The characteristics, dynamics and the risk of death in COVID-19 positive dialysis patients in London, UK

Dalvir Kular^{1*}, Irina Chis Ster^{2*}, Alexander Sarnowski³, Eirini Lioudaki⁴, Dandisonba CB Braide-Azikiwe⁴, Martin L Ford⁴, David Makanjuola¹, Alexandra Rankin⁴, Hugh Cairns⁴, Joyce Popoola^{3,5}, Nicholas Cole¹, Mysore Phanish¹, Richard Hull³, Pauline A Swift^{1#}, Debasish Banerjee^{3,5#}

Affiliations:

- 1. Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust
- 2. St George's University of London, Institute of Infection and Immunity
- 3. Renal and Transplantation Unit, St George's University Hospital NHS Foundation Trust
- 4. Renal Unit, King's College Hospital NHS Foundation Trust
- 5. St George's University of London, Molecular and Clinical Sciences Research Institute

Corresponding author:

Debasish Banerjee
Consultant Nephrologist and Reader
Renal and Transplantation Unit
St George's University Hospital NHS Foundation Trust
Tooting, London, UK, SW17 OQT
Telephone +442087251673 Fax +442087252028

^{*}Equal contribution as first authors # Equal contribution as last authors

Abstract:

Background: Dialysis patients, with frequent co-morbidities, advanced age and frailty, visiting treatment facilities frequently are perhaps more prone to SARS-Cov-2 infection and related death the risk-factors and dynamics of which are unknown. The aim of this study was to investigate the hospital outcomes in SARS-CoV-2 infected dialysis patients.

Methods: Data on 224 hemodialysis patients between 02/29/2020 and 05/15/2020 with confirmed SARS-CoV-2 were analyzed for outcomes and potential risk factors for death, using competing risk regression model assessed by sub-distribution hazards ratio (SHR).

Results: Crude data analyses suggest an overall case fatality ratio of 22.7(95%CI(17.3-28.3)%) overall but that varies across age groups from 11.4(95%CI(0.9-9.2)) in <=50 years old and 32.2(95%CI(17.3-47.5)%) in >80 years; with 60% of deaths occurring in the first 15 days and 80% within 21 days indicating a rapid deterioration towards death after admission. Almost 90% of surviving patients were discharged within 28 days.

Death was more likely than hospital discharge in more frail (WHO performance status 3-4) [SHR=2.16(1.25-3.74);p=0.006], ischemic heart disease [SHR=2.28(1.32-3.94),p=0.003], cerebrovascular disease [SHR=2.11(1.20-3.72),p=0.010], smoking history [SHR=2.69(1.33-5.45),p=0.006], and (completely or partially) hospitalized patients [SHR=10.26.(3.10-33.94),p<0.001]; and in patients with high CRP [SHR=1.35(1.10-1.67)] and high neutrophil:lymphocyte ratio [SHR=1.03(1.01-1.04),p<0.001].

Our data did not support differences in the risk of death associated with gender, ethnicity, dialysis vintage or other comorbidities. However, comparison with the entire dialysis population attending these hospitals, and 12.9% being affected, revealed that non-Caucasians (62% vs. 52% in all patients, p=0.001) and diabetic patients (54% vs. 22%, p<0.001) were disproportionately affected.

Conclusion: This report discusses the outcomes of a large cohort of dialysis patients with SARS-CoV-2, infection affecting more diabetics and non-Caucasians; with a high case fatality ratio, which increased significantly with age, frailty, smoking, increasing CRP and neutrophil:lymphocyte ratio at presentation.

Introduction:

The SARS-CoV-2 virus is similar to the viruses responsible for SARS and MERS epidemics in 2003 and 2013. (1) It is highly transmissible between humans and can spread easily in dialysis units, where patients are in close contact with each other and their health-care workers at frequent and regular intervals. Dialysis patient populations have high representation from elderly co-morbid and often frail individuals. (2) In addition they may also be more susceptible to infections, due to abnormal monocyte and T lymphocyte responses. (3) The MERS epidemic demonstrated the importance of T cell immunity in fighting SARS-CoV-1 infection and the same may be relevant for SARS-CoV-2 infection. (4)

Measures to protect HD patients have been recommended, including strict protocols for the screening, isolation, de-isolation and management of patients within dialysis facilities. (5-7) There are few reports of outcomes of COVID-19 in dialysis patients. The case fatality of COVID-19 positive hemodialysis (HD) patients in three HD centers in Wuhan varied between 0-16%. (8-10) In one HD facility in Northern Italy, the case fatality was as high as 44% (18 out of 41 infected HD patients) from a cohort of 98 HD patients. (11) Another hospital in Brescia, Italy admitted 21 COVID 19 positive patients; 5(24%) of whom died and 4 were discharged from hospital. (12). The same unit reported 94 patients of whom 61% required hospital admission and 29% died. (13). In a study from US of 59 patients 31% died, very similar to a study from Spain where 30% of 36 patients died. (14,15)

The aim of this observational study was to examine variables which may be associated with risk of death in COVID-19 positive HD patients cared for at 3 large NHS hospitals in South London during the start of the epidemic until 15th May 2020. We also present the daily incidence of COVID-19 and death in this patient cohort as well as the age-dependent case fatality-ratio.

Methods

Participant identification

Dialysis patients were tested for SARS-CoV-2, by nasal and throat swab for real-time RT-PCR (RdRp gene) testing if they were symptomatic with persistent cough and or fever, in accordance with guidance from Public Health England (PHE). (16)

Data collection

Data were collected for SARS-CoV- 2 infected dialysis patients admitted to hospitals or isolation hemodialysis facilities across three South London NHS renal centres between 29 February 2020 and 15 May 2020, including demographics, comorbidities, World Health Organization (WHO) performance status, clinical symptoms, laboratory parameters at presentation, hospital management and outcomes. Data were sourced from electronic clinical databases including laboratory systems, clinical notes and written communications. Aggregate comparative data were obtained from the UK Renal Registry. Baseline laboratory results were from the day of presentation or within 24 hours. The performance status was based on clinical data on the patients' usual mobility, exercise tolerance, frailty and required assistance. WHO performance status is a simple tool for assessment of functional status and frailty used mostly in the oncology for prognostication and to identify patients suitable for treatment (17,18). It estimates the patient's daily activity and ability to perform activities of daily living using a progressive score from 0-5, where 0 indicates a completely active patient, 3 for a patient capable of only limited self-care and a value of 5 indicating death. Given the sample size of our data, a binary variable based on WHO performance was created upon disease severity, i.e. 0-2 indicating less severe and 3-4 indicating a severe frailty.

We have also pulled aggregated statistics regarding the background populations, i.e. that of hemodialysis (HD) and peritoneal dialysis (PD) across the three hospitals. The data have been used to

assess our sample of COVID-19 positive patients' characteristics distributions against those in the corresponding populations. The study was approved by NHS Research Ethics Committee 20/SW/0077 and Heath Research Authority IRAS 283130.

Statistical methods

All the available variables have been graphically explored and summarized according to their nature, i.e. means, standard deviations, medians, interquartile limits and ranges for continuous variables and proportions for those that were categorical or binary. Log transformation has been performed for highly skewed variables where appropriate. Daily time series of admissions and deaths (counts) have graphically displayed in Figure 1.

A binary statistical outcome was defined indicating death or discharged alive before 15th May 2020; those still under care on that date were set as censored. The analysis modelled the time since admission to discharge from care (hospital or isolation dialysis facility) or death during care (hospital or outpatient) using the Fine & Grey method for competing risk. Death is the primary statistical event of interest and hospital discharge is assumed to be a competing event. A sub-distribution hazard ratio (SHR) model has been fit to the data accounting for the censored patients and quantifying the effects of each available variable on the risk of death through SHR (19-23). Predicted cumulative incidence functions (CIF) are similar to the cumulative distribution functions in classical survival analysis and indicate the daily cumulative rate of death or discharge since admission in association with each potential explanatory variable. We have also built a multivariable model based on Akaike information criterion (AIC- the smaller the value the better the model) used on similar number of observations in the data. Sensitivity analyses to missing data have been conducted - results not shown or discussed except for smoking variables as all others did not alter the qualitative or quantitative conclusions based on complete data. The approach is different from that of cause-specific hazard —

details on differences has been thoroughly discussed elsewhere (20). A value of SHR greater than 1 indicates a harmful effect of the corresponding explanatory variable; less than 1 indicates a protective effect. Also, a steep increase in the CIFs with time since admission corresponding to death indicates a rapid deterioration in patients who died. A p-value less than 0.05 is interpreted as a statistically significant association. Comparisons with the UK Renal Registry COVID 19 population data for dialysis patients have been made using elementary statistical tests according to the nature of the variables. Meta-analyses estimating pooled case-fatality ratios in HD population from recent published studies around the world are also presented (Table 4). All analyses have been carried out in Stata 16 (StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.).

