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ABSTRACT

Momeni, Mehdi, M.S.M.E., Purdue University, August 2020. Feed-Forward Neural
Network (FFNN) Based Optimization Of Air Handling Units: A State-Of-The-Art
Data-Driven Demand-Controlled Ventilation Strategy. Major Professor: Ali Razban.

Heating, ventilation and air conditioning systems (HVAC) are the single largest

consumer of energy in commercial and residential sectors. Minimizing its energy

consumption without compromising indoor air quality (IAQ) and thermal comfort

would result in environmental and financial benefits. Currently, most buildings still

utilize constant air volume (CAV) systems with on/off control to meet the thermal

loads. Such systems, without any consideration of occupancy, may ventilate a zone

excessively and result in energy waste. Previous studies showed that CO2-based

demand-controlled ventilation (DCV) methods are the most widely used strategies

to determine the optimal level of supply air volume. However, conventional CO2

mass balanced models do not yield an optimal estimation accuracy. In this study,

feed-forward neural network algorithm (FFNN) was proposed to estimate the zone oc-

cupancy using CO2 concentrations, observed occupancy data and the zone schedule.

The occupancy prediction result was then utilized to optimize supply fan operation

of the air handling unit (AHU) associated with the zone. IAQ and thermal comfort

standards were also taken into consideration as the active constraints of this opti-

mization. As for the validation, the experiment was carried out in an auditorium

located on a university campus. The results revealed that utilizing neural network

occupancy estimation model can reduce the daily ventilation energy by 74.2% when

compared to the current on/off control.
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1. INTRODUCTION

The optimized performance of heating, ventilation and air conditioning (HVAC) sys-

tems is critically important. Studies showed that people in the US and Europe spend

on average 85% to 90% of their time indoors [1]. Furthermore, 47.7% and 51% of en-

ergy consumption in residential and commercial buildings, respectively, are allocated

to HVAC systems. Given the substantial effects of HVAC systems on energy use and

human comfort, research efforts have been mainly focused on (1) the minimization of

HVAC energy use without sacrificing thermal comfort or (2) the optimization of occu-

pants’ thermal comfort [2]. Previous HVAC related studies demonstrated that current

system operations suffer from a number of major shortcomings: conditioning unoc-

cupied spaces [3], assuming maximum zone occupancy [4], and over-conditioning of

buildings regardless of occupants’ perspectives [5]. These sub-optimal circumstances

are primarily due to the fact that conventional operating modes of HVAC systems do

not take the occupants’ dynamic into account. These conventional operating modes

include (1) fixed operating schedules assuming full occupancy [6] and (2) a single-

point temperature measurement of a thermal zone (i.e. multiple zones conditioned

by one AHU) [7]. That is, there has been a lack of context-aware information deliv-

ery and means of interaction between occupants and HVAC systems. Thermostats, in

commercial buildings, are generally inaccessible for occupants’ intervention [8] since

facility managers mostly set the temperature setpoints without consideration of oc-

cupants’ thermal feedback [9]. Post-occupancy evaluation strategies, as a means of

integrating occupants’ feedback, have been rarely implemented [10]. As a consequence

of these limitations, a higher rate of thermal dissatisfaction occurs in commercial sec-

tors compared to that of residential buildings [11].

Overall, previous studies have mainly investigated several physical and data-driven

occupancy estimation models, disregarding the implementation outcomes on building
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energy management. Added to this, there have been a plethora of research works

focusing on DCV strategies in which only CO2 concentrations were utilized, but

not the number of indoor occupants. This study aimed to quantify not only the

energy savings but also IAQ and thermal comfort by implementing a dynamic per-

occupant DCV strategy, using machine learning techniques based on experimental

data. High capacity single-zone areas were the focus of this study since the best

potential applications can be found in spaces with highly variable occupancy, namely,

auditoriums [12].

1.1 Thesis Structure

Figure 1.1 illustrates the structure of this study. Chapter 1 provides the back-

ground information, problem statement and the objectives of this thesis. In Chapter 2,

an overview of energy saving opportunities through occupancy prediction and different

occupancy estimation methods are discussed. Chapter 3 outlines the rationale behind

the methods utilized to solve the problem stated in the first two chapters. It describes

the test environment, HVAC system sequence of operation and schedule, data acquisi-

tion procedure, and modeling methods. Chapter 4 comprehensively discusses physical

and statistical occupancy prediction models, different demand-controlled ventilation

strategies, the effects of each strategy on ventilation as well as indoor air quality.

Thermal comfort analyses are included in Chapter 5. Chapter 6, finally, documents

the energy savings, thorough conclusion of this research, and potential future works.



3

Fig. 1.1.: Thesis structure
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2. LITERATURE SURVEY

This chapter gives an overview of the major topics related to the study of dynamic per-

occupant demand-controlled ventilation. It is divided into two subsections as follows:

section 1 presents the background and previous studies to prove the necessity of

occupancy detection in HVAC energy savings. Section 2 comprehensively reviews

the current techniques for occupancy detection using different sensors and strategies.

2.1 Occupancy-Based Energy Saving Strategies

Building management systems (BMS) can utilize occupancy information to de-

crease the energy consumption of lighting, HVAC systems, and even other integrated

building systems. Occupancy information allows building systems to operate propor-

tional to the number of occupants and consequently to optimize the building energy

management as well as thermal comfort by optimal active and passive control of heat-

ing, cooling, ventilation, lighting, and other possible systems [13]. Many researchers

have been studying occupancy detection methods and its applications in building

management. Yang and Becerik-Gerber demonstrated that occupancy-based HVAC

schedules could result in energy savings of up to 9% [14]. A low-cost system was

proposed by Agarwal et al. to accurately detect the presence and absence of occu-

pants in office areas. They further showed that energy savings between 10% and

15% are achievable with the detected occupancy information [15]. L. James Lo and

Atila Novoselac evaluated an occupancy-based air-conditioning system through a case

study. Their CFD and energy simulation showed that it is feasible to produce a lo-

calized airflow in an open office space and to create relatively isolated zones in order

to save approximately 12% of total cooling energy [16]. Varick L. Erickson et al. col-

lected occupancy data using a sensor network. They developed a statistical model of
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the building temporal occupancy based on an in-homogeneous Markov chain, which

was estimated from the collected occupancy information. Compared to the baseline,

the average annual savings of 42% were attained by implementing their real-time

occupancy method [17]. Anil Aswani et al. studied the transient and steady-state

electrical characteristics of the heat pump in a special platform called BRITE at UC

Berkeley. They identified a dynamical model of the system, explained the impact

of occupants on the dynamics, and implemented a learning-based model predictive

control (MPC) scheme that estimates occupancy using only temperature measure-

ments. Experiment results revealed that learning-based MPC saved an estimated

30% to 70% of energy compared to the two-position control . More advanced occu-

pancy estimation, the authors claimed, would yield further reductions [18]. To find

out the energy-saving opportunities, Siddharth Goyal Herbert compared the base-

line controller of an HVAC system to three different proposed algorithms, MOBS

(Measured Occupancy Based Setback), MOBO (Measured Occupancy Based Opti-

mal) and POBO (Predicted Occupancy Based Optimal). While the proposed MOBS

and MOBO controllers depend upon occupancy information, POBO controller re-

quires occupancy predictions. Simulation results showed in their work that all three

controllers lead to solid improvements in energy savings (about 50% on average de-

pending on the zone type, weather, climate, etc.) with trivial impacts on IAQ and

thermal comfort [19]. Bharathan Balaji and his team designed and implemented

an HVAC actuation system that benefits from the existing WiFi infrastructure and

tracks the occupants carrying WiFi-enabled smartphones. They proved that this

system provides an accuracy of 86% leading to HVAC electrical energy savings of

17.8% in comparison to the static scheduling based control [20]. The authors of [21]

investigated the potential of using occupancy information through a case study at

ETH Zurich, Switzerland. An MPC controller, which controls the building based on

a pre-defined fixed occupancy schedule, was used in their study as a benchmark. A

comparison of energy consumption of this benchmark was made to three other con-

trol strategies. They first chose the mentioned MPC controller that uses the same
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schedule for control as the benchmark. Unlike having a fixed schedule, however, this

MPC controller turns off the lights in case of vacancy. Second, the same MPC con-

troller that not only turns off the lights, but also the ventilation while the building

is unoccupied; and finally, the same MPC controller by which a perfect prediction of

the upcoming occupancy can occur. The simulations with homogeneous occupancy

in this study showed a saving potential of up to 34% in case of average vacancy and

occupancy intervals of 5 and 10 days, respectively. They finally concluded that such

savings, to a large degree, can be accomplished by prediction through instantaneous

measurement of the occupancy status along with a schedule. Samuel R. West et al.

also presented a novel method of optimizing the operation of commercial HVAC sys-

tems using model predictive control, to minimize a weighted combination of operating

costs, greenhouse gas emissions and occupant thermal comfort. They put the system

to the test in two different buildings in Newcastle and Melbourne over the winter

2011. In comparison with standard building management and control systems, the

performance results obtained from the Newcastle Office Wing showed an average en-

ergy reduction of 19% during OptiCOOL operation without compromising occupants’

comfort. Results from the Melbourne trial, on the other hand, indicated a 32% ther-

mal energy reduction while considering comfort standards [22]. Justin R. Dobbs and

Brandon M. suggested an occupancy-predicting control algorithm, which integrates

the building thermal properties, local weather predictions, and a self-tuning stochas-

tic occupancy model to reduce energy consumption while maintaining comfort level.

