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Abstract

Acute graft-versus-host disease (aGVHD) hinders the efficacy of allogeneic hematopoietic cell 

transplantation (HCT). Plasma levels of soluble ST2 (sST2) are elevated in human and murine 

aGVHD and correlated to type 1 T cells response. Membrane-bound ST2 (ST2) signals through 

the adapter protein MyD88. The role of MyD88 in T cells during aGVHD has yet to be elucidated. 

We found that knocking out MyD88 in the donor T cells protected against aGVHD independent of 

IL-1R and TLR4 signaling in two murine HCT models. This protection was entirely driven by 

MyD88−/− CD4 T cells. Transplanting donor MyD88−/− conventional T cells (Tcons) with WT or 

MyD88−/− regulatory T cells (Tregs) lowered aGVHD severity and mortality. Transcriptome 

analysis of sorted MyD88−/− CD4 T cells from the intestine ten days post-HCT showed lower 

levels of Il1rl1 (gene of ST2), Ifng, Csf2, Stat5, Batf, and Jak2. Transplanting donor ST2−/− Tcons 

with WT or ST2−/− Tregs showed a similar phenotype with what we observed when using donor 

MyD88−/− Tcons. Decreased ST2 was confirmed at the protein level with less secretion of sST2 

and more expression of ST2 compared to WT T cells. Our data suggests that Treg suppression 

from lack of MyD88 signaling in donor Tcons during alloreactivity uses the ST2 but not the IL-1R 

or TLR4 pathways, and ST2 represents a potential aGVHD therapeutic target sparing Tregs.

INTRODUCTION

Allogeneic HCT (HCT) is a validated curative therapy for patients with hematological 

malignancies and nonmalignant diseases. However, acute graft-versus-host disease 

(aGVHD) is a leading complication of HCT, restricting its effectiveness. Gastrointestinal 

damage from alloreactive T cells is the most correlated to aGVHD-related mortality (1, 2). 

Damage caused during aGVHD to the gastrointestinal tract leads to release of alarmins and 

products of commensal bacteria as well as production of pro-inflammatory cytokines (3, 4). 

To help mediate this response, many cells release decoy receptors that do not signal, one of 
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which is soluble ST2 (sST2) (5). Plasma levels of sST2 are elevated in human (6–13) and 

murine (14, 15) aGVHD and parallel type 1 T cell responses, which drive aGVHD (16).

During conditioning for HCT, systemic IL-33 levels are increased due to its release 

primarily by non-hematopoietic cells (17). This is followed by an increase of sST2 post-

HCT, mediated primarily by the donor T cells (14). We recently reported that ST2 blockade 

using a neutralizing anti-ST2 antibody can attenuate aGVHD by decreasing sST2 secreted 

by T cells while maintaining membrane-bound ST2 (ST2) signaling in T cells (14). Both 

sST2 and ST2 bind IL-33, with sST2 sequestering free IL-33, preventing signaling, and 

IL-33/ST2 signaling through the adapter protein myeloid differentiation primary response 

gene 88 (MyD88) (18). ST2 pathway activation helps drive type 2 responses (19) and 

enhance Treg immunosuppressive function (20–22), which both prevent aGVHD (15, 23, 

24). Indeed, ST2 blockade using a neutralizing anti-ST2 antibody during aGVHD increases 

systemic levels of IL-33, leading to more IL-33 availability for regulatory T cells (Tregs) 

(14). This suggests that there is a balance between IL-33, sST2-secreting T cells, and 

membrane-bound ST2 T cells that regulates inflammation during aGVHD.

The IL-1 receptor (IL-1R) superfamily and toll-like receptor (TLR) family, except TLR3, 

also signal through MyD88 (25, 26). MyD88 was first identified in antigen presenting cells 

(APCs) (27, 28). However, in a murine model, MyD88 signaling in host hematopoietic cells 

has been shown to be completely dispensable for aGVHD induction (29). In T cells MyD88 

is also expressed (28), but its function is less well understood. In CD4 T cells stimulated 

with ovalbumin or a peptide to the haplotype H2b, MyD88 deficiency decreases T cell 

proliferation and type 1 cytokine production through loss of IL-1 receptor (IL-1R) signaling, 

which is dependent on Tregs being present (30). In aGVHD loss of IL-1R signaling in donor 

T cells ameliorated disease (31). The role of MyD88 signaling in donor T cells during 

alloreactivity is not known. We hypothesized that loss of MyD88 in the donor T cells would 

alleviate aGVHD through IL-1R, TLR4, sST2, or a combination of these.

METHODS

Mice.

Boy/J (C57BL/6.Ptprca, H-2b, CD45.1) and C57BL/6 (H-2b, CD45.2) mice were purchased 

from the In Vivo Therapeutics Core at the Indiana University School of Medicine. BALB/c 

(H-2d, CD45.2) and C3H.SW (H-2b, CD45.2) were bred at the Indiana University School of 

Medicine. B6.B10ScN-Tlr4lps-del/JthJ (TLR4−/−) mice were purchased from Jackson 

Laboratory (Bar Harbor, ME). MyD88−/− mice provided by Dr. Steve Kunkel and 

(University of Michigan, Ann Arbor, MI), ST2−/− mice provided by Dr. Andrew McKenzie 

(University of Cambridge, Cambridge, UK), and IL-1R−/− mice provided by Dr. Travis Jerde 

(Indiana University Purdue University of Indianapolis, Indianapolis, IN) were backcrossed 

on a C57BL/6 background for at least 10 generations. C57BL/6 ST2−/−MyD88−/− mice were 

generated in house by crossing C57BL/6 ST2−/− and C57BL/6 MyD88−/−. Loss of MyD88 

and ST2 were verified by PCR. The Institutional Animal Care and Use Committee approved 

all animal protocols.
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aGVHD induction and assessment.

Mice underwent HCT as previously described (14). Briefly, in a major MHC-mismatched 

model (B6 → BALB/c), BALB/c recipient mice received 900 cGy of total body irradiation 

(137Cs as source) at day −1. In a miH-mismatched aGVHD model (B6 → C3H.SW), 

C3H.SW recipient mice received 1100 cGy of total body irradiation at day −1. Then, 

recipient mice were injected intravenously with WT B6 T cell–depleted (TCD) BM cells (5 

× 106) plus WT, MyD88−/−, IL-1R−/−, TLR4−/−, ST2−/−, or ST2−/−MyD88−/− splenic total T 

cells, or CD4+, CD8+ T cells (1 × 106 for BALB/c and 2 × 106 for C3H.SW, unless indicated 

otherwise) from either syngeneic or allogeneic donors at day 0. Splenic T cells from donor 

mice were enriched using the murine Pan T Cell Isolation Kit (Miltenyi Biotec, Auburn, 

CA), and TCD BM was prepared with CD90.2 Microbeads (Miltenyi). Purity of T cell 

isolation from spleen was confirmed via flow cytometry to be >97%. Depletion of T cells 

from BM was confirmed via flow cytometry to be <0.1%. For some experiments, donor T 

cells were first labeled with CFSE before injection. In adoptive transfer models, wild-type, 

MyD88−/− and ST2−/− B6 total donor T cells or Tregs were purified using the murine Pan T 

Cell Isolation Kit and murine CD4+CD25+ Regulatory T Cell Isolation Kit (Miltenyi). The 

mice were housed in sterilized microisolator cages and maintained on acidified water (pH 

<3) for 3 weeks. Survival was monitored daily and clinical GVHD scores were assessed 

weekly (14).

