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Abstract 

This work rests on our recent report on the successful use of tissue nanotransfection (TNT) 

delivery of Ascl1, Brn2, and Myt1l (TNTABM) to directly convert skin fibroblasts into 

electrophysiologically active induced neuronal cells (iN) in vivo. Here we report that in addition 

to successful neurogenic conversion of cells, TNTABM caused neurotrophic enrichment of the skin 

stroma. Thus, we asked whether such neurotrophic milieu of the skin can be leveraged to rescue 

pre-existing nerve fibers under chronic diabetic conditions. Topical cutaneous TNTABM caused 

elevation of endogenous NGF and other co-regulated neurotrophic factors such as Nt3. TNTABM 

spared loss of cutaneous PGP9.5
+
 mature nerve fibers in db/db diabetic mice. This is the first

study demonstrating that under conditions of in vivo reprogramming, changes in the tissue 

microenvironment can be leveraged for therapeutic purposes such as the rescue of pre-existing 

nerve fibers from its predictable path of loss under conditions of diabetes. 

Key words:  diabetic peripheral neuropathy, nanochannel electroporation, tissue 

nanotransfection



The distal forms of diabetic peripheral neuropathy (DPN) are a characteristically symmetric, 

“stocking-glove” pattern of length-dependent polyneuropathies that develop upon persistent 

hyperglycemia 
1
. Prior approaches to support nerve fibers in DPN relied on pharmacologic 

therapies for correcting intracellular signaling pathways, biochemistry, and organelle functions 

of the neurons
2, 3

. However, such interventions have failed to proceed past phase II or III clinical 

trials mainly for lack of efficacy and/or adverse side-effects 
3
. Nerve growth factor (NGF) is 

abundantly produced by keratinocytes and is depleted at the onset of DPN 
4
. Withdrawal of NGF 

in vitro leads to distal axonal degeneration 
5
. Neurotrophic factor supplement, namely exogenous 

NGF injection, has been tested clinically as a prophylactic measure in DPN 
6
. Therapeutic 

administration of exogenous NGF alone has not proceeded through clinical trials because of 

barriers such as injection site pain, questionable efficacy, and potential need for other trophic 

factors to be co-administered 
4, 7

. Recently, we have reported a novel non-viral tissue 

nanotransfection technology (TNT) for in vivo reprogramming of the skin. TNT delivery of 

Ascl1, Brn2, and Myt1l (ABM) achieved direct conversion of skin fibroblasts to mature 

electrophysiologically active induced neuronal (iN) cells 
8
. In direct reprogramming therapeutics, 

the focus has been on the reprogrammed cells. In the present work, we turn our focus to the 

neurotrophic environment generated in response to in vivo reprogramming and ask whether such 

neurotrophic milieu of the skin can be leveraged to rescue pre-existing nerve fibers that are 

vulnerable to degeneration under chronic diabetic conditions.   



MATERIALS AND METHODS 

Mice 

All animal studies were performed in accordance with protocols approved by the Institutional 

Laboratory Animal Care and Use Committee of Indiana University. Mice were maintained under 

standard conditions at 22 + 2°C with 12-h light/dark cycles and access to food and water ad 

libitum.  

 

C57Bl/6 mice were purchased from Jackson laboratories. Lepr db/db mice homozygous 

(BKS.Cg-m+/+Lepr
db

/J, or db/db; stock no 000642) for spontaneous mutation of the leptin 

receptor (Lepr
db

) (aged 8–10 weeks) were purchased from Jackson Laboratory, Bar Harbor, ME.  

 

Cell culture  

Primary Mouse Embryonic fibroblasts (MEFs) were purchased from Millipore Sigma (PMEF-

HL-C). MEFs were grown in DMEM supplemented with 10% fetal bovine serum, 100 μg/ml 

streptomycin, 100 U/ml penicillin, 0.25 μg/ml amphotericin and 1x MEM Non-Essential Amino 

Acids (all from ThermoFisher Scientific). Cells were maintained at 37°C in 95% air and 5% CO2 

in a humidified atmosphere.  