They afterwards outlined the results of three scenarios with regards to energy savings

and discomfort. (1) An exclusively occupancy-triggered controller, (2) a scheduled

controller augmented by occupancy triggering, and (3) an online trained occupancy-

predicting controller with one week of pre-training. Their results ended up with up

to 19% energy savings compared to the scheduled controller and significantly lower

discomfort than the occupancy-triggered controller [23]. Jonathan Brooks et al. de-

veloped an occupancy-based feedback control algorithm that is applicable to “under-

actuated” cases in which numerous rooms are served by the same HVAC system. They
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examined their proposed control logic called MOBSua in order to quantify the energy

savings while maintaining thermal comfort and IAQ metrics. The MOBSua controller

turned out to offer notable energy savings for under-actuated zones, accounting for

29% to 80% [24]. Hencey Gunay et al. suggested two self-adaptive models that can

predict the temperature of a perimeter office space. The models were designed to be

fed by the outdoor air temperature, indoor light intensity readings, occupancy status,

radiant panel heaters’ state, discharge airflow rate and temperature. In contrast to

the default control scheme, results of this implementation indicated that the duration

of the weekday temperature setback periods increased by over 50% for both heating

and cooling [25]. In [26], Fulin Wang et al. proposed a predictive control algorithm

for building environmental control based on occupant number detected by video data

and CO2 concentration. They showed an energy reduction of approximately 40% for

buildings without compromising thermal comfort and air quality. Alfonso Capozzoli

et al. used anonymous occupancy data of an office building for a monitoring period

of four months to create an occupancy-based schedule. They carried out trials on the

resulting schedule through an energy simulation approach by which a model can be

calibrated with real energy consumption data. Concerning the three tested thermal

zones in the building, 27 hours of the HVAC operation was saved during weekday

in comparison to the fixed schedule. In other words, the overall energy savings of

14% were resulted [27]. Another study by Yuzhen Peng and his team at ETH Zurich,

Switzerland analyzed a seven-month period of occupancy data, which was based on

motion signals collected from six offices with ten occupants. By running an occupancy

analysis, a learning-based demand-driven control strategy was proposed for sensible

cooling. It could predict occupants’ next presence and the presence duration of the

remainder of a day by learning human behavior from the past and current days. The

predicted occupancy information was then utilized indirectly to infer setback temper-

ature setpoints. During this study, they observed that energy saving potentials in an

individual office were inversely correlated to its occupancy rate. An energy saving of

20.3%, finally, was achieved as compared to the benchmark [28]. The authors of [29]
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studied the effect of spatial variations in mean radiant temperature (MRT) and occu-

pancy on HVAC energy consumption and thermal comfort. This research was carried

out in an open-plan office space with multiple air handling units. A predictive control

method was developed that reaches the optimum temperature setpoint by solving an

optimization problem. It minimizes HVAC energy consumption through modulating

the fan speed such that an acceptable thermal comfort and adequate outside air in-

take are its constraints. Throughout the entire period, this proposed control reached

an average savings of 15% over a PID control that assumes uniform spatial occupancy

distribution and 12% over a PID based strategy that uses actual spatial occupancy

information.

2.2 Occupancy Detection and Estimation Techniques

In this section, a comprehensive overview of current options for building occupancy

estimation and detection with different sensor categories is performed.

2.2.1 Passive Infrared Sensors (PIR)

PIR sensors can detect the infrared light radiations caused by the movement of

subjects. Thus, they could be used to detect the motion and presence of occupants

[30]. Dodier et al. proposed a PIR sensor network to detect the occupancy [31]. They

deployed three independent PIR sensors to monitor the occupancy presence. Bayesian

probability theory was then exploit to infer the presence and absence of occupants in

a zone. Wahl et al. proposed a distributed PIR-based approach which could detect

the moving directions of occupants [32]. A direction-based algorithm along with

probabilistic distance-based algorithm were utilized to perceive the moving directions

and consequently counting occupants. PIR sensors have some pros and cons; they

are low-cost and simple to use in different environments. However, PIR sensors are

not able to detect static occupants since they are motion-based sensors [30].
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2.2.2 Carbon Dioxide Sensors (CO2)

Human occupants contribute to rising indoor carbon dioxide (CO2) level which

can also indicate how much ventilation is required [33]. This means that human

occupants directly affect the HVAC energy consumption as well as indoor air qual-

ity (IAQ). Many studies have reported the use of CO2 concentrations for occupancy

prediction and estimation. Davide Cali et al. proposed an algorithm for occupancy

detection based on the mass balance equation of indoor CO2 concentrations. The

algorithm provided correct presence profile up to 95.8% of the time while the ex-

act number of occupants was identified with the maximum accuracy of 80.6% [34].

Chaoyang Jiang et al. developed a dynamic model of the occupancy level with which

they could estimate the real-time number of indoor occupants based on the CO2

measurements. They showed the accuracy of up to 94% with a tolerance of four oc-

cupants in an office room [35]. In another study, T. Pedersen et al. proposed a novel

plug-and-play occupancy detection method in which they utilized multiple sensory

data including CO2 sensors. Testifying the proposed method in a single room and a

three-bedroom apartment resulted in a maximum accuracy of 98% and 78%, respec-

tively [36]. S. Ryu and H. Moon developed a machine-learning occupancy prediction

model using indoor and outdoor CO2 concentration data. By different observation

states, they achieved the prediction accuracies ranging from 85% to 93.2% [37]. Many

literatures have proven that CO2-based occupancy detection for demand-controlled

ventilation (DCV) systems is a promising approach as CO2 concentration is a proxy

indicator of occupant-related contaminants [38–40]. Further, CO2 sensors are afford-

able, compact, non-intrusive and non-terminal-based. As they are also convention-

ally integrated into standard HVAC systems, almost no additional investments are

required in current infrastructures [33].
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2.2.3 Camera

Cameras could also be utilized in occupancy detection and estimation due to

their high precision. Erickson et al. applied a group of cameras to build an occupancy

model [41]. Their camera system captured and processed the image data of individuals

in order to determine whether the transition and direction occur. They afterwards

implemented the developed occupancy model into building management systems to

evaluate energy savings. With a multi-camera people tracking, Fleuret et al. proposed

an algorithm to reliably track multiple occupants in a complex environment and

provide the location and number of individuals [42]. The authors of [43] came up

with a real-time head detection and occupancy estimation algorithm which analyzes

the occupants’ videos in an office environment. They finally reported the accuracy of

up to 95.3% in occupancy estimations. Overall, occupancy detection and estimation

using cameras can offer accurate results; however, this method suffers from a number

of limitations including human privacy violations, high computational complexity and

the effect of environmental illumination in accuracy [30].

2.2.4 Wireless Fidelity

Since WiFi signals are highly likely available in indoor environments, WiFi occu-

pancy tracking method could be a good candidate. Therefore, the number of smart-

phones carried by occupants can be inferred as the number of occupants with an

acceptable accuracy. Balaji et al. designed and implemented an occupancy-based

HVAC controller in which the existing WiFi infrastructures within commercial build-

ings were deployed [44]. To lower inaccuracies in occupancy sensing, they utilized

metadata information of the occupants, access points and the HVAC zones in the

building. This resulted in the precision of 86% in occupancy detection within the

office areas, with merely 6.2% false negative errors. In another research, Wang et

al. proposed a WiFi scanning occupancy detection method [45]. They introduced

dynamic Markov time-window inference (DMTWI) approach which formulates the
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occupancy dynamics as a Markov process. Their work was finally validated through

an experiment using WiFi probes and cameras to collect the ground truth informa-

tion. In WiFi-based occupancy estimation methods, it is presumed that each occupant

would carry a smartphone with an enabled WiFi. Yet, this is not always the case

in real practice. Occupants might also carry multiple WiFi-enabled devices which

causes inaccuracies [30].

2.2.5 Sensor Fusion

Each sensor has a number of unique properties and limitations for occupancy

detection and estimation. The fusion of different types of sensors can compensate for

the limitations of a standalone sensor and therefore enhances the performance [30].

This study utilized not only CO2 sensors but also the auditorium occupancy schedule

and ventilation rates for both detection and estimation.

2.3 Closure on The Chapter

Section 1 in this chapter summarized the impact of occupancy information in

building management systems. The energy saving strategies, which incorporated the

occupancy information, were also discussed. It is quite obvious that occupancy detec-

tion can lead to considerable energy savings, ranging from 9% to 70% depending on

the system settings. Not only could the occupancy detection result in energy savings,

but also it can contribute to thermal comfort and indoor air quality as it prevents

from over and under-ventilation. Even though some research works did not take ther-

mal comfort into account, most of energy optimization algorithms have been designed

with comfort constraints. However, the correlation between supply air flow rate, zone

temperature and the number of occupants seem to be missing. The proposed op-

timization strategy in this research mainly relied on the interactions of mentioned

variables in order to generate the trade-off between energy savings, IAQ and human

comfort thresholds. Due to the importance of occupancy, section 2 attempted to cover
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different major techniques of occupancy detection and estimation. Each method was

discussed based on some evaluation metrics including existing infrastructure, cost,

privacy issue, detection and estimation accuracy, and limitations. As an enclosure

on this chapter, the following table represents a comprehensive comparison on all the

discussed occupancy sensors along with . According to the section 2.2.2 and table

2.1, it was decided to exploit CO2 sensors to predict occupancy in this study.

Table 2.1.: Comparison of different occupancy detection and estimation methods

Sensor
Existing

Infrastructure
Cost

Detection

Accuracy

Estimation

Accuracy

Privacy

Issue
Limitations

PIR No Low High Low No Miss static occupants

CO2 Yes No Medium Medium No Delay detection

Camera No High High High Yes Illumination condition

WiFi Yes No High High Partial Need to turn on WiFi

Sensor Fusion Partial Medium Very High Very High No Use of different sensors
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3. METHODOLOGY

Figure 3.1 represents the methodology used in this research. Each section is discussed

in the following chapters.

Fig. 3.1.: Methodology

3.1 Test Environment

The test environment used in this study was an auditorium located at the VanNuys

Medical Science Building, IUPUI campus. This is a five-story building which includes

auditoriums, office areas, and mainly medical laboratories. The targeted zone is

situated at the center of this building. Figures 3.2, 3.3, and 3.4 depict the floor layout

as well as 3D layouts of the zone with different viewpoints. It is noteworthy that this

auditorium is designed for the maximum seating capacity of 182 and mostly holds

scheduled lecture classes and seminars. It has the volume and floor area of 1,400 m3

and 306 m2, respectively. There are three entrances to the zone, as portrayed in the

layouts, whereas the window per wall ratio is zero. The conditioned air is delivered by

six supply diffusers mounted on the suspended ceiling while the zone air is returned

and relieved by one sidewall along with four ceiling-mounted square extract grilles.
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Per ASHRAE standard 62.1-2016 [46], CO2 concentrations were measured not only

in the zone, but inside the supply and return ducts. Red marks shown in the figure

3.3 are the exact location of the CO2 sensors.

