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Your whole life lies ahead 
It's just around the bend 

 
So when the sun is coming up and you go 

And there's still so many things you don't know 
Don't you look back, I've no doubt that I 

Will see you on the road 
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Why don't you let me carry your load? 
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And I would love it sometime 
If you would walk at my side 

Going I don't know where to sing beneath the stars 
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Nathan Calvert Apathy 

HEALTH INFORMATION EXCHANGE USE IN PRIMARY CARE 

The United States has invested over $40 billion in digitizing the health care 

system, yet the anticipated gains in improved care coordination, quality, and cost savings 

remain largely unrealized. This is due in part to limited interoperability and low rates of 

health information exchange (HIE) use, which can support care coordination and improve 

provider decision-making. Primary care providers are central to the US health care 

delivery system and frequently function as care coordinators, yet capability and HIE use 

gaps among these providers limit the potential of these digital systems to achieve their 

intended goals. 

I study HIE use in the context of primary care to examine 1) factors associated 

with provider HIE use, 2) the extent and nature of team-based HIE use, and 3) differences 

in HIE system use patterns across discrete groups of system users. First, I use a national 

sample of primary care providers to analyze market and practice factors related to HIE 

use for patient referrals. Overall, I find that only 43% of primary care provider referrals 

used HIE. Furthermore, I find substantial variation in HIE use rates across electronic 

health record (EHR) vendors. Second, I use HIE system log data to understand the 

breadth and depth of HIE use among teams, a care model underpinning primary care 

delivery reform efforts. I find that although use of HIE systems remains low, in primary 

care settings it overwhelmingly takes place in a manner consistent with team-based care 

workflows. Furthermore, team-based use does not differ in breadth from single provider 

HIE use, but illustrates less depth before and after visits. Third, I apply cluster analysis to 

16 HIE use measures representing 7 use attributes, and identify 5 discrete user groups. I 
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then compare two of these user groups and find user-level variation in volume and 

efficiency of use, both of which have implications for HIE system design and usability 

improvements. Ultimately, these findings help to inform how HIE use can be increased 

and improved in primary care, moving the US health care system closer to realizing the 

coordination, quality, and cost savings made possible by a digitized delivery system.  

 

Christopher A. Harle, MS, PhD, Co-Chair 

Joshua R. Vest, MPH, PhD, Co-Chair 
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Chapter 1: Introduction 

Background 

Over the past 15 years, the United States (US) health care industry has become 

increasingly digitized. Electronic health records (EHRs) are now nearly ubiquitous in 

hospitals and present in the vast majority of physician practices [1.1, 1.2]. These high 

rates of adoption represent considerable growth since President George W. Bush’s initial 

push to digitize patient records in 2004 [1.3, 1.4], when less than a quarter of providers 

used EHRs [1.5, 1.6]. Much of this growth can be traced to the 2009 Health Information 

Technology for Clinical and Economic Health (HITECH) Act, which encouraged 

adoption of EHRs among both hospitals and providers via incentives totaling over $30 

billion as of 2018 [1.7–1.9]. More recent policy efforts, including the Medicare Access 

and CHIP Reauthorization Act of 2015 (MACRA) and the 21st Century Cures Act of 

2018 (21CC), have sustained this investment to advance digitization of the US health care 

system [1.10, 1.11]. Projections of the benefits from broad health information technology 

(IT) adoption emphasized quality improvements in the domains of efficiency, patient 

safety, and patient health outcomes via preventive care provision and chronic disease 

management [1.12]. However, cost-savings projections emphasized that fully realizing 

many of these benefits depended upon the ability of health IT systems to interoperate and 

share patient health information across providers and organizations [1.13]. 

Progress in Health Information Technology Research 

As health IT adoption and use has increased, researchers have regularly assessed 

progress towards these anticipated benefits, returning to interoperability and health 

information exchange (HIE) as key factors. In the context of this dissertation, health 
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information exchange refers to the act of exchanging patient information between care 

providers or organizations [1.14]. I differentiate this definition of HIE from the 

organizational definition, as in an entity that facilitates information exchange between 

care providers. I refer to these entities as “health information organizations” rather than 

health information exchanges throughout this dissertation. Interoperability, separate from 

HIE, refers to the integration of exchanged data into electronic health record systems and 

other clinical databases. Importantly, interoperability requires no special effort on the part 

of the care provider to obtain or integrate data [1.14]. 

A 2006 systematic review by Chaudhry et al. identified key quality improvements 

from health IT in the areas of improved guideline adherence in particular for preventive 

services, decreased medication errors, and decreased utilization [1.15]. These early 

studies were concentrated among early adopters of health IT; organizations that represent 

a cadre of hospitals and provider organizations demonstrating benefits that may reflect 

high baseline quality and successful implementations [1.16]. With respect to health 

information exchange, the authors noted that only one percent of studies at the time had 

focused on health IT systems with the capability to connect to outside systems, an “area 

critical to the capacity for health information technology to fundamentally change health 

care” [1.15]. 

In 2009, Goldzweig, et al. updated this review with further support for the effectiveness 

of health IT in improving preventive services delivery and mixed effects of health IT on 

chronic disease management [1.16]. This study also observed an increase in studies from 

later-adopting organizations and those evaluating vendor-based rather than homegrown 

EHR systems, an important step in evaluating if and to what extent findings from early 
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adopters are generalizable [1.16]. While the authors did not focus explicitly on 

interoperability or health information exchange studies, they did reiterate that the 

projected cost savings of health IT systems required vastly greater levels of 

interoperability than existed at the time. To support this goal, the authors suggested 

policymakers ease the financial burden of health IT adoption for hospitals and providers. 

In response, alleviating some of this financial burden was one aspect of the HITECH 

Act’s EHR Incentive Program (“Meaningful Use,” now termed “Promoting 

Interoperability” as of 2018). 

The final review of pre-HITECH studies by Buntin, et al. further supported 

generally positive effects of health IT implementations, particularly in the areas of 

efficiency and effectiveness [1.17]. This study also observed a continuation of the trend 

of later-adopting organizations publishing more studies that largely aligned with findings 

from early adopters, a good sign for generalizability of the gains from health IT adoption. 

Despite this rapidly growing body of literature on health IT generally, the authors 

highlighted only one study examining HIE and utilization, which found equivocal results 

and tempered expectations of HIE’s potential to reduce overall utilization [1.18]. 

Furthermore, follow-up studies of the facilitators and barriers to the success of the 

HITECH Act’s provisions [1.19] noted the lack of widespread interoperable HIE and its 

importance to the success of the policy: 

Key goals of HITECH - including enhanced patient care, improved 
clinical outcomes and population health, and increased system efficiency - 
cannot be met unless information is not only digitized through well-
formulated electronic health records but also exchanged in a timely way 
across the health delivery system and with patients and the public. 
(Gold, 2012) 
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After the passage of the HITECH Act, with its multi-billion dollar investment in 

health IT adoption and provisions to encourage and enable more exchange of health 

information [1.7, 1.19, 1.20], it was imperative to re-assess the health IT literature with a 

lens tailored to this new regulatory environment. To this end, Jones, et al. documented the 

increasing rate of growth in health IT evaluation research and examined the outcomes of 

quality, safety, and efficiency across health IT functions incentivized in the HITECH Act, 

including HIE [1.21]. The authors found clinical decision support (CDS) and 

computerized physician order entry (CPOE) to be the two most commonly evaluated 

functions, especially with respect to their relationship with quality outcomes. The broader 

quality domain - including process, satisfaction, and patient health outcomes - illustrated 

overwhelmingly positive findings, primarily in the areas of chronic care management and 

preventive service delivery, consistent with previous reviews [1.16, 1.17]. In the safety 

domain, 78% of medication-related studies reported positive results, spanning care 

environments and numerous outcomes. Efficiency outcomes, specifically utilization, 

demonstrated mixed findings in terms of the effects of health IT on rates of care 

utilization. This is due in part to the fact that care utilization can increase or decrease 

appropriately, depending on the health IT functionality or intervention under evaluation. 

For example, in one study found that visits for treatment among patients with HIV 

increased after implementing HIE for test results, a positive change despite higher 

utilization [1.22]. When taking this into consideration, 85% of the studies reported an 

“appropriate” change in utilization. Provider and patient time use - another important 

efficiency outcome - was equivocal in its conclusions. While studies reliably illustrated 
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decreases in length of stay, reductions in turn-around time for diagnostic testing, and 

quicker initiation of therapies [1.23, 1.24], providers reported that health IT systems had 

increased documentation burden and crowded out meaningful face-to-face time with the 

patient [1.25–1.27]. 

Jones, et al. noted 33 studies examining HIE between 2007 and 2013, a marked 

increase from the Buntin, et al. study finding only one [1.17, 1.21]. These studies 

illustrated predominantly positive results in the domains of utilization, cost, and patient 

health outcomes. Most focused on laboratory results exchange capabilities, showing 

moderately decreased rates of laboratory test ordering, especially for new patients when 

results were available electronically [1.24, 1.28, 1.29]. Other work identified improved 

health outcomes and preventive services for HIV patients [1.22] and faster identification 

of appropriate treatment [1.24]. One HIE evaluation study in a hospital setting noted 

decreased emergency and primary care visits, but increased utilization of specialist visits 

[1.30]. The Jones, et al. review represents considerable progress in HIE research, yet 

these studies examined a rather narrow set of HIE use cases relative to those laid out in 

early cost savings projections [1.13]. Furthermore, benefits from HIE may accrue due to 

any number of underlying mechanisms (e.g. more complete information, system maturity, 

etc.). However, only one of these studies analyzed a mechanism - in this case, time - 

underlying HIE’s effect on lab test ordering [1.29]. This gap was consistent across the 

studies identified by Jones, et al. As a result, the authors concluded that, given the 

proliferation of generally encouraging evidence of health IT’s effects, researchers should 

focus future efforts to understand the more precise mechanisms underlying health IT’s 

relationship to these outcomes [1.21]. Recent studies have heeded this call, pushing 
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forward the evidence base on precisely how health IT systems can be designed, 

implemented, and used to best achieve quality, efficiency, and safety outcomes while 

avoiding clinician burnout [1.31–1.39]. 

Health Information Exchange 

Taken together, the collective studies of health IT noted above highlight that 

while important gains have been made - in particular in the domains of preventive care 

delivery, disease management, and medication safety - fully leveraging health IT towards 

its purported benefits will require growth in adoption and use of interoperable HIE, which 

has lagged overall health IT adoption. To an extent, this lag is unavoidable as the 

underlying digital infrastructure of EHRs and information networks is a necessary 

precursor to functional HIE [1.40]. However, given that nearly all hospitals have adopted 

EHRs [1.1], we might expect more progress in HIE adoption than has been observed in 

national surveys of HIE capabilities [1.41–1.43]. 

In 2017, 88% of hospitals reported the ability to send information electronically, 

and 74% reported the ability to receive data [1.42]. These are encouraging rates for two 

important HIE capabilities, but only 53% of hospitals reported the ability to integrate data 

from outside sources [1.42], a more advanced capability pivotal to achieving many of 

health IT’s potential benefits [1.44]. Physician practices, which traditionally lag hospitals 

in health IT adoption, show the same pattern with HIE capabilities. In 2017, 53% of 

physicians reported the ability to query for patient information; this was the most widely 

reported HIE capability among physicians [1.43]. Only 28% reported the ability to 

integrate information from outside sources, close to half the rate of hospitals [1.43]. The 

lag in HIE adoption has in turn delayed the realization of system-wide benefits including 
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more complete information at the point of care, better-informed care decisions, improved 

care quality, increased efficiency, and reduced costs of care [1.13, 1.20, 1.45, 1.46]. 

While normative levels of HIE adoption are unclear, it is generally understood that to 

achieve these benefits, hospitals and physician practices must increase their adoption and 

use of HIE going forward [1.44, 1.47]. 

Due in part to this lag in adoption and use of HIE, research in the HIE stream of 

health IT literature has proceeded down two paths (Figure 1.1). First, in an effort to 

understand how to bolster HIE adoption and use, scholars have examined the barriers and 

facilitators to HIE adoption and use. This is captured in the blue circle in Figure 1.1. 

Second, researchers have continued the evaluative work summarized above, investigating 

the effects of HIE adoption and use on quality of care (care coordination, patient safety, 

patient outcomes, etc.) and efficiency (testing utilization, cost, etc.). This is represented 

by the orange circle in Figure 1.1 below. I first summarize the “barriers and facilitators” 

literature, then summarize the recent “effects” literature. There are, of course, additional 

streams of HIE-related research, including large bodies of work regarding public health 

use cases [1.48–1.58], HIE and provider market dynamics [1.59–1.66], and informatics 

approaches to implementing HIE systems, among others. 

 

Figure 1.1 Sub-streams of HIE Literature Summarized 
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Facilitators and Barriers to HIE Adoption and Use 

A number of recent systematic reviews have summarized key barriers and 

facilitators to organizational HIE adoption and clinical HIE use [1.67–1.71]. Adoption of 

HIE among hospitals and office-based physicians has been hindered historically by legal 

and regulatory complexity [1.72], implementation costs [1.73–1.75], concerns around 

losing competitive advantage [1.76], and a lack of solid evidence supporting the benefits 

of HIE use [1.75,1.77]. Furthermore, implementation in these settings has faced hurdles 

related to workflow integration [1.78], incomplete data within the HIE [1.79], security 

and privacy concerns [1.80], and a lack of standards to enable interoperability [1.81]. As 

HIE is used in less than 10 percent of encounters, on average [1.69], studies of barriers to 

HIE use have reiterated some of these challenges like incomplete data [1.82,1.83], but 

has emphasized a lack of usability and workflow integration [1.84–1.86]. To facilitate 

HIE adoption and use, literature supports the effectiveness of financial incentives 

[1.72,1.87], socio-technical considerations during implementation [1.88], robust and 

ongoing user training [1.82,1.89,1.90], and consideration of opt-out instead of opt-in 

policies for patient consent to share data [1.83,1.85,1.91,1.92]. Taken together, these 

barriers and facilitators highlight the importance of regulatory attention, to ensure 

continued adoption and use of HIE. 

Because HIE is generally undertaken as a local effort, a series of surveys 

administered between 2008 and 2015 based on the eHealth Initiative (eHI) survey of HIE 

organizations have tracked progress in, barriers to, and facilitators of local and regional 

HIE efforts over time [1.93–1.97]. The most recent survey of HIE efforts was not 
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encouraging, illustrating a decline in HIE efforts nationwide and raising concerns about 

the long-term future of interoperable HIE in the US [1.97]. This finding called further 

attention to policymakers to understand and alleviate the remaining barriers, especially in 

the regulatory arena. These barriers derive in part from regulatory complexity impacting 

both hospitals and organizations facilitating information exchange [1.98,1.99]. In 

particular, while progress has been made in some regulatory areas like “information 

blocking,” organizations continue to have difficulty navigating complex webs of privacy 

and consent laws that often vary across state lines [1.99]. These laws govern how patients 

can provide consent for providers to share their information with other providers via 

health information exchange. Evidence has thus far illustrated that defined consent 

policies paired with incentives have demonstrated a positive relationship with regional 

HIE efforts [1.100] and hospital participation in those efforts [1.101], but more work is 

needed to understand the relationships between varying regulatory approaches and the 

success (or failure) of local and regional HIE efforts. 

Effects and Outcomes of HIE Adoption and Use 

 Despite the challenges to adoption and use noted above, HIE efforts using modern 

HIE systems have been underway for over a decade in the US. Researchers have focused 

on these settings to identify the effects of HIE adoption and use and to gauge whether or 

not the purported benefits of HIE are realized in practice. Here again, several literature 

reviews have focused on synthesizing this evidence [1.69,1.102–1.105], finding mixed 

evidence and somewhat methodologically weak studies until more recent years. Some of 

the strongest evidence of HIE’s effects has been in the study of duplicative testing, with a 

panoply of studies showing a modest but significant relationship between HIE use and 
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reduced laboratory and radiology tests [1.106–1.108]. Extending these findings to 

calculate cost savings has also illustrated modest savings deriving from HIE use, 

primarily in emergency department (ED) settings [1.109,1.110]. In other utilization 

domains, there is considerable evidence for reductions in readmissions and avoidable 

admissions to the hospital [1.111–1.118]. Importantly, these findings are concentrated in 

hospital and emergency department settings, and a recent study examining post-acute 

transitions to long-term care settings found no effect of HIE use on readmissions [1.119]. 

 The evidence of HIE’s effects on patient health outcomes is less robust 

[1.103,1.104]. HIE use has illustrated a positive effect on mammography screening rates 

and various measures of ambulatory quality, including other recommended preventive 

screenings [1.120,1.121]. More detailed clinical measures of health have also been 

studied, with Proeschold-Bell, et al. showing rigorously that HIE use improved clinical 

measures of health status for HIV-positive individuals [1.122]. This finding is congruent 

with additional work illustrating improved HIV clinical outcomes with HIE-enabled 

alerts [1.123]. Boockvar, et al used a randomized design to examine medication-related 

outcomes, but found no effect of HIE use on adverse drug events (ADEs) [1.124]. 

Finally, one study has found a positive effect of HIE adoption on in-hospital mortality, 

studying hospital transfers from five states over three years [1.125]. In summary, the 

literature examining HIE’s impact on patient health outcomes is still relatively nascent, 

compared to utilization and cost research. This is due in part to the difficulty of 

measuring HIE use [1.126], which often involves HIE system log files [1.44,1.127]. This 

measurement challenge has warranted its own study as the field has progressed and led to 
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calls for more theoretically-informed, consistent, and granular measures of HIE system 

use [1.44,1.127]. 

The Challenge of Measuring HIE Use 

Notably, two literature reviews have specifically highlighted that studies of HIE 

use tend to vary in the ways they measure “system use” [1.69,1.127]. The most popular 

measure of HIE use is a binary indicator of HIE access, typically measured at the visit 

level using data from the HIE log files or from the EHR [1.109,1.116,1.120,1.128–

1.135]. Studies have also used availability of HIE post implementation as an independent 

variable in pre/post analyses [1.28,1.30,1.136] and randomized studies that compare 

groups exposed to the availability of HIE [1.110,1.122,1.124,1.137]. Still others use 

hospital or practice-level reported adoption of HIE derived from organizational surveys 

like the American Hospital Association (AHA) Information Technology supplement 

[1.29,1.106,1.125,1.138–1.140]. More granular measures of HIE use in this stream have 

mostly come from studies outside the US, primarily Israel [1.111,1.118,1.133,1.141–

1.146]. Given this variation in measurement, there has been some work to characterize 

and describe HIE use. These studies have either developed typologies of HIE use 

[1.86,1.145] or identified patient and provider characteristics associated with different 

types of HIE use [1.147–1.149]. 

Common Settings of HIE Research 

Finally, while the broader health IT evaluation literature including EHRs, CPOE, 

and other functions has historically been well-balanced across ambulatory providers and 

hospitals [1.16,1.21], the same cannot be said for HIE research [1.105]. There exists a 

considerable body of evidence regarding HIE adoption and use among hospitals and 
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emergency departments, but very few recent HIE studies have taken place in primary care 

settings [1.105,1.150]. As noted by Cross, et al., in order to fully understand the effects of 

HIE, study of diverse care settings and transitions is needed [1.119]. 

To address this gap, I situate this dissertation in the context of primary care. 

Chapter 2 expands knowledge regarding practice and market factors that are related to the 

amount of primary care provider HIE use. Chapter 3 investigates if and to what extent 

HIE tools support primary care delivery reform efforts, in particular team-based care 

workflows. Furthermore, we seek to understand if team-based use of HIE tools differs in 

its nature from provider use. Finally, chapter 4 aims to identify discrete groups of HIE 

system users among a group of primary care users, to inform HIE system design that 

extends beyond “one-size-fits-all” workflows and addresses user preferences with 

dynamic workflows informed by observed system use. 

My work informs efforts to increase provider use of HIE and federal regulatory 

approaches to HIE, tests the feasibility of proposed HIE quality measures, provides the 

first explicit measurement of team-based HIE use, measures the extent to which HIE 

supports primary care delivery reform, applies and extends a conceptual framework of 

multidimensional HIE use [1.144], identifies discrete groups of HIE users that cross-cut 

clinical team roles, and offers recommendations for HIE system interface customization 

based on those groups. Taken together, my dissertation contributes to both the “barriers 

and facilitators” and “HIE use” literature streams described above. Below I describe for 

each of my three studies the specific literature gap I address, the study objective, and 

each study’s contribution to health information technology literature. 
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Practice and Market Factors Associated with HIE Use 

 In chapter 2 of my dissertation, I address a gap in the “barriers and facilitators” 

literature in understanding the practice and market-level factors that are related to 

primary care provider HIE use volume. As noted above, provider adoption and use of 

HIE has historically lagged that of hospitals, making it imperative to understand the 

factors related to HIE use among providers [1.43,1.151]. Despite this, we know relatively 

little regarding the factors influencing HIE adoption and use in primary care settings 

[1.104,1.105], even though over 480 million primary care provider visits occur each year 

[1.152]. Furthermore, there exists no evidence regarding the factors related to the volume 

of HIE use among primary care providers. While qualitative research has unearthed many 

barriers, the factors facilitating increased HIE use for primary care providers remain 

unknown. Success of HIE efforts depends not only on adoption but widespread use; this 

study aims to analyze the factors at the practice and market level that relate to higher or 

lower levels of HIE use among providers. Knowledge of these factors can inform state 

and federal approaches to increase HIE use among primary care physicians and other 

office-based providers. 

The objective of this first study is to identify the factors associated with provider 

HIE use volume. I examine this question in a nationwide sample of primary care 

providers, cardiologists, and orthopedic surgeons in Medicare. Specifically, this study 

explores if and to what extent practice and market factors such as size, EHR vendor, 

system membership, beneficiary mix, market concentration, regional socioeconomic 

factors, and state HIE consent policy (opt-in or opt-out) are associated with varying 

provider levels of HIE use. It also compares primary care providers to a sample of 
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cardiologists and surgeons, to identify heterogeneity in these relationships across 

provider specialties. I measure HIE use as the percentage of patient referrals sent with an 

electronic summary of care (eSCR), a required regulatory measure for Meaningful Use 

Stage 2 (now “Promoting Interoperability”) and measure of HIE use volume. 

This study contributes to the “barriers and facilitators” literature by expanding our 

understanding of the mechanisms that may facilitate or impede primary care provider use 

of HIE. Furthermore, I contribute to the HIE use measurement literature by conducting 

the first study using data from provider-level MU Stage 2 attestation to operationalize an 

important construct of HIE use, namely the volume of HIE use. Other studies have used 

this measure to examine volume of HIE among hospitals [1.92,1.153,1.154]; to my 

knowledge, this is the first study measuring volume of HIE among providers. Finally, I 

contribute to the HIE literature in general by expanding our understanding of how HIE 

varies across different settings. As most HIE studies are set in acute care settings or 

emergency departments, primary care is an under-studied setting in the broader HIE 

literature [1.105], despite its status as a cornerstone of care coordination in the US health 

care ecosystem [1.155,1.156]. 

Team-Based Use of HIE in Primary Care 

 In chapter 3, I address the HIE use measurement literature as well as the primary 

care delivery reform literature. HIE use measurement has thus far lacked measures of 

HIE use that go beyond individual clinical HIE users and individual patient visits [1.127]. 

