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Abstract

Left heart failure (LHF) is the most common cause of pulmonary hypertension, which confers an increase
in morbidity and mortality in this context. Pulmonary vascular resistance has prognostic value in LHF, but
otherwise the mechanical consequences of LHF for the pulmonary vasculature and right ventricle (RV)
remain unknown. We sought to investigate mechanical mechanisms of pulmonary vascular and RV
dysfunction in a rodent model of LHF to address the knowledge gaps in understanding disease
pathophysiology. LHF was created using a left anterior descending artery ligation to cause myocardial
infarction (MI) in mice. Sham animals underwent thoracotomy alone. Echocardiography demonstrated
increased left ventricle (LV) volumes and decreased ejection fraction at 4 wk post-MI that did not
normalize by 12 wk post-MI. Elevation of LV diastolic pressure and RV systolic pressure at 12 wk post-MI
demonstrated pulmonary hypertension (PH) due to LHF. There was increased pulmonary arterial elastance
and pulmonary vascular resistance associated with perivascular fibrosis without other remodeling. There
was also RV contractile dysfunction with a 35% decrease in RV end-systolic elastance and 66% decrease in
ventricular-vascular coupling. In this model of PH due to LHF with reduced ejection fraction, pulmonary
fibrosis contributes to increased RV afterload, and loss of RV contractility contributes to RV dysfunction.
These are key pathologic features of human PH secondary to LHF. In the future, novel therapeutic
strategies aimed at preventing pulmonary vascular mechanical changes and RV dysfunction in the context

of LHF can be tested using this model.

NEW & NOTEWORTHY In this study, we investigate the mechanical consequences of left heart failure
with reduced ejection fraction for the pulmonary vasculature and right ventricle. Using comprehensive
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functional analyses of the cardiopulmonary system in vivo and ex vivo, we demonstrate that pulmonary
fibrosis contributes to increased RV afterload and loss of RV contractility contributes to RV dysfunction.
Thus this model recapitulates key pathologic features of human pulmonary hypertension-left heart failure

and offers a robust platform for future investigations.

Keywords: heart failure, pulmonary vascular remodeling, right ventricle dysfunction, secondary
pulmonary hypertension, ventricular-vascular coupling

INTRODUCTION

Left heart failure (LHF) impacts nearly 5.9 million adults and contributes to 1 out of every 9 deaths in the
United States (51). The prevalence of pulmonary hypertension (PH) in LHF is as high as 60–80% (18, 42).
PH due to left heart failure (PH-LHF) is the most common cause of PH and is associated with a high
morbidity and mortality (24, 25, 28). Due to a lack of a well-characterized animal models and the
limitations of human subject research, investigations into disease pathophysiology and progression have
been limited and much of current understanding of the mechanisms of this disease remains speculative (28,
46, 63). Current clinical understanding is that PH-LHF begins as a passive process due to elevated left
atrium filling pressures that increase pressures throughout the pulmonary vasculature. In its early stage, this
pulmonary venous hypertension is termed isolated postcapillary PH (Ipc-PH) and is diagnosed by elevated
mean pulmonary arterial pressure (mPAP) and pulmonary capillary wedge pressure with normal pulmonary
vascular resistance (PVR) and diastolic pressure gradient. In contrast, combined post- and precapillary PH
(Cpc-PH) is diagnosed when PVR or diastolic pressure gradient is increased in this setting and confers an
additional increase in mortality (17, 50). Cpc-PH represents a spectrum of disease severity including a
reactive state, which is reversible and responsive to vasodilators and thought to be primarily driven by
pulmonary vasoconstriction, and a fixed state that is irreversible, unresponsive to pharmacological

interventions, and thought to be characterized primarily by small vessel narrowing and wall thickening (14,
28, 75). Cpc-PH prevalence is between 12 and 20% in patients with LHF (17, 24). Both elevated
pulmonary arterial pressure (PAP) and increased PVR are associated with decreased survival in LHF (17,
24). Despite this high clinical significance, there are no current therapies that target PH-LHF other than
optimization of LHF and some limited adaptation of therapies for pulmonary arterial hypertension (PAH)
(24, 25, 28).

PVR has prognostic value in PH-LHF (17, 24) but is typically calculated from PAP and left atrial pressure
at a single flow rate (i.e., cardiac output), which provides a limited assessment of pulmonary vascular
function (52). Mechanically, the pulmonary vasculature can be considered to provide resistance to steady
flow as well as impedance to pulsatile flow. While the resistance depends on the flow rate, albeit
nonlinearly, the impedance depends on flow rate as well as frequency (i.e., heart rate). Thus a
comprehensive assessment of pulmonary vascular function should include multipoint pressure-flow
relationships and impedance to flow at a range of frequencies (9, 23, 52). No studies have characterized
mechanical pulmonary vascular function in these ways in PH-LHF (11). Similarly, few assessments of
pulmonary vascular structure have been performed in this disease. Autopsies on patients with PH-LHF
have shown evidence of medial hypertrophy and fibrosis in pulmonary arteries (12, 29), corroborated by

large animal studies of pulmonary venous hypertension (40, 59, 66). Small animal studies have shown
pulmonary fibrosis and endothelial dysfunction (2, 8, 33, 37, 56). These pulmonary vascular structure
changes associate with increases in PAP or PVR, but the resulting structure-function correlations are
limited because key aspects of function have not been measured.

