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ABSTRACT This paper is concerned with providing a new quantitative analysis method of computed torque
control of robot systems by using three types of induced norm. This paper first considers design of a computed
torque controller to achieve a trajectory tracking performance of a robot manipulator. Taking into account of
the effects of unknown elements on the tracking performance, this paper next divides the unknown elements
into model uncertainty and disturbance, and introduces various closed-loop representations of robot systems
consisting of robot manipulators together with computed torque controllers and unknown elements. This
paper further derives a readily applicable robust stability condition for the model uncertainty by using
two types of induced norm from L2 to L2 and from L∞ to L∞. Regarding a performance analysis for the
disturbance, this paper also proposes to take the induced norm from L2 to L∞, by which the relation between
the maximum tracking errors caused by the disturbance and the corresponding parameters of the computed
torque controllers are dealt with. Finally, this paper gives some experiments to validate the effectiveness of
the performance analysis methods based on the L∞/L2-induced norm.

INDEX TERMS Control system analysis, manipulators, performance analysis, robot control.

I. INTRODUCTION
The tracking problem for a given trajectory has been regarded
as one of the most important issues in robot systems.
To achieve desired tracking performances such as asymptotic
stability, minimization of tracking errors, and so on, a number
of control approaches have been deeply discussed in [1]–[4],
and these approaches considered could be also classified as
follows:

1) Model independent method: This method determines
the corresponding control parameters independently of
the numerical information of the system models for
robot systems.

2) Model dependent method: The corresponding control
parameters are generally obtained by using detailed
system information of robot systems.

One of the most representative schemes in the former
method is the proportional-integral-derivative (PID) control,
and various stability concepts corresponding to the PID
control of robot systems have been actively studied in the
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literature. For robot systems operated with a simple PID
controller, more precisely, the concepts of global asymptotic
stability (GAS) and input-to-state stability (ISS) are dealt
with in [5]–[7] and [8], [9], respectively, where the GAS
does not consider external inputs while the ISS takes into
account of exogenous disturbances. However, it is quite dif-
ficult to form a quantitative analysis for the PID control of
robot systems because these stability concepts are proved by
using the general properties of Lagrangian equations without
considering detailed numerical information of the dynamics
of robot systems.

As one of the most useful schemes in the model dependent
method, on the other hand, the computed torque control
has been introduced in [10]–[12]. It is required to explic-
itly computing system models when we take the computed
torque control of robot systems, and this allows us to derive
a closed-loop representation of the dynamics of the robot
systems. In other words, the dynamics of robot systems can
be described by a decoupled and linear time-invariant (LTI)
equation via a linearization scheme of the computed torque
control treatment. Taking into account of the advantages of
the decoupled and LTI nature, a number of schemes to the
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computed torque control with respect to theoretical contri-
butions for robot systems have been discussed in [13]–[19].
Regarding the effectiveness and validity of the computed
torque control in practical senses, various experimental stud-
ies have been also conducted in [20], [21].

Even though it might be generally conclude that the model
dependent method of the computed torque control could lead
to more theoretically thorough arguments than the model
independent method of the PID control in robot systems
since the former method involves computing accurate system
models and employs the model information in the relevant
controller synthesis, such a computation in robot systems is
usually quite difficult because of unknown elements such
as model uncertainties and external disturbances, which are
often occurred in a number of real robot systems. In this
regard, the treatment of unknown elements in robot systems
could play an important role in establishing a theoretical
validity of the computed torque control, and this treatment
can be also regarded as the robust or optimal control problem,
which have been actively dealt with in the field of control
theory (see [22] for details).

In connection with this, based on the arguments of the
Lyapunov methods [23], [24], an advanced issue on the
robust stability of robot systems operated with the com-
puted torque controllers has been studied deeply in [25]–[27].
The corresponding closed-loop systems connected by robot
systems together with the computed torque controllers are
shown in these studies to be robustly stable for unknown
elements, which are assumed to be bounded in a norm sense.
Here, the associated Lyapunov functions should be defined
according to the assumptions of some norm constraints on
the unknown elements. Even though this approach is quite
useful to guarantee the robust stability of the closed-loop
systems, it is difficult to construct a quantitative performance
measure relevant to the computed torque control for unknown
elements by using the arguments in [25]–[27].