Fig. 3.2.: The Auditorium floor layout
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Fig. 3.3.: An overview of the test environment

Fig. 3.4.: Different viewpoints of the test environment: a) top, b) front, c) Side, d)

iso
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Fig. 3.5.: Schematic of the HVAC system serving the auditorium

3.2 HVAC System Sequence of Operation

Figure 3.5 is the schematic diagram of the HVAC system associated with the

auditorium. It comprises a primary air handling unit as well as a recirculation system.

The primary AHU is a variable air volume (VAV) system containing two identical

supply fans, while the recirculation system is a constant air volume (CAV) type. The

primary AHU receives 100% outdoor air and distributes to multiple zones including

the auditorium. Due to the presence of laboratories, there is no return duct and

fan associated with the primary AHU. In spite of the VAV type, this primary AHU

is currently operating between two fixed control positions, occupied and unoccupied

mode. The primary air is modulated by a ventilation air damper, supplied to the

zone as fresh ventilation air, and then mixed with the conditioned air coming from

the recirculation system. The recirculation system fully operates with no shutdown

(CAV type), while the primary fans are on full operation during occupied mode and

on 70% operation during unoccupied mode. The occupied mode schedule is set from

6:00 a.m. to 9:00 p.m. excluding weekends and holidays. During occupied mode
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the ventilation air damper is fully open, introducing about 1,000 L/s of outdoor air;

this fraction of outdoor air, then, gets mixed with the recirculated air so that the

discharge air volume of 2800 L/s is achieved in the duct down to the auditorium.

The zone temperature, in occupied mode, is allowed to float between 21°C and 24°C

(campus standard) with a 23°C setpoint. During unoccupied mode the ventilation air

damper position goes down to 0% so that no outdoor air is supplied to the zone. Due

to mass balance, the zone relief air damper position is proportional to the ventilation

air damper position. Thus, the relief damper also closes when unoccupied mode,

meaning that only the recirculation system is in the loop.

It is worth noting that there are no boiler and/or chiller linked to the air handlers

as steam and chilled water are purchased upon the university policies. This causes a

number of limitations on controlling the water and steam supply systems. That is,

the boundaries of this research had been defined based on the degrees of freedom on

the air handling units; the experiments were conducted on the primary AHU (VAV)

as well as zone’s adjacent damper, but not the recirculation system (CAV) as it is

only on constant operation.

3.3 Data Acquisition System

Data collection was conducted with the aim of analyzing occupancy level as well

as HVAC energy performance. The following sections show details of the employed

sensors, locations they were installed and the period of their utilization.

3.3.1 Integrated IoT Sensors

The integrated IoT system, as Figure 3.6 represents, consists of one power/energy

meter sensor, three CO2 sensors, an IoT gateway, the cloud platform and its dash-

board. All the integrated sensors are capable of wireless communication via Bluetooth

low energy (BLE) technology. The power meter is connected to the primary fans ,

measuring power factor, active power (kW) and energy consumption (kWh). It can
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cover the voltage range of 90-600 VAC with 0.5% accuracy. The CO2 sensors are

self-calibrating non-dispersive infrared (NDIR) type, which measure a range of 0 to

5000 ppm with ∓5% of reading accuracy. The cloud dashboard is capable of showing

both historical and real-time data that can also be downloaded for further processing.

Fig. 3.6.: IoT-based data acquisition system

3.3.2 Building Management System (BMS)

Aside from the IoT platform, the building management system (BMS) was set to

store the rest of required data, namely, temperature and airflow rate. As figure 3.7

represents, the utilized building management system is Metasys made by Johnson

Controls. The Metasys user interface provides coordinated control over the commer-

cial building’s systems including HVAC, lighting, security and protection systems.

As it controls equipment, Metasys also collects critical data, which can be used for

decision-making strategies by operators.
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Fig. 3.7.: Metasys software environment

3.3.3 Data Collection

The collected data of both IoT and BMS systems along with the ground truth oc-

cupancy readings were eventually lumped together for data analysis. The experimen-

tal data were collected and monitored on a five-minute time interval from September

27th, 2019 to January 7th, 2020. The number of occupants in the auditorium was

manually counted every 15 minutes, and then cross-checked with the class schedule

provided by the university personnel. The time intervals were, indeed, selected based

on the variables’ rate of change. Table 3.1 indicates the data-set collected for this

study.
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Table 3.1.: Collected data-set

Data Type Unit Sensor Group Sensor Quantity

CO2 [ppm] IoT 3

Reactive Power [kW ] IoT 1

Airflow Rate [L/S] BMS 5

Temperature [°C] BMS 7

Damper Position [%] BMS 2

Occupancy Count [person] Manual Observation -

3.3.4 Sensor Locations

Figure 3.8 shows the location of sensors, both integrated to the system for the

sake of this research and the pre-embedded sensors.

Fig. 3.8.: Sensor locations in the test-bed
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3.4 Equipment Specification

As mentioned in section 3.2, the primary AHU has two identical VAV fans which

are synced. Tables 3.2 and 3.3 are the the spec sheets of the fans and the electric

motors coupled with them.

Table 3.2.: Primary fans’ specification

Model 30-AFDW-41

Operating Power 67.9 [hp] / 50.6 [kW ]

Volume 35,000 [CFM ] / 16,518 [L/s]

Static Pressure 8.5 [In. WC] / 2.1 [kPa]

Static Efficiency 69%

RPM 1,868

Table 3.3.: Primary motors’ specification

Operating Power 100 [hp] / 74.6 [kW ]

RPM 1,725

Voltage 460 V

Phase 3

Service Factor 1.15

Efficiency Factor 95.4%

Power Factor 85%

Enclosure Open Drip Proof (ODP)

Frame 404T
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3.5 Modeling Methods

Modeling of HVAC systems is a crucial step towards the appropriate analysis and

optimization. HVAC system modeling approaches can be divided into three main

categories:

• Physics-based (white box / mathematical / forward)

• Data-driven (black box / empirical / inverse)

• Hybrid (gray box)

These models can be linear or nonlinear, static or dynamic, explicit or implicit,

discrete or continuous, deterministic or probabilistic, deductive, inductive or float-

ing [47].

3.5.1 Physics-Based Models

Physics-based models are derived from the fundamental laws, namely, the conser-

vation of energy and mass, heat transfer and momentum. These types of models could

be essentially used at the design level where it is requisite to predict and analyze the

operation of HVAC system components [47]. The dynamic-based white box models

are commonly developed for the processes with higher delay time such as temperature

and humidity (e.g. heating/cooling coil model). In contrast, the static models have

shown superior performance on the fast moving processes in the HVAC systems (e.g.

damper airflow rate model) [48].

3.5.2 Data-Driven Models

Data-driven models are based on the system performance data which can be col-

lected through a real practice in order to establish a relationship between the corre-

lated variables using statistical techniques. Statistical regression and artificial neural
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network are the most common examples of data-driven models [47]. Black box model-

ing is suitable for the existing HVAC systems optimization for which adequate training

data are available.

3.5.3 Hybrid Models

Hybrid models could be considered as the combination of physics-based and data-

driven models [47]. The structure of a gray box model is formed by physics-based

equations while the parameters are estimated from the measured data of the system.

This modeling technique is primarily beneficial to the control applications in which a

model can be formed as a transfer function or state space [49].

3.6 Closure on The Chapter

This chapter attempted to clearly describe the scope of research and to map out

the methodology. The case study along with its specifications were discussed in detail.

Data acquisition system, sensors’ types and locations were also scrutinized. Modeling

methods, as a crucial step towards modeling selection, were explored. It was con-

cluded that Gray-box models have been developed to overcome the shortages of both

white-box and black-box models. As for the benefits, higher accuracy, more gener-

alization potential, less complexity and lower computational costs could be named.

However, developing hybrid models require more efforts since the process involves the

implementation of both governing equations as well as statistical data analysis. Due

to the nature of this research, both data-driven and hybrid modeling methods were

utilized.
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4. DEMAND-CONTROLLED VENTILATION

STRATEGIES

Demand-controlled ventilation methods introduced in this chapter can be divided into

two categories, dynamic per-occupant and CO2-based. As the dynamic per-occupant

DCV strategies require the number of occupants for implementation, three different

occupancy prediction models were first proposed. Proportional control, on the other

hand, was also quantified as a CO2-based DCV strategy. Figure 4.1 represents this

division.

Fig. 4.1.: Demand-controlled ventilation strategy breakdown

With regards to the modeling methods discussed in chapter 3, the steady-state

approximation and transient models must be categorized as physics-based models due

to the fact that they are directly derived from mass balance equations. In comparison,
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the feed-forward neural network model is developed based on the collected data of

the system; therefore, it falls under the data-driven modeling approach and is a type

of artificial neural networks (ANN).

4.1 Physics-Based Models

For the auditorium space, a mass balance model was used to describe the change

of CO2 within the zone using the equation (4.1) [50].

v
dCz

dt
= PzG+ VdzCdz − VrCr (4.1)

where v is the auditorium volume (L), Cz is the CO2 concentrations in the auditorium

(ppm/106), Pz is the number of occupants in the auditorium (person), G is the average

rate of CO2 generation per person (L/s.person), Vdz is the zone discharge airflow

rate to the auditorium (L/s), Cdz is the CO2 concentrations of the zone discharge air

(ppm/106), Vr is the return airflow rate (L/s), and Cr is the CO2 concentrations of

the return air (ppm/106).

Equation (4.2) shows the mass balance at the air handling units.

VdzCdz = (Vr − Ve)Cr + VozCoz (4.2)

where Ve is the relief airflow rate (L/s) and Voz is the outdoor airflow rate (L/s).

Equation (4.2) assumes the CO2 concentrations in the relief air equal to that of

return air.

Upon substituting equation (4.2) into equation (4.1), the zone CO2 mass balance

equation can be formulated as equation (4.3).

v
dCz

dt
= PzG+ VozCoz − VeCr (4.3)

Although equation (4.3) is solvable via simple integration, it is more convenient to

either adopt steady-state approximation or to use the transient method, according to

ASHRAE 62.1-2016 [46].
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4.1.1 Steady-State Approximation

Assuming that CO2 concentrations in the auditorium have reached a steady-state,

the equation (4.3) drops the derivative term and turns to equation (4.4). The esti-

mated zone occupancy can be calculated by equation (4.5) using steady-state approx-

imation.