Ultimately, changes in pulmonary vascular structure and function in PH-LHF increase RV afterload and
result in impaired RV mechanical function, which itself is a powerful predictor of survival in LHF (10, 13,
18, 35, 60). Robust assessment of RV mechanical function including ventricular-vascular interactions
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Myocardial infraction model.

Echocardiography.

In vivo RV and pulmonary vascular hemodynamics.

requires right ventricular (RV) catheterization with pressure-volume loop analysis at varying preloads (71).
Especially since RV mechanical function depends on LV mechanical function via intraventricular
interactions (26), quantifying the mechanical progression of pulmonary vascular and RV dysfunction in

PH-LHF is critical to understanding disease pathophysiology and developing novel therapies to prevent
cardiopulmonary deterioration in response to LHF progression.

Here we sought to investigate the mechanical mechanisms of pulmonary vascular and RV dysfunction in a
rodent model of PH-LHF. We further compare our pathophysiological findings to published data from PH-
LHF patients to verify the ability of our rodent model to recapitulate critical aspects of the human disease.

METHODS

All animal procedures were approved by the University of Wisconsin-
Madison Institutional Animal Care and Use Committee. Adult C57/Bl6 male mice (6–8 wk of age, 18–26
g) were randomly divided into two groups for myocardial infarction (MI) or sham surgery as previously
described (39). Briefly, mice were initially anaesthetized with 5% isoflurane and maintained with 1–2%
isoflurane throughout the procedure. A left thoracotomy was performed, and the left coronary artery was
ligated at the point where it emerges past the tip of the left atrium. Sham animals underwent thoracotomy
alone. Immediate operative survival was 70% in the MI group and 100% in the sham group, consistent with
previous reports (39, 54). One group of MI (n = 6) and sham (n = 9) mice underwent serial
echocardiography, performed at 4, 8, and 12 wk postsurgery, followed by terminal hemodynamic
assessment via either right heart catheterization. A second group of MI (n = 6) and sham (n = 5) mice
underwent isolated lung perfusion to assess the pulmonary vasculature biomechanics at 12 wk postsurgery.
Experiments were conducted in an unbiased approached with adherence to the recently published PH
preclinical research guidelines (4, 62). Power calculations were completed to determine appropriate group

sizes; animals were randomized to either MI or sham groups; experimental conditions were standardized to
every degree possible, meaning end points of comprehensive hemodynamics (as descried below) were used
and analysis was blinded when possible (i.e., for histological analysis and isolated lung perfusion analysis).

Transthoracic echocardiography was conducted to assess left ventricular (LV)
morphology and function in vivo. As previously described, mice were anesthetized with 5% isoflurane and
then maintained with 1–2% isoflurane and room air throughout the procedure; body temperature was
maintained at 37°C using a heated platform (16, 21). Echocardiographic parameters were measured over at
least three consecutive cardiac cycles and averaged.

Surgical preparation, hemodynamic measurements,
and analysis were based on established protocols (20, 21, 65, 70). Anesthesia was induced with an
intraperitoneal injection of urethane solution (1 mg/g body weight) to maintain heart rate. Mice were then
intubated and placed on a ventilator (Harvard Apparatus, Holliston, MA). As previously described, the
thoracic cavity was entered, and the heart was exposed by removal of anterior rib cage (21, 65, 70). This
open chest technique was used because the stiffness of the catheter used for RV pressure and volume
measurements precludes a closed chest approach with catheter insertion through the jugular vein. LV
pressure was measured with a pressure catheter (Millar, Houston, TX) inserted from the common carotid

artery and advanced through the aortic valve into the LV. Heart rate and systemic pressure were recorded
and observed throughout the procedure. RV pressure-volume loops were obtained as previously described
using a 1.2-Fr admittance catheter inserted through the apex of the heart into the RV. After instrumentation
was established and baseline pressure-volume measurements were obtained, the inferior vena cava was
isolated and briefly occluded to obtain alterations in venous return for determination of end-systolic and
end-diastolic pressure relations. One MI mouse expired shortly following placement of the catheter into the
RV such that only pressure measurements could be obtained. A second MI mouse expired during inferior
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Ex vivo pulmonary vascular pressure-flow dynamics.

vena cava occlusions, and only baseline pressure-volume loops were obtained for that animal. Commercial
software (Notocord; Croissy Sur Seine, France) recorded RV pressure and volume waveforms
simultaneously, and data were analyzed using a minimum of 10 consecutive cardiac cycles. Cardiac output

(CO) was normalized by body weight to calculate the cardiac index (20, 21, 36, 65, 70).

