needed:

Lemma 1.1. Let µ0, µ1, . . . , µN , d1, d2, . . . , dN be pairwise different real
numbers. Then
∣

∣

∣

∣

∣

∣

∣

1 (µ0 − d1)−1 · · · (µ0 − dN )−1
1 (µ1 − d1)−1 · · · (µ1 − dN )−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 (µN − d1)−1 · · · (µN − dN )−1

∣

∣

∣

∣

∣

∣

∣

=

∏

0≤i<j≤N

(µi − µj)
∏

1≤i<j≤N

(dj − di)
∏

0≤i≤N
1≤j≤N

(µi − dj)
.

Proof. It is known (see e.g. [12, Ch. VII, Prob. 3]) that
∣
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∣
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∣

(µ0 − d0)−1 (µ0 − d1)−1 · · · (µ0 − dN )−1
(µ1 − d0)−1 (µ1 − d1)−1 · · · (µ1 − dN )−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(µN − d0)−1 (µN − d1)−1 · · · (µN − dN )−1
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∣

∣
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=

∏

0≤i<j≤N

(µi − µj)
∏

0≤i<j≤N

(dj − di)
∏

0≤i≤N
0≤j≤N

(µi − dj)
.

Consequently,
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∣

∣

∣

∣

∣

∣

1 (µ0 − d1)−1 · · · (µ0 − dN )−1
1 (µ1 − d1)−1 · · · (µ1 − dN )−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 (µN − d1)−1 · · · (µN − dN )−1
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∣

(µ0 − d0)−1 (µ0 − d1)−1 · · · (µ0 − dN )−1
(µ1 − d0)−1 (µ1 − d1)−1 · · · (µ1 − dN )−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(µN − d0)−1 (µN − d1)−1 · · · (µN − dN )−1
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∣

= − lim
d0→∞

d0

∏

0≤i<j≤N

(µi − µj)
∏

0≤i<j≤N

(dj − di)
∏

0≤i≤N
0≤j≤N

(µi − dj)

=

∏

0≤i<j≤N

(µi − µj)
∏

1≤i<j≤N

(dj − di)
∏

0≤i≤N
1≤j≤N

(µi − dj)
.

This proves the lemma.

Theorem 1.1.

(a) If a 6= 0 and if k0, k1, . . . , kN are pairwise different nonnegative
integers then the system {yn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) is minimal
in Lp(0, 1).

(b) If a = 0 and if k1, . . . , kN are pairwise different nonnegative integers
then the system {yn} (n = 0, 1, . . . ; n 6= k1, . . . , kN ) is minimal in Lp(0, 1).

Proof. (a) It suffices to show the existence of a system {un} biorthogonal
to {yn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) in Lp(0, 1).
Note that

d

dx
(yn(x)y

′
m(x)− ym(x)y′n(x)) = (λn − λm)ym(x)yn(x)

for 0 ≤ x ≤ 1. By integrating this identity from 0 to 1, we obtain

(1.1) (λn − λm)(yn, ym) = (yn(x)y′m(x)− ym(x)y′n(x))|10,

where (·, ·) is the Hilbert space inner product on L2(0, 1).
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From (0.2), we obtain

(1.2) yn(0)y
′
m(0)− ym(0)y′n(0) = 0

for all n,m = 0, 1, . . . .
Let λn, λm 6= cj for j = 1, . . . , N . Then by (0.3),

(1.3) yn(1)y
′
m(1)− ym(1)y′n(1) = (h(λm)− h(λn))ym(1)yn(1)

= (λm − λn)
(

a+
N
∑

k=1

bk
(λn − ck)(λm − ck)

)

yn(1)ym(1).

Now suppose that λn = cs for some s ∈ {1, . . . , N}. Then by (0.3), yn(1) = 0.
Hence

(1.4) yn(1)y
′
m(1)− ym(1)y′n(1) = −y′n(1)ym(1)

for λm 6= cs (m = 0, 1, . . .).
From (1.1)–(1.4), it follows that for m 6= n,

(1.5) (yn, ym) =































−
(

a+

N
∑

k=1

bk
(λn − ck)(λm − ck)

)

yn(1)ym(1)

if λn, λm 6= c1, . . . , cN ,
if λn = cs.y′n(1)ym(1)

λm − cs
Let λk 6= cj for all k = 0, 1, . . . and j = 1, . . . , N . We define elements of

the system {un} (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN ) by

(1.6) un(x) =
An,k0,...,kN (x)