ELISA.

We measured concentrations of murine plasma IFN-γ using DuoSet Kit and sST2 using 

Quantikine Kit (R&D Systems, Minneapolis, MN) according to manufacturer’s protocols.

Isolation and sorting of intestinal CD4 T cells.

We prepared single-cell suspensions of mononuclear cells from small intestines as 

previously described (14). Briefly, small intestines were flushed with cold PBS to remove 

mucus and feces. The intestines were cut into <0.5 cm fragments and digested in 10 mL of 

DMEM containing 4% bovine serum albumin (Sigma-Aldrich, St. Louis, MO), 2 mg/mL 

collagenase type B (Roche, Indianapolis, IN), and 10 μg/mL DNase I (Roche) at 37°C with 

shaking (250rpm) for 90 minutes. The digested mixture was diluted with 30 mL DMEM, 

filtered through a 100 μm strainer, and centrifuged for 10 minutes at 850g. The cells were 

resuspended in 5 mL of 80% Percoll (GE Healthcare, Little Chalfont, United Kingdom) and 

overlaid with 8 mL of 40% Percoll. The cells were spun at 4°C for 20 minutes at 800g 
without braking. The interface, which contains the live mononuclear cells was collected and 

washed twice with PBS. Live CD4+ T cells (Fixed Viability Dye−CD90.2+CD4+; all from 

eBioscience, Waltham, MA) were stained with fluorescent antibodies and sorted on the BD 

FACSAria (BD Pharmingen, San Diego, CA).

Flow cytometry analysis.

All antibodies and reagents for flow cytometry were purchased from eBioscience, unless 

stated otherwise. Single cell suspensions were preincubated with purified anti-mouse CD16/

CD32 mAb for 10 to 20 min at 4°C to prevent nonspecific binding of antibodies. The cells 

were subsequently incubated for 30 min at 4°C with antibodies for surface staining. Fixable 
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viability dye (FVD) was used to distinguish live cells from dead cells. The FoxP3/

Transcription Factor Staining Buffer Set and the Fixation and Permeabilization Kit were 

used for intracellular transcription factor and cytokine staining. For cytokine staining, cells 

were restimulated with phorbol myristate acetate (PMA; 50 ng/ml), ionomycin (1 mg/ml; 

Sigma-Aldrich), and brefeldin A for 4 to 6 hours before any staining. Staining antibodies 

against mouse antigens included: anti-CD45.1, anti-CD45.2, anti-CD90.2, anti-CD4, anti-

CD8, anti-CD62L, anti-CD44, anti-Foxp3, anti-IL-4, anti-IFNγ, anti-IL-17, and anti-GM-

CSF.

Nanostring analysis.

Sorted intestinal CD4 T cells were prepared and analyzed as previously described (14). 

Briefly, sorted intestinal CD4+CD127+CD25− Tcons from either recipients of WT or 

MyD88−/− allogeneic donor T cells were directly lysed in RLT buffer (Qiagen, Hilden, 

Germany) on ice. Cell concentration for each sample was 2 × 103 cells/μL. Preparation of 

samples for analysis was then performed according to the Nanostring Technologies protocol 

for gene expression. Plates were run on the nCounter SPRINT ProfilerAnalysis System and 

the data analysis using nSolver 3.0. The nCounter Mouse Immunology Kit, which includes 

561 immunology-related mouse genes, was used in the study.

Quantitative RT-PCR.

Total RNA from sorted intestinal T cells (Fixed Viability Dye−CD3+, all from eBioscience), 

were isolated using the RNeasy Plus Mini Kit (Qiagen). Complementary DNA (cDNA) was 

prepared with the SuperScript VILO cDNA Synthesis Kit (Invitrogen, Carlsbad, CA). Using 

an ABI Prism7500HT (Applied Biosystems, Foster City, CA), quantitative real-time PCR 

was performed with the SYBR Green PCR mix. Thermocycler conditions included 2-min 

incubation at 50°C, then at 95°C for 10 min; this was followed by a two-step PCR program: 

95°C for 5 s and 60°C for 60 s for 40 cycles. β-Actin was used as an internal control to 

normalize for differences in the amount of total cDNA in each sample. The primer 

sequences were as follows: actin forward, 5′-CTCTGGCTCCTAGCACCATGAAGA-3′; 

actin reverse, 5′- GTAAAACGCAGCTCAGTAACAGTCCG-3′; mST2 forward, 5′-

AAGGCACACCATAAGGCTGA-3′; mST2 reverse, 5′-TCGTAGAGCTTGCCATCGTT-3′; 

sST2 forward, 5′-TCGAAATGAAAGTTCCAGCA-3′; sST2 reverse, 5′-

TGTGTGAGGGACACTCCTTAC-3′.

Western Blot.

Tcons, CD8+ T cells, and Tregs were isolated from WT B6 spleens using CD4 microbeads 

and CD8 microbeads (both from Miltenyi), respectively, following manufacturer’s protocols. 

Purities of CD4 and CD8 T cells after selection were >95%. Sorted cells were lysed in RIPA 

buffer (Pierce Biotechnology, Waltham, MA) with Pierce Phosphatase Inhibitor MiniTablets 

(Pierce Biotechnology) and Protease Inhibitor Cocktail Tablets (Roche). Samples were 

boiled, electrophoretically separated, and transferred on Immobilon-FL polyvinylidene 

difluoride membranes (MilliporeSigma, Burlington, MA). The blots were blocked with 

Odyssey Blocking Buffer (LI-COR Biosciences, Lincoln, NE) for 1 hour at room 

temperature and incubated with specific primary antibodies: rabbit MyD88 mAb (D80F5, 

Cell Signaling Technology, Danvers, MA) ST2 mAb (Dj8, MD bioproduct) and anti–β-actin 
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mAb (LI-COR), both at 4°C overnight. IRDye 800CW goat anti-rabbit (LI-COR) and IRDye 

680RD goat anti-mouse IgG polyclonal antibodies (LI-COR) were used as secondary 

detection antibodies for MyD88, ST2 and β-actin, respectively. Fluorescence from blots was 

then developed with the Odyssey CLx Imaging System (LI-COR) according to the 

manufacturer’s instructions.

Immunosuppression assays.

The suppressive capacities of WT and MyD88−/− Tregs were assessed with a CFSE 

inhibition assay as previously published (83). Briefly, CD25 depleted total T cells (Tcons) 

were isolated from WT or MyD88−/− mice splenocytes. Antigen presenting cells (APC) 

were isolated from WT mice splenocytes. Tcons were labeled with CFSE (Invitrogen) and 

plated together with WT or MyD88−/− Tregs at different ratios in the presence of anti-CD3 

(0.25 μg/ml) and APC. After 4 days, proliferation of Tcons was measured by flow 

cytometry.

Statistical Analysis.

Log-rank test was used for survival analysis. Differences between two groups were 

compared using 2-tailed unpaired t tests or Mann-Whitney U test. Bonferroni correction was 

used when comparing multiple groups. All statistical analyses were performed using 

GraphPad Prism, version 7.02. Data in graphs represent mean ± standard error of the mean 

(SEM). P values less than 0.05 were considered significant.