Pulmonary vascular mechanical function was quantified using total pulmonary vascular resistance (TPVR),
PVR, and transpulmonary gradient (TPG). TPVR was calculated as mPAP divided by CO, where mPAP
was assumed to be equal to right ventricular end-systolic pressure (RVSP) (7, 65). PVR was determined as
(mPAP-mLAP/CO) where mLAP was assumed equal to LV end diastolic pressure (LVEDP) (5). TPG was
computed as mPAP minus mLAP.

RV mechanical function was assessed using established parameters including maximum and minimum
pressure derivatives (dP/dt , dP/dt ), end-systolic elastance (E ), and the slope of dP/dt -end

diastolic volume (V ) relationship obtained from inferior vena cava occlusions (21, 57, 70). Ventricular-

vascular interactions were assessed using E /arterial elastance (E ) (21, 70). Finally, cardiac energetics

were assessed via pressure-volume area (PVA), external mechanical work (EW), and ventricular
mechanical efficiency (EW/PVA) as previously reported (45, 55).

The isolated, ventilated, perfused lung preparation
was used as previously validated and detailed by our group (73, 76). Briefly, following euthanasia with 150
mg/kg of pentobarbital, the trachea was cannulated for ventilation. The lungs were ventilated with room air
between end expiratory and end inspiratory pressures of ~1 and ~8 mmHg, respectively. Following
cannulation of the trachea, 1 ml of heparin (1.25 mg/ml) was injected into the RV to prevent clots from
forming in the pulmonary vasculature (76). Subsequently, the pulmonary artery (PA) and left atrium were
cannulated for perfusate inflow and outflow, respectively (76, 77). The lungs were perfused with warm
RPMI 1640 cell culture medium with 3.5% Ficoll (an oncotic agent). Steady-state perfusion was conducted
using a syringe pump and pulsatile flow was achieved using a high-frequency oscillatory pump in parallel
with the syringe pump. Pressure transducers (ADT300; Harvard Apparatus, Holliston, MA) were used to

measure PAP, left atrium pressure (LAP), as well as airway pressure (MPX; Harvard Apparatus, Holliston,
MA). Perfusate inflow (Q) was monitored using an in-line flow meter (MEI PXN; Transonic Systems,
Ithaca, NY). Pressures and flows were continuously monitored on a computer display and were recorded at
200 Hz (77). Lungs were monitored for development of edema. One set of sham lungs developed edema,
and the experiment was stopped before collection of pulsatile perfusion data.

The pulsatile flow measurements were performed and recorded as previously validated (73, 76). The lungs
were initially perfused with RPMI at 1 ml/min for 2 min or until lungs were fully perfused and had turned
white. The flow rate was then increased to 3 ml/min, and sinusoidal flow rates of the form Q = 3 + 2 sin
(2πft) ml/min were generated for frequencies of f = 1, 2, 5, 10, 15, and 20 Hz. This range of frequencies
was chosen to fully include the physiologic heart rate of mice (~10 Hz) (73). The lungs were held at end
expiratory pressure (~1 mmHg) throughout data collection, and PAP, LAP, and Q were recorded as
described above. Immediately following the pulsatile flow protocol, the lungs were allowed to rest at a flow
rate of 0.5mL/min for 1 min and normal ventilation was resumed, along with intermittent deep inspirations
of ~15 mmHg to maintain airway patency.

After the pulsatile flow protocol and rest period, steady-state measurements were obtained. First, the flow
rate was increased to 1 ml/min and then flow rate was increased to 5 ml/min in increments of 1 ml/min with
PAP, LAP, and Q recorded once steady state was reached. The flow rate was then decreased from 5 to 1

ml/min, again at 1 ml/min increments as soon as steady state was reached. The lungs were held at end
expiratory pressure (~1 mmHg) throughout data collection.

From the steady state flow protocol, TPG was calculated as PAP − LAP and PVR was calculated as TPG/Q
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Tissue harvest, fixation, and histology.

Perivascular pulmonary fibrosis.

Pulmonary vascular remodeling.

RV capillarization.

Western blotting.

for each flow rate. Distensibility, α, was determined from the steady-state pressure-flow curve as previously
described (43, 64). Pulmonary vascular impedance magnitude (Z) and phase (θ) were calculated from one
full sinusoidal cycle of ΔP = PAP – LAP and Q at each frequency tested (77). Input resistance Z  was

calculated from the average impedance at the 0th harmonic of all frequencies. Characteristic impedance Z

was calculated as the average impedance between the first minimum (5 Hz) and highest frequency imposed
(20 Hz) (77). Wave reflection R  was calculated as (Z  – Z )/(Z  + Z ) (76).