With this in mind, this paper introduces another type of
robust stability analysis by using the concept of small-gain
theorem and proposes a new performance measure with
respect to unknown elements in a quantitative fashion. To
this end, the unknown elements are divided into model uncer-
tainty and disturbance, and robust stability conditions for
the model uncertainty are formulated by using two types of
induced norm from L2 to L2 and from L∞ to L∞ (which
are denoted by the L2/L2-induced norm and the L∞/L∞-
induced norm, respectively, for simplicity). Here, it would be
worthwhile to note that the unknown elements considered in
this paper could be naturally assumed to have finite energy or
be bounded persistent. In this sense, taking the L2/L2-induced
norm and the L∞/L∞-induced norm is quite meaningful
since the L2 norm of a signal could describe the energy of
the signal while the L∞ norm of a signal could represent
the maximum magnitude of the signal. Subsequently, the rel-
evant performance specification on the regulated output is
considered in terms of time-domain bounds, and the regulated
output is defined as a sort of weighting function of trajectory

tracking errors. Indeed, the relation between the maximum
magnitude of the regulated output with the energy of the
disturbance is concerned with in this paper; the induced norm
from L2 to L∞ is taken to tackle such a problem.
On the other hand, it should be remarked that even though

the L∞/L2-induced norm and the L∞/L∞-induced norm
have been considered for continuous-time systems [28]–[31]
and sampled-data systems [32]–[37], their applications to
the performance analyses for the computed torque control
of robot systems are studied in this paper for the first time.
Finally, we remark that the arguments in this paper are sig-
nificant extensions of the authors’ conference study [38],
in which the theoretical results, especially for the robust sta-
bility analysis, are omitted and the only simple interpretations
about the experiment results are provided.
The notations used in this paper are as follows. We use

the notations Rν, dmax(·) and tr(·) to mean the set of ν-
dimensional real numbers, the maximum diagonal entry and
the trace of a real symmetric matrix, respectively. The nota-
tions δ(θ ) and ei imply the impulse function occurring at θ =
0 and the ith vector in the natural basis for Rν , respectively.
We use the notation | · |2 to mean either the 2-norm of a
finite-dimensional vector, i.e.,

|x|2 := (xT x)1/2 (1)

or the 2-induced norm of a finite-dimensional matrix, i.e.,

|A|2 := sup
|x|2 6=0

|Ax|2
|x|2

(2)

The notation | · |∞ is used to imply either the∞-norm of a
finite-dimensional vector, i.e.,

|x|∞ := max
i
|xi| (3)

or the∞-induced norm of a finite-dimensional matrix, i.e.,

|A|∞ := sup
|x|∞ 6=0

|Ax|∞
|x|∞

(4)

Consequently, the notations ‖ ·‖2 and ‖ ·‖∞ imply the L2 and
L∞ norms of a vector function, respectively, i.e.,

‖f (·)‖2 :=
(∫
∞

0
|w(t)|22dt

)1/2

(5)

‖f (·)‖∞ := ess sup
0≤t<∞

|f (t)|∞ (6)

The induced norms from L2 to L2, L2 to L∞ and from L∞ to
L∞ of a system are denoted by ‖·‖2/2, ‖·‖∞/2 and ‖·‖∞/∞,
respectively, and we call them the L2/L2-induced norm, L∞/
L2-induced norm and L∞/L∞-induced norm, respectively,
for simplicity.

This paper is organized as follows. The dynamics of
robot systems together with their computed torque control
approach are introduced in Section II. The new type of robust
stability analysis for computed torque control of robot sys-
tems based on small-gain theorem together with the treatment
of the L∞/L2-induced and L∞/L∞-induced norms as the
performance measures are provided in Section III. Some
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experiment results are given in Section IV to demonstrate the
effectiveness and validity of the induced norm-based perfor-
mance analysis methods for robot systems. Finally, we give
the concluding remarks in Section V.

II. COMPUTED TORQUE CONTROL OF ROBOT SYSTEMS
This section introduces the dynamics of robot systems
together with some issues on their computed torque control
approach. First of all, we note that robot systems can be
generally described by the Lagrangian equation

M (q(t))q̈(t)+ C(q(t), q̇(t))q̇(t)+ G(q(t)) = τ (t)+ τd (t)

(7)

where M (q(t)) ∈ Rn×n, C(q(t), q̇(t)) ∈ Rn×n and G(q(t)) ∈
Rn are the Inertia matrix, Coriolis and centrifugal matrix and
gravitational vector, respectively, while q(t) ∈ Rn, τ (t) ∈ Rn

and τd (t) ∈ Rn are the generalized coordinate vector, con-
trol input torque vector and external unknown torque vector,
respectively.