As noted above, measures of HIE use tend to be binary indicators of “any use,” with the 

most granular measures operationalizing use patterns for individual users. Team-based 

measures of HIE use suggested by national advisory bodies and a literature review of HIE 
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measurement approaches [1.127,1.157] have yet to be implemented. These measures are 

particularly relevant in modern primary care settings, especially those implementing 

delivery reform efforts like the Patient-Centered Medical Home (PCMH) that depend on 

robust information technology and HIE in particular to support team-based care delivery 

workflows and whole-person care [1.158]. Despite its relevance to primary care delivery 

reform, the extent to which HIE use in primary care supports team-based care models 

remains unknown. Furthermore, it remains to be seen whether or not team-based HIE use 

results in broader or deeper use, thereby increasing the information available to care team 

relative to single-user HIE use. 

 The objective of this second study is two-fold. First, I quantify the extent of team-

based use of HIE in primary care settings. Second, I aim to understand if and to what 

extent team-based use of HIE is related to broader or deeper use of these systems, 

compared to single-user, non-team-based use. I use granular measures of HIE breadth and 

depth derived from system use logs from a regional HIE in New York state to construct 

team-based use measures, limiting the study to HIE use from three PCMHs to identify 

primary care settings engaging in delivery reform efforts. 

Primarily, this study advances the knowledge of HIE in support of primary care 

delivery reform efforts, specifically the PCMH initiative emphasizing team-based care 

models. Robust HIE is fundamental to the success of these innovative models of care, and 

my study examines the degree to which existing HIE tools are being used in support of 

these efforts in primary care. I also contribute to literature regarding measurement of HIE 

use, by establishing replicable measures of team use that enable future studies of team 

HIE use. This is innovative in that these measures can be used to further our 
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understanding of the distinct benefits and outcomes from specific types of HIE use. 

Furthermore, this study contributes to the development of quality measures of usability, 

availability of exchanged information, and other aspects of health IT use that are 

byproducts of the care process and thus bestow less onerous reporting requirements on 

health care provider organizations [1.44,1.159]. 

User-Level Patterns of HIE Use 

 Finally, in chapter 4, I address a second gap in the HIE use measurement literature 

which thus far lacks an evidence base pertaining to user-level patterns of HIE system use 

[1.127]. These patterns can be utilized to inform the design of dynamic user interfaces 

that adapt to user needs based on historical use patterns and improve upon the one-size-

fits-all approach of most HIE systems [1.86,1.144]. While several studies have 

characterized and categorized session-level HIE system use across dimensions such as 

diversity, intensity, granularity, and duration [1.80,1.119,1.135,1.142,1.144,1.148, 

1.160], I am aware of no studies characterizing use patterns at the user level. This gap 

leads to a lack of knowledge with respect to discrete categories of HIE system users that 

may cut across user roles. Furthermore, measuring use at the user level can help to 

quantify rates of under-use and system rejection, as well as tease apart more “average” 

users from superusers and non-users, all of which may have varying needs and 

preferences from the HIE system. 

The objective of my third study is to measure and classify HIE users according to 

HIE use measures across the attributes of participation, volume, duration, granularity, 

diversity, content, and efficiency. I apply and extend a conceptual framework of 

multidimensional HIE use to inform my use measures [1.144]. Using the same HIE log 
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data from chapter 3, I conduct a cluster analysis to identify discrete user groups 

demonstrating different use patterns. Secondarily, I examine the ways in which user 

groups vary in their aggregate measures of use, and analyze the ways in which non-

outlier user groups differ from one another in terms of the relationships between 

measures of HIE use. My findings are pertinent to HIE system designers and 

implementers seeking to understand how different types of users behave and how these 

systems can be modified to improve user experience and increase system utility. 

This study contributes to the HIE measurement literature by applying and 

extending a validated measurement framework to the study of user-level HIE use. I 

extend the existing framework via the attributes of efficiency and participation, in order 

to quantify the barriers to accessing clinical information and user-level participation in 

HIE system use. Future researchers can leverage these attributes and measures in studies 

examining the precise nature of HIE use and its impact on clinical decision-making and 

care quality outcomes. This study also contributes to the systemization of HIE 

measurement studies, which frequently suffer from lack of external validity and 

inconsistent measurement operationalization [1.69,1.104,1.127]. Finally, this study offers 

evidence to system designers pertaining to user profiles that may improve user experience 

and improve the efficiency of HIE system use. 
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Chapter 2: Practice and Market Factors Associated with HIE Use 

Introduction 

 Reducing care fragmentation in US health care depends upon the exchange of 

information between providers for effective care coordination and cost savings [2.1–2.3]. 

This health information exchange (HIE) relies upon a robust infrastructure of health 

information technology (IT) to connect providers and hospitals [2.4,2.5]. This 

infrastructure has grown following the 2009 Health Information Technology for 

Economic and Clinical Health (HITECH) Act, as nearly all hospitals have adopted 

electronic health records (EHRs) and EHRs are present in 85% of office-based practices. 

[2.6,2.7]. The HITECH Act also implemented requirements within the Meaningful Use 

(MU, now “Promoting Interoperability”) incentive program for eligible hospitals and 

providers to establish the necessary connectivity to enable HIE, however HIE capabilities 

remain stubbornly behind other health IT capabilities like computerized physician order 

entry (CPOE), especially among office-based providers [2.8]. In 2017, only 36% of 

office-based providers reported sending any electronic data to outside providers, despite 

high rates of EHR adoption [2.8]. Furthermore, we know little about the nature of the 

HIE taking place among office-based providers [2.9,2.10]. Specifically, the volume of 

HIE that is occurring among providers with HIE capabilities remains unknown. 

Beginning in Stage 2 of the MU program, eligible providers were required to 

report the proportion of patient referrals sent with electronic summary of care (eSCR) 

documents. eSCR documents contain 16 elements of structured patient data including 

demographic information, visit information, and clinical information about the patient 

such as the problem list, current medications, allergies, and laboratory results, among 
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other data [2.11]. While methods to send analog summary of care documents are well-

established (e.g. fax), providers face a number of hurdles to sending eSCRs with 

referrals. Primarily, the receiving provider must have the capability to receive eSCRs 

from the sending provider, which involves either direct methods like an EHR interface or 

methods that use a mediator like a community health information exchange organization. 

Beyond the technical capability hurdles, practice characteristics may be correlated 

with the volume of HIE in which a provider engages. For example, providers in an 

integrated health system with a shared EHR experience few barriers to HIE for within-

system referrals. On the other hand, if a provider is in a small independent practice, the 

expense of establishing connections to each provider to whom the practice refers may 

present a high cost and thus limit HIE to referrals only with “connected” providers. 

Furthermore, practices with more complex patients may make more referrals which in 

turn may justify the costs of establishing and using HIE with providers with whom the 

practice regularly shares patients. Finally, EHR vendors have been shown to vary with 

respect to performance on a number of MU measures [2.12], and have been accused of 

engaging in “information blocking” behaviors that may in turn reduce the volume of HIE. 

The broader health care market in which providers compete may also impact the 

volume of HIE. For example, in more competitive markets, providers may perceive a 

disincentive to share patient information, as it may erode market share. Also, having a 

higher quantity of EHR-equipped providers to whom a provider could refer may serve to 

increase HIE volume. Additionally, state-level variation in consent policies for sharing of 

patient health data has been cited as a key challenge for the growth of HIE. Specifically, 
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opt-in policies that require the provider to consent each patient to sharing information 

with other providers may introduce administrative costs that depress HIE volume [2.13].  

We hypothesize provider HIE volume to be related to several practice- and 

market-level factors. First, we hypothesize that HIE volume will be greater among 

providers who are system-affiliated, as they are likely to experience fewer technical 

hurdles and have greater availability of providers to whom they may refer. For similar 

reasons, we expect HIE volume to be greater among providers in larger practices. 

Second, we hypothesize that providers who see more complex patients, on average, will 

demonstrate greater volume of HIE. Third, we hypothesize that the provider’s EHR 

vendor is unrelated to HIE volume, as all certified EHR systems are required to have the 

capability to send eSCRs and thus should not independently be related to HIE volume. 

Among market factors, we hypothesize that providers in areas with few exchange 

partners will demonstrate lower HIE volume. We also hypothesize that providers in more 

competitive markets will demonstrate lower HIE volume, on average. Finally, we expect 

HIE volume to be negatively associated with opt-in state consent policies. While the 

literature has explored provider-level adoption of HIE capabilities [2.8,2.14], the extent 

to which these practice and market forces relate to the volume of HIE among HIE-

adopting providers remains unknown.  

 To address this gap, we analyzed national provider-level data from Stage 2 of the 

MU program in 2016, the first year in which eligible providers were required to report the 

volume of HIE, measured as the percentage of referrals sent with eSCRs. In our primary 

analysis, we combine this data with provider, practice, and market characteristics to 

understand if and to what extent provider volume of HIE is associated with these factors. 
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Our findings directly inform ongoing efforts to increase the level of HIE in the US health 

care system towards the ends of reducing care fragmentation and improving the 

information available to providers at the point of care. Policy-makers, health systems, and 

provider practices can use these findings to understand the factors that may increase HIE 

nationwide or within specific markets. 

Methods 

Data & Sample 

 We combined public data from seven sources for analyses. First, our primary 

outcome variable, provider volume of HIE use, came from MU Stage 2 Public Use Files 

published by the Centers for Medicare and Medicaid Services (CMS). These data include 

the reported values submitted to CMS for each required MU measure for all eligible 

providers, identified by National Provider Identifier (NPI). As reported by CMS, MU 

performance measures are not linked to specific practices; rather we retrieved practice 

affiliations from our second data source, the Physician Compare National Downloadable 

File for December 2016. This provided physician and practice-level characteristics, 

linked by NPI to the MU data. Third, we used data published by the Office of the 

National Coordinator for Health Information Technology (ONC) that captures the 

specific software used for MU attestation for each provider, program stage, and program 

year. Fourth, we used the 2016 Medicare Fee-For-Service Provider Utilization & 

Payment Data Physician and Other Supplier Public Use File [2.15] to capture provider-

level standardized Part B payments for the year. This standardization consists of 

adjusting providers’ Part B payment totals for regional variation in costs to enable 

comparisons across geographies. This data also included average beneficiary age, average 
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beneficiary Hierarchical Condition Category (HCC) risk score, and the proportion of a 

providers’ Part B beneficiary population with specific chronic diseases. Fifth, state-level 

consent policy data was drawn from a recent study of state laws impacting HIE as of 

2016 [2.16]. Sixth, we used the Agency for Healthcare Research and Quality (AHRQ) 

2016 Compendium of US Health Systems to identify practices affiliated with larger 

health systems [2.17]. Finally, county-level control variables were drawn from the 2016 

Area Health Resource File made available by the Health Resources and Services 

Administration (HRSA). 

 To compare providers with similar practices, we limited the sample of providers 

to those with primary specialties of primary care, cardiology, and orthopedic surgery 

consistent with prior literature seeking to represent the clinical domains of primary care, 

medical subspecialties, and surgery [2.18]. Because providers within these broad domains 

refer patients to different types of outside providers and settings for different reasons, we 

focused our analysis on HIE volume, practice factors, and market factors within each of 

these representative specialties, rather than across specialties. 

Outcome: Provider Volume of HIE Use 

Our outcome variable was percent of patient referrals sent with eSCR. This was 

measured as a percentage between 10 and 100. To successfully attest to MU, a provider 

had to report at least ten percent of referrals sent with eSCR, censoring the data at 10%. 

Given the modifications that have taken place to MU, our data for analysis was limited 

only to providers attesting to modified Stage 2 in 2016, so that all providers in the sample 

were under the same reporting requirements for the same year. Providers received an 
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exclusion from this measure in 2016 if they performed fewer than 100 patient referrals 

during the 90-day MU reporting period. 

Practice Factors 

 We included nine practice-level factors in our analyses. To capture practice size, 

we used the number of group members listed in PhysicianCompare. We categorized these 

values into five groups: solo practice, 2-5 providers, 6-10 providers, 11-50 providers, and 

more than 50, based on practice size definitions used in work studying provider quality 

program outcomes [2.19]. EHR vendor for MU attestation came from the EHR Products 

Used for MU Attestation file published by ONC [2.20]. We linked the MU data via EHR 

Certification ID, an identifier of the specific software the eligible provider used to attest 

to MU2 in that year. The eight most common EHR vendors represented 72% of providers 

in this dataset, and were preserved. All other vendors were categorized as “other” and 

constituted the reference group for analyses. We identified practices that were system 

members by matching practice ID from PhysicianCompare to the AHRQ Health System 

Compendium file, and created a binary indicator for practices that were linked to a health 

system. To measure prevalence of chronic disease, we included three variables measuring 

the percentage of beneficiaries the provider saw in 2016 with chronic kidney disease 

(CKD), diabetes, and hypertension. Finally, we included the average beneficiary age and 

HCC score to measure overall patient complexity at the provider level. Both disease 

prevalence and risk score variables are classified here as practice factors, however the 

measures themselves are at the individual provider level, because different providers at 

the same practice can vary in the populations they treat. Given that our outcome variable 
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is measured at the individual provider level, we sought to preserve provider-level 

measures when possible. 

Market Factors 

To measure market concentration, we combined the Physician Compare data with 

Part B payments data [2.15] linked to provider NPI to construct a Herfindahl-Hirschman 

Index (HHI) at the Health Service Area level (HSA). To calculate this measure, 

individual primary care providers were linked to HSAs via ZIP code per definitions from 

the department of Housing and Urban Development (HUD) [2.21]. Market share for each 

provider was calculated as the proportion of the provider’s standardized 2016 Medicare 

payments divided by the total 2016 Medicare payments for all providers within that HSA. 

The HHI was then calculated for each HSA as the sum of squared market shares within 

the HSA. Per Federal Trade Commission (FTC) guidelines, we classified each HSA into 

three groups based on the calculated HHI: not concentrated, moderately concentrated, 

and highly concentrated [2.22]. The number of available providers for exchange in the 

HSA was calculated as the number of unique providers reporting in Physician Compare 

that they used an EHR. Geographic market factors at the county level were included from 

AHRF 2016-2017 and matched based on provider ZIP code from Physician Compare 

[2.23]. We included an indicator for Health Professional Shortage Area (no shortage, 

whole county, or part of the county), the number of Medicare certified hospitals, median 

household income, percent of persons in poverty, and an indicator for metropolitan and 

non-metropolitan counties as defined by HRSA. Finally, we included the state HIE 

consent policy in place in 2016, from a database of state laws impacting HIE [2.16]. 

Consent policies were coded as opt-in, opt-out, other, or none. States coded as “other” 
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were those with ambiguous laws or laws that describe patient consent to HIE as 

“voluntary” with no dictated consent scheme [2.24].  

Analyses 

 First, we categorized providers by increments of 10% of transfers sent with eSCR 

(0%-10%, 11%-20%, etc.), and calculated the number and proportion of providers in each 

category, to quantify the distribution of HIE volume. To analyze the relationship between 

HIE volume and the practice and market factors noted above, we used multivariate OLS 

regression with errors clustered at the practice level. We analyzed primary care providers, 

cardiologists, and orthopedic surgeons in three separate models, all of which controlled 

for two provider-level characteristics in analyses: years in practice as a proxy for 

experience and gender. The final model takes the following form (a full model 

specification can be found in the Regression Model Details in the appendix): 

HIEVolume = 𝛼 + β1PracticeFactors + β2MarketFactors + β3Controls + ε 

We weighted our analyses for providers practicing at multiple locations. Providers 

practicing in multiple locations were required to aggregate their scores over multiple 

practices and report only one value to MU, further limiting our ability to observe 

outcomes at the practice level for all providers affiliated with a practice. Because we did 

not have organization-specific MU scores in the data but did have providers who 

appeared more than once, we weighted these observations accordingly. Provider 

observations were weighted by the inverse of the number of practices they were affiliated 

with. For example, a provider reporting an affiliation with two practices would receive a 

weighting of 0.5 for each observation. 
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Robustness of Model Estimates 

As a robustness test for selection into reporting the eSCR measure to MU Stage 2 

in 2016, we used a Heckman sample selection model. Because providers who obtain 

exemptions for the Stage 2 eSCR MU measure may differ systematically from those who 

are not exempt (e.g. in level of technological sophistication), our linear regression 

estimates may be both inconsistent and biased because we only observe the outcome 

variable for providers who did not obtain exemptions [2.25]. Therefore, to adjust the 

estimates from our main model for potential sample selection effects, we included in the 

first stage of the Heckman model an identification variable indicating provider exemption 

(Yes or No) from the HIE volume measure in the prior attestation year, 2015. This was 

derived from MU Stage 1 or MU Stage 2, depending on the stage to which the provider 

attested in 2015. A provider could apply for and receive an exemption in both years and 

in both stages if he or she referred fewer than 100 patients during the 90-day MU 

reporting period. Therefore, this variable served as a strong - but not perfect - predictor of 

exemption from this measure in 2016 and as a result was a strong predictor of selection 

into our analytic sample. Furthermore, to meet the exclusion restriction for the Heckman 

two-stage model, the identification variable must be unrelated to the outcome, in our case 

the percentage of referrals sent with eSCR. As exemption is based on patient referral 

volume during providers’ reporting period, it is unlikely to be correlated with the specific 

proportion of referrals the provider sent with eSCR, as this measure accounts for 

differences in patient volume across providers. Data preparation and analyses were 

conducted in R using the RStudio development environment and STATA version 15.1 

[2.26–2.28]. 
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Results 

 The final analytic sample included 26,095 providers attesting to MU Stage 2 in 

2016. The vast majority were primary care providers (85.9%, n=22,407), with 2,193 

cardiologists and 1,495 orthopedic surgeons. Overall, the average volume of HIE was 

45.1% of referrals sent with eSCR (sd=28.1 percentage points). Primary care providers 

had the lowest HIE volume, on average (42.7%, sd=27.1), while cardiologists had the 

highest (63.5%, sd=30.9). On average, orthopedic surgeons sent referrals with eSCR in 

54.1% of cases (sd=27.8). In bivariate analysis, HIE volume varied significantly across 

our three provider subgroups (p<0.001). A complete table of descriptive statistics of our 

sample with bivariate analyses can be found in Appendix A, Table A1, and multivariate 

regression results comparing the three provider subgroups are presented in Appendix A, 

Table A2. Providers were not distributed evenly across HIE volume groupings (Figure 

2.1, below). The most frequently observed HIE volume for primary care providers was 

between 11 and 20%; 26% (n=5,556) of the primary care providers in our sample 

reported their HIE volume as just above and including the threshold value of 10%. 

However, for both cardiologists and orthopedic surgeons, the most common range was 

between 90 and 100% of referrals sent with eSCR, with 30.7% of cardiologists (n=447) 

and 15.3% of orthopedic surgeons (n=219) in this highest range. In regression analyses, 

practice factors were more likely to be associated with HIE volume than market factors 

(Table 2.1). Below, we report results for each of the sets of factors across the three 

provider subgroups. 

 

 



40 

 

 

Figure 2.1 Eligible provider performance on Meaningful Use Stage 2: HIE Volume 
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Figure 2.2 Practice factors associated with HIE volume, primary care 

 
Notes: Forest plot displays results from linear regression estimates of the relationship 

between practice factors and provider HIE use volume. HIE use volume is measured as 

the percentage of referrals sent with eSCR, reported to MU Stage 2 in 2016. Model 

adjusts for market factors and controls for provider gender and years in practice. 

Significance levels: *p<0.05 **p<0.01 ***p<0.001. Results for cardiology and 

orthopedic surgery can be found in Table 2.1 and in Appendix A, figures A3 and A5, 

respectively. 
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Practice Factors 

 In regression analyses, the practice factor most consistently associated with HIE 

volume across provider groups was EHR vendor (Table 2.1). For primary care providers, 

use of Cerner, Epic Systems, eClinicalWorks, or GE Healthcare was negatively 

associated with HIE volume (Figure 2.2). These negative relationships ranged in 

magnitude from -13.6 percentage points (eClinicalWorks, p<0.001) to -6.6 percentage 

points (Epic Systems, p=0.017). EHR vendors athenahealth (21.4pp, p<0.001) and 

Greenway Health (15.4pp, p<0.001) were positively associated with HIE volume, 

compared to other EHR vendors (Figure 2.3). Within the sample of cardiologists, Cerner 

and GE Healthcare demonstrated a negative relationship with HIE volume (-12.3pp, 

p=0.06 & -18.8pp, p=0.003). Use of Cerner was also negatively correlated with HIE 

volume for orthopedic surgeons (-25.8pp, p<0.001), as was Epic Systems (-11.7pp, 

p=0.049) and NextGen Healthcare (-11.3pp, p=0.008). Within the surgeon sample, 

Greenway Health had a positive associate with HIE volume (29.6pp, p<0.001). 
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Figure 2.3 Relationship between EHR vendor and HIE volume, primary care 

 
Notes: All estimates adjust for practice and market factors, as well as for provider years 

in practice and gender. All estimates are relative to providers with EHRs not in the top 

eight most common (i.e. “Other”). Plot does not show 95% confidence intervals for 

estimates. Significance levels: *p<0.05 **p<0.01 ***p<0.001. See Figure 2 and/or Table 

2.1 for complete results. HIE Volume is measured as the percentage of patient referrals 

sent with eSCR. Results for Cardiology and Orthopedic Surgery can be found in 

Appendix Figures A1 and A2, respectively. 

  

Larger practice sizes were associated with greater rates of referrals send with 

eSCR for both primary care providers and cardiologists, compared to practices with 

between 2 and 5 providers. Primary care practices with more than 51 providers had 4pp 

higher HIE volume, on average, compared to practices with 2-5 providers (p=0.019). 
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Cardiologists in practices with 11 to 50 providers had 12.9pp higher HIE use volume 

(p=0.002).  

 Health system membership was associated with HIE volume only in the 

cardiology provider group; providers affiliated with health systems sent referrals with 

eSCR in 7.3pp more cases (p=0.019). For primary care providers, average beneficiary age 

(0.3pp, p=0.042) and average beneficiary HCC risk scores were both positively 

associated with volume of HIE, with each additional point on the HCC risk scale 

associated with 4.8pp more referrals sent with eSCR (p<0.001). 

