1	The Incidence and Incubation Period of False Positive Cultures in Shoulder Surgery
2	
3	Tyler R. McCarroll, MD
4	Indiana University School of Medicine
5	
6	Ryan R. Jaggers, MD
7	Methodist Sports Medicine
8	
9	Robert A. Cagle, MD
10 11	OrthoNorCal
12	Thomas E. Davis, MD, PhD
13	Indiana University School of Medicine
14	
15	Brenda L. Easton, LPN
16	Methodist Sports Medicine Research and Education Foundation
17	
18	Chris T. Curless, MHA, ATC, LAT
19	Methodist Sports Medicine Research and Education Foundation
20	
21	Gary W. Misamore, MD
22	Methodist Sports Medicine
23	201 Pennsylvania Pkwy, Suite 100
24	Indianapolis, IN 46280, USA

This is the author's manuscript of the article published in final edited form as:

McCarroll, T. R., Jaggers, R. R., Cagle, R. A., Davis, T. E., Easton, B. L., Curless, C. T., & Misamore, G. W. (2020). The Incidence and Incubation Period of False Positive Cultures in Shoulder Surgery. Journal of Shoulder and Elbow Surgery. https://doi.org/10.1016/j.jse.2020.06.030

25	gmisamore@methodistsports.com
	•

- 26
- 27 Disclaimer: None
- 28 Indiana University Office of Research Compliance granted institutional review board approval
- 29 (IRB# 1407463823).
- 30 Grant Support: Thomas A. Brady Trust, Methodist Sports Medicine Research and Education
- 31 Foundation
- 32 Acknowledgments: The authors thank Anietra Butler, MS.

1 ABSTRACT

2 **Background:** Postoperative shoulder infection (PSI) is a significant complication requiring 3 timely identification and treatment. Indolent infections such as those involving Cutibacterium acnes (C. acnes, recently reclassified from *Propionibacterium acnes*¹) provide a diagnostic 4 5 dilemma as they present differently without the acute symptoms associated with most 6 postoperative bone and joint infections. Furthermore, C. acnes is thought to be a common contaminant isolated from intraoperative cultures. With no consensus algorithm, long hold 7 8 cultures play a major role in guiding management decisions in potential PSI. Our study seeks to 9 determine the incidence of positive cultures in both open and arthroscopic procedures in non-10 infected patients as well as clarify whether or not an increase in the incubation time frame leads 11 to an increased rate of culture growth. 12 Methodology: One hundred patients were prospectively enrolled into either an open and 13 arthroscopic procedure group. Patients with abnormal inflammatory labs, history of previous 14 shoulder surgery, or corticosteroid injection within six months of surgery were excluded from the 15 study. Three cultures were obtained for each patient (1superficial tissue culture, 2- tissue culture, 16 and 3- "sterile" control swab). Cultures were held for 28 days and checked on regular intervals. 17 All patients were followed clinically for 6 months to ensure no signs of postoperative infection. 18 **Results:** Ultimately ninety-five patients were included in the final analysis. The false-positive 19 rate in open shoulder surgery was 17.02% and arthroscopic shoulder surgery was 10.4%. The 20 incidence of positive C. acnes cultures was 6.4% in the open group while C. acnes was not 21 isolated in the arthroscopic group. All positive bacterial cultures were reported within seven days

22 of collection. One culture was positive for "mold" at 26 days.

