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ABSTRACT: We describe a methodology for the amidation of carboxylic
acids by generating phosphonium salts in situ from N-chlorophthalimide
and triphenylphosphine. Aliphatic, benzylic, and aromatic carboxylic acids
can be transformed into their amide counter parts using primary and
secondary amines. This functional group interconversion is achieved at
room temperature in good to excellent yields. Mechanistic work shows the
in situ formation of chloro- and imido-phosphonium salts that react as activating agents for carboxylic acids and generate an acyloxy-
phosphonium species.

■ INTRODUCTION
Amides are important functional groups in organic chemistry
due to their relevance in biological processes (proteins,
peptides) and their presence in a diverse set of bioactive
compounds.1 The bioactivity and applications of such
compounds are broad and range from pharmaceuticals2 and
pesticides3 to polymers and adhesives.4 Additionally, according
to a recent analysis of the literature,5 amide bond syntheses are
the most frequently cited synthetic methodologies in medicinal
chemistry. The most common approach to access amides
involves the activation of carboxylic acids through the use of
coupling reagents.6 The native chemical ligation has also been
employed successfully for larger polypeptides and protein
syntheses.7 Such state-of-the-art methodologies gained sig-
nificant traction in the peptide field in parallel with the
development of solid-phase synthesis.8 Recently, catalytic
methods for activating carboxylic acids have also been
developed using boronic acid catalysts.9

Yet, it is often the case that simple amides resist formation,
which has led to the development of ever more complex and
toxic coupling reagents and methods.10 Both carbodiimide11

and phosphonium salt reagents12 are among the most
commonly used coupling agents due to their high reactivity
and ability to minimize epimerization (Figure 1A,B).
Unfortunately, carbodiimide reagents have to be handled
with caution since they can cause severe allergic skin reactions
and decompose with atmospheric moisture.6 Similarly,
phosphonium salt reagents are highly moisture sensitive, and
they produce supra-stoichiometric amounts of carcinogenic
hexamethylphosphoramide (HMPA).12a,b Some also contain
high-energy benzotriazole moieties,12c,d which represent an
explosion hazard13a (Figure 1A,B) and, in some cases, lead to
an unwanted nucleophilic competitor.13b

In our recent work, we observed that N-chloroimides could
be activated to perform radical reactions using lithium tert-
butoxide.14 Presumably, N-chloroimides can react with strong

nucleophiles via halogen bonding interactions15 and generate
reactive species with new or unexplored reactivity. We
recognized the possibility of generating phosphonium salts
from bench-stable reagents to produce coupling agents in situ
(Figure 1C), therefore minimizing current drawbacks such as
reagent stability.
In the past decade, various reports have been published

generating phosphonium salts in situ from activated halogen
sources.16 Indeed, the use of I2,

16ad 2,4,4,6-tetrabromo-2,5-
cyclohexadienone,16b and 2,4,6-trichloro-1,3,5-triazine16c in the
presence of PPh3 has been used as means to perform amide
bond couplings. Similar strategies using N-halogenated
reagents have been developed.17 For instance, in spite of its
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Figure 1. Selected examples of coupling technologies.
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high cost, N-chlorobenzotriazole has been used to generate
phosphonium salts in situ.17a The use of N-haloimides has
been explored as a more cost-effective alternative by Prakash et
al.17b and Tang et al.17c using N-bromosuccinimide (NBS) and
selectfluor to generate acyl fluorides. While the use of N-
chlorosuccinimide (NCS) has been reported to generate
amides from carboxylic acids,17d this method requires multiple
steps, cooling, and premixing to avoid rapid decompositions
for the active species. Additionally, none of these reports16,17

provided a detailed characterization of the reactive phospho-
nium species to support a detailed mechanism.
The methodology we have developed generates amides

through the simple mixture of N-chlorophthalimide in the
presence of PPh3 and the desired carboxylic acid and amine
reagents to couple. Our 31P NMR experiments show that
mixing N-chloroimides in the presence of PPh3 generates two
phosphonium salts (chloro- and imido-phosphonium species)
that efficiently activate carboxylic acids toward amide bond
formation (Figure 1C). Our work is the first to observe and
characterize this imido-phosphonium intermediate using 31P
NMR and high-resolution mass-spectrometry (HR-MS). This
observation provides more detailed insights into the mecha-
nism and can help design better methodologies involving in
situ formation of phosphonium salts.

■ RESULTS AND DISCUSSION

We began our investigation using benzoic acid (1a) as our
carboxylic acid substrate and both benzylamine (2a) and
benzylmethylamine (2b) as I° and II° amine substrates.
Optimal reaction conditions (Table 1, entry 1) were obtained
using 1.5 equiv of PPh3 and N-chlorophthalimide (NCPhth) at
room temperature for 12 h. Primary amine 2a consistently
afforded the corresponding amide in better yield than
secondary amine 2b. Presumably, the increase in steric
hindrance is responsible for the reduced yield. The use of
other commercially available N-haloimides such as NCS, NBS,

and N-iodosuccinimide (NIS) also generated the desired
products but in lower yields (Table 1, entries 2−4).
Importantly, control experiments in the absence of phosphine
or N-haloimide reagents did not provide the desired amides in
significant yields (entries 5 and 6). Screening of other
phosphines as suitable activators of N-chlorophthalimide
(Table 1, entries 7−9) gave mixed results, while tricyclohex-
ylphosphine (PCy3, entry 7) did afford product 3aa in good
yields (85%), the formation of product 3ab seems to be
lackluster (43%). Similarly, tributylphosphine (P(n-Bu)3) and
tri(o-tolyl) phosphine (P(o-tol)3) proceeded through the
reaction but with lower yields (entries 8 and 9). The increase
in the Tolman angle18 from PPh3 (145°), PCy3 (179°), and
P(o-tol)3 (194°) may be preventing the efficient nucleophilic
attack of the N-chlorophthalimide. Finally, the reaction also
proceeds efficiently in a variety of anhydrous polar aprotic
solvents such as dichloromethane, ethyl acetate, and
acetonitrile for the formation of product 3aa (entries 10−
12). Product 3ab is also formed under those conditions but
anhydrous acetonitrile provides the best yields at 72% (entry
12).
With the established optimal conditions in hand, we

proceeded to first examine the scope of amine substrates 2
compatible with our reaction conditions. Gratifyingly, the
protocol was efficient for the amidation of a diverse set of I°
and II° amines (Figure 2). Our protocol was effective for a

variety of aliphatic amines (3aa−3af) with yields ranging from
moderate to excellent. However, the increase of steric
hindrance in the α-position of I° alkyl amines has a deleterious
effect on yield. Indeed, coupling products 3ad through 3ae
were obtained in lower yields as more substituents were added
in the α-position. The alkene functionality in oleylamine is
tolerated (product 3af), but isolation of the corresponding

Table 1. Reaction Optimizationa

entry PR3 XNR2 solvent yieldb (3aa/3ab)

1 PPh3 NCPhth toluene 94% (83%)c / 63%
2 PPh3 NCS toluene 74% / 26%
3 PPh3 NBS toluene 66% / 54%
4 PPh3 NIS toluene 59% / 59%
5 NCPhth toluene 6% / 0%
6 PPh3 toluene 2% / 2%
7 PCy3 NCPhth toluene 85% / 43%
8 P(n-Bu)3 NCPhth toluene 57% / 42%
9 P(o-tol)3 NCPhth toluene 34% / 27%
10 PPh3 NCPhth CH2Cl2 91% / 60%
11 PPh3 NCPhth EtOAc 81% / 59%
12 PPh3 NCPhth CH3CN 90% / 72% (65%)c

aAll reactions were performed using 1 mL of anhydrous, solvent,
0.164 mmol (1 equiv) of benzoic acid, 0.246 mmol (1.5 equiv) of N-
haloimide and phosphine reagents, and 0.492 mmol (3 equiv) of
amine substituent. The reactions were performed at room temper-
ature (24 °C) with constant stirring for 12 h. bNMR yield obtained
using dibromomethane as the internal standard. cIsolated yield.

