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Abstract

Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most 

animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in 

the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders 

ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in 

producing these neurological defects, however, remains unclear. Invertebrates provide an attractive 

model to study the effects of iron on neuronal development since many of the genes involved in 

iron metabolism are conserved, and the organisms are amenable to genetic and cytological 

techniques. We have examined synapse growth specifically under conditions of iron deficiency in 

the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock 

neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon 

chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. 

Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and 

transport, does not affect synapse growth in these cells. Together, these data indicate that dietary 

iron is necessary for central brain synapse formation in the fly and further validate the use of this 

model to study the function of iron homeostasis on brain development.
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INTRODUCTION

Iron is a biological trace element that is vital to the survival of organisms across the 

evolutionary spectrum. Proteins requiring iron as a cofactor play critical roles in many 

cellular pathways, including cell proliferation, immune response, oxygen transport, and 

respiration[1–5]. Due to such diverse and important functions, cells use many mechanisms 

to tightly control the levels of bioavailable iron. The brain is particularly sensitive to defects 

in iron homeostasis. Iron-containing enzymes are involved in important neurodevelopmental 

mechanisms such as axon myelination, neurotransmitter synthesis, and neural 
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transmission[6– 8], In humans, iron deficiency is strongly associated with 

neurodevelopmental delay and is also a key component of restless leg syndrome whose 

symptoms can sometimes be significantly reduced by treatment with iron[9–12]. 

Furthermore, iron deficiency in mammalian models reduces dendritic elaborations, perturbs 

synaptic function, and results in developmental cognitive defects[13–15]. While the role of 

iron in brain function has been well studied in vertebrates, the neurological functions of iron 

in invertebrates such as insects are not well understood.

Drosophila melanogaster serves as an excellent model to study the role of iron in 

invertebrate brain development and function. Flies express homologs to many of the 

mammalian genes involved in iron homeostasis, though there are some differences which 

suggest the mechanisms of iron regulation in invertebrates may be somewhat unique[16,17]. 

For example, mammals express a transferrin receptor protein which is necessary to transport 

transferrin-bound iron across the blood brain barrier[18]. The fly genome however, does not 

seem to contain a transferrin receptor gene. In flies, ferritin is the protein considered to be 

the primary iron storage and transport molecule[19]. A holoferritin complex consisting of 12 

ferritin 1 heavy chain subunits and 12 ferritin 2 light chain subunits is capable of binding 

over 1000 iron atoms[20]. Ferritin is believed to bind dietary iron in the gut where it is then 

secreted to disseminate iron throughout the body. Ferritin, however, is also expressed in the 

fly brain[21]. Indeed, ferritin is required during embryogenesis for proper formation of both 

the central and peripheral nervous systems[22]. While the extent of ferritin’s cellular 

function is unknown, ferritin is also required to regulate circadian activity. Neuronal 

knockdown of either ferritin 1 or ferritin 2 leads to arrhythmic behavior of adult animals, 

though ferritin 2 does seem to be more critical to this process[23]. In addition to ferritin, 

several other proteins involved in regulating the bioavailability of iron also regulate 

behavioral rhythmicity. Together, these findings indicate that proper control of iron 

homeostasis specifically in the brain is necessary for circadian circuit function. It is 

unknown, however, at what level of neuronal development iron functions in this circuit.

Circadian activity in Drosophila is mediated by a well characterized group of pacemaker 

neurons. In brief, light signals are transmitted from the Hofbauer-Buchner eyelet 

photoreceptors in the compound eye to large and small ventrolateral neurons in the central 

brain, which connect the signal to neurons in the dorsal protocerebrum[24,25]. Since 

deficiencies in iron-binding proteins affect the behavioral output of this circuit, we wanted to 

determine whether or not the synaptic structure of neurons involved in this neural relay 

system was affected by manipulation of iron. Defects in the structure of the small 

ventrolateral neuron projections have been associated with defects in circadian 

activity[26,27]. We therefore analyzed their synaptic structure during times of iron 

deficiency. Iron deficiency generated throughout development or acutely during adulthood, 

produced significant deficits in synapse formation in these primary fly circadian neurons. 