Following either completion of the isolated lung procedure or
right heart catheterization, the heart and lungs were removed from the mouse. The RV was then separated
from the LV and septum, and the LA and RA were also separated. Heart tissues were weighed and then

divided for preservation by either flash freezing or placement in 10% formalin. The right and left lungs
were separated and weighed. The right lung was preserved in 10% formalin, and the left lung was flash
frozen.

Harvested tissues following right heart catheterization that were fixed in 10% formalin as described above
were preserved in 70% ethanol. Tissues were then embedded in paraffin, sectioned, and stained as detailed
below for histological analysis.

Pulmonary sections were stained with picrosirius red to assess collagen
deposition, as previously described (21, 79). An inverted microscope (TE-2000-5; Nikon, Melville, NY)
was used to acquire histological images using a Spot CCD camera (Optical Analysis Systems, Nashua,
NH). The area of perivascular collagen was determined using color thresholding in a representative field of
view by an observer blinded to the experimental groups using MetaVue software (Optical Analysis
Systems). In the RV, collagen area was divided by total tissue area of the representative image to calculate
collagen area percent (21, 79). In pulmonary arterioles, collagen area was divided by the perimeter of the
identified arteriole. Pulmonary arterioles were differentiated from venules by their immediate proximity to
airways (72). Arteriole diameters ranged from 50 to 200 µm.

Verhoeff-Van Giesson immunohistochemical staining was performed on

paraffin-embedded lung sections as previously described (22). In a blinded fashion, pulmonary arteries
<200 µm in diameter were identified by proximity to terminal bronchioles or alveolar ducts under a ×20
objective as previously described (41). Images were obtained using an Olympus BX41 microscope with
Olympus camera. At least 20 vessels per animal were sampled, and the wall fraction [(total area – luminal
area)/total area)] was calculated using ImageJ software.

RV sections were stained with DAPI (staining nuclei; Prolong Gold with Dapi antifade
mounting media; Life Technologies-ThermoFisher) and antibodies directed against lectin Griffonia
simplicifolia (staining capillary endothelial cells; 1:75; Life Technologies- ThermoFisher) or wheat germ
agglutinin (1:500; Life Technologies-ThermoFisher). Capillaries were identified by lectin positivity and
cardiomyocytes were identified by wheat germ agglutinin staining (27). The number of capillaries and
cardiomyocytes per field was counted by a blinded investigator, and capillary density was then expressed as
capillary/cardiomyocyte ratio (22, 27). Five fields with cross sectionally cut cardiomyocytes were analyzed
per animal.

Western blotting was performed by a blinded investigator on whole lung homogenates
as previously described (15). Briefly, lung tissue was homogenized with an Omni international tissue
grinder (Thermo Fisher Scientific, Waltham, MA) in ice-cold RIPA lysis buffer (Pierce-Thermo Fisher
Scientific) containing proteinase inhibitor cocktail (EMD-Millipore-Sigma Aldrich, St. Louis, MO) and

PhosStop inhibitor cocktail (Roche, Pleasanton, CA). After homogenization, the lysate was sonicated (for
ten 1-s pulses at 100% power) and then centrifuged. The supernatant was saved and used as whole lung
lysate. Protein concentration was measured using BCA Protein Assay (Pierce-ThermoFisher Scientific).

0
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Statistical Analysis.

Impaired LV function post-MI.

Biventricular remodeling post-MI.

Development of secondary PH and RV dysfunction post-MI.

Antibodies used were proliferating cell nuclear antigen (PCNA; 1:500; Abcam, Cambridge, MA) and
vinculin (1:5,000; Calbiochem; Billerica, MA). Densitometry was performed via ImageJ.

All values are presented as means ± SE. Student’s t-test was used to compare between

sham and MI groups. Repeated measures ANOVA was used to compare serial measurements within
groups. Bivariate correlations were performed using Pearson’s correlation analysis. All P values were two-
sided, and P < 0.05 was taken as statistically significant.

RESULTS

Cardiac function was evaluated by echocardiography following MI.
Echocardiographic imaging demonstrated evidence of LV dilation with a near doubling of LVEDV and
nearly 30% increased LV internal diameter occurring by 4 wk post-MI (Fig. 1, A and B). These increases in
LVEVD and LV internal diameter were sustained through 12 wk post-MI. As a consequence, there was
significant impairment in LV systolic function, as evidence by a 30% decrease in LV ejection fraction (EF)
as soon as 4 wk post-MI (Fig. 1C). This decrease in EF persisted through 12 wk post-MI without evidence
of recovery. There was evidence of diastolic dysfunction as measured by increased isovolumetric relaxation
time at 8 and 12 wk post-MI (Fig. 1D). These impairments in systolic and diastolic function as well as LV
dilation are consistent with the development of left heart failure post-MI.