RESULTS

MyD88−/− T cells reduce aGVHD severity and mortality in multiple murine models

First, we tested whether loss of MyD88 affected normal splenic T cells in naïve mice. We 

found no difference in splenic T cell numbers; CD4/CD8 frequency; or naïve, memory, and 

effector frequencies (Fig. 1A). Ability to polarize toward Th1, Th2, or Th17 cells in vitro 
was also not affected by the absence of MyD88 as shown by IFN-γ, IL-4, or IL-17 

production, respectively (Fig. 1B). To explore the role of MyD88 signaling in the donor T 

cells in vivo following HCT, we used two clinically relevant murine allo-HCT models: a 

MHC-major mismatch model (MH) C57BL/6, H-2b → BALB/c, H-2d and a minor 

histocompatibility antigen mismatch (miH) model C57BL/6, H-2b → C3H.SW, H-2b, as 

shown in the upper panel of Fig.1C and 1D. In both models splenic T cells were isolated and 

bone marrow cells were depleted of T cells. In the MH model, C57BL/6 → BALB/c, mice 

receiving WT T cells quickly developed and succumbed to severe aGVHD (median survival 

time: 14 days). However, mice receiving MyD88−/− T cells had decreased aGVHD scores 

and mortality (median survival time: >30 days) compared to mice receiving WT T cells (Fig. 

1C). Using the miH model, C57BL/6 → C3H.SW, we observed a similar decrease in 

aGVHD mortality (median survival time: WT - 43 days; MyD88−/− - >60 days; Fig. 1D). 

These results show that signaling through MyD88 in the donor T cells is critical in the 

pathogenesis of aGVHD.
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Loss of IL-1R and TLR4 on T cells, both upstream of MyD88, does not alleviate aGVHD

To elucidate the mechanism as to why MyD88−/− donor T cells induce less severe aGVHD, 

we targeted upstream receptors of MyD88. The upstream receptors for MyD88 include the 

IL-1 receptor superfamily and the toll-like receptor (TLR) family, with the exception of 

TLR3 (25, 26). One group has shown that MyD88−/− CD4 T cells produce less IFN-γ and 

proliferate less than WT CD4 T cells after immunization and this was due to defective IL-1R 

signaling (30). Another group found that, in an aGVHD model, recipients of IL-1R−/− T 

cells survived longer than recipients of WT T cells (31). Thus, we next asked whether the 

phenotype observed using MyD88−/− donor T cells is mediated through IL-1R. In our 

models, we found no difference between groups in clinical score or survival from mice 

receiving WT or IL-1R−/− donor T cells in either the MH model (median survival time: WT 

- 14 days; IL-1R−/− - 28 days; Fig. 2A) or the miH model (median survival time: WT - 43 

days; IL-1R−/− - 39 days; Fig. 2B). Another group showed that recipients of TLR4−/− BM 

and T cells together reduced aGVHD severity compared to WT recipients through defective 

donor antigen presenting cells (APC) response, but did not test whether TLR4−/− T cell 

response compared to WT was also affected (32). Thus, we asked whether loss of TLR4 on 

the donor T cells could affect aGVHD severity and mortality. Recipients of TLR4−/− donor 

T cells both models did not reduce aGVHD severity and mortality (MH model median 

survival time: WT - 10 days; TLR4−/− - 9 days; Fig. 2C; miH model median survival time: 

WT - 18 days; TLR4−/− - 33 days; Fig. 2D). These data show that IL-1R and TLR4 signaling 

in donor T cells are not necessary for aGVHD induction.

Transplantation of donor MyD88−/− CD4 T cells, but not CD8 T cells, reduces aGVHD 
severity independent of intrinsic MyD88 signaling

MyD88 signaling in T cells has been characterized in both the CD4 and the CD8 

compartments (28, 30, 33, 34). However, the importance of MyD88 signaling in donor CD4 

T cells, CD8 T cells, and Tregs in the context of aGVHD has not been studied. CD4 T cons, 

CD8 T cells, and Tregs isolated from the spleen of naïve WT mice expressed MyD88, with 

CD4 T cons cells expressing approximately 3 times more MyD88 than CD8 T cells (Fig. 

3A). To determine if MyD88 in CD4 T cells, CD8 T cells, or both is important for aGVHD 

development, we isolated WT CD4, WT CD8, MyD88−/− CD4, and MyD88−/− CD8 T cells 

from naïve mice. Transplanting MyD88−/− CD4 T cells with WT or MyD88−/− CD8 T cells 

increased the survival of the recipient mice compared to transplanting WT CD4 T cells with 

MyD88−/− CD8 T cells (miH model median survival time: MyD88−/− CD8 – 36 days; 

MyD88−/− CD4 - >60 days; Fig. 3B,C), the latter showing a similar phenotype to total WT T 

cell recipients. These data show that MyD88 signaling in CD4 T cells, but not CD8 T cells, 

is needed for optimal aGVHD induction. GM-CSF expression by T cells has been 

implicated in experimental autoimmune encephalomyelitis (EAE), an animal model of 

multiple sclerosis, through a STAT5 dependent mechanism (35, 36). Recently, GM-CSF was 

also implicated in promoting aGVHD through a BATF-dependent mechanism (37). We 

found that production of GM-CSF in the intestine 10 days post-HCT is significantly 

decreased in both transplanted MyD88−/− CD4 T cell groups compared to transplanted WT 

CD4 T cell groups (Fig. 3D).
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The CD4 T cell compartment consists of both pro-inflammatory conventional T cells 

(Tcons) and anti-inflammatory Tregs. MyD88+/+ Tregs prolong allograft survival in both 

organ transplantation and chronic GVHD through a cell-intrinsic mechanism (38). Intrinsic 

MyD88 signaling in CD4 T cells has also been implicated in mounting a proper antiviral 

response (39). We next explored the cell-intrinsic role of MyD88−/− Tregs in aGVHD. After 

singly transplanting Treg-depleted WT or MyD88−/− Tcons and co-transplanting WT Tcons 

with WT or MyD88−/− Tregs, we did not observe differences in either aGVHD severity or 

mortality (MH model median survival time: WT Tcon - 10 days; MyD88−/− Tcon - 10 days; 

WT Tregs - 26 days; MyD88−/− Tregs - 24 days) in both matched groups, which means the 

intrinsic MyD88 signaling in donor T cells does not impact aGVHD (Fig. 3E, F).

MyD88 Tcons require the presence of Tregs for alleviation of aGVHD

Immunization of CD4 specific MyD88−/− mice has been shown to decrease IFN-γ 
production by CD4 T cells compared to WT CD4 T cells; however, IFN-γ levels after 

immunization were the same between WT and MyD88−/− CD4 T cells when Tregs were 

absent (30). As no differences were observed in both single Tcons-transplanted groups, we 

next sought to reveal whether the presence of Tregs is necessary for protection when using 

MyD88−/− donor Tcons in the MH model. Indeed, as shown in Figures 3G and H, use of 

MyD88−/− Tcons with WT or MyD88−/− Tregs, led to aGVHD amelioration. These data 

show that loss of extrinsic MyD88 signaling in Tcons in the presence of Tregs reduces 

aGVHD severity and mortality.