PzG+ VozCoz − VeCr = o (4.4)

Pz,est =
VeCr − VozCoz

G
(4.5)

4.1.2 Transient Method

The transient method assumes the CO2 derivative to be the rate of change of con-

centrations between the current and previous sampling instants, expressed as equa-

tion (4.6). The zone estimated occupancy can subsequently be calculated by equation

(4.7).
dCz

dt
≈ Ci

z − Ci−1
z

∆t
(4.6)

P i
z,est =

VeCr − VozCoz

G
+ v

Ci
z − Ci−1

z

G∆t
(4.7)

where ∆t is the time-step in second and i is the current step.

4.2 Artificial Neural Network Model

Artificial neural networks or connectionist systems are machine learning tools

inspired by the biological neural networks and able to process data same as human

brain. ANNs can develop linear and nonlinear models for time series. They are widely

accepted as effective tools for fitting functions [51].

This study utilized a two-layer feed-forward neural network (FFNN) to approxi-

mate nonlinear relationships between inputs and outputs. The data of the occupancy
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model need to move in only one direction (forward) from the input nodes, through the

hidden layers and finally to the output node [52]. Since there are no cycles or loops

associated with this specific network, FFNN was selected as the best fit. It consists

of layers of processing units, denoted as neurons. The basic elements in FFNN are

neurons arranged by the inputs, outputs and hidden layers. Input layers read in a

signal to the network and hidden layers pass the signal through the network through

weighted connections. In this network every hidden neuron receives inputs in the

form of weighted signals from the previous layer plus a bias; then, flows to the output

layer in one direction. By using the Sigmoidal activation function in equation (4.8),

the network output can be described as equation (4.9) [53].

f(x) =
1

1 + e−x
(4.8)

and

yk = f

(
M∑
j=1

ujk.f

(
N∑
i=1

wijxi + Θj

))
+ Θk (4.9)

where f(x) is the Sigmoidal activation function, y is the output of the network, w

and u are the scalar weights, and Θ is the bias. N and M are the number of inputs

and the number neurons in the hidden layer, respectively.

In this study, the neural network model was built using MATLAB deep learning

toolbox [54]. The inputs to the algorithm include the CO2 concentrations of the zone,

discharge and return air; The ventilation rate of the discharge, outdoor, and return

air; and the schedule of classes specifying when the zone is likely to be occupied.

The training function was selected to be Bayesian regularization back-propagation

which minimizes the mean squared error (MSE) between the predicted and observed

values. The number of hidden layer neurons was determined by the number of inputs

using the equation (4.10) [55]. Figure 4.2 portrays the FFNN architecture used in

this research.

M = 2N + 1 (4.10)

where M and N are the number of hidden layer neurons and inputs, respectively.
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Fig. 4.2.: The feed-forward neural network architecture of the occupancy prediction

model

The only output of the model is the estimated number of occupants inside the

zone. The algorithm utilized the collected data from September 27th 2019 to January

7th 2020, except for the period of September 30th to October 4th as the validation

period. A summary of FFNN design parameters and inputs is listed in Table 1.
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Table 4.1.: Summary of FFNN design parameters

and inputs

Network Type FFNN

Input Parameters

CO2 concentrations [ppm]

Ventilation rates [L/s]

Class schedule

Target(s) Number of occupants

Training Algorithm Bayesian regularization

Number of Neurons 15

Performance MSE

4.3 The Observed Zone CO2 Concentrations and Occupancy

Figure 4.3 shows the actual zone CO2 concentrations and the occupancy level in

the auditorium over 5 working days, from September 30th to October 4th, 2019. The

average breathing zone CO2 concentrations during occupied mode were 508 ppm. The

statistics also revealed that zone CO2 concentrations while classes were in session and

not in session averaged out about 697 ppm and 439 ppm, respectively. The occupancy

level peaked at 150 people, occurring on September 30th. The average number of

occupants during occupied mode was 47 people while only 0 during unoccupied mode.

Over the course of validation, the average occupancy level was observed to be 7.76

people. The average ventilation rate during occupied mode was about 1000 L/s, but

0 L/s when unoccupied mode. Table 4.2 summarizes the statistical information of

the zone regarding occupancy level as well as CO2 concentrations.
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Fig. 4.3.: The auditorium human occupancy and CO2 concentrations over 5 working

days

Table 4.2.: The Auditorium occupancy and CO2 level

Occupied Mode Unoccupied Mode Validation Period

Average Number of Occupants 47 0 7.76

Average CO2 Concentrations [ppm] 508 443 490

4.4 Occupancy Prediction Model Performance

The occupancy estimations resulted from the physics-based models [equations

(4.5) and (4.7)] and the FFNN model were presented in this section. This study used

a typical Monday through Friday school week in 2019 for validation of the models.

Both physics-based models predicted the occupancy level using the data obtained

within this validation period. The FFNN model was trained using the data of the

entire experiment period, excluding the days used for validation.

All models were evaluated using ASTM D5157 Standard Guide for Statistical

Evaluation of Indoor Air Quality Models [56]. This standard provides three statistical
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tools for evaluating the accuracy of IAQ model predictions as suggested by [33] and

[56]. Table 4.3 classifies the values calculated using the equations (4.11) and (4.12).

r =

N∑
i=1

[
(P i

z − P̄z)(P
i
z,est − P̄z,est)

]
√

N∑
i=1

(P i
z − P̄z)2

√
N∑
i=1

(P i
z,est − P̄z,est)2

(4.11)

NMSE =
1

NP̄zP̄z,est

N∑
i=1

(P i
z,est − P i

z)
2 (4.12)

where Pz is the observed occupancy, P̄z is the average of the observed occupancy,

Pz,est is the estimated occupancy, P̄z,est is the average estimated occupancy, and N is

the number of observations.

These parameters should be within certain ranges as mentioned below:

1. The correlation coefficient, calculated using equation (4.11), shall be 0.9 or

greater.

2. The best fit regression line between the predicted and observed data should have

a slope between 0.75 and 1.25, and an intercept less than 25% of the average

observed value (7.76 people).

3. The normalize mean square error (NMSE), calculated using equation (4.12)

should be less than 0.25.

Table 4.3.: The performance of Occupancy Prediction Models

Modeling Techniques r Slope Intercept NMSE

ASTM Criteria >0.9 0.75-1.25
Less than 25% of average

occupancy (1.94 people)
<0.25

Steady-State Approximation 0.85 1.07 5.56 1.60

Transient Method 0.86 0.85 3.86 1.56

FFNN Model 0.98 1.00 0.97 0.23
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The steady-state approximation model established the correlation coefficient of

0.85, with the best fit regression line introducing a slope of 1.07 and an intercept of

5.56. The NMSE was also calculated to be 1.60. The best fit line turned out to be

close to unity, revealing that the model could well estimate the overall trend of the

change of occupancy. However, an intercept of 5.56, 72% of the average measured

occupancy, means that the model tends to underestimate the number of occupants by

5 to 6 people. The correlation coefficient as well did not fall within the recommended

guideline. Its NMSE further confirms that the model did not yield a satisfactory

result.

The transient model, in comparison, gave the correlation coefficient of 0.86. Its

best fit regression line had a slope of 0.86 and an intercept of 3.86. This intercept

accounted for 50% of the average measured occupancy. The slope was within the

guideline, although both the intercept and NMSE did not meet a satisfactory result.

This conveys that the transient model, even though providing a better result com-

pared to the steady-state approximation, is still not an optimal option to estimate

the occupancy level.

Contrary to the aforementioned physical models, the FFNN introduced the cor-

relation coefficient of 0.98. The NMSE was as small as 0.23. The slope and intercept

of its best fit regression line turned out the numbers of 1.00 and 0.97, respectively.

The FFNN intercept, with only 12% of the average measured occupancy, stayed well

within the guideline. According to the ASTM criteria, the results suggest that the

FFNN model can provide superior performance over the physical models. Figure 4.4

displays the assessment criteria of all three models discussed in this section.
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To emphasize on performance differences, figure 4.5 provides the magnified inset

of occupancy prediction models along with the observed zone occupancy.
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Fig. 4.5.: The magnified inset of occupancy prediction models as well as observed

values

Aside from the comparison between these three models, figures 4.6 to 4.11 visualize

their prediction performance individually. For each model, the prediction values were
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plotted against the ground truth occupancy data over the validation period on 15

minute-timesteps. Each prediction comes with the errors analysed and plotted based

on the Pearson residuals function, denoted as the equation (4.13) [57]. The equation

(4.14) also simply shows the root mean square deviation.

pri =
P i
z − P i

z,est

RMSE
(4.13)

RMSE =
1

n

n∑
i=1

(P i
z − P i

z,est)
2 (4.14)

where pr is the Pearson residual error, RMSE stands for the root mean square error,

and n is the number of samples.

The rationale behind using Pearson residuals is to check the model fit at each

observation step. Positive or negative Pearson residuals indicate whether the ob-

served values at each timestep are higher or lower than the predicted values, and the

magnitude indicates the degree of departure.
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4.5 Implementation of DCV Using CO2

Ventilation and IAQ principles approve the utilization of DCV to control outdoor

air ventilation rate. Under ASHRAE Standard 62.1-2016, an effective ventilation

prerequisite is dependent on the occupancy level and the floor area of a zone. Equation

(4.15) gives the minimum required outdoor airflow.

Vbz = RpPz +RaAz (4.15)

where Vbz is the required outdoor fresh airflow in the breathing zone, Rp is the outdoor

airflow rate required per person, Pz is the number of people in the ventilated zone

during use, Ra is the outdoor airflow rate per unit area, and Az is the occupiable floor

area of the breathing zone.

4.5.1 Proportional Control

Based on the zone CO2 concentrations measurement, the ventilation rate can be

adjusted proportionally between the minimum and outdoor value. A proportional

control system can be applied and integrated into the outdoor air dampers in order
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to modulate the outdoor airflow rate. The equation (4.16) calculates the outdoor

airflow rate which needs to be introduced by a proportionally controlled outdoor air

damper [50].

Voz =
Cz − Cz,min

Cz,des − Cz,min

(Voz,des − Voz,min) + Voz,min (4.16)

where Cz is the measured zone CO2 concentrations (ppm/106), Cz,min is the indoor

CO2 concentrations when the zone is unoccupied (ppm/106), Cz,des is the indoor CO2

concentrations when the zone has the design level of occupancy (ppm/106), Voz,des

is the ventilation rate at the design level of occupancy (L/s), and Voz,min is the

ventilation rate when the zone is unoccupied (L/s).