We next consider the tracking problem for the robot sys-
tems of (7) given by

q(t)→ qd (t) (t →∞) (8)

with the desired trajectory qd (t) ∈ Rn. In addition, we intro-
duce the following properties of the Lagrangian equation (7)
together with the desired trajectory in (7), which play impor-
tant roles in establishing a theoretical validity for the control
methods developed in this paper.

(i) M (q(t)), ∀q(t) ∈ Rn is a positive definite matrix.
(ii) There exist positive constants α∗, α∗ ∈ R such that

α∗In ≤ M (q(t)) ≤ α∗, ∀q(t) ∈ Rn.
(iii) There exists a positive constant kc ∈ R such that
|C(q(t), x)y|2 ≤ kc|x|2|y|2, ∀q(t), x, y ∈ Rn.

(iv) There exists a positive constant kg ∈ R such that
|G(q(t))|2 ≤ kg, ∀q(t) ∈ Rn.

(v) Assume that the initial value of G(·) is zero, i.e.,
G(0) = 0.

(vi) The signals considered in the robot system are norm-
bounded, i.e.,
‖[qTd q̇

T
d q̈

T
d ]
T
‖∞ <∞, ‖[qTd q̇

T
d q̈

T
d ]
T
‖2 <∞,

‖[qT q̇T q̈T ]T ‖∞ <∞, ‖[qT q̇T q̈T ]T ‖2 <∞
‖τ‖∞ <∞, ‖τ‖2 <∞.

Here, it is a non-trivial task to derive a closed-loop form
associated with the tracking problem of (8) because of the
nonlinear and coupled characteristics of (7), and thus we are
in a position to derive a closed-loop form associated with the
tracking problemwith the aforementioned properties inmind.
More precisely, the nominal values of the dynamics of (7) are
assumed to be readily obtained in a real-time sense and we
consider the computed torque control [10]–[12] described by

τ (t) = M̂ (q(t))(q̈d (t)− u(t))+ Ĉ(q(t), q̇(t))q̇(t)+ Ĝ(q(t))

(9)

where the notation ˆ(·) means the nominal value of (·). By
substituting (9) into (7), we can obtain

M (q(t))q̈(t) = M̂ (q(t))(q̈d (t)− u(t))

− C̃(q(t), q̇(t))q̇(t)− G̃(q(t))+ τd (t)

= M (q(t))(q̈d (t)− u(t))− M̃ (q(t))(q̈d (t)−u(t))

− C̃(q(t), q̇(t))q̇(t)− G̃(q(t))+ τd (t) (10)

where M̃ (q(t)) := M (q(t)) − M̂ (q(t)), C̃(q(t), q̇(t)) :=
C(q(t), q̇(t))− Ĉ(q(t), q̇(t)) and G̃(q(t)) := G(q(t))− Ĝ(q(t))
denote the corresponding modeling errors. This further leads
to

ë(t) = u(t)+M−1(q(t))M̃ (q(t))(q̈d (t)− u(t))

+M−1(q(t))C̃(q(t), q̇(t))q̇(t)

+M−1(q(t))G̃(q(t))−M−1(q(t))τd (t) (11)

where e(t) := qd (t)− q(t) is the trajectory tracking error.
The conventional studies on the computed torque control

of robot systems ignore the effects of the modeling errors
together with the external disturbance, i.e., it is assumed that
M̃ (q(t)) = 0, C̃(q(t), q̇(t)) = 0, G̃(q(t)) = 0, ∀q(t), q̇(t) ∈
Rn and τd (t) = 0, ∀t ∈ R+. Such an assumption immedi-
ately leads to the following simple linear time-invariant (LTI)
representation:

ë(t) = u(t) (12)

Based on (12), the most representative control scheme to u is
a sort of proportional-derivative (PD) control described by

u(t) = −KPe(t)− KDė(t) (13)

where KP and KD are positive diagonal matrices. This imme-
diately leads to

ë(t)+ KDė(t)+ KPe(t) = 0 (14)

and it is necessary assumed that all the roots of the corre-
sponding characteristic equation

Is2 + KDs+ KP = 0 (15)

are located in the open left half plane (OLHP). With this
necessary condition, we can easily see that e(t) as well as
ė(t) converge to zero as t becomes larger. To summarize,
we could guarantee the trajectory tracking performance such
as e(t)→ 0 (t →∞) (as well as ė(t) = 0 (t →∞)) by using
a simple PD control form of (13) when both the modeling
errors and external disturbances do not exist.