 

Nanochannel electroporation for in vitro reprogramming 

For nanochannel electroporation (NEP) -, cells were directly grown on the apical surface of a 

Transwell membrane (Corning cat#3460) at a density of ~0.15-0.18 × 10
6 

cells/well in regular 

maintenance medium (DMEM as mentioned above). The cells were allowed to adhere and 

spread overnight before nanochannel electroporation (NEP) transfection 
9
. Following cell 



loading, the media in the apical chamber was replaced by PBS and the Transwell inserts were 

then mounted on a custom made gold electrode in direct contact with the plasmid solution. A 

counter-electrode was then immersed in the PBS of the apical chamber, and a square wave pulse 

(275 V, 35 ms duration pulse, 1–10 pulses) was applied across the electrodes using a Biorad 

Gene Pulser Xcell power supply. The PBS was replaced by fresh media immediately after, and 

the cells were then incubated overnight at 37 °C. Ascl1, Brn2, Myt1l (ABM) plasmids were mixed 

at a 2:1:1 molar ratio as described previously
9
.  

 

Induced neuron protocol 

Post-NEP, MEF’s were cultured on Poly-D-lysine hydrobromide (Millipore Sigma, US) coated 

glass coverslips or plates in regular maintenance media for 24h. After 24h, media was replaced 

with neuronal induction medium. Neuronal induction media was prepared by supplementing 

DMEM base media with 1x N2 supplement, 100 μg/ml streptomycin, 100 U/ml penicillin, 0.25 

μg/ml amphotericin, 1x MEM Non-Essential Amino Acids, and 10 ng/ml human bFGF as 

described previously
8, 9

. MEF cells transfected with ABM cDNA expression plasmids were 

differentiated for one, two or four weeks. 

 

Tissue nanotransfection for in vivo reprogramming 

For in vivo reprogramming, C57Bl/6 mice (8-10 weeks old) or db/db mice (27-week-old) were 

used for tissue nano-transfection (TNT) to deliver ABM (TNTABM). The TNT device was used as 

described previously 
8
. In brief, the dorsal area of skin to be used for transfection were depilated 

24h before TNT. The skin was then exfoliated to eliminate the dead/keratin cell layers to expose 

nucleated cells in epidermis. ABM plasmid cocktail (2:1:1 molar ratio) was loaded in the 



reservoir at a concentration of 0.05–0.1 μg μl−1. A gold-coated electrode (cathode) was 

immersed in the plasmid solution, and a 25G needle counter-electrode (anode) was inserted into 

the dermis juxtaposed to the TNT platform surface. Pulsed electrical stimulation (10 pulses, 250 

V in amplitude, duration of 10 ms per pulse) was then applied across the electrodes to 

nanoporate the exposed cell membranes and drive the plasmid cargo into the cells through the 

nanochannels. Unless otherwise specified, control specimens involved TNT treatments with 

mock plasmid solution 
8
.  After 24h of TNTABM, mouse skin samples (12mm punch biopsy) were 

collected in OCT. Histology of skin and mRNA expression in situ was performed on 10µm-thick 

sections. 

 

DNA plasmid preparation 

Mock (empty vector), Ascl1, Brn2, and Myt1l plasmids were prepared using a plasmid DNA 

purification kit (ZymoPURE II Plasmid Midiprep Kit,cat. no. D4201). DNA concentrations were 

obtained from Nanodrop 2000c Spectrophotemeter (Thermoscientific). Ascl1, Brn2, and Myt1l 

plasmids (backbone, pCAGGs) were constructed with GFP (Ascl1), RFP (Brn2), or CFP (Myt1l) 

by Applied Biological Materials Inc., Richmond, BC, Canada) as previously described
8
. 

pCAGEN (empty) was a gift from Connie Cepko (Addgene plasmid#11160). 