MyD88−/− donor T cells do not have defects in their proliferation, apoptosis, and migration 
markers but show decreased intestinal T cell infiltration, and increased Th2 and Treg 
frequencies following allo-HCT

To determine if the donor MyD88−/− T cells had a defect in proliferation or apoptosis 

markers following allo-HCT, we stained CD45.1 WT T cells and CD45.2 MyD88−/− T cells 

with carboxyfluorescein succinimidyl ester (CFSE) right before transplantation and injected 

a mixture of these cells at a 1:1 ratio into lethally irradiated BALB/c WT recipients. At day 3 

post-HCT, we did not observe a difference in proliferation between groups from donor cells 

collected in the small intestine (Fig. 4A). We then isolated small intestinal lymphocytes at 

day 5 post HCT to test for differences in apoptosis, measured using annexin V. We found no 

differences between groups in apoptosis of T cells in the small intestine at day 5 post-HCT 

(Fig. 4B). Next, we isolated T cells from WT or MyD88−/− mice and transplanted them 

respectively into lethally irradiated BALB/c recipients, together with TCD WT bone marrow 

cells. We compared the expression of migration markers CCR5 and α4β7 as well as the 

quantity of infiltrated lymphocytes that distributed in the intestinal lamina propria at day 10 

post-HCT. We found that although the frequencies of both CCR5+ T cells and α4β7+ T cells 

were not different between WT and MyD88−/− T cells-transplanted groups, the absolute 

numbers of both CCR5+ T cells and α4β7+ T cells were significantly decreased in the 

MyD88−/− T cells-transplanted group than in the WT T cells-transplanted group in our MH 

model (Fig. 4C, D, E). Interestingly, compared to the WT T cells-transplanted group, both 

IL-4 and IL-10-produced intestinal CD4+ T cells were significantly increased in MyD88−/− 

T cells-transplanted group. What’s more, the frequencies of intestinal Tregs and IL-10-

produced Tregs were also, as expected, significantly increased in MyD88−/− T cells-
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transplanted group at day 10 post-HCT (Fig. 4F, G). Taken together, the above data suggest 

that decreased infiltrated T cells and increased inhibitory cytokines expression in CD4 T 

cells and increased Tregs may collaboratively contribute to the improved aGVHD in 

MyD88−/− T cells-transplanted group, rather than due to differences in T cells expansion or 

apoptosis.

ST2/MyD88 signaling in Tcons is necessary for aGVHD development

Transcriptome analysis from day 10 post-HCT in the MH model comparing WT or 

MyD88−/− sorted CD4+CD127+CD25− Tcons recovered from the intestines showed that 

MyD88−/− CD4 Tcons express lower levels of genes involved in the inflammatory response, 

including Il1rl1 (gene of ST2), Ifng, Batf, Csf2 (gene of GM-CSF), Stat5, and Jak2 (Fig. 

5A). MyD88−/− T cells recovered from the intestine at day 10 post-HCT expressed less sST2 

and more ST2 compared to WT T cells (Fig. 5B and C). Systemic levels of sST2 and IFN-γ 
in recipients of MyD88−/− T cells were also decreased at days 5 and 10 post-HCT compared 

to recipients of WT T cells (Fig. 5D and E). These data confirm that alloreactive T cells in 

the intestines produce sST2, as we previously suggested (14). We hypothesized that the 

protective phenotype observed when transplanting MyD88−/− Tcons in the presence of Tregs 

was mediated by a lack of ST2 signaling on donor Tcons. Recipients of ST2−/− Tcons with 

either WT or ST2−/− Tregs had lower aGVHD score and mortality compared to recipients of 

WT Tcons with either WT or ST2−/− Tregs (Fig. 5F and G).

To further show the importance of ST2/MyD88 signaling in donor T cells during aGVHD, 

we generated ST2−/−MyD88−/− double knockout mice (DKO) by crossing ST2−/− and 

MyD88−/− mice. In the MH model, recipients of the donor DKO T cells had lower disease 

severity, resulting in fewer deaths compared to mice receiving WT cells (median survival 

time: WT ~ 9 days; DKO > 30 days (Fig. 6A and B). Although the recipients of DKO T cells 

did exhibit less disease severity compared to recipients of MyD88−/− T cells, survival 

between these groups was not different. Serum levels of sST2 and IFN-γ were also 

significantly lower at day 10 post-HCT in recipients of DKO T cells (Fig. 6C and D). We 

also tested for systemic levels of IL-6 and TNFα but we saw no difference between 

recipients of WT and DKO T cells (data not shown). To determine if DKO Tcons have 

increased susceptibility to Treg-mediated suppression, we performed a suppressive assay. 

We did not see any impairment of Treg suppressive capability when Tregs were either WT or 

DKO or when Tcons were WT or DKO (Fig. 6E).

DISCUSSION

Previous studies using MyD88−/− T cells have shown that MyD88 is necessary for optimal 

CD4 and CD8 T cell responses in vivo (30, 33, 39, 40). We found no differences in the 

ability of T cells to produce IFN-γ, IL-4, or IL-17 under Th1, Th2, or Th17 polarizing 

conditions, respectively, when using αCD3/αCD28 polyclonal stimulation. However, during 

antigen-specific responses, T cells may require MyD88 for optimal differentiation of Th1 

and Th17 cells (28, 30, 33, 39, 40). In the context of aGVHD, we show here that MyD88 in 

T cells is necessary for optimal allo-response. Indeed, loss of MyD88 in the donor T cells 

leads to decreased aGVHD severity and mortality in two different allogeneic murine models: 
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a MH model (C57BL/6, H-2b → BALB/c, H-2d) and a miH model (C57BL/6, H-2b → 
C3H.SW, H-2b). It has been shown that diminished Th1 and Th17 responses due to loss of 

MyD88 are a product of loss of IL-1R signaling on CD4 T cells (30). As well, WT T cells 

upregulate IL-1R on their surface by day 3 post-HCT and transplanting IL-1R−/− donor T 

cells alleviated aGVHD in MH model (C57BL/6 → BALB/c) (31). However, we have 

found that IL-1R−/− donor T cells have no significant loss of effector function, as aGVHD 

was not attenuated in our two models. Our results are more in accordance with what has 

been shown examining MyD88 signaling in T cells in response to viral infection (33, 39, 

40). After transfer of IL-1R−/− or MyD88−/− T cells into RAG−/− mice and infecting with 

vaccinia virus, mice with IL-1R−/− CD8 T cells were able to respond to the infection 

normally while mice with MyD88−/− CD8 T cells mounted a reduced response (40). Similar 

results were found during LCMV infection in CD8 T cells (33). Looking at WT, MyD88−/−, 

and IL-1R−/− CD4 T cells in absence of CD8 T cells in response to LCMV infection, WT 

and IL-1R−/− mice developed wasting disease and had lower virus levels while MyD88−/− 

mice did not develop wasting disease and had higher virus levels due to failure to induce 

LCMV-specific CD4 T cell response. This response was not due to impaired APC function 

(39). Our results also are in accordance with a clinical trial that observed no difference in 

aGVHD outcomes in HCT patients when using prophylactic treatment with IL-1 receptor 

antagonist, an IL-1R inhibitor (41). This discrepancy in our results along with the results in 

the literature looking at anti-viral response and a clinical trial with those shown others could 

be due to the difference in models. One used an immunization model, while our models and 

others use alloresponses and viral responses for stimulation, respectively. It is possible that 

the different use of antigens could impact which receptors become upregulated on T cells. 