Bn∆
,

where

An,k0,...,kN (x)=

∣

∣
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∣
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∣

∣

∣

∣

yn(x) yn(1)
yn(1)
λn−c1

yn(1)
λn−c2

· · · yn(1)
λn−cN

yk0(x) yk0(1)
yk0 (1)

λk0−c1

yk0 (1)

λk0−c2
· · · yk0 (1)

λk0−cN

yk1(x) yk1(1)
yk1 (1)

λk1−c1

yk1 (1)

λk1−c2
· · · yk1 (1)

λk1−cN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ykN (x) ykN (1)
ykN (1)

λkN−c1

ykN (1)

λkN−c2
· · · ykN (1)

λkN−cN

∣

∣

∣

∣
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∣

∣

∣

∣

,(1.7)

Bn = ‖yn‖2 +
(

a+

N
∑

k=1

bk
(λn − ck)2

)

y2n(1),(1.8)

∆ =

∏

0≤i<j≤N

(λki − λkj ) ·
∏

1≤i<j≤N

(cj − ci)
∏

0≤i≤N
1≤j≤N

(λki − cj)
∏

0≤i≤N

yki(1).(1.9)
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Let us verify that (un, ym)=δn,m (n,m=0, 1, . . . ; n,m 6= k0, k1, . . . , kN ),
where δn,m is Kronecker’s symbol. Indeed, from (1.6) and (1.7) we have

(1.10) (un, ym)

=
1

Bn∆
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∣

∣
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∣

∣

∣

∣

(yn, ym) yn(1)
yn(1)
λn−c1

yn(1)
λn−c2

· · · yn(1)
λn−cN

(yk0 , ym) yk0(1)
yk0 (1)

λk0−c1

yk0 (1)

λk0−c2
· · · yk0 (1)

λk0−cN

(yk1 , ym) yk1(1)
yk1 (1)

λk1−c1

yk1 (1)

λk1−c2
· · · yk1 (1)

λk1−cN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ykN , ym) ykN (1)
ykN (1)

λkN−c1

ykN (1)

λkN−c2
· · · ykN (1)

λkN−cN
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∣

∣

∣

.

It is now immediate from (1.5) that for m 6= n the first column of the
determinant in (1.10) is a linear combination of the other columns; hence
(un, ym) = 0 for n 6= m.
Assume now that n = m in (1.10). Adding to the first column the

2nd, 3rd, . . . , (N + 2)th columns multiplied respectively by

ayn(1),
b1yn(1)

λn − c1
, . . . ,

bNyn(1)

λn − cN
,

we obtain

(un, yn) =
1

Bn∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Bn yn(1)
yn(1)
λn−c1

yn(1)
λn−c2

· · · yn(1)
λn−cN

0 yk0(1)
yk0 (1)

λk0−c1

yk0 (1)

λk0−c2
· · · yk0 (1)

λk0−cN

0 yk1(1)
yk1 (1)

λk1−c1

yk1 (1)

λk1−c2
· · · yk1 (1)

λk1−cN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ykN (1)
ykN (1)

λkN−c1

ykN (1)

λkN−c2
· · · ykN (1)

λkN−cN
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∣
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∣

,

where we have used the definition (1.8) for Bn. Thus from Lemma 1.1 and
the definition (1.9) for ∆ we obtain

(un, yn) =
1

∆
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1 (λk0 − c1)−1 · · · (λk0 − cN )−1
1 (λk1 − c1)−1 · · · (λk1 − cN )−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 (λkN − c1)−1 · · · (λkN − cN )−1

∣

∣
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∣

∣

∣

∣

·
∏

0≤i≤N

yki(1) = 1.