Tissue analysis at 12 wk post-MI demonstrated biventricular
remodeling. Both left atrial weight and LV weight, which includes LV + septum, were elevated,
demonstrating left sided cardiac remodeling (Table 1), which is consistent with the LV dilation determined
by echocardiography (Fig. 1, A and B). Additionally, there was a significant increase in the absolute RV
weight as well as the RV weight indexed to body weight. Interestingly, the Fulton index (RV weight
indexed to the weight of LV + septum) was unchanged, indicating RV hypertrophy occurred in proportion

to LV remodeling (Table 1). Analysis of lung tissues demonstrated a trend toward increased wet lung
weight that did not reach statistical significance.

Invasive hemodynamic measurements were
obtained at 12 wk post-MI. LVEDP increased over fourfold following MI (Table 2). In addition, there was a
significant increase in RVSP (Table 2), demonstrating the development of secondary PH. Consistent with
this, there was a doubling of the TPVR and a significant increase in the TPG in the post-MI group. There
was also a significant elevation in RV afterload as measured by the E  (Fig. 2, A and B). Hemodynamic

analysis further demonstrated significantly lower CO post-MI (Table 2), which is consistent with the
development of heart failure with reduced ejection fraction (HFrEF).

In the setting of reduced CO, RV systolic function was largely preserved as demonstrated by maintained
RV EF and stroke work (Table 2). Despite maintained function by some indexes, pressure-volume loops
obtained with varying preload (Fig. 2A) demonstrate a significant decrease in E  (Fig. 2, A and C). In

combination with the increased RV afterload (E ), decreased E  resulted in RV-pulmonary vascular

uncoupling (Fig. 2D). In the setting of PAH, ventricular-vascular uncoupling suggests development of RV
dysfunction and is predictive of increased mortality (1, 6, 32, 38, 58). In addition, increased τ and
decreased chamber compliance provide evidence of RV diastolic dysfunction (Table 2). There was a trend
toward decreased RV volumes as measured by right heart catheterization (Table 2). These findings were
consistent with echocardiographic assessments that demonstrated no change in RV internal diameter (data
not shown).

We further evaluated RV mechanical energy consumption and output. There was a significant increase in
RV energy consumption, as measured by PVA (Fig. 3A). However, despite this increase in consumption,
RV mechanical energy output as measured by EW was similar to sham (Fig. 3B). Taken together, this
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Increased PVR and impedance post-MI.

Development of perivascular pulmonary fibrosis without medial hypertrophy or increased

proliferation post-MI.

Absence of RV fibrosis or change in capillarity density post-MI.

resulted in a significant decrease in EW/PVA occurring in the setting of post-MI secondary PH (Fig. 3C).

In vivo hemodynamic analysis demonstrated increased afterload
measured by E  (Fig. 2B) in addition to increased TPVR and LVEDP (Table 2), indicating the development

of PH-LHF. In addition, there was significant elevation in the TPG. To better characterize maladaptive
changes in the pulmonary vasculature, we performed ex vivo isolated lung perfusion at 12 wk post-MI.
Figure 4A demonstrates increased TPG at flow rates between 2 and 5 ml/min in post-MI lungs. Consistent
with increased TPG, PVR was significantly elevated in the post-MI lungs at flow rates from 3 to 5 ml/min (
Fig. 4B), indicating a progression to Cpc-PH potentially driven by vasoconstriction or remodeling of the
pulmonary vasculature in the post-MI setting. Pulmonary vascular impedance was evaluated using a
pulsatile flow protocol as described above. The input resistance, Z , was significantly elevated in the post-

MI group (Fig. 4C and Table 3). There was a trend toward increased Z , a measure of proximal artery

stiffness, which did not reach statistical significance, and no change in wave reflection index, R , an

indicator of pulse pressure wave reflections (Table 3). Similar to the findings for Z , there was a trend

toward reduced distensibility, α, which was not statistically significant (Table 3).

Histological examination of the pulmonary vasculature was completed to determine if the observed
changes in pulmonary vascular function (increased PVR, E , and Z ) were associated with structural

changes. Picrosirus red staining demonstrated significant increase in perivascular collagen deposition in
pulmonary arterioles (Fig. 5, A and B). The amount of perivascular collagen correlated with both RVSP, a
surrogate for mPAP, and TPVR (Fig. 5, C and D). These findings demonstrate that perivascular remodeling
characterized by increased collagen deposition is one mechanism contributing to the development of
increased PVR in secondary PH. Pulmonary arterial remodeling was further assessed by examination of
medial hypertrophy using Verhoeff-van Giesson staining and calculation of PA wall area fraction (Fig. 5, E
and F). Analysis demonstrated no evidence of medial hypertrophy in the post-MI group, which actually

showed a slight decrease in PA wall area fraction compared with control. To assess for PA cell
proliferation, PCNA expression was measured in lung homogenates from sham or MI animals. As
demonstrated in Fig. 5G there was no difference in PCNA between the sham and MI groups.