IL-1R is upregulated on 2W:I-Ab tetramer-positive T cells but not 2W:I-Ab tetramer-

negative T cells after antigen stimulation. The immunization model also does not take into 

account the presence of a variety of other molecules that would be present in a diseased 

state. PAMPs, DAMPs, and alarmins released during viral infection or during conditioning 

for allo-transplant but not during immunization could impact T cell response to IL-1 

signaling. A difference in the microbiota of the recipient mice could also explain this 

difference. Recent work has shown that the makeup of the intestinal microbiome can affect 

aGVHD severity (42–46). The mice from commercial vendors which are purchased for 

experiments can have significantly different microbiotas which can impact immune response 

(47). Aberrant IL-1/IL-1R signaling has been shown to alter the microbiota in mice (48). We 

purchased the BALB/c mice in our experiments from The Jackson Laboratory while the 

other group purchased their BALB/c mice from Charles River, Harlan, or from the local 

stock of the animal facility at Freiburg University Medical Center (31). It is possible that the 

difference in phenotype we saw compared what has been published is in part due to 

differences in intestinal microbiota of the recipients.

During pre-HCT conditioning, the integrity of intestinal mucosa is impaired, and the 

intestinal epithelial tight junctions will become more permeable. A very recent research has 

indicated that the intestinal epithelial barrier loss is a crucial driver of the GVHD 

propagation (49). With the damage of intestinal epithelial barrier, broad range of DAMPs, 

PAMPs and alarmins will be released and sensed by kinds of immune cells, among of which 

LPS, with other bacterial products, is secreted and then recognized by TLR4 expressed 
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immune cells. Activated TLR4 transducts the signaling downstream via MyD88 adaptor. 

TLR4 is found on both human and murine CD4 T cells, but its function is not well 

understood. One study showed that only naïve murine T cells and not activated T cells 

express TLR4 (50). However, TLR4 on human T cells was only detected in activated CD4 T 

cells (51). In a murine model of EAE, TLR4−/− T cells transferred into RAG1−/− followed 

by EAE induction did not produce disease (52). However, in a spontaneous model of colitis, 

IL-10−/−TLR4−/− T cells transferred into RAG1−/− mice accelerated disease progression 

(53). During aGVHD, we found that TLR4 signaling in donor T cells was not necessary. A 

lack of TLR4 expression on activated T cells could explain why we didn’t see any difference 

when using TLR4−/− donor T cells, but we did not test for TLR4 surface expression post-

HCT. Our data contrasts that found by others, who found that using TLR4−/− as donors does 

protect against aGVHD (32). We believe this difference is caused by the use of TLR4−/− BM 

and TLR4−/− T cells together compared to our use of WT BM and TLR4−/− T cells. As 

donor dendritic cells are present in the BM during transplantation and as it is well 

documented that TLR4 stimulation of dendritic cells triggers their maturation and cytokine 

expression, we believe that the protective phenotype observed is caused by TLR4−/− on these 

dendritic cells. A limitation of this work is that we did not go through the full range of 

MyD88-depedent TLRs. It is possible that other MyD88-dependent TLRs on donor T cells 

are important for aGVHD development (54). For example, TLR2 signaling has been shown 

to promote a Th17 response and that loss of TLR2 on CD4 T cells ameliorated EAE (55); 

however, loss of TLR2 on the donor T cells as well as TLR2 blockade using an anti-TLR2 

blocking antibody did not reduce aGVHD severity or mortality (56).

MyD88 signaling has been shown to be important in both macrophages and T cells in 

responses to viruses, as MyD88−/− T cells show impaired anti-viral clearance (33, 39, 40); 

however, its role in different subsets of T cells in vivo during aGVHD is not known. We first 

compared the expression of MyD88 in three major T cell subpopulations. Western blot data 

indicated that CD4+ T cons have the highest expression of MyD88, nearly three times more 

than CD8+ T cells or Tregs. When transplanting WT CD4 T cells with MyD88−/− CD8 T 

cells, we observed no difference in aGVHD severity or mortality. When transplanting 

MyD88−/− CD4 T cells with WT CD8 T cells, we observed a decrease in aGVHD severity 

and an increase in survival. This is in accordance with the findings that MyD88−/− CD4 T 

cells have impaired function during coronavirus encephalomyelitis while MyD88−/− CD8 T 

cells appear normal (57). Transcriptome analysis using Nanostring of CD4+ T cells from the 

intestine 10 days post-HCT also showed that genes responsible for a potent type 1 response 

to be downregulated in mice receiving MyD88−/− T cells. Interestingly, GM-CSF production 

was lower in MyD88−/− CD4 T cells but not in MyD88−/− CD8 T cells. It has recently been 

shown that loss of GM-CSF in the donor T cells attenuates aGVHD and that GM-CSF 

production in the donor T cells is mediated through basic leucine zipper transcription factor, 

ATF-like (BATF) signaling (37). Our Nanostring data suggests that loss of MyD88 impacted 

BATF expression, as BATF expression is much lower in MyD88−/− CD4 T cells than in WT 

CD4 T cells. Exploration of MyD88/BATF/GM-CSF regulation would help to understand 

how MyD88 affect GM-CSF production.

The CD4 T cell compartment consists of both Tcons and Tregs, with type 1 Tcons 

promoting aGVHD and Tregs alleviating aGVHD. We showed here that transplantation of 
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WT or MyD88−/− Tcons without Tregs demonstrated no difference in aGVHD severity or 

mortality. However, in a colitis model in which naïve WT or MyD88−/− CD4+ CD45RB+ T 

cells were transplanted into RAG1−/− recipients, MyD88−/− cells were unable to induce 

severe colitis as compared to WT cells (58). The discrepancy observed could be due to the 

difference in pro-inflammatory cytokines observed between models. This colitis model is 

dependent on IL-17 production from Th17 cells, and MyD88−/− CD4 T cells did indeed 

produce less IL-17. A difference in the Th1 cytokine IFN-γ was not observed (58). Our 

aGVHD model with this dose of donor T cells is mainly dependent on IFN-γ as we did not 

detect any Th17 cells in the intestine in our models, and IFN-γ was significantly lower in the 

plasma of MyD88−/− recipients. It has been shown that Treg-specific MyD88−/− cells have 

no impairment of suppressive capability compared to WT Treg (30). But, it has also been 

shown that MyD88−/− Tregs during skin transplantation and cGVHD are deficient in their 

suppressive capabilities (38). MyD88−/− Tregs also protect less against colitis compared to 

WT Tregs (58); however, we found that transplantation with donor WT Tcons and either WT 

or MyD88−/− Tregs did not alleviate aGVHD. The difference in our data could be due to the 

kinetics of disease. In the skin transplant model, Treg frequencies were similar early after 

transplant and only started to decrease after 21 days post-skin transplant (38). In the colitis 

model, a difference in disease severity using MyD88−/− Tregs compared to WT Tregs was 

not observed until 9 weeks post-transplant into RAG1−/− mice (58). In our aGVHD model, 

we start seeing severe aGVHD as early as 10 days post-HCT. In the immunization model, 

the authors waited only seven days before measuring Tcons proliferation and pro-

inflammatory cytokine production (30). We cannot eliminate the possibility based off our 

data that, in a slower disease progression setting, MyD88−/− Tregs do indeed develop a 

suppressive defect. Therefore, the importance of MyD88 signaling in Tregs may be highly 

disease and time dependent.

