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Abstract
Magnetorheologicalmaterials are a class of smart substances whose rheological properties can rapidly
be varied by application of amagnetic field. The proposed damper consists of an electromagnet and a
piston immersed inMRfluid.When current is applied to the electromagnet, theMRfluid solidifies as
its yield stress varies in response to the appliedmagneticfield.Hence, the generation of amagnetic
field is an important phenomenon inMRdamper. In this research, themagnetic field generated in the
damperwas analyzed by applyingfinite elementmethod usingCOMSOLMultiphysics andwas
validated usingmagnetic circuit theory. A quasi-static, 2D—Axisymmetricmodel was developed
using parametric study by varying current from0–3 A and themagnetic flux density change generated
in thefluid flow gap ofMRfluid due to external applied current was evaluated. According to the
analytical calculationsmagneticflux density generated atMRfluid gapwas 0.64 Tesla andwhen
calculated using FEAmagneticflux density generatedwas 0.61 Tesla for 1A current. There is a
difference of 4.8% in the simulated results and analytically calculated results of automotiveMR
damper due to non linear BH curve consideration in Finite element analysis over linear consideration
of BH relation inmagnetic circuit theory.

Nomenclature

A Vector potentialfield

Ai Area of the rings

B Magnetic flux density

g Fluid gap

H Magnetic flux intensity

I Current applied to the coil

Je Current density

Li Length of the links

Lp Pole length

L Piston length

MR Magneto Rheological

MRF Magneto Rheological Fluid

Mt Magnetic Reluctance

N Number of turns of coil

R Outer radius of the Piston

Rc Inner radius of the piston

t Cylinder wall thickness
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Wc Coil width

ġ Shear strain rate

m0
Relative permeability of vacuum

mp
Apparent viscosity of thefluid

τ Shear stress of thefluid

ty
Yield stress of the fluid

σ Electrical conductivity

f Magnetic Flux

1. Introduction

One of themost recent and promising technologies in vehicle damper design is implementingMagnetorheogical
(MR)fluids. These smartfluids have the capability to continuously and rapidly change their rheological behavior
(viscosity) under appliedmagnetic field [1, 2]. Due to these unique characteristics,MRbased dampers can
provide variable damping force semi-actively by varying the appliedmagneticfield (varying current), thus they
have the capability to control vibration in awide range of road conditions.Magnetorheological fluid (MRF)
consists of a suspension ofmicroscopicmagnetizable particles in a non-magnetic carriermedium, the fluid
behaves in aNewtonianmanner (figure 1(a)) [3]. Applying amagnetic field causes themicroscopic particles
suspended in thefluid to becomeuniformly oriented and form chains along themagnetic flux lines (figure 1(b))
[3]. This temporary internal structure changes the fluids rheological behavior [4].When flowoccurs
perpendicular to themagnetic flux lines, the resistance of themicro particle chains causes thefluid to exhibit an
yield stress that is not uniform. Thus, when amagnetic field is applied to anMRF in afluid gapwhich hasflux
lines due to electromagnetic circuit, the fluid behaves similarly to a Binghamplastic [5].

Recently, some studies have focused onfinite element analysis of theMRdamper for calculatingmagnetic
flux density and for geometric optimization. Parlak et al [6] has proposed design parameters based on the
optimizationmethod and usedmagnetostatics andCFD in the finite element analysis tool ANSYS to obtain
optimal value of design parameters. Zhang et al [7] has proposed the use offinite elements to improve the
magnetic design of anMRdamper. Ferdaus et al [8] has established a 2D axi-symmetric and a 3Dmodel of an
MRdamper that considered not only the shape of the piston, theMRfluid gap, the air gap but also the thickness
of the damperʼs housing. Finite elementmethod (FEM) has been also used in themodeling and design ofMR
valves and dampers [9]. Guo et al [10] has conducted finite element analysis of anMRvalve usingANSYS and
generated amagnetic circuit using aC shaped electromagnet. Khan et al [11] andWalid [9] has analyzed
magnetic flux density in a 2D -axisymmetricmodel usingANSYS and derived results for four different piston
designs before determining the best piston design formaximum flux density. Case et al [12] has conducted a
Multiphysics Analysis of anMRdamper formedical orthosis and then generatedmagnetic flux density inMR
damperwith applied current of 0 mA to 500 mAusingCOMSOLMultiphysics.