Now consider the case where some of the numbers cj (j = 1, . . . , N) are
eigenvalues of (0.1)–(0.3). In this case we define

(1.11) un(x) =
A′n,k0,...,kN (x)

B′n∆
′

,

where A′n,k0,...,kN (x) is a determinant of order N + 2 which we obtain from

An,k0,...,kN (x) as follows (here we also give the definitions of B
′
n and ∆

′):
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I. If λkt 6= cj (λn 6= cj) for all j = 1, . . . , N then column t + 2
(respectively, the first column) does not change.
II. If λkt = cs (λn = cs) for some t (respectively, n) and s then all

the elements in row t + 2 (respectively, in the first row) vanish, except the
first element and ykt(1)/(λkt − cs) (respectively, yn(1)/(λn − cs)); the first
element does not change but ykt(1)/(λkt−cs) (respectively, yn(1)/(λn−cs))
is replaced by −y′kt(1)/bs (respectively, by −y′n(1)/bs).
III. If λn 6= cj for all j = 1, . . . , N then B′n = Bn.
IV. If λn = cs for some s ∈ {1, . . . , N}, then B′n = ‖yn‖2 + (y′n(1))2/bs.
V. ∆′ is the complementary minor of the upper left element of the

determinant A′n,k0,...,kN .

For example if N = 2, a 6= 0, λk1 = c2, λn, λk0 , λk2 6= c1, c2 then

A′n,k0,k1,k2(x) =
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∣
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∣

yn(x) yn(1)
yn(1)
λn−c1

yn(1)
λn−c2

yk0(x) yk0(1)
yk0 (1)

λk0−c1

yk0 (1)

λk0−c2

yk1(x) 0 −y
′

k1
(1)

bs
0

yk2(x) yk2(1)
yk2 (1)

λk2−c1

yk2 (1)

λk2−c2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

∆′ =
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∣

∣

∣

∣

yk0(1)
yk0 (1)

λk2−c1

yk0 (1)

λk0−c2

0 −y
′

k1
(1)

bs
0

yk2(1)
yk2 (1)

λk2−c1

yk2 (1)

λk2−c2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
λk0 − λk2

(λk0 − c2)(λk2 − c2)
· yk0(1) ·

(

−
y′k1(1)

bs

)

· yk2(1).

Let us prove that ∆′ 6= 0. From the construction, it follows that each
row of ∆′ is either of the form (0, . . . , 0,−y′kt(1)/bs, 0, . . . , 0) (in this case
λkt = cs) or

(ykt(1), ykt(1)/(λkt − c1), . . . , ykt(1)/(λkt − cN ))
(in this case λkt 6= cj for all j = 1, . . . , N). It can easily be seen from the
form of the determinant ∆′ and Lemma 1.1 that ∆′ 6= 0. The proof now
proceeds along the same lines as above.

This concludes the proof for the case a 6= 0.
(b) The case N = 0 is a classical Sturm–Liouville problem. So we can

suppose N ≥ 1. In this case we construct a biorthogonal system {un}
(n = 0, 1, . . . ;n 6= k1, . . . , kN ) as in part (a) with obvious modifications.
In particular, we obtain the corresponding determinants An,k1,...,kN (x) and
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A′n,k1,...,kN (x) of degree N + 1 from An,k0,...,kN (x) and A
′
n,k0,...,kN

(x) by
deleting the second row and second column.
The proof of Theorem 1.1 is complete.

2. Basisness in Lp(0, 1) of the system of eigenfunctions of the
boundary value problem (0.1)–(0.3)

Theorem 2.1.

(a) If a 6= 0 and if k0, k1, . . . , kN are pairwise different nonnegative in-
tegers then the system {yn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) is a basis of
Lp(0, 1) (1 < p <∞); moreover if p = 2 then this basis is unconditional.
(b) If a = 0 and if k1, . . . , kN are pairwise different nonnegative integers

then the system {yn} (n = 0, 1, . . . ;n 6= k1, . . . , kN ) is a basis of Lp(0, 1)
(1 < p <∞); moreover if p = 2 then this basis is unconditional.
Proof. It was proved in [1] that

λn = (π(n+ ν))
2 +O(1),

where

(2.1) ν =



















−1/2−N if a 6= 0, β 6= 0,
−N, if a 6= 0, β = 0,
−N, if a = 0, β 6= 0,
1/2−N, if a = 0, β = 0.

This gives, for sufficiently large n,

(2.2)
√

λn = π(n+ ν) +O(1/n).