Results

Demographics and clinical characteristics of SARS-Cov-2 infected hemodialysis patients

Data on 224 hemodialysis patients from three large South London NHS renal centers, admitted to hospital or isolation facility between 29 February and 15 May 2020 with confirmed SARS-CoV-2, have been collated and analysed to explore potential risk factors for death. Descriptive statistics for this population, survival status until 15 May and associations with SHR of death vs. Survival are presented in Table 1. Within this cohort of patients 51 (22.8%) died, 154 (68.8%) were discharged alive and 19 (8.5%) were still under care in hospital or an isolation facility when we stopped the data collection (censored). The first hospital admission was on 29 February and the daily time series of admissions showed a steady increase until the peak between 30 March and 2 April, followed by a decline in admissions (Figure 1). The first death occurred on 22 March 2020.

The mean patient age was 66±14(SD) years with 133 (59%) men, 85 (38%) Caucasian, 182 (81%) hypertensives, 120 (54%) diabetics, 64 (29%) ischemic heart disease, 49 (22%) cerebrovascular disease, 40 (18%) heart failure with reduced ejection fraction (HFrEF), 56 (25%) chronic lung disease and 33 (15%) with history of cancer (Table 1). Comparative results with the overall HD population are presented in Table 2.

Smoking status was reported in 165 (73.7%) patients and 71 (32%) were ex or current smokers. Median (Q1-Q3) dialysis vintage was 2.82 years (1.11-5.46 years). Overall, 124 (55.4%) patients dialyzed with a fistula or arteriovenous graft and 98 (43.8%) patients with a line. WHO performance status at the time of presentation was 0, 1 or 2 in 134 (60%) and 3 or 4 in 83 (37%) patients. Median (Q1-Q3) serum albumin at the last routine monthly blood review prior to presentation was 34 g/L (30-38) and 56 (34%) patients were taking an ACE inhibitor/Angiotensin receptor blocker (ACEi/ARB) at the time of COVID-19 diagnosis.

Symptoms at presentation were fever in 186 (83%), shortness of breath in 92 (41%), dry cough in 82 (37%), productive cough in 37 (17%), diarrhea in 30 (13%), vomiting in 30 (13%), headache in 20 (9%), aches and pains in 37 (17%) patients and only 10 (4.5%) patients were asymptomatic.

At presentation the median (Q1-Q3) blood C-reactive protein (CRP) was 74 mg/L (32-129), white cell count 5.4 x 10° /L (3.9-7.4), neutrophil count 3.8 x 10° /L (2.6-5.9), lymphocyte count 0.80 x 10° /L (0.58-1.1), neutrophil to lymphocyte ratio median (Q1-Q3) 4.7 (3.1-7.8), hemoglobin 105 g/L(97-114).

Management of SARS-CoV-2 infected hemodialysis patients

Overall, 81 (36%) of hemodialysis patients were managed exclusively as outpatients dialysing initially in isolation facilities belonging to the hospitals and then discharged to satellite units when clinically improved; 115 (51.8%) were cared for exclusively as inpatients and 28(12%) were managed as outpatients before hospitalization.

Of these 143 (64%) patients who were admitted to hospital, a 'ceiling of care' was determined, meaning the highest level of medical intervention deemed appropriate should the patient's clinical condition deteriorate. This decision was made by the medical team taking into account the patient's wishes and whether the patient was likely to benefit from more invasive care. A ward-based ceiling of care decision was made for 73 (51%) patients, escalation for non-invasive ventilation in 24 (17%) and for mechanical ventilation in 46 (32%).

Ninety-two (64%) of the hospitalized patients required maximum respiratory support from respiratory support devices that could be delivered on the 'ceiling of care' ward setting, including nasal cannulae and non-rebreathing masks. There were 12 hospitalized patients that required non-invasive ventilation (NIV). Only 11 (8%) patients of hospitalized patients were ultimately admitted to the intensive care unit (ICU), with 9 patients requiring mechanical ventilation.

At the end of follow-up, 19 (8.5%) of patients were still inpatients because of their COVID-19 related illnesses.

Associations with the SHR of death vs. discharge in SARS-CoV-2 infected hemodialysis patients

At the end of follow-up, 51 (22.8%) hemodialysis patients had unfortunately died (time series in Figure 1), 154 (68.8%) were discharged from either inpatient care or outpatient isolation hemodialysis and 19 (8.5%) were still under clinical care.

Figure 2 showing the cumulative incidence of death suggests that patients deteriorated relatively quickly, at a steadily increasing pace during the first 23 days of admission. The daily incidence of discharge after admission increased sharply between 5-20 days since admission. This latter trend slowed down afterwards - driven by 38 patients who required long (21-55 days) hospitalization. The effects of age and other variables on the dynamics of death and hospital discharge can be seen in Table 1.

Patients that required admission to hospital were 6.83 (95%CI 2.07-22.48) times more likely to die than patients managed exclusively or partially as outpatients. Based on these data, there is not enough evidence to suggest that gender, ethnicity, BMI or dialysis vintage were associated with death in these patients (all corresponding p-values for SHR >0.05).

A 5-year increase in the age at admission is associated with an increase in the SHR of death vs. discharge of 1.16 (1.03-1.30), p=0.013. There was an average 22.8% case-fatality ratio, which exhibited heterogeneity across the age groups in this cohort, with 11.4% of deaths among patients under 50 years of age, 33.3% in those 75-80 years of age and 32.4% in those over 80 years of age.

Smoking history was associated with a increased sub-hazard of death by almost 3 times (2.69 (1.33-5.45)) compared to no smoking history. Given the great deal of missing information for this variable (26%) a sensitivity analysis in which all these patients were assumed to be non-smokers still preserves

the harmful effect of smoking, i.e. SHR=1.78 (1.03-3.08), p=0.041. There is also some evidence (p=0.003) and (p=0.01) for a higher chance of death in ischemic heart disease and cerebrovascular disease patients compared with those without these comorbidities, respectively. In addition, those with a WHO frailty score of 3-4 were 2.16 (95%CI (1.25-3.74)) times more likely to die compared with those with a WHO score of 0-2. The data presented in this population were consistent with no effect of ACEi/ARB on the hazard of death (p=0.518).

The only evidence for an association of death with symptoms on admission was with shortness of breath (SHR=2.32 (1.29-4.17. p=0.005)) (Table 1). Among patients who died compared to patients who were discharged alive, blood CRP concentration was higher (median (Q1-Q3) 113 (47-212) vs. 65 (28-104), log lymphocyte count was lower and neutrophil:lymphocyte ratio was higher (median (Q1-Q3) 7.2 (4.2-13.4) vs. 4.3 (2.9-6.7) (Figure 3). Furthermore, each unit increase in neutrophil:lymphocyte ratio was associated with a 3% (1.7%-5%) increase in SHR for death vs. hospital discharge and similarly each 10 mg/L rise in CRP was associated with a 3% (1%-5%) increased SHR of death. Our multivariable model included the predictors which remain strong (p<0.05) and for which the AIC value was the smallest. The WHO score includes elements of age so the two confound each other as expected. However, the model including the age, neutrophil:lymphocyte ratio and hospital management was better than including WHO score neutrophil:lymphocyte ratio and hospital management (AIC=471.933 vs. AIC=473.400, respectively). The adjusted effects of these variables are only slightly modified compared to their univariate counterparts (Table1).

Demographics and clinical characteristics and outcomes of SARS-CoV-2 infected peritoneal dialysis patients

Among the 10 SARS-CoV-2 infected PD patients aged 69.5 (59-75) year [median (Q1-Q3)], with 8 males; 5 Caucasians; 3 smokers and 6 diabetics; 1 was managed as an outpatient. Of the 9 inpatients, 3 required NIV, 2 required ICU admission and 1 required mechanical ventilation. Six of the admitted patients (60% of the total) died and 4 were discharged alive.

Comparison of SARS-CoV-2 patients with reference populations

Unless otherwise specified, the reference populations are collectively those patients who have their usual dialysis provided by the South London renal centers (Table 2).

Up until 15 May 2020, 224 (approximately 13%) of all HD patients (1727) and 10 (approximately 4.4%) of all PD patients (228) from the 3 renal centers tested positive for COVID-19. Of those that were COVID-19 positive, 51 (22.8%) HD patients and 5 (50%) PD patients have died, such that approximately 2.96% of all HD patients and approximately 2.6% of all PD patients managed at the three centers died from COVID-19 disease during the period of data collection.

The demographic data for COVID-19 positive patients presented here was broadly consistent with that of the HD (p=0.383) and PD (p=0.137) populations respectively across the 3 hospitals. The distribution of gender in our COVID-19 positive cohort was also similar to that observed in the local dialysis populations (p=0.066 for HD and p=0.198, respectively). There was, however, a suggestion that SARS-CoV-2 infections seemed to have affected more non-Caucasian HD patients than Caucasian patients (Table 2, p=0.001) despite no differences between case-fatality ratios supported by these data. The numbers in the PD population are too small for meaningful analyses using individual records. The proportion of diabetics among COVID-19 positive patients is also higher than might be expected from the reference dialysis populations (54% vs. 46% in HD, p<0.001 and 60% vs. 19% in PD, p=0.004). Our data suggest some evidence that the case-fatality ratio is higher (p=0.015) in PD (6/10) patients than in HD (51/224).

Also, based on the size of the dialysis population of the renal centers, approximately 13% (224/1737) were affected with the SARS-CoV-2 infection and 2.96% (51/1737) died by the date when we stopped data collection.