These defects were unable to be rescued by restoring iron concentrations to normal levels. 

Synaptic development of these neurons was also not impacted by neuronal knockdown of 

ferritin 1 or 2, suggesting that the previously characterized effects of knockdown of these 

proteins on circadian activity may occur via another mechanism. These results indicate an 

important role for dietary iron in synapse development but suggest that the mechanism of 

synapse regulation may be multi-fold.
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METHODS

Drosophila stocks

The genetic control strain w1118 was used for all iron chelation analyses. Elav-gal4 was 

crossed to w1118 and the heterozygous progeny were used as the control for RNAi 

experiments. UAS- ferritin 1 RNAi (y1 v1; P{TRiP.HMC04808}attP2, stock number: 

60000 ) and UAS-ferritin 2 RNAi (y1 sc* v1; P{TRiP.HMS02784}attP40, stock number: 

44067) were obtained from the Bloomington Drosophila Stock Center. Each RNAi line was 

crossed to Elav-gal4 flies so that the construct and the driver were both heterozygous in the 

experimental animals. All animals were maintained on standard cornmeal molasses agar 

(except for iron chelation experiments) at 25 °C with 12 h light/dark cycling.

Bathophenanthrolinedisulfonic acid disodium salt hydrate administration

The iron chelator bathophenanthrolinedisulfonic acid (BPS, Alfa Aesar) was made as a 10 

mM stock solution and stored in the dark at room temperature until needed. Standard 

cornmeal molasses agar was liquefied, cooled to 40 °C, and supplemented with final 

concentrations of 100 μM or 200 μM developed on this food for their complete life cycle. 

Upon pupal eclosion, animals were transferred to fresh BPS treated food and aged 3–4 days 

when they were dissected. 2) Adult flies laid eggs directly on normal food. Embryos hatched 

and developed on this food for their complete life cycle. Upon pupal eclosion, animals were 

transferred to fresh BPS treated food and aged 3–4 days when they were dissected. 3) Adult 

flies laid eggs directly on BPS treated food. Embryos hatched and developed on this food for 

their complete life cycle. Upon pupal eclosion, animals were transferred to fresh normal 

food and aged 3–4 days when they were dissected.

Immunohistochemistry

To control for potential time of day differences in sLNv arbor growth, all animals were 

dissected between zeitgeber 3 and 6. Adult Drosophila brains were dissected in 1X 

phosphate buffer saline (PBS) and fixed in a 1X PBS, 4% formaldehyde, 4% sucrose 

solution for 30 min at 25 °C. Brains were then washed three times in wash buffer (1X PBS; 

1% BSA; 0.2% Triton X-100) for 30 minutes each at 25 °C, incubated in anti-PDF antibody 

(1:5 dilution, Developmental Studies Hybridoma Bank) for 12–16 h at 4 °C, then washed 

three times in wash buffer for 30 min each before incubation with Alexa Fluor 488 

conjugated goat anti-mouse IgG secondary antibody (1:2000 dilution, Jackson Laboratories) 

for 1–2 h at 25 °C. Brains were then washed three times for 30 min each at 25 °C and 

mounted on glass slides in Fluoromount G (eBioscience, Inc.).

Confocal Microscopy

A Zeiss LSM 710 confocal microscope was used to acquire all images. Whole brain Z-stack 

images were obtained using a 10X (1.3 na) air objective and 2X zoom. Z-stacks of the left 

and right sLNv arbors were obtained using a 40X (1.3 na) oil objective and 3X zoom. These 

images were used for analysis of synaptic growth.
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Synaptic Growth Analysis

Imaris 8.2.0 (Bitplane, Inc.) was used to analyze development of the small ventrolateral 

neurons. PDF-positive puncta within the sLNvs were quantified using the Imaris Spot 

algorithm. For this program, regions of interest around the dorsal lateral projects were 

drawn, the estimated XY diameter was set at 1 μm, and background subtraction was turned 

on. To account for antibody labeling variations, threshold intensities were optimized for each 

image. Only spots between the point of bifurcation and terminal branches were quantified. 