Denote by ψ1(x, µ) and ψ2(x, µ) a fundamental system of solutions of
the differential equation u′′ − q(x)u+ µ2u = 0, with initial conditions

ψ1(0, µ) = 1, ψ′1(0, µ) = iµ,(2.3)

ψ2(0, µ) = 1, ψ′2(0, µ) = −iµ.(2.4)

It is well known (see [9] or [11, Ch. II, §4.5]) that for sufficiently large µ,
(2.5) ψj(x, µ) = exp(µωjx)(1 +O(1/µ)) (j = 1, 2),

where ω1 = −ω2 = i.
We seek the eigenfunction yn corresponding to the eigenvalue λn in the

form

(2.6) yn(x) = Pn

∣

∣

∣

∣

∣

ψ1(x,
√

λn)

U(ψ1(x,
√

λn))

ψ2(x,
√

λn)

U(ψ2(x,
√

λn))

∣

∣

∣

∣

∣

,

where

(2.7) Pn =

{

(i
√
2λn sinβ)

−1 if β 6= 0,
(i
√
2)−1 if β = 0,
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and

(2.8) U(ψ(x)) = ψ(0) cosβ − ψ′(0) sinβ,
for any ψ ∈ C1[0, 1]. From (2.1)–(2.8) we easily obtain

(2.9) yn(x) =



















√
2 cos(n− 1/2−N)πx+O(1/n) if a 6= 0, β 6= 0,√
2 sin(n−N)πx+O(1/n) if a 6= 0, β = 0,√
2 cos(n−N)πx+O(1/n) if a = 0, β 6= 0,√
2 sin(n+ 1/2−N)πx+O(1/n) if a = 0, β = 0.

From now on we shall give the details only for the case a 6= 0, β 6= 0. We
define the elements of the system {ϕn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) as
follows:

ϕn(x) =

{
√
2 cos(jn − 1/2)πx (n = 0, 1, . . . , k∗; n 6= k0, k1, . . . , kN ),√
2 cos(n− 1/2−N)πx (n = k∗ + 1, k∗ + 2, . . .),

where k∗ = max(k0, . . . , kN ), and {jn} (n = 0, 1, . . . , k∗;n 6= k0, . . . , kN ) is
an increasing (k∗−N)-term sequence of numbers from {1, . . . , k∗−N}. It is
obvious that this system is identical to the system {

√
2 cos(n−1/2−N)πx}

(n = N + 1, N + 2, . . .), which is a basis of Lp(0, 1), and in particular, an
orthonormal basis of L2(0, 1) (see for example [10]).
Let ‖·‖p denote the norm in Lp(0, 1).
Firstly we prove that the system {yn} (n = 0, 1, . . . ; n 6= k0, . . . , kN ) is

an unconditional basis of L2(0, 1). For this we compare the system

(2.10) {yn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN )
with {ϕn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ). From (2.9) it follows that for
sufficiently large n,

‖yn − ϕn‖2 ≤ const/n.
Therefore the series

∞
∑

n=0;n 6=k0,...,kN

‖yn − ϕn‖22

is convergent. Hence in this case the system (2.10) is quadratically close to
{ϕn} (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN ), which is an orthonormal basis of
L2(0, 1) as mentioned above. Since the system (2.10) is minimal in L2(0, 1),
our claim is established for p = 2 (see [4, Sect. 9.9.8 of the Russian transla-
tion]).
For the remaining part of the theorem the following asymptotic formula

will be needed:

(2.11) un(x) = yn(x) +O(1/n),

for sufficiently large n.



The basis property in Lp of the boundary value problem 209

It follows from (2.9) that

‖yn‖2 = 1 +O(1/n),(2.12)

yn(1) = O(1/n).(2.13)

Let λn 6= cj for all n = 0, 1, . . . and j = 1, . . . , N . For this case the system
{un} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) is defined by (1.6)–(1.9). Then by
(1.8), (2.12) and (2.13),

(2.14) Bn = 1 +O(1/n).

Expanding the determinant (1.7) along the first row and taking into
account that all elements in other rows are either bounded functions or
fixed real numbers, we deduce from (1.6)–(1.9), (2.13) and (2.14) that the
formula (2.11) is true.
The case in which some of the numbers cj (j = 1, . . . , N) are eigenvalues

of the boundary value problem (0.1)–(0.3) can be treated in a similar way.
In this case for the proof of (2.11) we use the corresponding representations
for the functions {un} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) for sufficiently large
n (see I–III, V from the previous section).
The asymptotic formulas

yn(x) = ϕn(x) +O(1/n),(2.15)

un(x) = ϕn(x) +O(1/n),(2.16)

are also valid for sufficiently large n. This follows immediately from (2.9)
and (2.11).
We are now ready to prove our claim for p 6= 2. Let 1 < p < 2 be fixed.