The case fatality ratio described for our dialysis patients that tested COVID-19 positive appears to be commensurate with national renal data shown in Table 3 by the time of our censoring. (24)

The numbers in the PD COVID-19 positive patients are too small for meaningful analyses using individual records as in hemodialysis COVID 19 positive patients.

In a meta-analysis based on another six similar studies the case fatality ratio was 24% (17-31%) and including the present study was 23% (18-29%). There was some high level of heterogeneity in the data mainly caused by China -Wuhan estimate but we felt that the study should be left in the analysis (Figure 4).

Discussion

In this study of SARS-CoV-2 infected dialysis patients the case fatality ratio was high, 22.8%. The patients who died, compared to those recovered, were older, more likely to be smokers and hospitalized, more likely to have ischemic and cerebrovascular disease and have worse WHO performance status. COVID-19 disease was observed more frequently in diabetic and non-white patients.

The infection rate of 13% in our hemodialysis population likely represents an underestimate, as only patients with symptoms were screened, therefore missing asymptomatic and falsely negative PCR COVID-19 patients. This has been illustrated in a recent study of 356 HD patients, where 22% were PCR positive for COVID-19 with symptom-based screening, however the seroprevalence rate was 36%, therefore with 40% of patients with positive antibodies having been either asymptomatic or negative on PCR testing (25).

The impact of age is clearly visible from Figure 1 which shows that more than 30% of patients above the age of 75 years died as opposed to less than 15% of the patients who were under 60 years of age. The case fatality ratio presented in this report, is broadly consistent with that observed in other reports of dialysis patients with COVID 19 as seen in the meta-analysis of six studies from Europe, Asia and North-America (Table 4); and similar to other hospitalised patients with COVID-19 in the UK and elsewhere, but lower than patients admitted to ICU. (26).

In our dialysis population, smokers were more likely to die, which may be due to the fact that the SARS-COV-2 virus is an airborne disease which predominantly affects the lungs. Smokers and individuals with COPD have recently been reported to have increased expression of ACE-2 receptors, which is the site for SARS-Co-V-2 entry into cells, in small airway epithelial cells. This may explain why current and ex-smokers have poorer COVID-19 related respiratory outcomes. (27). The evidence for this finding is preserved even after sensitivity analysis (Table 1).

The presence of healthy adaptive immunity, which requires the presence of healthy T&B lymphocyte populations, is important in mounting an appropriate response to viral infection, which may be defective in dialysis patients. (28) In our study, patients who died had a higher neutrophil count, lower lymphocyte (log) count and a higher neutrophil:lymphocyte ratio at presentation. This is consistent with earlier reports in the general population where poor prognosis was associated with low lymphocyte and higher neutrophil:lymphocyte ratio in the blood. (29,30). The effects of age, neutrophil:lymphocyte ratio in the blood and hospital management remain strong even after adjusting one for another (Table 1).

Compared to the aggregate data from the haemodialysis population in the three hospitals, the patients who were infected with SARS-CoV-2 had a higher proportion of diabetics than non-diabetics and a higher proportion of non-Caucasians compared to Caucasians. This is also broadly consistent with what is seen in the general population, particularly in the UK. (31,32)

The investigation into the impact of frailty score of COVID-19 in hemodialysis patient is a major strength of the study. _In this patient cohort, 51% of inpatients had an established ceiling of care decision for ward-based care and within this group approximately 1 in 2 patient's died, totalling 74% of the total case fatality. As shown in Table 4, the ward-based care decision seemed appropriate as the patients within this category were older, more frail and co-morbid than those for treatment escalation and for those that ultimately were admitted to ICU. Only one out of the nine mechanically ventilated patients was discharged alive, whereas six patients died and the other two–remained ventilator dependent, indicating poor outcome.

This study has several limitations. First, data were collected retrospectively through electronic health records and medical notes used for routine clinical care and some data for those managed as outpatients were missing. We did not systematically collect detailed data on dialysis and non-dialysis

treatments given to patient. In the UK, the Chief Medical Officers strongly discouraged the use of off-licence treatments outside of a clinical trial. Treatment was therefore largely supportive unless patients participated in a clinical trial. There were 20 HD and 3 PD patients in this cohort who did participate in the RECOVERY trial (randomly assigned to supportive care (12) or to one of four treatments: lopinavir-ritonavir (2), low dose dexamethasone (3), hydroxychloroquine (3), or azithromycin (3)), and it is possible that these interventions may have affected their clinical course and outcomes.

Conclusions

This report describes the outcomes of dialysis patients with COVID-19, more likely to be diabetic and non-Caucasian; from a large cohort of dialysis patients from 3 NHS hospitals in south London. Case fatality ratio among those infected with SARS-CoV-2 was high, 22.8%, in line with the pooled estimate from the meta-analysis. The patients who died, compared to those who survived, were older, more likely to be smokers, cardiovascular disease and have worse WHO performance status. The case fatality ratio in this patient population, known to have high burden of co-morbidities, is broadly comparable to other reports in SARS-Cov-2 dialysis patients, the UK dialysis population and rates of hospital deaths in the UK population.

Disclosures: A. Sarnowski reports grants from Kidney Con during the conduct of the study; and reports shares in Baxter and Fresenius outside the submitted work. M. Ford reports personal fees and non-financial support from Astra Zeneca and other from Amgen outside the submitted work. R. Hull reports personal fees from Napp Pharmaceuticals and personal fees from Pharmacosmos outside the submitted work. P. Swift reports personal fees from Napp Pharmaceuticals Ltd outside the submitted work. All remaining authors have nothing to disclose.

Funding: None

Author Contributions:

D Kular: Data curation; Formal analysis; Methodology; Project administration; Writing - original draft; Writing - review and editing

IC Ster: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Validation; Writing - original draft; Writing - review and editing

A Sarnowski: Resources; Writing - original draft

E Lioudaki: Data curation; Writing - review and editing

D Braide-Azikiwe: Data curation; Writing - original draft; Writing - review and editing

M Ford: Data curation; Writing - review and editing

D Makanjuola: Data curation; Writing - original draft

A Rankin: Data curation; Writing - review and editing

H Cairns: Data curation; Writing - review and editing

J Popoola: Writing - original draft; Writing - review and editing

N Cole: Data curation; Writing - review and editing

M Phanish: Data curation; Writing - review and editing

R Hull: Data curation; Writing - review and editing

P A Swift: Data curation; Investigation; Methodology; Writing - original draft; Writing - review and editing

D Banerjee: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Supervision; Validation; Visualization; Writing - original draft; Writing - review and editing

References

- 1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. [Electronic version]. Lancet 395(10224): 565-574, 2020
- 2. Sinclair AJ, & Abdelhafiz AH. Age, frailty and diabetes triple jeopardy for vulnerability to COVID-19 infection. [Electronic version]. Eclinicalmedicine: 100343, 2020
- 3. Yoon JW, Gollapudi S, Pahl MV, Vaziri ND. Naive and central memory T-cell lymphopenia in end-stage renal disease. [Electronic version]. Kidney Int 70(2): 371-376, 2006
- 4. Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. [Electronic version]. Immunol Res 59(1-3): 118-128, 2014
- 5. Basile C, Combe C, Pizzarelli F, Covic A, Davenport A, Kanbay M, Kirmizis D, Schneditz D, van der Sande F, Mitra S. Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. [Electronic version]. Nephrol Dial Transplant 2020
- 6. Dudreuilh C, Kumar N, Moxham V, Hemsley C, Goldenberg S, Moutzouris DA. De-isolation of COVID-19–positive hemodialysis patients in the outpatient setting: A single-center experience. [Electronic version]. Kidney Int 2020
- 7. Ikizler TA. COVID-19 in dialysis patients: Adding a few more pieces to the puzzle. [Electronic version]. Kidney Int 2020
- 8. Wang R, Liao C, He H, Hu C, Wei Z, Hong Z, Zhang C, Liao M, Shui H. COVID-19 in hemodialysis patients: A report of 5 cases. [Electronic version]. Am J Kidney Dis 2020
- 9. li c, Yonglong M, Can T, Dongdong M, Sheng W, Haifeng L, Fei X. An analysis on the clinical features of MHD patients with coronavirus disease 2019: A single center study. [Electronic version].2020 https://doi.org/10.21203/rs.3.rs-18043/v1
- 10. Ma Y, Diao B, Lv X, Zhu J, Liang W, Liu L, Bu W, Cheng H, Zhang S, Yang L, Shi M, Ding G, Shen B, Wang H. 2019 novel coronavirus disease in hemodialysis (HD) patients: Report from one HD center in wuhan, china. [Electronic version]. Medrxiv :, 2020 http://medrxiv.org/content/early/2020/02/27/2020.02.24.20027201.abstract
- 11. Manganaro M, Baldovino S, Working group of the Piedmont and Aosta Valley Section of the SIN. First considerations on the SARS-CoV-2 epidemic in the dialysis units of piedmont and aosta valley, northern italy. [Electronic version]. J Nephrol 2020
- 12. Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, Maffei C, Possenti S, Piva S, Latronico N, Foca E, Castelli F, Gaggia P, Movilli E, Bove S, Malberti F, Farina M, Bracchi M, Costantino EM, Bossini N, Gaggiotti M, Scolari F, Brescia Renal COVID Task Force. Management of patients on

