
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1S3, December 2019

291

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10551291S319/2019@BEIESP

DOI:10.35940/ijeat.A1055.1291S319



Abstract: LoRaWAN technology has been here for several

years as one of LPWAN technologies. It consists of various

components such as end nodes, a gateway, a network server, and

an application server at the minimum. The servers have been

exclusive products of commercial companies, and not many

experimental or academic ones are available. Recently one such

software has been developed. However, few fully functional

academic ones have been reported. In this study, we implement a

fully functional private independent LoRaWAN platform for the

academic research of LPWAN Internet of Things (IoT) and

demonstrate that our platform can support not only end-to-end

LoRaWAN communication but also graphical user interface on

an embedded and limited computing power system.

Keywords : LoRaWAN, LPWAN, Gateway, Network Server,

Application Server.

I. INTRODUCTION

The rapid development of electronics technology expects

to deploy 20 billion IoT devices by 2020. To connect such a

tremendous number of devices, several low power wide area

(up to several mile ranges in line of sight) networking

(LPWAN) technologies have been developed, which include

LoRaWAN [1], Sigfox [2], Wi-SUN [3], etc. As compared to

other LPWAN technologies, LoRaWAN has the following

advantages. (i) It is one of the most widely adopted long range

wireless communication technologies for Internet-of-Things

(IoT) using an ISM radio band. (ii) It has star-of-star

topology, and thus, it is easier to debug and isolate faults. (iii)

It has an extended battery lifespan. Therefore, the technology

has been utilized for building smart and safe urban

infrastructure, smart farms, smart disaster warnings and

preparedness, etc.

Although LoRaWAN is quite popular to many IoT

developers and users, and thus, several LoRaWAN platforms

have been deployed by commercial companies, there is lack

of academic or research LoRaWAN end-to-end platforms

except The Things Network (TTN [4]), and no report of

private independent (stand-alone) non-commercial platforms

to our knowledge.

This article describes a private LoRaWAN platform that

can be used for academic and research purposes. This

Revised Manuscript Received on December 16, 2019.

* Correspondence Author

John Lee*, Youssef Souryal, Dongsoo Kim, Kyubyung Kang, Dan D.

Koo, ECE department, IUPUI, Indianapolis, USA. Email: {johnlee,

ysouryal, dskim, kyukang, dankoo}@iu.edu

Darren Tam, Tandon School of Engineering, NYU, Brooklyn, USA,

dt1453@nyu.edu

This research has been partly supported by the NSF Award #1757636, the

STEM-SSI (Summer Scholars Institute), and Multidisciplinary

Undergraduate Research Institute (MURI) as well as Research Support

Funds Grant (RSFG) of IUPUI.

platform has been built on a Raspberry Pi 3 64-bit quadcore

processing system utilizing ChirpStack.io project [5] but can

be extended to any number of gateways and servers.

II. PRIOR WORK

LoRaWAN technology has been developed and deployed

in 2012, but most often network service providers offer the

infrastructures such as Comcast in the US, KPN in Europe,

and SK Telecom in Asia. There exists only one

non-commercial but public LoRaWAN service provider

called The Things Network (TTN [4]). Unlike Sigfox

(another LPWAN technology), anyone can build and deploy

any of LoRaWAN gateways and servers, which is a big

advantage of using LoRaWAN. Nonetheless, as this

technology is quite new, end-to-end private independent

LoRaWAN platforms are very rare. Per our knowledge, there

is only one software project (ChirpStack.io [5]) which

implements open-source LoRaWAN server-side software and

can be used to build a LoRaWAN platform. Moreover, it is

not well known in the US, and thus, there is no role model of

US version of private LoRaWAN platforms.

III. METHODOLOGY

A. Problem Statement

Fig. 1 shows the basic LoRaWAN platform architecture.

To build its whole service system, all of the components in the

figure must be realized. Except for end-nodes, such

components are typically provided by a few commercial

service providers. Thus, users need to pay subscription fees

and rely on them, but the worst is the privacy issue as the

providers have users’ data. For the applications that are

necessary to keep private, or those who want/need to build

private LoRaWAN platforms, a solution is necessary. Hence,

embedded LoRaWAN platforms can be very beneficial to

small private or academic projects such as IoT courses, small

farms, home automation, and small-size buildings.

B. The Overall Structure of our Private LoRaWAN

Platform

Our LoRaWAN platform has a layered structure consisting

of four layers: a device layer, a network layer, an information

layer, and an analysis layer as shown in Fig. 2.

