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Abstract

Total economic shutdown being detrimental to a nation’s prosperity, most governments
are reopening businesses and schools with the requirement of frequent and mass-scale testing
to determine each person’s status of COVID-19 infection. Obviously, the costs add up
quickly and impose a heavy economic toll. As a way out of this dilemma, employers and
administrators should consider seriously the application of group testing methodologies.

Group testing methods check samples in batches, rather than individually, for the
presence of a disease. If the group tests positive, then the group is investigated further to
identify who all are positive. On the other hand, if the group tests negative, not just once
but also a second or a third time, then everyone within the group is cleared for activity.
With a carefully chosen protocol, group testing costs can be 30-80% lower than those of
individual testing, with the savings being higher when prevalence of the disease is lower.
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1. Introduction

Originating in Wuhan Province of China in November 2019, the novel corona virus has
inflicted the SARS COVID-19 pandemic across the globe. In an immediate attempt to curtail
the spread of the virus in the absence of a vaccine, many governments imposed lock-downs
on their respective jurisdictions. However, the economies of many states, provinces and
countries have been severely damaged because of lock-downs and stay-at-home orders. To
prevent a total collapse of the economy, many governments are forced to reopen businesses
and schools, notwithstanding the risk of spreading the disease. Therefore, it has become
imperative to isolate people who have the disease and quarantine people who test positive
for the virus. Consequently, frequent and mass-scale testing for COVID-19 infection has
become a necessary precondition for restarting the economy. See, for example, The White
House, et al. (2020) report.

The cost of testing has become burdensome on the payers (individuals, employers, ad-
ministrators, insurance companies and governments). Also, testing capacity is often limited.
In the midst of this dire situation, the celebrated group testing methodologies can offer a
valuable relief without compromising safety.
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Even though little in this paper is theoretically a new finding, except perhaps the
extension to imperfect tests, the importance and necessity of the day prompt us to review this
methodology anew. A recent paper by Aprahamian et al. (2017) mentions that it is precisely
a lack of understanding of how an optimal pooling scheme should be designed to maximize
classification accuracy under a budget constraint that hampers screening efforts. Perhaps a
wide-spread familiarity with the techniques will not only reduce the cost of administering
the tests, but also put suspicious minds at rest knowing that safety is not compromised in
an attempt to reduce cost. In fact, Conger (2020) reports how pooling patient samples for
COVID-19 testing helped Stanford researchers track the early spread of the virus in the Bay
Area prior to the last week of February, 2020.

Section 2 gives a brief history of the group testing methodologies (GTMs). Section 3
determines the optimal group size for a perfect test and computes percentage savings for
various choices of group sizes. Section 4 studies the more realistic case of imperfect tests,
evaluating sensitivity and specificity of a group’s sample as functions of those same quantities
for an individual’s sample and prevalence of disease, and determines the optimal size and
cost savings. Section 5 gives some advancements in Group Testing Designs (GTDs) and
GTMs that shed light on identifying a few defective items intermixed with many good items.
Section 6 draws some practical implications of GTMs in the COVID-19 context.

All figures are drawn using the freeware R; and the codes are given in the Annexure.

2. A Brief History of Group Testing Methodology Used in Medicine

We borrow the history of group testing from Ding-Zhu and Hwang (1993). GTMs
have had a humble start in Dorfman (1943). During the World War II, the United States
Public Health Service and the Selective Service carried out a large-scale project to isolate all
syphilitic men called up for induction. Testing an individual for syphilis involved drawing a
blood sample and then analyzing the sample to determine the presence or absence of syphilis.
At the time, performing this test was expensive, and testing every soldier individually would
have been very expensive and inefficient.

Here is how the methodology works: Suppose that there are N soldiers. Testing each
individual separately requires N tests, which is a reasonable approach if a large proportion of
the people are infected. However, if a small proportion of men are infected, there is a much
more efficient testing scheme: Split the soldiers into groups, and in each group combine the
blood samples together. If one or more of the soldiers in this group has syphilis, then the
test will be positive; and each member of the group has to be tested individually to find
which soldier(s) are syphilitic. On the other hand, if the test is negative all members of the
group are declared free of syphilis using only one test.