- dialysis and with kidney transplant during SARS-COV-2 (COVID-19) pandemic in brescia, italy. [Electronic version]. Kidney Int Rep 2020
- 13. Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, Maffei C, Possenti S, Lucca B, Cortinovis R, Terlizzi V, Zappa M, Saccà C, Pezzini E, Calcaterra E, Piarulli P, Guerini A, Boni F, Gallico A, Mucchetti A, Affatato S, Bove S, Bracchi M, Costantino EM, Zubani R, Camerini C, Gaggia P, Movilli E, Bossini N, Gaggiotti M, Scolari F. A report from the brescia renal COVID task force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. [Electronic version]. Kidney Int 2020
- 14. Valeri AM, Robbins-Juarez SY, Stevens JS, Ahn W, Rao MK, Radhakrishnan J, Gharavi AG, Mohan S, Husain SA. Presentation and outcomes of patients with ESKD and COVID-19. [Electronic version]. J Am Soc Nephrol 2020
- 15. Goicoechea M, SÃinchez CÃimara LA, MacÃ-as N, Muñoz de Morales A, GonzÃilez Rojas Ã, Bascuñana A, Arroyo D, Vega A, Abad S, Verde E, GarcÃ-a Prieto AM, Verdalles U, Barbieri D, Felipe Delgado A, Carbayo J, Mijaylova A, Pérez de José A, Melero R, Tejedor A, Rodriguez Benitez P, de José AP, Rodriguez Ferrero ML, Anaya F, Rengel M, Barraca D, Luño J, Aragoncillo I. COVID-19: Clinical course and outcomes of 36 maintenance hemodialysis patients from a single center in spain. [Electronic version]. Kidney Int 2020
- 16. UK Gov. Guidance COVID-19: Investigation and initial clinical management of possible cases. (05/31)2020 https://www.gov.uk/government/publications/wuhan-novel-coronavirus-initial-investigation-of-possible-cases/investigation-and-initial-clinical-management-of-possible-cases-of-wuhan-novel-coronavirus-wn-cov-infection#criteria
- 17. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP. Toxicity and response criteria of the eastern cooperative oncology group. [Electronic version]. Am J Clin Oncol 5(6): 649-655, 1982
- 18. Blagden SP, Charman SC, Sharples LD, Magee LR, Gilligan D. Performance status score: Do patients and their oncologists agree? [Electronic version]. Br J Cancer 89(6): 1022-1027, 2003
- 19. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: Competing risks and multi-state models. [Electronic version]. Stat Med 26(11): 2389-2430, 2007
- 20. Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. [Electronic version]. Am J Epidemiol 170(2): 244-256, 2009
- 21. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: Possibilities and pitfalls. [Electronic version]. Int J Epidemiol 41(3): 861-870, 2012
- 22. Brock GN, Barnes C, Ramirez JA, Myers J. How to handle mortality when investigating length of hospital stay and time to clinical stability. [Electronic version]. BMC Med Res Methodol 11: 144-2288-11-144, 2011
- 23. Fine JP, & Gray RJ. A proportional hazards model for the subdistribution of a competing risk. [Electronic version]. Journal of the American Statistical Association 94(446): 496-509, 1999

- 24. Renal Association U. Initial analysis of the impact of covid19 infection on patients with advanced chronic kidney disease in the UK.2020(05/04)2020
- 25. Wu J, Li J, Zhu G, Zhang Y, Bi Z, Yu Y, Huang B, Fu S, Tan Y, Sun J, Li X. Clinical features of maintenance hemodialysis patients with 2019 novel coronavirus-infected pneumonia in wuhan, china. [Electronic version]. Clin J Am Soc Nephrol 15(8): 1139-1145, 2020
- 26. Aydin Bahat K, Parmaksiz E, Sert S. The clinical characteristics and course of COVID-19 in hemodialysis patients. [Electronic version]. Hemodial Int 2020
- 27. Chawki S, Buchard A, Sakhi H, Dardim K, El Sakhawi K, Chawki M, Boulanger H, Kofman T, Dahmane D, Rieu P, Attaf D, Ahriz-Saksi S, Besson F, Boula R, Hafi A, Massoumi A, Diddaoui AZ, Fromentin L, Michaut P, Nebbad R, Desassis JF, Nicolet L, Ghazali A, Sohier-Attias J, Lamriben L, Adem A, Dupuis E, Rifard MK, Joly D, El Karoui K, Attias P, HD-CovIDF Study Group. Treatment impact on COVID-19 evolution in hemodialysis patients. [Electronic version]. Kidney Int 2020
- 28. Clarke C, Prendecki M, Dhutia A, Ali MA, Sajjad H, Shivakumar O, Lightstone L, Kelleher P, Pickering MC, Thomas D, Charif R, Griffith M, McAdoo SP, Willicombe M. High prevalence of asymptomatic COVID-19 infection in hemodialysis patients detected using serologic screening. [Electronic version]. J Am Soc Nephrol 2020
- 29. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, Holden KA, Read JM, Dondelinger F, Carson G, Merson L, Lee J, Plotkin D, Sigfrid L, Halpin S, Jackson C, Gamble C, Horby PW, Nguyen-Van-Tam JS, Dunning J, Openshaw PJ, Baillie JK, Semple MG. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO clinical characterisation protocol. [Electronic version]. BMJ. 2020;369:m1985. Published 2020 May 22. doi:10.1136/bmj.m1985
- 30. Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, Dorscheid DR, Sin DD. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. [Electronic version]. Eur Respir J 2020
- 31. Girndt M, Sester M, Sester U, Kaul H, Kohler H. Molecular aspects of T- and B-cell function in uremia. [Electronic version]. Kidney Int Suppl 78: S206-11, 2001
- 32. Cao X. COVID-19: Immunopathology and its implications for therapy. [Electronic version]. Nat Rev Immunol 2020
- 33. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, Luo M, Chen L, Zhao Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. [Electronic version]. J Infect 2020
- 34. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in wuhan, china: A retrospective cohort study. [Electronic version]. Lancet 2020
- 35. Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? [Electronic version]. BMJ 369: m1548, 2020