Market Factors 

 Relative to practice factors, few market factors were associated with HIE use 

volume for providers across the three specialty groups. For primary care providers, the 

number of Medicare hospitals was positively associated with HIE volume (0.2pp, 

p=0.009, Figure 2.4). Furthermore, primary care providers located in counties classified 

as either partial or full health professional shortage areas illustrated lower levels of HIE 

volume (-8.0pp, p=0.007 & -4.4pp, p=0.019). This relationship for full health 

professional shortage areas was more pronounced among cardiologists, who sent referrals 

with eSCR in 15.3pp fewer cases (p<0.001), compared to counties with no shortage in 

health professionals. Across all three provider groups, market concentration, number of 

providers in the HSA with EHRs, non-metropolitan location, and state HIE consent 

policy were unrelated to provider HIE volume. We found no market factors to be 

associated with HIE volume for orthopedic surgeons. 
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Figure 2.4 Market factors associated with HIE volume, primary care 

 
Notes: Forest plot displays results from linear regression estimates of the relationship 

between market factors and provider HIE use volume. HIE use volume is measured as the 

percentage of referrals sent with eSCR, reported to MU Stage 2 in 2016. Model adjusts 

for practice factors and controls for provider gender and years in practice. Significance 

levels: *p<0.05 **p<0.01 ***p<0.001. Results for cardiology and orthopedic surgery can 

be found in Table 2.1 and in Appendix A, figures A4 and A6, respectively. 
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Table 2.1 Regression results: practice and market factors associated with HIE volume 

  Primary Care Cardiology Orthopedic Surgery 

  B [95% CI] p B [95% CI] p B [95% CI] p 
Practice Factors       

Practice Size 2 to 5 reference  reference  reference  

 >51 providers 4 [0.7,7.4]* 0.019 8.4 [-0.3,17.1] 0.059 
5.4 [-

2.5,13.2] 0.183 

 11 to 50 1.4 [-1.2,4] 0.282 
12.9 

[4.7,21.2]** 0.002 2.5 [-5,10.1] 0.51 

 6 to 10 -1.4 [-4.3,1.4] 0.32 8.2 [-2.1,18.4] 0.119 -1.2 [-11,8.5] 0.803 

 Solo practice 2.1 [-0.2,4.4] 0.078 4 [-6.3,14.2] 0.448 
-0.9  

[-10.5,8.8] 0.86 

EHR Vendor other reference  reference  reference  

 Allscripts -4 [-9.4,1.3] 0.138 0.8 [-15.9,17.5] 0.925 
-1.4 [-

11.7,8.8] 0.784 

 athenahealth, Inc. 
21.4 

[17.9,24.8]*** p<0.001 -12 [-25.1,1.1] 0.074 -7.3 [-15,0.3] 0.06 

 
Cerner 
Corporation -7.2 [-13.4,-1]* 0.023 

-12.3  
[-20.9,-3.6]** 0.006 

-25.8  
[-37.8,-

13.8]*** p<0.001 

 
eClinicalWorks, 
LLC 

-13.6 [-16.7,-
10.5]*** p<0.001 4.4 [-1.2,10] 0.12 

-9.6 [-
20.2,0.9] 0.073 

 
Epic Systems 
Corporation -6.6 [-12,-1.2]* 0.017 

-0.1 [-
15.4,15.2] 0.991 

-11.7 [-
23.4,0]* 0.049 

 GE Healthcare -7.4 [-13,-1.7]* 0.011 
-18.8  

[-31.1,-6.5]** 0.003 
-14 [-

31.8,3.8] 0.124 

 
Greenway Health, 
LLC 

15.4 
[8.2,22.7]*** p<0.001 11.2 [-0.4,22.7] 0.058 

29.6 
[20,39.2]*** p<0.001 

 
NextGen 
Healthcare -1.7 [-6.4,3.1] 0.491 -8.6 [-17.3,0.1] 0.052 

-11.3  
[-19.7,-3]** 0.008 

Health System 
Membership 

Not in a health 
system reference  reference  reference  

 In a health system 0.1 [-3.4,3.6] 0.936 7.3 [1.2,13.4]* 0.019 -2.2 [-8.2,3.7] 0.463 

Provider Market Share (w/in specialty) 0.3 [0.1,0.4]*** p<0.001 0 [-0.1,0.1] 0.99 -0.1 [-0.3,0]* 0.01 

Average Beneficiary Age 0.3 [0,0.5]* 0.042 -0.7 [-1.8,0.4] 0.228 0.2 [-0.7,1.1] 0.676 

Average Beneficiary HCC Risk Score 4.8 [2,7.5]*** p<0.001 
-3.4 [-

17.5,10.6] 0.632 
-8.6 [-

23.6,6.4] 0.259 

% of Beneficiaries w/ CKD 
-0.2  

[-0.3,-0.1]** 0.002 0.2 [-0.4,0.7] 0.551 -0.2 [-0.7,0.4] 0.573 

% of Beneficiaries w/ Diabetes 0.1 [-0.1,0.2] 0.325 -0.3 [-0.8,0.1] 0.15 
0.7 

[0.3,1.2]*** p<0.001 

% of Beneficiaries w/ Hypertension 0 [-0.2,0.1] 0.557 0.7 [-0.8,2.2] 0.384 -0.2 [-0.6,0.3] 0.458 
Market Factors 
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HSA Concentration 
Index Unconcentrated reference  reference  reference  

 
Moderately 
Concentrated -1 [-6.8,4.8] 0.745 -5.9 [-13.4,1.7] 0.131 

5.6 [-
1.2,12.4] 0.108 

 
Highly 
Concentrated -4.1 [-8.6,0.4] 0.073 4.3 [-2.9,11.5] 0.241 1.6 [-4.5,7.7] 0.614 

Number of Providers with EHRs in 
HSA 0 [0,0] 0.477 0 [0,0] 0.44 0 [0,0] 0.829 

Number of Medicare Hospitals, county 0.2 [0,0.3]** 0.009 0 [-0.3,0.3] 0.922 0.1 [-0.2,0.4] 0.626 

Health Professional 
Shortage Area No Shortage reference  reference  reference  

 Partial Shortage -8 [-13.7,-2.2]** 0.007 
-4.2  

[-21.2,12.7] 0.624 
-2.3 [-

17.5,13] 0.77 

 Full Shortage -4.4 [-8.1,-0.7]* 0.019 
-15.3  

[-21.5,-9]*** p<0.001 2.9 [-4.3,10] 0.432 

Median Household Income, county 0 [0,0] 0.928 0 [0,0]*** p<0.001 0 [0,0] 0.183 

Percent of Persons in Poverty, county 0.1 [-0.3,0.5] 0.637 1 [0.1,2]* 0.033 -0.2 [-1,0.6] 0.592 
Metro vs. Non-
Metro (%) Metro reference  reference  reference  

 non-Metro -0.4 [-3.5,2.7] 0.806 -4.4 [-11.2,2.3] 0.198 -0.3 [-7.1,6.4] 0.925 

State HIE Consent 
Policy NoPolicy reference  reference  reference  

 OptIn 3.1 [-1,7.3] 0.137 -4.9 [-11.7,1.9] 0.16 -0.3 [-6.8,6.2] 0.933 

 OptOut 1.4 [-1.7,4.5] 0.383 1.2 [-6,8.3] 0.751 -1.8 [-9.4,5.8] 0.643 

 Other 2.8 [-0.6,6.1] 0.103 -2.8 [-9.9,4.4] 0.448 -1.1 [-7.5,5.2] 0.731 
Control Variables       

Provider Gender F reference  reference  reference  

 M -0.8 [-1.7,0.2] 0.103 1.4 [-3.2,6] 0.549 
-4.6 [-

13.3,4.1] 0.301 

Years in Practice 0.1 [0,0.1]** 0.003 0.1 [0,0.2] 0.138 -0.1 [-0.2,0.1] 0.301 

 Constant 21 [-1.7,43.6] 0.07 
42.2  

[-98.4,182.9] 0.556 
41.4  

[-36.1,118.9] 0.295 

 AIC 197702 20279 13726 

 n 21,178 2,116 1,454 

Notes: Significance levels: *p<0.05 **p<0.01 ***p<0.001. All models use robust 

standard errors clustered at the practice level. 
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Model Robustness 

In the Heckman sample selection model, our identification variable of 2015 

exclusion status served as a significant predictor of selection into the sample for all three 

provider subgroups (βPCP=-1.73, p<0.001; βCard=-1.83, p<0.001; βOrtho=-1.88, p<0.001). 

We found moderate evidence of sample selection bias among primary care providers 

using the altrho (𝝆) statistic to test the correlation between the errors of the first stage 

(sample selection) model and those of the second stage (OLS) model (𝝆PCP = -0.0797, 

p=0.031) [2.29]. We did not observe this for cardiologists or orthopedic surgeons (𝝆Card = 

0.015, p=0.794; 𝝆Ortho = -0.0253, p=0.732). The negative 𝝆 value for primary care 

providers is consistent with the anticipated finding that those who received an exclusion 

for this measure had a lower predicted volume of HIE than providers whom we observe 

in the sample. Furthermore, and consistent with the low magnitude of bias present in the 

primary care sample, we found that the estimates from the second stage of the Heckman 

model differed only trivially from the primary analysis results described above 

(Appendix A, Tables A3, A4, & A5). This lack of difference combined with the lack of 

evidence of bias among cardiologists and orthopedic surgeons motivated our choice to 

report the primary OLS results for all provider subgroups rather than the Heckman 

adjusted results. 

Discussion 

 We analyzed national data on provider HIE use volume reported to MU Stage 2 in 

2016. We find that, on average, providers outperformed the minimum threshold set by 

CMS of 10% of patient referrals sent with eSCR. Overall, 45% of referrals were sent with 

eSCR, suggesting that providers used HIE at higher rates given the infrastructure for 
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exchange was available. While MU Stage 3 proposals had planned to increase the 

required eSCR threshold for providers to 30% of referrals [2.30], subsequent regulatory 

revisions incorporated into the Merit-Based Incentive Payment System (MIPS) and 

Promoting Interoperability (PI) programs have reduced this requirement to the original 

MU Stage 1 requirement to send an eSCR for only 1 patient referral during the reporting 

period for the 2017-2020 program years [2.31]. Requirements for MU Stage 1 and Stage 

2 were set intentionally low, in order to prioritize the high early-stage investment needed 

to first create a network of providers with the capability to exchange information. At the 

outset, the incentives for Stage 3 and beyond were designed to incentivize the widespread 

use of this network. Recent policy revisions may reflect an initial under-estimate of the 

costs and available resources to establish HIE capabilities in office-based practices. It is 

not clear whether this reduced regulatory burden will impact the volume of HIE among 

providers, however our results suggest that the majority of providers do not merely meet 

the minimum threshold, conditional on the capability to send eSCRs. While we observe 

higher than minimum rates of HIE use in our provider sample, it is important to note that 

more than 40,000 providers from the three selected specialty groups received an 

exclusion from reporting this measure in 2016 and are thus out of our sample. These 

providers may differ from our sample in unobserved but important ways (e.g. in adoption 

of HIE capabilities) and thus our findings do not shed light on HIE volume among these 

exempted providers. 

 Among providers reporting HIE volume, practice characteristics were more 

commonly associated with HIE volume than market characteristics. In particular, we 

observed large and statistically significant relationships between the EHR vendor each 
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practice used and HIE volume. Primary care providers using athenahealth for their EHR 

sent eSCRs with, on average, 21 percentage points more referrals than providers using 

other EHR vendors not in the top eight most common vendors. More troubling, we 

observe far more negative relationships between major EHR vendors and HIE volume. 

The two largest inpatient EHR vendors, Cerner and Epic Systems, both demonstrate 

consistent negative relationships with HIE volume in our provider sample. Given that our 

analysis focuses on providers who are not primarily located in inpatient settings, this 

finding may reflect HIE workflows within these EHRs that are designed for inpatient care 

and thus are more challenging for outpatient providers. A similar study examining 

hospital level of HIE using the same nationwide MU Stage 2 data for hospitals found that 

hospitals using Epic sent 7 percentage points more transfers with eSCR [2.11], suggesting 

that inpatient-focused EHRs may facilitate HIE volume in inpatient settings, while 

outpatient-focused EHRs - such as athenahealth - better facilitate HIE among outpatient 

providers. This setting-vendor match should be considered in future studies seeking to 

compare the use of health IT across vendors and across settings, as some proportion of 

EHR vendor-level findings may be rooted in workflows not matched for the setting in 

which the EHR is used. 

 We found that primary care providers who saw, on average, more complex 

patients (as measured by average HCC risk score) sent referrals with eSCR at higher 

rates. This finding fits with prior studies finding that HIE use is more likely for more 

complex patients [2.32,2.33]. Furthermore, we do not see this effect for cardiologists or 

surgeons, highlighting possible differences in HIE use for complex patients between 

providers who are more commonly distributing information (e.g. primary care providers) 
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from those who predominantly receive information (e.g. specialists). Because primary 

care providers often must take on this role of care coordinators for complex patients 

[2.34,2.35], having systems in place to send patient information collected in primary care 

to other providers is particularly important for realizing a return on the collective national 

investment in health IT. In parallel, it may be more important to ensure that specialists 

have the ability to effectively receive information, especially as it pertains to more 

complex patients, who may be more likely to have information sent electronically with 

their referrals. 

 We found few market-level factors to be related to provider HIE volume across 

specialty groups. In particular, the lack of relationship between market concentration and 

HIE volume suggests that anti-competitive information sharing behavior among 

providers may not be a contributing factor to the volume of HIE in a given market. While 

previous studies of hospitals have shown that adoption of HIE and presence of health 

information organizations is lower in more competitive markets [2.36–2.38], our findings 

illustrate that, among providers with the capability to exchange, HIE volume does not 

differ across HSAs with varying levels of market concentration. If anti-competitive 

behavior was related to HIE volume, one would expect more highly concentrated markets 

(i.e. less competitive markets) to have higher rates of HIE, compared to more competitive 

markets where providers stand to lose from broad information sharing. This finding, in 

conjunction with previous work failing to find a relationship between market competition 

and hospital level of HIE [2.11,2.24], suggests that while HIE adoption decisions may be 

a function of market concentration, once adoption has occurred, competition does not 

appear to impact the level of HIE among providers or hospitals. As a result, regulatory 
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efforts to combat anti-competitive information sharing behavior may be most effective 

when focused on adoption of HIE capabilities, rather than on the volume of HIE that 

occurs among entities with these capabilities; recent updates to the MIPS and PI 

programs noted above reflect this programmatic focus. A policy focus on adoption and 

HIE capabilities is further supported by the lack of a relationship between state HIE 

consent policy and provider HIE volume, consistent with prior literature studying 

hospitals [2.24]. While provider HIE volume seems to be unrelated to specific policy 

choices (in this case regarding consent), policy choices may facilitate or hinder provider 

adoption of HIE capabilities, as has been illustrated in previous studies of hospitals 

[2.24,2.39,2.40]. 

 Finally, both primary care providers and cardiologists located in counties 

classified as “full shortage” by HRSA illustrated lower HIE volume, compared to those in 

counties with no provider shortage. This finding may reflect a relative lack of viable 

partners for exchange in the region, a factor that has not been shown to impact hospital 

HIE volume [2.11].  

Taken together with the existing literature, these findings have important 

implications for policy-makers aiming to design a regulatory environment that fosters 

widespread HIE between providers and hospitals. Primarily, our findings illustrate that 

eSCRs are sent in less than half of all patient referrals, even among providers with these 

capabilities. This is likely to be an overestimate of the true national rate of eSCR use, as 

only one-third of providers report even having the ability to send eSCRs. To realize the 

potential return on the investment to-date in health IT, HIE capabilities among providers 

and subsequent use of HIE will likely need to increase. Furthermore, our analysis makes 
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clear that among providers who have these capabilities, practice factors like EHR vendor 

and patient complexity play an important role with respect to HIE volume, and this 

variation should be reflected in the regulatory incentives put in place via the MIPS and PI 

programs. Finally, our findings suggest that there may be EHR vendor-specific factors 

that facilitate or hinder provider HIE and that these factors may vary across provider 

settings. For example, an EHR vendor whose main product is focused on inpatient 

settings may need to specifically examine outpatient HIE workflows to reach HIE volume 

parity with EHRs that are predominantly focused on outpatient provider markets. 

Limitations 

 Our study has both strengths and limitations. To our knowledge, this is the first 

nation-wide study to examine provider volume of HIE use, as measured by provider MU 

Stage 2 attestation data. Additionally, we combined several public data sources to 

construct a sample that controls for observable confounding effects. Moreover, the 

current study is the first to directly examine the relationship between practice and market 

factors and HIE volume among office-based providers. Our sample of providers 

represents primary care, medical specialties, and surgical providers, and as such reflects 

important differences in HIE volume and provides insight into variation across different 

provider groups in the factors related to HIE volume. Finally, we use a measure of HIE 

use that is both more granular than many survey measures and is explicitly tied to policy 

goals for HIE use set by federal incentive programs. 

Even considering these strengths, our study is inherently limited in that it is cross-

sectional, and therefore all relationships must be understood as associative rather than 

causal. Furthermore, our study captures a snapshot of HIE use as of 2016. Provider 



54 

practices are regularly increasing their technological capabilities with respect to HIE, and 

community HIE efforts have continued to facilitate more exchange of clinical data among 

a growing number of partner organizations. Additionally, the providers in our sample 

may not be generalizable to the overall Medicare physician population, as the sample 

consists of providers attesting to MU Stage 2 in 2016 who did not receive an exemption 

from the HIE measure (more than half of providers received this exemption). As such, 

interpretation of our results should consider the fact that our sample, by definition, has 

the capability to send eSCRs, which only 36% of office-based providers nationwide 

reported in 2017 [2.8]. Therefore, our findings provide insight on HIE volume 

conditional on providers’ ability to exchange data. 

Conclusion 

 We used nationwide data measuring provider HIE volume among primary care 

providers, cardiologists, and orthopedic surgeons to analyze the relationship between HIE 

volume and practice and market factors. We found that on average less than half of 

referrals are sent with eSCR documents. Furthermore, practice factors like EHR vendor 

and patient complexity were related to HIE volume, with heterogeneous effects across 

provider groups. Fewer market factors played a role in provider HIE volume, suggesting 

that market forces may impact adoption of HIE capabilities more than they impact 

provider use of HIE once it is adopted. To foster more use of HIE across the health care 

system, policy-makers should consider the relative impact that market factors may have 

on adoption, compared to practice-level factors that are related to the use of HIE more 

directly. Future research may explore in more detail the nature of the relationship 
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between provider EHR vendor and HIE volume, as well as the varying health IT needs of 

providers who may primarily send or primarily receive health data.  
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Chapter 3: Team-based use of HIE in primary care 

Introduction 

To improve care coordination and reduce the negative impact of care 

fragmentation, efforts such as the National Committee for Quality Assurance (NCQA) 

Patient-Centered Medical Home (PCMH) model [3.1] emphasize team-based and whole 

person care. Team-based care involves at least two clinical providers at the same primary 

care site working collaboratively with the patient towards shared health goals. Whole 

person care embraces a comprehensive understanding of patient health that transcends the 

normally fragmented view of the patient that the US health care system typically can 

provide. Both of these approaches require information sharing within care teams at a 

single site as well as between different provider teams and specialists caring for the same 

patient [3.2,3.3]. To support this information sharing, PCMHs rely on advanced health 

information technology (IT) to facilitate intra-team communication, care coordination 

efforts with outside providers, and distribution of clinical tasks across team members 

[3.4–3.8]. 

Studies of PCMHs have highlighted the importance of interoperable health 

information technology (IT) for supporting the goal of successful care coordination [3.3, 

3.4,3.9,3.10], yet literature is scant regarding the extent to which this technology has been 

applied in practice to support team-based and whole person care. For example, to support 

team-based care, these systems must be designed to support team-based clinical 

workflows. However, integrating interoperable health IT use into workflows remains a 

challenge [3.11], on top of existing challenges in implementing team-based workflows 

more broadly [3.7,3.12]. The extent to which team-based use of interoperable health IT 
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occurs remains unknown, even in primary care settings like PCMHs that utilize team-

based care models and possess the requisite capabilities [3.7]. Low rates of team-based 

interoperable health IT use in these ideally suited settings may reflect technology design 

gaps, persistent team-based workflow integration challenges, or both. 

Furthermore, team-based interoperable health IT use has the potential to supply a 

broader array of patient information to the care team than interoperable health IT use by a 

single provider, thus informing whole-person care. Alternatively, one-size-fits-all 

workflows lacking design suited for specific care settings or roles may result in 

duplicative use across team members, and limit the breadth of information obtained by 

the team. Moreover, these workflows have been found to be a barrier to the use of 

interoperable health IT [3.11]. The extent to which interoperable health IT use by teams 

begets a broader array of patient information relative to non-team-based use remains 

unknown. Greater breadth among teams may illustrate the benefits of team-based use of 

interoperable health IT in particular for support of whole person care initiatives. Lack of 

variation in this measure may indicate barriers rooted in generic workflows (i.e. all users 

see the same information), parity in information needs (i.e. teams and single users seek 

the same information), or simply effective delegation (i.e. the team views the information 

that the single user would have viewed). 

Finally, team-based use of interoperable health IT may result in more detailed or 

targeted (“deep”) review of outside clinical data by team members with dedicated time to 

gather information. For example, a team member tasked with understanding a patient’s 

emergency department (ED) utilization history may have more time than a primary care 

provider to look at specific ED visit notifications to understand more context and detail 
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regarding that visit. However, the literature exploring use depth has yet to explore 

primary care settings or how depth varies between individual users and teams [3.13–

3.15]. Similar to breadth, deeper use among teams may indicate the ability of 

interoperable health IT to support whole person care and a more detailed understanding 

of the patient’s health history. Additionally, deeper team-based use may indicate 

appropriate task delegation that not only increases the care team’s information but 

removes this task from the provider, which can improve job satisfaction and reduce 

burnout [3.16,3.17]. Alternatively, a lack of variation between single users and teams in 

depth could indicate that information needs in primary care are met by more summative, 

less deep use of interoperable health IT. 

This study first seeks to quantify the extent of team-based use of interoperable 

health IT as compared to individual user use of these systems. Second, we compare the 

nature of team-based interoperable health IT usage to individual users as characterized by 

the breadth and depth of information accessed by the team. Detailed understanding of the 

use of technology in supporting team-based care may be valuable to organizations 

implementing health IT in support of care delivery redesign efforts. Furthermore, the 

success of delivery system reform efforts like the PCMH depends in part on identifying 

the role of delegation and task sharing to support care coordination [3.3,3.7]. Should we 

observe team-based use of health IT that mirrors single-user use, implementations may be 

taking place without respect to how team-based workflows differ from those of single 

users. Improvements to quality and health outcomes are unlikely to occur if technology 

use does not align with the models of care aiming to achieve those goals. 
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Methods 

We used an observational, retrospective study design with data from a regional 

HIE to identify team-based use of the HIE system among users from three PCMHs in the 

Rochester, NY, region. We measured the prevalence of team-based HIE use, and 

quantified both breadth and depth of use among teams and non-teams. We then modeled 

the relationship between team-based HIE use and our two outcome variables: breadth and 

depth of HIE use, to analyze the degree to which HIE use among teams differs from 

provider HIE use, controlling for patient and visit characteristics. We stratified our 

analysis by timing of HIE use relative to the visit, conducting separate analyses for HIE 

use that took place in the two weeks prior to the visit, on the day of the visit, and in the 

two weeks following the visit. 

Setting & Data 

 Study subjects are HIE users from three PCMH-recognized Federally Qualified 

Health Centers: Anthony Jordan Health Center (AJHC), Oak Orchard Community Health 

Center (OOCHC), and the Rochester Primary Care Network (RPCN), a network of health 

centers with more than 20 service locations. FQHCs are primary health care centers that 

receive funding from the Health Resources and Services Administration (HRSA) and 

provide care to underserved areas in the US [3.18]. All three sites have been recognized 

as a Level III PCMH by NCQA, meaning they have successfully implemented team-

based care models, care management, and care coordination practices supported by 

certified health IT, including HIE. Beginning in 2014, PCMH standards included “access 

to a health information exchange” as an optional factor for PCMHs to count towards their 
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overall score, which in turn determines the level of PCMH certification the practice 

receives. 

The HIE system in our study is the Rochester Regional Health Information 

Organization (RHIO), a non-profit health information organization that provides HIE 

services to a 13-county region of western New York [3.19]. Users access the HIE 

database via a secure web portal in which they can query for individual patients and view 

clinical information from other health care organizations. The portal includes summative 

section-level pages such as an overall patient summary, laboratory results, and radiology 

results, among other clinical information categories. Furthermore, users can view details 

of specific result documents such as individual laboratory results and admission, 

discharge, and transfer (ADT) documents detailing visits to other providers. Additional 

background about the RHIO can be found in Appendix B. 

 We combined user log data from the HIE system with clinical EHR data capturing 

patient visits from January 2012 through December 2015. The HIE log data included 

discrete click-level observations logged for each action users took within the HIE web 

portal. Each observation in the log data included the page of the web portal on which the 

action took place, allowing for identification of the section or specific document type a 

user accessed while using the HIE (Appendix B, Table B1). Finally, the log data included 

timestamps, user identifiers and roles, and anonymized patient identifiers that allowed us 

to link the HIE use data with patient visits based on patient identifiers and date matching. 

More detail on the RHIO, user workflow, and data can be found in the Appendix. 