It has been shown that naïve CD4 T cells require MyD88 signaling through the IL-1R in 

order to overcome Treg-mediated suppression for induction of a Th1 response (30). While 

our data suggests that IL-1R signaling in T cells is not required for aGVHD induction, left 

open was the possibility that MyD88 signaling in Tcons is required for Treg-mediated 

suppression in aGVHD. Indeed, when transplanting MyD88−/− Tcons with Tregs, we did 

observe a decrease in aGVHD severity and mortality. Interestingly, this phenotype did not 

depend on MyD88 in the Tregs, as transplanting WT or MyD88−/− Tregs with MyD88−/− 

Tcons showed no difference in aGVHD severity or mortality. We believe that this may be 

caused by loss of signaling through soluble factors, such as IL-6 or TNFα, that act directly 

or indirectly through or on MyD88. Deficiency of IL-1β/MyD88 signaling has already been 

mentioned, but IL-6 has also been implicated in Tcons resistance to Treg-mediated 

suppression (59–61). It has been suggested that this is due to blocking of Treg-mediated 

inhibition of IL-2Rα on Tcons (61). We did not check for IL-2Rα expression on Tcons 

during our experiments. Loss of IL-6-produced T cells, but not bone marrow cells or non-

hematopoietic cells, also prevents aGVHD mortality in a murine model, although the 

mechanism behind this remains unexplored (62). Interestingly, similar to our data with 

MyD88−/− donor T cells, it was also found that the absence of IL-6 did not affect the 

expansion of T cells. As IL-6 is known to be upregulated by multiple TLR/MyD88 signaling 

pathways, it is possible that reduced IL-6 in MyD88−/− donor T cells could explain our 
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phenotype. However, we did not check for IL-6 production in T cells in our models. IL-6 

signaling is known to activate STAT3 (63). It is also possible that the absence of MyD88 

signaling reduces phosphorylated STAT3 levels in the Tcons, which has been shown to be 

important in Tcons for their resistance to Treg suppression (64). Although STAT3 is not 

classically thought to be downstream of MyD88, it has recently been shown that activation 

of TLR4 through MyD88, TLR7, or TLR9 directly leads to phosphorylation of STAT3 (65–

67). Indeed, pSTAT3 Y705 is increased significantly in patient CD4 T cells before onset of 

aGVHD (68). IL-7 and IL-15 may also play a role in Tcons-resistance to Tregs during 

aGVHD (69–71). Adoptive transfer of T cells into lymphopenic hosts, as would be after 

irradiation in our aGVHD models, leads to increased availability of IL-7 and IL-15 for the 

transferred T cells. Although a link between IL-7 and MyD88 has yet to be made, it has been 

shown that IL-15 promotes MyD88 expression in T cells (72). How IL-15 causes MyD88 

upregulation and the effect of MyD88 upregulation by IL-15 has yet to be explored. Tcons 

could be using these pathways mentioned involving MyD88 to redundantly prevent their 

Treg-mediated suppression, which would explain why loss of IL-1R or TLR4 alone was 

insufficient.

A common convergence of all these pathways is the phosphatidylinositol-3 kinase 

(PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. This pathway helps control 

many cellular processes, such as proliferation, survival, migration, and metabolism (73). It 

has been suggested that hyper-activation of PI3K leads to Tcons resistance to Treg-mediated 

suppression (74). Indeed, in murine models that have genetic deficiencies in proteins that 

negatively regulate PI3K signaling, Tcons are more resistant to Treg-mediated suppression 

(75, 76). Several cytokine receptors, TNF receptors, TLRs, and T cell costimulatory 

receptors have been shown to activate PI3K signaling (77). While MyD88 has not been 

implicated in all these pathways, we suspect that loss of MyD88 may affect enough 

pathways to prevent hyper-activation of PI3K/ATK/mTOR signaling, thus rendering Tcons 

susceptible to Treg-mediated suppression (Fig. 7). Direct targeting of mTOR using 

rapamycin has been extensively studied in GVHD and is given to patients routinely as a 

prophylaxis, with some studies suggesting efficacy as a treatment option of aGVHD (78). 

Recently, in a murine model of aGVHD, direct pan-PI3K inhibition using a small molecule 

inhibitor prevented severe aGVHD development, in part through controlling T cell activation 

(79). However, how pan-PI3K inhibition works on Tcons and Tregs specifically was not 

studied nor the direct mechanism of how pan-PI3K inhibition of T cells prevented severe 

aGVHD development.

ST2 on T cells has been found primarily on the Th2 and Treg subsets. ST2 is a member of 

the IL-1R superfamily and signals through MyD88 IL-33/ST2 signaling enhances Th2 and 

Treg activity through increased IL-5 and IL-13 production in Th2 cells (19, 80–82) and 

increased Foxp3 expression in Tregs (21). A soluble form of ST2, sST2, sequesters free 

IL-33 and does not signal. Recently, we have shown that T cells, specifically type 1 and type 

17 T cells, can produce sST2 (14). We and others have shown that total ST2−/− T cells 

ameliorate aGVHD (14, 17). We also find here that Tcons have much higher expression of 

ST2 than CD8+ T cells, but an equivalent expression with Tregs. It should be noticed that 

both MyD88 and ST2 are simultaneously highly expressed in CD4+ Tcons rather than the 

Tregs, which may means a parallel function in Tcons. Due to the similarities of expression, 
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we asked whether the phenotype of MyD88−/− Tcons in the presence of WT or MyD88−/− 

Tregs observed above would be paralleled when using ST2−/− Tcons and WT or ST2−/− 

Tregs. Indeed, transplanting ST2−/− Tcons alleviated aGVHD in a similar manner regardless 

of using WT or ST2−/− Tregs, suggesting that ST2/MyD88 signaling is required for Tcons to 

overcome Treg-mediated suppression. We did notice a small but non-statistically significant 

difference in aGVHD severity and mortality when using ST2−/− Tregs with WT or ST2−/− 

Tcons compared to using WT Tregs with WT or ST2−/− Tcons, suggesting that loss of ST2 

on Tregs may impact their suppressive capabilities. This would be in line with the higher 

expression of ST2 as compared to MyD88 on Tregs (Fig 3A) and what has previously been 

shown (20, 21, 83). In our hands, an in vitro suppression assay did not show any differences 

in suppression by Tregs when either Tcons or Tregs lost both ST2 and MyD88 signaling. 

This possible suggests that the presence of the allo-response and/or pro-inflammatory 

environment during aGVHD allows Tcons to resist suppression. We also show that isolated 

MyD88−/− CD4 T cells from the intestine at day 10 post-HCT express less sST2 and more 

ST2 compared to WT CD4 T cells. However, whether MyD88 signaling is directly important 

in sST2 expression by CD4 T cells or whether the decrease in sST2 expression is due to a 

decrease in Th1 response is not clear. Loss of MyD88 signaling leading to lower sST2 

expression would partially explain the protective phenotype against aGVHD we observed 

when we transplanted MyD88−/− donor T cells as compared with transplanting WT donor T 

cells (Fig. 7). There is evidence that STAT3 and ERK signaling, both of which can be 

activated through MyD88, influence ST2 proximal promoter activity (84), which has been 

suggested to promote sST2 production (85). We have not tested for STAT3 or ERK activity 

in our models. As well, the increase in ST2 expression may be a compensatory mechanism 

by the CD4 T cells trying to overcome the loss of MyD88.