Device Layer: Each device consists of a microprocessor,

wireless communication modules, sensors and/or actuators,

and software and/or operating system. If support to the

operating system is required for edge computing or somewhat

complex tasks, the microprocessor should be 32-bit or higher

processors such as ESP32 or ARM derivatives. Several

operating systems (OS) or

Real-Time OS (RTOS) have

been developed for IoT such as

Building a Private LoRaWAN Platform

John J. Lee, Youssef Souryal, Darren Tam, Dongsoo Kim, Kyubyung Kang, Dan D. Koo

Building a Private LoRaWAN Platform

292

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10551291S319/2019@BEIESP

DOI:10.35940/ijeat.A1055.1291S319

FreeRTOS [6] or Contiki OS [7]. FreeRTOS is widely

accepted in IoT development due to its small footprint,

scalability, extensive support for a wide spectrum of hardware

architecture.

Network Layer: This layer consists of the following

connections as shown in Fig. 1: (i) Communication between

devices and gateways, and (ii) Communication between

gateways and network servers and application servers. The

design objectives of the network layer include (i) reliable

communication with fault tolerance, (ii) secure

communication, (iii) covering entire building including

basements, (iv) easiness to program, test, and upgrade the

software, and (v) standalone operation (independent of

external service providers). One advantage of LoRaWAN is

that one gateway (GW) can cover an entire mid-size building.

However, for redundancy and reliability, typically more than

one GWs are installed.

Information Layer: This layer gathers all kinds of

information from sensors such as temperature, humidity,

human existence, position, acceleration, timestamps, and

motions depending on applications. Then it should categorize

the types of data based on properties of sensors so that it can

serve the analysis layer and applications appropriately and

efficiently. This layer should also have application specific

information such as building structures and floor plans for

smart buildings, land sections in smart farms, or street

shapes/maps in smart cities.

Analysis Layer: This layer utilizes all the information

provided by the network and information layers.

Synthesizing multiple source information over time extracts

knowledge and understands the context and situation. For

smart cities, as an example, information from signal traffic

loops would be fused with information of vehicle built-in

devices via road-side units to understand the impact of a car

accident and mechanic problem to traffic flow. This layer

should be able to make situation-aware or context-aware

decisions. To extract valuable information out of the

enormous data stemming from various IoT sources, it can

exploit machine learning and/or artificial intelligence to learn

and deduce abnormal situations.

IV. IMPLEMENTATION

In our implementation, we have set up three layers of our

private LoRaWAN platform, namely, the device layer,

network layer, and information layer. The implementation of

the analysis layer has been postponed as it is fairly

sophisticated.

A. The Components of a Private LoRaWAN Platform

As a solution to the aforementioned necessities, we build a

prototype private LoRaWAN service platform based on

ChirpStack project [5] along with other software such as

MQTT and gRPC. As this is a sample prototype, for

hardware, we have used a Raspberry Pi 3 (RPi3) 64-bit

quadcore processor system and a Semtech LoRa concentrator

with 9-channel LoRa transceivers, more specifically LoRaGo

PORT [8].

The component connection diagram of our platform is

shown in Fig. 3. The platform consists of the following

software modules: a packet forwarding software module, a

gateway bridge module, a network server module, an

application server module, an MQTT broker module, and a

PostgreSQL database module. All of these software modules

are running on the Raspberry Pi 3 (RPi3) in our

implementation, but it does not necessarily to be like this as

most of the software modules can be spread over separate

computers or even in the cloud. Detailed connections are

explained in the following subsection.

B. Architecture and Connections of Hardware and

Software Components

The so-called gateway (GW) is composed of a LoRa

transceiver, a packet forwarding software module, and a

bridge software module. The packet forwarding module we

use is the Semtech UDP Packet Forwarder [9].

The network server consists of an MQTT broker module

and a network server module. The gateway bridge module

running on RPi3 passes packets between the packet forwarder

and the MQTT broker, which relays again the packets from/to

the network server module. MQTT messages are used in this

stage due to the following advantages. (i) As this platform is

expected to be used in academia, it should be easy to debug

the communications. The best way to do this is to use MQTT

messages as they are easier to publish and subscribe for

logging purpose or even manually triggering events such as

controlling actuators or just LEDs. (ii) Packets from different

gateways can have different

head topics, and thus,

messages can be easily routed

to different gateways and end

Fig. 1. Private LoRaWAN platform architecture.

Fig. 2. Private LoRaWAN platform layers.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1S3, December 2019

293

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10551291S319/2019@BEIESP

DOI:10.35940/ijeat.A1055.1291S319

devices.

The Application Server (AS) consists of an application

server module and gRPC through which the AS connect to the

network server and applications if desired. gRPC [10] is a

high-performance, open-source, universal, language and

platform independent RPC framework on top of

protocol-buffers [11] which are Google’s language-neutral,

platform-neutral extensible mechanism for serializing

structured data – like XML, but smaller, faster, and simpler.