Previously ANSYS software had been used tomodelMRdamper butMR fluid properties cannot bemodeled
accurately usingANSYS.Hence tomodel theMRFluid accurately taking BH curves and variation of yield stress
with respect tomagnetic field into consideration, COMSOLmultiphysics software was used in this research.
Unlike the existingmagnetostatic analysis,the new techniques ofmagnetostatics ofMRdamper and its
validation usingmagnetic circuit theory are presented in this research.

2.Design andmodeling ofMRdamper

Dissipation of energy via volume change is the basic operating principle of dampers. In conventional dampers
dissipation of energy due to road disturbances is a function of volumeflow rate change caused by damper piston
orifice design andfluid viscosity. This operating principlemeans that the conventional damper is a constant
energy dissipation damper.Magneto rheological dampers have the ability to change the viscosity of the fluid
because of themagnetic excitation provided to operating fluid [13, 14]. Increasing excitation results in both
increasedmagnetic flux through thefluid and an increased resistance tofluid flow,which ultimately results in
increased dissipation of energy per cycle.

While allMRdampers operate on the same principle, their fabrication varies. Based on the principle of
construction, usedMRdampers are classified as either twin tube,mono tube, or double end dampers. Each type
comeswith its own advantages and disadvantages. Double endedMRdamper consists of two piston rods
protruding through both the end of dampers which ismostly suited for the impact applications. It does not
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require an accumulator. These dampers have been used in gun recoil applications [15], bicycle applications [16].
Twin tube dampers are the easiest tomanufacture and operate at the lowest pressures thus reducing the overall
manufacturing and operation cost but itmay cause cavitation since oil and gas chambers are not seperated
reducing the performance.Monotube dampers, on the other hand, operate at highest pressures resulting in
lowest cavitation andmost efficient operation of the damper. Although these dampers are expensive to
manufacture but these are easy to install and smaller in size. Hence the best choice for an automotive damper per
the construction consideration ismonotubeMRdamperwhichwas used in this study [17]. The basic design of a
monotubeMR is shown infigure 2.

TheMRdamper composes of amain damper housing, a piston and piston rod assembly, and an
accumulator. The piston is wound bymulti-turn coil which is themain source ofmagnetic flux. The piston rod,
piston and cylinder are all analyzed usingmagneticmaterial throughwhich current is passed to the coilmaking
the electromagnetic circuit in the damper and creatingmagnetic flux [19]. Themain reservoir contains the
piston and piston rod assembly submerged in theMR fluid, while the accumulator reservoir contains a
compressed, non-oxidizing gas (usually nitrogen). As the piston rodmoves into the damper housing, a volume
offluid equivalent to the volume of the intruding piston rod is displaced through an annular gap offluid. The
accumulator piston thenmoves toward the bottomof the damper, compressing the nitrogen charge to account
for the change in volume. As the piston rod retracts, the accumulator piston elevates the damper tube to
counteract the loss of volume. 3D geometry ofMRdamper is generated using CREO software shown infigure 3.

3.Magnetic circuit theory

It is well-known thatmodelingMRF based systems is amulti-physics analysis problem: based on both
electromagnetic analysis andfluid system analysis. To facilitate the depth of this research, electromagnetic
analysis was the sole focus. The purpose of suchmodelingwas tofind the relation between the applied electric
power (usually the current applied to the coils) and the outputmagnetic flux density and intensity which changes
yield stress of thefluid. In order to accurately and effectivelymodel anMRdamper, first themagnetic circuit of
this damperwas calculated usingAmpere’s law stated in equation (1) [20]

ò * = * ( )H dl N I 1

Figure 2.Design ofmonotubeMRdamper [18].

Figure 1.Example of particle orientation in the (a) absence and (b) presence ofmagnetic field in thefluid space [3].
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equation (1) is rewritten as given in equation (2)

å = *
=

( )H L N I 2
i

i i
1

8

The piston head valve is shown in figure 4.Magnetic flux is generated because of the current and the number
of turns of coil. Themagnetic field causesmagnetic flux to follow the path of leastmagnetic reluctance as shown
in the figure 5. It shows themagnetic circuit in the piston head of theMRdamperwheremagnetic flux is
generated in piston head andMR fluid.Magnetic reluctance occurs in series and is represented by the following
equation (3)

å m= *
=

( ) ( )M L A 3t
i

i i i
1

8

Li is length of links as shown infigure 4,μi is relative permeability ofmaterial,μ2,6 is 5.5,μ1,3,5,7,8 [21] is 1600
ofMRFluid and Low carbon steel respectively.