We created a visit-level analytical sample by linking the HIE use data to clinical 

data from each site’s EHR including patient gender, age, and indicator variables for 18 
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different primary diagnoses. These indicator variables were computed at the encounter 

level using the Agency for Healthcare Research and Quality’s (AHRQ) Clinical 

Classification Software (CCS) based on the coded primary diagnosis for the visit [3.20]. 

Other visit data in the clinical EHR data included visit date and time, the date and time 

the patient made the appointment for visit, visit type, provider seen, and whether or not 

the visit was billable or non-billable. 

Independent Variable: Team-Based HIE Use 

 We linked the two data sets by matching via the anonymized patient identifier, 

site, and visit date matching the date of the HIE use activity for that patient. Because HIE 

use may serve different purposes based on the timing of use relative to the encounter 

[3.21], we stratified our analysis to analyze team-based HIE use in the two weeks prior to 

a visit, the same day of the visit, and in the two weeks following the visit. We defined 

team-based HIE use as use of the HIE by a user with a different credential than the visit 

provider. This included system use by more than one user for the same patient. We 

defined team-based use as such because this HIE use pattern reflects task distribution 

across team members. Visits were classified as not having team-based HIE use if the 

patient’s record was accessed by a single HIE user with the same credential as the visit 

provider.  While we were not able to match individual care team members across the 

EHR and HIE use data, both data sources included the credential of the provider (in the 

EHR data) and the HIE user (e.g. MD or NP). By identifying single HIE users whose 

credential did not match that of the visit provider, we were able to identify HIE users who 

were not the visit provider.  
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Outcome Measures: HIE Use Breadth and Depth 

We calculated two measures of the nature of HIE use to capture the extent to 

which team-based HIE use differed from HIE use that was not team-based. We chose 

measures of HIE use that could be calculated for both team-based and visit provider HIE 

use, to allow for comparison. First, we measured HIE use breadth by calculating the 

number of unique information categories the single user or team viewed in the HIE for a 

specific patient. We used the section and document type information in the HIE logs to 

identify the different sections or document types viewed in the HIE for a particular 

patient. We counted section-level use data and specific document viewing as separate 

information categories, even if the overarching type of clinical data was the same. For 

example, if a team member or members viewed the Summary tab, the Laboratory tab, and 

a specific laboratory result, that use would amount to three unique information categories. 

This definition is congruent with previous work by Cross (2018) defining use “intensity” 

and Politi, et al. (2014) in what they termed use “diversity” [3.22,3.23].  Second, we 

measured HIE use depth by calculating the proportion of total HIE use spent viewing 

specific documents. In this measure, the denominator was the total number of actions in 

the HIE for that patient across all HIE users. The numerator was the number of these 

actions that captured viewing of specific result or report documents. In this measure, 

greater document viewing as a proportion of total HIE activity represents greater levels of 

HIE use depth.  

Control Variables: Visit and Patient Characteristics 

 We constructed four visit-level variables to address potential confounding of the 

relationship between our outcome variables and team size, visit duration, time since the 
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visit was scheduled, and time since the patient’s last visit. First, we constructed a variable 

for the total number of HIE users that accessed that patient’s record in the HIE for that 

visit, as HIE use breadth in particular may be higher simply from more individuals 

accessing the HIE. Second, we used visit start and end time data from the scheduling 

system to calculate visit duration, which ranged from less than 15 minutes to over one 

hour. The vast majority of visits fell into the following five duration codes: 15 minutes, 

20 minutes, 30 minutes, 45 minutes, and 60 minutes. We also included categories for 

visits lasting less than 15 minutes and more than 60 minutes, although those were rare. 

Longer visit durations, especially for same-day HIE use, may afford the team more time 

to view information in the HIE during the visit, thus confounding the relationship 

between team HIE use and the nature of that use. Third, we measured the days since the 

visit was scheduled, using a variable from the EHR data capturing visit scheduled date. 

This allowed us to differentiate between same day visits and those scheduled at various 

times prior to the visit, and served as a proxy for the amount of “lead time” the clinical 

team had before the visit took place, which may confound the relationship between team-

based use and our outcomes. Finally, we constructed a variable measuring the time since 

the patient’s last visit to the site, with the following levels: no past visit, greater than one 

year, prior year, prior 6 months, prior 90 days, and prior month. Previous studies have 

found that providers are more likely to access the HIE for “unfamiliar” patients and those 

without a visit in the previous year [3.24,3.25]. 

 For patient-level characteristics, we include control variables for patient gender 

and age at visit and a binary indicator for whether or not the primary visit diagnosis was 

for a chronic condition, defined as hypertension, hyperlipidemia, coronary artery disease, 
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congestive heart failure, diabetes mellitus, cancer, asthma, or chronic obstructive 

pulmonary disorder (COPD). Visit diagnoses for each encounter were identified using 

categorization by the CCS algorithm (Appendix B, Table B2). 

Analysis 

To calculate the prevalence of team-based HIE use across our entire sample, we 

divided the number of visits with any team-based HIE use by the total number of visits 

with any HIE use. Visits with no use were excluded from our analysis, as we sought only 

to examine variation in use within the sample of visits with HIE use. We stratified the 

measure by timing of use relative to the visit (2 weeks prior, same day, and 2 weeks after) 

to assess variation in team-based use before, during, and after visits. We used a chi-

square test for differences in the prevalence of team-based HIE use, HIE use breadth, 

depth, and patient and visit characteristics across HIE use timing. 

To estimate the relationship between team-based HIE use and use breadth, we 

used a negative binomial regression model with HIE use breadth (the count of unique 

information categories) as the dependent variable. Our primary independent variable was 

an indicator of team-based HIE use, compared to HIE use that was not team-based. We 

ran three regression models, one for each of the three use time periods. To estimate the 

relationship between team-based HIE use and use depth, we used a linear regression 

model with HIE use depth (the proportion of HIE activity spent viewing specific 

documents) as the dependent variable. For this model as well, our primary independent 

variable was the indicator of team-based HIE use, and we stratified our analysis over the 

three periods of use timing. All regression models adjusted for patient age at visit, patient 

sex, days since the last visit to the site, a binary indicator for whether or not the visit was 
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for a chronic condition, the visit duration, the number of days since the visit was 

scheduled, and the number of HIE users. We included site (φ) and year (λ) fixed effects 

to account for time-invariant site characteristics and secular trends. All six models follow 

the form below: 

HIE Use Breadth/Depthv = 𝛼 + 𝛽1Team-BasedHIEUsev + 𝛽2AgeAtVisitv + 𝛽3PatientSexv 

+ 𝛽4DasySinceLastVisitv + 𝛽5ChronicConditionv + 𝛽6VisitDurationv + 

𝛽7DaysSinceVisitScheduledv + 𝛽8NumberOfHIEUsersv + φf + λt + εv 

All data preparation and management, construction of HIE use measures, and 

analysis were done in the RStudio development environment [3.26] using the R statistical 

programming language [3.27]. The tidyverse suite of packages and data.table package 

were the primary software libraries used to construct the analytical data file [3.28,3.29]. 

The glm and logitmfx packages were used in the analysis portion [3.27]. The Indiana 

University Institutional Review Board approved this study. 

Limitations 

 This study has a number of limitations. Chiefly, although we define measures of 

team-based HIE use, we are unable to formally validate these measures with respect to 

the exact data the user viewed. Specifically, the log data does not clarify which 

information a user was looking at on a given summary page or within a given document. 

The data also does not distinguish between different documents of the same type. For 

example, if we observe three actions in the context of a laboratory document, we do not 

know if the user took three actions on the same document or viewed three separate 

documents. Therefore, we are unable to validate precisely what patient information a user 

viewed within a given information category, similar to previous studies of HIE use 
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[3.14]. Furthermore, the definition of our comparison group, HIE use that is not team-

based, is not perfectly matched across the two data sources; as such, our estimates of 

team-based HIE use rates likely understate the true rates. Second, in our analyses 

examining the relationship between HIE use breadth, depth, and team-based HIE use, 

estimates are subject to bias from unobserved, unmeasured confounding variables. While 

we adjust for patient and visit characteristics as well as static site characteristics and 

secular time trends, we are unable to control for unmeasured factors that could influence 

the relationships we estimate. Because the use of query-based HIE is voluntary, it is 

possible that the relationship between team-based HIE use and our outcome measures of 

the nature of HIE use are endogenous, and thus our findings may suffer from selection 

bias. Therefore, our results only describe associations between team-based HIE use and 

use breadth and depth. 

Results 

Rates of Team-Based HIE Use 

Our final analytic sample included 12,556 unique visits in which the HIE was 

accessed either in the two weeks prior to the visit, the day of the visit, or in the two weeks 

after the visit. This reflects 3% of all visits to the three study sites during the study 

period, consistent with prior literature [3.30]. Of these visits with HIE use, 10,702 

(85.2%) met our criteria for team-based use of the HIE, with a user or users other than the 

visit provider looking up information in the HIE for the patient in the two weeks prior to 

the visit, the day of the visit, or in the two weeks following the visit. We found 

differences in team-based HIE use rates across use timing relative to visit. In the two 

weeks prior to the visit, 88.1% of visits with any HIE use illustrated team-based use, 
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while day-of-visit HIE use was less likely to be team-based (79.0%). Finally, in the two 

weeks following the visit, 85.9% of visits with HIE reflected team-based use of the HIE 

portal (Table 3.1, χ2 p < 0.001). A full table of descriptive results with rates of team-

based HIE use, HIE use breadth, depth, and patient and visit characteristics stratified by 

use timing can be found in Appendix B, Table B3. 

 

Table 3.1 Rates of team-based HIE use among visits with any HIE use 
 

Overall Two Weeks Prior Day of Visit Two Weeks After 

Total Visits w/ HIE Use 12,556 4,668 4,322 4,624 

Visits w/ Team-Based HIE Use (%) 10,702 (85.2) 4,112 (88.1) 3,416 (79.0) 3,973 (85.9) 

Notes: There were a total of 420,685 visits to the study sites during the study time period. 

12,556 visits represents 3.0% of all visits, consistent with prior literature [23]. 

 

HIE Use Breadth 

In regression analyses, team-based HIE use did not illustrate a relationship with 

HIE use breadth, adjusting for patient and visit characteristics (Figure 3.1, below). This 

finding held across all three time periods of HIE use relative to the visit (ß-2wk=0.034, 

p=0.102; ßsameday=0.033, p=0.067; ß+2wk=-0.009, p=0.629). Full results for this analysis 

are presented in Appendix B, Table B4. 
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Figure 3.1 Team-based HIE use and HIE use breadth 

 
Notes: HIE use breadth is measured as the count of unique information categories viewed 

by the team or individual user. Models adjust for patient and visit characteristics as well 

as site and year fixed effects. 

HIE Use Depth 

Compared to HIE use that was not team-based, team-based HIE use was 

negatively related to HIE use depth in the two weeks prior to the visit (ß-2wk=-4.2, 

p=0.014) as well as in the two weeks following the visit (ß+2wk=-5.8, p<0.001, Figure 3.2, 

below). These results show that in the two weeks prior to the visit and the two weeks 

following the visit, team-based HIE use was associated with lower percentages (4.2 

percentage points and 5.8 percentage points, respectively) of total HIE use spent on 

viewing specific documents. Team-based HIE use was unrelated to HIE use depth for 

HIE use occurring on the same day as the visit (ßsameday=-2.7, p=0.076). Full results for 

this analysis are presented in Appendix B, Table B5. 
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Figure 3.2 Team-based HIE use and HIE use depth 

 
Notes: HIE use depth is measured as the percentage of actions spent viewing specific 

documents. Models adjust for patient and visit characteristics as well as site and year 

fixed effects. 

Discussion 

 Our findings illustrate that the majority of query-based HIE use in PCMHs is 

consistent with team-based models of care provision, and provides quantitative support 

for qualitative work documenting the importance of HIE in supporting team-based 

models of care [3.4,3.7,3.9,3.31,3.32]. More than 85% of use reflected team-based use, 

which demonstrates that query-based HIE use in our study sites is likely to support team-

based care and facilitate better understanding of patient health context. While 

observational, our findings offer support for team-based health IT use as a potential 

mechanism that furthers our understanding of reductions in hospitalizations, utilization of 

specialty care and the emergency department, and primary care expenditures among 

PCMHs with more advanced health IT capabilities [3.33–3.36], despite variations in 

PCMH implementation [3.37]. Further research can build on the current study to examine 

the extent to which this mechanism, namely team-based use of HIE, is directly associated 
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with better patient outcomes, higher provider satisfaction, and reduced burnout. Future 

studies should also consider the broader context of HIE tools available to the care team, 

given that HIE portal use is higher in the context of other forms of health information 

exchange [3.30]. 

In our analysis of the nature of team-based HIE use, we did not find that teams 

using HIE are more likely to look at more categories of clinical data (HIE use breadth), 

compared to non-team HIE use. This can be interpreted in a number of ways. On one 

hand, our findings are encouraging in that we do not find an information breadth gap (i.e. 

a significant negative relationship) between providers and teams using HIE. This supports 

the interpretation that delegated or team-based HIE is an exercise in task substitution 

across team members, and further bolsters the case for team-based use of HIE as a means 

to improve efficiency without sacrificing information gain in terms of breadth of 

information obtained from HIE systems. On the other hand, our findings are less 

encouraging in that we expect teams to consume more diverse information than providers 

alone due to fewer time constraints and more users. Of note, we do find a positive 

relationship between the number of HIE users and HIE use breadth (see Appendix B, 

Table B4), implying that HIE use by more users tends to result in a greater number of 

clinical information categories viewed. 

HIE use depth – or the relative time spent on specific documents rather than 

summary sections of the HIE portal – is lower for teams using HIE in the weeks 

preceding and following a primary care visit, compared to non-team HIE use. In practice, 

this finding translates to delegates and teams spending less of their time in the HIE 

looking at specific documents compared to visit providers, however this difference only 
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manifests prior to and following the visit. This suggests that teams using HIE can meet 

their information needs largely by consuming summative sections of the HIE portal when 

preparing for and following up on visits. Rather than needing specific report information 

in the weeks leading up to and following visits, teams using HIE tend to spend more of 

their activity examining collated information. This finding is consistent with previous 

literature showing providers’ greater tendency to access specific documents and reports, 

compared to other HIE users [3.13]. Furthermore, this finding fits generally with a model 

of visit provider use of HIE to explore a specific past visit or laboratory result, for 

example, rather than perusing the HIE for a higher-level overview of patient data. Finally, 

in both breadth and depth of HIE use, we find significant heterogeneity across our study 

sites. This suggests that the well-documented variation in PCMH implementations - 

especially with respect to health IT capabilities [3.9,3.31,3.33] - may extend beyond 

adoption and into actual system use. 

Our findings have a number of implications for organizations working to 

implement primary care delivery reform. First, our results suggest that query-based HIE 

is likely to be used in a team-based manner when deployed in PCMH settings, indicating 

that this form of HIE has a role to play in supporting team-based primary care delivery 

models. In particular, organizations implementing team-based information retrieval 

processes with HIE can expect for there to be no gap in the breadth of information 

consumed by the team, when compared to HIE use solely by the visit provider. Our 

results also have important implications for HIE system design and implementation in the 

context of primary care, as we see that HIE use among teams tends to involve more 

summative, collated data than HIE use by visit providers in the weeks preceding and 
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following a visit. This finding suggests that query-based HIE system designers should 

emphasize easy access to and use of detailed report information for visit providers. For 

example, this may take the form of role- and access-time based workflows for visit 

providers that ease their access to individual-level reports, as these users are more likely 

to prioritize more detailed information. 

Conclusion 

 We linked log data from a query-based HIE portal with clinical EHR data from 

three PCMH-recognized FQHCs to first estimate the prevalence of team-based HIE use 

in primary care. Second, we used multivariate regression models to analyze the 

relationship between team-based HIE use and the breadth and depth of that use, 

compared to HIE use that did not involve a team. We found that the vast majority of HIE 

use was team-based, however team-based HIE use was not related to HIE use breadth. 

Team-based use was correlated with less deep use in the weeks before and after a visit. 

Taken together, our findings support the role of HIE in primary care delivery redesign, 

specifically in supporting task delegation and team-based HIE workflows. Furthermore, 

we find no evidence of information gaps between visit providers and teams using HIE, 

and find that teams prioritize summative information in the HIE over exploration of 

specific results and reports. 
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Chapter 4: User-level patterns of HIE use 

Introduction 

Widespread interoperable health information exchange (HIE) has the potential to 

provide more complete information to clinicians, improve care coordination and patient 

health outcomes, and reduce costs [4.1–4.3]. Efforts to realize these benefits have been 

encouraged by the HITECH Act’s multi-billion-dollar investment in the underlying 

infrastructure of health information technology (IT) [4.4,4.5] and ongoing federal efforts 

to incentivize HIE implementation [4.6]. However, beyond organizational adoption and 

implementation, care team members must use these technologies if these system-wide 

benefits are to be achieved [4.7,4.8]. Despite over half of office-based physicians 

reporting access to these tools [4.9,4.10], query-based HIE use is reported in less than 10 

percent of visits [4.11–4.14]. These estimates are generally understood to reflect lower 

than optimal usage [4.12], even when considering that not all visits require HIE, optimal 

usage rates are unknown, and these optimal rates likely vary by setting, provider type, 

and patient characteristics. In order to effectively apply health IT to propel the US health 

care system towards ambitious quality goals and cost-savings [4.15,4.16], targeted 

attention to how providers are - and are not - using HIE is warranted. Developing this 

evidence base on HIE system use is critical to informing system design towards higher 

usability, more efficient tools [4.7], as well as training approaches that foster long-term, 

regular system use. 

To understand the nature of HIE use, an active body of research has leveraged 

HIE log files to identify variations in HIE use patterns along a number of dimensions. 

Scholars have characterized use sessions by frequency [4.11,4.17–4.19], duration [4.20], 
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diversity of information accessed [4.21–4.25], timing of access relative to patient visit 

[4.7,4.26], navigation sequences [4.7,4.20,4.24,4.27,4.28], and use of different features 

[4.11,4.17]. Some of these studies have also abstracted granular measures into 

meaningful groupings, assigning use pattern labels such as “no use,” “basic use,” 

“advanced use,” “novel use,” “demographic use,” “clinical use,” “repeated search,” and 

“mixed use” [4.11,4.17,4.18,4.21,4.24,4.29] either using heuristics, theory, or empirical 

approaches like cluster analysis [4.7,4.24]. These definitions are subsequently used to 

stratify sessions of system use across roles, clinical settings, timing of use relative to the 

visit [4.24], and patient comorbidity factors [4.11,4.17]. Studies have shown that more 

advanced HIE use (e.g. duration or variety of information accessed) occurs more 

frequently than basic use for more complex patients [4.11,4.17], and retrospective and 

encounter-based usage are both more likely for patients with chronic diseases and recent 

ED visits [4.18]. Furthermore, HIE use patterns have been tied to clinical decision-

making, primarily in that more advanced use is associated with lower likelihood of 

hospital admission in emergency encounters [4.17,4.30]. Lab and imaging ordering, 

another utilization measure, also decreased among hospital departments with “extensive” 

use of a HIE system [4.21]. Finally, a recent dissertation evaluated HIE use patterns and 

their relationship to readmission rates, finding that in post-acute care transitions, patients 

for whom only basic information was viewed had higher 30-day readmission rates [4.29]. 

Taken together, this literature demonstrates that methods of measuring and 

classifying HIE use patterns via log files are well-established, and have been incorporated 

into studies examining factors associated with patterns of use. While patient and setting 

factors are certainly important to study in relation to use patterns, user factors beyond 
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role are also of importance. Because use measures are often calculated at the session 

level, research has focused on classifying sessions into categories, rather than examining 

how HIE users may demonstrate different patterns of use. User-level analyses commonly 

cite system rejectors and under-utilizers [4.31,4.32], behavior that can be rooted in 

system design issues, implementation challenges, or both. Zheng, et al. have used group-

based modeling approaches to extend our understanding of health IT users by classifying 

health IT users into “use trajectories” over time [4.33–4.35], but the HIE use literature is 

sparse with respect to understanding of user-level variation in use patterns [4.24]. We are 

aware of no studies, for example, that measure patterns of HIE system use explicitly at 

the user level to differentiate categories of users, quantify the amount of system rejection 

or under-use, or analyze variation in use measures across user categories. 

The purpose of this study is to measure, classify, and analyze user-level patterns 

of HIE system use. We apply and extend a conceptual model of multidimensional 

measurement of HIE use patterns to derive measures of HIE use at the session and user 

level for analysis [4.7]. Our study posits two research questions. First, how do users of an 

HIE system differ in measures of HIE use? Second, what are the differences in the 

relationships between use measures among “average” (i.e. non-outlier) users? Using 

system log data from a query-based HIE in New York state, we calculate 16 measures of 

HIE use across seven attributes. We then apply a cluster analysis to identify discrete 

groups of users according to aggregated session use measures, and identify high-

frequency outlier users (“super users”), system rejectors, and under-users at the cluster 

level. We then further analyze differences in use measures and the relationships between 

use measures among users who do not demonstrate these characteristics, as little is 
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known about variation that may exist within this commonly homogenized group of users. 

This treatment may mask important differences in use patterns among “typical” users that 

can help to refine HIE system design towards greater usability. 

Improved system usability is key to realizing the purported benefits of health IT 

broadly and interoperable HIE systems in particular. For example, a system in which 

information retrieval workflows are highly inefficient is unlikely to have an impact on 

clinical decision-making and downstream outcomes. More vexing to system designers, 

different users may have different definitions for “efficiency” in information retrieval 

tasks. For example, one user may consistently need fast access to summative information, 

while another has a penchant for more detailed results review, as radiologists have in 

previous research [4.14]. Another comparison can be made with respect to how users 

vary in their use of time within the system; some may use longer duration sessions to 

examine less detail across several patients, while others may use the same duration of 

session to examine one patient in more depth. In the former case, usability hinges on 

patient search functionality and rapid chart retrieval, while the latter relies on within-

chart navigability. In any case, some degree of variation will be due to role, setting, and 

patient-level factors, and some amount of within-user variation undoubtedly will exist, 

but HIE systems are less equipped to anticipate and respond to setting or session-level 

factors in the same way that they can observe user-level behavior and construct user-level 

navigation profiles accordingly. Currently, most HIE systems offer one-size-fits-all 

interfaces and workflows that may be ineffective for some users [4.19,4.36]. By 

identifying discrete groups of users who differ in their use patterns, system designers can 

more aptly accommodate this variation into workflows within the HIE system. This, in 
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turn, may improve satisfaction with the tool and drive sustained use [4.37]. In particular, 

variation across “typical” users may disaggregate this group into distinct user types with 

different use measures that may fit different user profiles. User-level information can also 

be used to understand barriers that may be influencing lower use among users who are 

otherwise similar, and inform training or system design to reduce those barriers and 

facilitate use. Finally, understanding the nature of routine use among “typical” users (as 

opposed to that of “super users” or “non-users”) may be more informative in attenuating 

the learning curve for new or less advanced “typical” users, reduce their system rejection 

rates, and speed the time between early, less efficient use to routine use.  

Materials and Methods 

Setting 

 The Rochester Regional Health Information Organization (RHIO) operates in a 

13-county region of western upstate New York, and has provided HIE services to health 

care providers and patients in the region since 2006 [4.38]. As of spring 2008, approved 

physicians and other health care providers could use a web-based portal to access patient 

health information contributed from health organizations in the area [4.38,4.39]. 