However, it is often required to take into account of the
effects of model uncertainties and external disturbances since
the aforementioned assumptions cannot be generally con-
structed in a number of real robot systems. To put it another
way, because there inevitably exist the modeling errors and
external disturbances that usually affect the stability and per-
formance of robot systems, it is quite important to establish a
theoretical framework for the treatment of the unknown ele-
ments occurred in computed torque control of robot systems.
This motivates us to construct new problem definition with
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the consideration of such unknown elements, and it could be
formulated as follows:

(A) Definition of standard robust control problem: It is
very useful to derive a standard form of robust con-
trol problem when we deal with unknown elements
occurred in computed torque control of robot systems.
If such a standard form is adequately defined, a number
of conventional methods of analysis and synthesis for
robust control systems might be applied to computed
torque control of robot systems.

(B) Development of quantitative analysis methods: It
should be considered to construct quantitative mea-
sures when it is required to evaluate performances
for computed torque control of robot systems corre-
sponding to unknown elements. Subsequently, it is also
necessary to develop computational schemes which are
readily applicable to such quantitative measures.

III. MAIN RESULTS
This section introduces the main results of this paper. To
take into account of the effects of unknown elements on
stability and performance of computed torque control of
robot systems, we first divide the unknown elements into
model uncertainty and disturbance. We then derive various
closed-loop representations by which the relation between
the robot systems together with the model uncertainty and
the disturbance can be described by using LTI first-order
ordinary differential equations. Based on such representa-
tions, we introduce a robust stability condition for model
uncertainty of computed torque control of robot systems.
Furthermore, we propose to take the L∞/L2-induced norm
as the performance measure corresponding to a computed
torque controller for the disturbance.

A. PROBLEM DESCRIPTION OF A STANDARD ROBUST
CONTROL
As a preliminary step to derive an LTI representation of
computed torque control of robot systems, we define the
disturbance vector w(t) ∈ Rn and the model uncertainty
element 1(q(t)) ∈ Rn×n respectively as

w(t) := M−1(q(t))(M̃ (q(t))q̈d (t)+ C̃(q(t), q̇(t))q̇(t)

+ G̃(q(t))− τd (t)) (16)

1(q(t)) := −M−1(q(t))M̃ (q(t)) (17)

Then, the error dynamics of (11) can be represented by

ë(t) := (I +1(q(t)))u(t)+ w(t) (18)

and it immediately follows that

d
dt

[
e
ė

]
=

[
0 I
0 0

] [
e
ė

]
+

[
0

I +1

]
u+

[
0
I

]
w (19)

We next consider the regulated output which depends
on the desired performance specifications for the trajectory
tracking problem, and it could be defined as a function of the

FIGURE 1. Generalized plant with uncertainty for computed torque
control of robot systems.

FIGURE 2. Nominal plant with multiplicative input uncertainty.

trajectory tracking error such that

z(t) := Cpe(t)+ Cd ė(t) (20)

where Cp and Cd are weighting constant matrices to be suit-
ably determined by the user. Furthermore, it is assumed that
both e(t) and ė(t) can be directlymeasured in a real-time sense
throughout the paper. By combining the above procedures, let
us introduce the continuous-time LTI generalized plant P1
shown in Fig. 1, i.e., P1 is given by

P1 :


ẋ = Ax + Bw+ B1u
z = Cx
y = x

(21)

where

A :=
[
0 I
0 0

]
, B :=

[
0
I

]
,

B1 :=
[

0
I +1

]
, C :=

[
Cp Cd

]
(22)

and x(t) := [eT (t) ėT (t)]T ∈ R2n is the state vector,
w(t) ∈ Rn is the disturbance vector, u(t) ∈ Rn is the control
input vector, y(t) ∈ Rn is the measured output vector and
z(t) ∈ Rnz is the regulated output vector.

Here, it is a nontrivial task to derive a meaningful
control scheme in the treatment of P1 since it involves
the model uncertainty element 1. Hence, we consider the
continuous-time LTI nominal plant P given by

P :


ẋ = Ax + Bw+ Br
z = Cx
y = x

(23)

and represent P1 by the control system with multiplicative
input uncertainty as shown in Fig. 2 (with r := (I +1)u). In
other words, the relation from (w, u) to (z, y) of P1 in Fig. 1
are the same as that of the nominal plant with multiplicative
input uncertainty in Fig. 2.

It should be remarked that, more importantly, the represen-
tation of the nominal plant with multiplicative input uncer-
tainty as shown in Fig. 2 could transform the problem for
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FIGURE 3. Closed-loop system 61.

considering 1 occurred in computed torque control of robot
systems into the following standard robust control problems
associated with stability and performance.