4.5.2 Dynamic Per-Occupant Controls

Using either of the physics-based models or FFNN model, the minimum ventilation

rate could be achieved by equation (4.15). Both steady-state and transient models

calculate the breathing zone population using the air properties that can be easily

obtained from data-loggers. The FFNN model requires more computing power, yet

it is achievable through implementing a dedicated system.

4.6 Comparison of Ventilation Rates

The CO2-based DCV strategies were compared with the schedule-based on/off

control that is currently being implemented. The proportional control do not consider

the occupancy level directly. Instead, it employs the CO2 concentrations of 1,200 ppm

as the reference. The zone occupancy, rather than CO2, is utilized by the dynamic

per-occupant control strategies, following the minimum ventilation rate per person

by ASHRAE standard. For a lecture hall, ASHRAE standard 62.1-2016 recommends

the ventilation rate of 3.8 L/s per person and 0.3 L/s per square meter of the floor

area [46].

A close-up view of the day of October 3rd is shown in figure 4.12. It is evident

that CO2-based DCV strategies proposed lower ventilation rates when the AHUs
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were in occupied mode. During unoccupied mode, the current on/off control strategy

supplied no ventilation due to the closure of the outdoor air damper. Other strategies,

in opposition, are required to introduce a minimum unoccupied ventilation upon

ASHRAE standard 62.1 [46].

The proportional control strategy produced the most ventilation airflow amongst

the DCV strategies as it continued to ventilate the zone even when there was no

occupancy. It also reacted slowly to the change of occupancy when people entered

and left the zone, creating a huge saving opportunity due to over-ventilation. The

average ventilation rate during occupied and unoccupied mode were, respectively, 246

L/s, and 103 L/s.

The dynamic control strategies reacted quickly to the changes of occupancy. With

no zone occupancy, the controls modulate the outdoor air damper to the minimum

required. Compared to the on/off and proportional controls, all the dynamic con-

trol strategies proved to yield higher ventilation savings. The FFNN model ended

up giving the lowest average ventilation rate due to its high prediction capability.

The steady-state approximation method came after the FFNN model. The reason,

however, is its tendency to underestimate the number of occupants.

The transient model introduced a comparable average ventilation rate to that

of the steady-state approximation, on account of their similar occupancy prediction

accuracy. The average ventilation rate using the steady-state approximation, the

transient method, and the FFNN model, when occupied, were 183 L/s, 187 L/s, and

155 L/s, respectively. During unoccupied mode, these numbers changed to 94 L/s,

100 L/s, and 99 L/s, respectively. Table 4.4 compares the baseline average ventilation

against the results of proposed strategies.
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Fig. 4.12.: Simulated ventilation rates of different control strategies , October 3rd

Table 4.4.: Comparison between average ventilation of the baseline and proposed

DCV strategies

Average Ventilation Rate [L/s]

Baseline
Proportional

Control

Steady-State

Approximation

Transient

Method

FFNN

Model

Occupied Mode 1,025 246 183 187 155

Unoccupied Mode 0 103 94 100 99

4.7 Indoor CO2 Concentrations Standards and Guidelines

The Occupational Safety and Health Administration (OSHA) introduced “code

of federal regulations, title 29” in which the indoor CO2 concentrations of 5,000 ppm

were determined as the threshold to pose health risks [58]. However the ASHRAE

Standard 62-1989 [59] recommended indoor CO2 level of 1,000 ppm to satisfy comfort

criteria. This recommendation was later dropped in the ASHRAE Standard 62-1999,
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eliminating an absolute CO2 threshold of 1,000 ppm. Instead, an indoor/outdoor

CO2 concentrations differential of 700 ppm was established [60]. Previous studies

have shown that outdoor CO2 concentrations typically range from 300 to 500 ppm.

Therefore, indoor CO2 concentration between 1,000 ppm to 1,200 ppm for sedentary

occupants is considered an acceptable indoor air quality. This study deployed indoor

CO2 concentrations of 1,200 ppm as a guideline to build the proposed DCV controls

discussed in previous sections.

4.8 The Effects of DCV Strategies on CO2 Concentrations

The impact of implementing different DCV strategies on zone CO2 concentra-

tions was modeled by equation (4.3). Figure 4.13 illustrates the change of zone CO2

concentrations on the day of October 3rd. As is clear, CO2-based DCV strategies

increased the overall CO2 concentrations due to lowering the ventilation rate. None

of the DCV strategies caused a peak in CO2 level to violate the guideline.

The proportional control method resulted in an average of 530 ppm during occu-

pied mode, and 408 ppm during unoccupied mode. Compared to the current practice,

this model increased the average CO2 level by 2.5% when occupied, but decreased by

8% during unoccupied mode.

The FFNN model led to the highest average CO2 concentrations among per-

occupant DCV strategies, which was expected as it proposed the lowest average ven-

tilation rate. The numbers were 671 ppm and 445 ppm, 30% higher and 1% lower

than the current CO2 level during occupied and unoccupied mode, respectively.

The steady-state and transient models also showed similar outcomes as they intro-

duced comparable average ventilation rates. During occupied mode the steady-steady

and transient models yielded 646 ppm and 660 ppm, respectively; these numbers stood

25% and 28% higher than the current CO2 concentrations measurement. During un-

occupied mode the numbers were derived to be 425 ppm and 426 ppm, accounting

for 3.6% lower CO2 concentrations than that of current situation. It is noteworthy
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to mention that over the unoccupied hours all aforementioned DCV strategies pro-

posed lower CO2 concentrations comparad to the current practice due to introducing

a minimum fresh airflow.
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Fig. 4.13.: Zone CO2 concentrations under different control strategies, compared with

the recommended threshold by ASHRAE 62.1

4.9 Closure on The Chapter

So far, the superiority of implementing machine learning algorithms in CO2-based

DCV methods has been explored. The two-layer feed-forward neural network algo-

rithm was exploited to estimate human occupancy level, and then proven through a

case study. Drawing a comparison amongst the four examined DCV strategies demon-

strated that the application of ANN in per-occupant DCV can result in substantial

ventilation savings while considering IAQ as the first constraint. All strategies can

well maintain indoor CO2 concentrations below 1,200 ppm, meaning that they are

all effective energy saving strategies. Further research will be included to analyze

the effects on thermal comfort when implementing excessive reduction in ventilation

airflow.
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5. THERMAL COMFORT ANALYSIS

In addition to the consideration of indoor air quality criteria discussed in the previous

chapter, this chapter attempts to analyze the zone thermal conditions. ASHRAE

standard 55-2017 [61] had defined the thermal comfort as ”the condition of mind that

expresses satisfaction with the thermal environment and is assessed by subjective

evaluation”.

5.1 Predicted Mean Vote (PMV)

According to ASHRAE standard 55, PMV is a dimensionless index which predicts

the mean value of the thermal sensation votes of a large group of people. The sensation

scale is expressed from –3 to +3, corresponding to the categories shown in table 5.1.

Table 5.1.: PMV index scale and corresponding categories

Thermal Sensation Scale Category

+3 Hot

+2 Warm

+1 Slightly warm

0 Neutral

−1 Slightly cool

−2 Cool

−3 Cold
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The predicted mean vote (PMV) model employs heat balance principles to relate

six primary factors to the average response of people regarding thermal comfort.

These key factors are as follows:

• Metabolic rate

• Clothing insulation

• Air temperature

• Radiant temperature

• Air speed

• Humidity

The first two factors are characteristics of the occupants, and the remaining four

factors are conditions of the thermal environment.

5.1.1 Modified PMV Model

The PMV model recommended by ASHRAE has caused a number of limitations,

namely, the complexity of analysis and expensive sensor integration requirements.

The assumptions of metabolic rate and clothing insulation could substantially vary

from person to person, arising inaccuracies as well. Therefore, many researches [62–65]

have been proposing the modified versions of this model in order to pave the way.

In this study, a modified PMV model, by Sheng Zhang et. al. [65], was utilized. In

comparison to the ASHRAE PMV model, the results of their proposed modified PMV

have shown a negligible mean discrepancy of 0.14 (less than 5%). Unlike PMVASHRAE

that comprises of six factors, this modified PMV model can be quantified by only two

factors, the zone temperature and discharge airflow rate. The equations (5.1) and

(5.2) show this regression-based model with fixed dimensionless coefficients.

PMVm = − 7

91, 300
NT 2

z +
19

50
Tz −

689

74
(5.1)
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N = 3, 600
Vdz
v

(5.2)

where PMVm is the modified PMV, N is the air change per hour (ACH), Tz is the

zone air temperature (°C), Vdz is the zone discharge airflow rate (L/s), and v is the

volume of the zone (L).

5.2 Predicted Percentage of Dissatisfied (PPD)

Added to the PMV index, the ASHRAE standard 55 introduced another index

by which a quantitative prediction of the percentage of thermally dissatisfied people

can be determined. Indeed, PPD index can be calculated using PMV as denoted

in equation (5.3). Figure 5.1 shows the PMV-PPD relationship on the coordinate

system.

PPD = 100− 95e

[
−0.03353(PMV )4−0.2179(PMV )2

]
(5.3)
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Fig. 5.1.: PPD as a function of PMV

Due to the large variations between occupants, physiologically and psychologically,

it is quite challenging to attain 100% thermal satisfaction in a space. ASHRAE

standard 55 determined the acceptable thermal environment when more than 80% of
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the human occupants perceive the situation thermally comfortable. In other words,

the Predicted Percentage of Dissatisfied (PPD index) should be maintained at or less

than 20% [61].

5.3 Current Zone Thermal Comfort Analysis

Figure 5.2 shows the actual auditorium air Temperature, outdoor airflow rate

and occupancy level against each other over 5 working days, from September 30th to

October 4th, 2019. It was observed that the zone air temperature started decreasing

due to the ventilation during occupied mode, averaging about 22°C. This temperature

drop continued to the point where it reached the steady-state. During unoccupied

mode, as a result of heat transfer from surrounding, the zone air temperature increased

gradually with a transient form, until the next day when the ventilation started again.