Figure 2. Reaction scope for amines. All reactions were performed in
3 mL of solvent, 1a (0.82 mmol) 2 (2.4 mmol), NCPhth (1.2 mmol),
and PPh3 (1.2 mmol) (unless otherwise specified (see Experimental
Section). aReactions performed using toluene as the solvent. bReac-
tions performed using acetonitrile as the solvent. Yields reported are
isolated yields.
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amide was challenging using column chromatography. Bulky
esters that do not readily transamidate are also tolerated and
provided product 3ag in 54% yield (Figure 2). Interestingly,
both I° and II° aniline derivatives also afforded the
corresponding amides (3ah−3aj) in moderate to good isolated
yields. While aniline reacted in 69% yield, increasing sterics
around the nitrogen led to erosion in yield with 3ai and 3aj
providing the amides in 56 and 49% yields, respectively. Yet,
our protocol seems more efficient at coupling sterically bulky
aniline derivatives compared to analogous protocols.16,17a

Additionally, this methodology possesses a wider scope with
respect to secondary amine substrates than similar proce-
dures.16 Reactions using diphenylamine and N-methylaniline
worked in moderate yields at 55 and 65%, respectively. Cyclic
II° amines also amidated in moderate to good yields with
pyrrolidine affording product 3am in 71% yield, piperidine
affording product 3an in 45% yield, and morphiline generating
product 3ao in 41% yield (Figure 2).
Next, we examined the compatibility of our optimal reaction

conditions with different carboxylic acids (1b−1k) and using
benzyl amine 2a and benzylmethylamine 2b as the amine
substrates. As shown in Figure 3, the method enabled the

amidation of electron rich (3ba/b (87%/86%)) and electron
poor (3ea 42% and 3 ha/b (40%/73%)) aryl carboxylic acids
in good to excellent yields. However, reactivity varied
significantly among substrates, and secondary amines seem to
sometimes fail to perform the transformation (3eb). Aryl
halides provided the desired products in good to excellent
yields for both I° and II° amines (3da, 3db). Alkyl carboxylic
acids were also well tolerated and afforded products in

moderate to excellent yields (3fa/b, 3ia/b, and 3ja/b).
Protected tryptophan amino acid was also converted into the
corresponding amide in moderate yields when coupling with
primary amines (3ga 54% yield) but failed to provide the
desired product with secondary amines (3gb) most likely due
to amine-induced Fmoc deprotection. Finally, our method
enabled the synthesis of antifungal agrochemical Mepronil 3lc
from the ortho-substituted carboxylic acid in 55% yield in
milder conditions than current approaches.16d,20

Another possible transformation we envisioned with our
methodology was the direct formation of acyl phthalimides
from carboxylic acids in the cases where amine coupling
partners are not added to the reaction mixture (Figure 4). Acyl

phthalimides are important precursors for the formation of the
biologically active N-,O-acetal motifs found in several natural
products.19 Acyl phthalimides also hold merit as potential
anxiolytic, antibacterial, and antifungal compounds.20 Synthetic
applications have also been explored using acyl imides as
efficient acylating and coupling agents in metal-catalyzed
reactions.21 Lastly, acyl imides have been used as trans-
amidation agents in metal-free methodologies.22

After a brief optimization, we found that mixing N-
chlorophthalimide and PPh3 in the presence of carboxylic
acids and 4-dimethylaminopyridine (DMAP) at 80 °C in
toluene afforded the best yields. The use of heat is required
here to promote the nucleophilic attack of the phthalimide
unto the activated carboxylic acid. The use of a non-
nucleophilic base was also required to ensure deprotonation
of the phthalimide.
Figure 4 shows the scope of carboxylic acids that were used

to acylate phthalimide. Overall, our conditions were found to
generate the desired products albeit in moderate yields.
Electron-neutral and electron-rich carboxylic acids (4a−4c)
reacted to afford the acyl phthalimide adducts in 60, 44, and
70% yield, respectively. It should be noted that this method did
not work with a substrate bearing an electron-withdrawing
group. Aliphatic carboxylic acids were also transformed in
moderate yields (4d).
To gain insights into the mechanism of the amidation

reaction, we carried out a series of 31P NMR experiments with
the hope of identifying and characterizing the reactive
intermediates in this methodology. To our surprise, 31P
NMR experiments showed that N-chlorophthalimide and
triphenylphosphine react together to form two phosphonium
salt species: (i) a chloro-phosphonium salt at 64 ppm and (ii)
an imido-phosphonium salt at 32 ppm (Figure 5).
Triphenylphosphine oxide and unreacted Ph3P were also
present.

Figure 3. Scope of carboxylic acid substrates. All reactions were
performed in 3 mL of solvent, 1 (100 mg), 2a (3 equiv), 2b (3 equiv),
NCphth (1.5 equiv), PPh3 (1.5 equiv). aReactions performed using
toluene as the solvent. bReactions performed using acetonitrile as the
solvent. Yields reported are isolated yields.

Figure 4. Synthesized acyl phthalimides. All reactions were run in 3
mL of solvent, carboxylic acid (100 mg), NCPhth (1.5 equiv), PPh3
(1.5 equiv), and DMAP (1.5 equiv).
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We confirmed the identity of the chloro-phosphonium salt at
64 ppm through its synthesis using oxalyl chloride23 and
comparing it with different N-chlorimides (Figure 6). These
experiments further emphasized our hypothesis that the peak

at 32 ppm corresponds to the imido-phosphonium salt. We
confirmed this observation using high-resolution mass
spectrometry (HR-MS). To the best of our knowledge, these
imido-phosphonium salts had not been characterized before.
Following the identification and characterization of the

phosphonium salts generated in situ, we attempted to observe
other intermediates formed throughout the reaction. To do so,
we added sodium benzoate to the previous NCPhth/PPh3
mixture, and we observed a new peak at 23 ppm by 31P NMR
(Figure 7). We identified this new signal as being the
(acyloxy)-phosphonium salt species for which a HR-MS was
also obtained (see the Supporting Information).