Histological examination of the RV
was also performed. As shown in Fig. 6, there were no changes in collagen content or RV capillary density.

DISCUSSION

This study investigated the mechanical mechanisms of pulmonary vascular and RV dysfunction due to
secondary PH in a mouse model of ischemic HFrEF. We observed the following changes in the pulmonary
vasculature: increased PVR, Z , and E . These were associated with perivascular fibrosis in the pulmonary

arteries. RV diastolic dysfunction occurred in addition to reduced E  and ventricular-vascular uncoupling.

While cardiac output decreased in the setting of MI leading to HFrEF, RV EF was preserved, indicating that
RV failure had not yet developed.

Our findings of increased LVEDP, RVSP, and RV hypertrophy are consistent with previous studies showing

evidence of PH-LHF in rodent models (2, 8, 31, 33, 37, 49, 56, 61, 80). In addition to documenting the
development of PH in a murine model of HFrEF, this study demonstrated changes in the pulmonary
vascular response to steady and pulsatile flow developing in this context through both in vivo and ex vivo
assessments. This comprehensive approach enabled demonstration of progression to Cpc-PH from Ipc-PH
post-MI. Moreover, from ex vivo pulmonary vascular pressure-flow dynamics, we demonstrated that Cpc-
PH in this model is not characterized by a change in characteristic impedance (indicative of proximal
arterial stiffening) in contrast to findings in small animal models of PAH (44, 74). Interestingly, there was
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also no change in distensibility of the small pulmonary arterioles. A recent study demonstrated that reduced
pulmonary vascular distensibility was correlated with degree of PH, exercise capacity, and survival in
patients with PH-LHD (47). This patient cohort had significant reduction in RV EF indicating severe

disease with RV EF. However, at 12 wk postsurgery in the MI mice, the PH was moderate and RV EF was
maintained. Thus significant changes in pulmonary arteriolar distensibility may require more severe disease
or longer term PH.

Structural changes underlying the increased resistance and impedance were identified in the pulmonary
vasculature. There was a significant increase in perivascular collagen in the pulmonary arteries, which is
consistent with previous reports of pulmonary fibrosis in a rodent models of PH-LHF (8, 33) as well as
with pulmonary vascular remodeling consistently found in small animal models of PAH (67–69).
Additionally, the presence of structural remodeling of the pulmonary vasculature has been demonstrated on
autopsy specimens of patients with Cpc-PH who died following heart transplant (11). The current study
goes beyond previous investigations of PH-LHF in demonstrating functional mechanical changes
associated with these histological changes. This study demonstrates mechanical changes in the pulmonary
vasculature including increased PVR without evidence of changes in proximal PA stiffness (i.e., no change
in characteristic impedance). Consistent with these findings, there is evidence of perivascular pulmonary
arterial fibrosis without evidence of medial hypertrophy or increased proliferation, two traditional
hallmarks of pulmonary vascular remodeling in PAH (30, 34, 48). Thus this model likely represents an
early stage of Cpc-PH in which some of the precapillary component of the PH is due to vasoconstriction

and potentially reversible. These results highlight that the types and mechanisms of pulmonary vascular
remodeling in PH-LHF are potentially different than those well characterized in PAH. Further studies are
needed to quantify the pulmonary venous and capillary remodeling, which likely occur before pulmonary
arterial remodeling in PH-LHF and were unable to be fully assessed in the current study.

Beyond evaluation of the pulmonary vasculature, RV mechanical function was evaluated through in vivo
pressure-volume loop analysis. We demonstrate the development of RV dysfunction with reduced E  and

impaired ventricular-vascular coupling as well as impaired diastolic function (decreased compliance and
increased τ). A recent study in human patients with PH-LHF showed reduced RV pulmonary vascular
coupling in Cpc-PH compared with Ipc-PH (17). RV diastolic dysfunction has been demonstrated in
patients with LHF; interestingly, RV diastolic dysfunction did not correlate with degree of PH and occurred
in patients with LHF without PH (81). There was no RV dilation found in our PH-LHF model, which is
consistent with a state of RV dysfunction rather than failure as RV dilation has been shown to occur late in
the progression to RV failure (3, 78).