 

RNA isolation and real-time quantitative PCR for mRNA 

Total RNA was extracted by using the Total RNA Extraction and Purification Isolation Kit 

according to the manufacturer’s protocol (Norgen Biotek, Thorold, ON, Canada). For gene 

expression studies, total cDNA synthesis was achieved by using the SuperScript™ VILO™ 

cDNA Synthesis Kit (ThermoFisher Scientific). The abundance of mRNA for Ascl1, Brn2, Myt1l 



, Ngf, Bdnf, Nt3, Nt4/5 was quantified by real-time PCR by using SYBR Green-I as described 

previously
8
. Gapdh served as housekeeping control. The following primer sets were used:  

m_Gapdh F: 5′-ATGACCACAGTCCATGCCATCACT-3′ 

m_Gapdh R: 5′- TGTTGAAGTCGCAGGAGACAACCT-3′ 

m_Ascl1 F: 5’-CGA CGA GGG ATC CTA CGA C-3’ 

m_Ascl1 R: 5’-CTT CCT CTG CCC TCG AAC-3’ 

m_Brn2_F: 5’-GGT GGA GTT CAA GTC CAT CTA C-3’ 

m_Brn2_R: 5’-TGG CGT CCA CGT AGT AGT AG-3’ 

m_Myt1L_F: 5’-ATA CAA GAG CTG TTC AGC TGTC-3’ 

m_Myt1L_R: 5’- GTC GTG CAT ATT TGC CAC TG-3’ 

m_Ngf F: 5' - ACCAATAGCTGCCCGAGTGACA - 3' 

m_Ngf R: 5' - GAGAACTCCCCCATGTGGAAGACT - 3' 

m_Bdnf F: 5' - CGTGGGGAGCTGAGCGTGTG - 3' 

m_Bdnf R: 5' - GCCCCTGCAGCCTTCCTTGG - 3' 

m_Nt3 F: 5' - GCCCAAAGCAGAGGCACCCA - 3' 

m_Nt3 R: 5' - GCTACCACCGGGTTGCCCAC - 3' 

m_Nt4/5 F: 5' - AGTCTGCAGTCAACGCCCGC - 3' 

m_Nt4/5 R: 5' - TGCGACGCAGTGAGTGGCTG - 3' 

 

Immunocytochemistry (ICC) 

ICC was performed on mouse embryonic fibroblasts (MEF) nano-transfected with neuronal 

conversion factors ABM or mock plasmids as described previously
10, 11,

. In brief, cells were fixed 

with 4% formaldehyde for 15 min at room temperature, permeabilized with 0.1 % Triton X-100 



for 15 min followed by blocking in 10% normal goat serum for 1h at room temperature. After 

blocking, primary antibody treatment was performed followed by three washing steps of PBS. 

Secondary antibody was applied to visualize expression pattern of the MAP2 (Abcam, ab5392; 

1:1000), beta III tubulin (TuJ1) (Abcam, ab52623; 1:200, GeneTex GTX85469; 1:500) and 

Neurofilament 200 (Millipore Sigma N4142; 1: 200) proteins. The signal was visualized by 

subsequent incubation with appropriate fluorescence-tagged secondary antibodies (Alexa 488-

tagged α-rabbit, 1:200; Alexa 568-tagged α-chicken, 1:200). Fluorescent images were acquired 

using the FluoView FV1000 spectral confocal microscope and laser scanning confocal 

microscope (LSM 880, Zeiss)..  

 

Immunohistochemistry and microscopy 

Tissue immunostaining was carried out on 10 μm thick paraffin or cryosections of 12mm punch 

biopsy samples as described previously
8, 12-14

.  Immunostainings of beta III tubulin (TuJ1) 

(Abcam, ab52623; 1:100; GeneTex, Inc. GTX85469, 1:500), S100A4 (Abcam, ab41532; 1:200), 

Nerve Growth Factor-β (NGF) (Millipore Sigma, AB1526; 1:200), and Protein Gene Product 9.5 

(PGP9.5) (Millipore Sigma, AB1761; 1:200), were performed on paraffin and cryosections of 

skin samples using specific antibodies as indicated. In brief, OCT or paraffin embedded tissue 

was cryosectioned at 10 μm thick, fixed with cold acetone, blocked with 10% normal goat serum 

and incubated with specific antibodies. The signal was visualized by subsequent incubation with 

appropriate fluorescence-tagged secondary antibodies (Alexa 488-tagged α-rabbit, 1:200; Alexa 

488-tagged α-chicken, 1:200; Alexa 568-tagged α-rabbit, 1:200) and counter-stained with DAPI. 