We and others have attempted to look for ST2 expression via flow cytometry on Th1 during 

aGVHD settings without success. However, recent reports have shown that ST2 can indeed 

be present on Th1 cells (17, 86, 87). ST2 signaling on Th1 cells helps clear LCMV infection 

through increased IFN-γ production and is dependent on T-bet and STAT4 (86). The effect 

of IL-33 on Th1 differentiation was also seen by using an OVA-immunization murine model 

as well as human in vitro cell cultures (87). The expression of ST2 on the surface only 

occurred during times of inflammation (86). During aGVHD, IL-33 administration during 

peak inflammatory response (days 3–7 post-HCT) enhanced aGVHD severity and mortality 

(17), while IL-33 administration during the peri-transplant period ameliorated aGVHD 

through enhanced ST2+ Treg response (88). This suggests that ST2 may be only transiently 

expressed on Th1 cells, while it is more stably expressed on Th2 cells and Tregs at later time 

points during aGVHD. Although an inflammatory response is clearly occurring during 

aGVHD, perhaps this transient expression is the reason that we were not able to detect ST2 

in our aGVHD model, as we’ve only looked for ST2 expression via flow cytometry after day 

10 post-HTC. Further work needs to be done to assess a potential role of ST2/MyD88 

signaling in promoting a Th1 response early during aGVHD.

A weakness of our mouse model is that the ST2−/− mouse we use has a loss of both the 

membrane and soluble forms of ST2. It is therefore difficult to determine whether sST2 

production by Tcons or if indeed ST2 is present on Th1 cells and loss of ST2 on these cells 
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is more important in the phenotype we observed. Development of distinct sST2−/− and 

membrane ST2−/− mice could really help answer these questions.

We conclude that loss of ST2/MyD88 protects mice from fatal aGVHD through lower sST2 

production by Tcons while also sparing Treg function. The results of our study confirm that 

ST2 represents an aGVHD therapeutic target.
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Key Points

1. MyD88 deficiency in donor Tcons with Tregs protected against alloreactivity 

and aGVHD

2. This protective effect uses ST2 but not the IL-1R or TLR4 pathways
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Figure 1. 
Both morbidity and mortality of aGVHD are significantly reduced using MyD88−/− donor T 

cells in murine models. (A) Cell numbers and frequencies of total CD4 and CD8 T cells 

(Left), naïve (CD62L+CD44−), memory (CD62L+CD44+), and effector (CD62L−CD44+) 

CD4 or CD8 populations (Right) harvested from spleen of WT or MyD88−/− mice (mean ± 

SEM; n=3). (B) CD4 T cells were stimulated with plate-bound αCD3 (2 μg/ml) and soluble 

αCD28 (5 μg/ml) under Th0 (no additional cytokines), Th1 (20 ng/ml IL-12, 2 ng/ml IL-2), 

Th2 (20 ng/ml IL-4), or Th17 (4 ng/mL TGF-β, 20 ng/ml IL-6) conditions for 5 days. 

Graphs show frequency of IFN-γ (Left), IL-4 (Middle), and IL-17 (Right) expressions 

(mean ± SEM; n=3). (C) Lethally irradiated BALB/c mice (900 cGy) were given 5 × 106 T 

cell depleted bone marrow (TCD-BM) cells and 1 × 106 donor T cells from WT or 

MyD88−/− B6 mice for allogeneic transplant or WT BALB/c TCD-BM and donor T cells 

from WT BALB/c mice for syngeneic transplant. (Left) GVHD score and (Middle) survival; 

BALB/c → BALB/c (n=5), B6 WT (n=15), or B6 MyD88−/− total T cells (n=15) groups. 

(Right) Kinetics of plasma levels of sST2 in BALB/c mice collected at days 5 and 10 post-

HCT (mean ± SEM, n=3). (D) Lethally irradiated C3H.SW mice (1100 cGy) were given 5 × 

106 TCD-BM cells and 2 × 106 donor T cells from WT or MyD88−/− B6 mice for allogeneic 

transplant or WT C3H.SW TCD-BM and donor T cells from WT C3H.SW mice for 

syngeneic transplant. (Left) GVHD score and (Middle) survival; C3H.SW → C3H.SW 

(n=5), B6 WT (n=6), or B6 MyD88−/− total T cells (n=6). (Right) Kinetics of plasma levels 

of sST2 in BALB/c mice collected at days 5 and 10 post-HCT (mean ± SEM, n=3). The ns 

means no significant, *p < 0.05, **p < 0.01
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Figure 2. 
MyD88 signaling on donor T cells through IL-1R or TLR4 does not affect aGVHD severity 

or mortality. (A) Lethally irradiated BALB/c mice (900 cGy) were given 5 × 106 TCD-BM 

cells and 1 × 106 donor T cells from WT or IL-1R−/− B6 mice for allogeneic transplant or 

WT BALB/c TCD-BM and donor T cells from WT BALB/c mice for syngeneic transplant. 

(Left) GVHD score and (Right) survival; BALB/c → BALB/c (n=5), B6 WT (n=15), or B6 

IL-1R−/− total T cells (n=8). (B) Lethally irradiated C3H.SW mice (1100 cGy) were given 5 

× 106 TCD-BM cells and 2 × 106 donor T cells from WT or IL-1R−/− B6 mice for allogeneic 

transplant or WT C3H.SW TCD-BM and donor T cells from WT C3H.SW mice for 

syngeneic transplant. (Left) GVHD score and (Right) survival; C3H.SW → C3H.SW (n=5), 

B6 WT (n=6), or B6 IL-1R−/− total T cells (n=6). (C) Lethally irradiated BALB/c mice (900 

cGy) were given 5 × 106 TCD-BM cells and 1 × 106 donor T cells from WT or TLR4−/− B6 

mice for allogeneic transplant. (Left) GVHD score and (Right) survival; B6 WT (n=8) or B6 

TLR4−/− total T cells (n=8). (D) Lethally irradiated C3H.SW mice (1100 cGy) were given 5 

× 106 TCD-BM cells and 2 × 106 donor T cells from WT or TLR4−/− B6 mice for allogeneic 

transplant. (Left) GVHD score and (Right) survival; B6 WT (n=8) or B6 TLR4−/− total T 

cells (n=8). The ns means no significant.
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Figure 3. 
MyD88−/− CD4 Tcons in the presence of Tregs alleviates aGVHD severity and mortality. 

(A) Western blot of MyD88 from freshly isolated Tcons, CD8 T cells and Tregs from a WT 

B6 spleen. Lethally irradiated C3H.SW mice (1100 cGy) were respectively given 5 × 106 

TCD-BM cells and a mixture (WT CD4 + WT CD8 or WT CD4+MyD88−/− CD8 or 

MyD88−/− CD4 + WT CD8 or MyD88−/− CD4 + MyD88−/− CD8) of 2 × 106 donor T cells. 