While this study provides important insights into PH-LHF, there are important limitations to note. Invasive
measurements of pulmonary vascular and RV function were completed at a single time point. Therefore,
causal relationships between RV and pulmonary vascular hemodynamic changes or between structural and
functional changes cannot be determined. We document RV hypertrophy but did not elucidate when it
occurs in relationship to LV remodeling and increased PVR. The post-MI mice show evidence of Cpc-PH,
but we cannot differentiate the contributions of reversible vasoconstriction from irreversible remodeling
(unresponsive to vasodilators) to the Cpc-PH. The presence of pulmonary vascular fibrosis suggests
progression to a fixed disease state; however, other markers of pulmonary arterial remodeling were
negative. The response to pulmonary vasodilators would enable the active versus passive mechanical
mechanisms of Cpc-PH to be distinguished. Additionally, further evaluation of pulmonary vascular
remodeling including PA calcification, pulmonary capillary remodeling, and pulmonary venous remodeling
are important areas to be addressed in future work. It is important to note that diastolic pressure gradient,
the primary metric for distinguishing Ipc-PH and Cpc-PH in clinical practice, was not able to be
determined as PAPs were not directly measured in vivo. Both PVR and TPG, two key features of Cpc-PH
(28, 50), were assessed both in vivo and ex vivo. In particular, ex vivo isolated, ventilated, lung perfusion
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Conclusion.

where measurements are taken across varying flow rates overcome many of the limitations of in vivo
assessments, the primary of which is that they are flow dependent (52, 53). Furthermore, all in vivo
pressure measurements were acquired using an open-chest technique and intravenous anesthesia (urethane)

was used, which can cause artifactual reductions in pressures (62). It is likely but unknown whether these
factors would impact both groups similarly and thus are key limitations that must be taken into account in
interpreting the results. Despite these limitations, this work uncovers mechanical mechanisms in the
pulmonary vascular and RV progression of disease in a rodent model of HFrEF.

This study is among the few to quantify pulmonary vascular biomechanics in a small animal
model of HFrEF leading to PH-LHF. It goes beyond previous reports in models of PH-LHF to provide a
both robust and comprehensive evaluation of pulmonary vascular and RV mechanical function. Cpc-PH
associated with increased PVR, input resistance, and arterial E  is shown to develop by 12 wk post-MI in

mice. These hemodynamic changes correlate with structural remodeling in the pulmonary vasculature. We
further quantified RV mechanical function in the setting of Cpc-PH due to HFrEF and demonstrate diastolic
dysfunction and ventricular-vascular uncoupling consistent with findings in patients with PH-LHF. Future
studies are needed to evaluate the time course and progression of pulmonary vascular and RV mechanical
changes in PH-LHF as well as the molecular drivers of these mechanical mechanisms.
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Fig. 1.

Development of left ventricular (LV) dysfunction and dilation post-myocardial infarction (MI). A–D: increased LV size
develop by 4 wk post-MI and persist through 12 wk (A and B) and are associated with impaired systolic function measured

by reduced LV ejection fraction (C) and impaired diastolic function measured by increased isovolumic relaxation time

(IVRT; D). *P < 0.05 vs. sham.
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Table 1.

Biventricular morphometric changes due to MI

Tissue Sham MI P Value

n 14 12

BW, g 29.5 ± 0.63 29.3 ± 0.48 0.969

LA/BW 0.12 ± 0.01 0.21 ± 0.01 0.002

LV + S, mg 92.4 ± 2.9 128.3 ± 7.8 <0.001

LV + S/BW, mg 3.1 ± 0.07 4.4 ± 0.24 <0.001

RA/BW 0.14 ± 0.01 0.16 ± 0.02 0.368

RV, mg 23.3 ± 0.9 30.5 ± 1.7 <0.001

RV/BW, mg/g 0.79 ± 0.03 1.04 ± 0.08 <0.001

RV/LV + S, mg/mg 0.25 ± 0.01 0.24 ± 0.01 0.338

Lungs/BW 4.5 ± 0.1 4.9 ± 0.3 0.267

Values are means ± SE. BW, body weight; LV + S, left ventricle and septum; RV, right ventricle; LA, left atrium; R,
right atrium; MI, myocardial infarction. Bold indicates significance.

n = 6 for sham, n = 9 for MI.

*

*
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Table 2.