Values from the two paired sLNv arbors for each animal were averaged to produce a single 

data point.

Quantitative Reverse Transcription PCR

Adult brains were dissected in 1XPBS, transferred to 0.5mL TRIzol reagent (Ambion) and 

stored at −80°C. Fifteen brains were pooled for each biological replicate. Extraction was 

done according to TRIzol manufacturer’s specifications. Total RNA was treated with Turbo 

DNase (Invitrogen) and quantified by absorbance at 260nm on a Take3 Micro-Volume Plate 

Reader (BioTek). 500ng of RNA from each sample were then used to make cDNA using 

Superscript III Reverse Transcriptase and random hexamer primers (Invitrogen). 2μL of 

cDNA was used in reactions using Power SYBR Green Master Mix (Applied Biosystems) 

and qPCR was performed on a BioRad CFX Connect Real Time System thermocycler. Each 

sample for each primer set was run in triplicate and a melt profile was observed for each 

primer set to ensure single product amplifications. PCR cycling parameters were as follows: 

96°C - 10min (94°C - 30s, 60°C - 30s. 72°C - 30s) × 40 cycles, 72°C - 1min. fer1HCH and 

fer2LCH primers were the same as previously used[28]. Primers for alpha tubulin were as 

follows: forward: 5’ -ACGTTTGTCAAGCCTCATAGC - 3’; alpha tubulin reverse: 5’-

GAGATACATTCACGCATATTGAGTT - 3’. ∆∆Ct calculations were performed using alpha 
tubulin as the reference to determine fold change of the target transcript.

Statistical Analysis

One-way ANOVAs were performed on all data sets followed by a Tukey’s post hoc multiple 

comparisons test. In all cases, p values are represented as *0.01 < p < 0.05, **0.001 < p < 

0.01.

RESULTS

Iron is an essential nutrient, and while iron deficiency has long been associated with 

neurological defects including aberrant circadian activity, the role of iron in synapse 

formation remains uncertain. To determine iron’s effects on synapse formation, we exploited 

Drosophila by analyzing the development of the fly’s primary circadian activity control 

circuit in the brain. The small ventrolateral neurons (sLNvs) are a well characterized group 

of cells which control sleep and circadian activity in flies and are clearly identified by 

expression of the neuropeptide Pigment Dispersing Factor (PDF). PDF-expressing cells 

receive input from the photoreceptors in the compound eye and send contralateral 

projections across the midline to the protocerebrum where they bifurcate into dorsal and 

lateral branches (Fig 1). The termini of these branches form punctate PDF-positive 
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structures which are indicative of synapses[26]. The number of these PDF-positive puncta 

can be quantified to assess synapse formation in this circuit.

BPS is a common iron chelation agent which effectively inhibits uptake of iron into 

Drosophila enterocytes[21]. To investigate the role of iron deficiency on sLNv synapse 

development, Drosophila were reared on food containing either 100 μM or 200 μM BPS as 

both of these concentrations have been used to effectively chelate iron from standard fly 

food[29]. Animals reared on standard fly food lacking any supplements were raised in 

parallel and used as controls. Adult Drosophila were allowed to lay embryos onto these food 

conditions and experimental animals developed completely on their respective food. As the 

sLNv PDF-positive arbor is well formed by eclosion (Online Resource 1), animals were then 

aged on their conditioned food until 3 to 4 days post-eclosion (Fig 2A). Brains were then 

dissected, stained with anti-PDF antibodies, and the PDF-positive synaptic puncta of the 

sLNvs were quantified (Figs 2B and 2C). Flies fed 200 μM BPS had a statistically significant 

decrease in PDF-positive sLNv puncta relative to control untreated samples (control: 40.2 

±1.2, n=29; 200 μM BPS: 33.6 ± 1.1, n=32, p=0.001). 100 μM BPS treatment also appeared 

to reduce the number of PDF-positive synapses in these cells, but the decrease was not 

statistically significant (100 μM BPS: 36.6 ± 1.4, n=29, p=0.11). These data demonstrate 

that iron is necessary for proper synaptic connections in the Drosophila circadian circuit and 

also suggest that there are likely differences in the amount of iron chelated by different 

concentrations of BPS.