Contributing organizations - including hospitals, laboratories, physician practices, public 

health agencies, home health centers, and payers - provide data to the Rochester RHIO 

database primarily via electronically exchanged Consolidated Clinical Data Architecture 

(C-CDA) documents [4.40,4.41]. Health information available in the database includes 

discharge summary documents, diagnoses, radiology reports and images, medication 

history, and laboratory results [4.13,4.14,4.40,4.42]. Currently, more than 1.4 million 

patients have data stored in the Rochester RHIO clinical database [4.38], which includes 
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data from more than two hundred data-contributing organizations [4.40]. Between 2012 

and 2016, the time of the data for this study, two-thirds of the hospitals and physician 

practices in the region participated in the exchange [4.14,4.42]. 

 Users of the web-based HIE portal follow a common workflow immediately upon 

login. First, users search for a patient and, upon identifying the correct patient, confirm 

that the patient has opted-in to allow their data to be shared with clinicians via the 

exchange. Despite the opt-in model, Rochester RHIO generally reports that more than 97 

percent of patients consent to exchange [4.38]. Once consent is confirmed, the user is 

directed to a landing page with a summary of the patient’s most recent visit [4.43]. For all 

portal users, the session usage workflow up to this point is identical. After this point, 

users may pursue a number of use patterns. Users might navigate to other sections of the 

portal to find detailed information on the patient like medication history, laboratory data, 

or radiology reports. To view radiology images, users must first view the narrative 

reports. A second potential workflow could be to conclude the session of viewing that 

patient’s record and search for another patient. In this case, users are directed back to the 

initial search page to query. Users are only able to access a single patient record at a time 

[4.13]. 

 Users in our study are health care providers in three Rochester, New York-area 

FQHCs: Anthony Jordan Health Center (AJHC), Oak Orchard Community Health Center 

(OOCHC), and the Regional Primary Care Network (RCPN), a network of health centers 

with more than 20 service locations. FQHCs provide primary care services along with 

integrated dental and behavioral care to underserved areas in the US, and receive funding 

from the Health Resources and Services Administration (HRSA) [4.44]. The users in this 
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study have various professional roles, as any approved care provider can access the 

Rochester RHIO query portal for patient information. Specifically, the following user 

roles appear in the HIE use log data: staff, care manager, mid-level clinician (e.g. 

physician assistants), midwife or registered nurse, nurse practitioner, licensed health 

professional (e.g. clinical social worker), and physician. 

Data and Sample 

 Rochester RHIO log data contains all query portal use from users at the three 

FQHCs during the three years from January 2012 through December 2014. Actions taken 

in the query portal (i.e. clicks) are recorded as “events,” and identify the portal page the 

user was on at the time of the activity, including pages associated with logging in and 

searching for patient records, which occur outside the context of a patient chart. Within 

single patient charts, the use log records events for navigation to specific areas of the 

patient record, which allows for identification of the types of clinical information 

accessed during the user’s session (e.g. summary information and/or laboratory results). 

User identifiers were linked to a list of registered HIE portal users, which provided the 

user role category. User log data also includes event timestamps measured to the 

millisecond and a patient identifier for user activity that occurred within a patient record. 

For example, while login events are recorded, none are associated with patient identifiers 

because login occurs before the user queries for a patient.  

The user log data does not begin at the time of system implementation, so we 

applied a washout period to isolate users’ initial experiences with the query portal. We 

excluded all activity from users appearing within three months of the start of the user log 

data, January 2012. This exclusion resulted in an analytic dataset including 172 unique 
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users with 9,958 use sessions. HIE use sessions are defined by gaps in user activity 

lasting longer than 20 minutes. If a user’s most recent action occurred more than 20 

minutes in the past, the next action constituted the beginning of a new session. The 20-

minute cutoff is based on the automatic time-out for portal of 20 minutes, and aligns with 

other cutoff-time definitions of HIE use sessions in health services research [4.26]. 

Conceptual Framework: Multidimensional Use Patterns of HIE 

 To inform our measures of HIE use, we applied a conceptual framework by Politi, 

et al. specific to characterizing HIE use sessions using log files by measuring use across 

multiple dimensions [4.7]. Applying a consistent measurement framework facilitates 

cross-study comparisons and allows researchers to isolate the specific aspect or nature of 

use that may improve user satisfaction and be instrumental in furthering our 

understanding of how providers should use these tools to impact cost and quality of care 

[4.31,4.45]. Furthermore, consistent measures of use can better inform practice guidelines 

regarding workflow recommendations and the types of system use that yield the most 

value [4.46]. 

The Politi, et al. framework posits five use “attributes” measured at the session 

level: volume, diversity, granularity, duration of screen display, and content. The 

measurement framework is depicted in Appendix C, Figure C1. Volume in this model 

refers to the amount of information involved in a use session, typically measured by total 

number of screen views [4.24]. This measure has also been termed “intensity” in previous 

work using log data to describe patterns of use in HIE systems [4.29]. Diversity refers to 

the different types of information accessed in a given use session, and is commonly 

measured as the count of discrete information categories viewed in a session [4.24,4.47, 
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4.48]. Granularity further specifies the nature of the information viewed during the 

session, and explicitly accounts for the fact that information in an HIE system can vary in 

its specificity from summative screens to specific result documents. Measuring this 

attribute requires user log data capturing the hierarchical aspects of information viewing, 

and can be operationalized as the highest level of specificity or counts of screen views for 

each level of specificity in the hierarchy [4.47]. Duration of screen display captures the 

amount of time a user spent viewing information during the session. This attribute has 

also been operationalized as total session duration [4.47], and in their validation of the 

framework, Politi, et al. operationalize this measure at the session level as the median 

number of seconds spent on each page (i.e. between actions) [4.7]. Finally, content 

further specifies the actual clinical information types (e.g. laboratory or radiology) 

viewed during a session. This measure can be operationalized as binary indicators for 

each clinical information category or counts of page views for each clinical information 

category [4.47,4.49]. 

 The current study extends this framework to include two additional attributes: one 

session level attribute and one user level attribute. At the session level, we include 

efficiency, which captures the amount of activity in a given session that is not directly 

related to viewing clinical information about a patient. Because clinical information 

retrieval is the primary task of HIE use [4.19,4.36], we propose this attribute as a measure 

of session level barriers to successful retrieval of information. These barriers could come 

in the form of failed login attempts, failed patient searches, or other actions that take 

place in the HIE system but do not take place in the context of a specific patient record. 

In the context of EHR audit logs, this attribute has been operationalized as time spent on 
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navigation activities [4.50]. In an HIE context, this attribute could also be operationalized 

as the proportion of either total session time or actions occurring outside of a patient 

record. 

 Finally, we extend the framework to include user participation, a user-level 

attribute capturing measures of users’ HIE system use that extend across sessions. This 

attribute measures variation in the frequency, regularity, or concentration of system use 

[4.36]. Furthermore, this attribute is tied to the voluntariness of system use, a primary 

construct of theories of technology adoption and use [4.51]. For example, individuals in a 

primary care practice who are tasked with coordinating care with outside providers would 

likely need to use HIE systems frequently to complete these tasks, compared to clinical 

team members that may have relatively fewer tasks that necessitate the use of the HIE. As 

a result, participation measures for these individuals would differentiate them from other 

users whereas their session-level use may look similar to other users for whom HIE use 

was more voluntary. 

Operationalization of Session & User Attributes: Measures of HIE Use 

 We constructed HIE use measures for each of the five conceptual framework 

attributes and our two additional attributes. For use volume, we measured both the 

number of discrete actions a user took during the session and the number of unique 

patients whose charts were viewed during the session. For diversity, we measured the 

count of discrete information categories viewed during a session. We separated 

“information categories” by both clinical data domain and document type. For example, 

an action on a laboratory summary page and an action to open a laboratory result 

document would count as two information categories, as the result report provides 
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context and information not available on the summary page. To measure granularity, we 

measured the proportion of all clinical actions spent viewing specific result reports pages, 

such that higher proportions indicated more granular use. For duration, we measured the 

total session duration in minutes as the difference between the first and last session 

actions. To measure content, we constructed counts of actions for each of the following 

clinical information content domains: summary pages, laboratory pages (including 

individual result reports), radiology pages (including result reports), vitals pages 

(including result reports), and admission, discharge, and transfer pages, also including 

actions indicating viewing of specific ADT documents. 

 Our framework attribute extensions were measured in three ways each. For 

efficiency, we calculated the proportion of actions in a given session that occurred 

outside of a patient chart. These largely consisted of login and patient search actions. We 

also calculated the proportion of these outside-chart actions for logins and searching, 

respectively. The first measure captures time spent “getting to” clinical data in the HIE, 

relative to time spent viewing clinical data within a patient record, while the other two 

further delineate the nature of these outside-chart actions. For analysis, we aggregated all 

session use measures above to averages at the user level. 

Finally, to measure user-level participation, we constructed measures for total 

number of sessions per observed user lifespan days (defined as days between a users’ first 

and last session in the data), number of sessions per active use day (count of days during 

which the HIE was used), and the median number of days between active days of HIE 

use. We use these measures for two reasons. First, each captures a different dimension of 

the user participation attribute. Total sessions per observed lifespan day captures a 
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measure of use frequency, while number of sessions per active use day captures a 

measure of use concentration, which may differentiate ad-hoc users from those who 

concentrate use on a single work day. Days between active use days accounts for 

regularity of use, insofar as some users may reliably use a system once per week, while 

others may have more sporadic use. Second, the two ratio measures account for the 

limitation that we cannot be sure that we observe a users’ final use session, given that the 

data is a snapshot of use between 2012 and 2015, with unobserved use occurring both 

before and after our data. This prevents us from measuring true user “lifespan” or having 

comparable measures of total number of use sessions. A mapping of the framework 

attributes to our use measures can be found in Table 4.1.  
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Table 4.1 Framework attributes and measure operationalization 
 

Framework 
Attribute Measure(s) 

Volume x Count of discrete actions 
x Count of unique patients whose charts were viewed 

Diversity x Count of discrete information categories viewed 

Granularity x Proportion of clinical actions viewing specific result reports 
(higher proportions indicate more granularity) 

Duration of Screen 
Display 

x Total session duration in minutes 

Content x Count of actions on: 
o Summary pages 
o Laboratory pages, including documents 
o Radiology pages, including documents 
o Vitals pages, including documents 
o Admission, Discharge, Transfer screens, including 

documents 

Efficiency* x Proportion of actions outside a patient chart 
x Proportion of outside-chart actions attributable to login 

actions 
x Proportion of outside-chart actions attributable to patient 

search actions 

Participation (user-
level)* 

x Sessions per active use day 
x Sessions per user “lifespan” day 
x Median number of days between active use days 

Notes: *Efficiency and Participation attributes are extensions of the Politi, et al. 

conceptual framework of multidimensional use of HIE. Further detail on definitions of 

Volume, Diversity, Granularity, Duration, & Content attributes can be found in [7]. 

 

Classifying Users: Clustering Algorithm 

 To identify patterns of aggregate use at the user level, we applied a Clustering 

Large Applications (CLARA) clustering algorithm to the user-level aggregate HIE use 

measures, similar to the Politi, et al. conceptual framework validation of session-level use 

measures [4.7,4.52]. While our user log data did not constitute a high-dimensional 

dataset, the Euclidean distance calculations in the k-medoids partitioning algorithm, 
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referred to as partitioning around medoids (PAM), allow for missing values in the data, 

which is a key weakness in traditional k-means cluster analysis approaches. In our case, 

users demonstrating only one day of active HIE use had no measure of days between 

active use days. Excluding these users from the cluster analysis would have yielded 

biased clusters that neglected these single-day HIE users. 

In cluster analysis, one must pre-specify the number of clusters in the data, which 

requires determining the number of clusters that optimizes model fit by reducing bias 

without overfitting the data and introducing extraneous variation, as can occur in 

prediction models [4.53]. We applied CLARA clustering with values of k ranging from 1 

to 10 and used the weighted sum of squares (WSS) as a measure of model fit. Visual 

examination of the WSS statistic in the form of a “scree plot” is a common method for 

identifying the optimal number of clusters, which is the value of k at which additional 

clusters did not reduce the WSS error meaningfully [4.54]. This is referred to as the 

“elbow” of the scree plot, and is visually evaluated at the value of k at which the slope of 

the WSS curve flattens (Appendix C, Figure C2). We ran the clustering algorithm with 

1000 randomly selected samples for model stability. This divided the users into five 

discrete clusters using the 16 continuous user-level measures of HIE use described above 

and summarized in Table 4.1. We present user cluster means resulting from the cluster 

analysis and describe cluster differences across attributes. 

Secondary Analyses: MANOVA Test for Differences in Non-Outlier Clusters 

 After identifying and describing the differences between user clusters, we labeled 

clusters based on the primary differences in use measures between clusters. We then 

identified outlier user clusters as those that demonstrated measures consistent with “super 
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user” HIE use and those that demonstrated very low system use. While it is clear that 

cluster analysis would yield statistically different groups of users, it is not guaranteed that 

all user groups would differ from all other groups in statistically significant ways. We 

sought to analyze differences across non-outlier user groups only; thus, outlier user 

clusters were excluded from our secondary analysis. This allowed us to focus on session-

level use measures that differed across these “average” user groups. We used a 

multivariate analysis of variance (MANOVA) test to analyze the joint and individual 

association between our session use measures as dependent variables and the user group 

derived from the cluster analysis as the independent variable along with user role and an 

interaction term between the user group and role. This approach allowed for flexibility 

with respect to the results of the cluster analysis in the first stage of analysis, as 

MANOVA is designed for analysis of multiple dependent variables and can 

accommodate any number of groups as an independent variable. Due primarily to the 

presence of unequal sample sizes in this analysis and lack of homogeneity of covariance 

matrices across groups, we report the Pillai test statistic, which is a more conservative 

measure of joint significance. We used a significance cutoff of p<0.05 in our primary 

model. In post-hoc univariate tests, we used a Bonferroni-adjusted cutoff of p<0.00417 to 

correct for multiple comparisons and for a more conservative measure of significance in 

the presence of heterogeneous variance across user groups. User participation measures 

were excluded from our secondary analysis, as those measures can only be calculated at 

the user level. Furthermore, due to high correlation with other use measures, we excluded 

the volume measure of number of actions in the session.  
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HIE Use Measure Correlation Differences Across User Groups 

 To further address our second research question, we analyzed differences in the 

relationships between HIE use variables across non-outlier user groups. We computed 

Pearson correlation coefficient matrices for all HIE use measures for each user group 

included in the MANOVA. We identified significant use measure correlations as those 

with an absolute value above 0.6 and a p-value less than 0.05. Then, for correlations that 

were statistically significant in all groups, we computed the absolute difference in the 

correlation value between user groups to identify candidate correlations with potential 

significant differences across the user groups. Our cutoff for candidate correlations was 

an absolute group difference of at least 0.25. This allowed us to identify the correlations 

with the highest magnitude differences across user groups. Finally, we tested the 

correlations for differences in the correlation value across groups using Fisher’s z-test, to 

identify the HIE use measure relationships that differed across user groups [4.55]. 

All data preparation, computation of HIE use measures, and analysis were done in the 

RStudio development environment [4.56] using the R statistical programming language 

[4.57]. The tidyverse suite of packages was the primary software library used to construct 

the analytical data file, in addition to data.table [4.58, 4.59]. The cocor, stats, cluster, and 

rstatix packages were used for analysis [4.55,4.57,4.60,4.61]. This study was approved by 

the Indiana University Institutional Review Board. 

Limitations 

 Our study has several limitations. First, we observe a relatively small sample of 

primary care users in a single region of the US which may not generalize to other regions 

or care settings. Clinical care environments other than FQHCs may demonstrate different 
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HIE use patterns based on varying information needs, scheduling practices, and visit 

acuity. Second, we only observe use of one regional, query-based HIE portal. Query-

based HIE use has demonstrated a complementary relationship with directed HIE [4.13], 

but our analysis does not include measures of directed HIE use. As a result, we may 

observe measures of query-based HIE use that are not independent from changes in 

directed HIE use during the study period. For example, users may decrease use of query-

based HIE if directed HIE at their site dramatically improves, which would appear in our 

measures as low HIE participation among users but would lack important context. 

Furthermore, the log data underpinning our use measures and analysis is a sample of use 

data from a period in time, both before and after which users continued to use the HIE. 

We attempt to identify early use among all users via a three-month washout period at the 

beginning of our data, however it is unlikely that the last observed session is truly that 

user’s last session, especially among longer-term users and those whose first use session 

was near the end of the study data. To address this, our participation measures are 

normalized over the course of a user’s observed lifespan days and active HIE use days. 

Finally, we do not estimate causal relationships or causal mechanisms driving the 

observed clusters of HIE use patterns or use differences across non-outlier user clusters. 

By design, this study is descriptive in nature and aims only to describe these differences 

rather than identify any of the mechanisms underpinning those differences. 

Results 

 The final analytic sample of users and sessions included 172 distinct users across 

9,958 use sessions. Overall, users had a median of 8 active use days of HIE, and averaged 

1.3 use sessions per active use day (sd=0.4 sessions). The average number of actions in a 
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session was 19.6 (sd=18.0 actions), and on average sessions lasted 5.3 minutes (sd=6.6 

minutes). Users accessed 2 different information categories, on average (sd=1.5 

categories), and had the most activity on summary pages (4.6 actions per session, on 

average, sd=6.0). Less activity was observed with respect to laboratory content (0.9 

actions per session), vitals content (0.8 actions per session), radiology content (0.3 

actions per session), and ADT content (0.2 actions per session). 

User Level Aggregate Use Patterns 

 In the user-level cluster analysis of aggregate use measures, the best-fit model 

was achieved with k=5 clusters of users (Appendix C, Figure C2). We described the 

clusters according to the use measure averages that most differentiated the cluster from 

other clusters, and developed shorthand names for the clusters for purposes of discussion. 

The largest cluster (n=63) we labeled “Regulars” (Table 4.2). These users demonstrated 

moderate volume measures (27.1 actions and 0.9 patients viewed per session, on average) 

and the most efficient use (59.4% of activity outside the patient record, 14.1% of that 

activity spent on login activities), relative to other users. These users also had the second-

highest diversity measures, with an average of 3.4 information categories viewed per 

session. Regulars illustrated moderate granularity, spending an average of 12.5% of their 

within-chart actions on viewing specific results, as opposed to on summary sections of 

the HIE. In terms of participation, Regulars averaged 1.5 use sessions on active use days. 

Finally, Regulars had the second-longest duration sessions on average at 6.2 minutes. 
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Table 4.2 Cluster analysis results of user-level aggregate HIE use measures 

  CLARA Clustering Results: User Group Cluster Centroids 

  Mean (sd) values of user-level measures used in cluster analysis 

  Overall 

Low 
Volume, 

Inefficient 
Quitters 

Low 
Volume, 

Inefficient 
Attemptors 

Moderate 
Volume, 

Less 
Efficient 
Browsers 

Moderate 
Volume, 
Efficient 
Regulars 

High Volume, 
Long Duration 

Superusers 

 # of Users 172 31 47 26 63 5 

 # of Sessions 9,958 59 298 1,055 7,870 676 
Attribute Use Measure       
User 
Participation 

# of Sessions per 
Active Use Day 1.3 (0.4) 1.1 (0.3) 1.1 (0.2) 1.3 (0.2) 1.5 (0.4) 2.1 (1.1) 

User 
Participation 

Median Days btw 
Active Use Days 29.3 (73.4) 52.5 (86.6) 89.2 (125.6) 7.5 (7.5) 5.9 (7.7) 5.4 (5.0) 

User 
Participation 

# of Sessions per 
Lifespan Day 0.5 (0.5) 0.9 (0.5) 0.5 (0.6) 0.2 (0.1) 0.3 (0.4) 0.8 (1.1) 

Volume 
# of Actions per 
Session 19.6 (18.0) 4.4 (2.6) 12.1 (8.0) 17.5 (4.7) 27.1 (6.0) 100.9 (26.4) 

Volume 
# of Patients per 
Session 0.6 (0.8) 0.0 (0.0) 0.2 (0.4) 0.5 (0.2) 0.9 (0.4) 4.6 (0.7) 

Diversity 
# of Information 
Categories Viewed 2.0 (1.5) 0.3 (0.4) 1.1 (0.9) 2.1 (0.5) 3.4 (0.8) 4.1 (1.9) 

Granularity 

Proportion of 
Clinical Actions 
on Reports 14.1 (21.8) 0.0 (0.0) 22.6 (35.1) 8.7 (7.8) 12.5 (9.2) 22.6 (37.2) 

Duration 
Session Duration 
(mins) 5.3 (6.6) 2.5 (7.3) 3.6 (3.4) 4.7 (2.7) 6.2 (3.5) 32.5 (7.9) 

Content 
Summary Pages 
(count of actions) 4.6 (6.0) 0.0 (0.0) 0.6 (1.4) 4.3 (1.7) 8.3 (3.6) 25.4 (13.2) 

Content 
Lab Content 
(count of actions) 0.9 (1.6) 0.0 (0.0) 0.1 (0.3) 0.4 (0.4) 1.6 (1.1) 6.7 (5.4) 

Content 
Radiology Content 
(count of actions) 0.3 (0.6) 0.0 (0.0) 0.1 (0.2) 0.2 (0.2) 0.6 (0.5) 2.1 (2.4) 

Content 
Vitals Content 
(count of actions) 0.8 (3.2) 0.0 (0.0) 0.7 (1.8) 0.5 (0.8) 0.7 (1.2) 8.2 (17.2) 

Content 
ADT Content 
(count of actions) 0.2 (0.3) 0.0 (0.0) 0.0 (0.1) 0.1 (0.2) 0.3 (0.4) 0.2 (0.1) 

Efficiency 

% of Activity 
Outside Patient 
Record 78.9 (18.4) 100.0 (0.0) 93.2 (10.9) 78.2 (5.6) 59.4 (7.2) 64.8 (8.5) 

Efficiency 
% of Outside 
Activity: Login 23.8 (15.2) 49.6 (12.0) 23.9 (9.5) 18.8 (7.3) 14.1 (4.7) 10.2 (4.4) 

Efficiency 

% of Outside 
Activity: Patient 
Search 78.9 (18.4) 100.0 (0.0) 93.2 (10.9) 78.2 (5.6) 59.4 (7.2) 64.8 (8.5) 

User Role  
n (%) Care Manager 5 (2.9) 0 (0.0) 2 (4.3) 0 (0.0) 3 (4.8) 0 (0.0) 

 
Licensed Health 
Professional 51 (29.7) 13 (41.9) 6 (12.8) 9 (34.6) 23 (36.5) 0 (0.0) 
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 Medical Doctor 13 (7.6) 3 (9.7) 5 (10.6) 1 (3.8) 4 (6.3) 0 (0.0) 

 Mid-Level 1 (0.6) 0 (0.0) 1 (2.1) 0 (0.0) 0 (0.0) 0 (0.0) 

 MIDWIFE/RN 1 (0.6) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.6) 0 (0.0) 

 Nurse Practitioner 9 (5.2) 3 (9.7) 3 (6.4) 1 (3.8) 2 (3.2) 0 (0.0) 

 Staff 30 (17.4) 3 (9.7) 4 (8.5) 6 (23.1) 14 (22.2) 3 (60.0) 

 Unknown 62 (36.0) 9 (29.0) 26 (55.3) 9 (34.6) 16 (25.4) 2 (40.0) 

Notes: Values represent group averages with standard deviations in parentheses, unless 

otherwise noted. 

 

 Our second cluster of users we labeled “Browsers” (n=26), as they demonstrated 

moderate volume use that was less than Regulars and slightly less efficient, as well as 

less diverse. Browsers had cluster averages of 17.5 actions per session and 0.5 patient 

records viewed per session. Browsers had shorter duration sessions than Regulars (4.7 vs. 

6.2 minutes), and viewed fewer information categories per session (2.1 categories). 