Upon the formation of the (acyloxy)-phosphonium
intermediate, we observed the complete consumption of the
chloro-phosphonium salt at 64 ppm, while some imido-
phosphonium salts at 32 ppm were still present. This
observation highlights the difference in reactivity between
these two species. More specifically, this suggests that the
chloro-phosphonium species favorably reacts, kinetically, with
the carboxylic acid. The imido-phosphonium intermediate may
then serve as a precursor to the more reactive chloro-
phosphonium species; however, we cannot exclude the
possibility that the imido-phosphonium intermediate also
reacts with the carboxylic acid at a slower rate.
Another observation worth noting in Figure 6 is the relative

ratio of chloro-phosphonium to imido-phosphonium salts
across both N-haloimides in reactions 2 and 3. When using
NCS as the N-haloimide source, the ratio of chloro-
phosphonium to imido-phosphonium salts is 1:3 (Reaction
2, Figure 6), while it is 1:2 for N-chlorophthalimide (Reaction
3, Figure 6). This difference in the formation of both species
could be due to the difference in pKa between succinimide
(9.5) and phthalimide (8.3). Given that the chloro-
phosphonium intermediate seems to react faster, we believe
this could explain some of the different reactivity between our
method and previously published ones,17d while providing
future research on this topic is an avenue for further
exploration and optimization.
Based on previous halophosphonium-mediated amida-

tions16,17 and our experimental observations, we propose that
the reaction begins with the in situ generation the chloro- and
imido-phosphonium salts, 5 and 6, respectively (Figure 8).

Figure 5. In situ generated phosphonium salts observed via 31P NMR.
Reaction mixture consisted of triphenylphosphine (0.08 mmol, 1
equiv) and NCPhth (0.08 mmol, 1 equiv) dissolved in CDCl3.

Figure 6. In situ generated phosphonium salts observed via 31P NMR.
Reaction 1 mixture consisted of triphenylphosphine oxide (Ph3PO)
(0.07 mmol, 1 equiv) and oxalyl chloride (COCl)2 (0.09 mmol, 1.3
equiv). Reaction 2 mixture consisted of triphenylphosphine (0.08
mmol, 1 equiv) and N-chlorosuccinimide (0.08 mmol, 1 equiv).
Reaction 3 consisted of triphenylphosphine (PPh3) (0.08 mmol, 1
equiv) and NCPhth (0.08 mmol, 1 equiv). All reaction mixtures were
dissolved in CDCl3.

Figure 7. 31P NMR (acyloxy)-phosphonium intermediate detection.
Reaction mixture consisted of PPh3 (1 equiv), NCPhth (1 equiv), and
PhCOONa (0.5 equiv), all solids dissolved in CDCl3.
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These species then react with the carboxylic acids to generate
the activated carboxylate 7 in the form of an (acyloxy)-
phosphonium salt. From intermediate 7, three possible
pathways (A, B, and C) can lead to the final amide products.
Transformation of (acyloxy)-phosphonium 7 into an acyl

chloride via pathway A is analogous to previously proposed
tranformations that use halophosphonium-mediated amida-
tions.16a,17b Similarly, pathway C involves the reaction of
intermediate 7 with phthalimide to generate acyl phthalimide
species, which we have shown can be generated efficiently if
the amine coupling partner is replaced by a bulky base
(compounds 4a−4d, Figure 4). Finally, pathway B is the direct
transformation of the (acyloxy)-phosphonium 7 into the
desired amide.
To determine which of these three possible pathways is most

likely at play under our reaction conditions, we conducted a
31P NMR study to quantify the rate of decomposition of the
(acyloxy)-phosphonium intermediate 7 over time (Figure 9A).

We hypothesize that, if pathways A and C are main
contributors for the formation of the final product, then
intermediate 7 should decompose relatively quickly into the
acyl chloride and the acylphthalimide in a nonreversible
reaction that produces triphenylphosphine oxide, even when
amine is not present. Indeed, intermediate 7 can react with the
chloride or phthalimide anion present in the reaction as
counter ions. As shown in Figure 9A, (acyloxy)-phosphonium
species 7 does not seem to decompose significantly over the
course of 90 min, indicating that pathways A and C are unlikely
to be major contributors under our reaction conditions. On the
other hand, as shown in Figure 9B, the addition of
benzylamine to the reaction leads to almost the instantaneous
consumption of intermediate 7 and the consumption of the
imido-phophonium salt 5.
To further discard pathway C that involves the formation of

the acyl phthalimides intermediate, which we were able to
synthesize in Figure 4, we ran the control reaction presented in
Figure 10A. When the acyl phthalimide is reacted with

benzylamine, it does not produce the corresponding N-
benzylbenzamide. Instead, it generates the primary benzamide
8 and phthalimide-protected benzylamine 9 via a phthalimide
transfer pathway. This observation is also supported by
literature precedent showing that when introduced to amine
nucleophiles acyl phthalimides cleave to provide the
phthalimide-protected amine and primary benzamide deriva-
tive.24 Therefore, this observation further supports that an acyl
phthalimide intermediate following pathway C is unlikely.
Lastly, we conducted a TEMPO radical trapping experiment to
discard any possible radical pathways (Figure 10B). Indeed,
when TEMPO was added to our reaction mixture, the desired
amide product was still generated albeit in slightly eroded
yields.
Based on the results above, we propose that the reaction

begins with the in-situ generation of the chloro- and imido-
phosphonium salts, 5 and 6, respectively (Figure 11). These

Figure 8. Proposed mechanism with different possible pathways.

Figure 9. (A) 31P NMR at different time frames of a reaction mixture
containing PPh3 (1 equiv), NCPhth (1 equiv), and PhCOONa (0.5
equiv) in CDCl3. (B)

31P NMR at different time frames of a reaction
mixture containing PPh3 (1 equiv), NCPhth (1 equiv), benzylamine
(1 equiv), and PhCOONa (0.5 equiv), in CDCl3.

Figure 10. Acyl phthalimide and radical pathway investigations.

Figure 11. Proposed mechanism and its confirmed intermediates.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c02309
ACS Omega XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02309?fig=fig11&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c02309?ref=pdf


species then react with the carboxylic acids to generate the
activated carboxylate 7 in the form of an acyloxy-phosphonium
salt. Importantly, our NMR experiments indicate that salt 5 is
more reactive than 6 in the presence of a carboxylate (Figure
7). Then, the (acyloxy)-phosphonium species 7 undergoes
direct amidation generating the desired product and forming
triphenylphosphine oxide as a byproduct (Figure 11).

■ CONCLUSIONS

In summary, we have developed a mild methodology for the
amidation of carboxylic acids with both I° and II° amines. This
work uses triphenylphosphine and N-chlorophthalimide as
bench-stable reagents to generate in situ reactive phosphonium
species that efficiently activate carboxylic acids. Our mecha-
nistic work employed 31P NMR and HR-MS techniques to
observe and characterize the different intermediates generated
throughout the reaction. Our work is the first to characterize
imido-phosphonium intermediates and observe its reactivity
differences with chloro-phosphonium species. These observa-
tions can help the continual improvement of phosphonium-
based transformations and characterize the species involved.
Future work in our lab aims at employing similar strategies to
enable other deoxyamination transformations.