Images were collected using the Axio Scan.Z1 slide scanner (Zeiss Microscopy) or laser 

scanning confocal microscope (Zeiss). Image analysis software Zen (Zeiss) was used to 



quantitate fluorescence intensity. Additionally, a manual cell count of fluorescent positive cells 

in a field of view (FOV) using the cell count module in Zen (Zeiss). For each image, three-six 

such FOVs were counted and data represented as percent positive. Colocalization was performed 

using Zen black software. 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

For cell culture experiments, NGF production was measured in culture media and normalized to 

total protein concentration measured from cell lysate 
10

. For skin tissue samples, protein was 

isolated from twenty 100µM thick sections. Tissue sections were collected in HBSS, washed 

with HBSS 3x times to remove OCT and resuspended in homogenization buffer [50mM Tris-Hcl 

pH7.5-8.0, 150mM NaCl, 1% Triton X-100, 0.5% Sodium deoxycholate, 10 μl of protease 

inhibitor cocktail (Sigma, St. Louis, MO) and 10 μl of PMSF (100 mM)]. The tissue was 

homogenized on ice three times for 30 s each with 5- to 10-s breaks with Pellet Pestle Motor 

(Kimble Chase, NJ), followed by sonication on ice three times for 10s each with 10-s breaks. 

The homogenate was centrifuged at 21,000g for 5 min at 4°C. The supernatants were collected 

and stored at −80°C until ELISA was performed. Bicinchoninic acid protein assay (Pierce, 

Rockford, IL) was performed according to the manufacturer's instructions to standardize NGF 

values per milligram of protein. NGF protein levels were determined using NGF Rapid ELISA 

kit (Biosensis Pty Ltd). 

 

RNA in situ hybridization (Fluorescent multiplex RNAscope) 

Skin sections (10 μm) were cut using a cryostat (Leica Microsystems) and mounted on 

Superfrost Plus Gold Glass Slides (Fisher Scientific, #22–035-813). Slides were subsequently 



stored at −80°C. Paired double-Z oligonucleotide probes were designed against target RNA 

using custom software. Probes against Ascl1 mRNA (313291-C2), Brn2 (460561-C3) and Myt1l 

(483401), as well as all other reagents for in-situ hybridization and DAPI labeling, were 

purchased from Advanced Cell Diagnostics (ACD, Newark, CA). The tissue pretreatment, 

hybridization, amplification, and detection were performed manually using RNAscope Multiplex 

Fluorescent Reagent v2 Kit according to manufacturer’s instructions. During RNAscope 

hybridization, positive probe (catalog #321811), negative probe (catalog #321831), and ABM 

probes were processed simultaneously. Fluorescent images were acquired using a FV3000 

Olympus microscope.   



RESULTS 

Delivery of ABM via nanochannel electroporation (NEPABM) (Fig 1A-B) led to conversion of 

MEF to iN cells 2 weeks (Fig 1C) and 4 weeks (Fig 1D) after transfection. Induced neuronal (iN) 

cells, as indicated by neurofilament 200
+
 staining, showed elevated Ngf at 4 weeks, (Fig. 1E). 

NGF production was induced in MEF culture media at 4 weeks post-NEPABM. Quantitative 

analysis of brain-derived neurotrophic factor (Bdnf), neurotrophin-3 (Nt3), and neurotrophin-4/5 

(Nt4/5) showed significant increase in the expression of Nt3 at 4 weeks post-NEPABM (Fig. 1F-

G). 

 

Successful topical delivery of ABM via TNTABM to the dorsal murine skin (Fig 2A) was validated 

in situ (Fig 2B) and expression of Ascl1, Brn2, and Myt1l (Fig. 2C). The iN cells, visualized in 

early phase as TuJ1
+
, were significantly abundant in the dermis at 4 weeks post-TNTABM (Fig. 