1) Robust stabilization problem: It is naturally required
to establish stability for unknown elements occurred in
computed torque control of robot systems. To this end,
the corresponding robust stability condition should be
first introduced. Based on such a condition, it could be
determinedwhether or not control laws proposed by the
users can stabilize the associated closed-loop system
consisting of the control laws and robot systems for the
unknown elements.

2) Performance analysis problem: In addition to the
aforementioned robust stability condition, it is quite
useful to construct quantitative performance measures
together with their computational methods for the
unknown elements in computed torque control of robot
systems. To put it another way, such measures could
evaluate the performances of control laws proposed by
the users for the unknown elements in a numerical/
practical sense.

B. ROBUST STABILITY ANALYSIS
This section deals with constructing a simple method of
robust stability analysis for computed torque control of
robot systems described by the representation as shown
in Fig. 2. As a preliminary step to derive a stability condi-
tion, we consider an LTI feedback controller for P which
stabilizes the corresponding closed-loop system becomes
stable because the nominal plant P given by (23) is
unstable.

Let K be such a stabilizing controller described by

K :

{
ẋK = AK xK + BK y
u = CK xK + DK y

(24)

and consider the corresponding closed-loop system 61 as
shown in Fig. 3. Here, we denote the closed-loop system
obtained by connecting P and K by 6 (with 1 = 0), and
it should be assumed in advance that 6 is stable when we
tackle the problem of robust stability analysis for 61. To put
it another way, the controller parameters (AK , BK , CK , DK )
should be selected to make the state-space equation of

FIGURE 4. Simplified version of 61.

6 described by

6 :



[
ẋ
ẋK

]
=

[
A+ BDK BCK

BK AK

][
x
xK

]
+

[
B
0

]
w

z =
[
C 0

] [ x
xK

] (25)

stable (i.e., all the eigenvalues of
[
A+ BDK BCK

BK AK

]
are

located in the OLHP).With this assumption, we introduce the
simplified version ofP by ignoring both the disturbancew and
the regulated output z, and denote it byPyr . This together with
defining s := 1u also leads to the simplified version of the
closed-loop system 61 as shown in Fig. 4. Such a simplified
version can be also equivalently converted to the standard
robust control system as shown in Fig. 5 by letting 6us be
the closed-loop system from s to u obtained by connecting
Pyr to K in Fig. 4.
Remark 1: Even though it is sufficient to consider the

effect of s on u in the simplified version of61 shown in Fig. 4
to construct the associated robust stability condition, we will
return to the general case with the consideration of w and z
for the corresponding performance analysis in the following
subsection.

Based on the standard representation shown in Fig. 5,
we are led to the following theorem relevant to the robust
stability of the closed-loop system 61.
Theorem 1: The closed-loop system61 is stable for all1

such that ‖1‖2/2 ≤ γ2 if and only if

‖6us‖2/2 < 1/γ2 (26)

and is also stable for all 1 such that ‖1‖∞/∞ ≤ γ∞ if and
only if

‖6us‖∞/∞ < 1/γ∞ (27)

We omit the proof of this theorem because it could be easily
followed by using the arguments of small-gain theorem [22],
[39]. It should be remarked that the main contribution of
this subsection is to derive Theorem 1 which constructs
the new concept of robust stability analysis for computed
torque control of robot systems by using the standard form
of small-gain theorem for the first time. To put it another
way, the assertions of Theorem 1 are intrinsically different to
the conventional studies [25]–[27] on robust stability analy-
sis for computed torque control of robot systems, in which
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FIGURE 5. Standard robust control system.

one should adequately define the corresponding Lyapunov
functions. In contrast, the arguments of Theorem 1 could
be readily applied to the real robot systems equipped with
computed torque controllers because both the L2/L2 and
L∞/L∞-induced norms can be easily obtained by using the
arguments in [22] and [40], respectively.

Regarding the norm boundness of 1 considered in The-
orem 1, on the other hand, we note the definition of 1
in (17) together with the properties (i) and (ii) introduced
in Section II. In other words, it could be readily established
from these arguments that both |1(q(t))|2 and |1(q(t))|∞
are bounded for all q(t) ∈ Rn since M (q(t)), M̂ (q(t)) and
M−1(q(t)) are also bounded for all q(t) ∈ Rn. Hence, if the
matrix 1(q(t)) is regarded as a mapping from u to s, then it
is just a sort of feedthrough term, and thus the L2/L2-induced
norm ‖1‖2/2 and the L∞/L∞-induced norm ‖1‖∞/∞ are
naturally defined as sup

q(t)∈Rn
|1(q(t))|2 and sup

q(t)∈Rn
|1(q(t))|∞,

respectively. Thus, we can see that the norm boundness of
1 assumed in Theorem 1 is valid in both theoretical and
practical senses.