■ EXPERIMENTAL SECTION

General Considerations. All reagents were purchased and
used without further purification unless otherwise noted. All
reactions were performed under an inert atmosphere unless
otherwise stated. Room temperature refers to 24 °C. Solvents
were freshly distilled under anhydrous conditions before use.
Moisture-sensitive reactions were performed using flame-

dried glassware under an atmosphere of dry argon (Ar).
Flame-dried equipment was stored in a 130 °C oven before

use and either allowed to cool in a cabinet desiccator or
assembled hot and allowed to cool under an inert atmosphere.
Air- and moisture-sensitive liquids and solutions were
transferred via a plastic or glass syringe.
Chromatographic purification of products was accomplished

using a flash column chromatography Silicycle Silica flash F60
(particle size: 40−63 μm, 230−400 mesh).
Thin-layer chromatography was performed on EMD

Millipore silica gel 60 F254 glass-backed plates (layer thickness:
250 μm, particle size: 10−12 μm, impregnated with a
fluorescent indicator). Visualization of the developed chroma-
togram was accomplished by fluorescence quenching under
shortwave UV light and/or by staining with phosphomolybdic
acid, p-anisaldehyde, or KMnO4 stain.
Instrumentation. NMR spectrometry: NMR spectra were

obtained on Bruker spectrometers operating at 400 or 500
MHz for 1H NMR and 101 or 126 MHz for 13C{1H} NMR.
Chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet,
dd = doublet of doublets, t = triplet, q = quartet, and m =
multiplet), coupling constant (Hz), and the relative integral
was made in reference to NMR solvent signals.
Mass spectrometry: gas chromatograph-mass spectrometry

were obtained using a Hewlett Packard GC system HP 6890
Series coupled with a HP 5973 mass-selective detector. High-
resolution mass spectra were obtained using an Agilent
Technologies 6520 Accurate-Mass Q-TOF LC/MS with
electrospray ionization (ESI).
General Method A: Amide Synthesis. A flame-dried 10 mL

microwave vial was charged with N-chlorophthalimide (1.5

equiv), triphenylphosphine (1.5 equiv), and the desired
carboxylic acid (100 mg, 1 equiv) under an argon atmosphere.
A solvent (3 mL of toluene or acetonitrile) was then added,
and the resulting solution was stirred for 1 min before adding
the desired amine reagent (3 equiv). The resulting mixture was
stirred at room temperature for 12 h in an inert atmosphere.
The crude reaction was then dissolved in 10 mL of ethyl
acetate, and the solution was washed using a saturated solution
of sodium bicarbonate (8 mL) and a brine solution (8 mL).
The organic layer was dried with sodium sulfate and then
concentrated via rotatory evaporation. The corresponding
amide was isolated via column chromatography.

General Method B: Acyl Phthalimide Synthesis. A flame-
dried 10 mL microwave vial was charged with N-chloroph-
thalimide (1.5 equiv), triphenylphosphine (1.5 equiv), DMAP
(1.5 equiv), and the desired carboxylic acid (100 mg, 1 equiv)
under an argon atmosphere. Toluene (3 mL) was then added,
and the resulting solution was stirred for 12 h at 80 °C in an
inert atmosphere. The crude reaction was then dissolved in 10
mL of ethyl acetate, and the solution was washed using a
saturated solution of sodium bicarbonate (8 mL) and a brine
solution (8 mL). The organic layer was dried with sodium
sulfate and then concentrated via rotatory evaporation. The
corresponding acyl phthalimide was isolated via column
chromatography.

Compounds Synthesis and Characterization. Prepara-
tion of N-Benzylbenzamide (3aa). Using general method A
(100 mg of benzoic acid, 322 mg of triphenylphosphine, 223
mg of N-chlorophthalimide, 263 mg of benzylamine, and 3 mL
of toluene), the product was purified by column chromatog-
raphy (Rf = 0.53, DCM/hexane/EtOAc = 5:3:1) and isolated
in 83% yield, 140 mg. Spectra data matched reported data.25
1H NMR (400 MHz, CDCl3) δ 7.83−7.60 (m, 2H), 7.44−7.35
(m, 1H), 7.36−7.25 (m, 2H), 7.25 (m, 4H), 6.51 (s, 1H), 4.53
(d, J = 5.7 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ
167.4, 138.3, 134.5, 131.5, 128.8, 128.6, 127.9, 127.6, 127,
44.1.

Preparation of N-Benzyl-N-methylbenzamide (3ab).
Using general method A (100 mg of benzoic acid, 322 mg
of triphenylphosphine, 223 mg of N-chlorophthalimide, 199
mg of N-benzylmethylamine, and 3 mL of MeCN), the
product was purified by column chromatography (Rf = 0.62,
DCM/hexane/EtOAc = 5:3:1) and isolated in 65% yield, 120
mg. Spectra data matched reported data.26 1H NMR (400
MHz, CDCl3) δ 7.41−7.08 (m, 10H), 4.49 (d, 2H), 2.79 (d, J
= 72.1 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 169,
136.3, 129.6, 128.8, 128.5, 127.6, 127, 126.9, 55.2, 50.9, 37,
33.2.

Preparation of N-Cyclohexylbenzamide (3ac). Using
general method A, (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 244 mg
of cyclohexylamine, and 3 mL of toluene), the product was
purified by column chromatography (Rf = 0.59, DCM/hexane/
EtOAc = 5:3:1) and isolated in 76% yield, 130 mg. Spectra
data matched reported data.27

1H NMR (400 MHz, CDCl3) δ 7.82−7.74 (m, 2H), 7.53−
7.45 (m, 1H), 7.44−7.38 (m, 2H), 6.14 (s, 1H), 3.99 (m, 1H),
2.03 (m, 2H), 1.81−1.70 (m, 2H), 1.70−1.61 (m, 1H), 1.48−
1.35 (m, 2H), 1.32−1.13 (m, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.5, 135.2, 131.2,
128.5, 126.9, 48.7, 33.2, 25.6, 25.

Preparation of (S)-N-(1-Phenylethyl)benzamide (3ad).
Using general method A (100 mg of benzoic acid, 322 mg
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of triphenylphosphine, 223 mg of N-chlorophthalimide, 298
mg of (S)-(−)-1-phenylethylamine, and 3 mL of toluene), the
product was purified by column chromatography (Rf = 0.63,
DCM/hexane/EtOAc = 5:3:1) and isolated in 72% yield, 150
mg. Spectra data matched reported data.28

1H NMR (400 MHz, CDCl3) δ 7.71−7.66 (m, 2H), 7.43−
7.37 (m, 1H), 7.35−7.25 (m, 6H), 7.21−7.17 (m, 1H), 6.36
(s, 1H), 5.25 (p, J = 7.1 Hz, 1H), 1.52 (d, J = 7.0 Hz, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.9, 143.2, 134.7,
131.4, 128.8, 128.6, 127.5, 127, 126.3, 49.2, 21.8.
Preparation of N-(2-Phenylpropan-2-yl)benzamide (3ae).

Using general method A (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 332 mg
of cumylamine, and 3 mL of toluene), the product was purified
by column chromatography (Rf = 0.67, DCM/hexane/EtOAc
= 5:3:1) and isolated in 51% yield, 100 mg. Spectra data
matched reported data.29

1H NMR (400 MHz, CDCl3) δ 7.83−7.76 (m, 2H), 7.56−
7.46 (m, 3H), 7.50−7.40 (m, 2H), 7.38 (t, J = 8.6, 7.6, 7.0 Hz,
2H), 7.30−7.25 (m, 1H).

13C{1H} NMR (100 MHz, CDCl3) δ 166, 146.9, 135.5,
131.3, 128.6, 128.5, 126.9, 126.8, 124.8, 56.3, 29.2.
Preparation of (Z)-N-(Octadec-9-en-1-yl)benzamide (3af).