To determine if the decreases in synapse growth caused by iron chelation were dependent on 

the development of the fly, Drosophila were raised on standard fly food and then switched 

within 1 day of eclosion to food containing BPS (Fig 3A). Flies were kept on this iron 

deficient food until 3–4 days of age and then the sLNvs were analyzed as before. This acute 

exposure to iron chelation in the adult animal similarly reduced the number of PDF-positive 

synaptic puncta in 200 μM treated animals (Fig 3B. control 51.9 ± 1.6 n=47; 200 μM BPS: 

43.5 ± 1.7, n=47, p=0.002), and slightly reduced, though to a lesser extent, the synaptic 

arbors in animals treated with 100 μM BPS (100 μM BPS: 45.3 ± 1.6, n=50, p=0.017). 

These findings suggest that iron deficiency even in an adult fly can have a significant impact 

on synapse formation.

Since sLNv synaptic arbor development was significantly attenuated under iron deficient 

conditions, we wanted to determine whether or not restoration of normal iron content could 

reverse the observed undergrowth. Animals were therefore raised on iron deficient 

conditions throughout development as before in Fig 2. All animals were then switched 

within 1 day of eclosion to normal food lacking any supplements (Fig 4A). Animals were 

maintained on normal food for 3–4 days and then analyzed for PDF-positive synaptic 

growth. As before, 200 μM BPS treated animals had a significantly reduced number of PDF-

positive puncta when treated in this manner (Fig 4B. control: 39.5 ± 1.3, n=23; 200 μM BPS: 

34.981 ± 1.028, n=26, p=0.0341) indicating that the synaptic changes caused by iron 

deficiency were not affected by returning the animals to normal food. The result of this 

feeding paradigm was similar, though milder, in the 100 μM treated animals where the 

number of synaptic puncta were nearly significantly reduced relative to controls (100 μM 
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BPS: 35.3 ± 1.4, n=26, p=0.053) (Fig 4). Thus, it is possible that the level of iron chelation 

may affect the capacity of this circuit to remodel after restoration of the dietary iron supply.

Drosophila ferritin is a well characterized iron storage and transport molecule consisting of 2 

subunits, ferritin 1 heavy chain and ferritin 2 light chain[20]. Disruption of either of these 

two subunits in the fly brain leads to defects in circadian activity[23]. We therefore assayed 

the effect of neuronal knockdown of each ferritin subunit on PDF-positive synapse 

formation in sLNv neurons. UAS-RNAi constructs to either ferritin 1 or ferritin 2 were 

expressed using the pan-neuronal Elav-gal4 driver. Quantitative RT-PCR was used to 

determine the level of target transcript knockdown. We determined that both ferritin 1 RNAi 

and ferritin 2 RNAi reduced their respective target mRNAs by over 80% relative to controls 

(ferritin 1: 82% ± 2, n=3; ferritin 2: 83% ± 5, n=3). These levels are comparable to those 

seen previously[28], RNAi-expressing animals were therefore aged 3–4 days post-eclosion, 

and the sLNv circuit was quantified as before. Neither the ferritin 1 (control: 51.8 ± 1.6, 

n=22; FerIRNAi: 54.8 ± 1.9, n=33, p=0.27) nor the ferritin 2 genetic knockdowns (control: 

50.4 ± 2.2, n=23; Fer2RNAi: 52.0 ± 1.8, n=24, p=0.57) resulted in any change in the number 

of PDF-positive puncta relative to controls (Figs 5A and 5B). These results indicate that the 

aberrant rhythmicity seen in pan-neuronal ferritin knockdown animals is not due to 

alteration in the structure of these neurons.