23	Conclusion: A relatively high false-positive culture rate occurred in both open and arthroscopic
24	shoulder surgery. C. acnes was the most commonly identified bacteria in cultures in the open
25	surgery group. Knowledge of one's own institutional false-positive culture rate could be
26	important in avoiding potentially inappropriate treatment. Additionally, we found that holding
27	cultures longer than 14 days did not lead to an increased rate of false positive culture results.
28	
29	Level of Evidence: Basic Science Study; Descriptive Epidemiology Study; Mcirobiology
30	Keywords: Cutibacterium acnes (C. acnes), postoperative shoulder infection, false-positive rate,
31	incubation time, open shoulder surgery, arthroscopic shoulder surgery.
32	
33	
34	Infection following shoulder surgery, particularly in shoulder arthroplasty, is a major
35	cause of morbidity and economic burden requiring timely identification and treatment ^{1,9,13} .
36	Indolent postoperative shoulder infections (PSI) provide a diagnostic dilemma. Persistent pain
37	and stiffness are often the only presenting symptoms without other local, systemic, or
38	radiographic findings commonly associated with most postoperative bone and joint infections.
39	Inflammatory laboratory studies such as erythrocyte sedimentation rate (ESR) and C-3 reactive
40	protein (CRP) are often equivocal with reported sensitivities and specificities below 50% in C.
41	acnes shoulder infections ^{13, 21} . Blood biomarkers have not been found to be reliable ²¹ . Currently,
42	there exists no consensus algorithm to aid in diagnosis of PSI.
43	<i>Cutibacterium acnes</i> (C. <i>acnes</i> , recently reclassified from <i>Propionibacterium acnes</i> ²⁰) is an
44	indolent, aero-tolerant anaerobic, gram-positive bacillus considered normal flora in the sebum
45	containing hair follicles within the dermis around the shoulder and axilla. Once considered

46 merely a contaminant, C. acnes is now considered a pathogenic organism commonly isolated in both open and arthroscopic postoperative shoulder infections^{2, 5, 9, 11, 13, 18, 20}. C. acnes has been 47 48 isolated in up to 70% of periprosthetic shoulder infections¹⁴. Previous studies suggested a 49 commensal nature between C. acnes and the shoulder joint; however, recent data suggests C. 50 acnes is localized to the dermis¹⁶. As a result, infections due to C. acnes are thought to derive 51 from skin contamination during surgery. Recent studies have suggested a high rate of positive cultures from intraoperative samples^{3,4,7,10,12,17}. In their 2015 study, Mook et al found an overall 52 53 incidence of positive cultures as high as 18.3% in patients undergoing open shoulder surgery 54 with a greater propensity for those patients with a history of two or more preoperative corticosteroid injection and male¹². 55 56 Without a reliable diagnostic test or diagnostic algorithm, intraoperative cultures play a

57 major role in guiding management decisions in patients with potential PSI. The diagnostic strength of intraoperative cultures is further confounded by the fastidious nature of C. acnes or 58 59 other indolent bacteria. While the majority of positive cultures for C. acnes are typically identified between seven and ten days^{3, 5, 6, 19} some have advocated for longer incubation times^{4,17}. 60 61 Theoretically, prolonged maintenance of cultures could be associated with an increased likelihood of contamination, which could result in the potential for unnecessary treatment^{3, 4, 7, 17}. 62 63 An understanding of the false-positive rate of intraoperative cultures is critical in the 64 workup of PSI in order to avoid potentially inappropriate treatment. The purpose of the 65 following study was to determine the incidence of false positive cultures in non-infected patients (clear mechanical source of pain, no suspicion of infection, negative inflammatory labs, no 66 corticosteroid injection within six months of surgery) undergoing a primary open or arthroscopic 67

shoulder surgery. Additionally, the study seeks to clarify whether an increase in the incubationtime frame leads to an increased rate of culture growth.

70

71 Materials and Methods

72 <u>Study Design and Cohort</u>

This single surgeon, prospective cohort study was approved by the local institutionalreview board.

This study sought to enroll 100 consecutive patients, 50 into each the arthroscopic and open repair groups. Patients were enrolled from May 2015 to November 2017 in from a private practice clinic prior to surgery. Informed consent was obtained for those patients eligible for the study.

79 Eligible study subjects included adult (>18 years old) patients undergoing open and 80 arthroscopic shoulder surgery for a clearly identified mechanical source of primary shoulder 81 symptoms, including rotator cuff tear, labral tear, instability, tendinosis, and osteoarthritis. 82 Patients with prior shoulder surgery, prior glenohumeral injection within six months of 83 enrollment, systemic or shoulder inflammatory disorder, and clinical or imaging findings raising 84 suspicion of infection were excluded from the study. Additionally, preoperative erythrocyte 85 sedimentation rate (ESR), C-reactive protein (CRP), and procalcitonin (PCT) were obtained as 86 screening tools to further assess underlying infectious or inflammatory process. 87 Procedure and Follow-up