The zone air temperature averaged about 26°C when in unoccupied mode. It should

also be noted that the occupancy level was the reason for the spikes of temperature

due to the fact that occupants release latent and sensible heat. The interaction

between temperature and ventilation, however, confirmed the fact that the impact

of occupancy in temperature adjustments were far less than that of outdoor airflow

rate.
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Fig. 5.2.: Observed auditorium air temperature, outdoor airflow rate and occupancy

level

5.3.1 Current Zone PMV and PPD Indices

Figure 5.3 shows the current PMV index of the auditorium only during occupied

mode since the thermal sensation is associated with occupants’ votes. It could be

concluded that the current operation is over-ventilating the zone, as the PMV index

was lower than −1 almost over the entire course of experiment. As the figure 5.4

portraits the PPD index, this over-ventilation resulted in the thermal dissatisfaction

of more than 20% of occupants, reaching as high as 70% at some point. For the second

half of this period, the PMV index fell between −1 to 0, showing less dissatisfaction,

due to the lower average of ventilation rate. Figure 5.5 visualizes how the PMV and

PPD indices are related. It confirms that almost all votes were negative, with rare

cases of “neutral” sensation but mostly “slightly cool” and “cool”. Table 5.2, also,

gives an overview of the current practice.
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Table 5.2.: Summary of current temperature, PMV and PPD indices (occupied mode)

Minimum Maximum Average

Zone Air Temperature [°C] 20.33 26.71 21.95

PMV [-] −1.82 +0.57 −1.24

PPD [%] 5.00 68.25 38.05

5.4 Zone Air Temperature Model

With the proposed ventilation of the aforementioned models discussed in the pre-

vious chapter, the zone air temperature must be expected to change. The number of

occupants, as figure 5.2 proved, is also another important factor in affecting temper-

ature. Given the correlations between the zone air temperature, outdoor airflow rate

and occupancy, a data-driven model was developed.
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5.4.1 Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) models are non-parametric Bayesian ap-

proach models, fitting various functions into the training data until the prediction

values reach the nearest possible neighborhood of the observed values [66]. As op-

posed to this non-linear regression algorithm, the simple linear regression model only

allowed a limited flexibility due to the fixed coefficients of the linear function by which

a poor prediction was offered. Assuming the training set of {(xi, yi); i = 1, 2, . . . , n},

the predictive model can be structured as the equation (5.4).

y = xTβ + ε (5.4)

where y is the predicted values, x is the matrix of input variables, xT is the transpose

of the matrix x, β indicates the fitted coefficients, and ε is the additive noise between

the observed and predicted values. As for developing the GPR model, MATLAB

regression learner toolbox was utilized. The inputs of the model were selected to be

the outdoor airflow rate (Voz) and the number of occupants in the auditorium (Pz),

while the only output was the auditorium air temperature (Tz).

5.4.2 Zone Air Temperature Model Performance

Figure 5.6 shows the observed and predicted values of the auditorium air temper-

ature, over the validation period. It is noticeable that the predicted values closely

followed the observed values during the occupied mode. However, the model showed a

lack of prediction during the unoccupied mode as it did not take the transient temper-

ature rise into account. The rationale behind this is because of no airflow variations

(damper closure during unoccupied mode) while the temperature still fluctuates. The

GPR model, overall, was considered to be functional as it was supposed to contribute

to the thermal comfort analysis for which only the occupied mode matters.
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Fig. 5.6.: Predicted vs. observed

Figure 5.7 represents the linear correlation between the observed and predicted

values. The proportion of the variance between the two values was measured by the

coefficient of determination (R-squared), denoted as the equation (5.5).

R2 = 1−

∑
i

(
T i
z − T̂ i

z

)2
∑

i

(
T i
z − T̄ i

z

)2 (5.5)

where Tz is the observed zone air temperature, T̂z is the predicted value of zone

temperature, and T̄z is the mean of the observed zone temperature.

Table 5.2 reports this number along with the probability value (p-value) and

RMSE. The results turned out that the predictive model was fitted with a negligible

error and a high significance.
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Table 5.3.: Zone air temperature model performance parameters

Statistical Parameters Magnitude

R-squared 0.924

P-value 1.02× 10−269

RMSE 0.567
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Fig. 5.7.: The GPR best fitted model

Figure 5.8, lastly, shows the Pearson residuals. The noticeable patterns confirm

the fact that GPR model could not offer accurate predictions during unoccupied

mode; although, it worked highly accurately during the occupied hours.
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5.5 Proposed Zone Thermal Comfort Analysis

As discussed in chapter 4, the dynamic per-occupant models estimated number of

occupants and subsequently proposed ventilation rates. For each individual model,

the estimated number of people along with associated ventilation rate were substi-

tuted into the GPR model to predict zone air temperature. As far as proportional

control, however, the ground-truth occupancy data were used since this model pro-

posed ventilation rate based on CO2 concentrations.

As demonstrated by the observed data (section 5.3), the auditorium air temper-

ature was negatively correlated with ventilation rate. Figures 5.9, 5.13, 5.17 and

5.21 show the auditorium air temperature predicted by the estimated occupancy and

ventilation rate for each DCV strategy. As they all proposed lower ventilation rates

during occupied mode, temperature was predicted to be higher compared to the cur-

rent practice, averaging about 25°C. Over unoccupied mode, this average went up

by less than 1°C, staying below that of current practice. This is because DCV strate-

gies introduced a minimum required fresh airflow for unoccupied hours. It should be

pointed out that occupied mode in all proposed cases refer to only the time when
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there are occupants (as opposed to the current fixed calendar); unoccupied mode, as

well, is vice versa. Each model is followed by the PMV, PPD and PMV-PPD graphs;

figures 5.10 - 5.12, 5.14 - 5.16, 5.18 - 5.20 and 5.22 - 5.24 represent FFNN model,

steady-state approximation, transient method and proportional control, respectively.

The noticeable fact is that all DCV strategies contributed positively to the zone ther-

mal condition due to the prevention of over-ventilation. All models considered, the

PMV index ranged from −0.8 to 0.3, proposing dissatisfaction percentage as low as

5% and as high as 20%. This predicted range fell within the ASHRAE standard 55

comfort criteria by keeping the PPD index far less than 20%. Table 5.4 draws a

comparison by presenting the break-down numbers of each scenario. It reveals that

FFNN, steady-state and transient models were closely comparable while the propor-

tional control model resulted in a slightly less average temperature as it proposed

higher ventilation amongst others.
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Fig. 5.9.: Proposed temperature, outdoor airflow rate and occupancy (FFNN model)
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Fig. 5.12.: Proposed PMV-PPD index (FFNN model)
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Fig. 5.13.: Proposed temperature, outdoor airflow rate and occupancy (steady-state
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Fig. 5.14.: Proposed PMV index (steady-state approximation)
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Fig. 5.16.: Proposed PMV-PPD index (steady-state approximation)
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Fig. 5.17.: Proposed temperature, outdoor airflow rate and occupancy (transient

model)
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Fig. 5.18.: Proposed PMV index (transient model)
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Fig. 5.20.: Proposed PMV-PPD index (transient model)
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Fig. 5.21.: Proposed temperature, outdoor airflow rate and occupancy (proportional

control)
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Fig. 5.22.: Proposed PMV index (proportional control)
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Fig. 5.23.: Proposed PPD index (proportional control)
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Fig. 5.24.: Proposed PMV-PPD index (proportional control)

The observed and proposed zone air temperature values compiled together, figure

5.25 provides the magnified inset for a better representation.
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Fig. 5.25.: The magnified inset of temperature values under different scenarios

Table 5.4 draws a comparison by presenting the break-down numbers of each

scenario. It reveals that FFNN, steady-state and transient models were closely com-

parable while the proportional control model resulted in a slightly less average tem-
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perature as it proposed higher ventilation amongst others. Figures 5.26, 5.27 and 5.28

also visualize the reported average values of zone air temperature, PMV and PPD

indices.

Table 5.4.: Summary of the current and predicted temperature, PMV and PPD

Zone Air Temperature [°C] PMV Index [-] PPD Index [%]

Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average

Baseline 20.33 26.71 21.95 −1.82 +0.57 −1.24 5.00 68.25 38.05

FFNN 23.82 25.68 25.12 −0.56 +0.16 −0.036 5.00 11.56 5.62

Steady-State 24.24 25.65 25.43 −0.39 +0.14 +0.09 5.00 8.18 5.35

Transient 23.29 25.65 25.39 −0.77 +0.15 +0.074 5.00 17.49 5.45

Proportional 22.88 25.72 24.41 −0.88 +0.19 −0.31 5.00 21.41 8.44
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Fig. 5.26.: Comparison of average zone air temperature under different scenarios
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Fig. 5.28.: Comparison of average PPD indices under different scenarios
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5.6 Intended PMV Index

The predicted PMV index for all four DCV strategies ranged from −0.6 to +0.3

in almost every case number. Although this range is absolutely acceptable according

to ASHRAE standard 55 [61], the intended PMV index was defined to be 0 (the most

optimal point) only as a demonstration of the concept.

In case of positive pmv indices, the intended pmv index of 0 could be achieved

by increasing the outdoor airflow rate (to lower the zone air temperature). As for

negative magnitudes of pmv, however, only the heating and cooling coils can be

adjusted since further reduction of outdoor airflow rate violates the IAQ standards.

Thus, only the predicted pmv indices of above 0 was targeted.