C. PERFORMANCE ANALYSIS
In contrast to the preceding subsection associated with robust
stability analysis, this subsection considers quantitative per-
formance analysis for computed torque control of robot sys-
tems.

To this end, we first return to the general case of the
closed-loop system 61 shown in Fig. 3 and revisit the
state-space equation of 6 given by (25). We represent (25)
by

6 :

{
ξ̇ = Aξ + Bw
z = Cξ

(28)

where

A :=
[
A+ BDK BCK

BK AK

]
, B :=

[
B
0

]
, C :=

[
C 0

]
(29)

with ξ :=
[
xT xTK

]T .
As mentioned in the preceding subsection, the first consid-

eration in selecting the controller parameters AK , BK , CK and
DK is to make A stable, i.e., all the eigenvalues of A should
be located in the OLHP. In addition, they have been also
determined corresponding to desired natural frequencies and
damping ratios relevant to the performance specifications.

However, this approach does not fit into dealing with the
effect of the disturbance w on the regulated output z since it

is practically difficult to predetermine frequency bands for w
and z. More importantly, both natural frequency and damping
ratio are not suitable for characterizing the regulated output z
when we are interested in reducing the maximum magnitude
of z in the time-domain.

With this in mind, the aim of this subsection is to introduce
a quantitative performancemeasure for computed torque con-
trol of robot systems with the consideration of reducing the
maximum magnitude of the regulated output. As a prelim-
inary step to propose an associated performance measure,
we note the characteristics of w from (16) together with the
properties (i)–(vi) introduced in Section II. In other words,
we can see from these properties that

‖w‖2 <∞, ‖w‖∞ <∞ (30)

To summarize, because both the L∞ norm ‖w‖∞ and the
L2 norm ‖w‖2 are bounded, we can take both the L∞/L∞-
induced norm and the L∞/L2-induced norm when we con-
sider the relation between the maximum magnitude of z with
w. However, this paper is mainly concerned with taking the
L∞/L2-induced norm as the performancemeasure rather than
the L∞/L∞-induced norm. This is because the L2 space is
a Hilbert space while the L∞ space is a Banach space, and
thus a number of optimization schemes can be applied to the
L2 space (but almost of them cannot be usually applied to
the L∞ space). Indeed, the L∞/L∞-induced norm cannot be
exactly computed and we should consider an approximation
approach, while the L∞/L2-induced norm could be obtained
in an analytic fashion.

In this sense, we are in a position to take the L∞/L2-
induced norm as such a quantitative performance measure,
and briefly introduce its computation method together with
another interpretation.

We first note from (28) that the input-output behavior of6
can be given by the convolution integral

z(t) =
∫ t

0
C exp(A(t − θ ))Bw(θ )dθ

=: (Fw)(t) (0 ≤ t <∞) (31)

where F can be regarded as an operator from L2 to L∞.
Because F is a linear operator and (Fw)(·) is a continuous
function, it immediately follows that

‖F‖∞/2 := sup
‖w‖2 6=0

‖Fw‖∞
‖w‖2

= sup
‖w‖2=1

‖Fw‖∞

= sup
‖w‖2=1

sup
t
|Fw(t)|∞ (32)

This can be further represented by

‖F‖∞/2 := sup
t

sup
‖w‖2=1

∣∣∣∣∫ t

0
C exp(A(t − θ ))Bw(θ )dθ

∣∣∣∣
∞

= lim
t→∞

sup
‖w‖2=1

∣∣∣∣∫ t

0
C exp(A(t − θ ))Bw(θ )dθ

∣∣∣∣
∞

= sup
‖w‖2=1

∣∣∣∣∫ ∞
0

C exp(Aθ )Bw(θ )dθ
∣∣∣∣
∞

(33)
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The last term of (33) can be explicitly obtained by using
the continuous-time Cauchy-Schwartz inequality, with the
vector-valued functions f1 and f2, described by(∫ t

0
f T1 (θ )f2(θ )dθ

)2

≤

∫ t

0
|f1(θ )|22dθ ·

∫ t

0
|f2(θ )|22dθ (34)

where the equality holds if and only if f1(θ ) = λf2(θ ) (∀θ ∈
[0, t]) for a constant λ. By using this inequality, we have
that