All study participants pre-washed the surgical area with chlorhexidine soap the night before surgery. For all open surgeries, patient's were placed into a semi-sitting position. For all arthroscopic surgeries, patients were placed into a lateral decubitus position. Hair was shaved

91 from the shoulder with electric clippers immediately prior to prepping and draping if the hair 92 interfered with incisions, draping, or postoperative dressings. Pre-surgical skin cleansing was 93 performed over the entire shoulder and down the operative extremity to the wrist. Skin was painted with 100% isopropyl alcohol which was allowed to completely dry. The skin was then 94 95 painted with provodine iodine 10% which was allowed to completely dry prior to draping. 96 Adhesive edged drapes were applied circumferentially about the shoulder and a sterile 97 stockinette was placed over the upper extremity to near the axilla. For open surgeries, all 98 exposed skin about the shoulder was covered and sealed with an occlusive adhesive dressing. 99 Prophylactic antibiotics were delayed until all cultures were obtained. All cultures were taken as 100 quickly as possible after initiation of surgery so that antibiotics were not unduly delayed. 101 At the time of surgery, three cultures (superficial, deep, and "sterile" control) were 102 obtained. A superficial specimen for an open surgery was a tissue biopsy comprised of a small 103 piece of fat/connective tissue (approximately 1 x 1 x 0.5 cm) harvested immediately below the 104 dermal layer. A superficial specimen for an arthroscopic surgery was obtained by using an 105 arthroscopic punch to harvest 5-6 bites of subacromial bursal tissue. A deep specimen was a 106 tissue biopsy of glenohumeral synovial/capsular tissue. The "sterile" control specimen was 107 handled using all of the same procedures, except that the swab never made contact with the 108 patient. The surgical assistant passed the swab to the surgeon, who moved the swab through the

air around the patient's shoulder without contacting any surface for three seconds, and then

110 returned it to the culture vial in the standard fashion.

All samples were tested with gram stain and cultures were done in chocolate agar, blood
agar, Maconkey agar, CNA agar, and thioglycolate broth. Cultures were monitored daily for

113 twenty-eight days for colony growth, opening the plates only if growth was observed. A culture 114 was considered to be positive if any microbial growth occurred. 115 Since all included study patients had a clear mechanical source of primary shoulder pain, 116 no previous shoulder surgery, negative inflammatory labs, no recent injections, and appropriate 117 imaging findings, all positive cultures were considered for the purposes of this study to be false 118 positive due to contamination during sampling, transport, and/or laboratory handling errors. 119 Patients were followed clinically for six months postoperative to ensure preoperative 120 pain resolved postoperatively consistent with an effectively treated mechanical disorder and 121 there was no clinical suspicion of infection (shoulder/wound redness, swelling, warmth, 122 tenderness, or drainage; fever; unexplained malaise). 123 124 **Results** 125 In total, 128 patients were screened for the study. Twenty-two (17.1%) were excluded 126 due to elevated inflammatory labs and six patients did not receive the planned surgery. Of the 127 100 participants enrolled in the study, five patients were removed postop due to laboratory error

in which cultures were either not held for the entire twenty-eight-day protocol or culture

specimens were lost. Ultimately, ninety-five patients were included in the final analysis, forty-

130 seven patients in the open group and forty-eight in the arthroscopic group. In the open group,

131 surgeries included 22 replacement arthroplasties, 22 rotator cuff repairs, and 3 instability repairs.

132 In the arthroscopy group, surgeries included 24 acromioplasties, 17 rotator cuff repairs, 4 distal

133 clavicle resections, and 3 instability repairs. At six months postoperative, all patients had

134 progressed through the postoperative rehabilitation protocol as expected with no signs of