DISCUSSION

Iron is an important dietary trace element which must be tightly controlled to avoid cellular 

damage. The association of excess iron with neurodegeneration and iron deficiency with 

neurodevelopmental delay highlights the importance of this regulation[10,30]. The specific 

mechanisms underlying these physiological conditions, and the specific role iron plays in 

their manifestation, however, remains unclear. Most of the information on the role of iron in 

neuronal development comes from vertebrate studies, however virtually all organisms on the 

planet utilize iron for redox biochemistry. Therefore, neuronal analyses in other species are 

likely to yield important insights into iron’s function. We sought to determine the role of 

iron in invertebrate synapse development. We chose the small ventrolateral neurons of the 

Drosophila circadian circuit as a model for this study given their well characterized synaptic 

architecture and the established role of iron in affecting circadian activity[23,25]. Since 

excessive iron is known to lead to the formation of neurodegenerative vacuoles in fly brain, 

we focused this study instead on the effects of iron deficiency[28].

Iron chelation by adding BPS to Drosophila food is an effective means of reducing the levels 

of bioavailable iron. Both 100 μM and 200 μM concentrations of BPS are able to produce 

iron-dependent phenotypes in Drosophila[29,28]. In this study, 200 μM BPS reduced 

synaptic elaboration of the sLNv dorsal arbor whether it was administered throughout 

development or acutely in adult animals (Figs 2 and 3). Halving the concentration of BPS 

produced similarly trending results, though they were somewhat less pronounced. While a 

significant reduction of PDF-positive synapses was detected when 100 μM BPS was 

administered acutely in adulthood, a small but not significant reduction was seen when this 

low level of BPS was provided throughout development. These differential results are 

consistent with 100 μM BPS chelating dietary iron at sub-maximal levels. This is seen too in 
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flies fed BPS during development but then returned to iron sufficient food in adulthood (Fig 

4). The 100 μM BPS treated animals did show a reduction in PDF-positive synapses, but the 

reduction in 200 μM treated animals was more significant. In all cases, the addition of BPS 

was well tolerated by the animals, so future studies of iron deficiency in the brain utilizing 

higher concentrations are more likely to produce the most robust results.

Reduction of synaptic development in Drosophila due to iron chelation is consistent with 

studies from vertebrates (Figs 2 and 3). In both the rat and mouse hippocampus, for 

example, reduced levels of iron either through dietary restriction or genetic alterations 

reduces the growth of dendrites specifically within the CA1 region[14,15]. Cortical neurons 

are also affected by iron deficiency though changes in branch number as opposed to 

dendritic length seem to be the prevailing phenotype in that brain region[31]. Similarly, 

structural changes have also been observed in developing neurons in culture[32]. Therefore, 

irrespective of the model system, iron depletion results in reduced neuronal development. 

This is interesting because vertebrates and invertebrates handle at least some parts of iron 

homeostasis through different mechanisms. For example, the blood brain barrier of 

vertebrates is different than that of flies, requiring transferrin receptors, which flies lack, to 

import iron from the blood[33,34]. Flies also lack erythropoiesis, which is the primary iron 

utilization pathway in vertebrates[35,17]. These are significant differences in iron 

homeostasis but the finding that each system reduces neuronal elaborations as a consequence 

of iron depletion suggests a highly conserved involvement of iron in brain development.

Further supporting the conservation of iron’s role in brain development is the finding that 

restoration of iron to the diet does not rescue the sLNv synaptic defects caused by chelation 

in developing flies (Fig 4). Persistent effects of early developmental iron deficiency have 

long been known from experiments in vertebrate models and human patients. Children 

exposed to iron deficiency pre- or postnatally experience cognitive defects for many years 

despite iron supplementation[36–38]. Also in mice and rats, learning and memory 

behavioral defects assayed in a variety of testing paradigms remain defective well after 

animals have been restored to an iron sufficient diet[39–41,13]. At the structural level, 

dendrites in the rat hippocampus typically shorten over time but actually over grow when 

iron deficient animals are placed on iron sufficient food[42]. Similarly, synaptic plasticity as 

measured by long term potentiation (LTP) declines over time in control rat hippocampal 

neurons[14]. LTP is normal in young rats which were iron deficient prenatally but ultimately 

becomes reduced relative to control animals raised completely on iron sufficient food. 