Using general method A (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 657 mg
of oleylamine, and 3 mL of toluene), the product was purified
by column chromatography (Rf = 0.76, DCM/hexane/EtOAc
= 5:3:1) and isolated in 40% yield, 122 mg. Spectra data
matched reported data.30

1H NMR (400 MHz, CDCl3) δ 7.78 (dd, J = 7.0, 1.8 Hz,
2H), 7.51−7.39 (m, 3H), 6.36 (s, 1H), 5.44−5.32 (m, 2H),
3.44 (m, 3H), 2.17−1.90 (m, 4H), 1.62 (p, J = 7.1 Hz, 2H),
1.43−1.21 (m, 22H), 0.87 (s, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 167.5, 135, 134.5,
131.2, 130.6, 129.8, 128.9, 128.5, 126.9, 40.1, 31.9, 29.8, 29.7,
29.5, 27.2, 22.7, 14.1.
Preparation of tert-Butyl Benzoylglycinate (3ag). Using

general method A (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 323 mg
of tert-butyl, 2-aminoacetate, and 3 mL of toluene), the
product was purified by column chromatography (Rf = 0.49,
DCM/hexane/EtOAc = 5:3:1) and isolated in 54% yield, 100
mg. Spectra data matched reported data.31

1H NMR (400 MHz, CDCl3) δ 7.87−7.79 (m, 2H), 7.56−
7.48 (m, 1H), 7.48−7.40 (m, 2H), 6.71 (s, 1H), 4.15 (d, J =
4.9 Hz, 2H), 1.52 (s, 9H).

13C{1H} NMR (100 MHz, CDCl3) δ 169.4, 167.2, 134,
131.7, 128.6, 127, 82.5, 42.5, 28.1.
Preparation of N-Phenylbenzamide (3ah). Using general

method A (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 229 mg
of aniline, and 3 mL of toluene), the product was purified by
column chromatography (Rf = 0.84, DCM/hexane/EtOAc =
5:3:1) and isolated in 69% yield, 111 mg. Spectra data matched
reported data.32

1H NMR (400 MHz, CDCl3) δ 7.92−7.83 (m, 3H), 7.70−
7.61 (m, 2H), 7.59−7.51 (m, 1H), 7.51−7.43 (m, 2H), 7.41−
7.32 (m, 2H), 7.20−7.11 (m, 1H).

13C{1H} NMR (100 MHz, CDCl3) δ 165.8, 138, 135.1,
131.9, 129.1, 128.8, 127, 124.6, 120.3.
Preparation of N-Mesitylbenzamide (3ai). Using general

method A (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 332 mg

of 2,4,6-trimethylaniline, and 3 mL of toluene), the product
was purified by column chromatography (Rf = 0.28, 100%
DCM) and isolated in 56% yield, 110 mg. Spectra data
matched reported data.33

1H NMR (400 MHz, CDCl3) δ 7.92−7.76 (m, 2H), 7.55−
7.45 (m, 1H), 7.40 (dd, J = 7.5, 1.3 Hz, 2H), 7.33 (d, 1H),
6.84 (s, 2H), 2.22 (s, 3H), 2.15 (s, 6H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.3, 137.1, 135.3,
134.7, 131.7, 131.3, 129, 128.7, 127.2, 21, 18.4.

Preparation of N-(2,6-Diisopropylphenyl)benzamide
(3aj). Using general method A (100 mg of benzoic acid, 322
mg of triphenylphosphine, 223 mg of N-chlorophthalimide,
435 mg of 2,6-diisopropylaniline, and 3 mL of toluene), the
product was purified by column chromatography (Rf = 0.39,
100% DCM) and isolated in 49% yield, 113 mg. Spectra data
matched reported data.34

1H NMR (400 MHz, CDCl3) δ 7.87−7.79 (m, 2H), 7.52−
7.46 (m, 1H), 7.44−7.38 (m, 2H), 7.33−7.24 (m, 2H), 7.16 (t,
J = 8.3 Hz, 2H), 3.07 (hept, J = 6.8 Hz, 2H), 1.14 (d, J = 6.9
Hz, 12H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.9, 146.5, 134.7,
131.8, 131.2, 128.9, 128.5, 127.2, 28.9, 23.7.

Preparation of N,N-Diphenylbenzamide (3ak). Using
general method B (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 277 mg
of diphenylamine, and 3 mL of MeCN), the product was
purified by column chromatography (Rf = 0.55, hexane/EtOAc
= 2:1) and isolated in 55% yield, 123 mg. Spectra data matched
reported data.35

1H NMR (400 MHz, CDCl3) δ 7.41−7.36 (m, 2H), 7.24−
7.17 (m, 5H), 7.15−7.04 (m, 8H).

13C{1H} NMR (100 MHz, CDCl3) δ 170.2, 144, 136.2,
130.2, 129.2, 129.1, 127.9, 127.5, 126.4.

Preparation of N-Methyl-N-phenylbenzamide (3al). Using
general method B (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 176 mg
of N-methylaniline, and 3 mL of MeCN), the product was
purified by column chromatography (Rf = 0.47, DCM/hexane/
EtOAc = 5:3:1) and isolated in 65% yield, 112 mg. Spectra
data matched reported data.36

1H NMR (400 MHz, CDCl3) δ 7.35−7.27 (m, 2H), 7.26−
7.18 (m, 3H), 7.14 (m, 3H), 7.09−6.97 (m, 2H), 3.54−3.47
(m, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 170.2, 144.9, 136,
129.6, 129.2, 128.7, 127.3, 126.9, 126.5, 38.4.

Preparation of Phenyl(pyrrolidin-1-yl)methanone (3am).
Using general method B (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 117 mg
of pyrrolidine, and 3 mL of MeCN), the product was purified
by column chromatography (Rf = 0.29, DCM/hexane/EtOAc
= 5:2:3) and isolated in 71% yield, 102 mg. Spectra data
matched reported data.37

1H NMR (400 MHz, CDCl3) δ 7.42 (m, 2H), 7.30 (m, 3H),
3.62−3.20 (m, 3H), 1.94−1.72 (m, 4H).

13C{1H} NMR (100 MHz, CDCl3) δ 169.7, 137.3, 133,
129.7, 128.2, 127.1, 49.5, 46.1, 26.4, 24.4.

Preparation of Phenyl(piperidin-1-yl)methanone (3an).
Using general method B (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 139 mg
of piperidine, and 3 mL of MeCN), the product was purified
by column chromatography (Rf = 0.60, 100% EtOAc) and
isolated in 45% yield, 70 mg. Spectra data matched reported
data.38
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1H NMR (400 MHz, CDCl3) δ 7.28 (s, 5H), 3.42 (d, J =
148.3 Hz, 4H), 1.79−1.09 (m, 5H).

13C{1H} NMR (100 MHz, CDCl3) δ 170, 136.5, 129.2,
128.3, 126.7, 48.7, 43.1, 26.4, 25.7, 24.5.
Preparation of Morpholino(phenyl)methanone (3ao).

Using general method B (100 mg of benzoic acid, 322 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 143 mg
of morpholine, and 3 mL of MeCN), the product was purified
by column chromatography (Rf = 0.33, petroleum ether/
EtOAc = 1:1) at 41% yield, 64 mg. Spectra data matched
reported data.39

1H NMR (400 MHz, CDCl3) δ 7.31 (m, 5H), 3.47 (m, 8H).
13C{1H} NMR (100 MHz, CDCl3) δ 170.3, 135.3, 132,

131.9, 129.8, 128.5, 128.4, 127.4, 66.7, 48.1, 42.6.
Preparation of N-Benzyl-4-methoxybenzamide (3ba).