135	infection. However one patient, treated for multidirectional instability, did have some residual				
136	pain without clinical signs or concerns for infection.				
137	Open Surgery Group				
138	In the open group, positive culture results were reported for eight of the forty-seven				
139	patients (17.02%) with one patient yielding positive superficial and deep culture specimens, each				
140	growing a different organism. Nine of the 141 cultures (6.3%) obtained were positive for				
141	bacterial growth. Five positive cultures were from superficial tissue, two positive cultures were				
142	isolated from deep tissue, and two positive cultures were isolated from the control "sterile" swab				
143	group. All positive bacterial cultures were reported within seven days.				
144	C. acnes was isolated in three of the forty-seven patients (6.4%), twice from a superficial				
145	tissue specimen and once from a deep tissue specimen. C. acnes was the most common isolated				
146	organism (33% of positive cultures) in the open group followed by Coagulase-negative				
147	Staphylococcus aureus (CoNS, 22% of positive cultures). All three patients yielding positive C.				
148	acnes growth were men.				
149	Arthroscopic Shoulder Group				
150	In the arthroscopic group, positive culture results were reported five of forty-eight				
151	patients (10.4%). Eight of the 144 cultures (5.5%) were positive for bacterial growth and one of				
152	the 144 cultures (0.7%) was positive for "mold". Of the nine positive cultures, three were				
153	obtained from superficial tissue, three were obtained from deep tissue, and three were obtained				
154	from the "control" swab. Two patients had more than one positive culture with one of the				
155	patients growing Methicillin Resistant Staphylococcus aureus (MRSA) from the superficial,				
156	deep, and "sterile" control cultures. The patient showed no signs of infection postoperatively.				
157	The patient was not treated and progressed through the postoperative protocol as expected with				

158	no sequelae. All positive bacterial culture results were reported within seven days. Only one
159	specimen was isolated beyond one week, which was positive with "mold" at twenty-six days.
160	No specimens from the arthroscopic group were positive for C. acnes. The most common
161	isolated organism was MRSA (50% of positive cultures) followed by CoNS (25% of positive
162	cultures). (Table I)
163	Statistical Analysis
164	We determined, using 1-way analysis of variance (ANOVA), there was no statistically
165	significant difference between control and tissue sample positive culture ($P = 0.35$) and positive
166	C. <i>acnes</i> ($P = 0.78$) rates in the open surgery group. Similarly, in the arthroscopic group, there
167	was no difference between control and tissue sample positive culture ($P = 1$) and positive C.
168	acnes ($P = 1$) rates. Statistical significance was considered for P -values < .05.
169	
170	Discussion
171	Previous studies have shown high rates of positive cultures in operative shoulders when
172	no infection was suspected preoperatively. However, those studies included patients who had had
173	previous shoulder surgery or who had received a recent preoperative cortical steroid injection,
174	either of which could have been a possible source of contamination resulting in an indolent,
175	undiagnosed infection ^{5, 10, 12, 20} .
176	For this study, we excluded any patient with a history of any prior shoulder surgery or
177	who had received a corticosteroid injection within 6 months of surgery. We also excluded any

178 patient with elevated serum inflammatory markers. Still, those measures do not absolutely rule

- 179 out the possibility of an indolent, undiagnosed infection in our patients. Therefore, we also
- 180 performed a "sterile" control culture on each patient by doing cultures from swabs that never had

181 contact with the patient. Thus, any positive control culture would clearly have to be considered182 to be a false-positive.

We identified 9 positive cultures in each of the open and arthroscopic groups. Two of the 9 positive cultures for the open surgery group and 3 of the 9 positive cultures for the arthroscopy group occurred in control specimens. Since the rate of positive cultures for control specimens did not statistically differ from the rate of positive cultures which were actually taken from patients, we surmise that all positive cultures were false-positive for the purpose of this study.

Overall, the rate of positive cultures was similar for both open and arthroscopic surgery groups. There were 9 positive cultures from 141 specimens in the open surgery group (6.4%) and 9 positive cultures from 144 specimens in the arthroscopic surgery group (6.3%). Our study's overall incidence of positive cultures for open surgery (17%: 8 of 47 patients) and arthroscopic surgery (10%: 5 of 48 patients) is consistent with the high false positive rates quoted in previous studies, but the positive culture rate of C. acnes (6% open group and 0% arthroscopic group) was lower than in previous reports.