Browsers demonstrated lower efficiency than Regulars, spending an average of 78.2% of 

actions outside patient charts. In participation measures, Browsers averaged 1.3 use 

sessions on active use days, only slightly fewer than Regulars. Finally, in our measure of 

granularity, Browsers spent 8.7% of their within-chart actions on viewing specific results. 

We compare Browsers and Regulars in our secondary analysis, as these are the two 

clusters of “typical” users that did not demonstrate exceptionally low or exceptionally 

high system use (Figure 4.1). The remaining three clusters, described below, fit either 

“super user” or non-user use patterns, and thus were excluded from the secondary 

analysis. 
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Figure 4.1 Selected cluster mean differences of session use measures, Browsers and 

Regulars 

 
Notes: All differences presented are statistically significant (p<0.01). 

The second largest cluster (n=47) were termed “Attempters,” as these users 

demonstrated shorter session durations, on average (3.6 minutes), low use volume (12.1 

actions and 0.2 patients per session, on average), and very inefficient use (93.2% of 

actions spent outside patient records, with 23.9% of those actions spent on login activity, 

on average). Furthermore, users in this cluster had low use diversity, with an average of 

1.1 information categories viewed per session. Counter to this, Attempters showed high 

levels of granularity with 22.6% of within-chart activity spent on viewing result reports, 

on average. Attempters had the lowest average number of sessions per active use day (1.1 

sessions); this is in part due to many of these users having only one HIE use session on a 

single active use day. 

While Attempters demonstrated low volume and relatively inefficient use, 

“Quitters” (n=31) had even lower volume and less efficient HIE use. The average session 
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involved zero patients, only 4.4 actions, and registered 0.3 information categories viewed 

over a 2.5-minute duration. Consistent with inefficient use, Quitters had an average of 

100% of activity spent outside the patient record, with 49.6% of this activity spent on 

login activities. Due in part to this inefficiency, Quitters had very low granularity 

measures on average (0.0%). Like Attempters, Quitters also had 1.1 sessions per active 

use days, largely as result of having a single use on a single day in the three years of the 

log data. 

Finally, the smallest cluster of users was “Superusers” (n=5), who demonstrated 

exceptionally high volume and long duration use sessions. These five users had an 

average of 100.9 actions per session, over an average session duration of 32.5 minutes, 

viewing 4.1 information categories across 4.6 patient records. An average of 25.4 

superuser actions per session were dedicated to summary pages, while 6.7 were dedicated 

to lab content, far outstripping all other cluster content measures. Superusers also 

illustrated high granularity use from Superusers, with 22.6% of actions within the chart 

on viewing specific results, a rate on par with Attempters, roughly three times that of 

Browsers, and almost twice that of Regulars. Superusers also had the highest average 

number of sessions per active use day, with 2.1 sessions per day of use. Finally, 

Superusers demonstrated efficient system use, with only 64.8% of activity spent outside 

patient records and only 10.2% of this activity spent on login activities. 
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Comparison of Regulars and Browsers: Session-Level Use Measures 

Eighty-nine of the 172 users (51.7%) were either Regulars or Browsers, and as 

such met our criteria for inclusion in the secondary analysis comparing non-outlier HIE 

users. These users accounted for 8,925 of the 9,958 sessions in our sample (89.6%). 

Within these two groups, the HIE use measures were somewhat but not highly correlated 

(Appendix C, Tables C1 and C2), one of the conditions for use of MANOVA [4.62]. Our 

volume measure of number of actions per session was the measure most highly correlated 

with other use measures, and was excluded from this portion of the analysis. This left 12 

HIE use measures representing all six use attributes as dependent variables. In the 

multivariate analysis, there was a significant difference between Browsers and Regulars 

in the linear composite of the dependent variables (η2group=0.043, F(12, 7978)=29.64, 

p<0.001) (Table 4.3). User role and the interaction between user group and role also 

indicated a significant relationship with the composite dependent variables (η2role=0.271, 

F(72, 47838)=31.52, p<0.001; η2group*role=0.042, F(48, 31844)=7.07, p<0.001). In 

univariate ANOVA comparisons across Browsers and Regulars, only the proportion of 

actions outside the chart spent on patient search (efficiency), number of actions 

examining vitals content (content) were not statistically different across these two user 

groups, using a Bonferroni-corrected p<0.00417 cutoff for significance (Table 4.3). 
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Table 4.3 MANOVA & Univariate ANOVA Results, differences in HIE use measures 

across Browsers and Regulars 

DV: Linear Combination of HIE Use Measures       

 DF Pillai F-stat p-value       
Group*** 12, 7978 0.043 29.64 <0.001       
User Role*** 72, 47838 0.272 31.52 <0.001       
Group*Role*** 48, 31844 0.042 7.07 <0.001                  

ANOVA Univariate Comparisons 

 Volume Measure Diversity Measure Granularity Measure 
Duration 
Measure   

 
# of Patients per 

Session*** 

# of Information 
Categories 
Viewed*** 

% of Clinical Actions 
on Results 

Viewing*** 

Session 
Duration 
(mins)***   

 F-stat p-value F-stat p-value F-stat p-value F-stat p-value   
Group 60.41 <0.001 213.56 <0.001 66.56 <0.001 25.66 <0.001   
User Role 64.82 <0.001 26.54 <0.001 26.65 <0.001 82.87 <0.001   
Group*Role 9.00 <0.001 13.28 <0.001 5.03 <0.001 12.73 <0.001              
 Content Measures 

 Summary Pages*** Lab Content*** 
Radiology 

Content*** Vitals Content ADT Content* 

 F-stat p-value F-stat p-value F-stat p-value F-stat p-value F-stat p-value 
Group 50.63 <0.001 79.53 <0.001 57.16 <0.001 0.1124 0.7375 8.58 0.0034 
User Role 27.59 <0.001 7.59 <0.001 12.49 <0.001 7.60 <0.001 24.51 <0.001 
Group*Role 2.24 0.063 1.07 0.370 3.92 0.0034 11.54 <0.001 4.68 0.0009 
           
 Efficiency Measures     

 

% of Activity 
Outside Patient 

Record*** 
% of Outside 

Activity: Login*** 

% of Outside 
Activity: Patient 

Search     
 F-stat p-value F-stat p-value F-stat p-value     
Group 195.82 <0.001 108.48 <0.001 0.3173 0.5732     
User Role 34.84 <0.001 51.53 <0.001 78.84 <0.001     
Group*Role 1.47 0.208 0.4123 0.7999 12.16 <0.001     
Notes: In ANOVA results, all comparisons for the Group independent variable have 1 

degree of freedom. Role comparisons have DF=6, and Group*Role has DF=4. Due to 

high correlation with other HIE use variables, number of actions per session was 

excluded from the MANOVA and univariate ANOVA analyses. All significance 

indications are for association with the Group variable (Browsers or Regulars) and reflect 

a Bonferroni correction for multiple comparisons due to underlying heterogeneity in 
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variance matrices across groups. The p-value used to estimate statistical significance was 

0.05/12 tests = 0.00417. *p <0.05 **p<0.01 ***p<0.001. 

 

Four HIE use measure correlations coefficients demonstrated significant 

differences across Browsers and Regulars (Figure 4.2). Use volume and efficiency 

demonstrated a negative relationship in both groups, however the negative correlation 

between number of patients viewed per session and the proportion of activity taking place 

outside patient charts was stronger among Browsers than among Regulars (𝝆browsers= -

0.62, 𝝆regulars= -0.30). The correlation between volume (number of patients per session) 

and duration also differed across groups, with Regulars demonstrating a stronger positive 

correlation between these two measures (𝝆browsers= 0.33, 𝝆regulars= 0.74). Duration also 

differed in its relationship with one content measure: number of actions on the summary 

tab of the HIE portal. Regulars demonstrated a stronger correlation in these two measures 

than Browsers (𝝆browsers= 0.24, 𝝆regulars= 0.60). Finally, this content measure also varied 

across groups in terms of its relationship with use diversity (number of information 

categories viewed), this time with Browsers illustrating a stronger positive correlation 

than Regulars (𝝆browsers= 0.65, 𝝆regulars= 0.39). All correlation coefficients are reported in 

Appendix C, Tables C1 and C2. 
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Figure 4.2 HIE use measure correlation difference between Browsers and Regulars 

 
Notes: Each point represents two Pearson correlation coefficients between the same two 

HIE use variables, with the correlation among Browsers on the x-axis and Regulars on 

the y-axis. Highlighted correlations indicate those that differed in magnitude by over 0.25 

between groups and at least one group had a statistically significant correlation 

coefficient of at least 0.6. Statistical significance of the difference between correlations 

was computed via Fisher’s z-test. All highlighted correlation differences are statistically 

significant at the p<0.001 level. 

 

Discussion 

 We analyzed HIE portal user data from 172 portal users at three FQHCs in New 

York state to identify discrete groups of users according to aggregate use patterns and to 

analyze differences in HIE use among non-outlier user clusters. We identified five user 

groups, differentiated in 16 measures across the use attributes of participation, volume, 

diversity, granularity, duration, content, and efficiency. Efficiency and volume of use 
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were the primary attributes in which users differed, with very low-volume users 

(Attempters and Quitters) tending to have low efficiency use as well. The highest volume 

users (Superusers) had high efficiency measures as well as long session durations and 

high granularity use, consistent with the notion that more experience with a system will 

lead to improved efficiency as users develop routine navigation paths. Although we do 

not observe lack of use directly, the Attempters and Quitters groups offer insight into the 

prevalence of system under-use or disuse, and suggest that low efficiency measures may 

play a role in low observed utilization rates of these voluntary systems [4.2,4.13,4.63]. 

This finding fits with qualitative work that has emphasized barriers to HIE system access 

as a contributor to low provider adoption and use of HIE [4.63,4.64]. Furthermore, these 

findings support the inclusion of efficiency measures in HIE use measurement 

frameworks going forward. Efficiency measures such as these can also be utilized to 

measure the relative barriers to information access in terms of time, clicks, or proportion 

of session activity, which can in turn be used to compare implementations and system 

designs to identify more efficient systems or those that offer the most information access 

with the least administrative burden to users. 

In comparing Browsers to Regulars, we found that these two groups did indeed 

differ across use attributes. This is predictable given that the user groups were identified 

via cluster analysis which seeks to maximize the distance between cluster centroids, 

however it was not guaranteed that these two most similar groups would differ. In fact, 

we found no significant difference in access to vitals content or in our efficiency measure 

of outside chart actions attributable to patient search actions. However, in aggregate, 

Regulars demonstrated greater rates of participation, use volume, diversity of information 
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accessed, granularity of use, viewing of summary content, and other measures of 

efficiency, again supporting the theory that more system use begets greater efficiency. 

These results suggest two distinct tiers of non-outlier HIE users, those that use the system 

more regularly and those who do not. Importantly, these two groups cross-cut observed 

user roles, such that the user group was not perfectly predicted by a user’s role. This 

suggests that historical HIE system use behavior may help to distinguish user groups in a 

way that role-based classification systems cannot. Rather than designing user “profiles” 

based on user role alone (e.g. a nurse or physician profile), HIE systems may better serve 

users by observing past behavior and customizing any dynamic elements of the system 

interface based on these historical use patterns. For example, a user profile for “Regulars” 

might include features that allow for faster access to more granular information and more 

rapid switching between patient charts, as these users are more likely to view more 

patients in a given session. 

We also observe differences in HIE use measure correlations across Browsers and 

Regulars, which offers insight into use attribute trade-offs across Browsers and Regulars 

that can further assist with system design. For example, we may assume that extended 

session duration is uniformly paired with greater volume of use. While this assumption is 

supported among Regulars in terms of viewing more patient records during longer 

sessions, it is not clear that this assumption holds for Browsers, who don’t demonstrate a 

strong correlation between session duration and any other use attribute in particular. 

Understanding these relationships can help system designers anticipate what functions are 

more and less important to different user experiences. The example further motivates the 
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prominence of patient search functionalities during Regulars’ sessions to facilitate easier 

movement between charts, for instance. 

Contributions and Implications for Future Work 

To our knowledge, this is the first study to apply cluster analysis to HIE use log 

data at the user level to better understand groups of user-level patterns of HIE use. While 

other studies have used similar methods to classify use sessions according to use patterns 

[4.7,4.24], less work has been done to understand user group variation or to analyze how 

use of health IT tools varies across user groups [4.24,4.33–4.35]. In doing so, our work 

adds to the levels of analysis present in the HIE use literature, which frequently occurs at 

the individual session, organization, and exchange network levels [4.31]. While these are 

important levels of analysis to understand outcomes like adoption, network breadth, and 

architectural integration, they do not provide insight into the experience of the ultimate 

end-users of these systems. To this end, our study contributes to the understanding of 

user-level differences in HIE use that cross organizations and clinical roles. We find 

substantial variation across our five user clusters, which, while not tied to clinical 

decision-making or patient care outcomes, offers insight into how systems can 

incorporate user profiles and be responsive in configuration to different types of users, a 

common practice in modern software development but a rare occurrence in one-size-fits 

all HIE systems [4.7,4.36]. One way in which HIE systems could utilize these findings is 

to provide faster access to information categories that certain user types frequently 

access. For example, we find that Superusers access content pertaining to patient vital 

signs second-most frequently after viewing summary information, which differs from 

Regulars who more frequently access laboratory content. An HIE system could respond 
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to this by making these content areas more readily accessible for each user group (e.g. 

with a prominent link on the summary page) or include these data on group members’ 

landing pages. This customization is more technically feasible and appropriate at the user 

level than at the session level, as it is difficult for an HIE system to anticipate the type of 

session a user will be engaging in, whereas user type is directly observable and can be 

informed based on historical use measures, as we have done in our cluster analysis 

presented above. Future work should examine the impact that these system design 

changes have on user experience and acceptance, to better understand the precise system 

designs that will facilitate the broadest use and have downstream implications for clinical 

decision-making and care quality. 

In applying the Politi, et al. framework of multidimensional HIE use, this work 

aims to contribute to the systemization of HIE use literature, a key challenge as settings, 

architectural types, workflows, clinical data availability, and other factors vary widely 

across HIE system implementations and efforts [4.65,4.66]. These variations make large 

scale, nationally representative HIE use log data difficult - if not impossible - to acquire, 

which in turn renders studies of HIE use inherently limited in their generalizability to the 

settings and environments in which they occur. Given these constraints, consistent 

application of measurement frameworks is one of the few tools researchers have at their 

disposal to improve the external validity of findings regarding the usage and effects of 

HIE [4.31]. Multiple studies employing high-fidelity, theoretically informed measures of 

use are needed to better understand the effects of HIE use on care quality [4.67,4.68]. The 

careful and consistent application of frameworks such as this one, the Massetti and Zmud 

framework of electronic data interchange [4.69], and the Burton-Jones and Straub 
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framework of information system usage measure richness [4.70] is critical to building the 

body of evidence on the impact of HIE use on care quality and to rigorously identifying 

the specific nature of HIE use and mechanisms that underlie any observed effects. 

Furthermore, the current work contributes to the development of these 

measurement frameworks by extending the current framework to include two additional 

attributes of HIE system use: efficiency and participation. In particular, the attribute of 

efficiency is important for health IT system use in general and HIE system use 

specifically, as information retrieval tasks are often undertaken in time-constrained 

environments like EDs. Efficient access to and navigation within HIE systems is 

important for, first, user acceptance, and second, conditional on that acceptance and use, 

any impact of HIE on care quality [4.8]. Our findings demonstrate that user groups do in 

fact differ substantially in efficiency, which may be a latent factor in system under-use or 

rejection and thus has implications for both HIE system design and implementation. In 

particular, more tightly integrated systems such as those with integrated login for users 

and/or direct links or access to HIE records from within EHRs may offer more efficient 

user experiences [4.31]. Future work should explore the extent to which HIE systems 

designed with efficiency in mind have greater acceptance and use, as these designs may 

hold greater potential for improvements to care quality. 

Conclusion 

We studied users of an HIE system over three years and used system log data to 

compute measures of use volume, diversity, granularity, duration, content, efficiency, and 

participation. We applied cluster analysis at the user level, to identify five discrete groups 

of users as defined by their aggregate use patterns across sessions. User clusters were 
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primarily differentiated by use volume, session duration, and efficiency measures. We 

further analyzed differences in use measures and their correlations across two groups of 

non-outlier users, which we called Browsers and Regulars. Our findings indicate 

variation in user-level patterns of HIE use, which may not be well-accommodated in one-

size-fits-all HIE systems. Designers of voluntary use systems like HIE should consider 

variation in system use when designing user profiles and workflows in HIE systems, as 

well as emphasize ways to reduce inefficient use of the system. 
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Chapter 5: Conclusion 

Summary of Findings 

This dissertation has examined several dimensions of HIE use in the context of 

primary care, an under-represented area of HIE research [5.1,5.2] and an important hub 

for care coordination efforts [5.3]. Furthermore, numerous efforts to reform health care 

delivery in the US are rooted in primary care [5.4–5.6], and depend upon the adoption 

and use of interoperable health IT to realize the goals of improved quality and lower costs 

[5.4,5.7,5.8]. Thus, this work is situated at the intersection of primary care and health IT 

use, and focuses on the use of HIE. This dissertation therefore also sits at the juncture of 

health services research, health informatics, and health policy, and contributes to each of 

these domains.  

Chapter 2 analyzed overall rates of HIE use and practice and market factors 

associated with HIE, offering insight into the conditions and policies that foster more or 

less provider HIE. We found somewhat low rates of overall HIE use among primary care 

providers (43% of referrals were sent with eSCR), indicating that even among providers 

with the capability to exchange data, a usage gap remains. The EHR vendor the practice 

utilized demonstrated a relationship with HIE use, suggesting that HIE may be more 

readily facilitated by certain vendors. More work is needed to better understand the 

mechanisms underlying these vendor-based differences, which may in turn inform 

regulatory efforts to reduce forms of “information blocking” by EHR vendors. We also 

find that HIE use is greater among primary care providers in counties that do not suffer 

from health care provider shortages. This could be driven by availability of 

technologically equipped exchange partners, availability of specialists, established 
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referral networks, or some other set of factors. Future federal efforts may seek to focus 

energy on closing this HIE use gap, as primary care providers in less well-resourced areas 

are likely to encounter more chronically ill patients requiring effective care coordination 

and therefore need robust HIE to facilitate that coordination. 

 Chapter 3 examined the prevalence of team-based use of HIE in the context of 

primary care delivery reform, finding that over 85% of visits with any use of the HIE did 

so in a manner congruent with team-based models of care. While overall usage rates of 

the HIE remained quite low, consistent with previous research on similar voluntary use 

systems [5.9], those visits involving HIE did so overwhelmingly in a team-based manner. 

This study offers quantitative support for qualitative studies emphasizing the importance 

of HIE in team-based care [5.5,5.10,5.11]. It also provides encouraging evidence that 

existing HIE systems can support primary care delivery reform; this in turn offers support 

for additional development of these policies and programs. Observed HIE system use 

supports the notion that these systems can support team-based models of care. 

Furthermore, we found that team-based use is at best not associated with reduced breadth 

of information viewed in the HIE, but we did not find support for our hypothesis that 

team-based use would be associated with more information categories viewed by the 

team relative to non-team-based use. This finding does not support the hypothesis that 

delegated and distributed use of HIE systems will facilitate broader information retrieval 

and more comprehensive knowledge about the patient, however we do find that larger 

teams engage in broader HIE use. Future research in this area should explore the 

underlying information needs of teams in primary care, and to the extent that they differ 

from individual provider needs, seek to measure that dimension of information seeking in 
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future analyses. We also found that the depth of use among teams tended to be lower both 

before and after a patient visit, implying that teams spent relatively more time viewing 

summative information (vs. individual result data) than individual providers. This 

supports previous work noting that providers tend to use HIE systems to look at more 

detailed and specific information [5.12,5.13]. One of the key values of HIE systems is 

that they can provide summative views of information, whereas traditional methods of 

exchange such as fax do not collate information for quick review. The tendency of teams, 

when using HIE, to give more attention to summative pages provides support for this 

fundamental component of HIE system value in collating and allowing for rapid review 

of large quantities of clinical information that otherwise would require time-consuming 

perusal of entire patient charts. Future work can extend this knowledge by linking these 

measures of team-based HIE use to care quality and cost outcomes, to quantify the extent 

to which technology use in particular contributes to the goals of delivery reform. 

 Finally, in chapter 4 we examined user-level patterns of HIE use, identifying five 

discrete types of users that cross-cut user roles and uncovering two distinct tiers of non-

outlier users that are often homogenized and only distinguished from outlier users (e.g. 

non-users or superusers). User-level analyses of HIE system use have been rare [5.12, 

5.14], and this study explores important variation in user patterns that can inform the 

construction of user profiles and dynamic system interfaces based on past HIE use that 

anticipate and meet users’ distinct information needs. For example, more “regular” users 

who are not superusers appear to use longer duration sessions to view a greater volume of 

patient charts, rather than view more granular information about a single patient. This 

relationship is not as clear among less regular users (“Browsers”). This finding suggests 
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that for Regular users, functionality to switch between patient charts may be relatively 

more important than making high-granularity information readily accessible. 

Furthermore, users demonstrated variation in use efficiency, with higher-frequency users 

demonstrating returns to their efficiency of HIE use. This supports the notion that ease of 

access to information within the HIE is critical to widespread HIE use, as administrative 

burdens such as logins and failed patient searches contribute to low provider uptake 

[5.15,5.16]. Specifically, the use of single-sign-on web services and integration of HIE 

access within EHRs may improve HIE use efficiency, ease the burden of access to HIE, 

drive greater use, and more effectively improve care quality. Beyond its empirical 

findings, chapter 4 also extends a six-attribute framework of multidimensional HIE use 

[5.17], by adding a session-level attribute of use efficiency and a user-level attribute of 

participation in HIE system use. Our findings underscore the importance of measuring 

use efficiency and provide researchers with a framework and suggested measures to 

develop replicable evidence regarding the efficacy of specific types of HIE use. Variation 

in HIE use measurement has been a core challenge to developing generalizable findings 

regarding the impact of HIE on care quality and cost [5.2,5.18], and absent national HIE 

use log data, measurement frameworks are a critically important tool for improving this 

literature [5.14]. 

Contributions to Health Information Exchange Literature 

 These findings represent several contributions to the HIE literature, in both the 

“barriers and facilitators” and “HIE use” streams (Figure 1.1). Chapter 2 refines our 

understanding of the barriers and facilitators to HIE use as the first study to quantify the 

volume of HIE use at the provider level in a nation-wide sample of providers, rather than 
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at the organizational level. Furthermore, we identify key factors that may influence the 

rate of HIE use among providers, in particular EHR vendor, beneficiary mix, and location 

within a health professional shortage area. Chapter 3 contributes to the HIE use literature 

as the first study to utilize an explicit measure of team-based HIE use, rooted in 

regulatory proposals for improving quality measurement, and quantifies the degree to 

which HIE is being used in a manner congruent with team-based care delivery models. 

We find that this is indeed occurring; previous research articulated levels of technology 

adoption and the effects on cost, quality, and patient outcomes [5.8,5.19], but did not 

measure the nature of the use of these technologies. We provide new evidence that helps 

to contextualize the technology use mechanisms that may play a role in these outcomes. 

We also offer new evidence regarding the differences (or lack thereof) between team-

based HIE use and non-team-based HIE use, a further refinement of the literature 

covering differences in the nature of HIE use by distinct types of users. Chapter 4 

contributes to the “HIE use” literature sub-stream via a novel user-level analysis of HIE 

use, deploying and extending a conceptual framework to include replicable measures of 

use efficiency and participation. We identify five discrete groups of HIE system users 

that cross-cut clinical roles. Previous research has focused on classifying session-level 

measures of use [5.12,5.17,5.20]; our work addresses calls for user-level analyses [5.14] 

and identifies two tiers of “typical” HIE users largely differentiated by participation, use 

volume, and efficiency measures. These user types can be utilized in dynamic approaches 

to HIE workflow design and provide insight into the trade-offs that users demonstrate in 

what they prioritize in health IT system use. Moreover, this dissertation contributes to the 

knowledge base regarding HIE in the context of primary care, which, like many other 
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care settings, has been under-represented in the HIE literature despite its critical 

importance to care coordination. 