Sterrett (1957) improved Dorfman’s procedure: Perform individual testing on a positive
group sequentially; stop as soon as a defective is identified; then test the remaining items
in the group, as a smaller group, since it is likely that none of them are defective. The first
thorough treatment of group testing was given by Sobel and Groll (1959) who described five
new procedures, including when prevalence is unknown. For the most optimal procedure,
they provided an explicit formula for the expected number of tests it would use. Ungar
(1960) proved that the range of prevalence of disease (or proportion of defective items),
for which there is a group testing plan with expected number of perfect tests less than the
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numer of items, is [0, (3−
√

5)/2) ≈ [0, .382). Hwang (1972) detects all defective members in
a population by group testing. Sobel and Elashoff (1975) used group testing for estimation.

The above methods work under the simplistic assumption that testing is error-free.
However, in reality, most often a diagnostic test is “imperfect” in the sense that there is
some chance that the result of a test is erroneous—exhibiting either false positive (that is,
the test comes out positive when the sample contains no defectives) or false negative (that
is, the test is negative even though the sample contains defectives).

As with most diagnostic tests, COVID-19 tests are imperfect. In particular, Yang et
al. (2020) suggests that the sensitivity of polymerase chain reaction (PCR) tests on samples
collected by nasal swab is around 70%, implying that about 30% of infected patients will
return a false negative test result. Much of this error is caused by factors related to sample
collection (for example, the patient does not have high enough viral-load levels at the time
of collection or the swab did not reach the right place) rather than failures of the PCR test
itself. But the danger of a false negative in this situation is unacceptably high: If someone
believes he or she is free of disease contrary to truth, they risk spreading the disease to other
employees, customers or students—precisely what the testing is trying to prevent!

GTMs have seen a lot of advancements during the last 40 years. Applications abound
in both industrial product testing and in medical diagnostic tests. We completely skip the
industrial applications (referring readers to Wikipedia, n. d.). In Section 5 of this paper,
we mention some important advancements on GTDs and GTMs. Subsection 5.1 illustrates
use of one such advancement. Here, we highlight a few references on medical diagnostics.
Keeler E. and Berwick D. (1976) presents models of how test performance is degraded by
pooling, and of the financial savings that pooling allows. They demonstrate the method
of computing optimal pool size on a screening test and on a test for gastrin. Schisterman
and Vexler (2008) examines the effect of different sampling strategies of biospecimens for
exposure assessment that cannot be detected below a detection threshold. They compare
use of pooled samples to a randomly selected sample from a cohort to evaluate the efficiency
of parameter estimates.

To apply these GTMs, one must ensure that the following assumptions hold: (i) indi-
vidual samples can be combined into groups, (ii) group tests have comparable accuracy to
individual tests, and (iii) results of group tests can be correctly interpreted.

3. Optimal Group Size and Savings: Perfect Test

Consider first the simpler case of group testing with a perfect test. We explain the re-
lationship among group sizes, number of tests and infection rates. Suppose that an employer
splits up N workers into groups of equal size g and tests each group (with one or more group
tests) in the first stage. In the second stage, all workers who belong to groups that tested
positive (at least once) are subjected to individual testing, as in Dorfman (1943).

Extensions of the above simple protocol is not too hard: One can apply this framework
to strategies with more than two stages. For example, lower-prevalence regions can afford
to test larger pools and carry out multiple pooled testing rounds before beginning individ-
ualized testing. Moreover, employers can learn the actual prevalence over time based on
the prevalence level revealed in earlier rounds of testing through statistical predictions. If
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prevalence is higher or lower than anticipated, pool size can be adjusted in the next round.

Here, we also assume that workers are homogeneous in their risk of testing positive.
But the method extends to heterogeneous population: The employer can simply stratify
its workforce into subgroups by risk, and solve the test-minimization problem on each sub-
population separately using a smaller group size for a high risk stratum and a larger group
size for a low risk stratum. We leave these extensions to the interested readers, and focus
on a homogeneous population of employees tested in two stages—group and individual.