Using general method A (100 mg of 4-methoxy-benzoic acid,
259 mg of triphenylphosphine, 179 mg of N-chlorophthali-
mide, 211 mg of benzylamine, and 3 mL of toluene), the
product was purified by column chromatography (Rf = 0.14,
hexane/EtOAc = 3:1) and isolated in 84% yield, 166 mg.
Spectra data matched reported data.41

1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.8 Hz, 2H),
7.29−7.11 (m, 4H), 6.82 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9
Hz, 2H), 6.40 (s, 1H), 3.75 (s, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.8, 162.3, 138.6,
128.8, 128.7, 127.9, 127.5, 126.7, 113.8, 55.4, 44.1.
Preparation of N-Benzyl-4-methoxy-N-methylbenzamide

(3bb). Using general method A, (100 mg of 4-methoxy-
benzoic acid, 259 mg of triphenylphosphine, 179 mg of N-
chlorophthalimide, 160 mg of N-benzylmethylamine, and 3 mL
of MeCN), the product was purified by column chromatog-
raphy (Rf = 0.40, hexane/EtOAc = 1:1) and isolated in 87%
yield, 182 mg. Spectra data matched reported data.40

1H NMR (400 MHz, CDCl3) δ 7.47−7.39 (m, 2H), 7.39−
7.33 (m, 2H), 7.32−7.23 (m, 2H), 6.89 (d, J = 8.2 Hz, 2H),
4.65 (s, 2H), 3.81 (s, 3H), 2.95 (s, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 160.8, 137.1, 129, 128,
127, 113.7, 55.3.
Preparation of N-Benzyl-4-iodobenzamide (3ca). Using

general method A (100 mg of 4-iodo-benzoic acid, 159 mg of
triphenylphosphine, 110 mg of N-chlorophthalimide, 121 mg
of benzylamine, and 3 mL of toluene), the product was purified
by column chromatography (Rf = 0.52, EtOAc/hexane/DCM
= 1:2.5:1) and isolated in 73% yield, 100 mg. Spectra data
matched reported data.9a

1H NMR (400 MHz, CDCl3) δ 7.83−7.76 (m, 2H), 7.56−
7.50 (m, 2H), 7.41−7.33 (m, 5H), 6.40 (s, 1H), 4.65 (d, J =
5.6 Hz, 2H).

13C NMR (100 MHz, CDCl3) δ 166.5, 138, 137.9, 137.8,
133.8, 128.9, 128.6, 128, 127.8, 98.5, 44.3.
Preparation of N-Benzyl-4-iodo-N-methylbenzamide

(3cb̀). Using general method A (100 mg of 4-iodo-benzoic
acid, 159 mg of triphenylphosphine, 110 mg of N-
chlorophthalimide, 98 mg of N-benzylmethylamine, and 3
mL of MeCN), the product was purified by column
chromatography (Rf = 0.48, DCM/hexane/EtOAc = 1:2.5:1)
and isolated in 87% yield, 123 mg. Spectra data matched
reported data.41

1H NMR (400 MHz, CDCl3) δ 7.73 (s, 2H), 7.45−7.07 (m,
7H), 4.61 (d, J = 96.0 Hz, 2H), 2.93 (d, J = 67.1 Hz, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 137.6, 128.8, 127.7,
95.8, 55.2, 51, 37, 33.4.

Preparation of N-Benzyl-4-bromobenzamide (3da). Using
general method A (100 mg of 4-bromo-benzoic acid, 196 mg
of triphenylphosphine, 135 mg of N-chlorophthalimide, 160
mg of benzylamine, and 3 mL of toluene), the product was
purified by column chromatography (Rf = 0.60, DCM/hexane/
EtOAc = 1:2.5:1) and isolated in 69% yield, 100 mg. Spectra
data matched reported data.42

1H NMR (400 MHz, CDCl3) δ 7.71−7.60 (m, 2H), 7.61−
7.53 (m, 2H), 7.41−7.30 (m, 5H), 4.64 (d, J = 5.6 Hz, 2H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.3, 137.9, 133.3,
131.9, 128.9, 128.6, 128, 127.8, 126.3, 44.3.

Preparation of N-Benzyl-4-bromo-N-methylbenzamide
(3db). Using general method A (100 mg of 4-bromo-benzoic
acid, 196 mg of triphenylphosphine, 135 mg of N-
chlorophthalimide, 120 mg of N-benzylmethylamine, and 3
mL of MeCN), the product was purified by column
chromatography (Rf = 0.48, DCM/hexane/EtOAc = 1:2.5:1)
and isolated in 88% yield, 133 mg. Spectra data matched
reported data.43

1H NMR (400 MHz, CDCl3) δ 7.52 (m,2H), 7.39−7.22 (m,
6H), 7.22−7.04 (m, 1H), 4.61 (d, J = 97.5 Hz, 2H), 2.94 (d, J
= 68.3 Hz, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 206.6, 135.1, 131.7,
128.9, 128.2, 127.7, 126.6, 124, 55.2, 51, 30.9.

Preparation of N-Benzyl-4-nitrobenzamide (3ea). Using
general method A (100 mg of 4-nitro-benzoic acid, 236 mg of
triphenylphosphine, 163 mg of N-chlorophthalimide, 192 mg
of benzylamine, and 3 mL of toluene), the product was purified
by column chromatography (Rf = 0.57, DCM/hexane/EtOAc
= 5:3:1) and isolated in 42% yield, 66 mg. Spectra data
matched reported data.44

1H NMR (400 MHz, CDCl3) δ 8.30−8.16 (m, 2H), 8.00−
7.89 (m, 2H), 7.40−7.29 (m, 5H), 6.60 (s, 1H), 4.65 (d, J =
5.6 Hz, 2H).

13C{1H} NMR (100 MHz, CDCl3) δ 165.3, 149.7, 140,
137.5, 129, 128.2, 128, 127.9, 123.8, 44.5.

Preparation of N-Benzyltetradecanamide (3fa). Using
general method A (100 mg of myristic acid, 173 mg of
triphenylphosphine, 119 mg of N-chlorophthalimide, 141 mg
of benzylamine, and 3 mL of toluene), the product was purified
by column chromatography (Rf = 0.57, DCM/hexane/EtOAc
= 5:3:1) and isolated in 70% yield, 97 mg. Spectra data
matched reported data.45

1H NMR (400 MHz, CDCl3) δ 7.32−7.11 (m, 5H), 5.75 (s,
J = 5.7 Hz, 1H), 4.36 (d, J = 5.7 Hz, 2H), 2.19−1.97 (m, 2H),
1.56 (q, J = 7.2 Hz, 2H), 1.39−0.97 (m, 19H), 0.90−0.55 (m,
3H).

13C{1H}NMR (100 MHz, CDCl3) δ 173.1, 138.5, 128.7,
127.8, 127.5, 123.5, 43.6, 36.8, 31.9, 29.7, 29.6, 29.5, 29.4, 25.8,
23.7, 14.1.