Reluctance of circuit is based on length, permeability and area of the link.Magnetic reluctance and circuit is
shown infigure 5. Thus, the greater the area and permeability of the link and less was the reluctance, the greater
magnetic fluxwas generated in the circuit given in equation (4)

f = * ( )N I M 4t

wheref isMagnetic Flux
Length of Links for the calculation ofmagnetic flux are given in equations (5)–(8) [22]which are shown in

figure 4

Figure 3. 3DDesign ofMRdamper created inCREO software.

Figure 4.Magnetic circuit of Piston head ofMRdamper.
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= = - ( )L L R
R

2
5c

1 7

= = ( )L L g 62 6

= = ( )L L
t

2
73 5

= = - ( )L L L L 8p4 8

And cross sectional Areas of the links are given in equations (9)–(13)

p= = * * * -
⎡
⎣⎢

⎤
⎦⎥ ( )A A L R
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2

4
9p

c
1 7

p= = * * * +
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Parameters used for the calculation ofmagnetic flux using FEA andmagnetic circuit theory are given in
table 1. Using the above equations totalmagnetic reluctance in the circuit was calculated andmagnetic flux
density inMR fluid gap is given in equation (14)

m f= * ( )B A2 140

Whereμ0 is relative permeability of vacuum - p * - H m4 10 7

In a ferromagneticmaterial,magnetic flux density B represents themagnitude of the internalfield strength
within a substance that is subjected to anHfield [23] given in equation (15)

Figure 5.Magnetic reluctance of the links ofmagnetic circuit.

Table 1.Parameters used for calculation of
magneticflux.

Parameter Expression Value

Piston radius R 21 mm

Piston internal radius Rc 10 mm

Pole length Lp 8 mm

Piston outer thickness t 8 mm

Length of piston head L 50 mm

Width of coil Wc 10 mm

Fluid annular gap g 1.3 mm
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m m= * * ( )B H 15o r

Thusmagnetic flux intensity can also be calculated using the above relation given in equation (15) inMR
fluid gap. For analytical calculations this linear relationship ofmagnetizationwas used.

Themagnetic circuit designwhich causes change in the yield stress of theMR fluid is one of themost
important phenomenon since the rheology (viscosity) of theMR fluid is dependent on yield stress of the fluid. By
applying the least-squares curvefittingmethod [24] to thefluid property specifications ofMRF 132DG fluid the
yield stress was determined by equation (16)

t = - + + + ( )B B B B52.962 176.51 158.79 13.708 0.144 2 16y
4 3 2

This yield stress and viscosity relationwere explained using binghamplasticmodel. which is given in
equations (17) and (18)

t t g m g= +( ) ( ˙ ) ˙ ( )B sgn 17y p

When τ>τy and

g =˙ ( )0 18

When τ<τy
Above equations states that thefluid acts as a rigid bodywhenmagnetic field is applied in thefluid gap below

dynamic yield stress which is responsible for damping.

4. Finite element analysis

In the current research, commercial FEMtoolCOMSOLMultiphysicswasusedby adding aCFDmodule and an
AC/DCmodule to analyze themagnetic circuit produced in theMRdamper [25], since thenon linear properties of
MRfluid canbemodeled accurately inCOMSOLmultiphysics. Because the geometryof damper structurewas
axisymmetric, to reduce the computational cost a 2-Daxisymmetricmodel as shown infigures 6(a) and (b)wasused
todevelop thefinite elementmodelingof thedamper for thepurpose of electromagnetic analysis. Themagneticflux
density (B) in theMRfluidunder applied varying current of 0–3AmpwasdeterminedusingAmpere’s law.

The Rectangular bodywas created around the damperwhich represents the air that acts as amagnetic
insulator. 2D axisymmetric Geometry created inCOMSOL is as shown infigures 6(a) and (b).Mappedmeshwas
generated as shown infigure 6(c). Thismodel was tested tofind themagnetic flux density generated influid gap
due to current variation in electromagnetic coil.MR fluid used in this studywasMRF 132DGbecause of the
larger operating temperature range offluid. The properties of theMRfluid are given in table 2 [26]. The non
linearmagnetic properties ofMRfluid—BHcurve shown infigure 7 and yield stress versusmagnetic field
intensity of this fluid are given by LordCorporation shown in figure 8. Low carbon steel AISI 1018 is assigned to

Figure 6. 2DAxi-symmetric FEmodel ofMRdamper (a), zoomed view (b),Mappedmesh of damper (c).
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piston, cylinder and rod [27]. Non linearmagnetic properties of low carbon steel are available in theCOMSOL
material library. Coppermaterial was used tomodel amulti-turn coil with number of turns as 350. It was
implemented as themagnetic intensity inducer and for the simplification it was represented as a lumpedmodel.