Suppose that the prevalence of active infection in the workforce is θ, and it is known
to the employer. (Even if θ is unknown, the savings might decrease, but still there will
be considerable savings as long as θ is estimated reasonably well.) Suppose also that N
employees are split into N/g groups of size g each. Then the probability that a pool of g
workers contains at least one infected member is θg = 1 − (1 − θ)g. The expected number
of groups testing positive is given by θgN/g. All g members of these COVID-19 positive
pools have to be tested individually. Therefore, the expected number of workers receiving
follow-up tests will be θgN . Hence, the total number of tests will be

N

g
+Nθg = N

{
1
g

+ 1− (1− θ)g
}

(1)

On the other hand, an individual testing protocol requires exactly N tests.

3.1. Minimize the number of tests

To compare the pooled testing protocol versus the individual testing, it suffices to
minimize the number of test per worker less one, or to solve the minimization problem:

min
1≤g≤N

{
1
g
− (1− θ)g

}

Using calculus, the argmin may be obtained by the solving

g2(1− θ)g = [− ln(1− θ)]−1

and then taking the largest integer no more than the solution, since g is a whole number
(because people are indivisible). Alternatively, we can compare a contemplated g ≥ 3 against
the previous value (g− 1); and we prefer g over (g− 1) if and only if g(g− 1)θ(1− θ)g−1 < 1.
If this condition holds, we increase g by one and check this condition again; otherwise, we
stop and declare the previous g as optimal. Hence, for a given prevalence θ, the optimal
group size is given by

g∗(θ) = max{g, 1 ≤ g ≤ N : i(i− 1)θ(1− θ)i−1 < 1, for all i = 3, 4, . . . , g} (2)

See the Annexure for the R codes to compute g∗. Indeed, the optimal g∗ is a non-increasing
step function of θ. For example, g∗(0.05) = 5, g∗(0.02) = 8, g∗(0.01) = 11, g∗(0.005) = 16,
g∗(0.002) = 24, g∗(0.001) = 32. See more details in Figure 1. Of course, aligning with our
intuition, we have g∗(0+) = limθ→0+ g(θ) = N and g∗(1−) = limθ→1− g(θ) = 1.
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Figure 1: For a perfect test, the optimal group size g∗(θ)

Alternatively, solving the dual problem, one can determine the range of values of θ for
which a given group size g is optimal. For instance, g = 4 is optimal for θ ∈ (.0655, .1235),
g = 5 is optimal for θ ∈ (.0415, 0.0655), etc. Again, more details are in Figure 1. Thus,
oftentimes an imprecise knowledge of θ does not significantly alter the optimal choice of g.

3.2. Maximize the percentage savings

For a perfect test, instead of N individual tests, a group testing protocol with a fixed
group size g requires fewer number of tests given by Eq. (1). Hence, a group testing protocol
achieves a percentage saving over the individual testing protocol given by

Savings (Perfect Test) =
(

(1− θ)g − 1
g

)
× 100% (3)

Clearly, savings are maximum when the optimal group size g∗(θ) is chosen; otherwise, savings
are reduced. See Figure 2 (and the R codes in the Annexure).

Figure 2: For a perfect test, the percentage savings for various group sizes:
optimum and fixed
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Caution: The group size must be chosen with careful consideration of the prevalence.
For otherwise, savings may be negative when group size is chosen far from the optimum. For
example, if prevalence is 12% then using the optimum group size g∗ = 4, given by Eq. (2),
the savings would be about 35%, using Eq. (3). However, if group size is (incorrectly) set
at 32, then the savings would be −1.45%.

To illustrate the use of Figure 2, employers can reduce the number of tests by using
groups of 4 workers, so long as prevalence is under 25 percent. Employers who know the
prevalence with higher precision can further reduce the number of tests by choosing larger
group sizes. But if employers underestimate the true prevalence rate and use larger group
sizes than warranted, then the number of tests will increase.

4. Determining Group Size: Imperfect Test

The best COVID-19 test available to date is still imperfect. Let the sensitivity of the
test be τ =Pr{+|D}, the probability that a person with the disease (D) will test positive.
Then (1 − τ) is the probability of a false negative. Likewise, let the specificity of the test
be η =Pr{−|N}, the probability that a person with no disease (N) will test negative. Then
(1− η) is the probability of a false positive. Assume that the sensitivity and the specificity
remain the same whether we are testing a nasal swab of an individual or the combined swabs
of the group (of any size). As mentioned earlier, PCR test for COVID-19 infection has
sensitivity 0.70 and specificity 0.99.