5.6.1 Generalized Reduced Gradient Optimization (GRG Nonlinear)

Generalized Reduced Gradient methods are algorithms for solving smooth nonlin-

ear functions [67]. The modified PMV model, used in this research, is a second-order

polynomial function which tends to show smooth behaviour. Figure 5.29 is the op-

timization flowchart representing the logic behind this mathematical problem. The

objective of the algorithm was to solve the PMVm equation for magnitudes of 0 or

closest possible to 0. The algorithm was subjected to a constraint by which the pro-

posed outdoor airflow rate cannot exceed that of baseline (average of 1000 L/s). The

Analytic Solver Toolbox was utilized for this optimization.
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Fig. 5.29.: The procedure on how to achieve the intended PMV index
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5.6.2 Optimization Results

Figures 5.30, 5.31, 5.32 and 5.33 show the intended PMV-PPD index for FFNN,

steady-state, transient and proportional control models. It is quite obvious that all

positive data points moved to 0 where the dissatisfaction percentage is at the lowest

level of 5%.
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Fig. 5.30.: The intended PMV-PPD index (FFNN model)
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Fig. 5.31.: The intended PMV-PPD index (steady-state approximation)
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Fig. 5.32.: The intended PMV-PPD index (transient model)
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Fig. 5.33.: The intended PMV-PPD index (proportional control)

5.7 The Proposed vs. Intended Ventilation Rates

Figure 5.34 shows the difference between predicted and intended average values

of outdoor airflow rate. The intended values are in fact considered as the trade-

off between energy saving, IAQ and thermal comfort. As expected, the outdoor
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airflow rate showed slightly higher numbers due to considering the auditorium thermal

condition; this means less energy savings could be proposed while maintaining both

IAQ and thermal comfort constraints. The proportional control and FFNN model

had as low as 0.5% and 2.3% increase, respectively. In contrast, the transient method

experienced higher rise of 18.7% and the highest of 22.8% for steady-state model. As

shown in chapter 4, the steady-state model tended to underestimate the occupancy

level and accordingly introduced less ventilation rate; this is the reason why it showed

the highest discrepancy percentage.
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Fig. 5.34.: Comparison between ventilation rates considering IAQ and thermal com-

fort constraints under different DCV strategies

5.8 Closure on The Chapter

This chapter analyzed the impact of ventilation rate as well as occupancy on

the zone air temperature. Considering thermal comfort as the second constraint of

energy analysis, it turned out that slightly more ventilation could be introduced to

the zone to achieve higher thermal satisfaction. This procedure was done through
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optimizing the PMV index using generalized reduced gradient algorithm. By solving

PMV for intended values of 0, the new ventilation rate and zone temperature as

trade-off values were derived from the equation (5.1). In the next chapter, energy

savings will be quantified using the trade-off values; This will ensure that IAQ and

thermal comfort constraints are taken into consideration.
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6. ENERGY SAVING ANALYSIS AND CONCLUSION

Energy savings can be calculated by converting ventilation reductions from the pro-

posed strategies into electric power. The following model describes this process.

6.1 Power-Airflow Rate Model

The auditorium ventilation is directly provided by the primary fans. Thus, reduc-

ing ventilation rate results in lower fans’ power consumption and obviously energy

savings. To quantify that, there must be a model that relates the primary fans’ power

to the primary airflow rate. Since fans are powered by electric motors, it would be

more convenient to establish the correlation between the primary motors’ input power

and primary airflow rate. As discussed earlier, the primary airflow is being provided

by two identical fans. The airflow rates associated with the primary fans were se-

lected as an inputs while output is the accumulated power of the two electric motors

coupled with fans.

6.1.1 Data Preprocessing

During data collection several operation and maintenance issues were reported;

therefore, the dataset including motors’ input power and primary fans’ airflow rates

were filtered to remove the outliers. Since the motors’ input power data also seemed

to be noisy, simple moving mean was deployed over 7 datapoints to smooth out

short-term fluctuations and highlight longer-term trends [68]; figure 6.1 represents

the actual and smoothed motors’ power data for 1000 timesteps.
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Fig. 6.1.: Moving average on motors’ input power

6.1.2 Multiple Linear Regression (MLR)

Multiple linear regression is a linear approach to modeling the relationship between

a scalar response (motors’ input power) and more than one explanatory variable

(primary airflow rates) [69]. In this case, MLR was chosen as a suitable method

because of the observed linearity between power and airflow rates. The whole dataset

was utilized as the training set, excluding 8 days of data from November 22nd to 29th

2019 for the sake of validation. As for this specific model, a different cross-validation

period was selected due to the discontinuity caused by data filtration. The model was

developed using MATLAB regression learner toolbox. The equation (6.1) denotes the

structure of MLR model.

Pm = Φ1Vp1 + Φ2Vp2 + Φ3Vp1Vp2 + Ψ (6.1)

where Pm is the electric motors’ power, Φ1, Φ2 and Φ3 are fixed coefficients, Ψ is the

intercept, Vp1 and Vp2 are airflow rates of each fan. Table 6.1 shows the magnitude of

coefficients as well as intercept.
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Table 6.1.: The MLR model parameters

Parameter Magnitude

Φ1 −0.0045

Φ2 0.0098

Φ3 −3.55× 10−7

Ψ 20.38

6.1.3 MLR Model Performance

Figure 6.2 shows the observed and predicted values of motors’ power consump-

tion. The predictive MLR model followed the actual data consistently and closely

throughout the whole period.
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Fig. 6.2.: Predicted vs. observed

Figure 6.3, in addition, represents the linear correlation between the observed and

predicted values. Table 6.2 reports the statistical parameters by which the MLR

model was evaluated.
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Table 6.2.: The MLR model performance parameters

Statistical Parameters Magnitude

R-squared 0.918

P-value 3.9199× 10−22

RMSE 0.542
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Fig. 6.3.: The MLR best fitted model

In order to portray the discrepancy between actual and predicted values, Pearson

residuals were plotted as figure 6.4. It proves the fact that predicted values showed a

consistent behaviour towards the observed values.



75

-4

-3

-2

-1

0

1

2

3

4

E
rr

o
r 

[-
]

MLR Model

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Timestep [5 minutes]

Pearson Residuals

Fig. 6.4.: Pearson residuals (MLR Model)

6.2 Energy Saving Analysis

As discussed in chapter 3, the primary fans can be modulated by adjusting the

ventilation air damper; therefore, proposing new ventilation rates by DCV strategies

results in new primary airflow rates. Due to mass balance, the auditorium damper

ventilation reduction equals to the summation of airflow rate reduction in each pri-

mary fan. This can be denoted as the equation (6.2) considering that losses in the

ducts are negligible.

∆V B−P
oz ≈ ∆V B−P

p1
+ ∆V B−P

p2
(6.2)

where ∆V B−P
oz shows the damper ventilation reduction, ∆V B−P

p1
and ∆V B−P

p2
are the

airflow rate reduction of each primary fan. Since both primary fans are identical

and synchronised, their airflow rate reduction was observed to be similar. Thus, the

equation (6.2) can be reformed as follow:

∆V B−P
p1

= ∆V B−P
p2

≈ ∆V B−P
oz

2
(6.3)



76

Using the power-airflow rate model [equations (6.1)] and equation (6.3), the equa-

tion (6.4) could be generated to calculate the proposed power consumption of DCV

strategies.

P P
m = Φ1[Vp1 −

∆V B−P
oz

2
] + Φ2[Vp2 −

∆V B−P
oz

2
] + Φ3[Vp1 −

∆V B−P
oz

2
][Vp2 −

∆V B−P
oz

2
] + Ψ

(6.4)

It is obvious that the subtraction of baseline power consumption from the proposed

one gives the power savings. Subsequently, the energy savings were calculated by the

equation (6.5).

ES = [PB
m − P P

m ].∆t (6.5)

where ES stands for energy savings (kWh), PB
m and P P

m are the baseline and proposed

power consumption (kW), respectively, and ∆t is the time interval (h).

6.2.1 Results

Considering the trade-off values of ventilation rate introduced by DCV strategies,

the results of energy savings are summarized in table 6.3. Figure 6.5, in addition, por-

trays this summary. The maximum energy saving was achieved by utilizing FFNN for

occupancy detection in dynamic per-occupant control, accounting for 74.2%. Steady-

state and transient models introduced almost equal savings of 65.6% and 65.3%,

respectively. It should be noted that the steady-state model tended to underestimate

the occupancy. This is the main reason that it resulted in a slightly higher energy

saving. Proportional control, however, did not take the occupancy estimation into

account, and therefore 64.2% reduction of energy was achieved.
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Table 6.3.: Summary of ventilation energy savings under different control strategies

Control Strategy
Average Fan Energy

Consumption [kWh/day]

Saving Compared

to Baseline [%]

Baseline 1,002.4 -

Proportional Control 358.8 64.2%

Steady-State Approximation 344.8 65.6%

Transient Method 347.8 65.3%

FFNN Model 258.6 74.2%

64.20%

65.30% 65.60%

74.20%

Proportional Control Transient Method Steady-State Approximation FFNN Model

Ventilation Energy Savings Compared

to The Baseline

Fig. 6.5.: Ventilation energy savings of the proposed DCV strategies, compared to

baseline

6.2.2 Energy Saving Rationale

This research was conducted from September 2019 to January 2020. Throughout

this period, the outdoor air temperature ranged from −11°C to 32°C, meaning that
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both cooling and heating seasons were included. Figure 6.6 displays the outdoor

versus zone air temperature for this period. As is clear, temperature inside the

auditorium remained consistent with a constant variation. In previous chapters, it

was shown that ventilation operates with a two-position control between occupied and

unoccupied modes to maintain inside temperature. Besides ventilation, the cooling

and heating coils must consume energy to compensate for temperature fluctuations.

This study only focused on the ventilation side of HVACs. Thus, it can be concluded

that the reported ventilation energy savings could be generalized for all year round

with an acceptable accuracy.

Fig. 6.6.: The auditorium vs. outdoor air temperature

6.3 Discussion and Conclusion

This research attempted to explore the applicability of demand-controlled venti-

lation strategies and their potentials for saving energy on HVAC systems considering

indoor air quality and thermal comfort standards. DCV strategies were categorized

as dynamic per-occupant and CO2-based methods. With respect to the former, feed-

forward neural network, steady-state and transient occupancy prediction models were

evaluated whilst proportional control as the latter.
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The case study was a lecture hall as a densely populated single zone. That is,

the results of aforementioned DCV strategies can only be generalized to the similar

situations.

Compared to the conventional physics-based DCV strategies, the benefits of the

newly introduced ANN model was investigated. It was proven that the two-layer feed-

forward neural network algorithm is able to predict human occupancy with the high-

est accuracy. Comparison amongst the four tested methods demonstrated that the

application of machine learning algorithms resulted in 74.2% energy savings against

the baseline, about 28% against the proportional control, and 25% against steady-

state and transient models. This reveals the fact that higher precision in occupancy

prediction leads to higher ventilation energy savings.

Transient method, in predicting occupancy and subsequently introducing venti-

lation rate, seemed to overshoot from vacancy to occupancy. However, steady-state

approximation undershot almost over the entire period. Overall, the average of in-

troduced ventilation in both models turned out to be nearly identical.

Proportional control offered the lowest saving. Direct use of CO2 concentrations

rather than predicting the number of occupants created saving opportunities. This

is because of its slow reaction to the zone occupancy level and overestimating the

ventilation rate.