(B)The GVHD score and (C) survival are real-time monitored; WT CD4 + WT CD8 (n=13), 

WT CD4+MyD88−/− CD8 (n=13), MyD88−/− CD4 + WT CD8 (n=13) and MyD88−/− CD4 

+ MyD88−/− CD8 (n=4) (D) T cells were harvested from the intestine at day 10 post-HCT 

and stained for live GM-CSF produced CD4 T cells. Lethally irradiated BALB/c mice (900 

cGy) were given 5 × 106 TCD-BM cells with 1 × 106 donor Tcons without Tregs from WT 

or MyD88−/− B6 mice for allogeneic transplant or WT BALB/c TCD-BM and 1 × 106 donor 

T cells from WT BALB/c mice for syngeneic transplant; or with a 5:1 mixture of WT Tcon 

+ WT or MyD88−/− Tregs totaling 1 × 106 donor T cells from B6 mice for allogeneic 

transplant. (E) The GVHD score and (F) survival are real-time monitored; BALB/c → 
BALB/c (n=5), B6 WT Tcons (n=7), B6 MyD88−/− Tcons (n=7), B6 WT Tcons and B6 WT 

Tregs (n=7), B6 WT Tcons and B6 MyD88−/− Tregs (n=7). Lethally irradiated BALB/c mice 

(900 cGy) were given 5 × 106 TCD-BM cells and a 10:1 mixture of WT or MyD88−/− Tcons 

+ WT or MyD88−/− Tregs totaling 1 × 106 donor T cells from B6 mice for allogeneic 

transplant. (G) GVHD score and (H) survival; WT or MyD88−/− Tcons + either WT or 

MyD88−/− Tregs (all groups n=6). The ns means no significant, *p < 0.05, **p < 0.01, 

****p < 0.0001.
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Figure 4. 
MyD88−/− donor T cells do not have defects in proliferation or apoptosis, but a significant 

increase of Tregs and the production of IL-4 and IL-10 during aGVHD. (A, B) Lethally 

irradiated BALB/c mice (900 cGy) were given 5 × 106 TCD-BM cells and 1 × 106 mixture 

of CFSE labeled donor T cells from WT CD45.1 or MyD88−/− CD45.2 (1:1) B6 mice. (A) 

Proliferation of CFSE labeled T cells from WT CD45.1 or MyD88−/− CD45.2 donors 

harvested from the intestine at day 3 post-HCT. (B) Annexin V staining of T cells from WT 

CD45.1 or MyD88−/− CD45.2 donors harvested from the intestine at day 5 post-HCT (mean 

± SEM, n=4). (C-G) Lethally irradiated BALB/c mice (900 cGy) were given 5 × 106 TCD-

BM cells and 1 × 106 donor T cells from WT or MyD88−/− B6 mice respectively. (C) 

Quantity of the infiltrated small intestinal lamina propria lymphocytes in both groups (mean 

± SEM, n=5). (D and E) Expressions of CCR5 and α4β7 in CD4 + T cells and absolute 

numbers of CCR5 and α4β7 positive CD4+ T cells were detected in infiltrated small 

intestinal lamina propria lymphocytes (mean ± SEM, n=5). (F) Percentages of IL-4 and 

IL-10-produced CD4+ T cells in the gut were detected at day 10 post-HCT (mean ± SEM, 

n=5). (G) Frequencies of the Tregs and IL-10-produced Tregs in the gut were also detected 

at day 10 post-HCT (mean ± SEM, n=5). The ns means no significant, *p < 0.05, **p < 

0.01, ***p < 0.001.
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Figure 5. 
MyD88−/− Tcons are more susceptible to Treg-mediated suppression through loss of ST2. 

(A) Transcriptome analysis comparing intestinal WT and MyD88−/− CD4 T cells harvested 

10 days post-HCT (n=2 per group). Lethally irradiated BALB/c mice (900 cGy) were given 

5 × 106 TCD-BM cells and 1 × 106 donor T cells from WT or MyD88−/− B6 mice for 

allogeneic transplant. (B and C) Relative expressions of sST2 and mST2 from WT or 

MyD88−/− T cells harvested from the intestine 10 days post-HCT (mean ± SEM, n=4). (D 
and E) Kinetics of plasma levels of sST2 and IFN-γ in BALB/c mice collected at days 5 and 

10 post-HCT (mean ± SEM, n=3). Lethally irradiated C3H.SW mice (1100 cGy) were given 

5 × 106 TCD-BM cells and a 10:1 mixture of WT or ST2−/− Tcon + either WT or ST2−/− 

Tregs totaling 2 × 106 donor T cells from WT or ST2−/− B6 mice for allogeneic transplant. 

(F) GVHD score and (G) survival were real-time monitored; WT or ST2−/− Tcons + either 

WT or ST2−/− Tregs (all groups n=6). The ns means no significant,*p < 0.05, **p < 0.01, 

***p < 0.001.
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Figure 6. 
ST2−/−MyD88−/− DKO T cells reduce aGVHD severity and mortality similarly to MyD88−/− 

T cells. Lethally irradiated BALB/c mice (900 cGy) were given 5 × 106 TCD-BM cells and 

1 × 106 donor T cells from WT, MyD88−/−, or DKO B6 mice for allogeneic transplant. (A) 

GVHD score and (B) survival were real-time monitored (all groups n=8). (C) Kinetics of 

plasma levels of sST2 and IFN-γ (D) in BALB/c mice collected at days 5 and 10 post-HCT 

(mean ± SEM, n=3). (E) Total Tcons (TCRβ+CD25−) and Tregs (TCRβ+CD4+CD25+) from 

the spleen of naïve WT and DKO mice were harvested via FACs sorting. CFSE-labeled WT 

or DKO Tcons were plated with WT or DKO Tregs at a 2:1, 4:1, or 8:1 ratio and stimulated 

with plate-bound αCD3 (2 μg/mL) and αCD28 (5 μg/mL) for 72 hours. Suppression was 

measured by lack of CFSE dilution. The ns means no significant, *p < 0.05, ***p < 0.001. p 

values in A and B are comparing WT and DKO groups.
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Figure 7. 
Schema of possible mechanisms of action of MyD88−/− donor T cells during aGVHD. 

Various receptor signaling pathways have been shown to use MyD88 as an adaptor protein, 

including all TLRs except TLR3, the IL-1 superfamily of receptors, and recently the IL-15 

receptor. We propose a two-pronged approach as to how MyD88 Tcons are able to resist 

Treg-mediated suppression. First, signaling through MyD88 activates the PI3K/AKT 

pathway. Shortly after conditioning for transplant, the damage caused by the conditioning 

leads to release of various DAMPs, PAMPs, and alarmins that can activate TLR and IL-1R 

superfamily signaling. The loss of lymphocytes after conditioning also causes excessive 

IL-15 to be available. IL-6 is produced and released through IL-1R and TLR signaling and 

can bind to the IL-6R on other Tcons. Both IL-6 signaling and MyD88 signaling can activate 

the PI3K/AKT pathway. Through a yet to be defined mechanism, others have proposed that 

hyper-activation of PI3K/AKT signaling promotes resistance of Tcons to suppression by 

Tregs. Second, we show that sST2 production in Tcons is reduced in MyD88−/− Tcons; 

however, how MyD88 regulates sST2 production is still unknown. sST2 released by Tcons 

can bind free IL-33, preventing IL-33/ST2 signaling on Tregs and Th2. IL-33/ST2 signaling 
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on Tregs and Th2 has been shown by numerous groups to promote Treg function. Blocking 

sST2 with a neutralizing antibody has been shown to increase Treg frequency and ameliorate 

experimental aGVHD. We hypothesize that MyD88−/− Tcons have less PI3K/AKT 

activation and secrete less sST2, allowing the Tcons to be better repressed by Treg cells. 

Solid lines: direct effect; Dashed lines: indirect effect; dotted lines: proposed effect.
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