Preparation of N-Benzyl-N-methyltetradecanamide (3fb).
Using general method A (100 mg of myristic acid, 173 mg of
triphenylphosphine, 119 mg of N-chlorophthalimide, 106 mg
of N-benzylmethylamine, and 3 mL of MeCN), the product
was purified by column chromatography (Rf = 0.63, DCM/
hexane/EtOAc = 5:3:1) and isolated in 80% yield, 116 mg.

1H NMR (400 MHz, CDCl3) δ 7.39−7.03 (m, 5H), 4.56 (d,
J = 24.3 Hz, 2H), 2.92 (d, J = 10.7 Hz, 3H), 2.42−2.27 (m,
2H), 1.67 (m, 2H), 1.41−1.11 (m, 22H), 0.94−0.72 (m, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 173.7, 173.3, 137.7,
128.9, 128.6, 128, 127.6, 127.3, 126.3, 53.4, 50.8, 34.8, 33.9,
33.6, 33.2, 31.9, 29.7, 29.6, 29.5, 29.4, 25.5, 25.2, 22.7, 14.1.
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HRMS (ESI): [M + H]+ calcd for C22H38NO
+, 332.2948 m/

z; found, 332.2886 m/z.
IR (cm−1): 2930, 2856, 1653, 1457, 1265, 1094.
Preparation of tert-Butyl 3-(3-((((9H-fluoren-9-yl)-

methoxy)carbonyl)amino)-4-(benzylamino)-4-oxobutyl)-
1H-indole-1-carboxylate (3ga). Using general method A (100
mg of Fmoc-Trp(Boc)-OH, 76 mg of triphenylphosphine, 53
mg of N-chlorophthalimide, 61 mg of benzylamine, and 3 mL
of toluene), the product was purified by column chromatog-
raphy (Rf = 0.83, DCM/hexane/EtOAc = 2:1:1) and isolated
in 54% yield, 63 mg.

1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.2 Hz, 1H),
7.67 (d, J = 7.6 Hz, 2H) 7.6−7.09 (m, 14H), 6.87 (m, 2H),
5.66 (d, J = 146.0 Hz, 2H), 4.51−3.85 (m, 5H), 3.43−2.82 (m,
2H), 1.57 (s, 9H).

13C{1H} NMR (100 MHz, CDCl3) δ 170.6, 143.7, 141.3,
137.3, 128.6, 127.8, 127.6, 127.5, 127.1, 125, 124.8, 124.4, 123,
120, 119, 115.4, 83.9, 67.2, 47.1, 43.7, 28.6, 28.2.
HRMS (ESI): [M+ H]+ calcd for C38H38N3O5

+, 616.2806
m/z; found, 616.2550 m/z.
IR (cm−1): 3304, 3064, 1734, 1684, 1649, 1549, 1453, 1374,

1080.
Preparation of N-Benzyl-4-(trifluoromethyl)benzamide

(3ha). Using general method A (100 mg of 4-triflourobenzoic
acid, 210 mg of triphenylphosphine, 145 mg of N-
chlorophthalimide, 170 mg of benzylamine, and 3 mL of
toluene), the product was purified by column chromatography
(Rf = 0.47, DCM/hexane/EtOAc = 7:3:1) and isolated in 40%
yield, 59 mg. Spectra data matched reported data.46

1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 8.0 Hz, 2H),
7.70 (d, J = 8.1 Hz, 2H), 7.50−7.16 (m, 5H), 6.55 (s, 1H),
4.67 (d, J = 5.6 Hz, 2H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.1, 137.8, 137.7,
128.9, 128, 127.9, 127.5, 125.7, 125.6, 44.3.
Preparation of N-Benzyl-N-methyl-4-(trifluoromethyl)-

benzamide (3hb). Using general method A (100 mg of 4-
triflourobenzoic acid, 210 mg of triphenylphosphine, 145 mg
of N-chlorophthalimide, 129 mg of N-benzylmethylamine, and
3 mL of MeCN), the product was purified by column
chromatography (Rf = 0.45, DCM/hexane/EtOAc = 10:3:1)
and isolated in 73% yield, 113 mg. Spectra data matched
reported data.26

1H NMR (400 MHz, CDCl3) δ 7.58 (m, 2H), 7.49 (d, m,
2H), 7.26 (m, 4H), 7.07 (m, 1H), 4.54 (d, J = 117.4 Hz, 2H),
2.87 (d, J = 87.4 Hz, 3H),

13C{1H} NMR (100 MHz, CDCl3) δ 170.8, 139.9, 136.7,
136.1, 131.8, 131.4, 129, 128.9, 127.9, 127.7, 55, 50.9, 36.9,
33.3.
Preparation of N-Benzyl-2-(4- isobutylphenyl)-

propanamide (3ia). Using general method A (100 mg of 2-
(4-isobutylphenyl)propanoic acid, 194 mg of triphenylphos-
phine, 134 mg of N-chlorophthalimide, 157 mg of benzyl-
amine, and 3 mL of toluene), the product was purified by
column chromatography (Rf = 0.59, DCM/hexane/EtOAc =
7:3:1) and isolated in 50% yield, 71 mg. Spectra data matched
reported data.47

1H NMR (400 MHz, CDCl3) δ 7.20−7.09 (m, 5H), 7.06−
6.98 (m, 4H), 5.66 (s, 1H), 4.29 (d, J = 5.8 Hz, 2H), 3.50 (q, J
= 7.2 Hz, 1H), 2.37 (d, J = 7.2 Hz, 2H), 1.76 (m, 1H), 1.46 (d,
J = 7.2 Hz, 3H), 0.81 (d, J = 6.6 Hz, 6H).

13C{1H} NMR (100 MHz, CDCl3) δ 174.4, 140.8, 138.5,
129.7, 128.6, 127.4, 127.3, 46.8, 45, 43.5, 30.2, 22.4, 18.5.

Preparation of N-Benzyl-2-(4- isobutylphenyl)-
propanamide (3ib). Using general method A (100 mg of 2-
(4-isobutylphenyl)propanoic acid, 194 mg of triphenylphos-
phine, 134 mg of N-chlorophthalimide, 116 mg of N-
benzylmethylamine, and 3 mL of MeCN), the product was
purified by column chromatography (Rf = 0.68, DCM/hexane/
EtOAc = 7:3:1) and isolated in 80% yield, 120 mg.

1H NMR (400 MHz, CDCl3) δ 7.37−7.16 (m, 6H), 7.12
(m, 2H), 7.05−7.01 (m, 1H), 4.85−4.28 (m, 2H), 3.91 (m,
1H), 2.89 (d, J = 47.2 Hz, 3H), 2.48 (d, J = 7.1 Hz, 2H), 1.88
(m, 1H), 1.50 (m, 3H), 0.93 (dd, J = 6.6, 2.6 Hz, 6H).