4.1. Specificity of group testing

Suppose that a person has no COVID-19 infection. The group’s test will be negative
because of two disjoint and exhaustive cases: (1) all other (g − 1) group members are also
negative and the group tests negative (which is a true negative); (2) not all group members
are negative, but the group’s test comes out negative (which is a false negative). Writing
a = (1 − θ)g−1, the probability that the group’s test is negative, obtained by adding the
probabilities of true negative and false negative, is

a η + (1− a)(1− τ) = 1− τ + a(η + τ − 1) (4)

Similarly, the probability that the group’s test will be positive, obtained by adding the
probabilities of false positive and the true positive, is

a (1− η) + (1− a)τ = τ − a(η + τ − 1) (5)

which is one minus the probability that the group’s test is negative, as it should be.

In this case of imperfect test, whenever the group tests negative, no individual tests
are run: All individuals are declared negative. However, if the group tests positive, the
individual without disease must get a negative result during the second-stage individual
testing in order to be declared disease-free. Note that the specificity of the group testing is
the same as the probability that the person without the disease will be declared negative
after passing through both stages of the group testing protocol. As such, using Eqs. (4) and
(5), the specificity of the group testing is given by

1− τ + a(η + τ − 1) + [τ − a(η + τ − 1)]η = 1− (1− η)[(1− a)τ + a(1− τ)] > η (6)
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since the factor within square brackets on the right hand side of Eq. (6) is less than one.
Thus, a group testing protocol increases specificity compared to individual testing. This
reduces the probability of false positive results—a happy achievement. However, as we shall
see in the next Subsection, it comes at the cost of increasing the probability of false negative
results, which is highly risky in the COVID-19 application.

4.2. Sensitivity of group testing

A person with disease exhibits a positive result if and only if the group tests positive
and so does the individual. Hence, The probability that a person with disease exhibits a
positive result is τ 2, which is less than τ . This is a cause for concern, since the probability
of false negative, 1− τ 2, is quite high.

A possible remedy is to run a follow-up group testing when the first group test is
negative. Then the sensitivity of the group testing protocol, with two group-tests performed
sequentially and if either group-test is positive then testing all group members individually,
is the probability that a patient with disease shows a positive test result, and is given by

τ 2 + (1− τ)τ 2 = τ 2[2− τ ] > τ 2 (7)

For COVID-19 test, with τ = .7, a single group test has sensitivity τ 2 = .49; but a
second follow-up group testing protocol has an overall group-test sensitivity τ 2(2−τ) = .637,
which is tolerable. If a third follow-up group testing is used, then the sensitivity further rises
to τ 2(3 − 3τ + τ 2) = .681. Of course, while multiple follow-up group testing will increase
sensitivity (though it will never exceed τ), it will also reduce savings. Therefore, let us settle
on the protocol of at most two group testings before the group is found to be either positive
(at least once) or declared to be negative. For this protocol, the sensitivity is given by the
left hand side of Eq. (7). We leave it to the reader to study the group testing protocol that
allows at most three group testings.

Suppose that a group has at least one COVID-19 patient, which happens with proba-
bility θg = 1− (1− θ)g. Following the “two-group-testing protocol,” the group’s test will be
positive with probability

1− (1− τ)2 = τ(2− τ) (8)
Similarly, if a group has no COVID-19 patient, which happens with probability (1− θ)g, the
probability that this group’s test will be positive (falsely) is

1− η2 (9)

4.3. Minimize the number of tests

For the two-group-testing protocol, using Eqs. (8) and (9), the number of tests per
worker is 2/g + [θgτ(2− τ) + (1− θ)g(1− η2)], which simplifies to

2
g

+ τ(2− τ)− (1− θ)g[τ(2− τ) + η2 − 1] (10)

Consequently, to determine the optimum group size we may drop the constant τ(2− τ) from
Eq. (10) and solve the minimization problem:

min
1≤g≤N

{
2
g
− (1− θ)g[η2 + τ(2− τ)− 1]

}
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Analogously to the method of solution in case of a perfect test, here in the imperfect
test case with two-group-testing protocol, given θ, the optimal group size g#(θ) is the largest
g such that

i(i− 1)θ(1− θ)i−1 <
2

η2 + τ(2− τ)− 1 , for all i = 3, 4, . . . , g (11)

The R codes to compute g# are given in the Annexure. Note that the optimal g# is a non-
increasing step function of θ. For example, g#(0.05) = 10, g#(0.02) = 16, g#(0.01) = 23,
g#(0.005) = 33. See more details in Figure 3, where the thick (black) curve shows g# and
the thinner (green) curve shows g∗ already depicted in Figure 1 corresponding to the perfect
test and repeated here for easy comparison. The optimal group size in the imperfect test
case, with the two-group-testing protocol, is about 40–80% larger than the optimal group
size in the perfect test case.