2D-E). TuJ1
+
 iN cells co-expressed fibroblast-specific protein (FSP) marking that these iN cells 

were of fibroblasts origin. (Fig. 2F-G). 

 

TNTABM enhanced Ngf expression in murine skin 1-week post-TNTABM followed by enhanced 

NGF production at 4 weeks post-TNTABM (Fig. 3A-B). Elevated NGF expression was localized 

in the epidermis (Fig. 3C-D). Quantitative analysis of neurotrophic factor genes such as Bdnf, 

Nt3, and Nt4/5 showed significant Nt3 expression at 1-week post-TNTABM (Fig. 3E). 

 

Topical TNTABM on dorsal skin of db/db mice showed increased TuJ1
+
 cells in the dermis at 4 

weeks (Fig. 4A-B). Abundance of NGF in the transfected tissue was significantly increased at 4 



weeks post-TNTABM (Fig. 4C-D). Elevated production of NGF by the epidermis was sustained 

for up to 9 weeks post-TNTABM in mice. These db/db mice were 36 weeks old at that time when 

the onset of neuropathy is well documented (Fig. 4F-G). Mature neurons as measured by 

PGP9.5
+
 staining was significantly higher in number compared to TNTmock (Fig. 4H-I).  



DISCUSSION 

In vivo reprogramming often relies on implantation of limited number of cells reprogrammed in 

vitro 
15, 16

. Such approach is often in conflict with the host immune system 
17, 18

. Topical TNT 

mediated in vivo reprogramming offers the advantage that cells are converted within the live 

body under immune surveillance 
8
. Should successful cell conversion be achieved in vivo, it may 

be safely assumed that such reprogramming happened only after successful negotiation with the 

local immune system. Thus, such process of in vivo cell reprogramming is more likely to 

generate sustainable results with translational significance.  

 

Reprogramming of cells in vivo is likely to release factors that also affect non-reprogrammed 

cells within the same microenvironment by paracrine mechanisms. The product of in vivo 

reprogramming are successfully converted cells and a modified tissue microenvironment that is 

supportive of the survival and functionality of the converted cells. Our previous work has shown 

that iN generated by TNTABM in the adult skin persist long-term and acquire electrophysiological 

activity 
8
. This successful advancement from conversion to maturation of the neurons provided 

us the impetus to test the hypothesis that in response to TNTABM the skin microenvironment 

acquires neurotrophic properties. In this work, TuJ1
+
 neural cells, produced in response to 

TNTABM, co-localized with FSP
+
 cells indicating fibroblast origin of iN as established previously 

8
. An interesting finding of this work is that the skin stroma enriches in NGF and Nt3 expression. 

Discrepant timeline of the induction of NGF and Nt3 under in vitro condition may be explained 

by differences in experimental conditions such as complexity of stroma and blood borne factors. 

Delayed induction of NGF and NT3 expression was observed in aged diabetic mice indicative of 

barriers to successful neurogenic reprogramming under conditions of diabetes.  



 

Clinical assessment of DPN include sensory tests, nerve conduction velocity tests, or nerve fiber 

enumeration in skin biopsies by protein gene product 9.5 (PGP9.5) immunostaining
1
. 

Enumeration of PGP9.5
+
 peptidergic and non-peptidergic intraepidermal nerve fibers (IENF) is 

increasingly recognized as the “gold standard” for quantitative assessment for small nerve loss in 

DPN 
19, 20

. These early structural changes have been established in db/db mice 
21

. In this work, 

topical cutaneous TNTABM in db/db mice induced elevated NGF production for up to 9 weeks. 

Such elevated cutaneous NGF was associated with higher abundance of PGP9.5
+
 mature nerve 

fiber. It is well known that in db/db, cutaneous PGP9.5
+
 mature nerve fibers markedly 

diminished at this age
20

. Thus, in response to topical cutaneous TNTABM, elevation of 

endogenous NGF and other co-regulated neurotrophic factors are effective in sparing loss of 

cutaneous PGP9.5
+
 mature nerve fibers in diabetes. Taken together, this is the first study 

demonstrating that under conditions of in vivo reprogramming, changes in the tissue 

microenvironment can be leveraged for therapeutic purposes such as the rescue of pre-existing 

nerve fibers from its predictable path of loss under conditions of diabetes.   