195 C. acnes was the most commonly isolated organism in the open surgical group. 196 Consistent with the literature, all of our C. acnes cultures were isolated from male patients and 197 the majority were taken from superficial tissues. The one deep tissue sample positive for C. *acnes* could be to sampling error or contamination from the dermis during surgery^{7, 10, 11, 12, 16}. 198 199 While patient preoperative preparation, sampling, and laboratory handling play a more obvious 200 role, previous seeding via previous surgery and/or recent (<6 months) corticosteroid injections 201 might play a small role in the differences in our study's results. Further higher-powered studies 202 with controls would be needed to determine whether previous seeding truly increases the rate of 203 false-positive cultures.

204	Despite a low overall incidence of PSI in arthroscopic surgery of ~0.27%, the false-
205	positive rate of cultures in our study was surprisingly high (approximately 19% of all patients
206	had a positive culture) ⁵ . The high false-positive rate highlights the need to minimize
207	contamination secondary to sampling, transport, or handling errors. Additionally, clinical
208	judgment should not be based solely off culture results, as exemplified by our patient with
209	MRSA-positive cultures from the superficial, deep, and control samples. Given no clinical
210	symptomology combined with resolution of pain postoperatively, the patient avoided
211	inappropriate antibiotic therapy.
212	C. acnes was not isolated in the arthroscopic group in our study, which differed from the
213	positive C. acnes rate reported by Chuang et al [Deep tissue rate 19.6% and Sethi et al (21.8% at
214	14 days, 25.1% positive rate 28 days] ^{5, 20} . An absence of positive C. acnes cultures was not
215	expected given superficial tissue samples and prolonged culture incubation times. Patient pre-
216	surgical preparation, sampling, and laboratory handling differences are thought to account for the
217	majority of our differing results. Perhaps more important than the reason for the differences is
218	the discrepancy in results present in the literature, which further supports the need for consensus
219	algorithm and/or more specific diagnostic test.
220	Holding cultures beyond fourteen days has been suggested in the literature but has been
221	questioned by some authors ^{7, 12} . Recent studies suggest incubation times from seven to thirteen
222	days decrease the false-positive rate of C. acnes. Our results demonstrate that all positive
223	bacterial cultures were identified within seven days (one culture positive to "mold" at twenty six
224	days) and that holding cultures longer than 14 days did not lead to increase rate of false positive
225	culture results.

Our study does have limitations. We are not able to prove the positive cultures are truly false positives. Our study does include patients with history of remote glenohumeral injection, which has been associated with an increased rate of positive cultures¹². We tried to reduce the potential impact of that factor by excluding all patients who had received an injection within six months of surgery. Still, we did not definitively eliminate the possibility of preoperative seeding by injection since one could appropriately argue that any injection at any time frame prior to surgery could cause contamination of the joint.

Another limitation of the study was the short clinical follow-up period. A six month follow-up period may not allow for enough time to reliably determine whether positive cultures were inconsequential, given PSI secondary to C. *acnes* can first present as late as two years post operatively¹. However, all but one patient experienced complete resolution of preoperative pain and none of the patients exhibited clinical symptomology consistent with infection. Still, one could reasonably argue that multi-year follow-up would be necessary to be absolutely sure that none of our patients eventually would present with a shoulder infection.

Another important limitation of this study is the fact that the results reflect an experience in a single health system. Our results may not be generalizable to other microbiology labs, surgeons, or surgery centers. It would certainly be important for all clinicians to understand the false positive risk for their health systems. The clinical and economic implications of treating a patient based on an inaccurate diagnosis for infection, when no infection was actually present, due to a false positive culture could be quite significant.