Tables
Table 1

	VARIABLES NAME	SUMMARY TYPE/CATEGORY	ALL PATIENTS	DISCHARGE ALIVE	DIED	STILL IN CARE	SUB-DISTRIBUTI RATIO		ARD	ADJUSTED S DISTRIBUTION H	IAZARD
			224	454 (60 75%)	F4 (22 770/)	40 (0.400()	DIED vs. SUBV n valu		NO	RATIO (210 obs.	
	CENTER	24-1-	224	154 (68.75%)	51 (22.77%)	19 (8.48%)	DIED vs. SURV	p-value	NO	DIED vs. SURV	p-value
	GENDER	Male	133 (59.38%)	89 (57.79%)	35 (68.63%)	9 (47.36%)	1	0.172	220		
	FTUNICITY	Female	91 (40.63%)	65 (42.21%)	16 (31.37%)	10 (52.63%)	0.66 (0.36-1.20)	0.172	220		-
	ETHNICITY	White	85 (37.95%)	54 (35.06%)	21 (41.18%)	10 (52.63%)	0.05 (0.40.1.40)	0.571	220		
	(binary)	Other	139 (62.05%)	100 (64.94%)	30 (58.82%)	9 (47.36%)	0.85 (0.49-1.48)	0.571	220		-
	ETHNICITY	White	85 (37.95 %)	54 (35.07%)	21 (41.18%)	10 (52.63%)					
	(detailed)	South Asian	41 (18.30%)	27 (17.53%)	11 (21.57%)	3 (15.79%)					
		East Asian	8 (3.57%)	5 (3.25%)	3 (5.88%)	0 (0%)					
		Black	77 (34.38 %)	59 (38.31%)	13 (25.49%)	5 (26.32%)					
S	CNACHUNG	Other	13 (5.80%)	9 (5.84%)	3 (5.88%)	1 (5.26%)					-
Demographics	SMOKING	Never	94 (41.96%)	71 (46.10%)	12 (23.53%)	11 (57.89%)	1		464		1
apl	status	Ever	71 (31.70%)	43 (27.92%)	22 (43.14%)	6 (31.58%)	2.69 (1.33-5.45)	0.006	161		1
gr		Missing	59 (26.34%)	40 (25.97%)	17 (33.33%)	2 (10.53%)					1
J u	Missing=NO	Never	153 (68.30%)	111 (72.08%)	29 (56.86%)	13 (68.42%)	1		222		
)ei		Ever	71 (31.70%)	43 (27.92%)	22 (43.14%)	6 (31.58%)	1.78 (1.03-3.08)	0.041	220		
	Missing=YES	Never	94 (41.96%)	71 (46.10%)	12 (23.53%)	11 (57.89%)	1				1
		Ever	130 (58.04%)	83 (53.90%)	39 (76.47%)	8 (42.11%)	2.57 (1.34-4.93)	0.005	220		
	AGE	Mean (SD)	65.83 (14.39)	63.90 (14.43)	70.47 (13.79)	69 (12.77)	1.16 (1.03-1.30)	0.013	220	1.15 (1.002-1.31)	0.047
	at admission	Median (Q1-Q3)		65 (57-76)	73 (62-80)	73 (59-81)					1
	(5 yrs effect)	Range	25-90	26-90	25-90	38-82					-
	BMI	Mean (SD)	28.2 (7.6)	28.5 (8)	26.9 (6.3)	28.9 (7.9)	0.97 (0.93-1.01)	0.186	193		
	(kg/m²)			26.2 (23.2-31.4)							
		Range	16.5-57.8	18.7-57.8	17.4-49.2	16.5-42.1					
		Missing	27 (12.05%)	17 (11.04%)	8 (15.67%)	2 (10.53%)					
	WHO	0	16 (7.14%)	15 (9.74%)	1 (1.96%)	0 (0%)					
	performance	1	51 (22.77%)	42 (27.27%)	6 (11.76%)	3 (15.79%)					1
	status	2	67 (29.91%)	43 (27.92%)	16 (31.37%)	8 (42.11%)					
	detailed	3	54 (24.11%)	34 (22.08%)	15 (29.41%)	5 (26.32%)					
		4	29 (12.95%)	13 (8.44%)	13 (25.49%)	3 (15.79%)					
		Missing	7 (3.13%)	7 (4.55%)	0 (0%)	0 (0%)					1
	WHO	0-2	134 (59.82%)	100 (64.94%)	23 (45.10%)	11 (57.90%)					
	performance	3-4	83 (37.05%	47 (30.52%)	28 (54.90%)	8 (42.11%)	2.16 (1.25-3.74)	0.006	213		
	binary	Missing	7 (3.13%)	7 (4.55%)	0 (0%)	0 (0%)	2.10 (1.25 5.7 4)	0.000	213		1
	History of cancer	No	189 (84.38%)	132 (85.71%)	42 (82.35%)	15 (78.95%)					
	motory or cancer	Yes	33(14.73%)	20 (12.99%)	9 (17.65%)	4 (21.05%)	1.25 (0.613-2.57)	0.537	218		
		Missing	2(0.89%)	2 (1.30%)	0 (0%)	0 (0%)	1.23 (0.013 2.37)	0.557	210		
Comorbidities	Hypertension	No	41(18.30%)	24 (15.58%)	8 (15.69%)	9 (47.37%)					
idi	, p 30	Yes	182(81.25(%)	129 (83.80%)	43 (84.31%)	10 (52.63%)	1.27 (0.61-2.66)	0.528	219		
d		Missing	1(0.45%)	1 (0.65%)	0 (0%)	0 (0%)	(
μ	DIABETES	No	103(45.98%)	71 (46.10%)	21 (41.18%)	11 (57.90%)					
Ö	22225	Yes	120 (53.57%)	82 (53.25%)	30 (58.82%)	8 (42.11%)	1.31 (0.76-2.28)	0.335	219		1
		Missing	1(0.45%)	1 (0.65%)	0 (0%)	0 (0%)	(,				1
	HFrEF	No	181 (80.80%)	124 (80.52%)	40 (78.43%)	17 (89.47%)					
		Yes	40(17.86%)	27 (17.53%)	11 (21.57%)	2 (10.53%)	1.38 (0.69-2.73)	0.363	217		
		Missing	3 (1.34%)	3 (1.95%)	0 (0%)	0 (0%)	(2.33 2.73)				
	CHRONIC LUNG	NO	168 (75%)	115 (74.68%)	39 (76.47%)	14 (73.68%)	NA				
	DISEASE	Asthma	16 (7.14%)	13 (8.44%)	0 (0%)	3 (15.79%)					
	DETAILED	Bronchiectasis	1 (0.45%)	1 (0.65%)	0 (0%)	0 (0%)					
	===	COPD	15 (6.70%)	6 (3.90%)	8 (15.69%)	1 (5.26%)					
		Fibrosis	4 (1.79%)	3 (1.95%)	1 (1.96%)	0 (0%)					
		Other	17 (7.59%)	13 (8.44%)	3 (5.88%)	1 (5.26%)					
	CHRONIC LUNG	No	168 (75%)	115 (74.68%)	39 (76.47%)	14 (73.68%)					
		1	1 -55 (75/0)	1 (7 1.0070)	1 33 (73. 7770)	1 - 1 (7 3.3070)		l	l	1 1	l .

	DISEASE	Yes	56 (25%)	39 (25.33%)	12 (23.53%)	5 (26.32%)	0.9 2 (0.48-1.77)	0.810	220		1
	Ischaemic heart	No	157 (70.09%)	116 (75.33%)	28 (54.90%)	13 (68.42%)	,				
	disease	Yes	64 (28.57%)	35 (22.72%)	23 (45.10%)	6 (31.58%)	2.28 (1.32-3.94)	0.003	217		
		Missing	3 (1.34%)	3 (1.95%)	0 (0%)	0 (0%)	2.20 (1.32 3.34)	0.003	217		
	CEREBROVASCULAR	No	173 (77.23%)	124 (80.52%)	33 (64.71%)	16 (84.21%)					
	DISEASE	Yes	49 (21.88%)	28 (18.18%)	18 (35.29%)	3 (15.79%)	2.11 (1.20-3.72)	0.010	218		
		Missing	2 (0.89%)	28 (18.18%)	0 (0%)	0 (0%)	2.11 (1.20-3.72)	0.010	210		
	Length of stay	Mean (SD)	19.01 (12.4)	17.4 (9.8)	15.6 (10.3)	NA					
	Length of stay	Median (Q1-Q3)	16 (11-23.5)	16 (11-22)	14 (7-19)	IVA					
		Range	1-60	1-55	2-43						
		_	4 (1.8%)	4 (2.60%)	0 (0%)						
	MANAGE	Missing OUTPATIENT	81 (36.16%)	78 (50.65%)	3 (5.88%)	0 (0%)	1		220		
	WANAGE	OUT to IN	28 (12.50%)	18 (11.69%)	6 (11.77%)	4 (21.05%)	6.40 (1.55-26.36)	0.010	220	5.50 (1.33-22.79)	0.040
		INPATIENT	115 (51.34%)	58 (37.66%)	42 (82.35%)	4 (21.05%) 15 (78.95%)	11.24 (3.38-37.37)			8.56 (2.54-28.83)	0.040
	MANAGE-binary	OUTPATIENT	81 (36.16%)	78 (50.65%)	3 (5.88%)	0 (0%)	1	<0.001	220	6.56 (2.54-26.65)	0.001
	WANAGE-DINARY	PART or TOTAL	143 (63.84%)	76 (49.35%)	48 (94.12%)	19 (100%)	10.26 (3.10-33.94)	<0.001	220		
	On ACEi/ARB	No No	150 (66.96%)	98 (63.64%)	37 (72.55%)	15 (78.95%)	10.26 (5.10-55.54)				
	OII ACEI/ARB	INO	, ,	, ,	, ,	, ,					
		Yes	70 (31.25%)	53 (34.42%)	14 (27.45%)	3 (15.79%)	0.82 (0.44-1.52)	0.518	216		
		Missing	4 (1.79%)	3 (1.95%)	0 (0%)	1 (5.26%)					
	CEIL OF CARE**	Ward	73 (51.05%)	31 (38.27%)	34 (73.91%)	8 (50.00%)	1				
	only 143 obs	NIV	24 (16.78%)	17 (20.99%)	5 (10.87%)	2 (12.50%)	0.36 (0.14-0.94)	0.036	141		
		Mechanical	46 (32.17%)	33 (40.74%)	7 (15.22%)	6 (37.50%)	0.25 (0.12-0.56)	0.001			
		ventilation									
	MAXIMUM	NONE	67 (29.91%)	64 (41.56%)	0 (0%)	3 (15.79%)	NA				
nt	BREATHING	Nasal cannula	60 (26.79%)	40 (25.97%)	14 (27.45%)	6 (31.58%)	NA.				
πe	SUPPORT	Vent/Face mask	32 (14.29%)	6 (3.90%)	23 (45.10%)	3 (15.79%)					
Hospital management	3011 0111	verigi dee mask	32 (14.2370)	0 (3.5070)	23 (43.1070)	3 (13.7370)					
naį		NIV	12 (5.36%)	7 (4.55%)	4 (7.84%)	1 (5.26%)					
na		Mechanical	9 (4.02%)	1 (0.65%)	6 (11.77%)	2 (10.53%)					
al r		Ventilationd	44 (40 640()	26 (22 200/)	4 (7.040()	4 (24 05%)					
oit	Dialysis	Missing Fistula or AVG	44 (19.64%)	36 (23.38%) 89 (57.79%)	4 (7.84%) 24 (47.06%)	4 (21.05%)	1				
lso	-	Line	124 (55.36%) 98 (43.75%)	64 (41.56%)	24 (47.06%)	11 (57.90%) 8 (42.11%)	1.34 (0.77-2.32)	0.298	218		
エ	access	Missing	2 (0.89%)	1 (0.65%)	1 (1.96%)		1.34 (0.77-2.32)	0.296	210		
			, ,			0 (0%)	(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	Dialysis vintage	Mean (SD)	4.092 (4.46)	3.99 (4.43)	4.44 (4.76)	3.94 (4.46)	1.13 (0.86-1.48)	0.393	209		
	5-yrs effect	·	· '	2.57 (1.05-5.27)	` ,	, ,					
		Range	0.003-24.7	0.003-24.7	0.022-22.9	0.22-16.3					
		Missing	11 (4.91%)	8 (5.20%)	2 (3.92%)	1 (5.26%)					
	IMMUNO	No	197 (87.95%)	135 (87.66%)	47 (92.16%)	15 (78.95%)	0.72 (0.27.4.04)	0.533	24.6		
	SUPRESSION	Yes	23 (10.27%)	16 (10.39%)	4 (7.84%)	3 (15.79%)	0.73 (0.27-1.94)	0.523	216		
	ITH ADMISSION	Missing	4 (1.79%)	3 (1.95%)	0 (0%)	1 (5.26%)					
	ITU ADMISSION	No	207 (92.41%)	148 (96.10%)	44 (86.28%)	15 (78.95%)					
		Yes Missing	11 (4.91%) 6 (2.68%)	3 (1.95%) 3 (1.95%)	6 (11.77%) 1 (1.96%)	2 (10.53%) 2 (10.53%)					
	NO PREV TX	0	206 (91.96%)	142 (92.21%)	47 (92.16%)	17 (89.47%)	1				
	NOPELVIX	1-2	14 (6.24%)	9 (5.84%)	47 (32.10%)	1 (5.26%)	1.40 (0.54-3.67)	0.488	216		
		Missing	4 (1.78%)	3 (1.95%)	0 (0%)	1 (5.26%)	1.40 (0.34-3.07)	0.488	210		
	Transplant WAIT LIST	No	201 (89.73%)	135 (87.66%)	48 (94.12%)	18 (94.74%)	1				
	Transplant WAIT LIST	Yes	16 (7.14%)	14 (9.09%)	2 (3.92%)	0 (0%)	0.52 (0.123-2.040)	0.356	215		
		Missing	7 (3.13%)	5 (3.25%)	1 (1.96%)	1 (5.26%)	0.52 (0.125-2.040)	0.550	213		
	FEVER	No	58 (25.89%)	40 (25.97%)	17 (33.33%)	1 (5.26%)				+	
		Yes	138 (61.61%)	96 (62.34%)	31 (60.78%)	11 (57.90%)	0.72 (0.40-1.29)	0.269	193		
		Missing	28 (12.50%)	18 (11.69%)	3 (5.88%)	7 (36.84%)	5.72 (U. 7 U-1.23)	0.203			
ms	SOB	No	105 (46.88%)	85 (55.20%)	17 (33.33%)	3 (15.79%)					
ţo		Yes	92 (41.07%)	52 (33.77%)	31 (60.78%)	9 (47.37%)	2.32 (1.29-4.17)	0.005	194		
Symptoms		Missing	27 (12.05%)	17 (11.04%)	3 (5.88%)	7 (36.84%)	2.52 (1.25-7.17)	5.555			
Syr	DRY COUGH	No	116 (51.79%)	84 (54.55%)	25 (49.02%)	7 (36.84%)					
"		Yes	82 (36.61%)	54 (35.07%)	23 (45.10%)	5 (26.32%)	1.31 (0.74-2.29)	0.352	195		
L]	I	1 (55.51/0)	1 - 1,00.07707	(.5.20/0/	- (20.02/0)	1.31 (0.74-2.29)	0.552	1	ı İ	I