Directions for Future Research 

 This body of work has implications for health services researchers and health 

informatics researchers as well as policy researchers, especially those focused on health 

IT and primary care delivery reform efforts. First, health services researchers studying 

primary care delivery reform can focus future work on understanding appropriate levels 

of HIE use and the relationship between the volume and nature of HIE use and primary 

care quality outcomes like chronic disease management. As noted previously, while 

normative levels of HIE use remain elusive, study of “missed opportunities” for exchange 

will be critical to quantifying this gap and tracking its closure. Furthermore, the body of 

evidence regarding HIE’s impact on clinical quality outcomes in particular remains 

sparse [5.2,5.21,5.22]. Finally, detailed measures of different HIE use attributes allow 

health services researchers to analyze the relative contributions or effects that different 

types of HIE and health IT use have on those outcomes. For example, researchers may be 

interested in the particular attributes of HIE use that underlie ED admission decisions or 

that have an outsized impact on reducing readmission rates. Additionally, studies could 

examine the relationship between specific types of HIE use for care coordination on 

clinical outcomes such as controlled hypertension or diabetes. Understanding these 

details is important for quantifying the value of health IT and HIE, and can inform system 

implementation, training, workflow redesign, and regulatory programs aiming to 

incentivize the types of HIE use that contribute directly to quality goals. Second, health 

services and policy researchers can utilize the HIE use measures applied in chapters three 
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and four as process measures in studies of care quality, linking organizational and system 

structures to outcomes of interest via observed patterns of use representing the care 

process [5.23]. Third, health informatics researchers studying the impacts of system-level 

differences like interface designs and integration capabilities can utilize measures like 

efficiency, volume, and granularity as outcomes to analyze the impact system changes 

like single-sign-on and EHR integration on the nature of HIE system use. This also has 

implications for health IT policy researchers who may be interested in identifying the 

most efficacious of these system-level approaches to inform regulatory measures and 

incentive programs that aim to move health IT use towards the most evidence-based 

design and implementation approaches. Fourth, informatics researchers utilizing log data 

from EHRs and HIE systems can apply the Politi, et al. framework as well as the 

extensions articulated herein to improve standardization in approaches to HIE use 

measurement and external validity of findings. We encourage informatics researchers to 

replicate findings from chapter 3 in different HIE systems, care settings, and geographies, 

to reveal variation in user groups and use patterns across these dimensions that can 

further inform system design and implementation practices. Furthermore, we echo Politi, 

et al. in our encouragement to further extend this framework, ideally adapting it to 

measure multidimensional use of health IT tools outside the context of HIE. Fifth, these 

same researchers can deepen our understanding of EHR vendor-based differences in HIE 

use illuminated in chapter 2. For example, EHR log data may capture the patients for 

whom eSCRs were sent, and compare these patients’ outcomes to similar patients for 

whom a referral was sent without eSCR. Rates of use can then be compared across EHR 

vendors, controlling for patient, visit, and organizational characteristics. However, for 
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this work to be feasible, considerable progress must be made in standardizing EHR use 

measurements to allow for cross-platform, multi-institution studies [5.24]. Furthermore, 

these attributes and measures of use are additional candidates for the evaluation of 

specific types of health IT system use and quality outcomes noted previously. 

Despite progress in adoption and massive federal investment, widespread 

interoperable HIE remains aspirational for the US health care system. While 

technological capabilities have advanced considerably, major gaps remain in the network 

of health IT systems supporting care delivery. Providers and policymakers are keen on 

realizing the returns to this investment in the form of higher quality and better 

coordinated care; this return depends in large part on interoperability and use of high-

fidelity HIE [5.25,5.26]. This is particularly important in primary care settings, which are 

at the center of the US health care system and often serve as care coordinators and hubs 

of patient information. This dissertation has examined provider use of HIE across a 

number of dimensions, and offers novel evidence and methodological development that 

improves our understanding of the role of HIE use in the US health care system’s 

progress towards improved quality. 
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Appendix A: Chapter 2 Supplemental Materials 

Regression Model Details 

HIEVolume = 𝛼 + β1PracticeSize + β2EHRVendor + β3HealthSystemMembership + 

β4ProviderMarketShare + β5AvgBeneficiaryAge + β6AvgBeneficiaryHCCRiskScore + 

β7PctBeneficiariesCKD + β8PctBeneficiariesDiabetes + β9PctBeneficiariesHypertension+ 

β10HSAConcentrationIndex + β11NumberofProviderswEHRsinHSA + 

β12HealthProfessionalShortageArea + β13CountyMedianHouseholdIncome + 

β14CountyPctPersonsinPoverty + β15CountyMetroNonMetro + β16StateHIEConsentPolicy 

+ β17ProviderGender + β18ProviderYearsinPractice + ε 

Notes: Terms in red denote practice factors, green terms denote market factors, and blue 

terms denote control variables. 
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Table A1 Descriptive Statistics of Sample, Stratified by Provider Specialty 

 Overall Primary Care Cardiology 
Orthopedic 

Surgery p 

n 26095 22407 2193 1495  
% Referrals Sent w/ eSCR*** 45.12 (28.12) 42.72 (27.05) 63.54 (30.86) 54.06 (27.81) <0.001 

Practice Factors      
Practice Size*** 2 to 5 2729 (10.6) 2431 (11.1) 156 (7.2) 142 (9.5) <0.001 

 >51 providers 13765 (53.7) 12320 (56.0) 870 (40.0) 575 (38.6)  

 11 to 50 5864 (22.9) 4418 (20.1) 842 (38.7) 604 (40.6)  

 6 to 10 1809 (7.1) 1498 (6.8) 206 (9.5) 105 (7.1)  

 Solo practice 1484 (5.8) 1320 (6.0) 101 (4.6) 63 (4.2)  
EHR Vendor*** other 5966 (22.9) 4764 (21.3) 895 (40.8) 307 (20.5) <0.001 

 Allscripts 3132 (12.0) 2890 (12.9) 91 (4.1) 151 (10.1)  

 athenahealth, Inc. 2696 (10.3) 2216 (9.9) 21 (1.0) 459 (30.7)  

 Cerner Corporation 1040 (4.0) 835 (3.7) 179 (8.2) 26 (1.7)  

 
eClinicalWorks, 
LLC 4661 (17.9) 4051 (18.1) 465 (21.2) 145 (9.7)  

 
Epic Systems 
Corporation 3488 (13.4) 3381 (15.1) 33 (1.5) 74 (4.9)  

 GE Healthcare 1222 (4.7) 1127 (5.0) 45 (2.1) 50 (3.3)  

 
Greenway Health, 
LLC 1075 (4.1) 797 (3.6) 200 (9.1) 78 (5.2)  

 NextGen Healthcare 2815 (10.8) 2346 (10.5) 264 (12.0) 205 (13.7)  
Health System 
Membership*** 

Not in a health 
system 17620 (67.5) 14845 (66.3) 1539 (70.2) 1236 (82.7) <0.001 

 In a health system 8475 (32.5) 7562 (33.7) 654 (29.8) 259 (17.3)  

Provider Market Share (w/in specialty)*** 2.85 (8.11) 1.73 (4.84) 8.68 (15.02) 11.06 (18.18) <0.001 

Average Beneficiary Age*** 72.65 (3.02) 72.46 (3.06) 75.00 (1.91) 72.05 (2.12) <0.001 

Average Beneficiary HCC Risk Score*** 1.27 (0.38) 1.22 (0.36) 1.78 (0.30) 1.20 (0.21) <0.001 

% of Beneficiaries w/ CKD*** 28.67 (10.80) 27.48 (10.33) 42.63 (7.50) 25.78 (6.17) <0.001 

% of Beneficiaries w/ Diabetes*** 31.43 (8.92) 30.69 (8.81) 39.89 (6.79) 29.95 (6.52) <0.001 

% of Beneficiaries w/ Hypertension*** 66.88 (8.84) 65.97 (8.96) 74.85 (1.12) 68.82 (7.08) <0.001 
Market Factors      

HSA Concentration 
Index***  Unconcentrated 24738 (94.8) 21763 (97.1) 1836 (83.7) 1139 (76.2) <0.001 

 
Moderately 
Concentrated 516 (2.0) 171 (0.8) 163 (7.4) 182 (12.2)  
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Highly 
Concentrated 840 (3.2) 473 (2.1) 194 (8.8) 173 (11.6)  

Number of Providers with EHRs in HSA* 
335.91 
(456.79) 

335.82 
(457.55) 

320.78 
(426.97) 

359.46 
(486.07) 0.041 

Number of Medicare Hospitals, county*** 6.57 (10.66) 6.69 (10.93) 6.51 (9.46) 4.89 (7.65) <0.001 
Health Professional 
Shortage Area*  No Shortage 2973 (11.4) 2527 (11.3) 296 (13.5) 150 (10.0) 0.012 

 
Partial Shortage 

460 (1.8) 398 (1.8) 38 (1.7) 24 (1.6)  

 Full Shortage 22613 (86.8) 19436 (86.9) 1857 (84.8) 1320 (88.4)  

Median Household Income, county*** 
60918.90 
(16440.33) 

61115.07 
(16140.09) 

60777.89 
(19745.35) 

58190.67 
(15291.53) <0.001 

Percent of Persons in Poverty, county*** 13.35 (4.70) 13.29 (4.69) 13.61 (4.82) 13.86 (4.68) <0.001 
Metro vs. Non-Metro 
(%) Metro 23070 (88.6) 19845 (88.7) 1922 (87.7) 1303 (87.2) 0.084 

 non-Metro 2976 (11.4) 2516 (11.3) 269 (12.3) 191 (12.8)  
State HIE Consent 
Policy*** NoPolicy 7398 (28.4) 6391 (28.5) 503 (22.9) 504 (33.7) <0.001 

 OptIn 5782 (22.2) 4680 (20.9) 805 (36.7) 297 (19.9)  

 OptOut 6508 (24.9) 5749 (25.7) 396 (18.1) 363 (24.3)  

 Other 6407 (24.6) 5587 (24.9) 489 (22.3) 331 (22.1)  
Controls      

Provider Gender(%)*** F 8348 (32.0) 8094 (36.1) 198 (9.0) 56 (3.7) <0.001 

 M 17747 (68.0) 14313 (63.9) 1995 (91.0) 1439 (96.3)  
Years in Practice*** 23.79 (10.27) 23.51 (10.27) 26.57 (10.12) 23.85 (9.87) <0.001 
 
Notes: Values reported are averages, with standard deviation in parenthesis, unless 

otherwise noted. Statistical tests of significance are the rest of bivariate chi-squared 

analyses. Significance levels: *p<0.05 **p<0.01 ***p<0.001. 
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Figure A1 Relationship between EHR vendor and HIE use volume, cardiology 
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Figure A2 Relationship between EHR vendor and HIE volume, orthopedic surgery 

 
  



 

131 

Figure A3 Practice factors associated with HIE use volume, cardiology 

 
Notes: Forest plot displays results from linear regression estimates of the relationship 

between practice factors and provider HIE use volume. HIE use volume is measured as 

the percentage of referrals sent with eSCR, reported to MU Stage 2 in 2016. Model 

adjusts for market factors and controls for provider gender and years in practice. 

Significance levels: *p<0.05 **p<0.01 ***p<0.001.  
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Figure A4 Market factors associated with HIE use volume, cardiology 

 
Notes: Forest plot displays results from linear regression estimates of the relationship 

between market factors and provider HIE use volume. HIE use volume is measured as the 

percentage of referrals sent with eSCR, reported to MU Stage 2 in 2016. Model adjusts 

for practice factors and controls for provider gender and years in practice. Significance 

levels: *p<0.05 **p<0.01 ***p<0.001.  
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Figure A5 Practice factors associated with HIE use volume, orthopedic surgery 

 
Notes: Forest plot displays results from linear regression estimates of the relationship 

between practice factors and provider HIE use volume. HIE use volume is measured as 

the percentage of referrals sent with eSCR, reported to MU Stage 2 in 2016. Model 

adjusts for market factors and controls for provider gender and years in practice. 

Significance levels: *p<0.05 **p<0.01 ***p<0.001.  
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Figure A6 Market factors associated with HIE volume, orthopedic surgery 

 
Notes: Forest plot displays results from linear regression estimates of the relationship 

between market factors and provider HIE use volume. HIE use volume is measured as the 
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percentage of referrals sent with eSCR, reported to MU Stage 2 in 2016. Model adjusts 

for practice factors and controls for provider gender and years in practice. Significance 

levels: *p<0.05 **p<0.01 ***p<0.001. 
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Table A2 Linear regression results, combined model controlling for provider specialty 

  HIE Use Volume 

  B [95% CI] p-value 

Practice Factors   

Practice Size 2 to 5 reference  

 >51 providers 4.3 [1.2,7.5]** 0.008 

 11 to 50 2.2 [-0.2,4.6] 0.075 

 6 to 10 -1.1 [-3.8,1.6] 0.417 

 Solo practice 2.1 [-0.1,4.3] 0.064 

EHR Vendor other reference  

 Allscripts -3.9 [-9.1,1.2] 0.133 

 athenahealth, Inc. 17.4 [14.1,20.6]*** p<0.001 

 Cerner Corporation -10.1 [-15.9,-4.3]*** p<0.001 

 eClinicalWorks, LLC -12.2 [-15.1,-9.3]*** p<0.001 

 Epic Systems Corporation -7.7 [-13,-2.3]** 0.005 

 GE Healthcare -8.6 [-13.9,-3.3]** 0.001 

 Greenway Health, LLC 15.2 [9.2,21.2]*** p<0.001 

 NextGen Healthcare -3.2 [-7.5,1] 0.137 

Health System Membership Not in a health system reference  

 In a health system 1.1 [-2.1,4.4] 0.497 

Provider Market Share (w/in specialty) 0.1 [0,0.2]* 0.036 

Average Beneficiary Age 0.2 [0,0.5] 0.063 

Average Beneficiary HCC Risk Score 4.3 [1.6,7]** 0.002 

% of Beneficiaries w/ CKD -0.2 [-0.3,0]** 0.005 

% of Beneficiaries w/ Diabetes 0 [-0.1,0.2] 0.447 

% of Beneficiaries w/ Hypertension 0 [-0.1,0.1] 0.674 
Market Factors   

HSA Concentration Index Unconcentrated reference  

 Moderately Concentrated -2 [-6,2] 0.327 

 Highly Concentrated 0.2 [-3.4,3.8] 0.929 

Number of Providers with EHRs in HSA 0 [0,0] 0.45 

Number of Medicare Hospitals, county 0.1 [0,0.3]* 0.014 
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Health Professional Shortage Area No Shortage reference  

 Partial Shortage -7.3 [-13.1,-1.4]* 0.015 

 Full Shortage -5.4 [-8.9,-1.9]** 0.002 

Median Household Income, county 0 [0,0] 0.341 

Percent of Persons in Poverty, county 0.2 [-0.2,0.6] 0.288 

Metro vs. Non-Metro (%) Metro reference  

 non-Metro -0.3 [-3.1,2.5] 0.851 

State HIE Consent Policy NoPolicy reference  

 OptIn 2.2 [-1.5,5.9] 0.25 

 OptOut 1.2 [-1.7,4.2] 0.412 

 Other 2.2 [-1,5.3] 0.176 
Control Variables   

Provider Specialty Cardiology reference  

 Primary Care -19.1 [-22.6,-15.5]*** p<0.001 

 Orthopedic Surgery -13 [-17.7,-8.2]*** p<0.001 

Provider Gender F reference  

 M -0.6 [-1.5,0.4] 0.231 

Years in Practice 0.1 [0,0.1]** 0.002 

 Constant 36.9 [14.6,59.3]** 0.001 

 AIC 232615.6 

 n 24,748 

Notes: Significance levels: *p<0.05 **p<0.01 ***p<0.001. 
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Table A3 Heckman selection model regression results, primary care 

 

  
First Stage: HIE Exemption in 

2015 
Second Stage: HIE Use 

Volume 

  B se B se 

Practice Factors Heckman Selection Results Heckman Selection Results 

Practice Size 2 to 5 reference  reference  

 >51 providers 0.0916 0.064 4.546* 1.786 

 11 to 50 0.244*** 0.0525 1.135 1.397 

 6 to 10 0.0495 0.0644 -0.765 1.592 

 Solo practice -0.170*** 0.0455 2.101 1.273 

EHR Vendor other reference  reference  

 Allscripts 0.0128 0.088 -5.086 2.841 

 athenahealth, Inc. 0.140* 0.0679 20.91*** 1.788 

 Cerner Corporation -0.127 0.122 -6.605* 3.223 

 eClinicalWorks, LLC 0.313*** 0.0672 -13.93*** 1.68 

 
Epic Systems 
Corporation -0.500*** 0.0935 -6.463* 2.788 

 GE Healthcare -0.214 0.233 -7.794* 3.26 

 
Greenway Health, 
LLC 0.0501 0.0913 15.52*** 4.002 

 NextGen Healthcare 0.345*** 0.0967 -2.572 2.649 

Health System Membership Not in a health system reference  reference  

 In a health system -0.226** 0.0736 0.253 1.872 

Provider Market Share (w/in specialty) 0.00886*** 0.00235 0.232*** 0.0595 

Average Beneficiary Age -0.00419 0.00453 0.341* 0.136 

Average Beneficiary HCC Risk Score -0.314*** 0.0628 5.462*** 1.618 

% of Beneficiaries w/ CKD -0.00302 0.00214 -0.173** 0.0573 

% of Beneficiaries w/ Diabetes 0.00248 0.00203 0.0851 0.0711 

% of Beneficiaries w/ Hypertension 0.00533* 0.00222 -0.0746 0.0642 
Market Factors     

HSA Concentration Index Unconcentrated reference  reference  

 
Moderately 
Concentrated 0.032 0.0873 -4.486* 1.818 
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 Highly Concentrated -0.0633 0.105 -1.727 2.948 

Number of Providers with EHRs in HSA -0.000113* 0.0000468 0.00158 0.0024 

Number of Medicare Hospitals, county -0.000102 0.0025 0.155* 0.0686 

Health Professional 
Shortage Area No Shortage reference  reference  

 Partial Shortage 0.0417 0.105 -7.269* 3.027 

 Full Shortage 0.0996 0.0706 -4.736* 1.896 

Median Household Income, county -0.00000259 0.00000244 -0.000000356 0.0000686 

Percent of Persons in Poverty, county -0.00192 0.00731 0.0737 0.199 

Metro vs. Non-Metro (%) Metro reference  reference  

 non-Metro -0.148* 0.061 0.56 1.554 

State HIE Consent Policy NoPolicy reference  reference  

 OptIn 0.0284 0.0617 2.563 2.127 

 OptOut -0.0556 0.0818 1.547 1.592 

 Other -0.026 0.0727 1.962 1.863 
Control Variables     

Provider Gender F reference  reference  

 M 0.0576** 0.0177 -0.79 0.541 

Years in Practice -0.00622*** 0.000992 0.0640* 0.0268 
Identification Variable     

HIE Exclusion in 2015 N reference    

 Y -1.725*** 0.0459   

 Constant 1.561*** 0.385 18.39 12.13 

 AIC     

 n 53,259  18,729  

 Altrho -0.0797081* 0.0370   

 Rho -0.0795 0.0368   

 Lambda -1.9673 0.9239  

 

Notes: Results in second stage are adjusted OLS coefficients accounting for sample 

selection bias modeled in first stage. All models use errors clustered at the practice level. 

Significance levels: *p<0.05 **p<0.01 ***p<0.001  
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Table A4 Heckman selection model results, cardiology 

  
First Stage: HIE Exemption in 

2015 
Second Stage: HIE Use 

Volume 

  B se B se 
Practice Factors Heckman Selection Results Heckman Selection Results 

Practice Size 2 to 5 reference  reference  

 >51 providers 0.368* 0.143 8.26 4.604 

 11 to 50 0.254* 0.12 14.37*** 4.326 

 6 to 10 0.309* 0.156 10.45 5.531 

 Solo practice 0.158 0.133 2.572 5.786 

EHR Vendor other reference  reference  

 Allscripts -0.744*** 0.146 -1.322 9.334 

 athenahealth, Inc. -1.152*** 0.154 -14.74* 6.666 

 Cerner Corporation -0.111 0.162 -13.48** 4.586 

 eClinicalWorks, LLC 0.0317 0.105 5.826 3.073 

 
Epic Systems 
Corporation -1.638*** 0.166 -0.545 7.514 

 GE Healthcare -0.698*** 0.177 -22.96*** 6.254 

 Greenway Health, LLC 0.0906 0.134 8.054 6.14 

 NextGen Healthcare -0.201 0.175 -11.17* 4.671 

Health System Membership Not in a health system reference  reference  

 In a health system -0.225* 0.107 7.896** 3.046 

Provider Market Share (w/in specialty) 0.00512** 0.0018 0.084 0.0679 

Average Beneficiary Age -0.0305* 0.0153 -0.102 0.619 

Average Beneficiary HCC Risk Score -0.376* 0.186 -3.192 7.498 

% of Beneficiaries w/ CKD 0.00765 0.00792 0.327 0.269 

% of Beneficiaries w/ Diabetes -0.0108 0.00624 -0.406 0.246 

% of Beneficiaries w/ Hypertension 0.00325 0.0194 0.635 0.808 
Market Factors     

HSA Concentration Index Unconcentrated reference  reference  
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Moderately 
Concentrated 0.14 0.0976 3.082 3.441 

 Highly Concentrated -0.114 0.112 -6.846 3.733 

Number of Providers with EHRs in HSA -0.0000815 0.0000795 -0.00266 0.00244 

Number of Medicare Hospitals, county 0.00513 0.00346 -0.011 0.161 

Health Professional 
Shortage Area No Shortage reference  reference  

 Partial Shortage 0.0512 0.22 -6.686 9.82 

 Full Shortage -0.167 0.0981 -15.66*** 3.07 

Median Household Income, county 0.000000305 0.0000051 0.000359*** 0.000104 

Percent of Persons in Poverty, county -0.00613 0.0134 0.904 0.473 

Metro vs. Non-Metro (%) Metro reference  reference  

 non-Metro 0.046 0.0974 -4.864 3.488 

State HIE Consent Policy NoPolicy reference  reference  

 OptIn 0.184* 0.09 -4.157 3.588 

 OptOut -0.136 0.111 0.138 3.706 

 Other 0.134 0.123 -3.35 3.83 
Control Variables     

Provider Gender F reference  reference  

 M 0.0306 0.0666 0.855 2.484 

Years in Practice -0.00417* 0.00209 0.115 0.065 
Identification Variable     

HIE Exclusion in 2015 N reference    

 Y -1.825*** 0.0758   

 Constant 3.424 1.817 -1.212 75.42 

 AIC     

 n 17,478  1,925  

 Altrho 0.01547 0.0592   

 Rho 0.01547 0.0592   

 Lambda 0.42806 1.63968   
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Notes: Results in second stage are adjusted OLS coefficients accounting for sample 

selection bias modeled in first stage. All models use errors clustered at the practice level. 