Furthermore, gene expression analyses in rats and mice under iron deficient conditions show 

persistent alterations well into adulthood[32,43]. It is therefore clear that in vertebrates, the 

presence of iron during a defined developmental window is critical for establishing proper 

neuronal pathways. Whether such a critical period exists in Drosophila has yet to be defined. 

However, failure of an iron sufficient diet to rescue the reduced number of PDF-positive 

synapses caused by iron deficiency suggests that the developmental program in these 

neurons is indeed shaped by iron. It will also be important to determine whether the 

molecular, physiological, and behavioral defects seen in other iron deficient animals persist 

in these iron deficient flies.
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It is interesting to note, that acute administration of BPS in adult animals also reduces 

synapse formation (Fig 3). During development, specific circuit formation pathways may be 

irreversibly altered by low iron as described above, but in adulthood, these mechanisms are 

less likely to be affected. One mechanism in which acute adult iron chelation may reduce 

synapse formation in adults, however, is by affecting sLNv synaptic pruning. sLNv structure 

expands and contracts over the 24-hour light-dark period as part of a normal circadian 

cycling program[44,27]. Both the synaptic arbor itself, and the synaptic contacts made 

throughout the 24-hour period are dynamic. It is possible that sufficient iron levels are 

required to maintain this homeostasis, and that iron chelation leads to either over-pruning of 

the synapses, failed regrowth by either the sLNv or its synaptic partner, or a combination of 

both. An hourly examination of circuit growth and analysis under constant light or constant 

dark conditions could be used to differentiate among these possibilities. Furthermore, 

behavioral analyses in iron deficient Drosophila can be used to directly correlate the sLNv 

defects identified here with circadian activity output. A finding, for example, that 

rhythmicity is affected by only acute iron chelation in adults would suggest that the changes 

occurring during developmental chelation are different than those that occur in adults. Such 

a result would indicate that iron functions at multiple levels, and that cells other than the 

sLNv’s are likely also affected by this treatment.

Circadian activity in flies is sensitive to genetic defects in iron homeostasis. RNAi studies 

have demonstrated that pan-neuronal knockdown of the iron storage and transport proteins 

ferritin 1 or 2, can produce arrhythmic activity in Drosophila[23]. Our data here indicate that 

neither ferritin 1 nor ferritin 2 knockdown alters synapse development of the sLNvs (Fig 5). 

This discrepancy may suggest that the mechanism by which ferritin expression affects 

circadian behavior is not structural but perhaps functional. Alternatively, it is possible that 

some other component of the circadian circuit is morphologically disrupted, while the sLNvs 

themselves remain intact. Indeed, genetic knockdown of ferritin 2 solely in the PDF-

expressing sLNvs does not result in arrhythmic flies, while knockdown in cells expressing 

the clock proteins timeless or cryptochrome does produce arrhythmia[23]. Determining 

whether or not the structures of these other clock circuit neurons are altered by ferritin 

knockdown may shed more light on the role of ferritin expression on neuronal structure. 

Such isolated changes in other aspects of the clock circuitry would also be consistent with 

studies in vertebrates, where dendritic morphological defects in iron deficient animals are 

region specific, even within the same functional lobe[15,42].

Another interesting observation from the data presented here is that the number of 

PDFpositive puncta in control treated animals varied from experiment to experiment (Figs. 