]	Missing	26 (11.61%)	16 (10.39%)	3 (5.88%)	7 (36.84%)		ĺ			l l
	PRODUCTIVE	No	160 (71.43%)	111 (72.08%)	39 (76.47%)	10 (52.63%)					
	COUGH	Yes	37 (16.52%)	25 (16.23%)	10 (19.61%)	2 (10.53%)	1.14 (0.57-2.26)	0.710	194		
		Missing	27 (12.05%)	18 (11.69%)	2 (3.92%)	7 (36.84%)	1.11 (0.57 2.20)	0.710			
	HEADACHE	No	176 (78.57%)	122 (79.22%)	44 (86.27%)	10 (52.63%)					
		Yes	20 (8.93%)	14 (9.09%)	4 (7.84%)	2 (10.53%)	0.76 (0.27-2.10)	0.593	193		
		Missing	28 (12.50%)	18 (11.69%)	3 (5.88%)	7 (36.84%)	0.70 (0.27 2.10)	0.000	255		
	VOMITING	No	166 (74.11%)	118 (76.62%)	39 (76.47%)	9 (47.37%)					
		Yes	30 (13.39%)	18 (11.69%)	9 (17.65%)	3 (15.79%)	1.29 (0.63-2.65)	0.483	193		
		Missing	28 (12.50%)	18 (11.69%)	3 (5.88%)	7 (36.84%)	1.23 (0.03 2.03)	0.103	133		
	ACHES	No	157 (70.10%)	110 (71.43%)	38 (74.51%)	9 (47.37%)					
	& PAINS	Yes	39 (17.42%)	26 (16.88%)	10 (19.61%)	3 (15.79%)	1.06 (0.53-2.15)	0.861	193		
	a i / iii i	Missing	28 (12.50%)	18 (11.69%)	3 (5.88%)	7 (36.84%)	1.00 (0.33 2.13)	0.001	133		
	DIARHOEA	No	165 (73.66%)	113 (73.38%)	43 (84.31%)	9 (47.37%)					
	Diraction Control	Yes	30 (13.39%)	23 (14.94%)	5 (9.80%)	2 (10.53%)	0.60 (0.24-1.51)	0.275	192		
		Missing	29 (12.95%)	18 (11.69%)	3 (5.88%)	8 (42.11%)	0.00 (0.2 : 1.01)	0.275	132		
	SYMPTOMS	No	186 (83.04%)	127 (82.47%)	47 (92.16%)	12 (63.16%)					
	3	Yes	10 (4.46%)	9 (5.84%)	1 (1.96%)	0 (0%)	0.37 (0.05-2.95)	0.350	193		
		Missing	28 (12.50%)	18 (11.69%)	3 (5.88%)	7 (36.84%)	1.0. (0.00 2.00)	0.550			
-	Haemoglobin (g/L)	Mean (SD)	105.04 (15.28)	104.13 (13.74)		103.06 (17.38)	1.10 (0.99-1.22)	0.092	210		
	(8/ L)	Median (Q1-Q3)		105 (96-113)	107 (99-120)	102.5 (91-116)		0.552			
		Range	70-145	73-145	70-141	72-136					
		Missing	11 (4.91%)	5 (3.25%)	2 (3.92%)	18 (94.74%)					
	CRP (mg/L)	Mean (SD)	103.62 (101.8)	89.26 (92.13)		115.14 (110.2)	1.03 (1.01-1.05)	0.005	198		
	(10-unit SHR effect)	Median (Q1-Q3)		65 (28-103.8)	113 (47-212)	76.4 (38.7-					
	(20 0	(42 40)	. (02.0 220.0)	(== ====,	,	183)					
		Range	1.1-596.5	1.1-596.5	4.4-471	6-368					
		Missing	23 (10.27%)	18 (11.69%)	4 (7.84%)	1 (5.26%)					
	CRP	Mean (SD)	4.074 (1.20)	3.91 (1.29)	4.51 (1.10)	4.203 (1.22)	1.44 (1.07-1.93)	0.015	198		
	(log scale)	Median (Q1-Q3)	4.30 (3.46-4.86)	4.17 (3.33-4.64)	4.73 (3.85-5.36)	4.32 (3.7-5.21)					
		Range	0.095-6.39	0.095-6.39	1.48-6.15	1.97-5.91					
		Missing	23 (10.27%)	18(11.69%)	4 (7.84%)	1 (5.26%)					
	WHITE CELL COUNT	Mean (SD)	6.16 (3.175)	5.65 (3.029)	7.39 (3.158)	6.92 (3.476)	1.70 (1.22-2.37)	0.002	210		
	original scale	Median (Q1-Q3)	5.38 (3.9-7.43)	5.1 (3.5-6.6)	6.9 (5.22-9.7)	6.16 (4.27-8.1)					
	(5-unit effect)	Range	1.65-18.9	1.65-18.9	1.8-15.3	2.3-15.2					
	WHITE CELL COUNT	Mean (SD)	1.70 (0.49)	1.62 (.50)	1.90 (0.47)	1.82 (0.50)	2.53 (1.45-4.42)	0.001	210		
es	(log scale)	Median (Q1-Q3)	1.68 (1.36-2.01)	1.63 (1.25-1.89)	1.93 (1.65-2.27)	1.81 (1.45-2.1)					
S		Range	0.5-2.94	0.50-2.94	.59-2.73	0.83-2.72					
Jal		Missing	11 (4.91%)	8 (5.20%)	2(3.92%)	1 (5.26%)					
<u> </u>	NEUTROPHIL COUNT	Mean (SD)	4.67 (2.99)	4.22 (2.88)	5.91 (3.02)	4.98 (2.97)	1.80 (1.26-2.56)	0.001	210		
Blood analy	(x10°/L)	Median (Q1-Q3)	` ,	3.5 (2.3-5.2)	5.4 (3.57-7.9)	4.52 (3-6.1)					
B	original scale	Range	0.68-17.5	0.68-17.5	1.1-13.9	1.2-12.6					
	NEUTROPHIL COUNT	Mean (SD)	1.36 (0.61)	1.26 (0.59)	1.64 (0.56)	1.43 (0.64)	2.30 (1.45-3.66)	<0.001	210		
	(log scale)				1.67 (1.27-2.07)						
		Range	-0.39-2.86	-0.39-2.86	0.10-2.63	0.18-2.53					
		Missing	11 (4.91%)	8 (5.20%)	2 (3.92%)	1 (5.26%)					
	LYMPHOCYTE COUNT	Mean (SD)	0.903(0.49)	0.889 (0.403)	0.815 (0.56)	1.27 (0.73)	0.59 (0.23-1.53)	0.276	210		
	(x10 ⁹ /L)	Median (Q1-Q3)		0.8 (0.6-1.1)	0.7 (0.4-1)	1.2 (0.8-1.6)					
	original scale	Range	0.1-3.6	0.2-2.3	0.1-3.4	0.4-3.6					
	LYMPHOCYTE COUNT	Mean (SD)	-0.23 (0.52)	-0.22(0.45)	-0.39 (0.63)	0.10 (0.54)	0.52 (0.31-0.86)	0.012	210		
	(log scale)	Median (Q1-Q3)		-0.22 (-1.08-	-0.36 (-0.92-	0.18 (-0.22-					
		Rango	0.10)	0.70) -1 61-0 83	0.00)	0.47) -0.92-1.28					
		Range Missing	-1.3-1.28 11 (4.91%)	-1.61-0.83 8 (5.20%)	-2.30-1.22 2 (3.92%)	1 (5.26%)					
	NEUT/LYMP ratio	Mean (SD)	6.9 (8.4)	5.7 (4.97)	11.6 (14.3)	4.8 (3.2)	1.03 (1.017-1.05)	<0.001	210	1.03 (1.01-1.04)	<0.001
	INCOMPTANO	Median (Q1-Q3)		4.30 (2.9-6.7)	7.2 (4.2-13.4)	4.8 (3.2)	1.03 (1.017-1.03)	70.001	210	1.03 (1.01-1.04)	~U.UUI
		Range	0.7-93	0.9-32	0.7-93	0.9-11.98					
	NEUT/LYMP ratio	Mean (SD)	1.59 (.80)	1.47 (.71)	2.03 (.90)	1.33 (0.73)	2.10 (1.54-2.87)	<0.001	210		
	NEO I/ETIVIF TALIO	Ivicali (3D)	1.35 (.00)	1 +.+/ (./1)	2.03 (.30)	1.55 (0.75)	2.10 (1.34-2.07)	~0.001	210	1	ı l