In order to store and later analyze persistent data,

PostgreSQL database [12] is used, which is accessed from the

network server module as well as application server module

using Data Source Name (DSN).

C. LoRaWAN Devices (Sensors and Actuators)

For end devices, we have used three different LoRa boards,

namely, SODAQ board [13], Marvin board [14], and STM32

B-L072Z-LRWAN1 board [15]. SODAQ LoRaWAN

Explorer [13] includes a LoRa transceiver, a 32-bit ARM

microcontroller, a temperature sensor, a multicolor LED for

output monitoring, and Arduino M0 Compatible analog and

digital inputs.

Marvin board [14] consists of a USB port, an Arduino

compatible microcontroller (AtMega 32u4), five Grove

connectors, and a Microchip LoRaWAN modem. The

combination of these components allows users to very easily

connect various analog and digital sensors and actuators, and

program using Arduino IDE [16]. We have tested

temperature, humidity, and light intensity sensors on this

board.

B-L072Z-LRWAN1 Discovery kit [15] with a sensor

shield from STM has various sensors such as an

accelerometer. However, it requires to use System

Workbench IDE [17] from STM or other sophisticated IDEs

for development such as Mbed [18], which makes beginners

hard to approach at first, but is preferred for experts.

D. Configuration of a Private LoRaWAN Platform

The various software modules need to be configured to

properly set numerous parameters for meeting not only the

LoRaWAN specification but also the US FCC regulation for

the usage of the platform in the US. To do that, we set up three

device profiles (for three device types), a gateway profile and

its service profile, and configure the modules to be abided by

the US FCC regulations.

For example, Fig. 4 shows “Gateway Profile,” which

selects which channels the gateway will use. For Comcast

service, channels 0 to 7 are used, whereas for TTN service,

channels 8 to 16 are used.

E. Applications

For applications, we explore a few end devices (nodes)

with various sensors on three different afore-described

boards. The sensor data includes temperature, humidity,

barometer, accelerometer, and light intensity as an analog

signal, and they are sent to the gateway, network server, and

application server.

For application GUI, we use Node-RED [19] tool with its

Dashboard features as they are very easy to integrate. For

application data formatting, we used Cayenne LPP [20],

which is de facto IoT data formatting standard that enables

coherent data sharing among servers and applications for

seamless interoperability.

V. EXPERIMENTATION

A. Experimental Setup

We have integrated all the aforementioned hardware and

software components on a Raspberry Pi 3 with a Semtech

LoRa concentrator shield [8].

Fig. 3. The connection diagram of our platform.

Fig. 5. One of experimental applications.

Fig. 4. Gateway profile.

Building a Private LoRaWAN Platform

294

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10551291S319/2019@BEIESP

DOI:10.35940/ijeat.A1055.1291S319

We have experimented several applications. Fig. 5 shows

an application where the end node simply measures light

intensity and transmits to GW, which relays the data to the

network and application servers, and then to the application,

i.e., Node-RED Dashboard.

B. Experimental Results

Fig. 6 shows communication status from three devices to

the gateway. Packet details of uplinks and downlinks’

messages can be revealed by clicking v (down arrow) on the

right side.

Fig. 7 shows the MQTT message at the gateway received

from a sensor node. It is therefore easy to check and debug

communication status. Notice that the application packet data

(denoted as phyPayload) is encrypted, which is according to

the LoRaWAN specification. However, for testing purpose,

one can use un-encrypted packets.

Fig. 8 shows the MQTT message at the application server

side that is originated from the Marvin board. It also shows

very detailed information about the application-side states. As

the application server can now decrypt the payload and also

the payload format used is Cayenne LPP data representation

[18], the application server interprets and neatly presents

three different types of sensor data in JSON format, which can

be easily parsed by a JSON parser Node-RED node. Then,

data can be exhibited by the Node-RED and its Dashboard as

shown in Fig. 5.

VI. CONCLUSION

We have successfully built a private independent

non-commercial LaRaWAN platform that does not require

any external service providers. This platform can be used for

various applications such as smart city, automated factory,

smart farm applications, natural disaster warning and

preparedness prediction, infrastructure resilience and

condition monitoring, and damage mitigation. It can also be

easily extended to bigger platforms as more end-nodes are

integrated and data are accumulated rapidly. This is possible

by building separate application servers as gRPC ([10],

shown in Figures 1 and 3) can communicate across LAN or

Internet.

For future work, we plan to build a bigger platform on a

server running an Ubuntu operating system.