Significance levels: *p<0.05 **p<0.01 ***p<0.001 
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Table A5 Heckman selection model results, orthopedic surgery 

 

  
First Stage: HIE Exemption in 

2015 
Second Stage: HIE Use 

Volume 

  B se B se 
Practice Factors Heckman Selection Results Heckman Selection Results 

Practice Size 2 to 5 reference  reference  

 >51 providers -0.097 0.154 6.284 4.33 

 11 to 50 -0.163 0.138 4.835 4.035 

 6 to 10 -0.328 0.203 0.614 5.183 

 Solo practice -0.0543 0.165 1.102 5.212 

EHR Vendor other reference  reference  

 Allscripts 0.509* 0.211 -1.432 5.472 

 athenahealth, Inc. 0.804*** 0.108 -5.685 4.238 

 Cerner Corporation -0.258 0.249 -21.88** 7.739 

 eClinicalWorks, LLC 0.606*** 0.164 -10.45 6.029 

 
Epic Systems 
Corporation -0.421** 0.15 -17.83** 6.501 

 GE Healthcare 0.000934 0.176 -21.25* 8.952 

 Greenway Health, LLC 0.23 0.175 29.07*** 5.341 

 NextGen Healthcare 0.425* 0.206 -11.84* 4.657 

Health System Membership Not in a health system reference  reference  

 In a health system -0.127 0.138 -0.669 3.384 

Provider Market Share (w/in specialty) 0.00339 0.00188 -0.154** 0.0596 

Average Beneficiary Age -0.0217 0.0145 0.234 0.51 

Average Beneficiary HCC Risk Score -0.680** 0.208 -12.46 8.235 

% of Beneficiaries w/ CKD 0.0151 0.00951 0.00666 0.304 

% of Beneficiaries w/ Diabetes 0.00119 0.00771 0.634** 0.245 

% of Beneficiaries w/ Hypertension 0.00488 0.0085 -0.12 0.227 
Market Factors     

HSA Concentration Index Unconcentrated reference  reference  

 
Moderately 
Concentrated 0.0458 0.106 3.089 3.218 
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 Highly Concentrated -0.0379 0.129 6.046 3.54 

Number of Providers with EHRs in HSA 0.000106 0.000164 0.00129 0.00248 

Number of Medicare Hospitals, county -0.00992 0.00664 -0.0731 0.146 

Health Professional Shortage 
Area No Shortage reference  reference  

 Partial Shortage -0.201 0.251 3.371 9.175 

 Full Shortage 0.0252 0.126 4.438 3.702 

Median Household Income, county -0.00000653 0.00000607 0.000302* 0.000137 

Percent of Persons in Poverty, county -0.0157 0.0191 0.101 0.376 

Metro vs. Non-Metro (%) Metro reference  reference  

 non-Metro 0.0372 0.117 0.932 3.567 

State HIE Consent Policy NoPolicy reference  reference  

 OptIn 0.2 0.143 0.102 3.405 

 OptOut -0.17 0.108 0.701 4.023 

 Other 0.0675 0.121 0.339 3.344 
Control Variables     

Provider Gender F reference  reference  

 M 0.125 0.129 -2.849 5.242 

Years in Practice -0.00221 0.00218 -0.0616 0.0849 
Identification Variable     

HIE Exclusion in 2015 N reference    

 Y -1.879*** 0.0998   

 Constant 2.501* 1.107 24.08 41.76 

 AIC     

 n 8,757  1,271  

 Altrho -0.025255 0.0737   

 Rho -0.0252496 0.0736   

 Lambda -0.6424535 1.8698   
Notes: Results in second stage are adjusted OLS coefficients accounting for sample 

selection bias modeled in first stage. All models use errors clustered at the practice level. 

Significance levels: *p<0.05 **p<0.01 ***p<0.001.  
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Appendix B: Chapter 3 Supplemental Materials 

Rochester RHIO Background, Workflow, and Use Data 

Note: Reference numbers refer to reference list at the end of Chapter 3. 

 After major state investment to build a statewide HIE network, the Rochester 

RHIO query portal services became operational in 2008 [38]. The secure web portal 

allows for authorized, RHIO-approved physicians and other clinical staff members to 

access patient health information contributed from health organizations [19]. Data is 

provided to the Rochester RHIO database by hospitals, laboratories, physician offices, 

public health agencies, home health centers, and payers in the 13-county service region 

[39]. During the study period, the Rochester RHIO contained information on more than 1 

million patients [19], from more than 100 data-contributing organizations [39]. More than 

two-thirds of the hospitals and physician practices in the Rochester region participated in 

the exchange during this time [13,40]. The health information available to providers 

includes admission, discharge, and transfer (ADT) documents, diagnoses, vital sign 

results, radiology reports and images, medication history, laboratory results, and 

information from insurance companies [13,30,39,40]. 

 The user workflow to query the RHIO involves several steps. Upon logging in to 

the web-based query portal, users search for a patient and confirm that the patient has 

consented to data sharing. More than 97 percent of patients consent to information 

exchange [19], a very high rate consistent with other opt-in consent settings in regional 

health information organizations [21]. For consented patients, the user is brought to a 

page with tabbed sections of patient health information [41]. The default landing section 

is the Patient Summary section, which includes aggregated information on the patient’s 
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most recent laboratory orders, radiology studies, clinical notes from outside visits, and 

ADT documents. Users can then navigate to section tabs for Laboratory, Radiology, 

ADT, Reports, and Vital Signs. These sections aggregate individual test results and 

reports for summative views, and make individual results available for more detailed 

exploration by the user, who can then open specific results or documents to view more 

information and context. We exploit these two levels of use (section viewing and specific 

document viewing) in our measurements of use breadth and depth. Users are only able to 

access a single patient record at a time, and must return to the initial query page to search 

for additional patients [30]. 

 The Rochester RHIO provided detailed logs of all exchange query portal use from 

users at the PCMHs between January 2012 and December 2015. This dataset includes 

241 unique users and 5.2 million observations of discrete “events” in the portal for 

24,421 unique patients during this timeframe. An “event” is logged for each click within 

the HIE, including clicks on the patient search page, clicks when viewing the patient 

health record summary, and clicks to navigate within the HIE. Each click observation 

includes the page of the portal on which that click took place, allowing for identification 

of the section or document type a user accessed while using the HIE. This data also 

includes the specific time of the event, the user identifier, and an anonymized patient 

identifier for linking with visit data from the EHR, described below. The data also 

included the user role in the clinic, listed as one of seven possible types: physician, nurse 

midwife or RN, nurse practitioner, care manager, licensed health professional (primarily 

licensed clinical social workers), a midlevel provider (primarily physician assistants), or 

staff. A minority of users had no user type listed and were classified as “unknown.” 
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Table B1 Information categories in HIE use data by volume 

Information Category # of Actions 

Summary Section 80635 

Laboratory Result Document 14433 

Laboratory Section 12617 

Reports Section 7008 

Clinical Result Document 6855 

Radiology Result Document 6430 

Unclassified 6163 

Radiology Section 5006 

Patient Index Document 4152 

Transcriptions Section 3952 

ADT Document 2959 

ADT Section 746 

Vitals Section 429 

Emergency Document 58 

Unclassified Result Document 21 
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Table B2 Encounter diagnoses classified via AHRQ CCS Algorithm 

Chronic Disease Classifications Other Disease Classifications 

Asthma 
Cancer 
Chronic Obstructive Pulmonary Disorder (COPD) 
Congestive Heart Failure 
Coronary Artery Disease 
Diabetes 
Hyperlipidemia 
Hypertension  

Arthritis 
Cardiac Arrest 
Depression 
Drug-related primary diagnosis 
Hepatitis 
Human Immunodeficiency Virus (HIV) 
Injury-related visit 
Osteoporosis 
Schizophrenia 
Stroke 
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Table B3 Descriptive statistics of visit sample, stratified by HIE use timing relative to 

visit 

 Overall Two Weeks Prior Same Day Two Weeks After p 

Number of Visits 12556 4668 4322 4624  

HIE Use Breadth*** n/a 5.62 (2.30) 6.07 (2.17) 5.46 (2.17) <0.001 

HIE Use Depth*** n/a 31.51 (34.48) 33.59 (32.86) 29.46 (34.07) <0.001 

Team-Based HIE Use***      

No 1854 (14.8) 556 (11.9) 906 (21.0) 651 (14.1) <0.001 

Yes 10702 (85.2) 4112 (88.1) 3416 (79.0) 3973 (85.9)  

Number of HIE Users*** (mean, sd) n/a 1.06 (0.26) 1.02 (0.16) 1.06 (0.26) <0.001 

Patient Sex      

Female 8080 (64.4) 2982 (63.9) 2823 (65.3) 2986 (64.6) 0.364 

Male 4476 (35.6) 1686 (36.1) 1499 (34.7) 1638 (35.4)  

Patient Age @ Visit (mean, sd) 46.22 (15.35) 46.11 (15.20) 46.15 (15.06) 46.48 (15.67) 0.448 

Chronic Primary Diagnosis*      

No 10373 (82.6) 3888 (83.3) 3519 (81.4) 3849 (83.2) 0.03 

Yes 2183 (17.4) 780 (16.7) 803 (18.6) 775 (16.8)  

Visit Duration***      

<15mins 11 (0.1) 8 (0.2) 1 (0.0) 4 (0.1) <0.001 

15mins 5329 (42.4) 1988 (42.6) 1688 (39.1) 2053 (44.4)  

20mins 1931 (15.4) 734 (15.7) 749 (17.3) 572 (12.4)  

30mins 4469 (35.6) 1639 (35.1) 1615 (37.4) 1668 (36.1)  

45mins 453 (3.6) 122 (2.6) 181 (4.2) 181 (3.9)  

60mins 341 (2.7) 166 (3.6) 85 (2.0) 135 (2.9)  

>1hr 22 (0.2) 11 (0.2) 3 (0.1) 11 (0.2)  

Days Since Visit Scheduled***      

>3mo prior 197 (1.6) 69 (1.5) 61 (1.4) 80 (1.7) <0.001 

3mo prior 634 (5.1) 235 (5.0) 210 (4.9) 234 (5.1)  
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Month prior 1645 (13.1) 552 (11.8) 563 (13.0) 668 (14.4)  

Two weeks prior 2075 (16.5) 855 (18.3) 663 (15.4) 745 (16.1)  

Week prior 3512 (28.0) 1405 (30.1) 1309 (30.3) 1136 (24.6)  

Day prior 1554 (12.4) 507 (10.9) 650 (15.1) 510 (11.0)  

Same day 2825 (22.5) 988 (21.2) 844 (19.5) 1208 (26.1)  

Recorded After Visit 108 (0.9) 56 (1.2) 18 (0.4) 42 (0.9)  

Days Since Last Visit***      

No Past Visit 1703 (13.6) 440 (9.4) 700 (16.2) 690 (14.9) <0.001 

> 1yr 210 (1.7) 44 (0.9) 85 (2.0) 91 (2.0)  

Previous 1yr 480 (3.8) 110 (2.4) 198 (4.6) 197 (4.3)  

Previous 6mo 1038 (8.3) 264 (5.7) 427 (9.9) 424 (9.2)  

Previous 90d 2499 (19.9) 752 (16.1) 1006 (23.3) 919 (19.9)  

Previous 1mo 6626 (52.8) 3058 (65.5) 1906 (44.1) 2303 (49.8)  

Year***      

2012 2937 (23.4) 1054 (22.6) 1148 (26.6) 933 (20.2) <0.001 

2013 2548 (20.3) 959 (20.5) 747 (17.3) 1008 (21.8)  

2014 4106 (32.7) 1494 (32.0) 1373 (31.8) 1655 (35.8)  

2015 2965 (23.6) 1161 (24.9) 1054 (24.4) 1028 (22.2)  

Site ***      

AJHC 9134 (72.7) 3117 (66.8) 3474 (80.4) 3208 (69.4) <0.001 

OOCHC 2068 (16.5) 1101 (23.6) 140 (3.2) 989 (21.4)  

RPCN 1354 (10.8) 450 (9.6) 708 (16.4) 427 (9.2)        
Notes: All values are counts with percentages in parenthesis unless otherwise noted. P-

values show the results of a chi-squared goodness of fit test for differences across the 

three timing categories. Significance levels: *p<0.05 **p<0.01 ***p<0.001. 
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Table B4 Negative binomial regression results: HIE use breadth 

 Outcome: HIE Use Breadth (count of unique information categories viewed) 

 Two Weeks Prior Same Day Two Weeks After 

 beta [95% CI] p-value beta [95% CI] p-value beta [95% CI] p-value 

Team-Based HIE Use       

No Reference  Reference  Reference  

Yes 0.034 [-0.01,0.07] 0.1015 0.033 [0,0.07] 0.0667 -0.009 [-0.05,0.03] 0.629 

Number of HIE Users 0.259 [0.22,0.3] <0.001 0.283 [0.22,0.35] <0.001 0.291 [0.25,0.33] <0.001 

Patient Sex       

Female Reference  Reference  Reference  

Male 0.033 [0.01,0.06] 0.0136 0.014 [-0.01,0.04] 0.3142 0.009 [-0.02,0.04] 0.5069 

Patient Age @ Visit -0.001 [0,0] 0.1242 0.000 [0,0] 0.7274 0.000 [0,0] 0.6612 

Chronic Primary Diagnosis       

No Reference  Reference Reference 

Yes 0.004 [-0.03,0.04] 0.7976 -0.018 [-0.05,0.01] 0.2819 -0.008 [-0.04,0.03] 0.6659 

Visit Duration       

<15mins -0.005 [-0.3,0.29] 0.971 0.425 [-0.2,1.05] 0.1805 -0.057 [-0.48,0.36] 0.7887 

15mins -0.049 [-0.08,-0.02] 0.0016 -0.089 [-0.12,-0.06] <0.001 -0.048 [-0.08,-0.02] 0.002 

20mins -0.025 [-0.07,0.02] 0.2345 0.022 [-0.02,0.06] 0.2643 0.041 [0,0.09] 0.0683 

30mins Reference  Reference  Reference  

45mins 0.005 [-0.07,0.08] 0.896 0.031 [-0.03,0.09] 0.3286 -0.004 [-0.07,0.06] 0.9169 

60mins 0.020 [-0.05,0.09] 0.5872 -0.020 [-0.11,0.07] 0.6766 -0.006 [-0.08,0.07] 0.8888 

>1hr -0.012 [-0.26,0.24] 0.9268 -0.105 [-0.59,0.38] 0.67 0.192 [-0.02,0.41] 0.0782 

Days Since Visit Scheduled       

>3mo prior -0.070 [-0.18,0.04] 0.2313 -0.035 [-0.15,0.08] 0.5424 0.048 [-0.06,0.15] 0.3739 

3mo prior -0.068 [-0.14,0] 0.0471 -0.041 [-0.11,0.03] 0.2275 0.052 [-0.02,0.12] 0.1298 

Month prior -0.110 [-0.16,-0.06] <0.001 -0.052 [-0.1,0] 0.0317 -0.024 [-0.07,0.03] 0.3606 

Two weeks prior -0.030 [-0.08,0.02] 0.2013 0.000 [-0.04,0.04] 0.9912 -0.002 [-0.05,0.05] 0.9388 

Week prior -0.025 [-0.07,0.02] 0.2449 -0.009 [-0.05,0.03] 0.6332 0.012 [-0.03,0.06] 0.6073 

Day prior Reference  Reference  Reference 
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Same day -0.064 [-0.11,-0.02] 0.0057 -0.016 [-0.06,0.03] 0.4467 0.048 [0,0.09] 0.0327 

Recorded After Visit -0.125 [-0.24,-0.01] 0.0371 -0.178 [-0.38,0.03] 0.0915 0.007 [-0.13,0.14] 0.9241 

Days Since Last Visit       

No Past Visit -0.084 [-0.22,0.05] 0.2223 0.006 [-0.09,0.1] 0.9005 0.053 [-0.05,0.15] 0.2896 

> 1yr Reference  Reference  Reference 

Previous 1yr -0.007 [-0.16,0.14] 0.9228 -0.034 [-0.14,0.07] 0.5115 0.061 [-0.05,0.17] 0.2762 

Previous 6mo -0.013 [-0.15,0.12] 0.8546 -0.057 [-0.15,0.04] 0.2337 0.031 [-0.07,0.13] 0.5523 

Previous 90d -0.042 [-0.17,0.09] 0.527 -0.051 [-0.14,0.04] 0.2637 0.059 [-0.04,0.16] 0.2297 

Previous 1mo -0.005 [-0.13,0.12] 0.9405 -0.054 [-0.14,0.03] 0.2252 0.063 [-0.03,0.16] 0.1891 

Year       

2012 Reference  Reference  Reference 

2013 -0.115 [-0.15,-0.08] <0.001 0.034 [-0.01,0.07] 0.0905 -0.126 [-0.17,-0.09] <0.001 

2014 -0.061 [-0.09,-0.03] <0.001 0.010 [-0.02,0.04] 0.5728 -0.084 [-0.12,-0.05] <0.001 

2015 -0.070 [-0.11,-0.03] <0.001 -0.016 [-0.05,0.02] 0.4006 -0.088 [-0.13,-0.05] <0.001 

Site       

AJHC Reference  Reference  Reference 

OOCHC -0.250 [-0.29,-0.21] <0.001 -0.347 [-0.43,-0.27] <0.001 -0.223 [-0.26,-0.19] <0.001 

RPCN 0.111 [0.07,0.15] <0.001 0.045 [0,0.09] 0.0292 0.119 [0.07,0.16] <0.001 

Intercept 1.625 [1.47,1.78] <0.001 1.575 [1.45,1.7] <0.001 1.433 [1.31,1.56] <0.001 

 

Notes: Bold estimates are statistically significant at the p<0.05 level. 

  



 

153 

Table B5 Linear regression results: HIE use depth 

 Outcome: HIE Use Depth (percentage of action spent viewing specific documents) 

 Two Weeks Prior Same Day Two Weeks After 

 beta [95% CI] p-value beta [95% CI] p-value beta [95% CI] p-value 

Team-Based HIE Use       

No Reference  Reference  Reference  

Yes -4.20 [-7.6,-0.8] 0.0142 -2.65 [-5.6,0.3] 0.0759 -5.81 [-8.9,-2.7] p<0.001 

Number of HIE Users -2.61 [-6.5,1.3] 0.1881 -7.53 [-13.8,-1.3] 0.0186 -0.97 [-4.8,2.9]  

Patient Sex       

Female Reference  Reference    

Male 4.00 [1.8,6.2] <0.001 0.62 [-1.6,2.8] 0.5797 2.77 [0.6,5] 0.0142 

Patient Age @ Visit -0.07 [-0.1,0] 0.0564 -0.03 [-0.1,0] 0.3686 -0.02 [-0.1,0.1] 0.5813 

Chronic Primary Diagnosis       

No Reference  Reference Reference 

Yes -0.77 [-3.7,2.1] 0.6040 -0.26 [-3,2.5] 0.8513 -1.99 [-4.9,0.9] 0.1834 

Visit Duration       

<15mins -5.64 [-33.2,21.9] 0.6885 -28.24 [-92.4,35.9] 0.3885 -26.82 [-65.2,11.6] 0.1712 

15mins -0.41 [-3,2.2] 0.7526 -2.35 [-4.8,0.2] 0.0657 -0.57 [-3.1,2] 0.6568 

20mins 0.37 [-3.2,3.9] 0.8375 -1.51 [-4.7,1.7] 0.3612 1.22 [-2.5,5] 0.5256 

30mins Reference  Reference  Reference  

45mins -1.22 [-7.9,5.5] 0.7214 -1.08 [-6.4,4.3] 0.6913 -0.48 [-6,5] 0.8652 

60mins 7.15 [1.1,13.2] 0.0200 -1.52 [-9.1,6.1] 0.6949 7.57 [1.2,13.9] 0.0194 

>1hr 7.53 [-13.7,28.8] 0.4874 -19.04 [-56.5,18.5] 0.3197 0.28 [-20.9,21.5] 0.9793 

Days Since Visit Scheduled       

>3mo prior 0.08 [-9.3,9.5] 0.9872 -9.35 [-18.7,0] 0.0497 -8.92 [-17.6,-0.2] 0.0450 

3mo prior -3.36 [-9.1,2.4] 0.2495 -7.61 [-13.1,-2.1] 0.0066 -8.41 [-14.1,-2.8] 0.0036 

Month prior -0.94 [-5.4,3.5] 0.6777 -2.57 [-6.5,1.3] 0.1979 -5.58 [-9.8,-1.4] 0.0093 

Two weeks prior 3.19 [-0.8,7.2] 0.1151 -2.85 [-6.6,0.9] 0.1315 -4.84 [-8.9,-0.8] 0.0197 

Week prior 2.70 [-1,6.3] 0.1476 1.18 [-2,4.4] 0.4667 -0.18 [-3.9,3.6] 0.9249 

Day prior Reference  Reference  Reference 
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Same day 1.76 [-2.1,5.6] 0.3721 2.86 [-0.6,6.3] 0.1046 -2.31 [-6,1.4] 0.2231 

Recorded After Visit 17.05 [7.2,26.9] p<0.001 15.29 [-0.2,30.8] 0.0535 -10.35 [-21.6,0.9] 0.0708 

Days Since Last Visit       

No Past Visit 3.12 [-7.9,14.2] 0.5798 0.23 [-7.6,8] 0.9539 7.84 [-0.7,16.4] 0.0710 

> 1yr Reference  Reference  Reference 

Previous 1yr -2.46 [-14.8,9.9] 0.6959 -0.33 [-8.9,8.3] 0.9408 8.10 [-1.4,17.6] 0.0932 

Previous 6mo -7.93 [-19.2,3.3] 0.1670 4.11 [-3.8,12] 0.3100 7.16 [-1.6,15.9] 0.1092 

Previous 90d -7.49 [-18.2,3.2] 0.1699 2.42 [-5.1,10] 0.5307 6.96 [-1.4,15.3] 0.1031 

Previous 1mo -3.61 [-14.1,6.9] 0.5006 1.11 [-6.3,8.5] 0.7704 6.57 [-1.6,14.8] 0.1156 

Year       

2012 Reference  Reference  Reference 

2013 -6.74 [-10,-3.5] <0.001 -2.92 [-6.2,0.3] 0.0776 -7.01 [-10.3,-3.7] <0.001 

2014 0.30 [-2.6,3.2] 0.8419 -4.29 [-7.1,-1.5] 0.0030 -2.39 [-5.3,0.5] 0.1111 

2015 -1.72 [-4.9,1.4] 0.2841 -3.59 [-6.6,-0.5] 0.0214 -1.31 [-4.6,2] 0.4404 

Site       

AJHC Reference  Reference  Reference 

OOCHC -2.61 [-5.8,0.6] 0.1089 -2.03 [-8.1,4] 0.5128 2.77 [-0.1,5.6] 0.0577 

RPCN -4.88 [-8.7,-1] 0.0132 -5.23 [-8.6,-1.9] 0.0023 -2.12 [-6,1.8] 0.2877 

Intercept 44.55 [31.9,57.2] p<0.001 48.52 [37.6,59.5] p<0.001 33.89 [23.2,44.5] p<0.001 

 

Notes: Bold estimates are significant at the p<0.05 level. 
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Appendix C: Chapter 4 Supplemental Materials 

Figure C1 Conceptual framework for measuring multidimensional use patterns of HIE 

 
Notes: Original framework focus is replicated from [7], green portions denote framework 

extensions for the purposes of this study. 
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Figure C2 Scree plot of within-sum-of-squares error at values of k=1 through k=10 

 
Scree plot of within-sum-of-squares model fit statistic illustrating optimal number of 

clusters for CLARA clustering model using PAM algorithm, k=1 through k=10. The 

location of the “elbow” or initial flattening of the slope of the line at k=5 suggests that 

the optimal number of clusters that does not overfit the data is 5. 
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Table C1 HIE use measure correlation matrix, Regulars 
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Table C2 HIE use measure correlation matrix, Browsers 
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