Ampere’s lawwas used to generatemagnetic field in themodel and constitutive relation used inMRfluid,
Low carbon steel was non linearHB curve. Constitutive relation as in equation (15)was used inAmpere’s law of
coil and an air body.

Axial symmetry boundary conditionwas added in theMFmodule. Air boundarywas used to insulate the
model.Multiturn coil was used to represent solenoid. Variable current (I)was defined so as to give varying input
current whichwill then generate current in coil . Simulationwas runwith a stationary study and parametric
sweep using varying current from0A, 0.5A, 1A, 1.5A, 2A, 2.5A formagneto static calculation.Hencemagnetic
field perpendicular to the coil was generated.

Magnetostatics equations areMaxwell’s equations and it is given in equations (19) and (20)

 ´ = ( )H J 19

Table 2.Properties ofMRF 132 DG.

Property Value

Viscosity Pa-s@ 40 °C (104 °F) 0.112±0.02
Density g/cm3 2.95–3.15

Flash Point, °C (°F) >150 (>302)
Magnetic field strength(H) 150–250 [kA/m]
Operating temperature °C (°F) −40 to+130 (−40 to+266)

Figure 7.Typicalmagnetic properties ofMRF 132DGby Lord corporation [28].

Figure 8.Typicalmagnetic properties ofMRF 132DGby Lord corporation [28].
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= (∣ ∣) ( )B f H 20

J is Current density which is given in equation (21)

s= + ( )J E J 21e

which states thatmagnetic fieldwas induced because of applied Current density J.
For quasistatic condition equation (21)was used

 ´ = ( )A B 22

This was derived fromGauss’s lawwhichwas equivalent to the statement that the field lines have neither a
beginning nor an end: Each one either forms a closed loop andwinds around forever without ever quite joining
back up to itself exactly, or extends to infinity.

The constitutive relationship for Ampere’s law betweenB andH forMR fluid and low carbon steel was
defined as function of each other with the interpolation curve stated in equation (23).

m m= * * ( )B H 23o r

Je is external current density which is given to the coil and is given in equation (24)

= ( )J
NI

A
24e

Magnetic insulationwas provided in an FEAmodel using equation (25)

´ = ( )n A 0 25

Magnetostatic analysis was performed using FEAmodel inCOMSOL.

5. Results and discussion

Magnetic circuit analysiswas performedusing FEMandmagneticfluxdensity,magneticflux intensity and related
yield stresswas obtained at thefluidflowgap ofMRdamper. Simulated results ofmagneticfluxdensity and
intensity for 1A currentwas given infigures 9(a) and (b) and theplot ofmagneticfluxdensitywith respect to
varying input current from0–3A shown infigure 10. It was observed that as the input current increases, the
magneticfluxdensity andhence intensity increases proportionally.With FEManalysis,magneticfluxdensity of
0.61T andmagneticfluxdensity of 122 kA/mwas generated in thefluid gap.Table 3 includes variation of input
current,magneticfluxdensity andmagneticflux intensity influidflowgap.Thus it is concluded fromfigure 8 that
yield stress of 34 kPa is generated influid.Whereas usingmagnetic circuit theorymagneticfluxdensity of 0.64T
was generated andusing equation (16) yield stresswas calculated as 34 kPa. Thedifference of 4.8 percent between
two resultswas due tonon linear BHcurve consideration inFinite element analysis over linear considerationofBH
relation inmagnetic circuit theory. It is concluded that the yield stress generated influid is belowdynamic yield
stress of 50 kPaofMRF132DG, hence viscosity of thefluid increases given in equations (17) and (18).

Figure 9.Magnetic flux density and intensity inMRdamper.
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6. Conclusion

An electromagnetic circuit simulation andmagnetic circuit theory results comparison ofmonotubeMRdamper
was proposed in this study. The FEACOMSOL software package helps in giving realistic thematerials, the coil
type, the coilʼs turn and the boundary conditions in order to achieve accurate results. study used in this FEA
states that themagnetic flux density increases linearly with the increase in applied current. The permeability of
low carbon steel is greater than that ofMRfluid; hence,magnetic flux observed in pistonmaterial ismore than
that ofMR fluid. It is concluded thatmagnetic flux density, intensity and yield stress inMR fluid ofMRdamper
analyzed using FEA are validated usingmagnetic circuit theory.
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