Figure 3: For an imperfect test, the optimal group size g#(θ) is shown by a thick,
black curve. The thin, green curve shows g∗ for the perfect test as in Figure 1

4.4. Maximize the percentage savings

For an imperfect test, with the two-group-testing protocol and fixed group size g, the
percentage savings is given by

Savings (ImperfectTest) =
(

[η2 + τ(2− τ)− 1](1− θ)g − 2
g

)
× 100% (12)

Once again, the percentage savings is maximum when the optimal group size g#(θ) is chosen;
otherwise, savings is reduced as the group size deviates from the optimum size. See details
in Figure 4 (and the R codes in the Annexure).

As it happened in the perfect case, so also in the imperfect case, employers can reduce
the number of tests by using groups of 8 workers, so long as prevalence is under 20 percent.
Employers who know the prevalence more precisely can further reduce the number of tests
by choosing larger group sizes. But if employers underestimate the true prevalence rate and
choose larger group sizes, then the number of tests will increase.
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Figure 4: For an imperfect test, the percentage savings for various group sizes:
optimum and fixed

5. Further Improvements in Group Testing Methodologies

As mentioned in Section 2, GTMs have undergone tremendous advancement during
the last 40 years. We mention some of these results that focus on identifying a few defective
items from among many good items, since that is the situation we find ourselves in when
a group tests positive in the first-stage. We hope this short review of the GTD research
landscape will inspire other researchers pursue this fascinating field of study.

Bush et al. (1984) introduced a new class of combinatorial designs with completeness
property on t symbols, and used them in group testing to separate defective items from good
ones using fewer number of tests than items. In their language: “if a large population of v
items has exactly 1 bad item, it can be detected in b tests, where b is only a very tiny fraction
of v.” Weideman and Raghavarao (1987 a) carried out a systematic study of non-adaptive
hypergeometric GTDs for identifying two defectives items from among n, obtaining bounds
for n, given the number of tests. Weideman and Raghavarao (1987 b) extended the work to
identifying at most two defective items.

Das and Roy Choudhury (1987) provides simple methods of forming a small number
of groups out of a large number of individuals so that the group test results uniquely (and
easily) determine all defective individuals. The methods consist of first encoding suitably
all individuals and then forming the groups by using certain properties of the encoders.
Hwang and Sos (1987) mentions that even though adaptive or sequential designs (which
keep constructing new groups based on the results of previous groups) typically outperform
non-adaptive combinatorial designs (which declare the groups at the outset), with the advent
of parallel processing, the time-saving feature of non-adaptive designs remains attractive.

Whereas Ding-Zhu and Hwang (1993) develops the conventional disjunct search model,
D’yachkov et al. (2001) discusses two non-standard models of nonadaptive combinatorial
search for a small number of defective elements contained in a finite population in the
presence of inhibitors. Hung and Swallow (1999) discusses the robustness of group testing for
estimating proportions when the underlying assumptions of no testing errors and independent
individuals are violated. Adhikari, Ghosh and Sinha (2001) considered a multi-component
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system which can be tested even though the components cannot be tested separately. For
a five-component system, they utilized Taguchi’s L16 orthogonal array design to identify
defective components and to estimate the proportion of defectives. They also designed a
sequential experiment which reduced the number of tests from 16 to 12.

Du and Hwang (2006) surveys both sequential pooling designs and nonadaptive group
testing. Rao, Rao and Sinha (2006) obtained improved bounds on the number of group
tests necessary for both adaptive and nonadaptive GTDs. They established that when a
group of 2n items have at most two defective items, any nonadaptive GTD needs at least
2n group tests for identifying all defective items, and the optimal nonadaptive GTDs can
be constructed using generalized Petersen graphs. In the same context, they presented an
adaptive multistage GTD with a maximum of 2n group tests, and constructed a family
of two-stage adaptive GTDs. Rao, Sinha and Rao (2013) gives a comprehensive review
of both adaptive and non-adaptive GTDs, exposing hidden combinatorial and probabilistic
challenges and offering a storehouse of unsolved problems.