There are disturbing findings when reviewing the results of our study. One concern, was the high rate of lab errors. We had to exclude five patients due to blatant errors, including lost samples and removing cultures prior to 28 days. Additionally, five of the eighteen positive

249	cultures were from the "sterile" control swabs, which suggest a high rate of contamination during
250	sampling, transport, or laboratory handling. The high rate of errors was considered a significant
251	finding in our study and highlights the need for implementing institutional regulations to limit
252	culture mishandling in the future.
253	Our study supports previous findings of high positive culture rates associated with
254	shoulder surgery. While our results may not be generalizable outside of our health system, it
255	highlights the importance of determining one's own institutional false-positive rate. While the
256	utility of prolonged incubation times beyond fourteen days is debatable, our study did not find an
257	increase in false positive cultures beyond fourteen days.
258	
259	Conclusion
260	Our study's primary objective was to determine the incidence of positive cultures in open
261	and arthroscopic shoulder surgery in patients who were deemed (based on the inclusion and
262	exclusion criteria of this study) to have no preoperative infection. The false-positive rate in open
263	shoulder surgery was 17.02% and arthroscopic shoulder surgery was 10.4%. The incidence of
264	positive C. acnes cultures was 6.4% in the open group while C. acnes was not isolated in the
265	arthroscopic group.
266	Our study's second objective was to determine if there was an increased rate of positive
267	cultures with prolonged incubation time of cultures in the microbiology laboratory. All positive
268	bacterial cultures were reported within seven days of collection. One culture positive for "mold"
269	was isolated at twenty-six days. Thus, this study did not find an increasing rate of false positive
270	cultures by prolonging incubation times to 28 days.
271	

References

273	1.	Athwal GS, Sperling JW, Rispoli DM, Cofield RH. Deep infection after rotator cuff
274		repair. J Shoulder Elbow Surg. 2007;16(3):306-11. doi:10.1016/j.jse.2006.05.013
275	2.	Boileau, P. Complications and revision of reverse total shoulder arthroplasty. Orthop
276		Traumatol Surg Res. 2016;102(1 Suppl):S33-43. doi:10.1016/j.otsr.2015.06.031
277	3.	Bossard DA, Ledergerber B, Zingg PO, Gerber C, Zinkernagel AS, Zbinden R, et al.
278		Optimal length of cultivation time for isolation of <i>Propionibacterium acnes</i> in suspected
279		bone and joint infections is more than 7 Days. J Clin Microbiol. 2016;54(12):3043-9.
280		doi:10.1128/JCM.01435-16
281	4.	Butler-Wu SM, Burns EM, Pottinger PS, Magaret AS, Rakeman JL, Matsen FA III, et al.
282		Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes
283		prosthetic joint infection. J Clin Microbiol. 2011;49(7):2490-5.
284		doi:10.1128/JCM.00450-11
285	5.	Chuang, MJ, Jancosko JJ, Mendoza V, Nottage WM. The incidence of
286		Propionibacterium acnes in shoulder arthroscopy. Arthroscopy. 2015;31(9):1702-7.
287		doi:10.1016/j.arthro.2015.01.029
288	6.	Dodson CC, Craig EV, Cordasco FA, Dines DM, Dines JS, DiCarlo E, et al.
289		Propionibacterium acnes infection after shoulder arthroplasty: a diagnostic challenge. J
290		Shoulder Elbow Surg. 2010;19(2):303-7. doi:10.1016/j.jse.2009.07.065
291	7.	Frangiamore SJ, Saleh A, Grosso MJ, Alolabi B, Bauer TW, Iannotti JP, et al. Early
292		versus late culture growth of Propionibacterium acnes in revision shoulder arthroplasty. J
293		Bone Joint Surg Am. 2015;97(14):1149-58. doi:10.2106/JBJS.N.00881
294	8.	Horneff JG, Hsu JE, Voleti PB, O'Donnell J, Huffman GR. Propionibacterium acnes
295		infection in shoulder arthroscopy patients with postoperative pain. J Shoulder Elbow
296		Surg. 2015;24(6):838-43. doi:10.1016/j.jse.2015.03.008
297	9.	Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic
298		joint infection in the United States. J Arthroplasty. 2012;27(8 Suppl):61-5.e1. doi:
299		10.1016/j.arth.2012.02.022
300	10.	Levy O, Iyer S, Atoun E, Peter N, Hous N, Cash D, et al. Propionibacterium acnes: an
301		underestimated etiology in the pathogenesis of osteoarthritis? J Shoulder Elbow Surg.
302		2013;22(4):505-11. doi:10.1016/j.jse.2012.07.0078