FIGURE LEGENDS 

Figure 1. NEPABM transfection induced neurotrophic factors in MEF cells. (A) Schematic 

diagram of NEP. (B) Delivery of Ascl1, Brn2 and Myt1l in MEF cells by NEP. Phenotypic 

characterization of induced neuron-like cells 2 weeks post-NEP (C) or 4 weeks post-NEP (D). 

Molecular markers are indicated on the top of each panel. Scale, 50µM. (E) Ngf expression at 

weeks 1 and 4 post-NEP. NGF ELISA from differentiated MEF media at 4 weeks post-NEP 

(n=10). RT-qPCR analysis of Neurotrophin mRNA at (F) 1 week (n=4) and (G) 4 weeks (n=6) 

post-NEP. Data expressed as mean ± SEM, *p < 0.05. 

 

Figure 2. TNTABM into the dorsal skin of C57Bl/6 mice resulted in stromal reprogramming. 

(A) Schematic diagram of TNT. (B) Confocal microscopic images showing three-plex in situ 

hybridization of Ascl1, Brn2, Myt1l, counterstained with DAPI. (C) RT–qPCR analysis of ABM 

gene expression in skin 24h post-TNT. (n = 4), (D) Immunostaining showed TuJ1 fibers in skin. 

White dashed lines indicate epidermal and dermal junction. (E) Quantification of TuJ1
+
 fiber 

length per mm epidermis length. (n = 6) (F) Confocal microscopic images of skin showing co-

localization (white) of FSP and TuJ1. (G) Quantification of TuJ1 and FSP positive cells per field 

of view. Data expressed as mean ± SEM (n = 3-4), *p < 0.05. 

 

Figure 3. TNTABM increased neurotrophic factor in skin of C57Bl/6 mice. (A) RT-qPCR 

analysis of Ngf (n = 6) (B) NGF expression quantified by ELISA (n = 8), *p < 0.01. (C-D) 

Quantification and confocal microscopic images showing NGF in epidermis (n = 4). White 

dashed lines indicate epidermal and dermal junction. (E) Bdnf, Nt3 or Nt4/Nt5 expression in skin. 

Data expressed as mean ± SEM (n = 6), *p < 0.05. 



Figure 4. TNTABM increased NGF production and PGP9.5
+
 nerve fibers in skin of db/db 

mice. (A) Immunostaining of TuJ1
+
 fibers in skin. (B) Quantitation of TuJ1

+
 fiber length per mm 

epidermis. (n = 6) (C) Tissue NGF was quantified by ELISA.  (n = 9,10), *p < 0.01. 

Immunostaining of NGF in epidermis 4 weeks (D) or 9 weeks (F) post-TNTABM. Quantification 

of the IHC images (E, 4 weeks & G, 9 weeks). (n = 5-6), *p < 0.05. (H) Immunostaining 

indicated increased number of PGP9.5
+
 fibers (white arrowheads) in skin. (I) Quantification of 

the number of PGP9.5
+
 fibers per mm epidermis length. Data are mean ±SE (n = 4), *p < 0.01. 

(J)  Isotype control and (K) no primary antibody yielded no signal. White dashed lines indicate 

epidermal and dermal junction.   
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Graphical Abstract: Text 

Tissue nanotransfection (TNT) based non-viral delivery of neurogenic reprograming factors to 

skin in vivo converted skin fibroblasts into induced neuronal cells (iN). At the same time stroma 

of the reprogramed skin site is enriched in neurotrophic factors to support iN survival and 

maturation. This neurotrophic enrichment of the skin stroma was leveraged to preserve pre-

existing cutaneous nerve fibers in the diabetic skin which is otherwise known to undergo a 

degenerative fate. This constitutes first evidence that the reprogramed tissue microenvironment, 

independent of the induced cell itself, can be of direct therapeutic value.  
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