REFERENCES

1. LoRa Alliance, Available: https://lora-alliance.org/

2. Sigfox, Available: https://www.sigfox.com/en

3. Wi-SUN, Available: https://www.wi-sun.org/

4. The Things Network (TTN), Available:

https://www.thethingsnetwork.org/

5. ChirpStack, Available: https://www.chirpstack.io/, 2019.

6. FreeRTOS, Barry, Richard. “FreeRTOS,” Internet, Oct (2008),

https://www.freertos.org/

7. A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and

flexible operating system for tiny networked sensors,” 29th annual IEEE

international conference on local computer networks, pp. 455-462,

2004.

8. LoRaGo PORT, Available:

https://sandboxelectronics.com/?product=lorago-port-multi-channel-lor

awan-gateway

9. Semtech UDP Packet Forwarder, Available:

https://github.com/Lora-net/packet_forwarder

10. gRPC, https://grpc.io/

11. Google, “protocol-buffers,” Available:

https://developers.google.com/protocol-buffers/

12. PostgreSQL, Available: https://www.postgresql.org/

13. SODAQ, Available: https://support.sodaq.com/sodaq-one/explorer/

14. Marvin, Available: https://github.com/iotacademy/marvin

15. STM32 B-L072Z-LRWAN1, Available:

https://www.st.com/en/evaluation-tools/b-l072z-lrwan1.html

16. Arduino IDE, https://www.arduino.cc/en/Main/Software

17. System Workbench IDE, Available:

https://www.st.com/en/development-tools/sw4stm32.html

18. ARM Mbed, Available: https://www.mbed.com/en/

19. Node-RED, Available: https://nodered.org/

20. Cayenne LPP, Available:

https://community.mydevices.co

m/t/cayenne-lpp-2-0/7510

Fig. 8. MQTT message at the application server side.

application/5/device/0004a30b0021f8fe/rx
{"applicationID":"5","applicationName":"MARVI
N_APP", "deviceName":"MARVIN",
"devEUI":"0004a30b0021f8fe",
"rxInfo":[{"gatewayID":"b827ebxxxe795a26",
"name":"IOTGATEWAY","time":"2019-03-25T00:50:
46.229716Z", "rssi":-22,
"loRaSNR":8.8,"location":{"latitude":39.96756
,"longitude":-85.92969,"altitude":261}}],
"txInfo":{"frequency":905300000,"dr":0},"adr"
:true,"fCnt":0,"fPort":2,"data":"AQIbRANnANIF
aEA=", "object":{"analogInput":{"1":71.6},
"temperatureSensor":{"3":22},"humiditySensor"
:{"5":33}}}

gateway/B827EBFFFE------/tx
{"token":11094,"txInfo":{"mac":"B827EBFFF
E------","immediately":true,"frequency":9
15000000,"power":20,"dataRate":{"modulati
on":"LORA","spreadFactor":12,"bandwidth":
500},"codeRate":"4/5","iPol":false},"boar
d":0,"antenna":0},"phyPayload":"IMaBI8exY
8t1Kq0GgvaM/FM="}

Fig. 7. MQTT message at the gateway.

Fig. 6. Monitor outputs of communication status at the

gateway.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1S3, December 2019

295

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10551291S319/2019@BEIESP

DOI:10.35940/ijeat.A1055.1291S319

AUTHORS PROFILE

John J. Lee, Associate Professor, Department of

ECE, IUPUI, USA. He received his Ph.D. degree in

Electrical and Computer Engineering from the Georgia

Institute of Technology.

http://www.ece.iupui.edu/~johnlee/

 Youssef Souryal, a graduate student at Purdue School

of Engineering and Technology, Indianapolis. He

graduates in December 2020 with master’s degree.

Youssef is passionate about software engineering.

Darren Tam, Electrical engineer graduated from

NYU Tandon School of Engineering. His passion lies in

the energy and communication fields because he believes

that in the future, we will be able to live in a more energy

efficient and technologically connected society.

Dongsoo S. Kim, Associate Professor, Department of

ECE, IUPUI, USA. He received his Ph.D. degree in

Computer Science and Engineering from the University

of Minnesota. http://et.engr.iupui.edu/~dskim

Kyu Kang, Assistant Professor, Engineering

Technology, Construction Management, IUPUI, He

received his Ph.D. degree in Civil Engineering from the

Purdue University, https://et.iupui.edu/people/kyukang

Dan Koo, Associate Professor, Construction

Management program at IUPUI. He is a registered PE in

Civil Engineering and received a Ph. D. in Civil and

Environmental Engineering from Arizona State

University. https://et.iupui.edu/people/dankoo

http://www.ece.iupui.edu/~johnlee/
http://et.engr.iupui.edu/~dskim
https://et.iupui.edu/people/kyukang
https://et.iupui.edu/people/dankoo