303	11.	Matsen FA III, Russb SM, Bertelsen A, Butler-Wu S, Pottinger PS. Propionibacterium
304		can be isolated from deep cultures obtained at primary arthroplasty despite intravenous
305		antimicrobial prophylaxis. J Shoulder Elbow Surg. 2015;24(6):844-7.
306		doi:10.1016/j.jse.2014.10.0169
307	12.	Mook WR, Klement MR, Green CL, Hazen KC, Garrigues GE. The incidence of
308		Propionibacterium acnes in open shoulder surgery: a controlled diagnostic study. J Bone
309		Joint Surg Am. 2015;97(12):957-63. doi:10.2106/JBJS.N.00784
310	13.	Padegimas EM, Lawrence C, Narzikul AC, Zmistowski BM, Abboud JA, Williams GR,
311		et al. Future surgery after revision shoulder arthroplasty: the impact of unexpected
312		positive cultures. J Shoulder Elbow Surg. 2017;26(6):975-81.
313		doi:10.1016/j.jse.2016.10.023
314	14.	Piper KE, Fernandez-Sampedro M, Steckelberg KE, Mandrekar JN, Karau MJ,
315		Steckelberg JM, et al. C-Reactive protein, erythrocyte sedimentation rate and orthopedic
316		implant infection. PLoS One. 2010;5(2):e9358. doi:10.1371/journal.pone.00093589
317	15.	Pottinger P, Butler-Wu S, Neradilek MB, Merritt A, Bertelsen A, Jette JL, et al.
318		Prognostic factors for bacterial cultures positive for Propionibacterium acnes and other
319		organisms in a large series of revision shoulder arthroplasties performed for stiffness,
320		pain, or loosening. J Bone Joint Surg Am. 2012;94(22):2075-83.
321		doi:10.2106/JBJS.K.00861
322	16.	Qiu B, Al K, Pena-Diaz AM, Athwal GS, Drosdowech D, Faber KJ, et al. Cutibacterium
323		acnes and the shoulder microbiome. J Shoulder Elbow Surg. 2018;27(10):1734-9.
324		doi:10.1016/j.jse.2018.04.019
325	17.	Schafer P, Fink B, Sandow D, Margull A, Berger I, Frommelt L. Prolonged bacterial
326		culture to identify late periprosthetic joint infection: a promising strategy. Clin Infect Dis.
327		2008;47(11):1403-9. doi:10.1086/592973
328	18.	Scholz, CF, Kilian M. The natural history of cutaneous propionibacteria, and
329		reclassification of selected species within the genus Propionibacterium to the proposed
330		novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and
331		Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66(11):4422-32.
332		doi:10.1099/ijsem.0.001367

333	19.	Schwotzer N, Wahl P, Fracheboud D, Gautier E, Chuard C. Optimal culture incubation
334		time in orthopedic device-associated infections: a retrospective analysis of prolonged 14-
335		day incubation. J Clin Microbiol. 2014;52(1):61-6. doi:10.1128/JCM.01766-13
336	20.	Sethi PM, Sabetta JR, Stuek SJ, Horine SV, Vadasdi KB, Greene RT, et al. Presence of
337		Propionibacterium acnes in primary shoulder arthroscopy: results of aspiration and tissue
338		cultures. J Shoulder Elbow Surg. 2015;24(5):796-803. doi:10.1016/j.jse.2014.09.042
339	21.	Shields MV, Abdullah L, Namdari S. The challenge of Propionibacterium acnes and
340		revision shoulder arthroplasty: a review of current diagnostic options. J Shoulder Elbow
341		Surg. 2016;25(6):1034-40. doi:10.1016/j.jse.2016.01.009
342		
343		
344	Table	Legend
345	Table	I. Results

TABLE I

Open surgery

Total	47 subjects		141 specimens	
+ cultures	9 (19.1%)		9 (6.4%)	
	Deep	Superficial		Control
+ culture	2	5		2
+ C acnes	1	2		0

9 positive cultures

Arthroscopic surgery

9 positive cultures

Total	48 subjects		144 specimens		
+ cultures	9 (18.7%)		9 (6.2%)		
	Deep	Superficial		Control	
+ cultures	3	3		3	
+ C acnes	0	0		0	