It was seen above that the system (2.10) is a basis of L2(0, 1). Thus this
system is complete in Lp(0, 1). Hence, for basisness in Lp(0, 1) of the system
(2.10) it is sufficient to show the existence of a constant M > 0 such that

(2.17)
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f, un)yn

∥

∥

∥

p
≤M · ‖f‖p (T = 1, 2, . . .)

for all f ∈ Lp(0, 1) (see [7, Ch. I, §4]).
By (2.15) and (2.16),

(2.18)
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f, un)yn

∥

∥

∥

p
≤
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f, ϕn)ϕn

∥

∥

∥

p

+
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f, un)O(1/n)
∥

∥

∥

p
+
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f,O(1/n))ϕn

∥

∥

∥

p
.

We shall now prove that all the summands on the right hand side of (2.18)
are bounded from above by const ·‖f‖p.
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Since {ϕn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) is a basis of Lp(0, 1), we
have

(2.19)
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f, ϕn)ϕn

∥

∥

∥

p
≤ const ·‖f‖p,

for all f ∈ Lp(0, 1) (see [7, Ch. I, §4]). Applying Hölder’s and Minkowski’s
inequalities, and (2.16), we obtain

(2.20)
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f, un)O(1/n)
∥

∥

∥

p
≤ const ·

T
∑

n=1;n 6=k0,...,kN

|(f, un)|
1

n

≤ const ·
(

T
∑

n=1;n 6=k0,...,kN

|(f, un)|q
)1/q

·
( T

∑

n=1;n 6=k0,...,kN

1

np

)1/p

≤ const ·
[(

T
∑

n=1;n 6=k0,...,kN

|(f, ϕn)|q
)1/q

+
(

T
∑

n=1;n 6=k0,...,kN

|(f,O(1/n))|q
)1/q]

,

where 1/p+ 1/q = 1.

Note that {ϕn} (n = 0, 1, . . . ; n 6= k0, k1, . . . , kN ) is an orthonormal
uniformly bounded function system. Thus by F. Riesz’s theorem (see [13,
Ch. XII, Theorem 2.8]),

(2.21)
(

T
∑

n=1;n 6=k0,...,kN

|(f, ϕn)|q
)1/q

≤ const ·‖f‖p.

Using the well known fact (see e.g. [3, Sect. 2.2.4]) that ‖f‖p is a non-
decreasing function of p, we have

(2.22)
(

T
∑

n=1;n 6=k0,...,kN

|(f,O(1/n))|q
)1/q

≤ const ·‖f‖1 ·
( T
∑

n=1

1

nq

)1/q

≤ const ·‖f‖p.

Similarly, for the third summand of (2.18), using Parseval’s equality we
have

(2.23)
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f,O(1/n))ϕn

∥

∥

∥

p
≤
∥

∥

∥

T
∑

n=1;n 6=k0,...,kN

(f,O(1/n))ϕn

∥

∥

∥

2
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=
(

T
∑

n=1;n 6=k0,...,kN

|(f,O(1/n))|2
)1/2

≤ const ·‖f‖1 ·
( T
∑

n=1

1

n2

)1/2

≤ const ·‖f‖p.

Finally, (2.17) follows from (2.18)–(2.23). Hence the system (2.10) is a
basis of Lp(0, 1) (1 < p < 2).
Let 2 < p < ∞. It is obvious that the system {un} (n = 0, 1, . . . ; n 6=

k0, k1, . . . , kN ) is a basis of Lp(0, 1). Therefore this system is complete in
Lq(0, 1), where 1/p+ 1/q = 1. Note that 1 < q < 2.
Using the same kind of argument, one can prove that {un} (n = 0, 1, . . . ;

n 6= k0, k1, . . . , kN ) is a basis of Lq(0, 1). It follows that (2.10) is a basis of
Lp(0, 1) (2 < p <∞).
The proofs for the cases a 6= 0, β = 0; a = 0, β 6= 0; a = 0, β = 0 are

similar if we note the fact that each of the systems

{
√
2 sin(n−N)πx} (n = N + 1, N + 2, . . .),

{
√
2 cos(n−N)πx} (n = N,N + 1, . . .),

{
√
2 sin(n+ 1/2−N)πx} (n = N,N + 1, . . .),

is a basis of Lp(0, 1) (1 < p < ∞), and in particular, an orthonormal basis
of L2(0, 1) (see e.g. [10]).
The proof of Theorem 2.1 is complete.
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