‖F‖∞/2 = max
1≤i≤n

(∫
∞

0
Ci exp(Aθ )BBT exp(AT θ )CTi dθ

)1/2

(35)

because(∫
∞

0
Ci exp(Aθ )Bw(θ )dθ

)2

≤ ‖BT exp(AT (·))CTi ‖
2
2 · ‖w(·)‖

2
2 (36)

where Ci (1 ≤ i ≤ n) denotes the ith row of C.
Here, the integral in the right-hand-side of (35) could
be obtained by solving the continuous-time Lyapunov
equation

AP + PAT
+ BBT = 0 (37)

Hence, we obtain

‖F‖∞/2 = max
1≤i≤n

(CiPCTi ) = d1/2max(CPCT ) (38)

Then, we are led to the following results.
Theorem 2: The L∞/L2-induced norm ‖F‖∞/2 relevant

to (28) coincides with d1/2max(CPCT ).
Corollary 1: Let the L2 norm ‖w‖2 is bounded by ρ2,

i.e., ‖w‖2 ≤ ρ2. Then, it readily follows that

‖z‖∞ ≤ ‖F‖∞/2 · ρ2 = d1/2max(CPCT ) · ρ2 (39)

Theorem 2 clearly implies that the L∞/L2-induced norm
‖F‖∞/2 can be explicitly and easily obtained through the
continuous-time Lyapunov equation, while Corollary 1 is a
simple consequence of Theorem 2 and the property of the
L∞/L2-induced norm. It could be expected from this corol-
lary that the maximum magnitude of the regulated output
z decreases at a no smaller rate than 1/d1/2max(CPCT ). Even
though these results are similar to the results in [28], [29]
or [32], [33], which are associated with the L∞/L2-induced
norm of continuous-time LTI systems or sampled-data sys-
tems, respectively, they are quite meaningful in the sense
that a quantitative performance measure for computed torque
controllers against unknown elements is proposed in a readily
computable fashion of the L∞/L2-induced norm for the first
time.

On the other hand, we also provide another interpretation
of the L∞/L2-induced norm by noting the conventional H2
norm which corresponds to the L2 norm of the impulse

FIGURE 6. 3-DoF robot manipulator.

FIGURE 7. Desired trajectories of three joints.

response. The conventional H2 norm for6, which is denoted
by ‖6‖H2 , is generally given by

‖6‖H2 :=

(
n∑
i=1

‖Fδ(θ )ei‖22

)1/2

=

(
n∑
i=1

‖C exp(A(·))Bei‖22

)1/2

= tr1/2
(∫
∞

0
C exp(At)BBT exp(AT t)CT dt

)
= tr1/2

(
CPCT

)
(40)

If we note that tr1/2(CPCT ) ≥ d1/2max(CPCT ), we can
readily see from Theorem 2 with (40) that the H2 norm is
not smaller than the L∞/L2-induced norm, and they coincide
with each other when nz = 1 (i.e., single-output case). This
can be summarized as follows.
Theorem 3: The L∞/L2-induced norm and the H2 norm

associated with (28) can be described by d1/2max(CPCT ) and
tr1/2(CPCT ), respectively. Furthermore, it is obvious that

tr1/2(CPCT ) ≥ d1/2max(CPCT ) (41)

and they coincided with each other for single-output case
(i.e., nz = 1).
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FIGURE 8. Comparison between the experiment results for the joint angles q(t) and the reference joint angles qd (t).

The L∞/L2-induced norm can be interpreted as a gener-
alized/specific version of the conventional H2 norm since
they coincide with each other for the single-output case.
Even though this induced norm is intrinsically related with
a smooth input function (because the domain is the L2
space), the aforementioned interpretation could say that the
L∞/L2-induced norm can be an alternative to deal with a

non-smooth input function such as impulse disturbances for
the single-output case.

IV. EXPERIMENT RESULTS
In this section, we aim at demonstrating the validity of the
L∞/L2-induced norm as a performance measure for com-
puted torque control of robot systems for disturbances. More
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TABLE 1. Experiment results for the L∞ norm of the regulated output z
and the associated L∞/L2-induced norm.

precisely, the arguments in Theorem 2 and Corollary 1 would
be validated through some experiments. The 3-degrees of
freedom (3-DoF) robot manipulator as shown in Fig. 6 is
employed in this section, where this manipulator consists
of three brush-less direct current (BLDC) motors with three
linkages whose lengths are 0.3, 0.3 and 0.1 m, respectively.
This section deals with the desired trajectories of the three
joints as shown in Fig. 7. They are cosine functions, and the
angles together with velocities are set to be zero at t = 0 [s]
and 4 [s].