2–4). The source of this variation is unknown. There is no apparent sexual dimorphism of 

this circuit though a higher degree of individual structural variation does exist in female 

flies[44]. Since gender was not controlled for in our studies, it’s possible that simply an 

unequal usage of males and females accounts for the experimental variation. Another 

possibility, however, is potential discrepancy in the fly food. We have showed that different 

levels of iron can affect sLNv growth, so it is possible that not all batches of food contained 

the same levels of this trace element. Molasses is a well-known contributor of dietary iron, 

so differences in the amounts of molasses used, or even the batch of molasses supplied from 

the manufacturer, could account for changes in control animals[45,46]. In addition, 
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seemingly minor variations in the amount of each food ingredient could alter the quantities 

of other trace elements not specifically controlled for here, and those other micronutrients 

could also contribute to the experimental variation. For example, copper and zinc are well 

characterized modulators of synaptic function so it is conceivable that changes in 

concentrations of these elements could also impact the formation of the sLNv circuit[47,48]. 

Use of a defined food source as has been advocated for caloric intake experiments could be 

highly valuable for understanding how these or other micronutrients potentially affect 

neuronal growth[49].

Clearly many questions about how iron affects brain development in invertebrates remain 

unanswered. Most vertebrate neurological analyses of iron deficiency have been performed 

in higher cognitive brain regions due to the strong correlation in humans of iron deficiency 

with neurodevelopmental delay. Therefore, in order to directly compare the vertebrate and 

invertebrate consequences of changes in iron homeostasis on brain development, it will be 

important to investigate analogous higher-ordered circuits in the fly. The fly mushroom body 

is the central learning and memory circuit of Drosophila and is amenable to genetic and 

cytological analyses. Understanding whether or not mushroom body neurons are affected by 

iron deficiency and similarly whether or not learning and memory behaviors are altered by 

this condition, will be necessary for future comparative studies. Genetic analyses using 

mutations in ferritins or other iron-binding proteins will also further our understanding of the 

evolutionary conserved components of iron homeostasis.
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Fig 1. Small ventrolateral neurons are identified by expression of PDF
A) Representative image of a Drosophila brain showing PDF-positive small ventrolateral 

neurons (sLNv). Input from the optic lobes is sent by contralateral projections to the 

protocerebrum, where they bifurcate into dorsal and lateral branches (arrow). Cell bodies are 

marked with arrowhead. Scale bar = 100 μm. B) Boxed inset from (A) shows magnified 

sLNv arbor. Scale bar =10 μm. C) The termini of the PDF-positive sLNv branches form 

punctate synapses which are identified and quantified using the Imaris Spot algorithm 

(purple spheres). Scale bar = 10 μm
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Fig 2. Iron chelation throughout development attenuates sLNv synaptic development
A) Drosophila were fed BPS to chelate iron from the diet throughout development and 

adulthood according to the outlined paradigm. B) Representative images of PDF-positive 

synaptic puncta in sLNvs of animals treated with 0 μM, 100 pM, and 200 μM BPS. Purple 

spheres generated by the software counting algorithm are overlaid the immunohistochemical 

anti-PDF stain (green). Scale bars = 10 μm. C) The average number of PDF-positive puncta 

quantified for each treatment condition. Values are ± SEM. **p<0.01
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Fig 3. Acute iron chelation in adult animals attenuates sLNv synaptic development
A) Drosophila were fed BPS to chelate iron from the diet only during adulthood according 

to the outlined paradigm. B) The average number of PDF-positive puncta quantified for each 

treatment condition in this paradigm. Values are ± SEM. *p<0.05, **p<0.01
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Fig 4. Restoration of iron levels after iron chelation does not rescue defects in sLNv synapse 
development
A) Drosophila were fed BPS to chelate iron from the diet during development and then 

switched to normal food according to the outlined paradigm. B) The average number of 

PDF-positive puncta quantified for each treatment condition in this paradigm. Values are ± 

SEM. *p<0.05
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Fig 5. Neuronal knockdown of ferritin subunits does not affect PDF-positive synaptic 
development.
PDF-positive sLNv synapses were quantified in flies neuronally expressing RNAi constructs 

to ferritin 1 (A) or ferritin 2 (B) and compared to Elav-gal4 heterozygous controls. Values 

are ± SEM
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