13C{1H} NMR (100 MHz, CDCl3) δ 174, 140.3, 140, 139.2,
138.9, 137.6, 136.9, 129.6, 129.5, 128.8, 128.5, 127.9, 127.5,
127.2, 127, 126.5, 52.9, 51.2, 45, 43.1, 42.8, 34.8, 34.1, 30.2,
22.4, 21.1, 20.8.
HRMS (ESI): [M+ H]+ calcd for C21H28NO

+, 310.2165 m/
z; found, 310.2115 m/z.
IR (cm−1): 3048, 2948, 2865, 1740, 1648, 1449, 1267, 1059.
Preparation of N-Benzyl-2-methyl-2-phenylpropanamide

(3ja). Using general method A (100 mg of 2-phenylisobutyric
acid, 241 mg of triphenylphosphine, 167 mg of N-
chlorophthalimide, 196 mg of benzylamine, and 3 mL of
toluene), the product was purified by column chromatography
(Rf = 0.49, DCM/hexane/EtOAc = 7:3:1) and isolated in 43%
yield, 66 mg. Spectra data matched reported data.48

1H NMR (400 MHz, CDCl3) δ 7.33−7.23 (m, 4H), 7.22−
7.12 (m, 3H), 7.07−7.00 (m, 2H), 5.39 (s, 1H), 4.29 (d, J =
5.8 Hz, 2H), 1.53 (s, 6H).

13C{1H} NMR (100 MHz, CDCl3) δ 177.3, 145.1, 138.6,
128.8, 128.6, 127.3, 127.1, 126.5, 47.1, 43.7, 27.1.

Preparation of N-Benzyl-N,2-dimethyl-2-phenylpropana-
mide (3jb). Using general method A (100 mg of 2-
phenylisobutyric acid, 241 mg of triphenylphosphine, 167 mg
of N-chlorophthalimide, 148 mg of N-benzylmethylamine, and
3 mL of MeCN), the product was purified by column
chromatography (Rf = 0.65, DCM/hexane/EtOAc = 7:3:1)
and isolated in 94% yield, 153 mg. Spectra data matched
reported data.

1H NMR (400 MHz, CDCl3) δ 7.54−6.61 (m, 10H), 5.10−
3.69 (m, 2H), 2.82−2.26 (m, 3H), 1.50 (s, 6H).

13C{1H} NMR (100 MHz, CDCl3) δ 176.3, 146.4, 128.9,
128.5, 127.2, 126.4, 124.9, 47.2, 28.4.
HRMS (ESI): [M+ H]+ calcd for C18H22NO

+, 268.1696 m/
z; found, 268.1660 m/z.
IR (cm−1): 3100, 2990, 2925, 2249, 1714, 1648, 1400, 1088.
Preparation of N-(3-Isopropoxyphenyl)-2-methylbenza-

mide (3kc). Using general method A (100 mg of o-toluic
acid, 322 mg of triphenylphosphine, 291 mg of N-
chlorophthalimide, 335 mg of 3-isopropoxyaniline, and 3 mL
of toluene), the product was purified by column chromatog-
raphy (Rf = 0.54, DCM/hexane/EtOAc = 10:3:1) and isolated
in 55% yield, 109 mg. Spectra data matched reported data.17c

1H NMR (400 MHz, CDCl3) δ 7.65 (s, 1H), 7.33−7.24 (m,
2H), 7.24−7.16 (m, 1H), 7.14−7.07 (m, 3H), 7.01−6.94 (m,
1H), 6.60 (dd, J = 8.3, 2.4 Hz, 1H), 4.49 (sept, J = 6.2 Hz,
1H), 2.35 (s, 3H), 1.23 (d, J = 6.1 Hz, 6H).

13C{1H} NMR (100 MHz, CDCl3) δ 168.1, 158.6, 139.3,
136.4, 131.2, 130.2, 129.8, 126.7, 125.9, 112.2, 111.9, 107.6,
70, 60.4, 22.1, 19.8, 14.2.

Preparation of 2-Benzoylisoindoline-1,3-dione (4a). Using
general method B (100 mg of benzoic acid, 323 mg of
triphenylphosphine, 223 mg of N-chlorophthalimide, 150 mg
of DMAP, and 3 mL of toluene), the product was purified by
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column chromatography (Rf = 0.4, DCM/hexane = 2:1) and
isolated in 60% yield, 123 mg. Spectra data matched reported
data.49

1H NMR (400 MHz, CDCl3) δ 7.98 (m, 2H), 7.90−7.82
(m, 4H), 7.72−7.61 (m, 1H), 7.56−7.43 (m, 2H).

13C{1H} NMR (100 MHz, CDCl3) δ 167.9165.9, 135.3,
134.5, 131.5, 130.5, 128.7, 124.5.
Preparation of 2-(4-Methoxybenzoyl)isoindoline-1,3-

dione (4b). Using general method B (100 mg of 4-methoxy-
benzoic acid, 259 mg of triphenylphosphine, 179 mg of N-
chlorophthalimide, 120 mg of DMAP, and 3 mL of toluene),
the product was purified by column chromatography (Rf = 0.7,
DCM/hexane/EtOAc = 5:3:1) and isolated in 44% yield, 81
mg. Spectra data matched reported data.50

1H NMR (400 MHz, CDCl3) δ 7.97 (m, 2H), 7.90−7.81
(m, 4H), 6.96 (d, J = 8.9 Hz, 2H), 3.89 (s, 3H).

13C{1H} NMR (100 MHz, CDCl3) δ 166.1, 164.7, 135.1,
133.2, 131.7, 125, 124.4, 114.1, 55.6.
Preparation of 2-(4-(Benzyloxy)benzoyl)isoindoline-1,3-

dione (4c). Using general method B 100 mg of 4-(benzyloxy)-
benzoic acid, 173 mg of triphenylphosphine, 120 mg of N-
chlorophthalimide, 80 mg of DMAP, and 3 mL of toluene), the
product was purified by column chromatography (Rf = 0.7,
DCM/hexane/EtOAc = 5:3:1) and isolated in 70% yield, 110
mg.

1H NMR (400 MHz, CDCl3) δ 7.97 (m, 2H), 7.91−7.81
(m, 4H), 7.13−6.97 (m, 2H), 5.15 (s, 2H).

13C{1H} NMR (100 MHz, CDCl3) δ 165.6, 163.5, 135.9,
135.1, 133.2, 131.7, 128.8, 128.4, 127.5, 125.2, 124.4, 115,
70.4.
HRMS (ESI): [M+ H]+ calcd for C22H16NO4

+, 358.1074 m/
z; found, 358.1101 m/z.
IR (cm−1): 3078, 3032, 2946, 1784, 1683, 1510, 1105.
Preparation of 2-(2-Methyl-2-phenylpropanoyl)-

isoindoline-1,3-dione (4d). Using general method B (100
mg of 2-phenyl isobutyric acid, 240 mg of triphenylphosphine,
166 mg of N-chlorophthalimide, 112 mg of DMAP, and 3 mL
of toluene), the product was purified by column chromatog-
raphy (Rf = 0.6, EtOAc/hexane = 3:5) and isolated in 48%
yield, 86 mg.

1H NMR (400 MHz, CDCl3) δ 7.82−7.78 (m, 2H), 7.76−
7.71 (m, 2H), 7.40−7.18 (m, 5H), 1.81 (s, 6H).

13C{1H} NMR (100 MHz, CDCl3) δ 178.9, 165.1, 142.5,
134.9, 131.3, 128.3, 127, 126.5, 124.1, 51.5, 26.9.
HRMS (ESI): [M+ H]+ calcd for C18H16NO3

+, 358.1074 m/
z; found, 358.1101 m/z.
IR (cm−1): 3100, 3060, 2960, 2940, 2000, 1790, 1760, 1500,

1060.
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