Subsequently, we take the controller with a static form for
simplicity. To put it another way, the controller is assumed to
be given by

u = DK y = DK x = DK

[
e
ė

]
=: −

[
Kp Kd

] [e
ė

]
(42)

with

Kp =

kp 0 0
0 kp 0
0 0 kp

 , Kd =

kd 0 0
0 kd 0
0 0 kd

 (43)

(i.e., the parameters AK , BK and CK in (24) are assumed to
be zeros.)

We take various values of the parameters (Kp,Kd ) by
which the associated L∞/L2-induced norm is bounded (i.e.,
A has its all eigenvalues in the OLHP). We also consider the
regulated output z = Cx with the parameter

C =
[
Cp Cd

]
=

15 0 0 1 0 0
0 15 0 0 1 0
0 0 15 0 0 1

 (44)

and observe its L∞ norm ‖z‖∞.
The corresponding experiment results for the joint angles

are shown in Fig. 8. The experiment results for the L∞ norms
of the regulated output z together with the computation results
for the L∞/L2-induced norm ‖F‖∞/2 of the closed-loop
system of (28) are given in Table 1.

It could be observed from Fig. 8 and Table 1 that taking
we can achieve better tracking performances by taking the
L∞/L2-induced norm smaller. We can also confirm from
Table 1 that the L∞ norm of the regulated output z is decreas-
ing as the L∞/L2-induced norm ‖F‖∞/2 becomes smaller.
These experiment observations clearly imply that taking the
L∞/L2-induced norm as a performance measure for com-
puted torque controllers against the model uncertainty and
disturbance is practically meaningful.

FIGURE 9. Comparison between experiment results and estimated values.

On the other hand, the values of ‖z‖∞ on various values
of ‖F‖∞/2 can be also estimated by using the arguments of
Corollary 1 once we have a value of ‖z‖∞ on a specific value
of ‖F‖∞/2. For example, in this experiment, if we use the
values on (kp, kd ) = (30, 10), then the values of ‖z‖∞ can
be estimated as 2.0155 × (‖F‖∞/2/0.6519). In this sense,
it is worth to compare experiment results with the estimated
values obtained by using the arguments in Corollary 1. The
results for such a comparison are shown in Fig. 9.

It could be observed from Fig. 9 (a) that the experiment
results are not larger than the estimated values under the same
‖F‖∞/2. Indeed, we could confirm from Fig. 9 (b) that ‖z‖∞
relevant to the experiment results is decreasing at no slower
convergence rate that relevant to the estimated value since
the slope for the experiment results is always more steep
than that for the estimated values. These observations clearly
demonstrate the validity of the argument in Corollary 1, and
thus the L∞/L2-induced norm can be effectively used as a
performance measure for computed torque controllers.

V. CONCLUDING REMARKS
This paper provided a new quantitative analysis method
of computed torque control of robot systems by using
three types of induced norm of the L2/L2-induced norm,
L∞/L∞-induced norm and L∞/L2-induced norm. To this
end, we first dealt with design of computed torque con-
trollers for trajectory tracking problems of robot manipula-
tors. To take into account of the effects of unknown elements
occurred in the computed torque control treatment of robot
systems, we showed that the unknown elements could be
divided into model uncertainty and disturbance. By using this
decomposition, we introduced various closed-loop represen-
tations of robot systems consisting of robot manipulators
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together with computed torque controllers and unknown ele-
ments. Based on such closed-loop representations, we derived
a readily applicable robust stability condition for the model
uncertainty by using two induced norms of the L2/L2-induced
norm and the L∞/L∞-induced norm. More precisely, in con-
trast to the conventional studies on robust stability analysis for
computed torque control of robot systems based on Lyapunov
theorem, this paper proposed a quantitative robust stability
condition by using the arguments of small-gain theorem. To
tackle the performance analysis problem of the disturbance,
this paper also proposed to take the L∞/L2-induced norm,
by which the relation between the maximum tracking errors
of the regulated output with the disturbance is concerned
with. Furthermore, we introduce another interpretation of the
L∞/L2-induced norm by comparing with the conventional
H2 norm. Indeed, we confirmed from some experiments that
taking the L∞/L2-induced norm as a performance measure
for computed torque controllers against disturbance is prac-
tically meaningful. Finally, we believe that the success in
this paper in introducing the new performance measure for
computed torque controllers based on the L∞/L2-induced
norm contributes to wider applications of computed torque
control approach to a number of practical robot systems.
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