We leave to the reader to apply these advanced GTDs to the COVID-19 detection
problem. We describe below a situation where a group that tested positive in the first-stage
is subjected to another group testing before conducting individual tests.

5.1. A second-stage group testing

According to our proposed two-group-testing protocol, if two successive group tests are
both negative, we declare the entire group negative. But when the first or the second group-
test turns out positive, then we test every member of the group individually. As mentioned
in Section 3, if the group size is big (say, bigger than 10), it is more efficient to apply GTMs
on this group, before moving on to individual testing, and harvest additional savings.

Suppose that a university estimated the prevalence of COVID-19 among its 25,000
students, faculty and staff members to be very low, say 0.1% or 0.001, and accordingly chose
g = 49 (using Eq. (11)). The number of infected individuals in each group of 49 has an
approximate Poisson(0.049) distribution. Hence, about 25 groups are likely to test positive;
and within each group that tests positive, with a very high probability (about .9757) exactly
one member is positive, with a low probability (about .0239) two members are positive, and
with a negligible probability (about .0004) more than two members are positive.

Therefore, instead of testing individually every member of a positively tested group,
as our proposed first-stage two-group-test protocol recommends, the employer can update
the prevalence (for each positively tested group) to be 1/25 = .04, or more conservatively to
be 2/25 = .08, and adopt a second-stage group testing with g = 7 (again using Eq. (11) or
Figure 3). Then with a high probability (.9757) it will take 13 group tests to identify one
positive subgroup, or with a low probability (.0239) it will take 12 group tests to identify
two positive subgroups, or with a negligible probability (.0004) it will take at most 11 group
tests to identify more than two positive subgroups.

It may not be worth applying the same logic to the one (or two or three) subgroups
of size 7 that tested positive during the second-stage group testing because an individual’s
nasal swab specimen can be divided into about four or five sub-specimens while still retaining
tractability of COVID-19 infection. It will be best to simply apply an individual test on every
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member of the latest positively tested subgroup using the fifth sub-specimen, if any, or collect
fresh new specimens from them. Thus, overall the 49 individual tests are reduced on average
to about .9757 ∗ (13 + 7) + .0239 ∗ (12 + 2 ∗ 7) + .0004 ∗ (11 + 3 ∗ 7) = 20.15 tests, achieving
a 59% reduction on costs after first-stage testing.

To summarize, the first stage two-group-test protocol requires about 2 ∗ d25000/49e −
25 = 997 tests. Thereafter, (i) a second stage individual testing would involve 25∗49 = 1225
tests, for a total of 2222 tests. But (ii) a second stage two-group-test followed by a third
stage individual testing would involve about 25 ∗ 20.15 = 504 tests. Thus, strategy (i)
saves 91% compared to testing all 25000 people individually, and strategy (ii) additionally
saves 721 tests, or 2.9%. Finally, strategy (ii), when compared to strategy (i), harvests a
721/2222 = 32.4% saving across all tests in all stages combined.

6. Implications of Group Testing for COVID-19 Detection

Economic shutdown causes a tremendous loss in GDP (gross domestic product). On
the other hand, reopening the economy necessitates frequent and mass-scale testing of all
employees. Although the latter cost is relatively smaller than the former cost, if employers
have to bear all the cost, then a cost effective way to carry out these tests is imperative.
Group testing, with a follow-up test for the group if the first group test is negative (or when
two group tests are negative), is a promising methodology to mitigate the challenge.

We have shown significant savings when prevalence is known with a high degree of
certainty. We have also demonstrated that the quality of diagnostics made using the group
testing protocol with two-group-tests is reasonably close to that of the individual testing
protocol. The quality can be increased slightly (at the cost of reducing savings) by us-
ing a three-group-tests protocol before declaring the group negative. Also, there can be a
second-stage group testing followed by individual testing to reap additional savings. Until
testing sensitivity improves, employers should implement group testing together with other
strategies, such as symptom monitoring and contact tracing.