(log scale)	Median (Q1-Q3)	1.54 (1.12-2.05)	1.46 (1.05-1.91)	1.98 (1.43-2.60)	1.40 (0.76-				
					1.99)				
	Range	-0.31-4.53	-0.13-3.47	-0.31-4.53	-0.07-2.48				
	Missing	11 (4.91%)	8 (5.20%)	2 (3.92%)	1 (5.26%)				
ALBUMIN (g/L)	Mean (SD)	33.66 (6.32)	34.25 (6.01)	31.88 (7.14)	33 (6.26)	0.80 (0.64-1.01)	0.059	200	
(5-unit effect)	Median (Q1-Q3)	34 (30-38)	35 (31-39)	33 (29-37)	33.5 (29-35)				
	Range	13-47	16-47	13-45	22-43				
	Missing	20 (8.93%)	7 (4.55%)	8 (15.69%)	5 (26.32%)				

Table 1: Demographic, clinical characteristics and hospital management features of all 224 SARS-CoV-2 positive patients from St George's, King's and St Helier hospitals in London collected between 29th February and 15th May.

Legend: The two columns on the right represent the univariate and adjusted effects of the corresponding raw variable on the SHR of death vs. discharged alive and the p-values tests the null hypothesis that that SHR is 1. A SHR value greater than 1 indicates a harmful effect whilst a value less than 1 indicates a protective effect of the corresponding variable on the left. The last column represents the most parsimonious model derived from the data.

Abbreviations: angiotensin-converting-enzyme inhibitors (ACEi); angiotensin II receptor blockers (ARB); arteriovenous graft (AVG); non-invasive ventilation (NIV). Neutrophil/lymphocyte (NEUT/LYMP)

Table 2

Variable	Summary		Hem	odialysi	s popula	ation		Peritoneal dialysis population							
		St.	King's	St.	Pooled	SARS-CoV-2	P-	St.	King's	St.	Pooled	SARS-CoV-2	P-		
		Helier's		George's		positive	value	Helier's		George's		positive	value		
Total	Number	846	597	294	1737	224		98	90	40	228	10			
Gender	Male	61.9%	59%	58.5%	1048(60%)	133(59%)	0.753	55.1%	60%	60%	132(58%)	8 (80%)	.198		
	Female	28.1%	41%	41.5%	689(40%)	91(41 %)		44.9%	40%	40%	96(42%)	2(20%)			
Ethnicity	White	60%	40%	29.9%	834(48%)	85(38%)	0.001	75.5%	37.8%	47.5%	127(56%)	5(50%	.754		
	Other	35.3%	59.9%	66%	903(52%)	139(62%)		21.4%	62.2%	42.5%	101(44%)	5(50%)	ł		
	Missing	4.7%	0.01%	4.1%				3.1%	0%	10%					
Age(years)	Median	68.7	63.4	66.6	66.5	65	.384	67.1	56.8	62.5	62.2	69.5	.137		
	Q1-Q2	56.4-77.7	53.0-75.1	54.6-75.6		57-77		57.7-76.5	45.5-72.4	50.9-73.8		59-75	ł		
Diabetes	No				1360(78%)	103(46%)					185(81%)	4(40%)			
	Yes	11.9%	35.5%	21.8%	377(22%)	120 (54%)	<0.001	5.1%	28.9%	30%	43(19%)	6(60%)	.004		

Table 2 Comparisons between COVID patients characteristics and the whole sample of ICDH/PD patients across the 3 hospitals.

Legend: The pooled proportions and numbers are weighted averages across the three hospitals.

Table 3

			Hemo	dialysis p	opulation			Peritoneal dialysis population						
	Total RRT	Total ICHD	SARS- CoV-2	Death	Case Fatality Ratio	p- value	Total PD	SARS- CoV-2	Death	Case Fatality Ratio	p- value			
All 3 Hospitals		1737	224	51	23%(17%,28%)	-	98	10	6	30%	-			
London	14394		1021	219	21%(19%,24%)	0.67		44	12	27%	0.257			
England	56201		2134	502	24%(22%,25%)	0.80		78	25	32%	0.299			
UK	66612		2326	553	24%(22%,26%)	0.74		84	26	31%	0.289			

Table 3 Local and national cumulative numbers as reported until 15th May by the UK Renal Registry.

Legend: The p-values are consistent with no difference between the case-fatality ratio in our sample and those in London, England and UK. Our data suggest some evidence that the case fatality ratio is higher in PD than in HD (51/224) and PD (6/10) patients (p=0.015 according to Fisher's exact test).