All the proposed DCV strategies maintained indoor CO2 concentrations within

the threshold recommended by ASHRAE 62.1 standard. As for indoor thermal condi-

tion, the DCV methods showed positive contribution when compared to the current

practice; this is because of regulating current over-ventilation proportional to the

number of indoor occupants. Despite their positive impacts, the thermal comfort

was further optimized to the most optimum point (PMV=0). This, as the second

constraint, required slightly higher ventilation to be introduced into the zone. The

results of ventilation, when meeting both IAQ and thermal comfort, were labelled as

intended or trade-off values.
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6.4 Recommendations

The following recommendations may potentially pave the way for the research

scopes of same nature:

• As mentioned in chapter 2, a combination of sensors were employed to achieve

more accurate occupancy predictions. The FFNN algorithm utilized CO2 con-

centrations, the associated ventilation rates and the zone schedule. Since updat-

ing the zone schedule might be a hassle in a continuous operating DCV-based

system, automatic occupancy detection sensors (e.g., motion detectors) will be

better options.

• Although the FFNN model resulted in a better energy saving, its implementa-

tion requires more complex programming on the BMS communication protocol

(BACnet). Yet, the steady-state and transient models offered highly acceptable

results with a less complexity of implementation.

• To better comprehend the operation of the case-study, this research exploited

a higher quantity of temperature sensors than necessary (7 sensors). For the

same type of projects, it may go down to 4 sensors, measuring the temperature

of outdoor air, zone, supplied and return air.

6.5 Future Scope

The present work attempted to achieve energy savings by optimizing only venti-

lation rates through indoor occupancy prediction. IAQ and thermal comfort, as two

crucial factors, were considered a well. The energy saving results would be further

enhanced if including the water side of the HVAC system. The heating and cooling

coils could be modeled and attached to the optimization modules. Having all mod-

ules lumped together, the trade-off between savings and constraints will become more

precise.
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6.6 Closure on the Chapter

Chapter 6 introduced the power-airflow rate model for analyzing the ventilation

energy savings proposed by the DCV strategies. Comparison of the proposed savings

was drawn against the baseline and against each other. The overall conclusion of this

study along with future works were also discussed.
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A. GPR MODEL

The GPR model was optimized based on the least mean square error (MSE) over 30

iterations. Figure A.1 shows this process.
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Fig. A.1.: The GPR model optimization process

The MATLAB code used for this model is as follow:

1 function [trainedModel, validationRMSE] = ...

trainRegressionModel(trainingData)

2 % [trainedModel, validationRMSE] = trainRegressionModel(trainingData)

3 % returns a trained regression model and its RMSE. This code ...

recreates the

4 % model trained in Regression Learner app. Use the generated code to

5 % automate training the same model with new data, or to learn how to

6 % programmatically train models.

7 %
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8 % Input:

9 % trainingData: a table containing the same predictor and ...

response

10 % columns as imported into the app.

11 %

12 % Output:

13 % trainedModel: a struct containing the trained regression ...

model. The

14 % struct contains various fields with information about the ...

trained

15 % model.

16 %

17 % trainedModel.predictFcn: a function to make predictions on ...

new data.

18 %

19 % validationRMSE: a double containing the RMSE. In the app, the

20 % History list displays the RMSE for each model.

21 %

22 % Use the code to train the model with new data. To retrain your ...

model,

23 % call the function from the command line with your original data ...

or new

24 % data as the input argument trainingData.

25 %

26 % For example, to retrain a regression model trained with the ...

original data

27 % set T, enter:

28 % [trainedModel, validationRMSE] = trainRegressionModel(T)

29 %

30 % To make predictions with the returned 'trainedModel' on new ...

data T2, use

31 % yfit = trainedModel.predictFcn(T2)

32 %

33 % T2 must be a table containing at least the same predictor ...

columns as used
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34 % during training. For details, enter:

35 % trainedModel.HowToPredict

36

37 % Auto-generated by MATLAB on 06-Apr-2020 14:03:03

38

39 % Extract predictors and response

40 % This code processes the data into the right shape for training the

41 % model.

42 inputTable = trainingData;

43 predictorNames = {'Voz', 'Pz'};

44 predictors = inputTable(:, predictorNames);

45 response = inputTable.Tz;

46 isCategoricalPredictor = [false, false];

47

48 % Train a regression model

49 % This code specifies all the model options and trains the model.

50 regressionGP = fitrgp(...

51 predictors, ...

52 response, ...

53 'BasisFunction', 'constant', ...

54 'KernelFunction', 'exponential', ...

55 'Standardize', true);

56

57 % Create the result struct with predict function

58 predictorExtractionFcn = @(t) t(:, predictorNames);

59 gpPredictFcn = @(x) predict(regressionGP, x);

60 trainedModel.predictFcn = @(x) ...

gpPredictFcn(predictorExtractionFcn(x));

61

62 % Add additional fields to the result struct

63 trainedModel.RequiredVariables = {'Pz', 'Voz'};

64 trainedModel.RegressionGP = regressionGP;

65 trainedModel.About = 'This struct is a trained model exported ...

from Regression Learner R2019b.';



91

66 trainedModel.HowToPredict = sprintf('To make predictions on a new ...

table, T, use: \n yfit = c.predictFcn(T) \nreplacing ''c'' ...

with the name of the variable that is this struct, e.g. ...

''trainedModel''. \n \nThe table, T, must contain the ...

variables returned by: \n c.RequiredVariables \nVariable ...

formats (e.g. matrix/vector, datatype) must match the original ...

training data. \nAdditional variables are ignored. \n \nFor ...

more information, see <a ...

href="matlab:helpview(fullfile(docroot, ''stats'', ...

''stats.map''), ''appregression exportmodeltoworkspace'')">How ...

to predict using an exported model</a>.');

67

68 % Extract predictors and response

69 % This code processes the data into the right shape for training the

70 % model.

71 inputTable = trainingData;

72 predictorNames = {'Voz', 'Pz'};

73 predictors = inputTable(:, predictorNames);

74 response = inputTable.Tz;

75 isCategoricalPredictor = [false, false];

76

77 % Compute resubstitution predictions

78 validationPredictions = predict(trainedModel.RegressionGP, ...

predictors);

79

80 % Compute validation RMSE

81 validationRMSE = sqrt(resubLoss(trainedModel.RegressionGP, ...

'LossFun', 'mse'));
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B. MLR MODEL

The MATLAB code used for this model is as follow:

1 function [trainedModel, validationRMSE] = ...

trainRegressionModel(trainingData)

2

3 % [trainedModel, validationRMSE] = trainRegressionModel(trainingData)

4 % returns a trained regression model and its RMSE. This code ...

recreates the model trained in Regression Learner app. Use the ...

generated code to automate training the same model with new ...

data, or to learn how to programmatically train models.

5

6 % Input:

7 % trainingData: a table containing the same predictor and ...

response columns as imported into the app.

8

9 % Output:

10 % trainedModel: a struct containing the trained regression ...

model. The struct contains various fields with information ...

about the trained model.

11

12 % trainedModel.predictFcn: a function to make predictions on ...

new data.

13

14 % validationRMSE: a double containing the RMSE. In the app, ...

the History list displays the RMSE for each model.

15

16 % Use the code to train the model with new data. To retrain your ...

model, call the function from the command line with your ...

original data or new data as the input argument trainingData.
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17

18 % For example, to retrain a regression model trained with the ...

original dataset T, enter:

19 % [trainedModel, validationRMSE] = trainRegressionModel(T)

20

21 % To make predictions with the returned 'trainedModel' on new ...

data T2, use yfit = trainedModel.predictFcn(T2)

22

23 % T2 must be a table containing at least the same predictor ...

columns as used during training. For details, enter:

24 % trainedModel.HowToPredict

25

26 % Auto-generated by MATLAB on 06-Apr-2020 14:21:44

27

28

29 % Extract predictors and response

30 % This code processes the data into the right shape for training the

31 % model.

32 inputTable = trainingData;

33 predictorNames = {'flow-a', 'flow-b', 'int'};

34 predictors = inputTable(:, predictorNames);

35 response = inputTable.kw;

36 isCategoricalPredictor = [false, false, false];

37

38 % Train a regression model

39 % This code specifies all the model options and trains the model.

40 concatenatedPredictorsAndResponse = predictors;

41 concatenatedPredictorsAndResponse.kw = response;

42 linearModel = fitlm(...

43 concatenatedPredictorsAndResponse, ...

44 'linear', ...

45 'RobustOpts', 'off');

46

47 % Create the result struct with predict function

48 predictorExtractionFcn = @(t) t(:, predictorNames);
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49 linearModelPredictFcn = @(x) predict(linearModel, x);

50 trainedModel.predictFcn = @(x) ...

linearModelPredictFcn(predictorExtractionFcn(x));

51

52 % Add additional fields to the result struct

53 trainedModel.RequiredVariables = {'flow-a', 'flow-b', 'int'};

54 trainedModel.LinearModel = linearModel;

55 trainedModel.About = 'This struct is a trained model exported ...

from Regression Learner R2019b.';

56 trainedModel.HowToPredict = sprintf('To make predictions on a new ...

table, T, use: \n yfit = c.predictFcn(T) \nreplacing ''c'' ...

with the name of the variable that is this struct, e.g. ...

''trainedModel''. \n \nThe table, T, must contain the ...

variables returned by: \n c.RequiredVariables \nVariable ...

formats (e.g. matrix/vector, datatype) must match the original ...

training data. \nAdditional variables are ignored. \n \nFor ...

more information, see <a ...

href="matlab:helpview(fullfile(docroot, ''stats'', ...

''stats.map''), ''appregression exportmodeltoworkspace'')">How ...

to predict using an exported model</a>.');

57

58 % Extract predictors and response

59 % This code processes the data into the right shape for training the

60 % model.

61 inputTable = trainingData;

62 predictorNames = {'flow-a', 'flow-b', 'int'};

63 predictors = inputTable(:, predictorNames);

64 response = inputTable.kw;

65 isCategoricalPredictor = [false, false, false];

66

67 validationPredictFcn = @(x) linearModelPredictFcn(x);

68

69 % Compute resubstitution predictions

70 validationPredictions = validationPredictFcn(predictors);

71
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72 % Compute validation RMSE

73 isNotMissing = ¬isnan(validationPredictions) & ¬isnan(response);

74 validationRMSE = sqrt(nansum(( validationPredictions - response ...

).ˆ2) / numel(response(isNotMissing) ));