Uncertainty about prevalence reduces savings only marginally if prevalence can be
estimated well. As more information becomes available to estimate prevalence better, higher
savings are anticipated. Also, as the sensitivity of the test improves—when researchers
discover better tests—the optimal group sizes will rise yielding additional savings. Moreover,
such better tests will reduce complexity of testing and discomfort to the employees. For
instance, saliva-based tests may become a suitable alternative to nasal swabs. Let us look
forward to those better days until a vaccine or a cure becomes available and affordable.
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ANNEXURE

Here we document the R codes used to draw Figures 1–4.

### Fig 1. Optimal group size (Perfect test)
gs=function(the){b=3

for (i in 4:40){
if (i*(i-1)*(1-the)ˆ(i-1)*the<1){b=i}
else{break} }

b}

theta=seq(0.001, .123, .001)
gsp=rep(3,123)
for (j in 1:123){gsp[j]=gs(j/1000)}
plot(theta, gsp, type=’s’, las=1, lwd=2, ylim=c(0,35),

ylab=’’, xlab=expression(theta),
main=’Optimal Group Size: Perfect Test’)

### Fig 2. Savings (Perfect test)
thet=c(theta,seq(.124,.400,.001))
save=100*c((1-theta)ˆgsp-1/gsp, (1-seq(.124,.400,.001))ˆ3-1/3)
plot(thet, save, type=’l’, las=1, lwd=2, ylim=c(-10,100),
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ylab=’%’, xlab=expression(theta),
main=’Percentage Savings: Perfect Test’)

lines(thet, 100*((1-thet)ˆ12-1/12), col=’green’)
lines(thet, 100*((1-thet)ˆ8-1/8), col=’red’)
lines(thet, 100*((1-thet)ˆ4-1/4), col=’blue’)
abline(c(0, .400),c(0,0), lty=2)
text(0.1, 8,’g=12’, col=’green’); text(0.09, 25,’g=8’, col=’red’)
text(0.20, 10,’g=4’, col=’blue’); text(0.25, 20,’g=g*’, col=’black’)

### Fig 3. Optimal group size (Imperfect test)
tau=.70; eta=.99;
(mult=etaˆ2+tau*(2-tau)-1)
gs=function(the){b=3

for (i in 6:80){
if (i*(i-1)*(1-the)ˆ(i-1)*the<2/mult){b=i}
else{break} }

b}

theta=seq(0.001, .190, .001)
gst=rep(6,190)
for (j in 1:190){gst[j]=gs(j/1000)}
plot(theta, gst, type=’s’, las=1, lwd=2, ylim=c(0,35),

ylab=’’, xlab=expression(theta),
main=’Optimal Group Size: Imperfect Test’,
sub=paste(’sensitivity =’, tau, ’ and specificity =’, eta) )

par(new=TRUE)
plot(theta[1:123], gsp, type=’s’, las=1, ylim=c(0,35),

xlab=’’, ylab=’’, xaxt=’n’, yaxt=’n’, lty=1, col=’green’)

### Fig 4. Savings (Imperfect test)
thet=c(theta,seq(.104,.190,.001))
save=100*c(1-tau*(2-tau)+(1-theta)ˆgst*mult-2/gst,

1-tau*(2-tau)+(1-seq(.104,.190,.001))ˆ6*mult-1/3)
plot(thet, save, type=’l’, las=1, lwd=2, ylim=c(-10,100),

ylab=’%’, xlab=expression(theta),
main=’Percentage Savings: Imperfect Test’,
sub=paste(’sensitivity =’, tau, ’ and specificity =’, eta) )

lines(thet, 100*(1-tau*(2-tau)+(1-thet)ˆ32*mult-1/16), col=’green’)
lines(thet, 100*(1-tau*(2-tau)+(1-thet)ˆ16*mult-1/8), col=’red’)
lines(thet, 100*(1-tau*(2-tau)+(1-thet)ˆ8*mult-1/4), col=’blue’)
abline(c(0, .200),c(0,0), lty=2)
text(0.05, 8,’g=32’, col=’green’); text(0.04, 30,’g=16’, col=’red’)
text(0.11, 13,’g=8’, col=’blue’); text(0.02, 80,’g=g*’, col=’black’)