Table 4

Variable	Category/Summary		CEII	LLING OF CARE		ICU admission					
		ALL	WARD	OPTIFLOW/CPAP	INTUBATION	p-value	NO (207)	YES (11)	Miss (6)	p-value	
GENDER	Male	(143) 84(58.7%)	(73) 46(63.0%)	(24) 9(37.5%)	(46) 29(63.0%)	0.068	121(58.5)	8(72.7)	4 (66.7%)	0.348	
GENDER	Female	59(41.3 %)	27(37.0%)	15(62.5%)	17(37.0%)	0.000	86(41.6)	3(27.3)	2(33.3%)	0.540	
ETHNICITY	White	58(38%)	28(38.4%)	13(54.2%)	17(36.9%)	0.327	78(37.7)	5(45.6)	2(33.3)	0.605	
(binary)	Other	85(62%)	45(61.6%)	11(45.8%)	29(63.1%)		129(62.3)	6(54.6)	4(66.7)		
SMOKING	Never	94 (41.9%)	23(31.5%)	11(45.8%)	19(41.3 %)	0.284	86(41.6)	4(36.4)	4(66.7)	0.715	
status	Ever	71 (31.7%)	28(38.4%)	10(41.7%)	11(13.9%)		66(31.9)	4(36.4)	1 (16.7)		
	Missing	59 (26.3%)	22(30.1%)	3(12.5%)	16(34.8%)		55(26.6)	3(27.3)	1(16.7)		
AGE	Mean (SD)	66.8(14.5)	74.8(8.9)	65.9(12.0)	54.6(14.3)	<0.001	66.7(14.0)	49.9(12.5)	4 (66.7%)	0.0004	
at admission	Median (Q1-Q3)	70(59-78)	77(70-81)	67(57-72.5)	57(44-62)		68(58-77)	53(40-61)	2(33.3%)		
(5 yrs effect)	Range	25-90	37-90	33-87	25-85		26-90	25-63			
BMI	Mean (SD)	27.6(7.7)	25.8(4.9)	28.1 (8.9)	30.6(9.8)	0.1263	28.5(7.6)	31.7 (9.9)		0.296	
(kg/m²)	Median (Q1-Q3)	25.9(22.3-30.1)	25.8(21.4-29.6)	25.3(22.6-29.0)	27.8(23.2-36.5)		26.2(23.1-30.7)	29.9(24.9-35.4)			
	Range	16.5-57.8	16.7-38.2	16.5-51.7	18.4-52.7		16.5-57.8	21.0-49.2			
	Missing	21(14.5%)	9(12%)	9(12.5%)	9(20%)		21(10%)	545.5%)			
WHO	0-2	76 (53.2 %)	22(30.1 %)	17(70.8%)	37(80.4%)	<0.001	120(58%)	8(72.7%)	6(100%)	0.40	
Performance	3-4	66 (46.2 %)	51(69.9%)	7(29.2 %)	8(17.4 %)		80(38.7%)	3(27.3%)	0(0%)		
ststus binary	Missing	1(0.7%)	0(0%)	0(0 %)	1(2.2 %)		7(3.4%)	0(0%)	0(0%)		
NEUT/LYMP	Mean (SD)	1.74(.78)	1.67(.79)	1.96(.68)	1.75(.81)	0.233	1.54(.76)	2.46(.87)		0.0006	
ratio (log scale)	Median (Q1-Q3) Range	1.67(1.25-2.14) 07-4.53	1.63(1.12-2.13) 07-3.52	1.98(1.43-2.44) .65-2.59	1.59(1.25-2.14) .22-4.53		1.53(1.07-1.99) 31-3.52	2.14(1.83-2.90) 1.47-4.53			
(log scale)	Missing	07-4.33 2(1.4%)	0(0%)	1(4%)	1(2%)		11(5%)	0(0%)			
Hist of cancer	No	121 (84.62%)	62 (84.93%)	19 (79.17%)	40 (86.96%)	0.688	176(85.02%)	10(90.91%)	3 (50%)	0.999	
	Yes	22(15.38%)	11 (15.07%)	5 (20.83%)	6 (13.04%)	0.000	29(14.01%)	1(9.09%)	3(50%)	0.555	
	Missing	0(0%)	0(0%)	0(0%)	0(0%)		2(0.97%)	0(0%)	0(0%)		
Hypertension	No	27(18.88%)	10 (13.70%)	6 (25%)	11 (23.91%)	0.269	37(17.87%)	3(27.27%)	1(16.67%)	0.430	
	Yes	116(81.12(%)	63 (86.30%)	18 (75%)	35 (76.09%)		169(81.64%)	8(72.73%)	5(83.33%)		
	Missing	0(0%)	0(0%)	0(0%)	0(0%)		1(0.48%)	0(0%)	0(0%)		
DIABETES	No Yes	72(50.35%) 71 (49.65%)	32 (43.84%) 41 (56.16%)	13 (54.17%) 11 (45.83%)	27 (58.70%) 19 (41.30%)	0.264	91(43.96%) 115(55.56%)	10(90.91%) 1(9.09%)	2(33.33%) 4(66.67%)	0.003	
	Missing	71 (49.65%) 0(0%)	0(0%)	0(0%)	0(0%)		1(0.48%)	0(0%)	0(0%)		
HFrEF	No	118 (83.10%)	54 (73.97%)	22 (91.67%)	42 (93.33%)	0.013	164(79.23%)	11(100%)	6(100%)	0.224	
	Yes	25(16.90%)	20 (26.03%)	2 (8.33%)	3 (6.67%)	0.000	40(19.32%)	0(0%)	0(0%)		
	Missing	0(0%)	0(0%)	0(0%)	0(0%)		3(1.45%)	0(0%)	0(0%)		
CHR LUNG	No	102 (71.33%)	51 (69.86%)	15 (62.50%)	36 (78.26%)	0.379	154(74.40%)	10(90.91%)	4(66.67%)	0.300	
DISEASE	Yes	41 (28.67%)	22 (30.14%)	9 (37.50%)	10 (21.74%)		53(25.60%)	1(9.09%)	2(33.33%)		
Ischaemic	No	94 (65.73%)	43 (58.90%)	15 (62.50%)	36 (78.26%)	0.083	144(69.57%)	9(81.82%)	4(66.67%)	0.518	
heart disease	Yes	49 (34.27%)	30 (41.10%)	9 (37.50%)	10 (21.74%)		60(28.99%)	2(18.18%)	2(33.33%)		
	Missing	0(0%)	0(0%)	0(0%)	0(0%)	0.000	3(1.45%)	0(0%)	0(0%)	0.070	
Cerebrovascul	No	106 (74.13%)	46 (63.01%)	18 (75.00%)	42 (91.30%)	0.003	156(75.36%)	11(100%)	6 (100%)	0.073	
ar disease	Yes	37 (25.87%)	27 (36.99%)	6 (25.00%)	4 (8.70%)		49(23.67%)	0(0%)	0(0%)		
	Missing	0 (0%)	0 (0%)	0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	<u> </u>	

Table 4: Impact of Clinical Variable and comorbidity on Ceiling of care or ICU

Legend: *Tests are conducted on complete data

Figure Title and Legends

Figure 1 The age dependent case fatality ratio and the daily time series of hospital admissions and deaths in COVID-19 positive hemodialysis patients.

Figure 2 The predicted daily cumulative incidence of death and hospital discharge of HD COVID positive patients. Legend The curves indicate a short and fast dynamics of death and a long time to discharge.

Figure 3 The dynamics of hospital death and hospital discharge in association with neutrophil/lymphocytes ratio. Legend: High levels of this ratio are associated with high risk of in-care deaths in COVID-19 positive hemodialysis patients. Low values of this ratio are associated with rapid and high probability of hospital discharge.

Figure 4 Meta-analyses for the pooled case-fatality ratio based on existing research with and without current London study

Figure 1

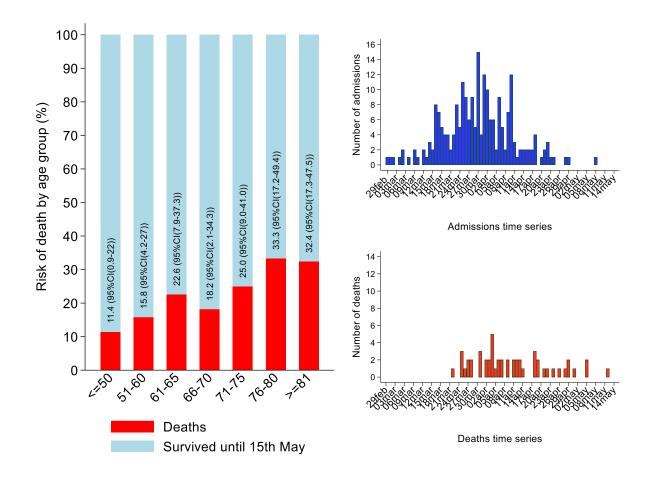


Figure 2

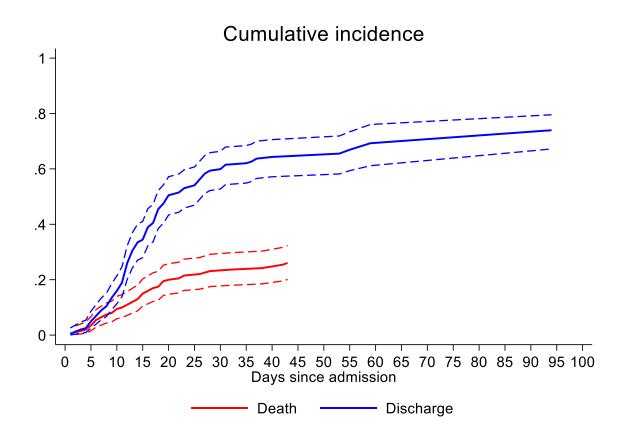
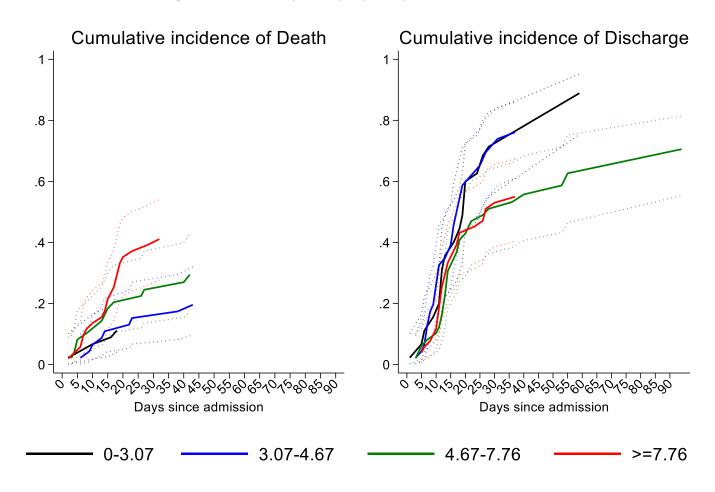
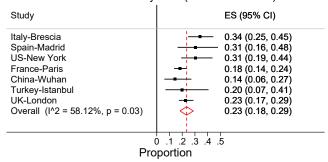




Figure 3: Neutrophil/Lymphocyte ratio

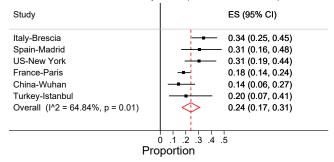


Figure 4

Pooled case-fatality ratio (London included)

Pooled case-fatality ratio (London excluded)