In vivo metrics of right ventricle and pulmonary vasculature function

Parameter Sham MI P Value

n 9 6

Heart rate, beats/min 554 ± 12 521 ± 24 0.231

LV end-systolic pressure,  mmHg 76 ± 7.0 66 ± 6.5 0.096

LV end-diastolic pressure,  mmHg 2.0 ± 0.1 8.6 ± 1.5 0.010

Right ventricular indexes

    RV systolic pressure, mmHg 19.6 ± 1.0 29.0 ± 1.2 <0.001

    RV diastolic pressure,  mmHg 0.74 ± 0.69 4.42 ± 1.44 0.029

    End-systolic volume, µl 18.2 ± 1.6 13.4 ± 1.7 0.102

    End-diastolic volume, µl 37.3 ± 3.5 26.7 ± 2.0 0.055

Cardiac output, ml/min 10.6 ± 1.1 7.0 ± 0.8 0.048

    Systolic indexes

    RV ejection fraction, % 50.5 ± 2.7 49.8 ± 3.9 0.881

    dP/dt , mmHg/s 1590 ± 160 1633 ± 150 0.848

    dP/dt  end-diastolic volume,  mmHg·s ·µl 49.1 ± 8.4 61.4 ± 6.7 0.292

    Stroke work, mmHg/µl 357 ± 41 365 ± 110 0.919

Diastolic indexes

    dP/dt , mmHg/s −1,230 ± 160 −1,200 ± 140 0.894

    Relaxation factor τ, ms 8.9 ± 1.9 16.2 ± 3.0 0.049

    Chamber compliance,  µl/mmHg 1.00 ± 0.14 0.54 ± 0.06 0.044

Pulmonary vascular indexes

    Total pulmonary vascular  resistance, mmHg·min ·ml 2.05 ± 0.29 4.49 ± 0.73 0.004

    Pulmonary vascular resistance,  mmHg·min ·ml 1.61 ± 0.21 3.70 ± 0.40 0.026

    Transpulmonary pressure  gradient, mmHg 16.6 ± 1.1 21.7 ± 1.0 0.045

Open in a separate window

Values are means ± SE. LV, left ventricular; RV, right ventricular. MI, myocardial infarction. Bold indicates
significance.
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Fig. 2.

Right ventricular-pulmonary vascular uncoupling following myocardial infarction (MI). A: representative pressure-volume
loops in sham and MI mouse right ventricles. Data obtained during alteration of preload by occlusion of the inferior vena

cava occlusions. B–D: increased arterial elastance (E ; B) and decreased end-systolic elastance (E ; C) result in impaired

ventricular-vascular coupling (E /E ; D) at 12 wk post-MI. *P < 0.05 vs. sham.
a es
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Fig. 3.

Myocardial infarction (MI) leads to increased right ventricular (RV) oxygen consumption and decreased mechanical

efficiency. A–C: increased oxygen consumption measured by pressure-volume area (PVA; A) with no change in RV

external work (EW; B) result in reduced mechanical efficiency (EV/PVA; C) at 12 wk post-MI.*P < 0.05 vs. sham.
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Fig. 4.

Increased pulmonary vascular resistance and impedance following myocardial infarction (MI). A and B: steady isolated

lung perfusion demonstrated elevated trans pulmonary gradient (TPG; A) and increased pulmonary vascular resistance
(PVR; B). C: pulsatile perfusion demonstrated increased impedance (Z) at 0 Hz. *P < 0.05 vs. sham. #P = 0.05 vs. sham.
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Table 3.

Ex vivo metrics of pulmonary vascular function

Tissue Sham MI P Value

n 5 6

Input resistance, Z , mmHg·min ·ml 4.01 ± 0.57 5.83 ± 0.44 <0.05

Characteristic impedance, Z , mmHg·min ·ml 0.44 ± 0.11 0.60 ± 0.12 0.375

Wave reflection index, R 0.81 ± 0.02 0.82 ± 0.03 0.941

Distensibility, α, 1/mmHg 0.037 ± 0.005 0.027 ± 0.004 0.176

Values are means ± SE. MI, myocardial infarction. Bold indicates significance.
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Fig. 5.

Development of perivascular pulmonary fibrosis following myocardial infarction (MI). A and B: picrosirus red staining
demonstrates increased perivascular collagen deposition in pulmonary arteries (PAs) (marked by arrows) post-MI. C and

D: amount of perivascular collagen correlates with right ventricle (RV)-systolic pressure (C) and total pulmonary vascular

resistance (TPVR) (D). *P < 0.05 vs. sham. E and F: remodeling was assessed by Verhoeff-van Giesson staining (E) and
calculation of PA wall area fraction (PA wall area/total vessel area; F) in PAs <200 μm. Representative images are shown.

Size bars = 50 μm. *P < 0.05 by t-test. G: proliferating cell nuclear antigen (PCNA) was measured in lung homogenates

from sham or MI animals by Western blotting and densitometric quantification. Vinculin was used as loading control.
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Fig. 6.

No right ventricular (RV) remodeling seen following myocardial infarction (MI). A and B: Picrosirus red staining shows

low levels of RV collagen in MI and sham mice. Scale bars = 50 μm. C and D: RV capillarization was determined in RV
sections by staining nuclei (DAPI; blue), endothelial cells (lectin Griffonia simplicifolia; red) and cell membranes [wheat

germ agglutinin (WGA); green]. Capillaries were identified by lectin positivity; cardiomyocytes were identified by WGA

staining. The number of capillaries per field was then normalized to the number of myocytes (expressed as
capillary/myocyte ratio). Representative images are shown. Scale bars = 50 μm.
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